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Abstract— This paper summarizes a recently developed
continuum theory for the elastic-viscoplastic deformation of
amorphous solids such as polymeric and metallic glasses.
Introducing an internal-state variable that represents the
local free-volume associated with certain metastable states,
we are able to capture the highly non-linear stress-strain
behavior that precedes the yield-peak and gives rise to post-
yield strain-softening. Our theory explicitly accounts for the
dependence of the Helmholtz free energy on the plastic de-
formation in a thermodynamically consistent manner. This
dependence leads directly to a backstress in the underlying
flow rule, and allows us to model the rapid strain-hardening
response after the initial yield-drop in monotonic deforma-
tions, as well as the Bauschinger-type reverse-yielding phe-
nomena typically observed in amorphous polymeric solids
upon unloading after large plastic deformations. We have
implemented a special set of constitutive equations resulting
from the general theory in a finite-element computer pro-
gram. Using this finite-element program, we apply the spe-
cialized equations to model the large-deformation response
of the amorphous polymeric solid polycarbonate, at ambi-
ent temperature and pressure. We show numerical results
to some representative problems, and compare them against
corresponding results from physical experiments.

Keywords—A. Amorphous solids. B. Polymeric and metal-
lic glasses. C. Plasticity

I. Introduction

UNDER certain conditions many solids appear in a dis-
ordered form; such solids are referred to as amor-

phous or glassy . Important examples of amorphous solids
are polymeric (molecular) glasses and metallic (atomic)
glasses. While there are important differences in the mi-
crostructural mechanisms leading to plastic or inelastic de-
formations of polymeric and metallic amorphous solids, it is
possible to develop a reasonably general constitutive frame-
work for the inelastic deformation of such amorphous solids
at the macroscopic level.1 The purpose of this paper is
to summarize a recently developed macroscopic theory for
the elastic-viscoplastic deformation of an amorphous solid
under isothermal conditions below its glass transition tem-

Tel.: +1-617-253-1635; E-mail address: anand@mit.edu
1We use the words plastic and inelastic interchangeably, and empha-

size that the micro-mechanisms leading to such deformations in amor-
phous solids are not related to dislocation-based micro-mechanisms
that characterize the plastic deformation of crystalline metals. Cf. [1]
for a review on the micromechanisms of plastic deformation of amor-
phous solids. For a review of the physics of glassy polymers see [2]
and [3]. For some recent reviews on aspects of bulk metallic glasses
see [4] and [5].

perature (Anand and Gurtin [6]).

A significant advance in modeling the plastic deforma-
tion of amorphous polymers has been made by Parks, Ar-
gon, Boyce, Arruda, and their co-workers (e.g. [7], [8]).
Our theory is based on physical ideas contained in these
models, and, following these authors, we also utilize the
Kröner-Lee decomposition, F = FeFp, of the deformation
gradient F into elastic and plastic parts, Fe and Fp ([9],
[10]). An important feature of our theory is the assump-
tion that the (Helmholtz) free energy depends on Fp, an
assumption that leads directly to a backstress in the under-
lying flow rule. Further, a key feature controlling the initial

plastic deformation of amorphous materials is known to be
the evolution of the local free-volume associated with cer-
tain metastable states, and it is commonly believed that
for glassy polymers the evolution of this free-volume is the
major reason for the highly non-linear stress-strain behav-
ior that precedes the yield-peak and gives rise to post-yield
strain-softening. Metallic glasses also show a “yield-drop”
specially at high temperatures (e.g. [11]) In our theory, we
represent this local free-volume by an internal-state vari-
able η.2

The plan of this paper is as follows. In Section II we
summarize a set of specialized constitutive equations that
should be useful in applications3 In Section III, we apply
the specialized equations to model the large-deformation
response of the amorphous polymeric solid, polycarbonate,
at ambient temperature and pressure. Finally, Section IV
contains concluding remarks.

II. Constitutive model

In terms of the variables

2The material itself is presumed to be plastically incompressible.
We believe that because of the disparate difference between the scale
of the macroscopic deformation and the scale of the local free-volume,
the latter is better represented by an internal-state variable rather
than by Jp = detFp. In fact, in a previous version of this work we
used Jp rather than η; the final equations were far more complicated,
but order-of-magnitude calculations as well as numerical calculations
for polycarbonate lead us to believe that the predictions of the two
theories would differ little.

