Special Operations Forces (SOF) Support Ship Ship Conversion Feasibility Study

Courtesy of www.globalsecurity.org

Massachusetts Institute of Technology Projects in Naval Ship Conversion Design, 13.413

Spring 2003

Bill Hardman, LCDR USN Charalambos Soultatis, LT HN Dianna Wolfson, LT USN

Executive Summary

This report describes the results of a high-level concept exploration conducted for the 21st Century Special Operations Forces Ship. The study began with a detailed examination of the Sponsor Requirements and development of a Mission Need Statement. An initial design sequence was performed with the goal of maximizing Overall Measure of Effectiveness (OMOE) for minimum cost. The OMOE and cost of the ship were determined by applying modified versions of the Massachusetts Institute of Technology (MIT) OMOE and Cost Models. After analyzing several possible variants using OMOE versus cost optimization techniques, a single design was selected for further evaluation and refinement.

One of the driving factors was to be able to produce this and any follow-on ships at relatively low cost. In order to do this, mature technologies were used, particularly in the area of communications, berthing accommodations, and previous designs and arrangements were emulated to exploit repeatability and to reduce cost. The Large, Medium-Speed, Roll-On/Roll-Off Ship (LMSR) was used as the starting point for the variant characteristics in an effort to leverage on previous design efforts.

The Program of Ships Salvage and Engineering (POSSE) software package was used to analyze a modified midship structural section and to perform intact and damaged stability analyses. Finally, seakeeping of the design was analyzed using the Ship Wave Analysis (SWAN) program. The ship design has undergone numerous changes since the study's inception. The current design is extremely stable and meets all of the project engineering constraints. The final baseline design meets current naval performance standards. According to a weight-based cost model, the lead ship conversion cost estimate is \$86.16 million. This is within the threshold value of \$90 million. The baseline design characteristics are provided below:

LBP	884 ft	LOA	951 ft
Beam	106 ft	Full Load Draft	27.80 ft
Full Load Displacement	48,937 ltons	Light Ship Displacement	37,681 ltons
Full Load KG	39.98 ft	Light Ship KG	45.57 ft
Max speed	24.0 knots	Endurance	10,000+ nm @ 24 knots

SOF Ship Dimensions and Performance

Acknowledgements

This study was conducted for the Projects in Naval Ship Conversion Design course (13.413) at the Massachusetts Institute of Technology (MIT). Mr. Michael Bosworth, Manager for Research and Development at the Naval Sea Systems Command (SEA 05), served as the program sponsor and provided the initial concept for the conversion project. The findings of the study, in this report, describe the benefits, costs, and challenges associated with the conversion. The authors hope that this study will contribute to the Navy's pursuit of a Special Operations Forces platform.

Throughout the project, many individuals from several organizations provided invaluable operational and technical assistance. The team acknowledges the contributions and advice from these people with sincere appreciation.

Special Operations Command (SOCOM) CAPT John S. Kamen CAPT Kevin B. Lynch CDR Peter J. Newton

Computer Sciences Corporation (CSC) Mike Stedding David Helgerson

Naval Sea Systems Command (NAVSEA) Michael Bosworth Philip Sims Mark Smith LCDR Gregg Baumann

Military Sealift Command Headquarters (MSCHQ) Rick Anderson James Kent

Lincoln Labs Document Control Chris Nentwig

National Science Foundation Research (ERC)

0 MISSION NEED	
1.0 MISSION NEED	
1.1 Defense or National Guidance and Policy	
1.2 Threat Analysis	
1.3 Current Capability Assessment	
1.4 Capability Need	
1.5 Recommended Alternatives	
2.0 DESIGN REQUIREMENTS AND PLAN	10
2.1 Required Operational Capability	
2.2 Concept of Operations/Operational Scenarios	
2.3 Constraints and Standards	
2.3.1 Constraints	
2.3.1.1 Design	
2.3.1.2 Manning	
2.3.2 Standards	
2.4 Goals and Thresholds	
2.5 Design Philosophy and Decision Matrix	
3.0 CONCEPT EXPLORATION	
3.1 Baseline Concept Design	15
3.2 Alternative Technologies and Systems	
3.3 Concept Ship Variants and Trade-Off Studies	
3.4 Variant Assessment	
3.5 Final Baseline Concept Design	
4.0 FEASIBILITY STUDY AND ASSESSMENT	
4.1 Design Definition	21
4.1.1 Ship Geometry	
4.1.2 Combat Systems and Mission Payload	
4.1.3 Propulsion, Electrical, and Auxiliary Systems	
4.1.4 Survivability and Signatures	
4.1.5 Manning	
4.1.6 Arrangements	
4.1.6.2 Inboard Profile	
4.1.6.2.1 Deck Plans	
4.1.6.2.2 Deckhouse Plans	
4.1.6.3 Tank Layouts	
4.1.7 Structural Design	
4.1.7.1 Midship Section Concept Design	

Table of Contents

4.1.7.2 Flight Deck Modifications	
4.1.7.3 Section Properties	
4.1.8 Weights and Margins	
4.1.8.1 Weight and Stability Modifications for Lightship	
4.1.8.2 Tank Modifications	
4.1.8.3 Weight Summary	
4.1.9 Intact Strength and Stability Analysis	
4.1.10 Damaged Stability and Strength Analysis	
4.1.10.1 Damaged Stability Analysis	
4.1.10.1.1 LMSR and SOF Ship Stability Comparison	
4.1.10.2 Damaged Strength Analysis	
4.1.10.2.1 Comparison of LMSR and SOF ship	
4.2 Performance Analysis	
4.2.1 Mission	
4.2.1 1 Aircraft Operations	
4.2.1.2 Boat Operations	
4.2.2 Survivability and Signatures	
4.2.3 Seakeeping and Maneuvering	
4.2.3 Scakeeping and Maneuvering	
4.2.3.2 SWAN Analysis	
4.2.4 Environmental	
4.3 Operation and Support	
4.4 Cost and Risk	49
4.4.1 Cost Estimation	
4.4.2 Risk	
1, 1,2 TOOK	
5.0 DESIGN CONCLUSIONS	52
5.1 Summary of Final Concept Design	
5.2 Final Conclusions and Recommendations	

List of Tables

Table 1. Sponsor Requirements (SR)	10
Table 2. Required Operational Capabilities (ROC)	10
Table 3. Measures of Performance (MOP)	
Table 4. Notional Composite Scenario	11
Table 5. Nominal Ship Operating Characteristics	13
Table 6. OMOE Weights	14
Table 7. LMSR Dimensions and Performance	15
Table 8. Concept Ship Variant Summary	17
Table 9. OMOE Weights	
Table 10. SOF Ship Dimensions and Performance	19
Table 11. Weights Removed and Added by SWBS	
Table 12. LMSR & SOF Ship Principal Dimensions	
Table 13. Space Balance	26
Table 14. LMSR to SOF Ship Comparison	35
Table 15. LMSR & SOF Ship Stability Parameters Comparison	
Table 16. LMSR & SOF Ship Stability Parameters Comparison	38
Table 17. Intact Stability results	
Table 18. Stress Comparison	
Table 19. Damaged Stability Results for Full Load Case Under Severe Wind and Wave Conditions	42
Table 20. Damaged Stability Results for Minimum Operating Case Under Severe Wind and Wave	
Conditions	
Table 21. Weight and KG Comparison	
Table 22. Damaged Stability Results for Full Load Case Under Severe Wind and Wave Conditions	44
Table 23. Damaged Stability Results for Minimum Operating Case Under Severe Wind and Wave	
Conditions	
Table 24. LMSR-SOF Stress Comparison	45
Table 27. Conversion Cost Estimates	
Table 28. SOF Ship Dimensions and Performance	52
Table 29. Summary of Removals and Additions	52

Table of Figures

Figure 1. LMSR Outboard Profile	
Figure 2. Total OMOE for Ships Considered	. 18
Figure 3. LMSR and SOF Ship Comparison of Outboard Profiles	. 22
Figure 4. SOF Ship Topside Arrangement	. 23
Figure 5. CIWS Arcs of Fire	. 23
Figure 6. LMSR Middle Level Machinery Arrangement	. 24
Figure 7. Topside Arrangement Comparison	. 27
Figure 8. SOF Ship Deck Layouts	
Figure 9a. Deckhouse Layout-A Deck	. 30
Figure 9b. Deckhouse Layout-01 Level	. 30
Figure 9c. Deckhouse Layout-02 Level	. 31
Figure 9d. Deckhouse Layout-03 Level	. 31
Figure 9e. Deckhouse Layout-04 Level	. 32
Figure 9f. Deckhouse Layout-05 Level	
Figure 10. SOF Ship Tank Layouts	. 33
Figure 11. SOF Ship Midship Section Structure	
Figure 12. Lightship Weight Distribution	. 37
Figure 13. GZ Curve for Intact Stability in Stillwater	. 39
Figure 14. Full Load Shear & Bending Stresses for Intact Stability in Stillwater	. 41
Figure 15. GZ Curve for Damaged Full Load under Wind-Wave Conditions	. 42
Figure 16. GZ Curve for Damaged Minimum Operating under Wind-Wave Conditions	
Figure 17. Damage Full Load Shear & Bending Stresses, Hogging	
Figure 18. Damage Minimum Operating Shear & Bending Stresses, Hogging	

List of Appendices

List of Appendices	
Appendix A	
Appendix B	
Appendix C	
Appendix D	
Appendix E	
Appendix F	
Appendix G	
Appendix H	
**	

1.0 MISSION NEED

1.1 Defense or National Guidance and Policy

The Mission Needs Statement (MNS) provides requirements for a Special Operations Forces (SOF) platform. The MNS is included in Appendix A.

The need for such a ship is addressed in part by the Joint Chiefs of Staff:

"The landmark Strategic Mobility Requirements Study by the Joint Chiefs of Staff in 1992 concluded that the United States had insufficient sealift capacity to transport military equipment to an overseas conflict. This shortfall was highlighted during Operations Desert Shield and Desert Storm when the majority of cargo had to be moved by chartered, non-U.S.-flag ships. To address this capacity shortfall, Congress authorized the Strategic Sealift Program."¹

Although this program provides afloat prepositioning of Army equipment, the need for immediate transport of SOF can be directly related. This is evident in the war on terror in Afghanistan where USS Kitty Hawk (CV-63) was taken from her assigned duties to serve as a SOF transport and support platform. The MNS should be used to guide SOF platform design, research, development, and cooperative efforts with U.S. Allies. Based on the MNS guidance and policy, the SOF platform must provide support for interagency, joint, and allied forces. This vessel will provide modular flexibility to perform individual or multiple missions, thereby freeing other major assets to dedicate their full resources to the performance of their primary missions.

1.2 Threat Analysis

The SOF platform itself can be characterized as a non-combatant; however, the mission of the forces it transports is offensive. The SOF platform serves as a mobile offshore base from which SOF can be deployed.

1.3 Current Capability Assessment

Currently there is no platform specifically designated for SOF purposes. Submarines, aircraft carriers, and other surface ships are detailed as needed for SOF deployment. A recent example, as mentioned previously, is USS Kitty Hawk (CV-63) which was relieved of carrier duties to provide SOF support for Operation Enduring Freedom (i.e., the war on terror in Afghanistan).

8

1.4 Capability Need

The logistics and costs associated with utilizing an operational and fully manned aircraft carrier for SOF missions is expensive. A need exists for a platform specifically tasked with the transport, support, and deployment of SOF that can operate jointly with other naval forces. This platform would allow for rapid deployment of SOF, as well as SOF aviation and SOF boat support. Timeliness, versatility, and flexibility are essential to global power projection.

1.5 Recommended Alternatives

Non-material alternatives, such as changes in doctrine or operational concepts, are not sufficient. Part-time tasking of vessels like USS Kitty Hawk removes an essential element of the fleet and employs her in a role for which she was not specifically designed. Material alternatives include (1) conversion of an amphibious assault ship, (2) conversion of a commercial tanker/container ship/roll-on roll-off vessel, (3) conversion of an existing LMSR ship, and (4) design and acquisition of a new ship.

¹ Strategic Mobility Requirements Study, 1992

2.0 DESIGN REQUIREMENTS AND PLAN

2.1 Required Operational Capability

The Required Operational Capabilities (ROC) are based on guidance given by the sponsors of this ship conversion. Table 1 lists the sponsor requirements (SR), while Table 2 lists the ROCs for the SOF ship. Measures of effectiveness (MOE) assess the degree to which the various design concepts meet these ROCs. The MOE are listed in Table 3.

I able 1. Sponsor Requirements (SR)	
SR #	Sponsor Requirement
SR1	Provide platform for SOF/Aviation support missions
SR2	Total acquisition and conversion cost not to exceed \$90 million
SR3	Low operational costs
SR4	Reduce operational tempo of assets currently supporting SOF missions
SR5	Provide test platform for future SOF technology
SR6	Provide weight/space margin for insertion of future modular SOF systems
SR7	Maintain partial Roll On/Roll Off capability for prepositioned disaster relief

Table 1.	Sponsor	Requirements ((SR))
----------	---------	-----------------------	------	---

Table 2. Required Operational Capabilities (ROC

ROC	Area of Operations
1	Steam to design capability in most fuel efficient manner
2	Conduct SOF deployment and support operations
3	Provide own unit's C4I functions
4	Provide platform for launch and recovery of multiple rotary-wing and
	VTOL/STOVL aircraft for SOF aviation missions
5	Provide minor maintenance to aircraft
6	Provide refueling to aircraft
7	Provide platform for Navy Special Boat Unit operations
8	Provide search and rescue capability
9	Provide ability to install/test new technology
10	Provide accommodations and medical facilities for SOF personnel
11	Prevent and control damage
12	Perform seamanship, airmanship and navigation tasks (navigate, anchor,
	mooring, scuttle, life boat/raft capacity, tow/be-towed)
13	Replenish at sea
14	Maintain health and well-being of crew
15	Provide upkeep and maintenance of own unit

MOE #	Associated MOE
1	Support SOF operations
2	Support SOF aviation missions
3	Support Navy Special Boat Unit missions
4	Support aircraft maintenance/refueling
5	Support partial Roll On/Roll Off disaster relief operations

Table 3. Measures of Effectiveness (MOE)

2.2 Concept of Operations/Operational Scenarios

The SOF Ship Concept of Operations (COO) is based on the expected SOF mission needs and operating characteristics. The notional composite scenario is outlined in Table 4. Due to classification requirements, the operational missions of SOF can not be included in this report.

Day 1-10	Transit to Operational Area 1	
Day 11-18	Support SOF mission and deployment	
Day 19-28	Transit to Operational Area 2	
Day 29-50	Support SOF mission and deployment	
Day 51-60	Underway Replenishment/Return to Operational Area 1(2)	

Table 4. Notional Composite Scenario

2.3 Constraints and Standards

The MNS identified several constraints on the SOF ship development.

2.3.1 Constraints

2.3.1.1 Design

The ship design must employ a total-ship engineering approach. This approach would optimize Life Cycle Cost (LCC) and performance, permit rapid upgrade in response to evolving operational requirements, and provide the capability to continually perform its mission. The developmental phase must account for emerging technologies, including modern, flexible information processing systems. Since communication and data systems hold the greatest potential for growth, these installations must be as modular as possible to allow for future upgrades. Standard man-to-machine interfaces between onboard systems should be consistent with current Navy practice and systems.

The SOF ship will be modified from its original configuration such that the ramps and large cranes will be removed. The topside configuration will be obstruction-free flight deck

areas both forward and aft of the superstructure. Below decks, the ships holds will be converted to offices, briefing rooms, berthing areas, and other various spaces required to support a SOF deployment. These modifications will be done at a minimum cost without neglecting the comfort of the personnel.

