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Abstract 
 

In this study, a parsimonious scheme for wavelet kernel extreme learning machine (named PWKELM) was introduced by 
combining wavelet theory and a parsimonious algorithm into kernel extreme learning machine (KELM). In the wavelet 
analysis, bases that were localized in time and frequency to represent various signals effectively were used. Wavelet 
kernel extreme learning machine (WELM) maximized its capability to capture the essential features in “frequency-rich” 
signals. The proposed parsimonious algorithm also incorporated significant wavelet kernel functions via iteration in 
virtue of Householder matrix, thus producing a sparse solution that eased the computational burden and improved 
numerical stability. The experimental results achieved from the synthetic dataset and a gas furnace instance demonstrated 
that the proposed PWKELM is efficient and feasible in terms of improving generalization accuracy and real time 
performance. 

 
  Keywords: Kernel extreme learning machine, Wavelet kernel function, Householder matrix, Sparse solution 
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1. Introduction 
 
The support vector machine (SVM) proposed by Vapnik 
solves quadratic regression problems with inequations [1]. 
Least squares support vector machine (LS-SVM) is a 
modified version of the standard SVM, and replaces the 
inequality constraints in addressing quadratic programming 
[2]. Thus, the training speed of LS-SVM is higher than that 
of SVM. Unfortunately, LS-SVM loses the sparseness of 
support vector, thereby degrading the generalization 
performance of SVM. In view of the sparseness of LS-SVM, 
a fixed-size LS-SVM was proposed to realize the sparse 
representation in primal weight space [3]. Upon adding a 
bias term to the objective function, LS-SVM was solved 
through forward least squares approximation; thus, a sparse 
solution is generated in the least square sense [4]. Afterward, 
a sparse algorithm of least squares support vector regression 
was established based on Householder transformation [5]. 
This algorithm can effectively sparsify the solution of LS-
SVM. 

The extreme learning machine(ELM) for single hidden-
layer feedforward networks (SLFNs) has garnered 
significant interests among researchers since Huang et al.[6] 
first proposed their seminal work on ELM. In this machine, 
the input weights are chosen at random; the output weights 
can be analytically determined via the simple generalized 
inverse operation on the hidden layer output matrices. 
Empirical studies have indicated that the generalization 

capability of ELM is comparable to or even better than that 
of SVMs and its variants [7].Thus, ELM has successfully 
been applied for classification [8] and regression [9].   

 Nonetheless, the number of hidden layer nodes, which 
is an important parameter of ELM, usually should be 
determined beforehand by users through some time-
consuming methods. A special batch variant of ELM, 
namely, kernel extreme learning machine (KELM) [7], is 
proposed to avoid the problem of hidden nodes' selection. 
KELM transposes the explicit activation function into 
implicit kernel mapping. Unlike LS-SVM, KELM does not 
constrain Lagrange multipliers  α i ’s, therefore, LS-SVM 
generates a solution that is suboptimal to ELM. As with the 
conventional kernel methods, the core problem of KELM is 
the selection of kernel functions. In consideration of the 
nonstationary signals, an appropriate kernel function that can 
accurately capture the underlying information is expected to 
yield a compact representation. Commonly used kernel 
functions include Gauss function and polynomial function.  

Wavelet analysis technology has recently been widely 
used to optimize neural networks. This technology is 
characterized by multiscale interpolation and the localization 
feature in both frequency and time domains. At present, 
wavelet kernel extreme learning machine (WKELM) has 
performed excellently in terms of classification [10].  

In theory, the entire training sample in WKELM must 
be stored in the memory, which may generate redundant or 
unimportant wavelet kernel functions. A fundamental 
principle followed in system modeling is the well-
recognized Occam’s razor hypothesis: “plurality should not 
be posited without necessity.” In other words, the simpler a 
solution is, the more reasonable it is. Sparse models are 
preferable in engineering applications because the 
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computational complexity of a model scales with its model 
complexity. Deng et al. recently proposed a reduced KELM 
(RKELM) that is capable of locating sparse topology by 
randomly selecting a subset from a training dataset [11]. 
However, numerical instability still exists. A fast sparse 
approximation scheme for KELM (FSA-KELM) [12] was 
recently introduced to obtain a simple sparse solution; this 
process begins with a null solution and gradually selects a 
new hidden node according to some criteria. This procedure 
is repeated until the stopping criterion is met. 

