
 
 
 

Encryption Key Search using Java-based ALiCE Grid 
Ameya Virkar 

 
Singapore-MIT Alliance 

National University of Singapore 
Email: ameya@comp.nus.edu.sg 

 
 

ABSTRACT 
 

Encryption Key Search is a compute-intensive 
operation that consists of a brute-force search of a 
particular key in a given key space. Sequential 
execution time for a 56-bit encryption key search is 
approximately 200,000 years and therefore it is 
ideal to execute such operation in a grid 
environment. ALiCE (Adaptive and scaLable 
internet-based Computing Engine) is a grid 
middleware that offers a portable software 
technology for developing and deploying grid 
applications and systems. This paper discusses the 
development of the Encryption Key Search 
application on ALiCE and also presents the 
performance evaluation of ALiCE using this 
application.  
 
 

1 Introduction 
Grid is a dynamic network of computing resources 
that collaborate as a single operating environment, 
spanning locations and administrative domains and 
flexibly supporting dynamically changing 
computing requirements.  
 
A computational grid infrastructure consists of 
hardware and software components that provide 
dependable, consistent, pervasive and inexpensive 
access to high-end computational capabilities [7]. 
Projects such as Condor-G [8, 17], SETI@home 
[22], The Globus Computational Grid [5, 6], 
Javelin [4, 18], Charlotte [3] and MIT’s Bayanihan 
[20, 20] among many have not only contributed 
ideas on how grid computing systems can be 
implemented, but they have also demonstrated the 
potential of grid computing systems.  
 
Table 1 summarizes the related work in the area of 
grid computing [19]. Communications Technology 
(Comm. Tech) refers to the underlying technology 
that is used to build the system, Programming 

Language (Prog. Lang) refers to the language that the 
grid system supports, Platforms represent the 
operating systems running on the machines, 
Environment refers to the type of network that the 
grid system is deployed on (Internet refers to the 
interconnection of computers through any protocol 
whereas the World Wide Web refers to the use of the 
Hyper Text Transfer Protocol via Web Browsers) 
and lastly the Architecture represents the type of 
architecture used in the grid system.  
 
ALiCE is a lightweight grid-computing middleware 
for aggregating computational resources. The 
programming model offered in ALiCE has enabled 
development of applications such as Geo-
rectification of the earth’s satellite images in satellite 
remote sensing and N-body simulations. This paper 
provides an overview of the ALiCE architecture, the 
programming model supported on ALiCE and the 
development of encryption key search application on 
ALiCE.   
 
The remainder of this paper is structured as follows. 
Section 2 describes with the architecture and 
implementation of ALiCE grid system. The ALiCE 
programming model has been explained in Section 3. 
Section 4 discusses about the encryption key search 
algorithm and also gives the performance evaluation 
results of the ALiCE system using this application.  
The conclusion and future work is discussed in 
Section 5.  
 

2 ALiCE Grid System 
ALiCE is a portable software technology for 
developing and deploying general-purpose grid 
applications and systems. It virtualises computer 
resources on the Internet/intranet into one computing 
environment through a platform-independent 
consumer-producer resource-sharing model, and 
harnesses idle resources for computation to increase 
the usable power of existing systems on the network.  
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Grid System Comm. Tech Prog. 
Lang Platforms Environment Architecture 

Legion 
 [11, 15] Sockets 

C++, 
Mentat, 
Fortran, 

PVM, MPI 

Solaris (SPARC), SGI, 
Linux (x86, Alpha, 

DEC), HPUX, RS6000
Internet Tree Structure (global root node) 

GLOBE [12] Java IDL Java, C WinNT NT, Unix Internet Tree Structure (global root node) 

Javelin [4, 18] Java Applets, 
Java RMI Java Any Java enabled 

browser WWW Three-Tier 
Clients, Brokers, Hosts 

Calypso [1] Sockets C++ Solaris, Linux, Win NT Cluster Computing Three-Tier 
Clients, Brokers, Hosts 

Charlotte 
 [3] 

Java Applets, 
Java RMI Java Any Java enabled 

browser WWW Three-Tier 
Clients, Brokers, Hosts 

Knitting Factory 
[2] 

