

Encryption Key Search using Java-based ALiCE Grid
Ameya Virkar

Singapore-MIT Alliance

National University of Singapore
Email: ameya@comp.nus.edu.sg

ABSTRACT

Encryption Key Search is a compute-intensive
operation that consists of a brute-force search of a
particular key in a given key space. Sequential
execution time for a 56-bit encryption key search is
approximately 200,000 years and therefore it is
ideal to execute such operation in a grid
environment. ALiCE (Adaptive and scaLable
internet-based Computing Engine) is a grid
middleware that offers a portable software
technology for developing and deploying grid
applications and systems. This paper discusses the
development of the Encryption Key Search
application on ALiCE and also presents the
performance evaluation of ALiCE using this
application.

1 Introduction
Grid is a dynamic network of computing resources
that collaborate as a single operating environment,
spanning locations and administrative domains and
flexibly supporting dynamically changing
computing requirements.

A computational grid infrastructure consists of
hardware and software components that provide
dependable, consistent, pervasive and inexpensive
access to high-end computational capabilities [7].
Projects such as Condor-G [8, 17], SETI@home
[22], The Globus Computational Grid [5, 6],
Javelin [4, 18], Charlotte [3] and MIT’s Bayanihan
[20, 20] among many have not only contributed
ideas on how grid computing systems can be
implemented, but they have also demonstrated the
potential of grid computing systems.

Table 1 summarizes the related work in the area of
grid computing [19]. Communications Technology
(Comm. Tech) refers to the underlying technology
that is used to build the system, Programming

Language (Prog. Lang) refers to the language that the
grid system supports, Platforms represent the
operating systems running on the machines,
Environment refers to the type of network that the
grid system is deployed on (Internet refers to the
interconnection of computers through any protocol
whereas the World Wide Web refers to the use of the
Hyper Text Transfer Protocol via Web Browsers)
and lastly the Architecture represents the type of
architecture used in the grid system.

ALiCE is a lightweight grid-computing middleware
for aggregating computational resources. The
programming model offered in ALiCE has enabled
development of applications such as Geo-
rectification of the earth’s satellite images in satellite
remote sensing and N-body simulations. This paper
provides an overview of the ALiCE architecture, the
programming model supported on ALiCE and the
development of encryption key search application on
ALiCE.

The remainder of this paper is structured as follows.
Section 2 describes with the architecture and
implementation of ALiCE grid system. The ALiCE
programming model has been explained in Section 3.
Section 4 discusses about the encryption key search
algorithm and also gives the performance evaluation
results of the ALiCE system using this application.
The conclusion and future work is discussed in
Section 5.

2 ALiCE Grid System
ALiCE is a portable software technology for
developing and deploying general-purpose grid
applications and systems. It virtualises computer
resources on the Internet/intranet into one computing
environment through a platform-independent
consumer-producer resource-sharing model, and
harnesses idle resources for computation to increase
the usable power of existing systems on the network.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4381324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Grid System Comm. Tech Prog.
Lang Platforms Environment Architecture

Legion
 [11, 15] Sockets

C++,
Mentat,
Fortran,

PVM, MPI

Solaris (SPARC), SGI,
Linux (x86, Alpha,

DEC), HPUX, RS6000
Internet Tree Structure (global root node)

GLOBE [12] Java IDL Java, C WinNT NT, Unix Internet Tree Structure (global root node)

Javelin [4, 18] Java Applets,
Java RMI Java Any Java enabled

browser WWW Three-Tier
Clients, Brokers, Hosts

Calypso [1] Sockets C++ Solaris, Linux, Win NT Cluster Computing Three-Tier
Clients, Brokers, Hosts

Charlotte
 [3]

Java Applets,
Java RMI Java Any Java enabled

browser WWW Three-Tier
Clients, Brokers, Hosts

Knitting Factory
[2]

Java Applets,
Java RMI Java Any Java enabled

browser WWW Three-Tier
Clients, Brokers, Hosts

Condor [8, 17] RPC C Win NT, Unix Intranet Client-Server

Nile [16] Java, CORBA Java Any Java compatible
platform

Wide Area
Network Unknown

Bayanihan [20] HORB using
Java Applets Java Any Java enabled

browser WWW
Client-Server

Clients are resources only, they cannot
submit jobs

Globus [5, 6] Nexus Java, MPI Linux, Solaris Internet Tree Structure (without global root
node)

ALiCE
SoC, NUS

JiniTM, Java
RMI,

JavaSpacesTM
Java Any Java compatible

platform
Internet & Cluster

Computing

Three-Tier
Clients can be a resource provider, a

resource consumer, and both

Table 1: Comparison of Grid Computing Systems

2.1 Architecture

Figure 1: ALiCE Architecture

ALiCE layered architecture is shown in Figure 1.
The different components at a layer are built on
capabilities and behaviors provided by its lower
layer.