3For detailed derivations the reader is referred to Anand and Gurtin
[6].
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T, T = T>, Cauchy stress,

F, detF > 0, deformation gradient,

Fp, detFp = 1, plastic deformation gradient,

s, s > 0, isotropic resistance to plastic flow,

η, free volume,

and the definitions

Fe = FFp−1, det Fe > 0, elastic deformation gradient,

Ce = Fe>Fe,

Ee = 1

2
(Ce − 1), elastic strain,

Te = Re>TRe, elastic stress,

π = − 1

3
trT, mean normal pressure,

Te
0

= Te + π1, deviatoric stress,

Bp = FpFp>,

B
p
0

= Bp − 1

3
(trBp)1, deviatoric part of Bp,

λp = 1
√

3

√
trBp, effective plastic stretch,

we summarize below a set of constitutive equations that
should be useful in applications:
1. Free Energy:

ψ = ψe + ψp, (1)

ψe = G|Ee
0
|2 + 1

2
K|trEe|2, (2)

ψp = Ψ(λp) ≥ 0, Ψ(1) = 0. (3)

Here G and K are the elastic shear and bulk moduli, re-
spectively.
2. Equation for the stress:

Te = 2GEe
0 +K(trEe)1. (4)

3. Flow rule:
The evolution equation for Fp is

Ḟp = DpFp, Fp(X, 0) = 1, (5)

with Dp given by the flow rule

Dp = νp

(

Te
0 − µB

p
0

2τ̄

)

, νp = ν0

(

τ̄

s+ απ

)
1

m

, (6)

where

τ̄ =
1√
2
|Te

0 − µB
p
0
|, νp =

√
2 |Dp|, (7)

are an equivalent shear stress and an equivalent plastic

shear strain rate. Here, ν0 > 0 is a reference plastic

shear strain rate, and 0 < m ≤ 1 is a strain rate sen-

sitivity parameter. The limit m → 0 corresponds to a
rate-independent response, while the limit m → 1 to a
linear viscous response.4 The parameter α represents a

4More elaborate form of rate sensitivity may be introduced, how-
ever, a simple power-law form makes the structure of theory more
transparent.

pressure sensitivity of plastic flow, where we require that
(s+ απ) > 0. Also,

µ =
1

3λp

∂Ψ

∂λp
> 0, (8)

represents a back stress modulus.
4. Evolution equations for the internal variables s

and η:

ṡ = h(π, λp, η, s, νp), s(X, 0) = s0,

η̇ = g(π, λp, η, s, νp), η(X, 0) = 0,

}

(9)

with s0 a constitutive modulus that represents the initial
resistance to flow. Here h, may take on positive (harden-
ing)and negative (softening) values. Also, as is tacit from
(9)2, the free volume is measured from the value η = 0 in
the virgin state of the material, and thus η at any other
time represents a change in the free-volume from the initial
state.5

To complete the constitutive model for a particular
amorphous material the constitutive parameter/functions
that need to be specified are

{G,K,Ψ, h, g, s0} .

III. Application to an amorphous polymeric solid

In this section we further specialize our constitutive
model and apply it to describe the deformation response of
the technologically important amorphous polymeric solid,
polycarbonate, at atmospheric pressure and room temper-
ature.6

In amorphous polymeric materials the major part of ψp

arises from an “entropic” contribution. Motivated by sta-
tistical mechanics models of rubber elasticity (cf., [12], [13],
[14]) we consider two specific forms:
1. For small to moderate values of λp, we consider the sim-
ple neo-Hookean form

ψp = µ
3

2

{

(λp)
2 − 1

}

, (10)

with µ a constant equal to the backstress modulus (8).
2. For larger values of λp, we consider the Langevin-inverse

form

ψp = µR λ
2

L

[(

λp

λL

)

x+ ln
( x

sinhx

)

(11)

−
(

1

λL

)

y − ln

(

y

sinh y

)]

, (12)

x = L−1

(

λp

λL

)

, y = L−1

(

1

λL

)

, (13)

where L−1 is the inverse7 of the Langevin function L(· · · ) =
coth(· · · ) − (· · · )−1. This functional form for ψp involves

5More generally, one would use an initial value η0, but the small
‘free volume’ in amorphous polymers and glasses is, at present, hard
to determine experimentally.

6The glass transition temperature for polycarbonate is ≈ 145◦ C.
7To evaluate x = L−1(y) for a given y in the range 0 < y < 1, we

numerically solve the non-linear equation f(x) = L(x) − y = 0 for x.



two material parameters: µR, called the rubbery modulus,
and λL called the network locking stretch. In this case,
from (8), the backstress modulus is

µ = µR

(

λL

3λp

)

L−1

(

λp

λL

)

. (14)

The modulus µ → ∞ as λp → λL, since L−1(z) → ∞ as
z → 1.

