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Abstract

Quick decision making under risk is ubiquitous in modern times, yet its consequences

are not fully understood. Time pressure might change people's risk preferences, lead

to less consistent choices, or change people's decision strategy. With the present

work, we make the novel contribution of testing all hypotheses against each other in

a unifying hierarchical Bayesian model. In two studies, participants decided repeat-

edly between two risky gambles either with or without high time pressure. We found

a significant increase in risky choices under time pressure. With modeling, we show

that time pressure decreased choice consistency but did not systematically affect

people's risk preferences. In addition, the number of participants using simple, non-

compensatory strategies increased slightly under time pressure. Finally, participants

did not systematically choose easier gambles more often under time pressure. Thus,

a reliable analysis of the effect of time pressure on preferential choice requires a

model framework that allows for the distinction between the various effects time

pressure can have.
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1 | INTRODUCTION

In business and in private, decisions are often made quickly. This

happens when an investor needs to react quickly to incoming

information in trading, when investment offers are made with a

time limit, or when opportunity costs of evaluating an investment

choice must be considered. Risk is ubiquitous in investment

choices, and risk preferences are at the core of economic utility

models. To understand how time pressure affects choices under

risk is thus an important topic from both a practical and a theoreti-

cal standpoint.

Past research suggests that time pressure can make people more

or less risk averse (e.g., Madan et al., 2015; Zur & Breznitz, 1981).

Such an effect would have important consequences, as it implies that

investment choices are systematically distorted when under time

pressure and not in accordance with investors' risk preferences with-

out time pressure.

Yet there is an often overlooked but very plausible alternative

explanation of this effect, namely, that decisions could become

more inconsistent because they involve more noise. This means

choice consistency is reduced, but choices are on average still unbi-

ased with respect to the underlying risk preferences under no time

pressure. In addition, a change in observed choices could also be

the result of people selecting simpler and thus quicker decision

strategies under time pressure. Our goal in the present work was to

test these competing hypotheses rigorously against one another to

provide a better understanding of the effect of time pressure on

decision making under risk.
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1.1 | Preference shifts

Most previous studies suggested that people in the gain domain

become less risk averse under time pressure compared with under

low or no time pressure. This conclusion was based on choice propor-

tions directly (Madan et al., 2015; Saqib & Chan, 2015), on modeling

of certainty equivalents with cumulative prospect theory (Young

et al., 2012), or on modeling behavior in a card game with a mean–

variance model and cumulative prospect theory (Nursimulu &

Bossaerts, 2014). Yet some studies did not find evidence for a prefer-

ence shift in the gain domain: in one study, this inference was based

on a preference rating of risky scenarios (Maule et al., 2000). In

another, either individually time-constrained risky decisions or time-

constrained multiple price lists were examined (Kocher et al., 2013).

Finally, people were also found to become more risk averse when

under time pressure by, again, comparing risky choice proportions

under conditions of low and high time pressure (Zur &

Breznitz, 1981). An explanation of a direct shift in risk preferences

through time pressure could be an increased influence of intuition or

affect (e.g., Young et al., 2012).

As a limitation, inferences about the effect of time pressure can

be ambiguous when based on comparisons of choice proportions only.

For instance, suppose participants in an experiment choose the riskier

of two gambles with a similar expected value (EV) in around 40% of all

cases, which could be interpreted as risk aversion. If the proportion of

riskier choices increases to around 45% under high time pressure, this

could be interpreted as a decrease in risk aversion due to time pres-

sure. However, if participants make more unsystematic mistakes

under high time pressure and choices become less consistent, the

choice proportions would also change toward 50%. Thus, in this case,

both a preference shift and a decrease in consistency could explain

the observed choice data (see Olschewski et al., 2018).

1.2 | Decrease in choice consistency

A theoretical framework useful for understanding the effect of time

pressure is the speed–accuracy trade-off, where higher decision

speed is associated with more errors or less consistency (Heitz, 2014,

for a review). This trade-off is predicted by the drift diffusion model, a

prominent sequential sampling model of decision making (for a review,

see Ratcliff & McKoon, 2008). Experimental evidence for this trade-

off in human decision making was found, for instance, in the dot-

motion task, where participants have to decide in which direction a

cloud of dots is predominantly moving. Applying time pressure in such

a task increases error rates (Forstmann et al., 2008).

This trade-off might have been given less attention in the prefer-

ential decision-making literature because in the domain of prefer-

ences, no (or only a few) outside criteria exist for classifying a single

decision as an error. One way to address this problem is to make peo-

ple rate options individually and define an error in a subsequent binary

choice task as the choice of a lower rated option. Under these condi-

tions, participants made more errors under time pressure than in a

control condition in food choices (Milosavljevic et al., 2010). However,

this method assumes that individual ratings translate to format-

independent utility orders.

Here, we propose another method to measure decision errors.

Assuming a person's risk preference can be represented by an

expected utility framework, options can be ordered according to their

utility. In this case, choice consistency is a measure of how many

empirically observed choices are in accordance with the underlying

utility order. The higher the consistency, the fewer deviations from a

given utility order have been made. The random utility model we

introduce below can estimate the best fitting utility order and the

associated choice consistency simultaneously for a given choice

pattern.

In risky choices, time pressure has rarely been associated with a

decrease in choice consistency. As an exception, Dror et al. (1999)

estimated a sequential sampling model and concluded that time pres-

sure decreased the decision threshold parameter of the sequential

sampling model, leading to a decrease in choice consistency. A limita-

tion of this study is that it did not test a change in risk preferences as

an alternative response to time pressure within the sequential sam-

pling model.