The grid fabric layer provides the resources that are
shared in the grid system. For example,
computational resources, storage systems, network
resources and sensors are part of the grid fabric layer.
JavaTM Technologies have been used in developing
the ALiCE middleware. Using such technologies, the
middleware provides tools that make it easier to build
computational grids and grid-based applications.

The layered architecture consists of the following
layers:
• ALiCE Core: ALiCE Core provides essential

grid services like resource scheduling, producer
management etc., important data services like
data management and caching, incorporates
object network transfer architecture (ONTA) to
perform communication using the underlying
Java technologies, security infrastructure to
handle security issues and the monitoring and
accounting system for performance analysis and
billing.

• ALiCE Extensions: This layer includes the
runtime support system that handles the platform
specific information for the program execution.
The layer also provides programming templates,
built on the ALiCE programming model, to be
used for application development. In addition,
certain data services are also made available at
this layer.

ALICE APPLICATIONS AND TOOLKITS

ALICE EXTENSIONS

Programming
Templates

Runtime
Support

Data
Service

ALiCE Core

Compute
Grid

Data Grid
Services

Monitoring
and

JAVA TECHNOLOGIES

GRID FABRIC

Object Network
Transfer Architecture

Security
Infrastructure

Java JiniTM JavaSpacesTM Java RMI

Computers Networks Storage System

• ALiCE Applications and Toolkits: The final
layer comprises of the user applications that
operate within the ALiCE grid system.
Applications are constructed by using the
underlying programming templates. The
underlying layered structure of the ALiCE
architecture is transparent to the application
programmer and therefore application
development is easy and convenient under the
ALiCE grid system.

2.2 ALiCE System

Figure 2: ALiCE Components

The main components of ALiCE are outlined
below:

• Consumer: The consumer submits the

applications to the system. The consumer also
deals with the collection of results returned by
the different tasks of the application. The
consumer also includes support to visualize the
progress of the execution.

• Producer: The producer provides the computer
power to run ALiCE applications. The
producer receives tasks from the ALiCE
system that are dynamically loaded and
executed. The results obtained from each task
are sent back to the system so that the
consumer that has originally submitted the
application can receive them.

• Resource Broker: The resource broker deals
with application scheduling and task
scheduling. The resource broker also
temporarily stores results returned by
producers so that the consumer can collect
them.

The ALiCE components interact in the following
manner. A consumer machine submits applications
to the resource broker. The producers that are
willing to volunteer their computing resources get
connected to the resource broker. The sub-tasks of

the application are generated at the resource broker.
The resource broker regulates consumer’s resource
demand and producer’s availability, and dispatches
tasks from the task pool for execution at the
producers. The producers return the results to the
resource broker from where they are sent to the
consumers.

2.3 Object Communication
In ALiCE grid system, the tasks and messages are
communicated with the different nodes using
persistent objects. To support transfer of persistent
objects over a network, ALiCE includes ONTA
(Object Network Transfer Architecture). ONTA
offers general APIs to save the state of a live object
or class as serialized object, combine it with other
classes in an archive file and then load it back at the
other node. ONTA uses a generic way to transport
the serialized objects over the network using a
protocol model, which is as general as possible.
ONTA also handles adding of new protocols in the
system. ONTA mechanism is shown in Figure 3.

There are six components inside ONTA: Object
Writer, Object Repository, Remote Object Loader,
Object Loader, File Manager and Protocols. For
object communication, The Object Writer serializes
the object (1) and creates a jar file containing the
object and all classes required by the object. Object
Repository stores the jar archive and advertises it to
be downloaded by remote object loaders (2). Remote
Object Loader retrieves the jar file reference (3) and
downloads the file (4). Object Loader restores the
serialized object from the jar file (5); File Manager
handles file naming and storage on the local disk.
Protocols represent the rules determining the format
and transmission of object.