2.3.1.2 Manning

The manning requirements of the SOF ship will be the normal manning of the T-AKR 300. This consists of 30 Military Sealift Command (MSC) civilian personnel, a fraction of what is typically required for an operational naval vessel of this size. Since this vessel will not have any offensive capability and is not envisaged to engage in ship-to-ship warfare, the crew will not be sized for combat condition damage control.

The ship must provide berthing accommodations for significant numbers of personnel for SOF operation. Embarked SOF personnel will be considered in the same manner as an Air Wing embarked on an aircraft carrier, and their accommodations will be maintained separate from the ships crew.

The Navy-wide initiatives in manning reduction will be incorporated into the design of the SOF ship modifications. Recent advances made in habitability, upkeep, and shipboard training should all be investigated for utilization in the below-decks modifications to the LMSR. The forward thinking already used in the LPD-17, CVN(X), and DD(X) projects should be leveraged to provide the best possible use of manpower on the SOF ship.

2.3.2 Standards

The following standards were used in the development of this conversion design:

- General Specifications for Ships of the United States Navy, NAVSEA S(AA0-AA-SPN-010/Gen-Spec)
- Structural Strength: DDS 100-1,2,4,5,6,7
- Stability and Buoyancy: DDS 079-1
- Freeboard: DDS 079-2
- Ship System Survivability: DDS 072-4
- Powering: DDS 200-1, 310-1.

2.4 Goals and Thresholds

Nominal ship operational capabilities as required by the sponsor are summarized in Table 5.

20+ knots
14 knots
10000+ nm
60 days
Sea State 5

Table 5. Nominal Ship Operating Characteristics

The ability of the SOF ship to conduct its mission is paramount. The flight deck should be able to accommodate all U.S. Armed Forces rotary-wing and VTOL/STOVL aircraft that are used in SOF missions. The SOF ship must be able to refuel any aircraft onboard and provide for any repairs that are capable of being done on the flight deck. In addition, while at anchor, the ship must be able to launch, recover, and fuel large SOF tactical boats from the hangar deck.

The SOF ship must be capable of serving as a test bed for new technology. Due to the nature of SOF, much of the equipment may be non-standard or true cutting edge. The ship must be designed with an "open architecture" in mind that will allow for the installation of special equipment.

The ship used for this study, T-AKR 300, has a propulsion plant capable of achieving a speed of 24.0 knots. This speed enables the ship to operate well within joint naval tactical parameters.

2.5 Design Philosophy and Decision Matrix

The goal of this conversion design was to determine the most suitable platform for a SOF ship while minimizing LCC. In fact, throughout this design, cost effectiveness has been of equal or greater influence than mission effectiveness. Generally, the required equipment modifications were performed in order to minimize effects to the existing ship. Each modification carried a cost apart from its mission impact. Each modification, such as removing a system, installing another system, modifying a structure, and so forth, received a cost and weight assessment. The weight reductions or additions for discrete systems came from a weight and balance report for the T-AKR 300 and weight information from CSC Advanced Marine Center. Modification weights were estimated.

The primary mission of this ship is to support SOF missions. Therefore, all other considerations are subordinate to performing this mission. The essential measures of effectiveness reflect fulfillment of the SOF mission, as well as operational requirements for the ship. To assess operational effectiveness, an OMOE model provided a score based on performance relative to the sponsor requirements. This model consists of a weighted-sum of individual MOE scores. The weightings are the averaged results of independent comparisons of all MOE by each design team member. Table 6 lists the OMOE weights.

	Overall	1	
LCC Reduction	Reduced Operational Costs	0.5	0.25
LCC Reduction	Reduced Conversion Costs	0.5	0.25
	Support SOF Aviation Missions		0.2
SOF Mission	Support Navy Special Boat Unit Missions	0.5	0.2
	Support New Modular Technology		0.1

Table 6. OMOE Weights

3.0 CONCEPT EXPLORATION

3.1 Baseline Concept Design

The starting point for the conversion is the T-AKR 300 Bob Hope class ship, which is a Large, Medium-Speed, Roll-On/Roll-Off Ship (LMSR). LMSRs provide afloat prepositioning of Army heavy vehicles and supplies. They are operated by the Military Sealift Command (MSC). The LMSR program currently has 19 ships. These consist of 5 excommerical vessels and 14 new construction LMSRs. Table 7 lists the dimensions and performance of this ship. Figure 1 shows the external arrangement.

Tuble 7. ENISTE Dimensions and Terror manee					
LBP	884 ft	LOA	951 ft		
Beam	106 ft	Full Load Draft	37 ft		
Full Load Displacement	62,069 Ltons	Light Ship Displacement	33,026 Ltons		
Full Load KG	45.29 ft	Light Ship KG	47.47 ft		
Max speed	24 knots	Endurance	12,000 nm @ 24 knots		

Table 7. LMSR Dimensions and Performance

The T-AKR 300 ships have a cargo capacity of 13,250 long tons with 397,413 square feet of available cargo area. They provide roll on/roll off (RO-RO) capability, and lift on/lift off capability. The ships are powered by four Colt Pielstick 10 PC4V diesel engines that can produce a speed of 24 knots at a design draft of 35 feet. The Bob Hope class is currently being built for the US Navy by Avondale Industries. The oldest ship was commissioned in 1998, so a long service life is expected. This 951 foot long LMSR is an excellent platform on which to perform SOF ship modifications.

Courtesy of www.globalsecurity.org

Figure 1. LMSR Outboard Profile

The major modifications done to the base hull were the removal of all appendages, ladders, ramps, and cranes above the main deck (designated Deck A). A new deck, or "flight deck," was then attached to the main deck forward of the existing superstructure. The major components added were the systems and support equipment required for self-defense and for SOF operations. These major additions were: (1) two Rolling Airframe Missile Launchers (RAMs); (2) two Close-In Weapon Systems (CIWS); (3) modular C4I system infrastructure; (4) two aircraft elevators; (5) aviation refueling and medium-level maintenance support; (6) two hangar bay boat cranes; (7) increased berthing and messing facilities; and (8) medical and dental facilities.

3.2 Alternative Technologies and Systems

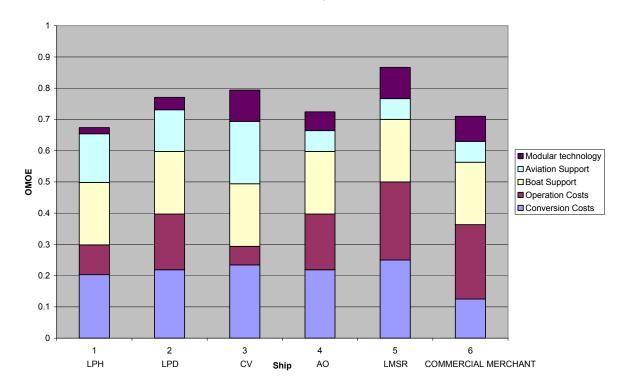
Several technological alternatives were analyzed for this conversion. New technology exists, or is in development, for the modular communication equipment. Similarly, innovations to crew habitability are always being investigated.

The LMSRs are not armed and do not possess a combat system. They do have a C3I suite sufficient to perform standard operations with other naval vessels. As a result, modular C4I systems will be installed. This will reduce not only size and weight from the SOF ship, but also required maintenance and repair costs as well as manning.

Because embarked SOF personnel will be considered in the same manner as an Air Wing embarked on an aircraft carrier, berthing and messing facilities will be maintained separate from the ships crew. Based on the mission requirements of the ship, the berthing on the ship will consist of large, modular berthing compartments, with the exception of berthing for officers who will have larger multi-person staterooms. The food preparation will become more automated and streamlined, using an outside service to support preparation and cleanup of meals, as well as using the new "prepared meals" currently being tested.

3.3 Concept Ship Variants and Trade-Off Studies

An initial search for a ship conversion candidate was conducted based on the criteria given in Table 1 and a combined acquisition and conversion budget of \$90 million. Table 8 summarizes the suitable hulls found based on a search using this criteria. The assumption was made that at least one ship from each class was available. To assess operational effectiveness, an OMOE model provided a score based on performance relative to sponsor


16

requirements. This model consists of a weighted-sum of individual OMOE scores. In each of the five categories below: aviation, boat capability, transformational (support of modular new technology), operational costs and conversion costs, a maximum OMOE was assigned based on the relative importance to the overall mission. The individual items in each category were assigned values between zero and the maximum OMOE assigned to each category as discussed previously in Table 6. As with all ship acquisition and conversions, budget is a concern and was the driving factor for this entire design. Therefore, some hull forms were eliminated on cost consideration alone.

	LPH		CV	AO	LMSR	Merchant (commercial)
SOF Mission						(commercial)
Aviation						
Flight Deck	0.05	0.04	0.07	0.03	0.03	0.03
VTOL/STOVL	0.04	0.04	0.05	0.01	0.01	0.01
sum	0.09	0.08	0.12	0.04	0.04	0.04
ratio to max of .2	0.16	0.13	0.20	0.07	0.07	0.07
Boat Capability	0.07	0.07	0.07	0.07	0.07	0.07
ratio to max of .2	0.20	0.20	0.20	0.20	0.20	0.20
Transformational	0.01	0.01	0.03	0.02	0.03	0.03
ratio to max of .1	0.02	0.04	0.10	0.06	0.10	0.08
Costs						
Operational Cost						
Age	0.00	0.05	0.00	0.03	0.08	0.08
Propulsion	0.00	0.05	0.00	0.05	0.08	0.07
Speed	0.07	0.05	0.07	0.05	0.07	0.07
Crew size	0.02	0.05	0.00	0.07	0.08	0.08
Draft	0.05	0.05	0.02	0.05	0.03	0.03
sum	0.13	0.25	0.08	0.25	0.35	0.33
ratio to max of .25	0.10	0.18	0.06	0.18	0.25	0.24
Conversion Cost						
Structure	0.00	0.02	0.07	0.03	0.07	0.03
Tankage	0.02	0.02	0.02	0.07	0.07	0.05
Habitability	0.07	0.07	0.07	0.03	0.02	0.02
C4I	0.05	0.05	0.05	0.03	0.02	0.02
Self-defense	0.07	0.07	0.05	0.03	0.02	0.02
Propulsion	0.02	0.02	0.00	0.03	0.08	0.00
sum	0.22	0.23	0.25	0.23	0.27	0.13
ratio to max of .25	0.20	0.22	0.23	0.22	0.25	0.13

Table 8. Concept Ship Variant Summary

Figure 2 shows that the LMSR received the highest OMOE of the six ship classes considered. Although one ship might have an advantage for a given category, the LMSR had the highest overall OMOE. As mentioned previously, the LMSR program currently has 19 ships. The oldest ship was commissioned in 1998, so a long service life is expected and availability of the LMSR is not a concern.

Total OMOE for Ships Considered

Figure 2. Total OMOE for Ships Considered

3.4 Variant Assessment

The variants defined above in Table 8 and shown in Figure 2 were assigned a scale factor to estimate overall OMOE and costs for each variant. Using cost as the leading driver, only those cost increases that had the potential to improve the OMOE significantly were considered. The OMOE weights are shown again in Table 9. Based on this study, the only variants that are feasible are those that offer new missions, but no ship modifications. Therefore, the design of the ship will be that proposed by the LMSR variant.

	1		
LCC Reduction	Reduced Operational Costs	0.5	0.25
LCC Reduction	Reduced Conversion Costs	0.5	0.25
	Support SOF Aviation Missions		0.2
SOF Mission	Support Navy Special Boat Unit Missions	0.5	0.2
	Support New Modular Technology		0.1

Table 9. OMOE Weights

3.5 Final Baseline Concept Design

The LMSR is the optimal variant. This became the SOF ship concept design. This design removes all structures above the main deck, and replaces them with a new flight deck forward of the existing superstructure. Although the light ship displacement increased by 4,655 long tons, there was little effect on stability. Since the engineering plant and hull did not change, while the displacement increased only slightly, the speed and endurance remained relatively unchanged compared to the baseline. The other variants are good options, but all lost out due to cost. With cost as the ultimate driver, the LMSR model was the best available choice.

The SOF ship dimensions and performance, after the conversion modifications, are shown in Table 10.

Tuble 100 S OT Ship Dimensions and Ferror manee				
LBP	884 ft	LOA	951 ft	
Beam	106 ft	Full Load Draft	27.80 ft	
Full Load Displacement	48,937 ltons	Light Ship Displacement	37,681 ltons	
Full Load KG	39.98 ft	Light Ship KG	45.67 ft	
Max speed	24.0 knots	Endurance	10,000+ nm @ 24 knots	

Table 10. SOF Ship Dimensions and Performance

Table 11 summarizes the total weight removed from and added to the ship by Ships Work Breakdown Structure (SWBS). The complete list of equipment removed is included in Appendix B. The complete list of equipment added, including SOF support systems and ship self-defense armament, is included in Appendix B.

	Table 11. weights Kenioved and Added by SwBS						
SV	VBS Group	Weight	Weight Added				
	-	Removed	(ltons)				
		(ltons)					
100	Hull Structure	607.37	4389.98				
200	Propulsion Plant	15.74	15.74				
300	Electric Plant	34.19	69.9				
400	Command and Surveillance	0	76.19				
500	Auxiliary Systems	695.63	1425.72				
600	Outfit and Furnishings	99.09	1405.95				
700	Armament	0	38.06				
Total		1452.02	7421.54				

Table 11. Weights Removed and Added by SWBS

4.0 FEASIBILITY STUDY AND ASSESSMENT

4.1 Design Definition

4.1.1 Ship Geometry

The modification from the LMSR to the SOF ship design does not affect the hull form dimensions. Table 12 lists the ship's principal dimensions. Figure 3 shows the outboard profile, both before and after the modifications. The most important changes included the removal of elements above the weather deck (Deck A) including the cranes and ramps. The addition of elements included ship self-defense equipment, SOF crew berthing and messing spaces, C4I System Infrastructure, and Aircraft Elevators. The LMSR Weight and Moment report served as an initial estimate for full load condition, and elements were removed and added in the same format as the LMSR Weight report. A complete list of the elements removed and added is included in Appendix B. A comparison between the main characteristics of both ships is shown in Table 12.

Table 12. LIVISK & SOF Ship I Interpar Dimensions					
	LMSR	SOF Ship			
LBP	884 ft	884 ft			
Beam	106 ft	106 ft			
LOA	951 ft	951 ft			
Full Load	62,069 ltons	48,937 ltons			
Displacement					
Full Load KG	45.29 ft	39.98 ft			
Full Load Draft	37 ft	27.82 ft			
Light Ship	33,026 ltons	37,681 ltons			
Displacement					
Light Ship KG	47.47 ft	45.67 ft			
Light Ship Draft	20.74 ft	22.63 ft			

Table 12. LMSR & SOF Ship Principal Dimensions

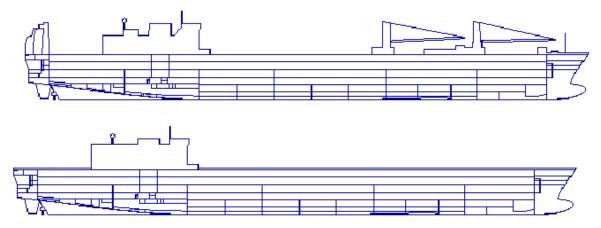


Figure 3. LMSR and SOF Ship Comparison of Outboard Profiles

4.1.2 Combat Systems and Mission Payload

The baseline ship includes Link 11 and Link 14. This offers support for communication between the SOF ship and other Navy ships. Joint support, however, for the SOF ship will require upgrade to Link 16. Central command and control suites will be installed on the 02 and 03 levels just aft of licensed and unlicensed crew staterooms, between frames 99 and 104. As a result, the emergency diesel generator was moved forward to Hold 1 between frames 20 and 33. Self-defense mission modules and the two Rolling Airframe Missiles (RAMs) will also be monitored from the centralized command and control.