1.3 | Strategy shifts

When people make decisions, they can in principle incorporate all

information (i.e., all outcomes and probabilities of a gamble) and

integrate the information for an overall assessment. But under time

pressure, participants might realize that they cannot process all

information or have insufficient time to integrate all information

sensibly, so they may select a simpler strategy for making their

choices. A strategy shift is an alternative explanation for a change in

risk-taking behavior (e.g., Kocher et al., 2013) and the meta-decision

to change strategies is at the core of the adaptive-decision-maker

framework (Payne et al., 1993).

Decision strategies differ in various aspects, such as the number

of steps they require. One fundamental distinction is that between

compensatory and noncompensatory (NC) strategies: compensatory

strategies usually make use of all available information and allow for

compensation—that is, an option's disadvantages can be compensated

for by its advantages. In contrast, NC strategies often focus on a

single dimension of an option, and if an option is doing badly on this

dimension, it cannot be compensated for by other dimensions.

A prominent example of a compensatory strategy is the mean–

variance model (e.g., Spiliopoulos & Hertwig, 2019), which summarizes

all possible outcomes in the EV and captures the variability of these

outcomes as the standard deviation (SD). Prominent NC strategies are

the lexicographic rule (e.g., Fishburn, 1974) and the priority heuristic

(Brandstätter et al., 2006), which both compare options by focusing

on single pieces of information.

When making decisions under time pressure, people are more

likely to select simple NC strategies over compensatory ones

(e.g., Payne et al., 1988, 1996; Rieskamp & Hoffrage, 1999, 2008;
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Svenson & Maule, 1993; Wright, 1974). However, most research

about strategy shifts has not explicitly examined whether time pres-

sure also leads to changes in people's risk preferences.

Another strategic reaction to an increase in time pressure could

be to stick to options that are easier to comprehend and stay away

from more complex options. There are formal ways to define com-

plexity of choice problems (Bossaerts & Murawski, 2017), but for risky

gambles, complexity is often operationalized as a gamble's number of

outcomes (e.g., Moffatt et al., 2015): the higher the number of out-

comes, the more numbers participants have to process. In addition,

the more numbers there are, the more difficult it is to determine a

gamble's characteristics, such as the EV or SD. Prior studies found

that people chose easier gambles more often than complex ones

regardless of time pressure (Huck & Weizsäcker, 1999; Mador

et al., 2000; Wilcox, 1993). However, a recent study showed that only

50% of the participants systematically chose easier options more

often (Moffatt et al., 2015). To our knowledge, the potential effect

that time pressure leads to a higher frequency of choosing simpler

gambles has not been tested yet.

1.4 | The current approach

In summary, there are three ways time pressure might change risk-

taking behavior: by causing (a) a direct change in risk preferences, (b) a

decrease in choice consistency within a compensatory strategy, or

(c) a switch from a compensatory to an NC strategy. Most previous

research has examined one of these hypotheses in isolation. As we

showed above, this can be problematic, because all three explanations

can lead to similar behavioral patterns. Mathematical models are nec-

essary to distinguish among them.

Consequently, we chose to examine all three hypotheses simulta-

neously using a unifying hierarchical Bayesian modeling framework.

We examined data collected in two experiments where participants

decided repeatedly between risky gambles either under high time

pressure or in a control condition with low time pressure using a

within-subject design.

2 | MATHEMATICAL MODELS

2.1 | Random utility framework

To model risk preferences, we implemented the mean–variance

approach as a compensatory model stating that both the EV and the

SD of a gamble contribute to its utility:

U að Þ= EV að Þ+ β �SD að Þ, ð1Þ

where a is a gamble with two or four outcomes. For gambles with one

certain outcome, the SD is set to 0. The risk preference parameter β

specifies whether and to what extent people are risk averse (i.e., β < 0),

risk neutral (i.e., β = 0), or risk seeking (i.e., β > 0). Stochasticity in the

choice process is modeled with a probit link function:

p yð Þ=ϕ U yð Þ−U xð Þ
θ

� �
, ð2Þ

with U(y) and U(x) as the utility of two gambles x and y defined as in

Equation 1. The probit link function ϕ() maps the utility difference into

choice probabilities between 0 and 1. The consistency parameter θ

determines how sensitively the model responds to utility differences,

with smaller θ implying more consistent behavior.

There are other error models used in the literature

(e.g., Stott, 2006) that we implemented for robustness analyses.

Among the most prominent alternative link functions is the logit

function:

p yð Þ= 1
1+ exp −φ� U yð Þ−U xð Þð Þð Þ : ð3Þ

Here, larger φ implies more consistency, that is, less error. A sim-

pler link function between utility order and choices that does not take

the utility difference between gambles into account is the constant or

trembling-hand error model (Harless & Camerer, 1994):

p yð Þ= I U yð Þ>U xð Þ½ � � 1−ρð Þ+ I U yð Þ<U xð Þ½ � �ρ+ I U yð Þ=U xð Þ½ � �0:5,
ð4Þ

with ρ a free parameter estimating the percentage of trials where an

inferior gamble according to the assumed utility model is chosen. The

higher ρ is, the larger the error and thus the lower the choice consis-

tency. I(a) is an indicator function that takes the value of 1 if state-

ment a is true and the value of 0 if a is false.

We estimated all models with a hierarchical Bayesian approach.

This means we estimated posterior distributions of the β and θ param-

eters for each participant. The individual posteriors then fed into a

group posterior distribution. We experimentally manipulated time

pressure and gamble complexity in the two experiments using a

within-subject design. To incorporate the effects of both manipula-

tions, we decomposed β and θ according to our within-subject design.