2.4 Implementation
ALiCE is implemented in JavaTM, for full cross-
platform portability, extensibility and scalability and
uses GigaSpacesTM for communication and resource
discovery. GigaSpacesTM is a commercial
implementation of Sun Microsystems’ JiniTM and
JavaSpacesTM technologies. JavaSpacesTM provides a
logical distributed-shared memory whereas
GigaSpacesTM implements a distributed-shared
memory by coupling spaces hosted at different
machines.

3 Programming in ALiCE
A grid environment is inherently parallel, distributed,
heterogeneous and dynamic [14]. Due to such
differences, programming applications in a grid
environment is beyond the scope of many existing
programming tools. It is therefore necessary to build

Internet

Consumer

Consumer

Consumer

Consumer Producer

Producer

Producer

Producer

Resource
Broker

Figure 3: Object Communication in ONTA

an effective programming model to support
development of applications on ALiCE grid system
and thereby support both sequential and parallel
computer applications to maximize computer
throughput. Similar to typical parallel computer
applications, ALiCE programming model allows
breaking down large computations into smaller
tasks that can be distributed among producers tied
to a network to exploit parallelism and speedup.

ALiCE follows the TaskGenerator-
ResourceCollector programming model. In this
model, a consumer submits an application in the
form of its Java Archive (JAR) file. The
TaskGenerator at the Resource Broker initiates the
application and generates a pool of tasks. The tasks
are allocated for execution to the Producers. The
results of the computation at the Producers are
returned to the Resource Broker in the form of a
Result object. ResultCollector is initiated at the
consumer to support visualization and monitoring
of data. The ResultCollector collects Result objects
from the resource Broker and uses them for
visualization. All the results collected by the
Resource Broker are returned to the consumer as a
file.

To support the various operations described in the
programming model, programming templates have
been devised to help in the development of new
applications under ALiCE. The programming
template has been developed in a way that
programmers can exploit the distributed nature of
the ALiCE system. The programming templates
include methods for sending tasks to ALiCE and
also to retrieve the Result objects from ALiCE.

The templates included in the programming model
are:

• TaskGenerator: TaskGenerator template allows

applications to be invoked at the resource broker.
It provides methods that allow applications to
send tasks to ALiCE system.

• ResultCollector: ResultCollector template
includes methods that can be invoked at the
consumer. The methods allow the application to
retrieve results arriving at the consumer.

• Task: A Task template is used to specify
functions that are needed to execute jobs at the
producer. The template also allows the producer
nodes to return Result objects to the resource
broker upon completing the execution.

4 Encryption Key Search
The encryption key search is a method that uses brute
force approach to search encryption keys in a given
key space. The search is performed to identify one
particular key that was used to encrypt the text. An
encryption key search application requires immense
computational power for searching the key and is
therefore suitable to be executed in a grid
environment.

Data Encryption Standard (DES) [22, 24] is the most
popular algorithm used for encryption of text. A DES
key consists of 64 bits of which 56 bits are randomly
generated and used directly by the algorithm and the
remaining 8 bits are used for error detection. Many
projects have been implemented in the past that
perform key search in a DES key space. Some
projects have used volunteers throughout the Internet
to systematically explore the key space. In other
projects, expensive special purpose computers were

(1) Serialize object

(5) Load object from file

Space

(2) File Reference / Message

(3) File Reference / Message
(4) Download file

Object
Repository

File

Remote Object
Loader

Tasks

Objects

Code

Results

used to identify an encryption key. Others have
built special hardware for processing the keys.

Figure 4: Algorithm

In our implementation, a randomly selected key Kr
is used to encrypt a known text string S into a
ciphertext Cs. To identify key Kr, every key k in the
key space is used to encrypt the same known text
string to get ciphertext Ck. If for any given key Ck
matches with Cs, then the brute force algorithm
converges and the key value is returned.

Since DES key space is very huge (256 keys), we
have modified the application such that it is
possible to specify the range of the key space. The
bit-length (b) is used to fix largest key in the new
key space. The new key space would be of size (2b)
keys. In order to use the DES algorithm, the rest of
the bits (56-b) of the key are masked. The
randomly selected key Kr is also chosen from
within the restricted key space (2b keys) and its
remaining bits are masked. Changing the bit-length
(b) of the largest key can thus vary the problem
size. The algorithm is shown in Figure 4.