In the current study, a parsimonious algorithm and 
wavelet technique are developed for KELM on the basis of 
the aforementioned analysis, the resultant model is referred 
to as parsimonious wavelet kernel extreme learning machine 
(PWKELM). Wavelet function benefits from multiscale 
interpolation and is also suitable for the local analysis and 
detection of transient signals. As a result, a wavelet 
expansion representation is compact and is easy to 
implement. Householder matrix is also used to orthogonalize 
the linear equation set in WKELM, and significant wavelet 
kernel functions are recruited iteratively. Thus, a sparse 
solution is established. Synthetic and real-world data sets are 
utilized in conducting experiments whose results confirm the 
effectiveness and feasibility of the proposed PWKELM. 

The rest of this paper is organized as follows: ELM and 
WKELM are introduced in Section 2. The PWKELM 
algorithm and its detailed procedure are listed as well. The 
experimental results and analyses are presented in Section 3. 
Conclusions follow in the final section. 
 
 
2. Methodology 
 
2.1 ELM 
ELM is based on the perceptron model with a single hidden-
layer and has a simple three layer structure. This structure is 
composed of the input, output, and hidden layers. If we 
randomly assign the input weights and bias values, we need 
not to adjust the input weights or hidden layer bias 
throughout the learning process. 

For  N training samples
    

xi ,ti( ){ }
i=1

N
, xi ∈!

n ,ti ∈! , the 

SLFN model with   !N hidden nodes (additive or RBF nodes) 
can be formulated as 
 

    
βig wi ,bi , x j( )

i=1

!N

∑ =oj , j = 1,", N                              (1) 

 
where  βi  is the output weight connected to the  i th hidden 
layer node,   wi  and  bi  are learning parameters of hidden 

layer nodes,
  
oj ∈!  is the output of ELM, and   g i( )  is the 

activation function. Eq. (1) can be written compactly as 
 

   Hβ=o                                            (2) 
 
where 
     o = [o1,!,oN ]T ,β = [β1,!,β "N ]T , 
 

      

H=

g w1 ⋅ x1 + b1( )! g w "N ⋅ x1 + b "N( )
         #            !           #   
g w1 ⋅ xN + b1( )! g w "N ⋅ xN + b "N( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥N× "N

. 

 
 H  is called the output matrix of the hidden layer. If the 
ELM model with   !N  hidden nodes can approximate  N  
samples with zero error, then it means that there exist  βi  
such that 
 

    
β iG wi ,bi , x j( )

i=1

!N

∑ =t j , j = 1,", N
                                

(3) 

 
where  t j  is the target value. Eq. (3) can be expressed in the 
following matrix-vector form 

  Hβ=T                                              (4) 
 
where 

    
T= t1,t2 ,!,tN⎡⎣ ⎤⎦

T
. The hidden nodes’ learning 

parameters   wi  and  bi  are randomly generated in the 
beginning. Thus Eq. (4) then becomes a linear system and 
the output weights β  can be computed analytically by 
finding the minimum norm least squares’ solution as follows 
 

  β=H†T                                            (5)  
 
where   H†  is the Moore-Penrose generalized inverse of  H . 
 
2.2 WKELM 
The universal approximation capability of ELM with hidden 
nodes has been proven. KELM is proposed in response to 
the problem of selecting the demanding hidden nodes. 
KELM substitutes the kernel function mapping for the 
hidden layer mapping

 
h x( ) .  