For each trial i and each participant j, we got

βi,j = β0,j + δβ,j �condi,j + βsafe,j �easysafe,i,j + βrisky,j �easyrisky,i,j, ð5Þ

θi,j = θ0,j + δθ,j �condi,j + θsafe,j �easysafe,i,j + θrisky,j �easyrisky,i,j: ð6Þ

Here, β0,j and θ0,j are the individual means, and the δs estimate

half of the difference between conditions operationalized as a dummy

variable cond that is +1 in the control and −1 in the time pressure con-

dition. Similarly, to assess the effect of gamble complexity on both risk

preference and choice consistency, we used two effect-coded

dummies (easysafe and easyrisky) for trials where the safer or the riskier

gamble was easier, respectively, with the complex trials as the
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baseline. In the data model, θi,j is probit transformed to be between

0 and 1.

2.2 | Compensatory and NC strategies

To examine the hypothesis of a strategy shift under time pressure, we

used a Bayesian finite-mixture model (Bartlema et al., 2014; Gelman

et al., 2014) with two mixture variables: on the first layer, data were

described by either a compensatory or an NC strategy. On the second

layer, a mixture variable determined which of three NC strategies was

implemented. Both mixture variables were implemented on the group

level. This means we assume heterogeneity across participants with

respect to the used strategies, but a given participant uses the same

strategy in all trials in a given condition.

The compensatory strategy was represented by the stochastic

utility model outlined in Equations 1 and 2. It is compensatory

because a potential bad outcome of a gamble can be compensated for

by a potential good outcome. Compensatory strategies are usually

assumed to be attention and time consuming (e.g., Payne et al., 1993;

but see Glöckner & Betsch, 2012).

We incorporated three NC strategies, which each use single out-

come comparisons sequentially in different orders. In these strategies,

a good second outcome cannot make up for a bad outcome used for

comparison. The outcome comparison stops as soon as a comparison of

two outcomes results in a noticeable difference and the gamble with

the higher outcome is chosen. TheNC strategies have two free parame-

ters: one is the threshold μ that determines how large the difference

between two outcomes has to be to lead to a decision. Theoretically,

this threshold is motivated by research in psychophysics that shows

two stimuli need a minimum difference for participants to reliably

detect it (just noticeable difference: Thaler, 1980; Thurstone, 1927; see

also Fishburn, 1974). The second free parameter ϵ is a trembling-hand

error (see Equation 4) as the percentage of times the inferior gamble

(i.e., the gamble with the lower outcome) is chosen by mistake.

Although such a choice function usually does not fit data as well as the

above-applied probit function, it is more plausible for NC strategies

where we assume that comparisons are made on an ordinal scale. If no

outcome comparison leads to a decision, then one of the two gambles

is chosen randomly.

The choice probabilities are calculated as follows:

p yð Þ=

if x1 > y1 + μð Þ) ε

if y1 > x1 + μð Þ)1−ε

else :
if x2 > y2 + μð Þ) ε

if y2 > x2 + μð Þ)1−ε

else :

…
else)0:5

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð7Þ

where one outcome from gamble x will be compared with one out-

come from gamble y and the subscripts signify a certain order of

outcome comparisons: Order 1 sorts all outcomes according to their

probability of occurrence, starting with the outcome with the highest

probability. Order 2 sorts by outcomes and starts comparing the

highest outcomes of each gamble. Finally, Order 3 again sorts by out-

comes but starts comparing the lowest outcomes of each gamble.

Although these NC strategies do not take risk preferences explicitly

into account, the comparison order can produce risk-averse choices;

for example, when starting by comparing the lowest outcomes of each

gamble as in Order 3, the safer gamble usually has a higher minimum

outcome then the more risky gamble implying risk-averse choices (see

Pachur et al., 2017).

To examine whether time pressure increased the use of NC strat-

egies, we again used the dummy variable cond and modified the mix-

ture variable on the group level accordingly:

zcond = z0 + δz � cond: ð8Þ

Here, zcond is the probability of a Bernoulli distribution of

implementing either the compensatory or one of the NC strategies on

the group level. The higher zcond is, the more participants are described

by one of the NC strategies. In the data model, zcond is probit trans-

formed to be between 0 and 1. The mixture variables on the second

layer (g1, g2, and g3) determining which NC strategy was implemented

as well as the threshold and the trembling-hand error for the NC strat-

egies were fixed across both conditions on the group level.

We used uninformative group priors and estimated all parameters

with the MCMC sampler from JAGS in R (Plummer, 2003). Conver-

gence of estimation chains was checked with the Gelman and

Rubin (1992) statistic, which was below 1.03 for all reported group

posteriors.

3 | EXPERIMENT 1

3.1 | Method

3.1.1 | Experimental design

Participants made 240 choices between two gambles in two blocks. In

each block, there was a countdown at the upper right corner of the

screen that indicated the time until a decision was required. Partici-

pants saw the same 120 gambles in each block in randomized order.

Gambles were created by randomly drawing outcomes and proba-

bilities, controlling for informative choice situations in terms of EV and

SD differences. The complexity of the gambles was varied in three

within-subject conditions. In the complex condition, both gambles

consisted of two outcomes, where the outcomes and their respective

probabilities were never multiples of 10. In the safe-easy condition,

the safer gambles were always a sure outcome, and the riskier gam-

bles were constructed as in the complex condition. In the risky-easy

condition, the riskier gambles (i.e., those with the larger variance) both

had outcomes that were multiples of 10 and occurred with equal

probability of 50%, which made this option simpler to evaluate,
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whereas the safer option was constructed as in the complex condition.

That way, although the number of outcomes and probabilities were

the same for both gambles, the riskier gamble was easier to process.

3.1.2 | Time pressure manipulation

In the control condition, we introduced very low time pressure by giv-

ing participants 30 s to make a choice, whereas under high time pres-

sure, participants had only 2 s. We derived this manipulation through

pretesting. We first gave people two certain outcomes with pie charts

in the same format as in the main study and asked them to decide

which outcome was larger. The median reaction time for that task

was 1.80 s with high accuracy. This seemed to be a good estimate of

the information-processing time needed by participants.