Primary flight control will be located on the 04 level. Prior to conversion, the 04 level on the LMSR was empty and only used for access to the pilothouse between frames 85 and 90. Modifications were made to this level to lengthen the entire compartment, imitating the 03 level from frames 85 to 104, to serve as flight control. This allowed for viewing the entire deck during all helicopter operations.

The ship combat systems will be upgraded with the addition of the Ship Self-Defense System (SSDS). The SSDS is comprised of the RIM-116 RAM, the Close-In Weapon System (CWIS), and the decoy launch system. The SSDS integrates the AN/SPS-49, the AN/SPS-67 surface search radar, the AN/SLQ-32 sensor, and the CIWS search radar into a cohesive ship defense system. The SSDS provides a high level of protection against anti-ship missiles and aircraft. The CIWS has a combined coverage of 360°, while the RAMs

each have 360° of coverage. The topside arrangement is shown in Figure 4 and the arcs of fire coverage are shown in Figure 5.

The SOF ship will also have a Global Command and Control System: Maritime (GCCS-M) and Joint Maritime Communication and Information System (JMCIS). All systems must be compliant with the Defense Information Infrastructure (DII) and Common Operating Environment (COE). Furthermore, an additional Command and Control Center is located aft on the C Deck directly under the superstructure for ease of access.

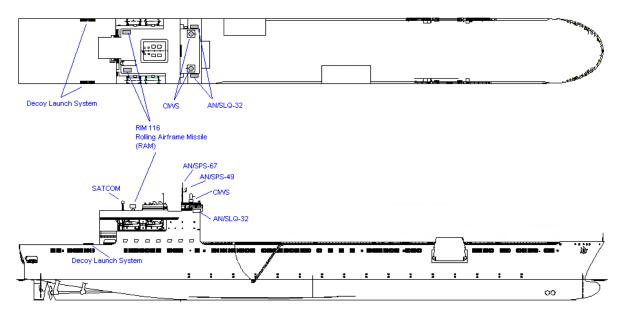


Figure 4. SOF Ship Topside Arrangement

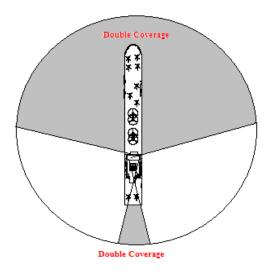


Figure 5. CIWS Arcs of Fire

4.1.3 Propulsion, Electrical, and Auxiliary Systems

The SOF ship design does not alter the engineering plant or any systems in the machinery rooms as shown in Figure 6. The LMSR installed power meets maximum speed and requirements set forth by the sponsor. The propulsion plant has four Colt Pielstick 10 PC4.2V diesel engines (65,160 hp) driving two shafts with controllable pitch propellers. Similarly, most of the electrical distribution system will remain untouched. The LMSR is equipped with four ship's service Wartsilla diesel generators. Each generator delivers 4160V, 60Hz, three phase, and 3500kW. The LMSR electrical power generation system was built with nearly 50% excess capacity. This was done to accommodate redundancy in the event of the loss of a generator. Removing the topside cranes and ramp, as well as the internal deck ramps, will further reduce the demand for electrical loading. The addition of the hotel loads and communication equipment will add to the total loading of the ship, but there should still be sufficient capacity to provide reliability. The emergency diesel generator originally located in the superstructure was moved forward to Hold 1 between frames 20 and 33 above the waterline to maintain emergency response capability. The emergency diesel generator delivers 480 V, 60 Hz, three phase, and 1625 kW.

Figure 6. LMSR Middle Level Machinery Arrangement

4.1.4 Survivability and Signatures

The damaged stability criterion for DD-079 is based on flooding 15% of the Length Between Perpendiculars (LBP), whereas the damaged stability criterion for the American Bureau of Shipping (ABS) is based on 3 compartment flooding. ABS requirements were met when the ship was built. Also, flooding of two compartments is more than 15% of the LBP.

There is no need for signature reduction measures since the ship operates as a mobile offshore platform for SOF operations. Additionally, there is no need for design for shock and other combat related survivability standards.

4.1.5 Manning

The LMSR has a base crew of 30 civilian MSC personnel. It was very important to maintain segregation between crew manning and SOF manning so as not to interfere with the ship's routine.

Manning requirements for SOF are classified. The SOF ship does, however, carry a separate air and boat crew. The assumption was made that manning would be similar to that of an LPH for embarked troops. As a result, berthing and messing facilities were provided for 1800 enlisted personnel and 200 officers. SOF will provide additional personnel for all mission related and hotel servicing functions. When the SOF depart the ship, minimal manning will be required. Caretakers will board to perform routine ship maintenance.

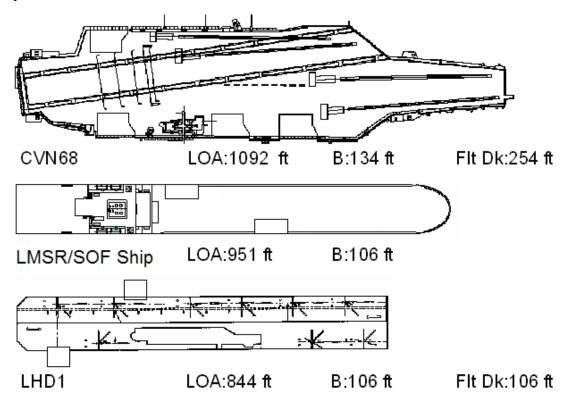
4.1.6 Arrangements

4.1.6.1 General Arrangements

Comparison of available area in the spaces considered for modification shows that sufficient space is available. Required space estimates come from approximations made for SOF mission items detailed in the Surface Ship Classification Summary (SSCS) breakdown. Table 13 lists the available space in the modified compartments and the required space for the SOF equipment and components. Appendix C contains a breakdown of the available area versus the area required for the SOF ship.

A	Available Space	
Compartment	Area (ft2)	Volume (ltons)
Total Available	397,413	14,080
F	Required Space	
Payload Type	Area (ft2)	
Mission Support	170,476	
Human Support	103,496	
Ship Support	40,007	
Ship Machinery System	52,167	
Tanks		Volume (ltons)
Freshwater Tanks		1,231
Seawater Tanks		2,173
Diesel Oil Tanks		4,361
JP-5		1,043
Miscellaneous Tanks		456
Lube Oil Tanks		134
Total Required	366,146	9,398

Table 13. Space Balance


4.1.6.2 Inboard Profile

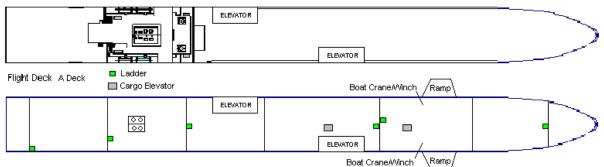
4.1.6.2.1 Deck Plans

Due to a significantly different role, the SOF ship does not require the large stores handling apparatus of the LMSR. The two large cranes and all other deck obstructions were removed from the A deck to create a flight deck. The structural support for the flight deck is actually 3 feet higher than the original A deck, thus allowing the creation of catwalks within the original hull structure of the ship. This is important because it allows the SOF ship to retain its PANAMAX capability. The catwalks were included to allow for safe personnel movement around the flight deck, aircraft servicing and fueling stations, and damage control casualties.

Flight deck areas are located both forward and aft of the deckhouse. The primary landing areas are located forward of the deckhouse. Two aircraft elevators are located in the forward flight deck area. The starboard elevator is located near midships, and the port elevator is just forward of the deckhouse. These are sized to accommodate the large helicopters that could be utilized by a SOF group. A smaller secondary landing area is located directly aft of the deckhouse. There is no direct access to the aircraft elevators from this area, but there is a small hangar built into the rear of the deckhouse. This area is large enough to support major maintenance to one small helicopter.

The ability to create a large flight deck was a primary concern when selecting a platform for the SOF ship. Figure 7 shows scale comparisons of CVN68, LMSR (SOF ship configuration), and LHD1. The reconfiguration of the SOF ship provides a flight deck area comparable to that of the LHD.

The B deck is the hangar bay. Figure 8 shows a potential arrangement for decks A through E. The spaces contain descriptions of general departments and crew comforts found aboard a typical navy vessel, but do not contain all allocated spaces. For a complete space


allocation breakdown, see Appendix C. Aircraft access to the hangar bay is via the two elevators described above. Forward of the elevators are boat ramps on both the port and starboard sides, the center of which is at frame 37. Inboard of the ramps are storage locations for a number of helicopters. Helicopters can be stored between frames 50 and 92. At frame 58, a cargo elevator is located centerline which connects to the F deck and all intervening decks. Between frames 92 and 96 the machinery exhaust stacks are found centerline; these stacks extend from the C deck to the top of the deckhouse. Between frames 99 and 113, additional helicopters can be stored.

The C deck contains departmental areas, officer country, and briefing rooms. The ship's store and barber are located between frames 20-33. Medical/Dental and the library/chaplain (frames 33 and 50), briefing rooms and air/weapons departments (frames 50-65), officer country and SCIF rooms (frames 65-85), CIC/Ops and Radio/Crypto spaces (frames 85-99), and supply and personnel departments (frames 99-113) are located on opposite sides of centerline between the given frames. The steering gear is positioned between frames 113 and 117.

The D deck contains the gym, crew berthing, crew galley and mess, machinery room and auxiliary machinery room. The gym is located between frames 20-33. Crew berthing (frames 33 and 50), crew galley and mess (frames 50-65), crew berthing (frames 65-85), machinery room (frames 85-99), and auxiliary machinery room (frames 99-113) are located on opposite sides of centerline between the given frames.

The E deck contains EDG room, general stores, reefer stores, food stores, MAA/Brig, armory, machinery room and auxiliary machinery room. The EDG room is located between frames 20-33. General stores (frames 33 and 50), reefer stores and food stores (frames 50-65), MAA/Brig and armory (frames 65-85), machinery room (frames 85-99), and auxiliary machinery room (frames 99-113) are located on opposite sides of centerline between the given frames.

The F deck contains general stores, weapons magazine, machinery room and auxiliary machinery room. The general stores are located between frames 33-50 weapons magazine (frames 50-85), machinery room (frames 85-99), and auxiliary machinery room (frames 99-113) are located on opposite sides of centerline between the given frames.

Hangar Deck Bibleck

EERING	SUPPLY DEPT	CIC OPS	Officer Country	BRIEFING ROOMS	MEDICAL DENTAL	SHIP'S STORE
AFT STE	PERSONNEL DEPT	RADIO/CRYPTO	SCIF ROOMS			BARBER

C Deck

AUX MACH ROOM Ventilation/AC	MACHINERY ROOM	Crew Berthing Crew Berthing	CREW GALLEY AND MESS	Crew Berthing Crew Berthing	GYM Ventilation/AC
D Deck					
AUX MACH ROOM	MACHINERY ROOM	MAA/BRIG ARMORY	GENERAL STORES	REEFER STORES	EDG ROOM
E Deck					
AMR	MACHINERY ROOM	WEAPONS MAGAZINE	WEAPONS MAGAZINE		

F Deck

Figure 8. SOF Ship Deck Layouts

4.1.6.2.2 Deckhouse Plans

The deckhouse is largely unchanged. The emergency diesel generator was relocated from the deckhouse to the most forward space on the E Deck. This allowed for creation of Command and Control (02 and 03 levels) with easy access to passageways. The 04 level is now primary flight control. The licensed and unlicensed civilian crew berthing remains in the deckhouse. The deckhouse plans are illustrated in Figures 9a through 9f.

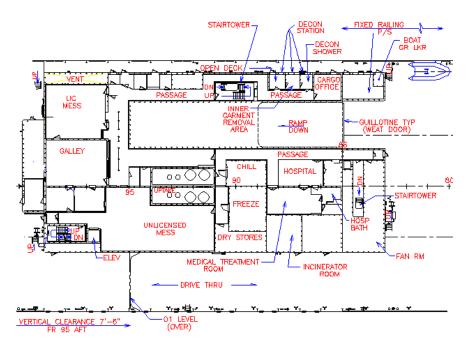


Figure 9a. Deckhouse Layout-A Deck

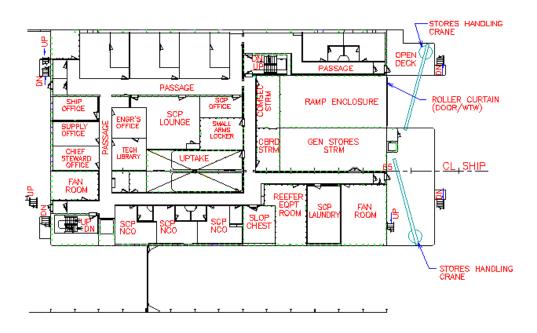


Figure 9b. Deckhouse Layout-01 Level

Figure 9c. Deckhouse Layout-02 Level

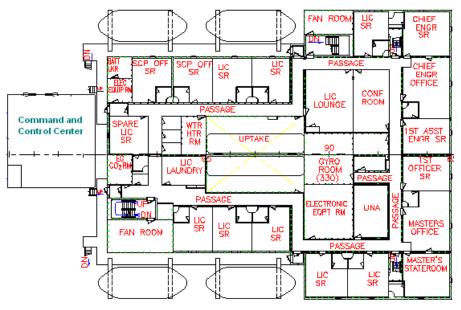


Figure 9d. Deckhouse Layout-03 Level

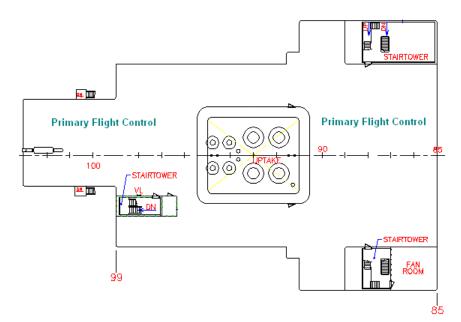


Figure 9e. Deckhouse Layout-04 Level

Figure 9f. Deckhouse Layout-05 Level

4.1.6.3 Tank Layouts

The tank layouts are as depicted in Figure 10 below. Diesel oil (4928 ltons) and seawater ballast (6304 ltons) are well distributed throughout the ship. JP-5 (1600 ltons) for the helicopters is located just forward of frame 65 in six tanks outboard of centerline and

extending to the hull. Freshwater (1381 ltons) is located in six tanks just aft of frame 99. Lube oil and miscellaneous service tanks contain 136 and 466 ltons respectively.

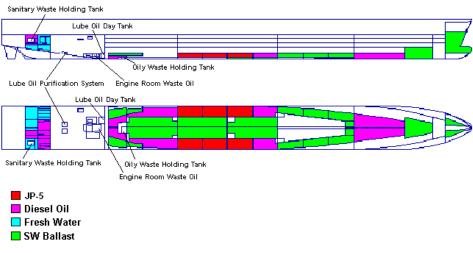


Figure 10. SOF Ship Tank Layouts

4.1.7 Structural Design

4.1.7.1 Midship Section Concept Design

There are two classes of LMSR ships, the Bob Hope class built by Avondale Industries and the Watson class built by National Steel Shipbuilding Company (NASSCO). The design of the midship section was largely based on the section generated by the POSSE Watson class files. The Bob Hope class files were unavailable in Version 2 of POSSE. As a result, the Watson class midship section was modified to reflect the differences between the classes. The greatest difference is the A-B deck configuration. The Watson class ships have a fixed A-B deck, whereas the Bob Hope class ships have a hoistable A-B deck. The hoistable A-B deck made the Bob Hope class more desirable for the SOF platform because it simplifies the creation of a hangar deck. Figure 11 shows the structural design of the midship section defined using POSSE after modifications were made. The strength of the new design was tested using the POSSE Intact and Damaged Stability Modules.