The task generator in ALiCE breaks down the key
space into smaller tasks and the resource broker
then assigns these tasks to the producers. The
producers perform the search on the smaller tasks

and the results are returned to the consumer. The
programming templates are shown in Figure 5.

5 Experiments
The performance of ALiCE was tested with the Key
Search application. The performance was measured
by recording the time required to search the entire
key space for a given problem size. The test
environment consists of a homogenous cluster
connected with Myrinet fast network, and a fast
heterogeneous cluster with Ethernet network. All
nodes in the clusters are running Red Hat Linux.

The homogenous cluster (Cluster I) is made of 64-
nodes where each node is 1.4GHz Intel Xeon dual
processor with 1GB of memory. The heterogeneous
cluster (Cluster II) consists of 24 nodes of which 16
nodes are Intel Pentium II 400MHz with 256MB of
memory and 8 are Intel Pentium III 866MHz with
256MB of memory.

GigaSpacesTM Platform 2.0 has been used in the
development and testing. The resource broker,
producers and consumer implement JavaTM 2
Runtime Environment Standard Edition with JiniTM
Starter Kit version 1.2. The JavaTM HotSpot Server
Virtual Machines are used at the resource broker and
producer nodes. The consumer nodes make use of the
JavaTM HotSpot Client Virtual Machine.

5.1 Problem Characteristics
We first measured the time required by a single
machine to perform the search. It was observed that
the sequential running time for the key search
application increases exponentially with increase in
the key space size. Therefore in order to compute the
time for larger space sizes, we compute the running
time on single machine for smaller space sizes and
extrapolate the values to compute the time for larger
space sizes. The smaller size, which is chosen for this
purpose, is same as the size of individual task in the
parallel execution. The actual and extrapolated
running timings are given in Table 2. The table
shows that the extrapolated timings match with the
actual running timings on a single machine.

Next we record the extrapolated total running time on
a single machine by varying the task size. Using the
total key space size, we can estimate the number of
tasks that would be created by choosing the particular
task size and thereby compute the time taken for
running each task. Table 3 shows the values for
different task sizes. The table helps in choosing an
appropriate task size such that the computation time
on every node is larger than the network latency.

Key Found

Text String S
Key Space,

256

DES Encryption
Randomly
selected key Kr
0 < Kr < 2b with
(56-b) bits
masked

Ciphertext Cs

Text String S

Is k <
2b?

DES Encryption

Ciphertext Ck

Is Ck
= Cs?

k = k + 1

Yes

No

Task Generator

import alice.consumer.*;
import alice.data.*;
public class MyTaskGenerator extends TaskGenerator {
 public TASKGEN_CLASSNAME() {}

 public void generateTasks() {
 for (long i=0; i<tasks; i++) {
 cipher.encrypt(in,out,8);
 start = i*keysPerTask;
 end = start+keysPerTask-1;
 t = new MyTask(i,start,end,in,out);
 process(t);
 }
 }

 /* Main method - entry point */
 public void main(String args[]) {
 // This is where the tasks are generated, usually in a loop
 this.generateTasks();
 }
}

Task

import alice.consumer.*;
import java.io.*;

public class MyTask extends Task {
 private long id;
 private long keyStart, keyEnd;
 byte[] byteIn, byteOut;

 public MyTask () {
 }

 public MyTask(long i, long k1, long k2, byte[] in, byte[] out) {
 id = i;
 keyStart = k1; keyEnd = k2;
 byteIn = in; byteOut = out;
 }

 public Object execute () {
 // Test keys from keyStart to keyEnd and return the result
 }
}

Result

import java.io.*;

public class Result implements Serializable {
 public Long key;
 public Boolean found;
 public Long id;
 public long time;

 public Result() {
 key = null;
 found = Boolean.FALSE;
 }

 public void found(Long k) {
 found = Boolean.TRUE;
 key = k;
 }
}

ResultCollector

import alice.result.*;
public class DesCrackerRC extends ResultCollector implements Runnable {

 public RESCOL_CLASSNAME() {
 }

 public void collect() {
 for (long i=0; i<tasks; i++) {
 while (parent.getResultsNoReady() == 0 && !ended)
 ;
 if (ended) return;
 res = (Result)parent.collectResult();
 keysSoFar += keysPerTask;
 }
 if (res.found.booleanValue()) ended=true;
}