3.1.3 | Participants and incentive

We aimed for 40 participants, because previous experience with the

hierarchical Bayesian model indicated that a comparable sample size

with risky choices led to robust estimation results. The study was

approved by the Institutional Review Board of the Department of

Psychology at the University of Basel. Participants were 43 current or

former students of the University of Basel (nine male, 34 female;

Mage = 23.53 years; range 19 to 43 years).

Participants were given the choice between receiving course

credit or a flat payment of CHF 20 per hour. In addition, one trial was

randomly drawn and the outcome paid out. Participants earned an

average bonus of CHF 6 (range: CHF 1 to 9.90). The experiment

lasted around 1 h.

3.1.4 | Procedure

The experiment was conducted at individual computers. Participants

read the instructions on paper and answered two questions to check

if they understood the task. Only when they answered both questions

correctly were they allowed to continue with the experiment. The

order of the control and time pressure blocks was alternated. One

block consisted of 120 trials with constructed gamble pairs presented

in random order.

Prior to each trial a fixation cross appeared in the middle of the

screen for 300 ms. Gambles were presented as pie charts (see

Figure 1). Participants could choose one of the two gambles by press-

ing “D” for the left or “L” for the right option. After a choice, the

respective gamble was marked with a blue rectangle for 300 ms, and

then, a new trial was presented. Once the decision time was up, par-

ticipants were not able to make a choice. Instead, a screen appeared

for 1 s stating that they were too slow. Participants did not earn any

bonus when a trial was chosen in which they did not make a choice

in time.

3.2 | Results

3.2.1 | Choice data

Participants chose the riskier (i.e., higher SD) gamble in 36% of the tri-

als in the control and in 40% in the time pressure condition, a signifi-

cant difference, W(n = 43) = 276.5, p = .029.1 Figure 2 plots the

percentage of risky choices against the EV difference of the two gam-

bles. Choices for riskier gambles increased with EV in both conditions

(bEV = 0.05, SE = 0.002, p < .001). The less steep slope in the figure

shows that the EV difference had a stronger impact on choice propor-

tions in the control than in the time pressure condition, indicating that

choice consistency was lower in the high time pressure condition.

The complexity of gambles had an influence on choice propor-

tions. The proportion of risky choices was lower in the safe-easy trials

(34%; bsafe = −0.24, SE = 0.06, p < .001) and higher in risky-easy trials

(43%; brisky = 0.30, SE = 0.06, p < .001), each compared with the com-

plex trials (37%). Figure 3 shows the choice proportions separately for

the control and time pressure conditions and the three different gam-

ble complexities.

3.2.2 | Reaction time data

Reaction times were significantly different in the control

(Mdn = 3.63 s, SD = 2.75) and time pressure (Mdn = 1.78 s, SD = 0.53)

conditions, W(n = 43) = 946, p < .001. Figure 4 shows the median

F IGURE 1 Schematic screenshots of the decision screen. Left: complex gambles; middle: safe-easy condition; right: risky-easy condition. ECU
refers to the artificial currency used throughout the experiment, and the red number at the top-right corner indicates the time left

1W stands for a Wilcoxon test, which was used for the percentage of risky choices to make

the test robust against a nonnormal distribution of the data.
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reaction times for the different conditions. Choices in the safe-easy

condition were faster than in the complex condition (bsafe = −0.17,

SE = 0.01, p < .001), but choices in the risky-easy condition were

made at the same pace as in the complex condition. This could indi-

cate that the risky-easy gambles were not perceived as easier than

the complex gambles.

3.2.3 | Modeling choice data

We used the mean–variance model outlined in Equations 1 and 2 to

estimate people's risk preferences and choice consistency

simultaneously. In the baseline model, ignoring complexity, the group-

level estimate for the risk preference parameter was β0 = −0.39, 95%

highest density interval (HDI) [−0.53, −0.25], meaning that people

were risk averse on average. The group-level choice consistency

parameter was θ0 = −0.76, 95% HDI [−0.80, −0.72]. The group-level

effect of time pressure on risk preference was δβ = 0.01, 95% HDI

[−0.06, 0.09]. The 95% posterior HDI included 0; thus, there was no

credible effect of time pressure on participants' risk preferences. In

contrast, the group-level effect of time pressure on choice consis-

tency was δθ = −0.29, 95% HDI [−0.36, −0.23]. The posterior 95%

HDI did not include 0; thus, time pressure credibly decreased partici-

pants' choice consistency. Retransformed to the scale of the data

F IGURE 3 Percentage of riskier choices in control and time
pressure conditions for each of the three levels of gamble complexity.
Error bars are 95% confidence intervals

F IGURE 4 Median reaction times (in seconds) in control and time

pressure conditions for each of the three levels of gamble complexity.
Error bars are 95% confidence intervals

F IGURE 2 Choice
percentages for the riskier gamble
by expected value
(EV) differences between riskier
and safer gambles on the group
(line and larger dots) and
individual (smaller dots) level.
Error bars are 95% confidence
intervals
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model, the consistency parameter was estimated to be 0.15 in the

control condition and 0.32 under time pressure. Figure 5 shows that

the individual effects of time pressure on risk preference were rather

unsystematic, whereas the individual estimates of choice consistency

decreased for almost all participants under time pressure.

Note that this result modified the model-free analysis of choice

data reported above: whereas the regression revealed an effect of time

pressure on choice proportions, the stochastic utility model

decomposed this effect into a possible shift in risk preferences or in

choice consistency. The model identified a decrease in choice consis-

tency rather than a shift in risk preferences as the more likely explana-

tion for the observed change in choice proportions under time pressure.