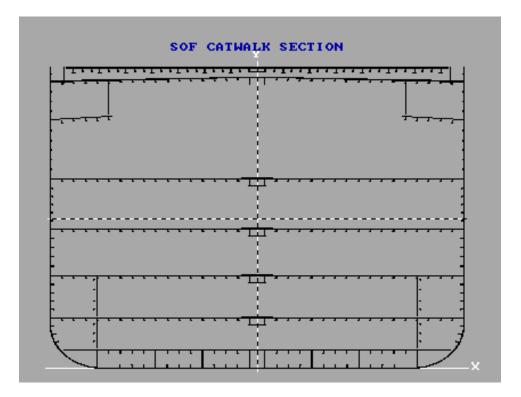


Figure 11. SOF Ship Midship Section Structure

4.1.7.2 Flight Deck Modifications

The SOF ship design will not change the essential LMSR structural design and will add a flying deck three feet above the current A or Weather deck. The flight deck will be built in modular sections for ease of installation and for cost minimization. The flight deck was built four feet narrower than the full beam of the A Deck. This provided space for catwalks within the original hull structure of the ship. The catwalks extend from Frame 28 to Frame 80, with exception of the elevators which run to the hull of the ship. This catwalk design is important because it allows the SOF ship to retain its PANAMAX capability. The catwalks were included to allow for safe personnel movement around the flight deck, helicopter fueling stations, and damage control casualties. Also, drains were installed around the flight deck and catwalks for removal of green water on deck.

4.1.7.3 Section Properties

The properties of the new sections lower the center of gravity as well as the section total area and moments of inertia. Overall, the properties of the section modulus remain unaffected. Table 14 makes a comparison between the values of the LMSR and the SOF ship mid-ship section.

	LMSR	SOF			
Area	$.76 \times 10^4 [in^2]$	$1.3 \times 10^5 [in^2]$			
I _{xx}	$8.9 \times 10^6 [in^2 - ft^2]$	$1.6 \times 10^7 [in^2 - ft^2]$			
Dist. To upper extreme fiber	47.48 [ft]	47.31 [ft]			
Section Modulus Upper Flg	$1.8 \times 10^5 [in^2-ft]$	3.3×10^5 [in ² -ft]			
Dist. To lower extreme fiber	48.65 [ft]	46.26 [ft]			
Shear Area y	2027.4 [in ²]	4345.5 [in ²]			
I _{yy}	$2.7 \times 10^{6} [in^2 - ft^2]$	$1.5 \times 10^7 [in^2 - ft^2]$			
Dist. To left extreme fiber	29.28 [ft]	52.95 [ft]			
Section Modulus Left Flg	9.2×10^4 [in ² -ft]	2.9×10^5 [in ² -ft]			
Dist. To right extreme fiber	27.51 [ft]	52.95 [ft]			
Section Modulus Right Flg	9.8×10^4 [in ² -ft]	2.9×10^5 [in ² -ft]			
Shear Area <i>x</i>	5681.1 [in ²]	9496.5 [in ²]			

Table 14. LMSR to SOF Ship Comparison

From the table analysis, it can be predicted that the converted ship sections are going to have similar, if not lower, due to increased cross-sectional area, stresses over its structure when compared to the LMSR under the same applied loads.

4.1.8 Weights and Margins

4.1.8.1 Weight and Stability Modifications for Lightship

The total weight removed from the LMSR by the deletion of all the elements stated above was 1,452.02 ltons. The weight added for conversion was 7,421.54 ltons. This included a weight margin of 10% which was incorporated into each SWBS weight breakdown. The main contribution for the added weight came from the flying deck structure, which is symmetric with respect to the ship's centerline and from the C4I equipment located in both the modified superstructure and C deck configuration. A lightship weight summary is presented in Table 15.

Removing the topside cranes, the aft ramp, the topside fan rooms, and relocating the emergency diesel generator contributed to lowering the VCG. From the stability standpoint the weight removed has a center of gravity well above the VCG, near amidships and close to the centerline. Its values were:

- Removed w_{vcg} BL: 95.96 ft.
- Removed w_{lcg} FP: 712.86 ft
- Removed w_{tcg} CL: 0.93 ft.

Adding berthing accommodations, weapons magazines, increased ventilation and air conditioning systems, and relocating the emergency diesel generator also lowered the VCG. The addition of the two elevators contributed to moving the LCG forward. The values obtained were:

- Added w_{vcg} BL: 58.09 ft.
- Added w_{lcg} FP: 317.36 ft
- Added w_{tcg} CL: 2.28 ft.

The final stability conditions produce a TCG of 0.65 ft to starboard, an LCG of 441.7 ft, and a KG of 45.67 ft. The results are very similar to the LMSR Lightship conditions, and as such fulfill all the stability requirements. The lightship weight distribution can be seen in Figure 12. The final stability parameters and a comparison between the original and modified ship are shown in Table 15.

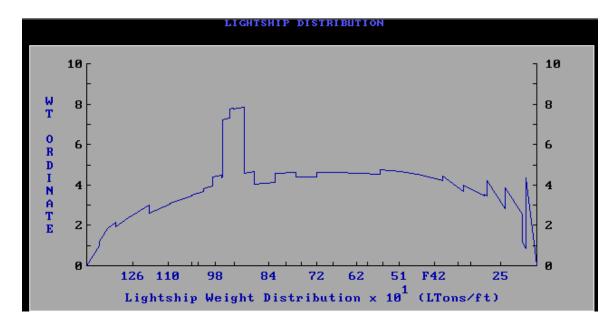


Figure 12. Lightship Weight Distribution

	LMSR	SOF
Lightship Displacement	33,026 Ltons	37,681 Ltons
Lightship KG	44.47 ft	45.67 ft
Lightship LCG	496.87 ft.	441.70 ft.
Lightship TCG	0.32 ft.	0.65 ft.

Table 15. LMSR & SOF Ship Stability Parameters Comparison

4.1.8.2 Tank Modifications

To provide aircraft refuel capacity, six DO side tanks were converted to JP-5. The total JP-5 capacity is 1,043 ltons. For comparison purposes, the LHD carries approximately 1,232 ltons of JP-5 on board. Similary, the SOF ship has 4,619 ltons of diesel oil, whereas an LHD carries approximately 6,000 ltons. The ship's maximum range will be reduced slightly due to the DO tanks modification, however, because the full load displacement decreased by approximately 14,000 ltons, the SOF ship should still have a maximum range of 10,000+ nm. The full load draft also decreased by approximately 9 feet, resulting in less hull resistance on the ship. This further increases the range of the SOF ship. This decrease in draft does not, however, disturb any seawater inlets or outlets for the machinery room equipment.

4.1.8.3 Weight Summary

The full load and minimum operating conditions were evaluated for both intact and damaged stability. Table 16 lists a breakdown of weights for each of these conditions.

The full load condition assumes the following:

- One empty fuel tank
- Compensated ballast to account for empty fuel tank if necessary
- Fresh water reduced by 1/3
- Crew and effects remain unaffected
- Misc. Related Expenditures remain unaffected
- Ships Stores remain unaffected.

The minimum operating condition assumes the following:

- Total fuel reduced by 2/3
- Compensated ballast to account for empty fuel tank if necessary
- Fresh water reduced by 1/3
- Crew and effects remain unaffected
- Misc. Related Expenditures reduced by 2/3
- Ships Stores reduced by 2/3.

Source: Stability and Buoyancy: DDS 079-2

Table 16. LMSF	R & SOF Shi	o Stability Parameters	Comparison
----------------	-------------	------------------------	------------

		Minimum
Weight (ltons)	Full Load	Operating
Lightship Weight	37,681	37,681
Crew and Effects	360	360
Mission Related Expenditures	120	40
Helo	127	127
Boats	117	117
Ships Stores	678	224
Medical	19	19
Dry Stores	260	86
Freeze Stores	180	59
Fuels and Lube Oil	6,274	4,289
Fresh Water	925	455
Clean Ballast	1,741	2,687
Miscellaneous	456	307
Total Displacement	48,937	46,452

The tank weight summary for both the full load and the minimum operating condition is included in Appendix D.

4.1.9 Intact Strength and Stability Analysis

The intact stability analysis was conducted using the POSSE modified Watson class files. Every loading condition described previously was tested under the next three different conditions:

- Still water
- 100 knots wind
- High Speed Turn. 24 knots, Radius of turn 3000 ft.

The results were satisfactory for every case. Table 17 shows the stability results for the cases described. It is important to highlight that the SOF ship model has a better stability performance than the Watson does for the three conditions described. Figure 13 shows the worst case GZ curve, the high speed turn for the minimum operating condition.

Tuble Trefinder Stubility Tesuits									
	Disp.	KG	Mean Draft	Trim	GZ Max	Heel Angle	Heel	Heel Angle	Propeller
	[ltons]	[ft]	[ft]	[ft]	[ft]	Still Water	Angle	High Speed	Immersion
							100kt	Turn	
							wind		
Full	48,937	39.98	27 ft 9.7 in	0.20 A	8.00 @	0.1° Port	0.9°	2.2°	114 %
Load					38.4°				
Min Op	46,452	40.92	26 ft 8.3 in	0.35 A	7.13 @	0.4° Stbd	1.4 °	2.8 °	109 %
Cond					38.3°				

Table 17. Intact Stability results

EFFECT on STABILITY of HIGH SPEED TURNING (per U.S. Navy DDS079-1)

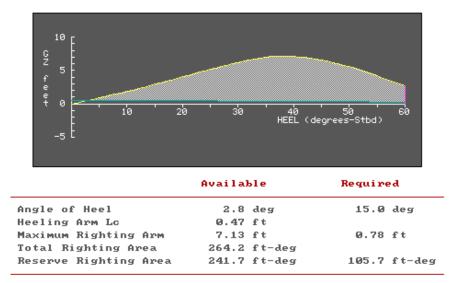


Figure 13. GZ Curve for Intact Stability in Stillwater

The POSSE Intact Stability Module does not simulate the ship behavior in waves or under severe weather conditions. The Salvage Module is used for this purpose as well as for assessing damage due to flooded compartments. For the non-damaged case, the procedure is to damage a small compartment that will not affect stability during hogging and sagging cases so that wave and wind conditions can be applied. The hull strength was also tested using the POSSE Intact Module for stillwater conditions indicated in the stability analysis. The stresses were found to be very close for both the full load and minimum operating conditions. The hogging condition has the highest stresses, and they are significantly higher than the sagging conditions. This can be attributed a higher loading density distribution in the fore and aft parts of the ship to maintain trim and stability. Table 18 shows a summary of the strength analysis for the two loading cases analyzed. Figure 14 shows full load shear and bending stresses. A complete report of all intact stability case results and diagrams are included in Appendix E.

Sea Condition	Stress (ksi)	Full Load	Minimum Operating Condition
	Shear	-3.47	-3.53
Stillwater	Bending, at Deck	7.72	7.85
	Bending, at Keel	-8.46	-8.62
	Shear	-5.36	-5.31
Hogging	Bending, at Deck	14.95	15.09
	Bending, at Keel	-16.23	-16.31
	Shear	-1.70	-1.70
Sagging	Bending, at Deck	-2.72	-2.32
	Bending, at Keel	2.74	2.34

Table 18. Stress Comparison

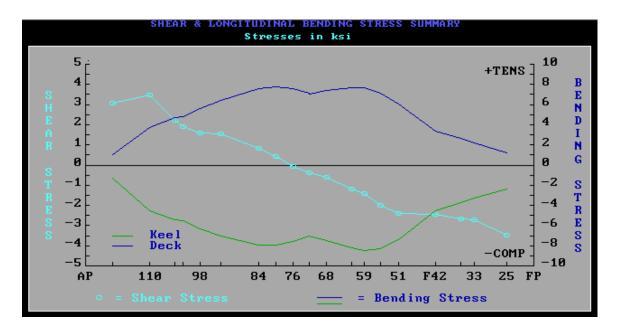


Figure 14. Full Load Shear & Bending Stresses for Intact Stability in Stillwater

4.1.10 Damaged Stability and Strength Analysis

4.1.10.1 Damaged Stability Analysis

The Salvage Module is used to assess the effects of flooding compartments. Large compartments are flooded to check the worst condition that the ship can withstand. The wave height used in this analysis was $1.1 \cdot \sqrt{LBP}$. The wavelength is the LBP and its crest position was defined to test stillwater, hogging, and sagging conditions. Damaged stability was assessed for three cases: damage forward, amidships, and aft. The limiting case was two compartment flooding for each section. The analysis considered the same loading cases defined previously. The wave and wind settings were:

- Wave height: 32.7 feet
- Wave length: 884 feet
- Wind speed: 100 knots

The stability results for full load and minimum operating conditions are listed in Tables 19 and 20 respectively. The stability values show that the SOF ship is extremely stable under extreme conditions. The worst case condition occurs with damage to the midship section during a hogging condition. Overall, the ship will experience its worst heel angle of 5.2

degrees while hogging during minimum operating conditions. Figures 15 and 16 show the worst case GZ curves for the damaged full load and minimum operating conditions under wind-wave effects.