Figure 5: Snapshot of the Source Code

Cluster I Cluster II Key

Length
(Bits) Actual Estimated Actual Estimated

24 1 min 1 min 1 min 1 min

28 18 min 18 min 29 min 29 min

32 4 hr 52 min 4 hr 57 min 7hr 55 min 7 hr 57 min

36 - 3 days - 6 days

40 - 3 yrs - 5 yrs

56 - 201396 yrs - 328690 yrs

Table 2: Sequential Execution Time

5.2 Distributed Execution
Task size of 50,000,000 keys per task was chosen
and the experiments were conducted on 36-bit keys
using Cluster I and 32-bit on keys using Cluster II.
The key search application was executed on
different number of nodes – 4, 8, 10, 12, 16 and 32.
The results of the experiment are presented in the
table 4. The results reveal the advantages of

executing the application in a grid environment. The
effective time for key search reduces with increasing
number of nodes thereby giving greater speedup.

We now demonstrate the speedup achieved after
running the experiments on a single machine and on
a cluster of machines. In cluster environment where
all processors are homogeneous, both in hardware
and in software configuration, workload on these
processors does not vary. In such a setting speedup is
defined as Ts/Tp, where Ts is the time to run the
program on one processor and Tp is the time to run
the same program on p processors. The speedup
obtained by running the search application on 36-bit
keys is shown in the Figure 6. We have chosen
50,000,000 keys per task as the task size for
measuring the speedup.

We consider these results highly encouraging,
although they need to be evaluated further with
different key space sizes and higher numbers of
nodes. Also, the effects of using other scheduling
schemes in the resource broker need to be measured.

32-bit Key 36-bit Key 40-bit Key

Est. Time/Task
(min)

Est.
Time/Task

(min)

Est.
Time/Task

(min)
Keys/Task

Tasks

Cluster I Cluster II

Tasks

Cluster I

Tasks

Cluster I

5,000,000 859 0.3 0.5 13,744 0.3 219,902 7.0

10,000,000 429 0.7 1.0 6,872 0.7 109,951 14.0

30,000,000 143 2.0 3.0 2,291 2.0 36,650 43.0

50,000,000 86 3.0 5.0 1,374 3.0 21,990 72.0

100,000,000 43 6.0 10.0 687 7.0 10,995 160.0

Table 3: Estimated Execution Time for Different Task Sizes

Cluster I Cluster II
Nodes

36-bits Key 32-bits Key
Est.

Sequential 78.38 8.72

4 23.60 3.72

8 11.01 2.12

10 8.57 1.70

12 7.35 1.43

16 5.18 1.12

32 2.48 -

Table 4: Execution Time (hours) for Varying

the Number of Nodes

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of Producers

Sp
ee

du
p

36-bits (Cluster I)
32-bits (Cluster II)
Linear

Figure 6: Speedup

6 Conclusion
The Encryption Key Search application has been
developed under the ALiCE grid environment.
ALiCE programming templates used for

development of this application have helped to
exploit the parallelism in the application.
Experiments show that speedup of approximately
98% in the execution time has been achieved for a
36-bit encryption key search using 32 nodes.
Through the experiments, it has been demonstrated
that a grid environment, like ALiCE, can be
exploited for compute-intensive problems like
encryption key search.

The experiments presented in the paper show the
performance of the application on a cluster grid.
Future work includes developing a non-java version
of the application. Also the application is to be tested
in a local-area-network (LAN) and wide-area-
network (WAN).

References

1. Baratloo. A, Dasgupta. P and Kedem, Z. M, Calypso:
A novel software system for fault-tolerant parallel
processing on distributed platforms, In Proceedings of
4th IEEE International Symposium on High-
Performance Distributed Computing, 1995

2. Baratloo. A, Karaul. M, Karl. H and Kedem, Z.M,
KnittingFactory: An Infrastructure for Distributed
Web Applications, TR1997-748, Department of
Computer Science, New York University, 1997.

3. Baratloo. A, Karaul. M, Kedem. Z and Wyckoff. P,
Charlotte: Metacomputing on the Web, In the
Proceedings of the 9th International Conference on
Parallel and Distributed Computing Systems, 1996.