To test the robustness of this result, we implemented other sto-

chastic link functions as discussed above, namely, the logit function

(Equation 3) and the trembling-hand error (Equation 4). With a logit

link function, we again found that risk preferences did not change,

δβ = 0.03, 95% HDI [−0.05, 0.10], whereas the logit consistency

parameter did change under time pressure, δφ = 0.32, 95% HDI [0.25,

0.39]. This again implies less choice consistency under time pressure.

Similarly, for the trembling-hand error, risk preference did not change,

δβ = 0.02, 95% HDI [−0.06, 0.11], but the trembling-hand error credi-

bly differed between the two conditions with δρ = −0.31, 95% HDI

[−0.40, −0.21]. This means that under time pressure, participants

more often chose the option with the lower latent utility. In sum, a

credible decrease in choice consistency due to time pressure is robust

to the use of these alternative error models.

3.2.4 | Gamble complexity

To incorporate the effect of gamble complexity, we included two

dummies with the complex condition as a baseline as outlined in

Equations 5 and 6. We added these dummies as well as the interac-

tion of complexity with time pressure sequentially for both the risk

preference and the consistency parameters. The full model with com-

plexity as a main effect and the interaction effects for both risk pref-

erence and choice consistency parameters fitted the data best

according to WAIC (Vehtari et al., 2017). In all specifications, the main

effect of time pressure was credibly different from 0 for the choice

consistency parameter but not for the risk preference parameter.

Group posteriors were also comparable in magnitude to the more par-

simonious specification discussed above. Gamble complexity had a

credible effect on risk preference in that risk aversion was stronger in

the safe-easy condition (βsafe = −0.14, 95% HDI [−0.23, −0.05]) and

weaker in the risky-easy condition (βrisky = 0.16, 95% HDI [0.09,

0.23]), each compared with the complex condition. Furthermore, gam-

ble complexity credibly increased choice consistency in the safe-easy

condition (θsafe = −0.07, 95% HDI [−0.13, −0.004]) but not in the

risky-easy condition (θrisky = −0.05, 95% HDI [−0.11, 0.01]). All model

results, including estimates for interactions between complexity and

time pressure, can be found in Table S1.

3.2.5 | Strategy shift

To examine whether participants applied different strategies under

high and low time pressure, we added three NC strategies as

described in Equations 7 and 8 to the model. The group-level mixture

variable was z0 = −1.33, 95% HDI [−1.83, −0.88], meaning that across

both conditions, behavior of around 10% of the participants were best

explained by one of the three NC strategies and 90% of participants

were best explained by the compensatory mean–variance model. The

group-level effect of time pressure was δz = −0.58, 95% HDI [−1.13,

−0.08] and credibly different from 0. This means that the probability

of classifying a participant as using the NC strategy increased from

4% in control to 23% under time pressure. Based on the individual

level posteriors, only one participant in the control condition and eight

in the time pressure condition had a higher than 50% posterior proba-

bility of their choices being better explained by the NC strategies

rather than by the compensatory strategy.

Additionally, the group-level threshold for the three NC strategies

was μ = 0.15, 95% HDI [0.05, 0.27] for a standardized outcome range

between 0 and 1. The group-level trembling-hand error rate for the

NC strategies was ε = 0.16, 95% HDI [0.07, 0.26]. Finally, the three

F IGURE 5 Risk preference β

(left) and choice consistency θ

(right) group posterior parameter
estimates at the margins and
individual mean posterior
estimates in the main graphs.
Estimates were retrieved from
the full model with complexity
main and interaction effects
(Model 7 in Table S1)
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group-level mixture probabilities were g1 = 0.08, 95% HDI [0.0001,

0.24], for the probability order; g2 = 0.18, 95% HDI [0.004, 0.39], for

the decreasing outcome order; and g3 = 0.74, 95% HDI [0.48, 0.96],

for the increasing outcome order. This means that the outcome order

starting with comparing the lowest outcomes was best suited to

explain a participant's behavior if this participant was selected to use

an NC strategy.

Finally, even when allowing for the use of NC strategies, the con-

clusion from the first model held: group-level choice consistency of

the compensatory strategy was still credibly lower under time pres-

sure, δθ = −0.25, 95% HDI [−0.31, −0.19], whereas risk preference did

not differ between conditions, δβ = −0.03, 95% HDI [−0.10, 0.04].

4 | EXPERIMENT 2

To examine the robustness of the results of Experiment 1, we con-

ducted Experiment 2 in which we used a different complexity manipu-

lation and determined time pressure individually.

4.1 | Method

4.1.1 | Experimental design

Again, we examined the effect of time pressure on risk taking in a

within-subject design by asking participants to choose between two

risky gambles repeatedly. Complexity was manipulated by the number

of outcomes of a gamble. There were three conditions: complex (both

gambles consisted of four outcomes each); safe-easy (the safer gam-

ble with lower variance had only two outcomes); and risky-easy (the

riskier gamble with higher variance had only two outcomes).

4.1.2 | Gamble stimuli

We randomly created gamble pairs for the experiment similarly to the

procedure in Experiment 1. In addition, 10 pairs of gambles were

created in each complexity condition where one gamble stochastically

dominated the other (in equal numbers, either the safer or the riskier

gamble dominated). In the complex condition, we created gambles

with four outcomes each; in the safe-easy condition the gamble with

the lower SD had only two outcomes; and in the risky-easy condition,

the gamble with the higher SD had only two outcomes. Presentation

of the gambles was similar to that in Experiment 1 (see Figure 6).