Graphs of ψp versus λp for representative values8 of
material parameters for the neo-Hookean energy (µ =
16.95MPa), and for the form involving the inverse
Langevin function (µR = 11 MPa, λL = 1.45) are shown
in Fig. 1a. The corresponding graphs for the backstress
modulus µ are shown in Fig. 1b.

We consider the evolution equations (9) in the special
coupled rate-independent form9

ṡ = h0

(

1 − s

s̃(η)

)

νp,

η̇ = g0

(

s

scv
− 1

)

νp,



















(15)

with
s̃(η) = scv[1 + b(ηcv − η)], (16)

where {h0, g0, scv, b, ηcv} are additional material parame-
ters. Here s̃ = s̃(η) is a saturation value of s: ṡ is positive
for s < s̃ and negative for s > s̃. By definition νp is non-
negative. Assuming that νp > 0, we may by a change in
time scale transform (15) into a pair of ODEs. This system
has a single equilibrium point (scv, ηcv) in the (s, η)-plane,
and it is globally stable. Thus all solutions satisfy

s→ scv and η → ηcv as t→ ∞.

We restrict attention to the initial conditions s = s0 and
η = 0, with

s0 ≤ s ≤ scv(1 + bηcv).

Then a study of the phase portrait shows that η increases
monotonically to its equilibrium value ηcv, while s increases
monotonically to a peak and then decreases monotonically
to its equilibrium value scv, thus capturing the observed
yield-peak in the flow resistance.

We have implemented our constitutive model in the
finite-element computer program ABAQUS/Explicit [15]
by writing a user material subroutine. Using this finite-
element program, we next present results to some repre-
sentative problems.

A stress-strain curve obtained from a monotonic simple
compression experiment10 conducted at a constant loga-
rithmic strain rate of -0.001/s is shown in Fig. 2; absolute

8These numbers are based on our estimates (to be discussed shortly)
for polycarbonate.

9We expect that s̃ (and perhaps h0 and g0) may, in general, depend
on νp, but currently there is insufficient experimental evidence to
warrant such a refinement.

10All experiments reported in this paper were performed by Dr. B.
P. Gearing as part of his doctoral research at MIT. As is well known,
the mechanical response of amorphous thermoplastics is very sensi-

values of stress and strain are plotted. After an initial ap-
proximately linear region, the stress-strain curve becomes
markedly nonlinear prior to reaching a peak in the stress;
the material then strain-softens to a quasi-plateau before
beginning a broad region of rapid strain hardening.

We discuss below the results of our efforts at estimation

of the material parameters for our constitutive model.11

Recall that the material parameters that need to be deter-
mined are

1. The elastic shear and bulk moduli (G,K) in the elastic
part of the free energy.
2. The parameter µ in the neo-Hookean form, or the pa-
rameters (µR, λL) in the inverse Langevin form of the plas-
tic free energy.
3. The parameters {ν0,m, α, h0, g0, scv, b, ηcv, s0} in the
flow rule and the evolution equations for (s, η).

The values of (G,K) are determined by measuring the
Young’s modulus and Poisson’s ratio of the material in
a compression experiment and using standard conversion
relations of isotropic elasticity to obtain the elastic shear
and bulk moduli. The parameters {ν0,m} are estimated by
conducting a strain rate jump experiment in simple com-
pression, and the pressure sensitivity parameter α is es-
timated from compression experiments under superposed
hydrostatic pressure reported in the literature. The pa-
rameters {h0, g0, scv, b, ηcv, s0} and (µR, λL) may be esti-
mated by fitting a stress-strain curve in compression to
large strains. Once (µR, λL) are estimated so as to fit
the data for large strains, then the value of µ in the neo-
Hookean form of ψp is easily obtained from (14) as the limit
at λp = 1.

Using a value of α = 0.08 from the data reported by [16],
a value of ν0 = 0.0017 s−1 and a strain rate-sensitivity pa-
rameterm = 0.011 obtained from a strain rate jump exper-
iment, the parameters {G,K, µR, λL, h0, g0, scv, b, ηcv, s0}
were estimated by fitting the stress-strain curve for poly-
carbonate in simple compression, Fig. 2. The fit was per-
formed by judiciously adjusting the values of these param-
eters in finite element simulations of a simple compression
experiment (assuming homogeneous deformation) using a
single ABAQUS/C3D8R element. After a few attempts, a
reasonable fit was obtained, and this is shown in Fig. 2a.
The list of parameters obtained using this heuristic cali-
bration procedure are:12

tive to prior thermo-mechanical processing history. The experiments
were conducted on polycarbonate specimens which were annealed at
the glass transition temperature of this material, 145◦C, for 2 hours,
and then furnace-cooled to room temperature in approximately 15
hours. The experiments reported here were conducted under isother-
mal conditions at room temperature.