Given a training set
    

xi ,ti( ){ }
i=1

N
, xi ∈!

n ,ti ∈! , the 

original optimization problem of KELM can be expressed as 

 

     

min    LELM = 1
2

|| β ||2 + C
2
ξi

2

s.t.     h xi( )β = ti −ξi ,  i = 1,!, N
                                        (6) 

 
 The corresponding Lagrangian dual problem can be 
formatted as 

 

   
LELM = 1

2
|| β ||2 + C

2
ξi

2

i=1

N

∑ − α i h xi( )β − ti + ξi( )
i=1

N

∑
               

(7) 

 
 The KKT optimality conditions of Eq. (7) are as follows 
 

  β = HTα                                              (8) 

 

   

I
C

+ HHT⎛
⎝⎜

⎞
⎠⎟
α = T

                                     
(9) 

 
 The feature mapping 

 
h x( ) can be unknown, but the 

corresponding kernel is usually given, the kernel matrix of 
ELM can be defined as follow 
 

     
KELM = HHT : KELM i, j( ) = h xi( ) i h x j( ) = Kij                  (10) 
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 Consequently, the output function of KELM can be 
written as 
 

    

f x( )=h x( )HT I
C

+HHT⎛
⎝⎜

⎞
⎠⎟

−1

T

         =

k x,x1( )
     M
k x,xN( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

T

I
C

+KELM

⎛
⎝⎜

⎞
⎠⎟

−1

T

                                   (11) 

 
 The wavelet is a finite-length waveform that is 
characterized as follows: (1) either time domain or 
approximation is compactly supported; And (2) the 
advantages of wavelet analysis are integrated into the time 
and frequency domains. The time domain characteristics of 
wavelet transform can be expressed with wavelet functions 
that are translated from a wavelet kernel function. 
Meanwhile, we apply different wavelet functions to 
approximate the original signals. Wavelet analysis is a 
relatively new signal processing tool that is widely applied 
by many researchers in power systems due to its excellent 
characteristics. Thus, the combination of the wavelet 
analysis technique and KELM is significant. 
 If a function satisfies the Mercer theorem, then it is a 
kernel function. The function can also be used as a kernel 
function of the KELM. Many wavelet functions satisfy the 
translation-invariant kernel conditions, including the 
Mexican hat wavelet kernel function [13]. In this study, 
WKELM is utilized for regression. 
 
2.3 PWKELM 
Given a wavelet kernel function 

  
k x, y( ) , the function 

  
k x,xi( )  corresponds to a wavelet kernel function for each 

training sample   xi . A set of wavelet kernel functions 

    
V = k x,xi( )|i = 1,2,!, N{ }  is called a dictionary. PWKELM 

is a sequential forward greedy algorithm that selects a new 
wavelet kernel function at each iteration until some stopping 
criteria are satisfied. Two key components of PWKELM 
must be solved: the recruitment of the wavelet kernel 
functions and the solution of subproblem. PWKELM 
recruits a new wavelet kernel function 

  
k x,xp( ) from the set 

   
k x,xi( )|i ∈Q{ } according to some criteria by starting with an 

empty index set  S =∅  and a full index set
   
Q = 1,!, N{ } . 

Then, the index  p  is removed from Q and added to  S . At 
the 

  
n−1( ) th iteration, the number of wavelet kernel 

functions in the set 
   

k x,xi( )|i ∈S{ }  is presumably   n−1 . Eq. 

(9) is rearranged as 
 

    KSα S
* n−1( )=T                                          (12) 

 
where 

    
KS = ki ,!,k j

⎡⎣ ⎤⎦ i, j ∈S( ) with 
   ki = ki + ei / C , 

 ki
 is the 

 i th column vector of  K , and 
  α S

∗ n−1( )  is a subvector 

consisting of elements that are confined to the index set  S  at 
the 

  
n−1( ) th iteration. Eq. (12) is an overdetermined linear 

equation set; its solution is simply equivalent to finding the 
optimal solution to the following problem 
 

    
min
α S

n−1( )
GS

n−1( ) = KSα S
n−1( ) − T{ }                                 (13) 

 
 The optimal solution of Eq. (13) can be analytically 
determined as follows 

    
α S

∗ n−1( )= KS
T KS( )−1

KS
T T

                                 (14) 

 Thus, we can get the minimizer of (13) with 
 

    
GS

∗ n−1( ) = KSα S
∗ n−1( ) − T

                                    (15) 