4.1.3 | Time pressure manipulation

Time pressure was individually determined by giving people 75 choices

from all complexity conditions in a practice block at the beginning of

the experiment. These gamble pairs were created according to the

same principles as in the complex condition but were different from

those in the main task and were not payoff relevant. As time pressure

manipulation, we used the 25% quantile from the reaction times of all

choices from the respective participant in the training block. This

resulted in an average time limit of 4.12 s in the time pressure condi-

tion. In the control condition, there was again a very low time pres-

sure of 30 s.

4.1.4 | Participants and incentives

We recruited 60 participants to increase power compared with Exper-

iment 1. All participants were psychology students and were recruited

via the online recruiting platform of the Department of Psychology at

the University of Basel. Participants received course credit and a mon-

etary bonus ranging from CHF 1.20 to 19.60 (mean CHF 10.86) for an

average study duration of about 1 h. Participants had a median age of

22 years (range 19–51 years); 44 were female and 16 male.

4.1.5 | Procedure

The experiment was conducted on a computer at individual worksta-

tions, similarly to Experiment 1. Again, a quiz had to be passed to start

F IGURE 6 Schematic screenshot for the task in Experiment 2 with ECU the currency used during the experiment and the time left indicated
at the top-right. Left: decision screen in the complex condition. Right: decision screen when one gamble had two outcomes
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the experiment, which consisted of five blocks with 75 choices each.

The first block was always the practice block. The second and third

blocks were the control or the time pressure conditions with order

alternated between participants. As incentive, one trial (excluding the

practice block) was drawn to be paid out. If a participant failed to obey

the time limit in a choice situation, a red warning message was pres-

ented for 1 s, and no choice could be made. If such a trial was drawn

for payout, there was no bonus payment.

4.2 | Results

4.2.1 | Choice data

Similar to in Experiment 1, there were fewer risky choices in the con-

trol condition (34%) than under time pressure (38%), W(n = 60) = 344,

p < .001. An effect of time pressure on choice consistency is suggested

by looking at the percentage of risky choices against different bins of

EV differences (Figure 7). As in Experiment 1, there was a crossing

point between the control and time pressure lines. This means that

under time pressure, choice proportions of the risky gamble were

closer to 50% both when the risky gamble was very unattractive and

when it was very attractive as compared with the control condition.

To examine the impact of time pressure on choice error, we

added a set of gamble pairs with stochastically dominant gambles.

Here, one can argue that participants should always choose the domi-

nant option irrespective of their individual risk preferences. Consis-

tently, in only a small proportion (3.33%) of trials did participants

choose the dominated riskier gamble in the control condition.

However, this error rate increased substantially to 9.70% under time

pressure, W(n = 60) = 69, p < .001. Likewise, participants chose

the dominated safe gamble in only 16.79% of trials in control,

but this error rate increased to 22.49% under time pressure,

W(n = 60) = 793, p = .006.

Across both conditions, complexity had an effect on the percent-

age of risky choices (Figure 8): in the complex condition, the risky

option was chosen in 34% of all trials, compared with 35% in the safe-

easy condition (bsafe = 0.22, p < .001) and 33% in the risky-easy condi-

tion (brisky = −0.22, p < .001). This result differs from Experiment

1 and is not in line with the idea that people are always more likely to

choose the easier of two gambles. As seen in Figure 8, the effect of

time pressure increased the percentage of risky choices for all com-

plexity conditions.

4.2.2 | Reaction time data

Reaction times were significantly different in control (Mdn = 4.27 s,

SD = 3.55) and time pressure (Mdn = 2.45 s, SD = 1.73) conditions,

F IGURE 7 Percentage of riskier
option choices by mean differences in
expected value (EV) between riskier and
safer gambles on the group (line and large
dots) and individual (small dots) level

F IGURE 8 Percentage of riskier option choices in control and
time pressure conditions for each of the three levels of gamble
complexity. Error bars are 95% confidence intervals
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W(n = 60) = 1,817, p < .001. There was an effect of block on reaction

times in the control trials in that participants were slower in the first

blocks (Mdn = 5.08 s, SD = 3.98) than in the last blocks (Mdn = 3.65 s,

SD = 2.83), W(n = 60) = 1.686, p < .001. That is, participants became

faster during the experiment so that the induced time pressure might

have been experienced as less severe at the end of the experiment

than at the beginning. Figure 9 shows that participants took longer

when both gambles were complex as compared with trials where one

gamble had only two instead of four outcomes (bsafe = −0.10,

p < .001; brisky = −0.16, p < .001).

4.2.3 | Modeling choice data

Similar to in Experiment 1, we found that time pressure credibly

affected the choice consistency parameter θ but not the risk prefer-

ence parameter β. This result was robust to all model specification, as

can be seen in Table S2. The model with the lowest WAIC included

main effects of complexity for both the risk preference and the choice

consistency parameters. In this model, the group-level risk preference

parameter was β0 = −0.57, 95% HDI [−0.76, −0.37], showing that

people were in general risk averse. The group-level choice consistency

parameter was θ0 = −0.49, 95% HDI [−0.59, −0.39]. The group-level

effect of time pressure on risk preference was δβ = −0.02, 95%

HDI [−0.06, 0.02]. Because the 95% posterior HDI included 0, there

was no credible effect of time pressure on people's risk preferences.

In contrast, time pressure credibly reduced people's choice consis-

tency on the group level with δθ = −0.14, 95% HDI [−0.18, −0.09].

Retransformed to the scale of the data model, the consistency param-

eter was estimated to be 0.26 in the control condition and 0.36 under

time pressure. Thus, again, it was choice consistency rather than risk

preferences that explained the changes in risky choices under time

pressure. Figure 10 shows the group posteriors and individual mean

posteriors for both parameters.