11We have not attempted to carry out a comprehensive experi-
mental program to obtain precise numbers for polycarbonate. The
purpose of this section is to emphasize only the qualitative features
of the theory. We leave a more detailed comparison of theory against
experiment for future work.

12This list, although not unique, seems adequate for illustrative
purposes.



G = 0.857GPa K = 2.24GPa
µR = 11.0MPa λL = 1.45
νo = 0.0017s−1 m = 0.011
α = 0.08
h0 = 2.75GPa scv = 24.0MPa
b = 825 ηcv = 0.001
g0 = 6.0 · 10−3 s0 = 20.0MPa

Fig. 2b shows a comparison of the stress-strain response
calculated using the inverse Langevin form for ψp and the
list of material parameters above, against the stress-strain
response calculated using the neo-Hookean form for ψp

with the same material parameters, except that the pair
of constants (µR, λL) are replaced by the single constant
µ = 16.95MPa. This comparison shows that the simple
neo-Hookean form for ψp may be adequate for applications
involving logarithmic strains less than ≈ 35%. In the re-
maining part of our discussion we shall concentrate on the
predictions of the model using the inverse Langevin form
of ψp.

A representative stress-strain curve obtained from a sim-
ple compression experiment conducted to a strain level of
≈ −0.9, and then unloaded to zero stress is shown in Fig. 3.
The experiment clearly exhibits reverse yielding upon un-
loading due to the development of a backstress. A cor-
responding numerical calculation which exhibits the same
response is also shown in Fig. 3. The numerical simulation
was carried out using the material parameters determined
by fitting the monotonic compression experiment, as dis-
cussed above; the unloading part of the stress-strain curve
was not used to adjust the material parameters. The corre-
spondence between the predicted unloading response from
the model and the actual experiment is very encouraging.

Finally, Fig. 4a shows a representative experimentally-
measured load-displacement curve in a tension experiment
on a specimen with a cylindrical gauge section. At the
peak load a pronounced neck forms in the gauge section,
the load subsequently decreases to an approximate plateau
value, and the neck propagates along the gauge section.
To numerically model this experiment, one half of a speci-
men was meshed with 390 ABAQUS/CAX4R axisymmet-
ric elements. As before, the constitutive parameters used
in the simulation are those obtained from the fitting exer-
cise for the compression experiment. The calculated load-
displacement response is also shown in Fig. 4a. Deformed
geometries are shown in Fig. 4 b,c at the two displacement
levels which have been marked in Fig. 4a. The deforma-
tion is homogeneous until the peak load. Subsequent to
the peak load, at location 1, a localized neck has formed
at the center of the gauge section, and by stage 2 the neck
has propagated along the gauge section, as was observed
in the corresponding experiment.

IV. Concluding remarks

We have shown an application of our theory to an amor-
phous polymeric solid in the previous section. Here the ex-
plicit dependence of the Helmholtz free energy on Fp, led us
directly to a resistance to plastic flow as represented by the
backstress (µB

p
0
). For amorphous metallic solids we expect

that the dependence of the free energy on Fp should be con-
siderably smaller than that in amorphous polymers,13 and
in this case we expect that our constitutive model should
also be applicable, provided the backstress in the model is
neglected.14

The current generation of bulk metallic glasses are be-
lieved to have many potential applications resulting from
their unique properties: superior strength (≈ 2GPa), and
high yield strain (≈ 2%); thus the elastic strain energy that
can be stored in these materials is extremely high (e.g.,
[4], [5]). However, when a metallic glass is deformed at
ambient temperatures the plastic deformation is inhomo-
geneous, and is characterized by the formation of intense
localized shear bands;15 fracture typically occurs after very
small inelastic strain in tension, and an inelastic strain of
only a few percent in compression. In contrast, these mate-
rials exhibit a high strain-rate sensitivity (large value ofm),
and large inelastic strains at temperatures greater than ap-
proximately 70% of the glass transition temperature of the
material. This opens the possibility of using conventional
metal forming technologies to manufacture structural com-
ponents from this relatively new class of materials. Thus
there is growing interest in studying the large deformation
response of bulk metallic glasses in this high temperature
range (e.g. [19]). We believe that our constitutive model,
when suitably calibrated, might be useful for such applica-
tions.