		Under		and wave	conditions		
Condition		GMt [ft]	GZ max [ft]	Static Heel Angle	Wind Heel Angle	Range of positive GZ	Freeboard to margin line
				[deg]	[deg]	[deg]	[ft]
	Damage Fwd	11.16	7.19 @37.0S°	0.1S ^o	0.9S°	> 59.9 °	53.65
Stillwater	Damage Mid	10.34	4.83 @32.3S°	$0.6S^{\circ}$	1.1S°	> 59.4 °	41.78
	Damage Aft	8.12	6.11 @37.9P°	0.1P°	1.4P°	> 59.9 °	62.62
Hogging	Damage Fwd	7.85	5.29 @39.0S°	0.1S ^o	1.6S°	> 59.9 °	67.08
Hogging	Damage Mid	6.55	2.31 @35.7S°	$1.0S^{\circ}$	1.7S ^o	> 58.0 °	39.22
	Damaged Aft	7.61	5.22 @38.9P°	0.1P ^o	1.8P°	> 59.9 °	64.44
Sagging	Damage Fwd	17.28	7.90 @35.1S°	$0.0S^{\circ}$	$0.4S^{\circ}$	> 60.0 °	35.43
Sagging	Damage Mid	15.52	5.98 @32.5S°	0.4S ^o	0.8S°	> 59.6 °	39.91
	Damaged Aft	10.40	5.68 @37.5S°	0.8S ^o	1.6S°	> 59.2 °	46.88

Table 19. Damaged Stability Results for Full Load Case
Under Severe Wind and Wave Conditions

RIGHTING ARM (G2)

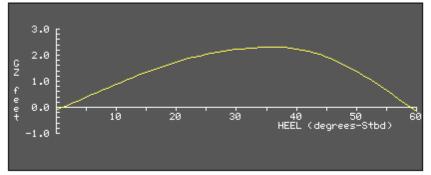


Figure 15. GZ Curve for Damaged Full Load under Wind-Wave Conditions

	Under Severe Wind and Wave Conditions							
Condition		GMt	GZ max	Static Heel	Wind Heel	Range of	Freeboard to	
		[ft]	[ft]	Angle	Angle	positive GZ	margin line	
				[deg]	[deg]	[deg]	[ft]	
	Damage Fwd	10.32	6.53 @36.4S°	$0.4S^{\circ}$	1.4S ^o	> 59.6 °	53.59	
Stillwater	Damage Mid	9.09	4.25 @32.1S°	2.5S°	3.1S°	> 56.5 °	42.90	
	Damage Aft	7.09	5.28 @37.4P°	0.6P°	2.3P°	> 59.4 °	63.15	
Hogging	Damage Fwd	6.85	4.67 @38.0S°	$0.6S^{\circ}$	2.5S°	> 59.4 °	68.52	
mogging	Damage Mid	6.19	1.65 @34.8S°	4.1S ^o	5.2S°	> 49.5 °	39.38	
	Damaged Aft	6.44	4.49 @37.9P°	0.7P ^o	2.9P°	> 59.3 °	65.76	
Sagging	Damage Fwd	17.42	7.29 @34.1S°	$0.2S^{\circ}$	$0.6S^{\circ}$	> 59.8 °	35.97	
Sagging	Damage Mid	15.22	5.40 @31.7S°	1.5S°	1.9S°	> 58.5 °	41.86	
	Damaged Aft	8.88	4.98 @36.4S°	0.3S°	1.3S°	> 59.7 °	48.59	

Table 20. Damaged Stability Results for Minimum Operating Case
Under Severe Wind and Wave Conditions

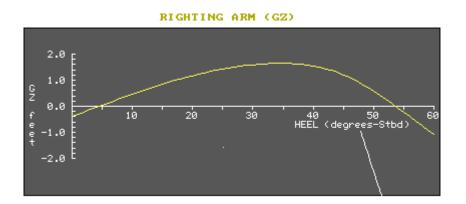


Figure 16. GZ Curve for Damaged Minimum Operating under Wind-Wave Conditions

4.1.10.1.1 LMSR and SOF Ship Stability Comparison

Table 21 compares the stability results for the SOF ship and LMSR when operating under similar full load conditions. The SOF ship has better stability performance than the LMSR. Removal of the topside cranes compensates for the addition of the flight deck. This can be seen from the GM results for the SOF ship. The slight difference in GM makes the modified LMSR ship better in stability than the original Watson class ship.

Table 21. Weight and KG Comparison				
		LMSR	SOF	
Displacement		62,069 ltons	48,937 ltons	
KG		45.29 feet	39.98 feet	
Draft, Amidships		37 ft	27.8 ft	
Trim		0.99 feet	0.20 feet	
GM _t (corrected)		7.61 feet	11.94 feet	
GZ _{MAX}		5.61 feet	8.00 feet	
Damage Forward	Initial GM _t	7.14 feet	11.16 feet	
Damage Forward	GZ _{MAX}	4.88 feet	7.19 feet	
Damage Amidship	Initial GM _t	8.99 feet	10.34 feet	
Damage Annuship	GZ _{MAX}	2.96 feet	4.83 feet	
Damage Aft	Initial GM _t	3.53 feet	8.12 feet	
	GZ _{MAX}	3.24 feet	6.11 feet	

Table 21	. Weight and KG Co	mnarison
1 april 21.	, weight and KO CO	mpai 150n

4.1.10.2 Damaged Strength Analysis

The hull strength was also tested using the POSSE Salvage Module under the same loading conditions indicated in the stability analysis. The worst case scenario was found for the hogging, full load condition operating under extreme wind and wave conditions. Tables 22 and 23 show a summary of the strength analysis for the two loading cases analyzed. Figures 17 and 18 show the worst case shear and bending stress curves for the damaged full load and minimum operating conditions under wind-wave effects. A complete report of all damaged case results and diagrams are included in Appendix F.

Condition		Shear	Deck Bending	Keel
		Stress	Stress	Bending
		[ksi]	[ksi]	Stress [ksi]
	Damage Fwd	-4.95	11.42	-12.63
Stillwater	Damage Mid	2.71	3.38	-3.93
	Damage Aft	-3.51	7.70	-8.52
Hogging	Damage Fwd	-5.49	15.28	-16.62
Hogging	Damage Mid	4.11	7.09	-7.68
	Damaged Aft	-4.61	13.13	-14.41
Segging	Damage Fwd	-5.44	6.67	-7.74
Sagging	Damage Mid	3.41	-8.63	9.43
	Damaged Aft	-2.44	3.76	-4.12

Table 22. Damaged Stability Results for Full Load CaseUnder Severe Wind and Wave Conditions

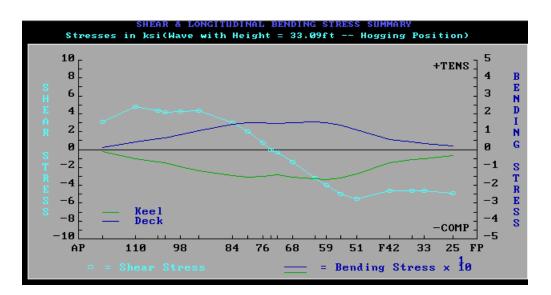


Figure 17. Damage Full Load Shear & Bending Stresses, Hogging

Under Severe wind and wave Conditions									
Condition		Shear	Deck Bending	Keel					
		Stress	Stress	Bending					
		[ksi]	[ksi]	Stress [ksi]					
	Damage Fwd	-4.95	11.76	-13.00					
Stillwater	Damage Mid	2.91	7.12	4.51					
	Damage Aft	-3.59	8.08	-8.88					
Hogging	Damage Fwd	-5.55	15.68	-16.98					
Hogging	Damage Mid	3.90	14.07	10.84					
	Damaged Aft	-4.67	13.55	-14.77					
Segging	Damage Fwd	-5.43	6.85	-7.92					
Sagging	Damage Mid	3.32	-8.40	9.19					
	Damaged Aft	-2.51	3.80	-4.13					

 Table 23. Damaged Stability Results for Minimum Operating Case

 Under Severe Wind and Wave Conditions

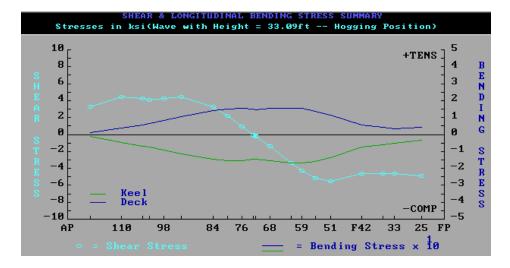


Figure 18. Damage Minimum Operating Shear & Bending Stresses, Hogging

4.1.10.2.1 Comparison of LMSR and SOF ship

The strength properties of the LMSR and SOF ship are compared below in Table 24, as determined using POSSE. The SOF ship has a significantly better performance during hogging conditions, while the sagging conditions are nearly twice as high. Overall, the SOF ship is structurally sound.

Load Condition	Sea Condition	Stress (ksi)	LMSR	SOF					
		Shear	8.84	-5.49					
	Hogging	Bending, at Deck	34.25	15.28					
Full Load		Bending, at Keel	-24.77	-16.62					
Full Load	Sagging	Shear	1.48	3.41					
		Bending, at Deck	-4.72	-8.63					
		Bending, at Keel	4.14	9.43					

Table 24. LMSR-SOF Stress Comparison

The ship has a satisfactory performance for all the cases analyzed and presents better stability and structural performance than the original LMSR. The results obtained for both the Intact and Damaged Conditions indicate, from a stability standpoint, that the conversion is feasible and will have good performance in all weather conditions.

4.2 Performance Analysis

4.2.1 Mission

The primary mission of the SOF ship is to provide a platform for SOF operations. The SOF ship will act as a base of operations for the planning and execution of SOF missions ashore (insertion, close air support, extraction) and afloat (naval interdiction, capture of assets such as oil platforms).

4.2.1.1 Aircraft Operations

The SOF ship will provide a platform for rotary wing and VTOL/STOVL air operations in support of SOF missions.

4.2.1.2 Boat Operations

The SOF ship can act as a base for SOF boats, such as Navy Special Boat Units. The hangar deck can accommodate a 12 medium-size patrol or assault boats which can be launched by crane from the forward hangar deck ramps. SOF typically use RIBs that are 36 feet in length. Therefore, space availability for boat operations should be adequate.

4.2.2 Survivability and Signatures

The only major changes to the SOF ship will be the removal of the large deck cranes and the rear roll-on roll-off ramp, so it will retain the signature of the Bob Hope class LMSR. The survivability will be significantly upgraded with the addition of the Ship Self-Defense System (SSDS). The SSDS is comprised of the RIM-116 Rolling Airframe Missile (RAM), the Close-In Weapon System (CWIS), and the decoy launch system. The SSDS integrates the AN/SPS-49, the AN/SPS-67 surface search radar, the AN/SLQ-32 sensor, and the CIWS

search radar into a cohesive ship defense system. The SSDS provides a high level of protection against anti-ship missiles and aircraft.

4.2.3 Seakeeping and Maneuvering

4.2.3.1 Natural frequencies

The resonant roll and pitch frequencies were computed using standard naval architecture equations and the ship's dimensions as calculated by SWAN. All calculations are shown in Appendix G. A Pierson-Moskowitz sea spectrum was then used to relate the resonant periods to significant wave heights. These results gave a rough indication of the motion of the ship. The results are summarized in Table 25.

k _{roll}	5.33 m
k _{pitch}	46.08 m
k _{yaw}	15.787 m
ω _{roll}	0.17 Hz
ω _{pitch}	0.225 Hz
T _{roll}	5.876 sec
T _{pitch}	4.454 sec

Table 25. Calculated Resonant Data

The motions of the ship have vertical components (heave, pitch and roll) that can create serious problems, thus causing the ship to behave like a damped spring-mass system. In order to understand the nature of the ship response to sinusoidal waves, it is useful to derive the natural frequencies for heave and pitch. For ship motions, the maximum motions do not necessarily occur around synchronism. The magnitude of the exciting forces and the coefficients in the equations of motion all depend on the encounter frequency. Encounter frequency can depend on various parameters, including wavelength, ship speed, and heading. Therefore, at low frequencies, resonance can occur at very short wavelengths with a very small exciting force. However, at higher forward speeds, the frequency of encounter can cause resonance to fall within the range of wavelengths where the exciting forces are large. The T-AKR 300 Bob Hope class hull currently has good seakeeping characteristics, as it is a relatively large, heavy ship with a low KG.

4.2.3.2 SWAN Analysis

The SWAN software package was used to calculate RAOs for the SOF ship. Analyses were conducted for three different ship speeds (12 kts, 18 kts, and 24 kts) and seven wave periods (6-18 sec). This provided enough permutations to accurately assess the ship's performance over most normal operating conditions. Appendix G shows the SWAN input files for the three different speeds, SWAN output files, and SWAN RAO files. The goal of the SWAN analysis was to obtain the RAO functions for the ship.

The RAO outputs from SWAN were then entered into the SWAN Integrator Excel spreadsheet. This spreadsheet calculated the Pierson-Moskowitz sea spectrum for a given wave height. A significant wave height of 3.1 meters, corresponding to sea state 5, was used in this analysis. The SWAN RAOs were also used to calculate actual ship motions (roll, pitch, heave, and heave velocity) at a location 75 ft fwd and aft of the midships on the flight deck. The spreadsheet produced plots of the sea spectrum, the RAOs, and the ship response spectrum. These plots are also shown in Appendix G for the three speeds specified.

The flight deck location was analyzed to determine the feasibility of flight operations at various speeds. The criteria to conduct flight operations were: pitch angle less than 3° , roll angle less than 5° , and heave velocity less than 6.5 ft/s with seas broad off the bow at 150 degrees. The results for the three speeds are summarized in Table 26.

Table 20. Fight Deck Wotions for Various Speeds								
	Limit	12	18	24				
		knots	knots	knots				
Pitch (degrees)	3.0	0.05	0.04	0.03				
Roll (degrees)	5.0	0.11	0.12	0.12				
Heave velocity	6.5	0.219	0.208	0.164				
(ft/s)								
Heave (m)	N/A	0.11	0.09	0.08				

Table 26: Flight Deck Motions for Various Speeds

The flight deck motion analysis indicates that the SOF ship can conduct flight operations in sea state 5 up to its maximum sustained speed of 24 knots. Generally, as the ship's speed increases, it becomes more stable and motions decrease. As speed increases, the maximum value of the spectrum peak decreases. Therefore, as the design currently stands, flight operations would NOT be limited at any speed in Sea State 5.

4.2.4 Environmental

As the conversion did not affect existing waste processing equipment, the ship maintains the same level of environmental standards and remains in compliance with US Navy policy for waste disposal. There will, however, be a need for increased sanitation equipment due the addition of SOF. All sanitation equipment installed for this conversion will meet all guidelines and environmental standards within US Navy environmental policies.

4.3 Operation and Support

The SOF ship crew is the same as that of the LMSR. This crew will operate the ship under all circumstances. When a SOF group is embarked, the ship's crew and SOF will operate largely independent of each other. However, as mentioned previously, SOF will be required to provide personnel to augment the ship's crew with "hotel" tasks.

4.4 Cost and Risk

4.4.1 Cost Estimation

A weight-based methodology developed by the MIT 13A program was modified and used to estimate the conversion costs. The estimate is broken down into removal costs, addition costs, shipbuilder, and government costs. Table 27 lists the major cost estimates in FY03 dollars. The model assumed a 3% inflation rate, an in-service date of 2004, and a 30-year service life. The development of the SOF model sought to be cost-effective in all decisions. Each specific modification received a cost estimate through a SWBS breakdown approximation of weights added and removed. This weight change was entered into the weight-based cost model and a variant cost was obtained. Accuracy of this variant cost is subject to change based on contractor and overhead costs. This weight-based cost analysis produced costs within sponsor requirements. If the entire removal and addition of weights was performed in the cheapest category of the SWBS breakdown groups (Hull Structure), the estimated conversion cost is 41.2 million dollars. Obviously, there are electrical and outfitting modifications that need to be performed, and these SWBS weight groups have higher Cost Equivalent Ratios (CERs) associated with them. That brings the conversion cost to 86.16 million dollars. Further investigation would need to be performed in this area to

ensure that the CERs being used are accurate. The complete cost model is included in Appendix H.

Estimate Source	Estimate (\$M)
Conversion of LMSR to SOF Ship	86.16
New construction of LMSR	250.00
New construction of SOF Ship	300.49

Table 27. Conversion Cost Estimates

The LMSR program currently has 19 ships. The addition of each ship to the fleet lowers the cost associated with each follow-on vessel. The values listed above take into account the lead ship serving as a follow-on ship. The cost calculated for new construction of an LMSR using our cost model is 434.29 million dollars. According to Avondale Industries, the contract for the seventh strategic sealift ship is \$250 million. A cost correction factor of 0.576 was applied to the total SOF conversion cost and new construction ships.

4.4.2 Risk

Risk can be defined as the probability of failure multiplied by a measure of the consequences of failure. This design attempts to minimize risk where feasible, while still maintaining an aggressive approach to use of innovative technology to improve effectiveness and lower cost. The following areas were considered in the risk areas in the assessment of the SOF Ship design:

- Development of the flight deck
- Advanced berthing installation and messing
- Development of modularized C4I infrastructure

The primary function of the SOF Ship is to support SOF missions. A failure in this area is a failure of the mission of the ship. Therefore, the two most important areas to develop are the flight deck and hangar bay. Flight decks have been installed on carriers for over 80 years. However, as with all other new ship modifications, first time installation of a new component is always full of risk. The technology used to install the new flight deck, therefore must be compatible with that used to install the flight decks on the other modern CVNs or LHAs.