Java Applets, 
Java RMI Java Any Java enabled 

browser WWW Three-Tier 
Clients, Brokers, Hosts 

Condor [8, 17] RPC C Win NT, Unix Intranet Client-Server 

Nile [16] Java, CORBA Java Any Java compatible 
platform 

Wide Area 
Network Unknown 

Bayanihan [20] HORB using 
Java Applets Java Any Java enabled 

browser WWW 
Client-Server 

Clients are resources only, they cannot 
submit jobs 

Globus [5, 6] Nexus Java, MPI Linux, Solaris Internet Tree Structure (without global root 
node) 

ALiCE 
SoC, NUS 

JiniTM, Java 
RMI, 

JavaSpacesTM 
Java Any Java compatible 

platform 
Internet & Cluster 

Computing 

Three-Tier 
Clients can be a resource provider, a 

resource consumer, and both 
 

Table 1: Comparison of Grid Computing Systems 
 

2.1 Architecture 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: ALiCE Architecture 
 
ALiCE layered architecture is shown in Figure 1. 
The different components at a layer are built on 
capabilities and behaviors provided by its lower 
layer.  

 
The grid fabric layer provides the resources that are 
shared in the grid system. For example, 
computational resources, storage systems, network 
resources and sensors are part of the grid fabric layer. 
JavaTM Technologies have been used in developing 
the ALiCE middleware. Using such technologies, the 
middleware provides tools that make it easier to build 
computational grids and grid-based applications.  
 
The layered architecture consists of the following 
layers: 
• ALiCE Core: ALiCE Core provides essential 

grid services like resource scheduling, producer 
management etc., important data services like 
data management and caching, incorporates 
object network transfer architecture (ONTA) to 
perform communication using the underlying 
Java technologies, security infrastructure to 
handle security issues and the monitoring and 
accounting system for performance analysis and 
billing.  

• ALiCE Extensions: This layer includes the 
runtime support system that handles the platform 
specific information for the program execution. 
The layer also provides programming templates, 
built on the ALiCE programming model, to be 
used for application development. In addition, 
certain data services are also made available at 
this layer.  
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• ALiCE Applications and Toolkits: The final 
layer comprises of the user applications that 
operate within the ALiCE grid system. 
Applications are constructed by using the 
underlying programming templates. The 
underlying layered structure of the ALiCE 
architecture is transparent to the application 
programmer and therefore application 
development is easy and convenient under the 
ALiCE grid system.  

2.2 ALiCE System 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: ALiCE Components 
 
The main components of ALiCE are outlined 
below: 
 
• Consumer: The consumer submits the 

applications to the system. The consumer also 
deals with the collection of results returned by 
the different tasks of the application.  The 
consumer also includes support to visualize the 
progress of the execution.  

• Producer: The producer provides the computer 
power to run ALiCE applications. The 
producer receives tasks from the ALiCE 
system that are dynamically loaded and 
executed. The results obtained from each task 
are sent back to the system so that the 
consumer that has originally submitted the 
application can receive them.  

• Resource Broker: The resource broker deals 
with application scheduling and task 
scheduling. The resource broker also 
temporarily stores results returned by 
producers so that the consumer can collect 
them.  
 

The ALiCE components interact in the following 
manner. A consumer machine submits applications 
to the resource broker. The producers that are 
willing to volunteer their computing resources get 
connected to the resource broker. The sub-tasks of 

the application are generated at the resource broker. 
The resource broker regulates consumer’s resource 
demand and producer’s availability, and dispatches 
tasks from the task pool for execution at the 
producers. The producers return the results to the 
resource broker from where they are sent to the 
consumers.  

2.3 Object Communication 
In ALiCE grid system, the tasks and messages are 
communicated with the different nodes using 
persistent objects. To support transfer of persistent 
objects over a network, ALiCE includes ONTA 
(Object Network Transfer Architecture). ONTA 
offers general APIs to save the state of a live object 
or class as serialized object, combine it with other 
classes in an archive file and then load it back at the 
other node. ONTA uses a generic way to transport 
the serialized objects over the network using a 
protocol model, which is as general as possible. 
ONTA also handles adding of new protocols in the 
system. ONTA mechanism is shown in Figure 3.  
 