 
 Eq. (13) indicates that the larger the 

  GS
∗ n−1( )  value is, the 

worse the approximate effectiveness becomes. If 
  
k x,xp( )  is 

recruited as the new wavelet kernel function at the  n th 
iteration, then 

 
GS∪ p{ }

∗ n( )  can be obtained by following by the 

similar lines 
 

   

GS∪ p{ }
∗ n( ) = KS kp

⎡⎣ ⎤⎦
α S

∗ n( )

α p
∗

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− T

                                 (16) 

 
 Consequently, 

  
GS∪ p{ }

∗ n( ) ≤ GS
∗ n−1( ) , and

  
ΔGp

n( ) ≥ 0 . Thus, the 

criterion of recruiting the next wavelet kernel function at the 
 n th iteration is obtained as follows 
 

  
p = arg  max

i∈Q
ΔGi

n( )                                      (17)
 

 
where 

   
Q = 1,…, N{ } \ S . Eq. (17) indicates that at each 

iteration, the wavelet kernel function introducing the most 
significant decrease on  G  is recruited as the new kernel 
function. Eq. (13) can be solved by using Eq. (14) to 
calculate  G  and  ΔG  at each iteration. The use of Eq. (14) 
incurs two potential risks: on the one hand, the reliability 
and robustness of calculating 

   
KS

T KS( )−1  is closely related to 

its condition number, defined as 
 

   
κ KS

T KS( )=κ 2 KS( )= µmax
2

µmin
2

                                  (18) 

 
where 

 µmax
 and 

 µmin
 represent the maximum and minimum 

nonzero singular values of 
  KS

, respectively. In general, the 

larger the condition number is, the less stable the 
numerically calculating result is. The condition number 
easily incurs roundoff errors if it is excessively large. On the 
other hand, the recursive strategy is more difficult to use for 
recruiting new wavelet kernel function at the  n th iteration. 
Hence, an improved method of computing  ΔG  is 
determined.  
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Based on knowledge regrading matrix transformation, 
matrix 

  KS
 can be decomposed as 

    

KS =QN×N
n−1( ) R n−1( )× n−1( )

n−1( )

0 N+1−n( )× n−1( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

through QR decomposition [14]. In 

the present study, 
    QN!N

n−1( )  is an orthogonal matrix that 

satisfies 

   
QN×N

n−1( )( )T
QN×N

n−1( ) = QN×N
n−1( ) QN×N

n−1( )( )T  and 
   
R n−1( )× n−1( )

n−1( )  is an 

upper triangular matrix with the same rank as 
  KS

.  Thus, 

 

     

GS
n−1( )= KSα S

n−1( ) − T = QN×N
n−1( )( )T

KSα S
n−1( ) − QN×N

n−1( )( )T
T

                      =
R n−1( )× n−1( )

n−1( )

0 N+1−n( )× n−1( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
α S

n−1( ) −

⌢
T n−1( )×1

n−1( )

"T N−n+1( )×1
n−1( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

                      = R n−1( )× n−1( )
n−1( ) α S

n−1( ) −
⌢
Tn×1

n−1( ) + "T N−n+1( )×1
n−1( )

     

    (19) 

 

Given that 
    
!T N−n+1( )×1

n−1( ) is constant, the matrix is an upper 

triangular matrix and   α S
∗ n−1( ) can easily be obtained by 

solving 
 

     
R n−1( )× n−1( )

n−1( ) α S
n−1( )=
⌢
Tn×1

n−1( )                                    (20) 

 
 For Eq. (14), 

   
κ KS

T KS( )=µmax
2 / µmin

2 ; however, 

   
κ R n−1( )× n−1( )

n−1( )( )=κ KS( )=µmax / µmin  in Eq. (20). Generally,  

 κ >1 , which indicates that the optimal solution of Eq. (13)  
derived from Eq. (20) is more stable numerically than that 
from Eq. (14). In addition,  

    
GS

∗ n−1( )= !T N−n+1( )×1
n−1( )                             (21) 

 
In the following iteration, if 

  
k x,xp( ) is recruited as the 

new wavelet kernel function, then
 
GS∪ p{ }

∗ n( ) is obtained through 

a lower-cost strategy rather than from scratch through Eq. 
(19). 