Advanced crew berthing and accommodation technology is well developed, and has been used successfully on recent ship modifications. These berthings are light, simple to construct, and provide more crew comfort. It is essential that such technology be incorporated into the design of this ship for weight reduction and reduced equipment costs.

The last area of possible risk entails the development of modularized C4I systems. Since SOF bring their own equipment, it was essential that sections of the ship be designated for such equipment as a "plug and play" design. Further study would have to be conducted in this area to determine exactly what modifications would have to be made to the existing command and control systems, particularly what kind of electronic provisions would have to be "cable ready".

5.0 DESIGN CONCLUSIONS

5.1 Summary of Final Concept Design

Starting from a T-AKR 300, the SOF ship development process created a platform with the same, or improved, weight, KG, and strength. Table 28 summarizes the SOF Ship conversion design.

Table 28, SOT Ship Dimensions and Terror mance								
LBP	884 ft	LOA	951 ft					
Beam	106 ft	Full Load Draft	27.80 ft					
Full Load Displacement	48,937 ltons	Light Ship Displacement	37,681 ltons					
Full Load KG	39.98 ft	Light Ship KG	45.67 ft					
Max speed	24.0 knots	Endurance	10,000 + nm @ 24 knots					

 Table 28. SOF Ship Dimensions and Performance

The SOF ship design removes the topside cranes, aft ramp, and internal deck hatches and ramps from the current LMSR. It was important to retain the original superstructure for cost reduction as well as for strength and stability concerns. The flight deck was then mounted on the main deck and the elevators were added. The SOF Ship design increases the lightship weight by 3957 long tons. The ship's crew size remains the same, but it has capacity for an additional 2000 personnel for troop transport. Also, a ship self-defense system was installed for protection against threats. Similarly, space was allocated for the command and communications center for mission need. The cost of the conversion is estimated at \$86.16 million. Table 29 summarizes the removals and additions to the original ship.

Removals	Additions
Cranes	Flight Deck
Aft Ramp	Elevators
Topside Fan Rooms	Ship Self-Defense System
Internal Hatches and Ramps	Command and Control Centers
	Ready/Briefing/SCIF Rooms
	Berthing Facilities
	Weapons Magazines
	Ship Support Storage
	Mission Support Storage
	Medical and Dental Facilities
	Boat Cranes and Winches
	AC/ventilation

 Table 29. Summary of Removals and Additions

5.2 Final Conclusions and Recommendations

Conversion of an LMSR, such as the T-AKR 300, to a SOF platform is feasible and merits consideration. The design meets the requirements for a cost-effective, near-term solution to the need for a SOF/Aviation support platform. The ship serves as a mobile offshore platform for SOF mission support and is equipped with its own self-defense armament.

Based on the MNS guidance and policy, the SOF platform will provide support for interagency, joint, and Allied forces. This vessel will provide modular flexibility to perform individual or multiple missions, thereby freeing other major assets to dedicate their full resources in the performance of their primary missions. As a result, this conversion provides a valuable asset to the fleet.

This report describes ship conversion concept design results based on SOF mission estimates. A hands-on inspection of the Bob Hope class LMSR would serve to improve the accuracy of space allocation and design for this project. Further analysis is required in the following areas:

- cost analysis and LMSR follow-on ship costs
- elevator cross section structural strength (using software program like Maestro)
- detailed manning breakdown for routine functions
- ventilation and air conditioning system
- hotel services such as sanitation services
- hangar bay drainage/freeboard issues
- boat launch and recovery details
- detailed wind study

References

[1] Federation of American Scientists, Accessed the website at http://www.fas.org/man/dod-101/sys/ship/takr-300.htm [2] Federation of American Scientists, Accessed the website at http://www.fas.org/man/dod-101/sys/ship/takr-295.htm [3] Federation of American Scientists, Accessed the website at http://www.fas.org/man/dod-101/sys/ship/cvn-68.htm [4] Federation of American Scientists, Accessed the website at http://www.fas.org/man/dod-101/sys/ship/lhd-1.htm [5] Federation of American Scientists, Accessed the website at http://www.fas.org/man/dod-101/sys/ship/lph-2.htm [6] Federation of American Scientists, Accessed the website at http://www.fas.org/man/dod-101/sys/ship/lha-1.htm [7] Federation of American Scientists, Accessed the website at http://www.fas.org/man/dod-101/sys/ship/lpd-4.htm [8] Federation of American Scientists, Accessed the website at http://www.fas.org/man/dod-101/sys/ship/mark v.htm [9] Federation of American Scientists, Accessed the website at http://www.fas.org/man/dod-101/sys/ship/rhib.htm [10] Federation of American Scientists, Accessed the website at http://www.fas.org/man/dod-101/sys/ship/tao-187.htm [11] Federation of American Scientists, Accessed the website at http://www.chinfo.navy.mil/navpalib/factfile/ships/ship-takr2.html [12] Federation of American Scientists, Accessed the website at http://niigata-power.com/ps/prod/de.htm [13] Global Security Organization, Accessed the website at http://www.globalsecurity.org/military/library/budget/fy1997/dot-e/navy/97ssds.html [14] Ships Drawing and Specifications, T-AKR 300 Bob Hope Class [15] Weight and Moment Estimate, T-AKR 300 Bob Hope Class

The Program of Ships Salvage and Engineering (POSSE) and Ship Wave Analysis (SWAN) software packages were used for this for this study.

Appendix A Mission Needs Statement

UNCLASSIFIED

MISSION NEED STATEMENT

FOR

A SPECIAL OPERATIONS FORCES SHIP

1. DEFENSE PLANNING GUIDANCE ELEMENT

a. This Mission Need Statement (MNS) provides requirements for a Special Operations Forces (SOF) ship for the near future. The multi-mission capabilities are a result of the chosen combat suite, hull, and mechanical and electrical systems. The above systems ensure battlespace dominance for expeditionary, interagency, joint and allied forces. This ship must operate wherever required to provide SOF capabilities. The mission capabilities must be fully interoperable with other naval, interagency, joint and allied forces.

b. This MNS should guide 21st Century SOF surface ship design, research, development and acquisition program decisions, service and joint doctrine, and cooperative efforts with U.S. allies.

2. MISSION AND THREAT ANALYSIS

a. Mission. The general mission of this ship is to provide integrated SOF capabilities, to provide independent forward presence, and to operate as an integral part of joint and allied maritime warfare operations.

b. Objectives. The Special Operations Forces Ship must have flexibility to meet the multi-mission requirements, while at the same time, employing a self defense capability against a variety of threats. It must be interoperable with other expeditionary, interagency, joint, and allied forces under the C4I for the Warrior/Copernicus architecture. The Special Operations Forces Ship must contribute to open ocean surface, air, and sub-surface dominance.

c. Capabilities.

(1) Power Projection – The ship must destroy or neutralize enemy targets ashore through the use of coordinated aviation and special operations forces. It must be capable of conducting cooperative operations with other ships, submarines, aircraft, space and land systems.

(2) Battlespace Dominance – To support regional expeditionary, joint and allied force operations, and maintain sea lines of communication. The ship must be able to embark and support armed rotary-wing, VTOL/STOVL aircraft as well as deployment of SOF.

(3) Command, Control and Surveillance – The ship must be fully interoperable with other naval, interagency, joint, and allied forces, and with space and ground based sensors under the C4I for the Warrior/Copernicus architecture. The communications suite must have an integrated database capable of interfacing in a Joint Task Force/Combined Task Force (JTF/CTF) environment to include

compatibility with joint systems such as the Global Command and Control System (GCCS), the Joint Worldwide Intelligence Communications System (JWICS) and the Joint Deployable Intelligence Support System (JDISS). It must be designed to be a tactical operational extension using Tactical Command Center (TCC) and Tactical Data Information Exchange System (TADIX) within the emerging Joint Communications Planning and Management System. The ship must have a full suite of radios and antennas to support full connectivity via EHF/SHF/UHF SATCOM using full DAMA for each circuit. The ship must have an cryptologic capability designed to collect, process and geolocate signals of interest in order to describe and fully exploit the electronic battle space. Cryptologic capability is required to provide near real-time indications and warning and situational awareness to tactical decision makers and to support CO situational awareness, coordinate actions with other forces and communicate the ship's actions to appropriate commanders. Connectivity must include seamless integration for both organic and off-ship sensor inputs to shooter actions.

(4) Survivability – The ship shall have the survivability criteria of ship system redundancy to ensure graceful degradation of capability to make the total loss of the ship highly unlikely even if hit.

(5) Mobility – The ship must steam to design capability and maneuver at sustained task force speeds. The design must provide sufficient machinery redundancy for graceful degradation of mobility and survivability. The ship must be able to perform seamanship, airmanship and navigation tasks; prevent and control damage; and replenish at sea.

(6) Fleet Support Operations – Conduct in-flight refueling of rotary wing aircraft; conduct Search and Rescue (SAR) operations; and provide routine health care, first aid assistance, triage and resuscitation.

(7) Non-Combat Operations – The ship must provide emergency and disaster assistance; support operations to evacuate noncombatant personnel in areas of civil or international crisis; support and conduct vertical takeoff and/or rotary wing aircraft operations; provide unit-level upkeep and maintenance.

3. NON-MATERIAL ALTERNATIVES

Mission Area Analyses were conducted as part of the SOF/Aviation support platform. These analyses determined that changes in doctrine and operational concepts are not sufficient to address deficiencies. Doctrine changes and operational concepts required without a SOF platform would include: inability to project expeditionary strike power from the sea; severely degraded ability to project precise strike power against land targets; inability to maintain meaningful, visible forward presence for coalition building; thus requiring allies undertake these missions.

4. POTENTIAL MATERIEL ALTERNATIVES

- a. Material alternatives include (1) conversion of an amphibious class ship to a special operations forces ship, (2) conversion of a commercial tanker/container ship/roll-on roll-off vessel, (3) conversion of an existing LMSR ship, and (4) design and acquisition of a new ship.
- b. The ongoing LMSR acquisition program could potentially address this need through a forward-fit modification program by capitalizing on advanced technology. However, to do this, it would need to employ a modified approach in the design.

5. CONSTRAINTS

a. Key Boundary Conditions.

(1) Architecture – The ship design must employ a total ship architectural/engineering approach that optimizes life cycle cost and performance; minimizes operating conflicts; permits rapid upgrade and change in response to evolving operational requirements; allows computational and communication resources to keep technological pace with commercial capabilities wherever possible. More specifically this implies physical element modularity; functional sharing of hardware; open systems information architecture; ship wide resource management; automation of Command, Control, Communications, and Computers (C4I), combat engineering, and navigation functions; integrated ship wide data management; automation and minimization of maintenance and administrative functions; and embedded training. The approach should also promote commonality of design among ship classes.

(2) Design – Consideration should be given to the maximum use of modular designs in the SOF ship infrastructure. Emerging technologies must be accounted for during the developmental phase. Since communication and data systems hold the greatest potential for growth, and therefore obsolescence, their installations must be modularized as much as possible to allow for future upgrades. Use standard man-to-machine interfaces among the systems onboard. The man-to-machine interfaces should be consistent with existing user-friendly systems.

(3) Personnel – The ship must be automated to a sufficient degree to realize significant manpower reductions in engineering, combat systems, ship support and Condition III watchstanding requirements.

(4) Back-fit – Major functional elements of a Special Operations Forces Ship must be applicable to other forward fit ship construction programs.

b. Operational Constraints.

(1) The Special Operations Forces Ship must incur only minimal degradation of operational capability in heavy weather or in the presence of electromagnetic, nuclear, biological and chemical contamination and/or shock effects from nuclear and conventional weapon attack.

(2) Any Special Operations Forces Ship must meet the survivability requirements of Level I as defined in OPNAVINST 9070.1.

(3) The Special Operations Forces Ship must provide rotary-wing, VTOL/STOVL, and unmanned aerial vehicle (UAV) landing and hangaring facilities. Ammunition storage for operational support of armed aircraft must also be provided.

(4) The ship must be able to operate in U.S., foreign, and international waters in full compliance with existing U.S. and international pollution control laws and regulations.

(5) All ship and combat system elements must make use of standard subsystems and meet required development practices. The Special Operations Forces Ship must be fully integrated with other U.S. Navy, Marine Corps, joint and allied forces, and other agencies. Joint goals for standardization and interoperability will be achieved to the maximum feasible extent.

(6) The ship must be able to transit through the Panama Canal (PANAMAX).

Appendix B Weights Removed/Added

13.413.-Conversion Project

<u>Weight</u> Removed

	-	Removed							
			Displacem	KG light		LCG		TCG	
		Light	33723.00	48.07	1621173.00	496.87	16756014.00	0.32	10640.00
#		Element	Weight	VCG	Moment	LCG	Moment	TCG	Moment
			Tons	ft	ft-tons	ft	ft-tons	ft	ft-tons
1		123	9.81	125.00	1226.00	701.11	6876.49	-13.98	-137.12
2	Fan house 03	123	3.65	125.00	456.00	700.10	2553.96	-42.34	-154.46
3	fan enclosures A deck	123	15.24	93.00	1416.86	221.23	3370.44	5.38	81.96
4	04 mod to stack HULL STRUCTURAL	162	57.35	142.93	8196.75		44338.61	11.66	668.68
5	CLOSURES	167	162.10	93.33	15129	766.00	124169	0.00	C
6	Hatch, scuttle & berp	168	3.89	93.33	363.43	756.56	2946.04	-7.55	-29.40
	Deck A-B	168	2012.00	82.00	164984.00	687.00	1382244.00	0.00	0.00
7	Hinged ramp A dk to B dk	169	36.54	99.00	3616.97	723.74	26441.84	-13.08	-477.88
8	Hinged ramp B dk to C dk	169	132.35	66.00	8734.84	639.02	84571.74	35.52	4700.93
10	fan enclosures A deck	123	1.90	104.00	198.06	687.00	1308.31	99.00	188.53
11	Kingpost for sternramp	172	173.84	132.00	22947.14	910.16	158224.03	0.10	17.38
12	Cargo hatches inst. Arrays	172	10.71	99.69	1067.28	322.14	3448.83	-2.82	-30.19
	TOTAL GROUP	170	2619.37	87.17	228336.11	702.65	1840492.89	1.84	4828.45
	GROUP 100 WITH AB DK		2619.37	87.17	228336.11	702.65	1840492.89	1.84	4828.45
	GROOP 100		607.37	87.17	228336.11	702.65	1840492.89	1.84	4828.45
13	Mchry csg A-03	259	15.74	120.00	1888.44	759.76	11956.34	12.49	196.56
15	TOTAL GROUP	2 50	15.74	120.00	1888.44	759.76	11956.34	12.49	196.56
	GROUP 200		15.74	120.00	1888.44	759.76	11956.34	12.49	196.56
			10.14	120.00	1000.44	100.10	11000.04	12.45	150.50
14	Emerg dsl outf	312	29.61	120.00	3552.60	882.26	26119.31	-0.33	-9.77
15	Blw arr 05 dk	313	0.11	143.00	15.30	757.00	81.00	-23.00	-2.46
	TOTAL GROUP	310	29.71	120.08	3567.90	881.81	26200.31	-0.41	-12.23
16	Outft Emerg diesel	342	2.40	120.00	250.18	885.57	2128.02	3.66	8.79
	TOTAL GROUP	340	2.40	104.11	250.18	885.57	2128.02	3.66	8.79