There are six components inside ONTA: Object 
Writer, Object Repository, Remote Object Loader, 
Object Loader, File Manager and Protocols. For 
object communication, The Object Writer serializes 
the object (1) and creates a jar file containing the 
object and all classes required by the object. Object 
Repository stores the jar archive and advertises it to 
be downloaded by remote object loaders (2). Remote 
Object Loader retrieves the jar file reference (3) and 
downloads the file (4). Object Loader restores the 
serialized object from the jar file (5); File Manager 
handles file naming and storage on the local disk. 
Protocols represent the rules determining the format 
and transmission of object.  

2.4 Implementation 
ALiCE is implemented in JavaTM, for full cross-
platform portability, extensibility and scalability and 
uses GigaSpacesTM for communication and resource 
discovery. GigaSpacesTM is a commercial 
implementation of Sun Microsystems’ JiniTM and 
JavaSpacesTM technologies. JavaSpacesTM provides a 
logical distributed-shared memory whereas 
GigaSpacesTM implements a distributed-shared 
memory by coupling spaces hosted at different 
machines.  

3 Programming in ALiCE 
A grid environment is inherently parallel, distributed, 
heterogeneous and dynamic [14].  Due to such 
differences, programming applications in a grid 
environment is beyond the scope of many existing 
programming tools. It is therefore necessary to build  
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Figure 3: Object Communication in ONTA 
 
 
an effective programming model to support 
development of applications on ALiCE grid system 
and thereby support both sequential and parallel 
computer applications to maximize computer 
throughput. Similar to typical parallel computer 
applications, ALiCE programming model allows 
breaking down large computations into smaller 
tasks that can be distributed among producers tied 
to a network to exploit parallelism and speedup.  
 
ALiCE follows the TaskGenerator-
ResourceCollector programming model. In this 
model, a consumer submits an application in the 
form of its Java Archive (JAR) file. The 
TaskGenerator at the Resource Broker initiates the 
application and generates a pool of tasks. The tasks 
are allocated for execution to the Producers. The 
results of the computation at the Producers are 
returned to the Resource Broker in the form of a 
Result object. ResultCollector is initiated at the 
consumer to support visualization and monitoring 
of data. The ResultCollector collects Result objects 
from the resource Broker and uses them for 
visualization. All the results collected by the 
Resource Broker are returned to the consumer as a 
file.  
 
To support the various operations described in the 
programming model, programming templates have 
been devised to help in the development of new 
applications under ALiCE. The programming 
template has been developed in a way that 
programmers can exploit the distributed nature of 
the ALiCE system. The programming templates 
include methods for sending tasks to ALiCE and 
also to retrieve the Result objects from ALiCE. 
 

The templates included in the programming model 
are:  
 
• TaskGenerator: TaskGenerator template allows 

applications to be invoked at the resource broker. 
It provides methods that allow applications to 
send tasks to ALiCE system. 

• ResultCollector: ResultCollector template 
includes methods that can be invoked at the 
consumer. The methods allow the application to 
retrieve results arriving at the consumer.  

• Task: A Task template is used to specify 
functions that are needed to execute jobs at the 
producer. The template also allows the producer 
nodes to return Result objects to the resource 
broker upon completing the execution.  

4 Encryption Key Search  
The encryption key search is a method that uses brute 
force approach to search encryption keys in a given 
key space. The search is performed to identify one 
particular key that was used to encrypt the text. An 
encryption key search application requires immense 
computational power for searching the key and is 
therefore suitable to be executed in a grid 
environment.  
 
Data Encryption Standard (DES) [22, 24] is the most 
popular algorithm used for encryption of text. A DES 
key consists of 64 bits of which 56 bits are randomly 
generated and used directly by the algorithm and the 
remaining 8 bits are used for error detection.  Many 
projects have been implemented in the past that 
perform key search in a DES key space.  Some 
projects have used volunteers throughout the Internet 
to systematically explore the key space. In other 
projects, expensive special purpose computers were 
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used to identify an encryption key. Others have 
built special hardware for processing the keys.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Algorithm 
 
In our implementation, a randomly selected key Kr 
is used to encrypt a known text string S into a 
ciphertext Cs. To identify key Kr, every key k in the 
key space is used to encrypt the same known text 
string to get ciphertext Ck. If for any given key Ck 
matches with Cs, then the brute force algorithm 
converges and the key value is returned.  
 