Let 

    

Q n−1( )( )T
⌢
K n−1( )× N−n+1( )

n−1( )

"K N+1−n( )× N−n+1( )
n−1( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=KQ . Householder matrix 

[15] is applied as follows 
 

     

GS∪ p{ }
n( ) = 

I n−1( )× n−1( )     0

 0         H p
n( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

QN×N
n−1( )( )T

KS kp
⎡⎣ ⎤⎦

α S
n( )

α p

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− T

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
I n−1( )× n−1( )     0

 0         H p
n( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

R n−1( )× n−1( )
n−1( )     

⌢
kp

n−1( )    

0 N+1−n( )× n−1( )  
"kp

n−1( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

α S
n( )

α p

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−

⌢
T n−1( )×1

n−1( )

"T N−n+1( )×1
n−1( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

         

         =

R n−1( )× n−1( )
n−1( )     

⌢
kp

n−1( )    

01× n−1( )         − sign "kp
n−1( )( )

1

"kp
n−1( )

0 N−n( )× n−1( )     0 N−n( )×1    

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

α S
n( )

α p

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−

⌢
T n−1( )×1

n−1( )

⌢
Tp

n( )

"T N−n( )×1
n( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 =
R n−1( )× n−1( )

n−1( )     
⌢
kp

n−1( )    

01× n−1( )         − sign "kp
n−1( )( )

1

"kp
n−1( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

α S
n( )

α p

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−

⌢
T n−1( )×1

n−1( )

⌢
Tp

n( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

 + "T N−n( )×1
n( )

     
       
   

 
(22) 

 
 

 
where 

    
⌢
kp

n−1( ) and
    
!kp

n−1( ) are derived from
    

⌢
K n−1( )× N−n+1( )

n−1( )  and 

    
!K N+1−n( )× N−n+1( )

n−1( )  corresponding to the index p .
  
H p

n( ) is derived 

as 

   

H p
n( ) = =I − 2

v p
n( ) v p

n( )( )T

v p
n( )( )T

v p
n( )

                                   (23) 

where 
 

    
v p

n( ) = !kp
n-1( ) + sign( !kp

n-1( )( )
1
) !kp

n-1( ) e1                          (24) 

 

  Rn×n
n( ) , together with     

⌢
Tn"1

n−1( ) , is updated as 

 

     

Rn×n
n( ) =

R n−1( )× n−1( )
n−1( )     

⌢
kp

n−1( )    

01× n−1( )         − sign "kp
n−1( )( )

1

"kp
n−1( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
，

    

⌢
Tn×1

n( )=

⌢
T n−1( )×1

n−1( )

⌢
Tp

n( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 (25) 

Thus, the optimal solution at the  n th iteration is 
determined with 
 

     

R n−1( )× n−1( )
n−1( )     

⌢
kp

n−1( )    

01× n−1( )         − sign "kp
n−1( )( )

1

"kp
n−1( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

α S
n( )

α p

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

⌢
T n−1( )×1

n−1( )

⌢
Tp

n( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

  (26) 

 
 The following is obtained as well 
 

   
GS∪ p{ }

∗ n( ) = !T N−n( )×1
n( )                                            (27) 
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 Hence, according to Eqs. (21) , (22), and (27), the 
following is obtained 
 
 

     

ΔGp
n( ) = !T N−n+1( )×1

n−1( ) − !T N−n( )×1
n( )

        = H p
n( ) !T N−n+1( )×1

n−1( ) − !T N−n( )×1
n( ) =

⌢
Tp

n( )                    
(28) 

 
 The criterion considered in recruiting the next wavelet 
kernel function is 
 

   
p = argmax

i∈Q

⌢
Ti

n( )                                    (29) 

 According to Eq. (22), 
   
⌢
Tp

n( )  is easily gained explicitly as 

     

⌢
Ti

n( ) = H p
n( ) "T N−n+1( )×1

n−1( )( )
1

       = "T N−n+1( )×1
n−1( )( )

1
− 2

vi
n( )( )

1
vi

n( )( )T
"T N−n+1( )×1

n−1( )

vi
n( )( )T

vi
n( )

            (30) 

 
where 

 
⋅( )1 represents the extraction of the first element of a 

given column vector. 
  