Again, we checked the robustness of this result with respect to

other link functions. With a logit link function, we found that group-

level risk preferences did not change because of time pressure,

δβ = −0.02, 95% HDI [−0.06, 0.01], whereas the logit consistency

parameter indicated credibly lower group-level consistency under

time pressure, δφ = 0.10, 95% HDI [0.07, 0.14]. For the trembling-

hand error, group-level risk preference did not change, δβ = −0.02,

95% HDI [−0.08, 0.02], but the trembling-hand error parameter indi-

cated credibly lower group-level consistency under time pressure,

δρ = −0.14, 95% HDI [−0.19, −0.08].

4.2.4 | Gamble complexity

We report the group-level effects of gamble complexity on the prefer-

ence and consistency parameter in the best fitting model (all main

effects, no interactions): participants were less risk averse in choices

when the safer gamble had only two outcomes compared with when

both gambles had four outcomes (βsafe = 0.20, 95% HDI [0.09, 0.30]).

However, the effect of the risky-easy condition on the risk parameter

F IGURE 9 Median reaction times (in seconds) in control and time
pressure conditions for each of the three levels of gamble complexity.
Error bars are 95% confidence intervals

F IGURE 10 Group posterior
distributions at the margins and
individual mean posterior
parameter estimates in the main
graphs for risk preference β (left)
and choice consistency θ (right)
for the best model (Model 4 in
Table S2) including main effects
of condition and complexity
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was not credibly different from 0 (βrisky = −0.09, 95% HDI [−0.19,

0.01]). The effect of gamble complexity on choice consistency was

not credibly different from zero for the safe-easy condition

(θsafe = −0.04, 95% HDI [−0.09, 0.01]) but was for the risky-easy con-

dition (θrisky = −0.13, 95% HDI [−0.18, −0.08]). The trend in both con-

ditions means that there was higher choice consistency when one

gamble had only two outcomes.

4.2.5 | Strategy shift

We examined to what extent the change in choice proportions due to

time pressure could be accounted for by a strategy shift. The group-

level mixture variable was z0 = −0.56, 95% HDI [−0.83, −0.30], mean-

ing that across both conditions, the probability that a participants was

classified as using one of the three NC strategies was 29%. The effect

of time pressure was not statistically credible, δz = −0.25, 95%

HDI [−0.50, 0.01]. However, descriptively, the probability of classify-

ing someone as using an NC strategy was higher under time pressure

(38%) than in the control condition (21%). Looking at the individual

posterior distributions, 22 participants under time pressure and 10 in

the control condition had a higher than 50% posterior probability of

their choices being better explained by an NC than the compensatory

strategy. Possibly, the higher gamble complexity in Experiment

2 increased the overall use of NC strategies compared with

Experiment 1.

The group-level threshold for the three NC strategies was

μ = 0.01, 95% HDI [0.0002, 0.02], and the group-level trembling-hand

error rate was ε = 0.18, 95% HDI [0.13, 0.24]. The three mixture prob-

abilities on the group level were g1 = 0.16, 95% HDI [0.03; 0.32], for

the probability order; g2 = 0.26, 95% HDI [0.09, 0.42], for the decreas-

ing outcome order; and g3 = 0.58, 95% HDI [0.38, 0.77], for the

increasing outcome order.

Similar to in Experiment 1, the conclusion concerning choice con-

sistency held when allowing for the use of NC strategies: on the group

level, choice consistency was still credibly decreased under time pres-

sure, δθ = −0.10, 95% HDI [−0.15, −0.05], whereas risk preference

was not, δβ = −0.01, 95% HDI [−0.05, 0.03].

5 | DISCUSSION

In two experiments, we examined the effect of time pressure on

repeated binary choices between risky gambles. We found that choice

proportions differed between conditions with high versus low time

pressure. To understand this behavioral change, we contrasted three

explanations: (a) time pressure systematically affects people's risk pref-

erences, (b) time pressure decreases choice consistency, and (c) time

pressure leads to a strategy shift from a compensatory to an NC strat-

egy. Across both studies using a random utility model implemented

within a hierarchical Bayesian framework, we found converging evi-

dence for a decrease in choice consistency as the main driver behind

the time pressure effect of a change in risky choices: in both studies,

the error variance of the random utility model increased under time

pressure, meaning that choice behavior moved toward 50% each for

the safer and riskier gamble. At the same time, there was no evidence

for an influence of time pressure on people's risk preferences.

We found some evidence of a strategy shift: when we compared a

compensatory (mean–variance) with several NC (comparing two single

outcomes) strategies in a Bayesian finite-mixture model, participants

were descriptively more likely to adhere to an NC strategy under time

pressure in both experiments (see also Payne et al., 1988; Rieskamp &

Hoffrage, 1999, 2008). On a group level, this shift in the mixture vari-

able reached statistical credibility in Experiment 1 but not in Experi-

ment 2. However, a strategy shift cannot fully account for the

behavioral effect of time pressure because choice consistency in the

compensatory strategy still decreased under time pressure, even when

allowing for the strategy shift option in the mixture model in both

experiments. This is consistent with the interpretation that most partic-

ipants stuck to a compensatory strategy also under time pressure but

performed this strategy less consistently under high time pressure.

5.1 | Strategy shifts under time pressure

In the strategy shift analysis, we used a Bayesian group-level finite-

mixture model. We thus assumed that a given participant used the

same strategy in every trial. That way, we limited the flexibility of the

finite-mixture model, but it might be interesting to examine trial-by-

trial shifts in strategies in future research (Scheibehenne et al., 2013).