Since DES key space is very huge (256 keys), we 
have modified the application such that it is 
possible to specify the range of the key space. The 
bit-length (b) is used to fix largest key in the new 
key space. The new key space would be of size (2b) 
keys. In order to use the DES algorithm, the rest of 
the bits (56-b) of the key are masked. The 
randomly selected key Kr is also chosen from 
within the restricted key space (2b keys) and its 
remaining bits are masked. Changing the bit-length 
(b) of the largest key can thus vary the problem 
size.  The algorithm is shown in Figure 4. 
 
The task generator in ALiCE breaks down the key 
space into smaller tasks and the resource broker 
then assigns these tasks to the producers. The 
producers perform the search on the smaller tasks 

and the results are returned to the consumer. The 
programming templates are shown in Figure 5. 

5 Experiments 
The performance of ALiCE was tested with the Key 
Search application. The performance was measured 
by recording the time required to search the entire 
key space for a given problem size. The test 
environment consists of a homogenous cluster 
connected with Myrinet fast network, and a fast 
heterogeneous cluster with Ethernet network. All 
nodes in the clusters are running Red Hat Linux.  
 
The homogenous cluster (Cluster I) is made of 64-
nodes where each node is 1.4GHz Intel Xeon dual 
processor with 1GB of memory. The heterogeneous 
cluster (Cluster II) consists of 24 nodes of which 16 
nodes are Intel Pentium II 400MHz with 256MB of 
memory and 8 are Intel Pentium III 866MHz with 
256MB of memory.  
 
GigaSpacesTM Platform 2.0 has been used in the 
development and testing. The resource broker, 
producers and consumer implement JavaTM 2 
Runtime Environment Standard Edition with JiniTM 
Starter Kit version 1.2. The JavaTM HotSpot Server 
Virtual Machines are used at the resource broker and 
producer nodes. The consumer nodes make use of the 
JavaTM HotSpot Client Virtual Machine.   

5.1 Problem Characteristics 
We first measured the time required by a single 
machine to perform the search. It was observed that 
the sequential running time for the key search 
application increases exponentially with increase in 
the key space size. Therefore in order to compute the 
time for larger space sizes, we compute the running 
time on single machine for smaller space sizes and 
extrapolate the values to compute the time for larger 
space sizes. The smaller size, which is chosen for this 
purpose, is same as the size of individual task in the 
parallel execution. The actual and extrapolated 
running timings are given in Table 2. The table 
shows that the extrapolated timings match with the 
actual running timings on a single machine.  
 
Next we record the extrapolated total running time on 
a single machine by varying the task size. Using the 
total key space size, we can estimate the number of 
tasks that would be created by choosing the particular 
task size and thereby compute the time taken for 
running each task. Table 3 shows the values for 
different task sizes. The table helps in choosing an 
appropriate task size such that the computation time 
on every node is larger than the network latency. 
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Task Generator 
 

import alice.consumer.*; 
import alice.data.*; 
public class MyTaskGenerator extends TaskGenerator { 
    public TASKGEN_CLASSNAME() {} 
 
    public void generateTasks() { 
        for (long i=0; i<tasks; i++) { 
               cipher.encrypt(in,out,8); 
               start = i*keysPerTask; 
               end = start+keysPerTask-1; 
               t = new MyTask(i,start,end,in,out); 
               process(t); 
       } 
   } 
 
    /* Main method - entry point */ 
    public void main(String args[]) { 
        // This is where the tasks are generated, usually in a loop 
        this.generateTasks(); 
   } 
} 

Task  
 

import alice.consumer.*; 
import java.io.*; 
 
public class MyTask extends Task { 
 private long id; 
 private long keyStart, keyEnd; 
 byte[] byteIn, byteOut; 
  
 public MyTask () { 
 } 
  
 public MyTask(long i, long k1, long k2, byte[] in, byte[] out) { 
  id = i; 
  keyStart = k1; keyEnd = k2; 
  byteIn = in; byteOut = out; 
 } 
  
 public Object execute () { 
                           // Test keys from keyStart to keyEnd and return the result 
 } 
} 

Result  
  
import java.io.*; 
 
public class Result implements Serializable { 
    public Long key; 
    public Boolean found; 
    public Long id; 
    public long time; 
  
    public Result() { 
        key = null; 
        found = Boolean.FALSE; 
   } 
  
    public void found(Long k) { 
       found = Boolean.TRUE; 
       key = k; 
   } 
} 