H p

n( )  should be constructed when the 

new wavelet kernel function 
  
k x,xp( )  is determined;  

subsequently, Eq. (25) and the index sets
 
S ← S ∪ p{ } , and 

 
  
Q ←Q \ p{ }  are updated. Then, 

    

⌢
K n( )× N−n−1( )

n( )
 
and 

    
!K N−n( )× N−n−1( )

n( )  

can be refreshed as  
 

     

⌢
K n( )× N−n( )

n( )

"K N−n( )× N−n( )
n−1( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

I n−1( )× n−1( )     0

 0         H p
n( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⌢
K n−1( )× N−n+1( )

n−1( ) \  
⌢
kp

n−1( )

"K N+1−n( )× N−n+1( )
n−1( ) \  "kp

n−1( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  (31) 

 
In this study, the value of index  n starts from 1. Thus, 

we must first initialize PWKELM. Let 

 

    ki =Qiri i = 1,!, N( )                                       (31) 
 
where   ki  is obtained from    K=KELM + I / C  that corresponds 
to the index  i .  Qi  is obtained via QR decomposition. 

According to Eq. (19),     
!Ti

0( )  is derived as 
 

     
!Ti

0( )=QiT \
⌢
Ti

0( )                                  (32) 
 
 Thus, the first wavelet kernel function is selected as 
follows 
 

    
p = argmin

i∈Q
!Ti

0( )
                                        (33) 

 
In summary, the flowchart of PWKELM is depicted as 

follows 
 

Step 1) Initializations 

� Obtain the training data set 
   

xi ,ti( ){ }
i=1

N
. 

� Choose the appropriate regularization and wavelet kernel 
parameters. 

� Let  S =∅  and 
   
Q = 1,!, N{ } ,  n = 1 . 

� Calculate     
!Ti

0( )  according to (32). 

� Recruit the first 
  
k x,xp( )  

according to (33).  

� Let 
 
S ← S ∪ p{ } ,

  
Q ←Q \ p{ } ,  n = 2 . 

� Let 
   
H 1( )=Qp ,

   
R 1( )= rp( )

1 , calculate     
⌢
K1×N

1( )  and 
    
!K N−1( )×N

1( )  

via

    

⌢
K1×N

1( )

"K N−1( )×N
1( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=H 1( ) KELM + I / C( ) , compute  

   
⌢
T1×1

1( )  and 
    
!T N−1( )×1

1( )  according to 

     

⌢
T1×1

1( )

"T N−1( )×1
1( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=H 1( )T . 

� Choose a positive M or a small  ε > 0 . 

Step 2) If  n > M  or 
    

⌢
Tp

i( )( )2

i=0

n

∑
T

< ε  

Step 3) Go to step 11 
Step 4) Else 
Step 5) Calculate   vi

n( )  and    
⌢
Ti

n( )  according to (24) and (30) 
respectively. 
Step 6) Choose the next 

  
k x,xp( )  according to (29). 

Step 7) Update   R
n( ) and    

⌢
T n( )  according to (25). 

Step 8) Update 
   

⌢
K n( )× N−n( )

n( ) and 
   
!K N−n( )× N−n( )

n( )  according to (31). 

Step 9) Let 
 
S ← S ∪ p{ } ,

  
Q ←Q \ p{ } ,  n = n+1 , go to step 

2. 
Step 10) End if 
Step 11) Solve      R

n( )α S
n( ) =
⌢
Tn×1

n( ) . 

Step 12) Output 

    

f x( )=

k x,xi( )
    M
k x,xl( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥ i,!,l∈S( )

T

α S
n( ) .