We restricted the set of NC strategies to sequential outcome compar-

isons in three different orders as a straightforward principle to reduce

decision time. Yet other lexicographic strategies have been proposed

in the literature (e.g., Payne et al., 1988), most prominently the priority

heuristic (Brandstätter et al., 2006; Rieskamp, 2008). We cannot rule

out that the inclusion of other NC strategies could increase the

explanatory power of the strategy shift hypothesis. However, within

the finite-mixture model, adding too many strategies could make the

NC strategies overly flexible. A good design approach to examine

which strategies were used exactly is to use specific choice problems

and process measures to distinguish strategies from one another. We

see this approach and ours as complementary: whereas our study has

the advantage that results hold for the whole spectrum of possible

risk–reward combinations in a standardized procedure, more targeted

choice problem sets might be better suited to identifying the use of

particular strategies.

There was little evidence that time pressure increased the pro-

pensity to choose easier gambles. In Experiment 1, participants chose

the easier option more often when it was the safer one under time

pressure than in the control condition (see estimated interactions in

Table S1). However, this was not the case when the easier option was

the riskier one, and this result was not replicated in Experiment 2. It

might be that the safer option in Experiment 1 was a sure outcome

and that the elimination of all risk had an effect on choice behavior

beyond the complexity manipulation. An effect of time pressure on

the propensity to choose the easier option could be expected when
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people did not have the chance to fully comprehend the more com-

plex option under time pressure. However, when people shifted

toward NC strategies, for example, by comparing just one value from

each gamble to each other, complex gambles as defined in our experi-

ments did not take longer to evaluate than easy gambles.

Interestingly, the main effect of complexity on choice was hetero-

geneous across both studies even in the control condition: whereas

participants chose easier gambles more often than complex ones in

Experiment 1, they chose complex gambles more often than easier

ones in Experiment 2. Consequently, the difference in the complexity

manipulations (two-outcome gambles in Experiment 1 vs. four-

outcome gambles in Experiment 2) led to different effects on choice

proportions. In manipulating complexity, we controlled for the EV and

the variance but not for higher moments of the gamble, such as skew-

ness and kurtosis. Yet, higher moments might in particular play a role

in four-outcome gambles, contributing to the divergent findings across

the two studies (Ebert & Wiesen, 2011; Trautmann & van de

Kuilen, 2018). Consequently, gamble complexity seems to affect risk

taking in more sophisticated ways than just decreasing choice propor-

tions (see Moffatt et al., 2015; Zilker, Hertwig, & Pachur, 2020). None-

theless, given the respective complexity manipulations in our two

studies, we can robustly infer that time pressure did not systematically

affect choices between gambles with different levels of complexity.

5.2 | The importance of choice-data modeling

Although past research has suggested that time pressure can affect

people's risk preferences directly (e.g., Young et al., 2012), we did not

find support for this claim. However, previous studies usually did not

check for the choice consistency hypothesis. As described in our Sec-

tion 1, without controlling for choice consistency, a change in choice

proportions toward 50% is ambiguous with respect to its cause. Thus,

merely on the basis of choice proportions, we could also interpret our

participants' behavior as becoming less risk averse. Only with the help

of a random utility model with risk preference and choice consistency

as latent variables could we demonstrate that time pressure mainly

affected choice consistency rather than risk preferences (for a similar

approach compare Kirchler et al., 2017). Therefore, prior claims about

changes in risk preferences due to time pressure should be

reconsidered.

When under time pressure, people seemed to choose the option

that had, on average, higher utility for them less often. This shows

that a probit error variance parameter should not be treated as a nui-

sance parameter, as it carries psychological meaning (see Bhatia &

Loomes, 2017; Hey, 2005; Woodford, 2014). In its effect of moderat-

ing the number of “correct” choices, the probit error variance has a

similar function to the threshold in an evidence accumulation model

(see Webb, 2019). However, evidence accumulation models also take

reaction times into account and the threshold parameter might be

more established as a measure of a psychological process than the

probit error variance.

We can conceptualize the time pressure manipulation as a way of

reducing the decider's cognitive resources. In the real world, cognitive

resources are often limited in other ways as well, for example, in deci-

sion making under stress, acute alcohol intoxication, or sleep depriva-

tion (e.g., Cahlíková & Cingl, 2017; Davis-Stober et al., 2019;

Harrison & Horne, 2000; Porcelli & Delgado, 2009). Although under

all these circumstance different cognitive and neuronal mechanisms

might be at work, the basic problem of distinguishing between

changes in preferences and in choice consistency is the same. We

speculate that in real-world settings, such as high-stakes investments,

job-related or competitive-sport decision making, where time pressure

might be accompanied by social pressure, stress, and emotions, choice

consistency could deteriorate even more than in our experiments.

This should be a warning when people want to react quickly to new

information. Reacting quickly can be an advantage, but comes with

the cost of less accuracy (as in the speed–accuracy trade-off;

Heitz, 2014).

Besides these situational factors, there might also be cognitive

abilities, such as general intelligence, working memory capacity, or

numeracy, that affect choices under risk (see Kocher et al., 2019).

Although there have been attempts to link economic preferences to

cognitive abilities (Burks et al., 2009; Dohmen et al., 2010;

Lilleholt, 2019; Shamosh et al., 2008), future studies should also con-

trol for choice consistency when examining the impact of cognitive

abilities on decision-making behavior (see Andersson et al., 2016).

Finally, the same logic of distinguishing between preference and

consistency shifts can be applied to other domains of economic deci-

sion making besides risk taking: Olschewski et al. (2018) showed that

the effect of cognitive load manipulations led to similar effects to

those reported here in the domains of temporal discounting and social

decision making. To better understand the causes of changes in

behavior is also important in the debate about the social heuristic

hypothesis and the question of whether time pressure leads to fairer

choices or not (see Bouwmeester et al., 2017; Rand et al., 2012). In

sum, the current work illustrates that the interpretation of the behav-

ioral effect of cognitive resource manipulations such as time pressure

in preferential decision making should rely on a theoretical approach

that allows the testing of various hypotheses rigorously against each

other.
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