ResultCollector  
 
import alice.result.*; 
public class DesCrackerRC extends ResultCollector implements Runnable { 
     
 
    public RESCOL_CLASSNAME() { 
    } 
 
    public void collect() { 
        for (long i=0; i<tasks; i++) { 
             while (parent.getResultsNoReady() == 0 && !ended)  
 ; 
             if (ended)  return; 
             res = (Result)parent.collectResult(); 
             keysSoFar += keysPerTask;     
        } 
        if (res.found.booleanValue()) ended=true; 
} 
 

 
Figure 5: Snapshot of the Source Code 

 
Cluster I Cluster II Key 

Length 
(Bits) Actual Estimated Actual Estimated 

24 1 min 1 min 1 min 1 min

28 18 min 18 min 29 min 29 min

32 4 hr 52 min 4 hr 57 min 7hr 55 min 7 hr 57 min

36 - 3 days - 6 days 

40 - 3 yrs - 5 yrs

56 - 201396 yrs - 328690 yrs

 
Table 2: Sequential Execution Time 

5.2 Distributed Execution 
Task size of 50,000,000 keys per task was chosen 
and the experiments were conducted on 36-bit keys 
using Cluster I and 32-bit on keys using Cluster II.  
The key search application was executed on 
different number of nodes – 4, 8, 10, 12, 16 and 32. 
The results of the experiment are presented in the 
table 4. The results reveal the advantages of 

executing the application in a grid environment. The 
effective time for key search reduces with increasing 
number of nodes thereby giving greater speedup.  
 
We now demonstrate the speedup achieved after 
running the experiments on a single machine and on 
a cluster of machines. In cluster environment where 
all processors are homogeneous, both in hardware 
and in software configuration, workload on these 
processors does not vary. In such a setting speedup is 
defined as Ts/Tp, where Ts is the time to run the 
program on one processor and Tp is the time to run 
the same program on p processors. The speedup 
obtained by running the search application on 36-bit 
keys is shown in the Figure 6. We have chosen 
50,000,000 keys per task as the task size for 
measuring the speedup. 
 
We consider these results highly encouraging, 
although they need to be evaluated further with 
different key space sizes and higher numbers of 
nodes. Also, the effects of using other scheduling 
schemes in the resource broker need to be measured. 



32-bit Key  36-bit Key  40-bit Key  

Est. Time/Task 
(min) 

Est. 
Time/Task 

(min) 

Est. 
Time/Task 

(min) 
Keys/Task 

# Tasks 

Cluster I Cluster II

# Tasks 

Cluster I 

# Tasks

Cluster I 

5,000,000 859 0.3 0.5 13,744 0.3 219,902 7.0 

10,000,000 429 0.7 1.0 6,872 0.7 109,951 14.0 

30,000,000 143 2.0 3.0 2,291 2.0 36,650 43.0 

50,000,000 86 3.0 5.0 1,374 3.0 21,990 72.0 

100,000,000 43 6.0 10.0 687 7.0 10,995 160.0 

Table 3: Estimated Execution Time for Different Task Sizes 
 

Cluster I Cluster II 
# Nodes 

36-bits Key  32-bits Key  
Est. 

Sequential 78.38 8.72 

4 23.60 3.72 

8 11.01 2.12  

10 8.57 1.70 

12 7.35 1.43 

16 5.18 1.12 

32 2.48 - 

 
Table 4: Execution Time (hours) for Varying 
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Figure 6: Speedup 

 

6 Conclusion 
The Encryption Key Search application has been 
developed under the ALiCE grid environment. 
ALiCE programming templates used for 

development of this application have helped to 
exploit the parallelism in the application. 
Experiments show that speedup of approximately 
98% in the execution time has been achieved for a 
36-bit encryption key search using 32 nodes. 
Through the experiments, it has been demonstrated 
that a grid environment, like ALiCE, can be 
exploited for compute-intensive problems like 
encryption key search.  
 
The experiments presented in the paper show the 
performance of the application on a cluster grid. 
Future work includes developing a non-java version 
of the application. Also the application is to be tested 
in a local-area-network (LAN) and wide-area-
network (WAN).  
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