 
 
3. Result Analysis and Discussion 

 
In an attempt to highlight the efficacy of our proposed 
PWKELM， we conduct experiments with a synthetic 
dataset and a real-world example, i.e., a gas furnace instance. 
The proposed algorithm is also compared with other 
algorithms, such as LS-SVM, RKELM, and FSA-ELM. The 
Sigmoid function is used in ELM. We tune the 
regularization and width parameters in kernel function via 
10-fold cross validation. Because wavelet kernel function 
has the capability to capture the local behavior of signals 
both in frequency and time, Mexican hat wavelet kernel 
function, without loss of generality, is utilized in the 
experiment. For convenient comparison, one performance 
index, namely, root mean squared error (RMSE), is defined 
as a derivation measurement between the target and the 
predictive values. In an effort to search for the average 
performance rather than the best one, 30 trials are conducted 
in each dataset for every algorithm. The average training 
time and the average RMSE are computed for both training 
and testing datasets. 
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3.1 Single-variable synthetic data 
In this experiment, we approximate the following single-
variable function 
 

  
f x( ) = xsin 4π x( )e1−x2

+ 2x2 tanh 10x( )cos 2π x( ),x ∈ 0,1⎡⎣ ⎤⎦  (34)                 
 
 We uniformly generate 200 training sets of size 400. In a 
bid to make the regression problem “real”, normal 
distribution noise

 
0,0.12( ) is added to all training samples, 

while testing data remain noise-free. The optimal 
regularization and kernel parameters are chosen from the set 

  
20,30,!,150{ }× 0.01,0.02,!,0.2{ } via cross validation. 

WELM is compared with ELM, LS-SVM and ELM with 
RBF kernel. The experimental precisions are presented in 
Table 1. The time requirement of WKELM is comparable 
with those of ELM and RBF KELM but is slightly shorter 
than that of the RBF LS-SVM. The accuracy of WKELM, 
which is comparable with other algorithms on training 
samples, is the highest on testing samples. Wavelet kernel 
function can match well the original series on different 
scales. The generalization capability of ELM is clearly 
comparable with or is even better than LS-SVM. 
 
Tab. 1. Comparison of different algorithms 
Algorithm Parameters 

  
C,σ 2( )  

Times (s) Training Testing 
Training Testing RMSE RMSE 

WKELM 
 

60,0.04( )  0.0335 0.0094 0.0896 0.0124 

RBF 
KELM  

100,0.03( )  0.0336 0.0089 0.0895 0.0141 

ELM _ 0.0287 0.0134 0.0893 0.0159 
RBF 

LS-SVM  
70,0.04( )  0.0381 0.0125 0.0900 0.0164 

 
Figs.1 to 3 illustrate the experimental results for different 
sparse algorithms given only 10 wavelet kernel functions. 
PWKELM with only 10 wavelet kernel functions can attain 
an excellent generalization performance similar to WKELM, 
but RKELM and FSA-ELM lose approximation capability to 
some extent. On the premise of the same sparsity ratio of 
kernel functions, PWKELM proves to be superior in 
regression accuracy to RKELM and FSA-ELM, that is, new 
kernel functions must be recruited for other sparse 
algorithms to achieve the same generalization performance 
as PWKELM. Therefore, PWKELM obtains the best 
sparseness among these algorithms; this finding signifies 
that PWKELM can enhance computational efficiency in the 
testing phase, thereby improving its real time performance. 
With regard to computational stability, roundoff errors and 
numerical instability are easily incurred by calculating  α S

n( )  

with 
   

KS
T KS( )−1

directly in RKELM, but Householder matrix 

introduced in this study eliminates the bottleneck. 
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Fig.1. Simulation results of PWKELM 
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Fig.2. Simulation results of RKELM 
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Fig.3. Simulation results of FSA-ELM 

 
 