17	Outft Emerg diesel TOTAL GROUP	398 390	2.08 2.08	120.00 102.49	212.65 212.65	885.10 885.10	1836.58 1836.37	1.94 1.94	4.03 4.02
	GROUP 300		34.19	117.89	4030.73	882.27	30164.70	0.02	0.58
	o <i>11</i> = 1	- 10	a (a			~~~			
18	Outft Emerg diesel	512	2.49	120.00	298.92	885.57	2205.95	-4.55	-11.33
	TOTAL GROUP	510	2.49	120.00	298.92	885.57	2205.95	-4.55	-11.33
19	Outft Emerg diesel	526	0.14	120.00	17.28	885.98	127.58	1.09	0.16
20	Mchnery csge to 03 lvl	526	0.20	120.00	23.40	765.38	149.25	5.55	1.08
	TOTAL GROUP	520	0.34	120.00	40.68	816.61	276.83	3.66	1.24
21	Mchnery csge to 03 lvl	534	0.42	120.00	45.20	766.33	323.39	5.10	2.15
	TOTAL GROUP	530	0.42	107.11	45.20	766.33	323.39	5.10	2.15
22	Mchnery csge to 03 lvl	551	0.34	120.00	36.91	766.96	261.53	5.96	2.03
	TOTAL GROUP	550	0.34	108.24	36.91	766.96	261.53	5.96	2.03
23	Stern ramp assembly inst.	589	20.53	132.00	2709.56	912.05	18721.65	0.00	0.00
24	Stern ramp	589	242.15	132.00	31963.14	950.94	230265.37	0.00	0.00
25	Twin crane & boom rest	589	405.74	117.29	47588.66	612.08	248342.28	-4.45	-1805.52
	TOTAL GROUP	580	668.41	123.07	82261.36	744.05	497329.30	-2.70	-1805.52
26	Twin crane & boom rest	598	23.63	120.65	2850.47	441.50	10430.44	0.00	0.00
	TOTAL GROUP	590	23.63	120.65	2850.47	441.50	10430.44	0.00	0.00
	GROUP 500		695.63	122.96	85533.54	734.34	510827.44	-2.60	-1811.43
07	Miss hands 0 sizes	004	0.50	400.04	70.05	770 50	450.70	4.04	0.70
27	Misc. boards & signs	631	0.59	123.91	73.35	776.56	459.72	1.31	0.78
28	Deck covering schedule	634	98.50	127.50	12558.75	766.00	75451.00	0.00	0.00
	TOTAL GROUP	630	99.09	127.48	12632.10	766.06	75910.72	0.01	0.78
	GROUP 600		99.09	127.48	12632.10	766.06	75910.72	0.01	0.78
	MODIFICATION INCLUDED AB	DK	3464.01	95.96	332420.92	712.86	2469352.10	0.93	3214.93
	(for POSSE analysis)								
	TOTAL MODIFICATION		1452.01	95.96	332420.92	712.86	2469352.10	0.93	3214.93

	Total Disp VCG	LCG	TCG	
FINAL STABILITY PARAMETERS	30258.99 42.59	472.14	0.25	

13.413.-Conversion Project

		<u>Weight</u> Added							
-		Added		KG after					
_ L			Displacem	mod		LCG		TCG	
_		Light	30258.99	42.59	0.00	472.14	0.00	0.25	10640.00
								tons	
#	Description	Element	Weight	VCG	Moment	LCG	Moment	TCG	Moment
			Tons	ft	ft-tons	ft	ft-tons	ft	ft-tons
1	Flying deck fwd section	111	1210.49	89.37	108181.76	102.02	123494.50	0.00	0.00
2	Flying deck ctr section	111	1449.19	89.37	129514.29	351.63	509579.38	0.00	0.00
3	Flying deck aft section	111	175.35	89.37	15670.94	740.06	129768.78	0.00	0.00
4	Fly. Dk Longit. Framing	116	55.19	83.00	4580.52	475.00	26213.83	0.00	0.00
5	Fly. Dk Trans. Framing	117	192.00	83.00	15936.00	475.00	91200.00	0.00	0.00
6	Fan house 02	123	3.23	18.00	58.07	181.35	585.04	-2.78	-8.97
7	Fan house 03	123	3.46	18.00	62.28	727.00	2515.42	-1.16	-4.01
	TOTAL GROUP	170	3088.91	88.71	274003.86	285.98	883356.94	0.00	-12.98
8	Mchry csg A-03	185	0.70	18.00	12.60	183.90	128.73	-0.56	-0.39
9	04dk frame fnd	184	0.29	130.02	37.58	780.08	225.44	41.27	11.93
10	04dk fnd	185	1.36	109.78	149.30	706.01	960.17	23.60	32.10
11	04dk fnd	185	0.10	109.78	11.09	793.41	80.13	45.51	4.60
12	04dk fnd	185	0.85	110.00	93.83	776.98	662.76	-11.09	-9.46
13	04dk fnd	185	0.07	110.78	8.20	774.00	57.28	46.42	3.44
14	04dk fnd	185	0.07	110.00	8.14	798.00	59.05	-46.42	-3.44
15	04dk fnd	185	0.04	109.78	3.95	675.17	24.31	52.29	1.88
16	04dk fnd	185	0.02	110.00	1.76	766.68	12.27	2.29	0.04
17	04dk fnd	185	2.07	110.34	228.29	697.00	1442.09	-19.94	-41.26
18	04dk fnd	185	0.04	110.11	4.84	784.17	34.50	-52.36	-2.30
19	Comp array blw 04 dk	185	2.72	124.98	339.95	732.36	1992.02	-0.92	-2.50
20	Comp array blw 04 dk	185	3.26	125.21	408.69	781.42	2550.55	-7.19	-23.47
21	Comp array blw 04 dk	185	0.37	125.00	46.63	828.89	309.18	3.64	1.36
22	Comp array blw 04 dk	185	1.90	125.21	237.40	739.04	1401.22	-3.45	-6.54
23	Comp array blw 04 dk	185	1.14	125.00	142.75	733.71	837.90	-0.10	-0.11
24	Comp array blw 04 dk	185	1.48	124.98	185.47	780.78	1158.68	-0.71	-1.05
141	Arrg H dk	185	0.13	90.00	11.70	871.74	113.33	35.25	4.58

142	Arrg H dk	185	3.46	90.00	311.58	756.70	2619.70	1.04	3.60
143	Arrg H dk	185	0.43	90.00	38.79	781.94	337.02	10.21	4.40
144	Arrg H dk	185	0.46	90.00	41.58	780.91	360.78	-17.02	-7.86
145	Arrg H dk	185	1.44	90.00	129.60	799.02	1150.59	-35.25	-50.76
32	Comp array blw 04 dk	185	0.18	121.98	21.83	775.73	138.86	-6.61	-1.18
33	Comp array blw 04 dk	185	0.16	122.00	19.64	839.88	135.22	2.40	0.39
34	Comp array blw 04 dk	185	0.23	121.98	28.06	744.60	171.26	2.97	0.68
35	Comp array blw 04 dk	185	0.09	122.12	11.48	802.46	75.43	3.35	0.31
144	Comp array blw 04 dk	185	0.20	122.14	24.18	799.85	158.37	0.04	0.01
145	Comp array blw 04 dk	185	0.25	122.23	31.05	855.94	217.41	0.00	0.00
146	Comp array blw 04 dk	185	0.35	121.78	42.62	744.96	260.74	-3.83	-1.34
147	Comp array blw 04 dk	185	0.72	122.00	87.84	799.52	575.65	4.69	3.38
148	Comp array blw 04 dk	185	0.22	121.98	26.59	741.04	161.55	1.34	0.29
149	Comp array blw 04 dk	185	0.16	122.12	19.66	760.30	122.41	-7.78	-1.25
150	Comp array blw 04 dk	185	0.18	122.14	22.23	826.90	150.50	0.50	0.09
44	Comp array blw 04 dk	185	0.41	122.23	49.75	846.75	344.63	-2.45	-1.00
45	Comp array blw 04 dk	185	0.31	122.00	37.70	728.07	224.97	-0.15	-0.05
46	Comp array blw 04 dk	185	0.20	122.00	23.79	793.46	154.72	-11.20	-2.18
47	Comp array H dk	185	0.14	91.00	12.47	829.87	113.69	-2.88	-0.39
48	Comp array H dk	185	0.23	91.00	20.84	883.17	202.25	-22.13	-5.07
49	Comp array H dk	185	0.32	91.00	28.67	844.95	266.16	-3.47	-1.09
50	Side shell 04	185	0.81	120.00	97.68	649.05	528.33	6.12	4.98
51	Side shell 04	185	0.15	120.00	17.40	585.44	84.89	51.54	7.47
52	HELO ELEV. Supp. Sys. PORT	185	145.60	60.00	8736.00	550.05	80087.28	35.50	5168.80
53	HELO ELEV. Supp. Sys. STDB	185	145.60	60.00	8736.00	390.05	56791.28	-35.50	-5168.80
54	Arrg H dk	185	0.33	91.00	30.03	846.29	279.28	-10.11	-3.34
55	Arrg H dk	185	1.57	91.00	143.14	887.07	1395.36	-10.77	-16.94
56	Arrg H dk	185	1.08	91.00	98.55	845.78	915.98	-5.60	-6.06
57	Int arrgment	185	0.17	90.00	14.85	799.00	131.84	-10.44	-1.72
58	Hdk frame fnd	185	0.14	90.00	12.87	801.00	114.54	15.56	2.23
59	Hdk frame fnd	185	0.13	90.00	11.61	786.00	101.39	1.92	0.25
60	Hdk fnd	185	0.07	90.00	6.39	794.00	56.37	43.25	3.07
61	Hdk fnd	185	0.07	90.00	6.57	702.00	51.25	-19.34	-1.41
62	Hdk fnd	185	0.14	90.00	12.24	767.00	104.31	40.38	5.49
63	Hdk fnd	185	0.21	90.00	18.81	819.63	171.30	-28.47	-5.95
64	Hdk fnd	185	4.13	90.00	371.61	817.89	3377.07	0.10	0.41
65	Emergency diesel mach. Foundations	185	160.00	16.10	2576.00	220.78	35324.80	0.00	0.00
66	Storerooms + issue rooms	185	814.11	15.00	12211.65	201.00	163636.11	6.45	5251.01

	TOTAL GROUP	180	1301.07	27.72	36063.51	279.11	363142.88	3.96	5149.84
	GROUP 100		4389.98	70.63	310067.36	283.94	1246499.82	1.17	5136.86
67	Mchry csg A-03	259	15.74	16.00	251.79	219.76	3458.36	12.49	196.56
	GROUP 200		15.74	16.00	251.79	219.76	3458.36	12.49	196.56
68	Emerg dsl outf	312	29.61	18.00	532.98	183.90	5445.28	-0.56	-16.58
	TOTAL GROUP	310	29.61	18.00	532.98	183.90	5445.28	-0.56	-16.58
69	Mchnery csge to 03 lvl	321	2.02	18.00	36.34	183.90	371.29	-0.56	-1.13
70	Outft Emerg diesel	324	1.05	18.00	18.90	183.90	193.14	-0.56	-0.59
71	Comp array blw 04 dk	321	0.44	120.00	53.28	788.91	350.28	-0.74	-0.33
72	Pwr sys Ivl 04	321	0.47	124.90	58.45	793.50	371.36	0.00	0.00
73	Comp array blw 04 dk	324	0.11	120.00	12.84	772.00	82.60	-0.75	-0.08
74	Arrg below H dk	321	0.87	91.00	79.17	832.55	724.32	1.23	1.07
75	Arrg below H dk	321	1.26	91.00	115.02	854.09	1079.57	-1.81	-2.29
76	Arrg below H dk	321	0.59	91.00	53.60	877.25	516.70	0.00	0.00
77	Pwr sys H dk	321	0.47	60.00	28.08	893.50	418.16	0.00	0.00
78	TOTAL GROUP	320	7.28	62.60	455.69	564.26	4107.42	-0.46	-3.35
79	Mchnery csge to 03 lvl	331	0.03	18.00	0.61	183.90	6.21	-0.56	-0.02
80	Light sys dk 04	331	0.10	98.99	9.70	734.50	71.98	0.00	0.00
81	Comp array blw 04 dk	332	0.77	98.99	75.83	795.73	609.53	-4.17	-3.19
82	Arrg below 04 dk	332	0.81	98.78	79.91	743.72	601.67	0.00	0.00
83	Arrg below 04 dk	332	0.88	99.12	87.23	770.38	677.93	-8.79	-7.74
84	Arrg below 04 dk	332	1.01	99.12	99.71	841.00	846.05	0.00	0.00
85	Arrg below H dk	332	0.29	99.14	28.35	832.94	238.22	0.57	0.16
86	Arrg below H dk	332	0.26	99.00	25.64	888.14	230.03	1.14	0.30
87	Arrg below H dk	332	0.86	98.99	85.33	861.50	742.61	0.00	0.00
88	Comp & fltr house	331	0.15	18.00	2.61	744.50	107.95	12.50	1.81
89	Comp & fltr house	331	0.15	18.00	2.61	744.50	107.95	12.50	1.81
0	TOTAL GROUP	330	5.29	94.06	497.53	801.58	4240.13	-1.30	-6.87
90	Outft Emerg diesel	342	12.40	18.00	223.20	183.90	2280.36	-0.56	-6.94
91	Mchnery csge from 03 lvl	342	10.16	18.00	182.88	183.90	1868.42	-0.56	-5.69
92	Arrg H dk	342	3.08	77.00	237.08	872.86	2687.78	12.42	38.24
	TOTAL GROUP	340	25.64	25.09	643.16	266.65	6836.56	1.00	25.61
93	Outft Emerg diesel	398	2.08	18.00	37.44	183.90	382.51	1.94	4.04
	TOTAL GROUP	390	2.08	18.00	37.44	183.90	382.51	1.94	4.04
	GROUP 300		69.90	31.00	2166.81	300.61	21011.91	0.04	2.85
94	Antenna arrgment	421	0.10	47.70	4.77	727.25	72.73	0.00	0.00