Acknowledgments

The research was performed in collaboration with Prof.
M. E. Gurtin of Carnegie Mellon University. Dr. Brian
Gearing provided us with his experimental results on poly-
carbonate. LA acknowledges the financial support pro-
vided by the Singapore-MIT Alliance, as well as ONR Con-
tract N00014-01-1-0808 with MIT. The ABAQUS finite-
element software was made available under an academic
license from HKS, Inc. Pawtucket, R.I.

References

[1] A. S. Argon, Materials Science and Technology, 1993, 6, 461.
[2] R. N. Haward, The Physics of Glassy Polymers, 1973, Wiley.
[3] R. N. Haward, and R. J. Young, Editors, The Physics of Glassy

Polymers. Second Edition, 1997, Chapman and Hall.
[4] W. L. Johnson, MRS Bulletin, 1999, 24(10), 7249.
[5] A. Inoue, Acta Materialia, 2000, 48, 279.
[6] L. Anand, and M. E. Gurtin, International Journal of Solids and

Structures, 2002, in press.
[7] M. C. Boyce, D. M. Parks, and A. S. Argon, Mechanics of Ma-

terials”, 1998, 7, 15.
[8] E. M. Arruda and Boyce, M. C., International Journal of Plas-

ticity, 1998, 9, 697.

13The two-dimensional molecular dynamic simulations of the de-
formation of an atomic glass of [17] do show the development of a
Bauschinger effect, their Figure 8. However, we have not found a
report of the Bauschinger effect in atomic glasses in physical experi-
ments on these materials at the macroscopic level.

14Indeed, if the material is further idealized as plastically pressure-
insensitive and one drops the internal variable η, then one recovers
an isotropic elastic-viscoplastic constitutive model similar in form to
models which are widely used for isotropic polycrystalline metallic
materials (e.g.,[18])

15Which we expect our strain-softening model to capture.



[9] E. Kroner, Archive for Rational Mechanics and Analysis, 1960,
4, 273.

[10] E. H. Lee, ASME Journal of Applied Mechanics, 1969, 36, 1.
[11] P. D. Hey, J. Sietsma, and A. Vandenbeukel, Acta Materialia,

1998, 46, 5873.
[12] L. R. G. Treloar, The Physics of Rubber Elasticity, 1975, Oxford.
[13] E. M. Arruda, and M.C. Boyce, Journal of the Mechanics and

Physics of Solids, 1993, 41, 389.
[14] L. Anand, Computational Mechanics, 1996, 18, 339.
[15] ABAQUS/Explicit Reference Manuals, 2002, Providence, R.I.
[16] W. A. Spitzig, and O. Richmond, Polymer Engineering and

Science, 1979, 19, 1129.
[17] D. Deng, A. S. Argon, and S. Yip, Philosophical Transactions

of the Royal Society A, 1989, bf 329, 613.
[18] G. Weber, and L. Anand, Computer Methods In Applied Me-

chanics and Engineering, 1990, 79, 173.
[19] T. G. Nieh, J. Wadsworth, C. T. Liu, T. Ohkubo, and Y. Hirotsu,

Acta Materialia, 2001, 49, 2887.

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
0

20

40

60

80

100

120

λp

ψ
p , J

/m
3

LANGEVIN   
NEO−HOOKEAN

(a)

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
0

50

100

150

200

250

λp

µ,
 M

P
a

LANGEVIN   
NEO−HOOKEAN

(b)

Fig. 1. (a) Comparison of the Langevin inverse and neo-Hookean
forms of the plastic free energy ψp. (b) Comparison of the corre-
sponding forms for the backstress modulus µ.
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Fig. 2. (a) Stress-strain response of polycarbonate in simple com-
pression, together with a fit of the constitutive model using the
Langevin form for ψp. (b) Comparison of the stress-strain re-
sponses calculated using the Langevin form and the neo-Hookean
form for ψp.
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Fig. 3. Stress-strain response of polycarbonate in simple compres-
sion showing reverse yielding upon unloading due to the devel-
opment of back stress. The calculated response shows the same
phenomenon.
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Fig. 4. (a) Experimental and numerical load-displacement curves in
tension; two displacement levels of interest are marked. (b) De-
formed geometry at displacement level 1 showing the beginnings
of neck formation; (c) at displacement level 2 showing that the
neck has propagated along the gauge section of the specimen.