3.2 Gas furnace example 
The gas furnace data set is a time series containing 296 pairs 
of input-output points as depicted in Fig. 3, where the input 

 vk  is the coded input gas feed rate and the output  yk  
represents the CO2 concentration from the gas furnace [16]. 
A total of 293 new data points 

   
xk , yk( ){ }  are derived from 

these pairs and constructed with   xk  given as 
 

   
xk = yk -1, yk -2 , yk -3,vk -1,v k -2 ,vk -3⎡⎣ ⎤⎦

T

    
                             (35) 
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 Fig. 3 indicates that the gas furnace sample series 
fluctuates sharply, and the rear part is different from the 
front. Hence, the even-number pairs of 

   
xk , yk( ){ } are used 

for training, whereas the odd-numbered pairs for testing. As 
a result, the training sets contain 146 data points, while the 
training sets have 147. The optimal regularization and kernel 
parameters are derived from the set 

  
2-5,2-4 ,…,215{ } using 

cross validation, and the experimental results are presented 
in Table 2. Fig.4 exhibits the tendency of the performance 
index RMSE against the number of wavelet kernel functions. 
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Fig. 3. Gas furnace: (a) input  vk  and (b) output  yk . 

 
 

Tabla 2. Comparison of different kernels 
Algorithm Parameters 

  
C,σ 2( )  

Times (s) Training Testing 

Training Testing RMSE RMSE 

WKELM  
 

215,214( )  0.0210 0.0084 0.2650 0.2417 

RBF 
KELM  
Wavelet 
LS-SVM 

 
210 ,29( )  0.0212 0.0103 0.2623 0.2540 

 
212 ,214( )  0.0282 0.0085 0.2704 0.2595 

RBF  
LS-SVM  

210 ,212( )  0.0334 0.0096 0.2855 0.2861 
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Fig.4. RMSE vs.the number of wavelet kernel functions on gas furnace 

instance 
Table 2 implies that WKELM is relatively more 

accurate in prediction and efficient in calculating. ELM 
usually reports a generalization performance on regression 
that is superior to that of LS-SVM. WKELM gains 
advantages in different wavelet functions that approximate 
the details of numerous series. Fig4 illustrates that RMSE 
decreases with an increase in the number of wavelet kernel 
functions for every algorithm. The dashed line generated by 
WKELM is regarded as the benchmark line; the other results 
are terminated when they reach this line. PWKELM reaches 
the benchmark line first, which suggests that PWKELM 
requires the least number of wavelet kernel functions to 
attain almost the same generalization performance compared 
with the other sparse algorithms do. That is, the use of 
PWKELM serves to provide WKELM with a much sparser 
solution without sacrificing the generalization performance. 
The testing time is directly proportional to the number of 
kernel functions; thus, a sparser solution indicates the less 
testing time. A decreased testing time suggests improved 
real time performance. In sum, the experiment based on a 
gas furnace example demonstrates the feasibility and 
efficacy of the proposed PWKELM. 

 
 

4.  Conclusions 
 

In this study, the use of the wavelet kernel function and a 
parsimonious algorithm in KELM, namely PWKELM, is 
proposed and investigated. KELM with wavelet kernel can 
more effectively capture essential features in “frequency-
rich” signals than other kernel functions can. WKELM also 
loses the solution sparseness, thereby deteriorating the real 
time and increasing the computational burden; hence, the 
solution of WKELM must be sparsified. PWKELM recruits 
important wavelet kernel functions in the original dictionary 
according to some criterion successively; therefore, this 
algorithm contributes to effective generalization by 
excluding redundant wavelet kernel functions. Householder 
matrix is utilized during the process of iteration, thereby 
commendably circumventing the ill-conditioned subproblem 
and improving numerical stability. In a bid to confirm the 
effectiveness and feasibility of the proposed algorithm, we 
conduct numerous experiments, including a synthetic dataset 
and a gas furnace example. Based on the experiments, 
KELM with wavelet kernel performs better than RBF kernel 
or LS-SVM with wavelet kernel does, thereby indicating the 
superiority of ELM and wavelet technique. Moreover, 
PWKELM is superior to other parsimonious methods, such 
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as RKELM and FSA-ELM, in terms of the number of 
wavelet kernel functions under nearly the same 
generalization performance. That is to say, PWKELM is 
able to generate a more parsimonious WKELM without 
impairing the generalization and identification accuracy. 
This outcome is paramount for the environments strictly 

demanding the computational efficiency in engineering 
applications.  
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