4. Christiansen, B. O, Cappello. P, Ionescu, M. F, Neary,
M. O, Schauser, K. E and Wu. D, Javelin: Internet-
Based Parallel Computing Using Java, Concurrency:
Practice and Experience, Volume 9(11), pp. 1139 -
1160, November 1997.

5. Foster. I and Kesselman. C, Globus: A
Metacomputing Infrastructure Toolkit. International
Journal of Supercomputing Applications, Vol. 11(2),
pp 115-128, 1997

6. Foster. I, Kesselman. C and Tuecke. S, The Anatomy
of the Grid: Enabling Scalable Virtual Organizations,

International Journal of Supercomputer
Applications, Volume 15(3), 2001.

7. Foster. I, and Kesselman. C, The Grid: Blueprint for
a Future Computing Infrastructure, Morgan
Kaufmann Publishers, 1999.

8. Frey. J, Tannenbaum. T, Foster. I, Livny. M and
Tuecke. S, Condor-G: A Computation Management
Agent for Multi-Institutional Grids, Journal of
Cluster Computing Volume 5, pp. 237-246, 2002.

9. Germain. C, Néri. V, Fedak. G and Cappello. F,
XtremWeb: building an experimental platform for
Global Computing, GRID 2000, LNCS 1971, pp.
91-101, Springer-Verlag Berlin Heidelberg, 2000.

10. Grid Computing Info Center (GRID Infoware).
http://www.gridcomputing.com

11. Grimshaw, A.S, Lewis, M. J, Ferrari, A. J,
Karpovich, J. F, Architectural Support for
Extensibility and Autonomy in Wide-Area
Distributed Object Systems,
Proceedings of the 2000 Network and Distributed
System Security Symposium (NDSS2000), February
2000.

12. Homburg. P, M. van Steen, and Tanenbaum, A. S,
An Architecture for a Wide Area Distributed
System, In the Proceedings of the Seventh ACM
SIGOPS European Workshop, Connemara, Ireland,
pp. 75-82, September 1996.

13. Khunboa, C. and Simon. R, On the Performance of
Coordination Spaces for Distributed Agent Systems,
In the Proceedings of the IEEE 34th Annual
Simulation Symposium, April, 2001, Seattle,
Washington. pp 7-14, 2001.

14. Lee, Matsuoka, Talia, Sossman, Karonis, Allen and
Thomas, A Grid Programming Primer Programming
Models Working Group, Grid Forum 1, Amsterdam,
2001.

15. Lewis. M, Grimshaw. A, The Core Legion Object
Model,
Proceedings of the Fifth IEEE International
Symposium on High Performance Distributed
Computing, August 1996.

16. Marzullo. K., Ogg. M, Ricciardi. A, Amoroso. A,
Calkins. F and Rothfus. E, NILE: Wide area
computing for high energy physics, In the
Proceedings of 1996 SIGOPS Conference, New
York, 1996.

17. Mutka. M and Livny. M, The Available Capacity of
a Privately Owned Workstation Environment,
Performance Evaluation, Volume 12, no. 4 pp. 269-
284, July 1991.

18. Neary, M. O, Phipps. A and Richman. S, Javelin
2.0: Java-Based Parallel Computing on the Internet,
Proceedings of Euro-Par 2000, Munich, Germany,
2000.

19. Prawira Johan, ALiCE: Java-based Grid Computing
System, Honours Thesis, School of Computing,
National University of Singapore, 2002.

20. Sarmenta. L.F.G, Bayanihan: Web-Based Volunteer
Computing Using Java, In the Proceedings of `the
2nd International Conference on World-Wide-
Computing and its Applications (WWCA’98),
Tsukuba, Japan, March 1998.

21. Sarmenta. L.F.G, Volunteer Computing, Ph.D. thesis,
Department of Electrical Engineering and Computer
Science, MIT, March 2001.

22. Schneier. B, Applied Cryptography: Protocols,
Algorithms, and Source Code in C, 2nd Edition, John
Wiley & Sons Publishing Group, pp. 265-302, 1996.

23. SETI@home: Search for Extraterrestrial Intelligence
at Home. http://setiathome.ssl.berkeley.edu/

24. Stinson. D R, Cryptography: Theory and Practice, 2nd
Edition, Chapman & Hall Publishing Group, pp. 95-
101, 2002.