95	Antenna arrgment	422	1.36	47.70	64.92	730.00	993.53	-5.07	-6.90
96	Elec. arrgment	421	0.10	39.70	3.97	727.25	72.73	0.00	0.00
97	Elec. arrgment	422	1.36	39.70	54.03	730.00	993.53	-5.07	-6.90
	TOTAL GROUP	420	2.92	43.70	127.69	729.81	2132.51	-4.72	-13.80
98	Comp array blw 04 dk	432	0.46	120.00	55.68	745.00	345.68	-4.00	-1.86
99	General Alarm sys	436	1.88	120.00	225.60	776.00	1458.88	0.00	0.00
100	Fire & smoke det sys	436	2.02	120.00	242.64	776.00	1569.07	0.00	0.00
101	Antenna arrgment	434	0.26	47.70	12.45	732.00	191.05	9.87	2.58
102	Comp array C Dk	432	0.46	47.70	22.13	745.00	345.68	-4.00	-1.86
103	Gral Alarm sys	436	1.88	47.70	89.68	776.00	1458.88	0.00	0.00
104	Fire & smoke det sys	436	2.02	47.70	96.45	776.00	1569.07	0.00	0.00
105	Elec. arrgment	434	0.26	39.70	10.36	732.00	191.05	9.87	2.58
106	Comp array C Dk	432	0.46	39.70	18.42	735.00	341.04	-4.00	-1.86
107	Gral Alarm sys	436	1.88	39.70	74.64	735.00	1381.80	0.00	0.00
108	Fire & smoke det sys	436	2.02	39.70	80.27	735.00	1486.17	0.00	0.00
109	Comp array C Dk	432	0.46	47.30	21.95	387.00	179.57	-4.00	-1.86
110	Gral Alarm sys	436	1.88	47.40	89.11	384.00	721.92	0.00	0.00
111	Fire & smoke det sys	436	0.20	47.20	9.44	386.00	77.20	0.00	0.00
112	Comp array blw B dk	432	0.76	39.70	30.33	369.00	281.92	-4.00	-3.06
113	Boat crane STBD	432	17.00	61.3	1042.10	369.00	6273.00	42.00	714.00
114	Boat crane PORT	432	17.00	61.3	1042.10	369.00	6273.00	-42.00	-714.00
	TOTAL GROUP	430	50.93	62.11	3163.35	474.10	24144.98	-0.10	-5.33
115	Radio room	441	1.83	47.70	87.34	738.55	1352.29	1.97	3.61
116	Antenna arrgment	441	0.75	47.70	35.78	729.07	546.80	-5.22	-3.92
117	Radar Equipment	445	0.20	47.70	9.54	743.36	148.67	0.00	0.00
118	Satellite coms	446	0.74	47.70	35.30	744.76	551.12	0.00	0.00
119	Radio room	441	1.83	39.70	72.69	748.55	1370.60	1.97	3.61
120	Elec. arrgment	441	0.75	39.70	29.78	739.07	554.30	-5.22	-3.92
121	Satellite coms	445	0.20	39.70	7.94	743.36	148.67	0.00	0.00
122	Satellite coms	446	0.74	39.70	29.38	744.76	551.12	0.00	0.00
	TOTAL GROUP	440	7.04	43.70	307.74	741.77	5223.57	-0.09	-0.62
123	Shipboard PC cabling	493	0.80	124.00	99.20	792.50	634.00	0.00	0.00
124	Cmd & surv	499	1.80	127.87	230.17	760.00	1368.00	0.00	0.00
125	Shipboard PC cabling	493	0.80	47.70	38.16	792.50	634.00	0.00	0.00
126	Cmd & surv	499	1.80	47.70	85.86	760.00	1368.00	0.00	0.00
127	Shipboard PC cabling	493	0.80	39.70	31.76	735.00	588.00	0.00	0.00
128	Cmd & surv	499	1.80	39.70	71.46	735.00	1323.00	0.00	0.00

129	Shipboard PC cabling	493	2.00	47.70	95.40	385.00	770.00	0.00	0.00
130	METEOROLOGICAL SYSTEM	494	0.70	123.00	86	798.00	558.60	0.00	0
131	SPECIAL PURPOSE INTELLIGENCE	495	1.20	119.00	143	810.00	972.00	0.00	0
132	SPECIAL PURPOSE INTELLIGENCE	495	1.80	121.50	219	803.00	1445.40	-12.80	-23
133	Cmd & surv	499	1.80	46.80	84.24	382.00	687.60	0.00	0.00
134	TOTAL GROUP	490	15.30	77.38	1183.85	676.38	10348.60	-1.51	-23.04
	GROUP 400		76.19	62.77	4782.62	549.27	41849.67	-0.56	-42.78
135	Mchnery csge to E DK	511	0.18	18.00	3.24	183.84	33.09	-0.76	-0.14
136	Outft Emerg diesel	512	2.49	18.00	44.82	182.90	455.42	1.56	3.88
137	Mchnery csge to E Dk	512	2.04	18.00	36.72	183.67	374.69	-0.56	-1.14
138	Mchnery csge to E DK	514	0.33	18.00	5.94	189.90	62.67	-0.56	-0.18
139	Mchnery csge to E DK	514	0.33	18.00	5.85	766.76	249.20	4.15	1.35
140	AIR CONDITIONING SYSTEM	514	94.94	25.00	4568.00	628.17	59638.00	14.23	1351
	TOTAL GROUP	510	100.47	46.46	4667.45	606.32	60914.10	13.45	1351.69
141	Outft Emerg diesel	526	0.14	18.00		183.84	25.74	-0.76	-0.11
142	Mchnery csge E DK	526	0.20	18.00	3.60	189.90	37.98	-0.56	-0.11
143	WASHDOWN SYSTEM	523	8.54	25.00	213.50	456.61	3899.43	-14.56	-124.3424
144	PLUMBING DRAINAGE AFT	528	28.03	25.78	723	657.90	18440.94	5.78	162
145	PLUMBING DRAINAGE FWD	528	32.00	15.00	480	134.89	4316.48	0.00	0
1.10	DRAINAGE AND BALLASTING	500	050.44	40.00	0745	0.40.00	400504	4.00	074
146	SYSTEM	529	353.41	19.00	6715	346.89	122594	1.90	671
	TOTAL GROUP	520	422.32	19.27	8137.02	353.56	149314.96	1.68	708.93
147	Miscellaneous tanks	532	0.32	19.73	6.31	686.00	219.52	32.00	10.24
148	Mchnery csge to E DK	534	0.42	18.00	7.56	183.90	77.24	1.94	0.81
150	Piping Diesel Emer. Mach Box	534	3.04	38.69	117.62	675.50	2053.51	-22.02	-66.94
	TOTAL GROUP	530	3.78	34.79	131.49	621.76	2350.27	-14.78	-55.89
151	Helo FUEL & FUEL COMPENSATING	541	19.24	30.00	577.20	534.88	10291.00	-7.95	- 152.97164
152	Helo FUEL & FUEL Purif. Sys	541	35.00	15.00	525.00	134.96	4723.60	0.00	0
	TOTAL GROUP	540	54.24	20.32	1102.20	276.82	15014.60	-2.82	-152.97
153	Comp array blw E Dk	551	0.08	18.00	1.39	803.11	61.84	2.67	0.21
154	Fire exstinguishing system	555	72.00	15.00	1080.00	535.77	38575.44	0.00	0.00
	TOTAL GROUP	550	72.08	15.00	1081.39	536.06	38637.28	0.00	0.21
155	REPLENISHMENT AT SEA SYSTEMS	571	20.00	78.30	1566	345.64	6913	0.00	0
	TOTAL GROUP	570	20.00	78.30	1566.00	345.64	6912.80	0.00	0.00
156	Aircraft Recov. Supp. Sys.	586	196.20	78.00	15303.60	352.50	69160.50	-15.95	-3129.39
157	Aircraft Launch. Supp. Sys.	587	291.60	78.00	22744.80	326.25	95134.50	25.50	7435.80
158	Aircraft Handling, serv, stowage	588	100.00	76.00	7600.00	452.50	45250.00	0.00	0.00

159	Liferafts	583	9.42	94.50	890.28	166.45	1568.13	26.80	252.48
160	Liferafts	583	9.42	94.00	885.57	166.45	1568.13	-26.80	-252.48
161	Environmental Polution Control Sys	583	46.20	15.00	693.00	135.88	6277.66	0.00	0.00
162	HELO Handling, serv, stowage	588	100.00	71.00	7100.00	352.50	35250.00	3.56	356.00
	TOTAL GROUP	580	752.84	73.35	55217.26	337.67	254208.91	6.19	4662.41
	GROUP 500		1425.72	49.33	70336.81	369.88	527352.92	4.57	6514.38
163	Non structural balckheads	621	205.23	15.00	3078.45	135.78	27866.13	0.00	0.00
164	Ladders	623	0.57	45.00	25.70	737.24	420.96	6.88	3.93
165	Interior joiner stairs	623	2.54	45.00	114.30	740.49	1880.84	11.85	30.10
166	Loiner door & wind list	624	19.67	45.00	885.24	738.12	14520.30	-13.20	-259.67
167	Ladders	623	4.56	45.00	205.20	737.24	3361.81	6.88	31.37
168	Interior joiner stairs	623	2.54	35.00	88.90	740.49	1880.84	11.85	30.10
169	Auxiliary System fundation FWD	623	158.63	15.00	2379.45	220.00	34898.60	6.79	1077.10
170	Loiner door & wind list	624	19.67	35.00	688.52	738.12	14520.30	1.75	34.43
	TOTAL GROUP	620	413.42	18.06	7465.76	240.31	99349.79	2.29	947.35
171	refrig. Stores arr & dets	638	18.51	18.00	333.23	581.00	10756.05	0.00	0.00
	TOTAL GROUP	630	18.51	18.00	333.23	581.00	10756.05	0.00	0.00
172	Officer Berthing+messing	641	11.40	59.70	680.58	531.00	6053.40	0.00	0.00
173	Toilett & shower arrgment	644	15.78	59.70	942.07	485.48	7660.87	0.79	12.47
174	NON-COMM OFFICER BERTH & MESS ENLISTED PERSONNEL BERTH &	642	6.45	34.98	225.621	403.78	2604.381	0	0.00
175	MESS	643	19.12	34.97	668.6264	405.98	7762.3376	0	5.74
176	SANITARY SPACES & FIXTURES	644	19.67	35.03	689.0401	408.76	8040.3092	0	0.00
177	LEISURE & COMMUNITY SPACES	645	3.12	34.89	108.8568	409.33	1277.1096	0	0.00
178	NON-COMM OFFICER BERTH & MESS ENLISTED PERSONNEL BERTH &	642	6.45	34.98	225.621	602.34	3885.093	0	0.00
179	MESS	643	19.12	34.97	668.6264	609.45	11652.684	0	5.74
180	SANITARY SPACES & FIXTURES	644	19.67	35.03	689.0401	604.67	11893.8589	0	0.00
181	LEISURE & COMMUNITY SPACES	645	3.12	35.00	109.2	605.89	1890.3768	0	0.00
182	NON-COMM OFFICER BERTH & MESS ENLISTED PERSONNEL BERTH &	642	6.45	34.98	225.621	602.34	3885.093	0	0.00
183	MESS	643	19.12	34.97	668.6264	609.45	11652.684	0	5.74
184	SANITARY SPACES & FIXTURES	644	19.67	35.03	689.0401	604.67	11893.8589	0	0.00
185	LEISURE & COMMUNITY SPACES	645	3.12	35.00	109.2	605.89	1890.3768	0	0.00
186	NON-COMM OFFICER BERTH & MESS ENLISTED PERSONNEL BERTH &	642	6.45	34.98	225.621	602.34	3885.093	0	0.00
187	MESS	643	19.12	34.97	668.6264	609.45	11652.684	0	5.74
188	SANITARY SPACES & FIXTURES	644	19.67	35.03	689.0401	604.67	11893.8589	0	0.00

189	LEISURE & COMMUNITY SPACES	645	3.12	35.00	109.2	605.89	1890.3768	0	0.00
190	NON-COMM OFFICER BERTH & MESS ENLISTED PERSONNEL BERTH &	642	6.45	34.98	225.621	403.78	2604.381	0	0.00
191	MESS	643	19.12	34.97	668.6264	405.98	7762.3376	0	5.74
192	SANITARY SPACES & FIXTURES	644	19.67	35.03	689.0401	408.76	8040.3092	0	0.00
193	LEISURE & COMMUNITY SPACES	645	3.12	35.00	109.2	409.33	1277.1096	0	0.00
194	NON-COMM OFFICER BERTH & MESS	642	6.45	34.98	225.621	403.78	2604.381	0	0.00
195	MESS	643	19.12	34.97	668.6264	405.98	7762.3376	0	
196	SPACES & FIXTURES	644	19.67	35.03	689.0401		8040.3092	0	0.00
197	LEISURE & COMMUNITY SPACES	645	3.12	35.00	109.2	409.33	1277.1096	0	0.00
	TOTAL GROUP	640	317.34	37.11	11777.23	506.50	160732.72	0.15	46.88
198	MEDICAL EQ	652	18.90	47.70	901.53	382.00	7219.80	0.00	0.00
199	Galley & scullery	651	25.93	36.13	936.81	567.00	14701.74	33.51	868.88
200	Joiner	652	1.54	36.01	55.46	576.89	888.41	-7.80	-12.01
201	Joiner 02-01 dks	654	0.31	35.98	11.26	587.90	184.01	24.46	7.66
202	Laundries	655	13.47	35.97	484.55	586.45	7900.07	-28.42	-382.85
203	trash & trash compactor	656	7.40	36.09	266.99	845.60	6255.75	27.14	200.78
204	COMMISSARY PROVISIONS	651	16.56	20.00	331.20	576.90	9553.46	2.11	34.94
	TOTAL GROUP	650	84.11	35.52	2987.81	555.26	46703.25	8.53	717.40
205	Offices	661	12.90	65.04	839.02	631.00	8139.90	0.00	0.00
206	Briefing rooms	661	12.90	65.13	840.18	631.00	8139.90	0.00	0.00
207	Decontam. Sta.	664	20.09	64.78	1301.62	431.00	8660.08	0.00	0.00
208	Workshops. Labs, test areas	665	50.00	64.67	3233.50	631.00	31550.00	0.00	0.00
209	Decontam. Sta.	664	1.09	65.34	71.42	794.50	74.13	12.07	13.19
210	OFFICES MACHINERY CTL CENTER	661	6.87	65.14	447.51	679.33	4667	2.77	19.0
211	FURNISHINGS	662	2.09	35.00	73.15	728.23	1522	6.70	14.0
212	ELEC. CONTROL CENTER FURNISHINGS	663	2.09	35.00	272	657.42	1374	9.09	19.0
213	DAMAGE CONTROL STATION	664	31.25	65.00	2031.25	107.55	3361	33.44	1045.0
214	WORKSHOPS,LAB,TEST AREA	665	13.21	65.00	858.65	691.22	9131	7.80	103.0
	TOTAL GROUP	660	10.21	65.37	9968.30	502.43	76619.01	7.96	1213.19
215	Shore pwr cable	671	0.70	83.00	58.10	431.00	301.70	0.00	0.00
216	Stwg life saving eqpmt	671	3.02	83.00	250.33	431.00	1299.90	0.00	0.00
217	Battery stowage	671	5.82	83.00	483.31	431.00	2509.71	2.67	15.55
218	Lockers arr. & details	671	4.73	50.00	236.70	431.00	2040.35	0.00	0.00
219	Cargo securing fitting cov.	671	16.09	43.87	705.82	331.00	5325.46	0.00	0.00
220	Battery stowage	671	0.82	47.70	39.26	382.00	314.39	12.51	10.30
-20	Land, y olo hugo	0.1	0.02		00.20	002.00	017.00	12.01	10.00

			Total Disp	VCG		LCG		TCG	
	TOTAL MODIFICATION		7421.54	58.09	431118.83	317.36	2355283.82	2.28	16957.08
	GROUP 700		38.06	84.73	3225.10	617.66	23510.68	12.54	477.32
	TOTAL GROUP	760	17.73	53.14	942.09	494.77	8771.32	26.92	477.32
232	Lockers arr. & details	763	4.86	77.00	374.53	756.85	654.14	22.89	111.34
231	Lockers arr. & details	763	12.86	44.12	567.56	631.00	8117.18	28.45	365.98
	TOTAL GROUP	720	20.34	112.26	2283.01	724.79	14739.36	0.00	0.00
230	MISSILE STOWAGE PORT (42)	723	2.94	13.00	38.22	607.5	1786.05	0.00	0.00
229	MISSILE STOWAGE STDB (42)	723	2.94	13.00	38.22	607.5	1786.05	0.00	0.00
228	RAM Launching Device PORT	721	0.94	145.00	136.01	774.00	726.01	28.60	26.83
227	RAM Launching Device STDB	721	0.94	145.00	136.01	771.00	723.20	-28.60	-26.83
226	PHALANX PORT	721	6.29	153.78	967.28	771.00	4849.59	42.10	264.81
225	PHALANX STDB	721	6.29	153.78	967.28	774.00	4868.46	-42.10	-264.81
	GROUP 600		1405.95	28.66	40288.33	349.66	491600,46	3.32	4671.90
	TOTAL GROUP	690	65.00	14.76	959.40	135.78	8825.70	0.00	0.00
224	Repair parts and special tools	699	65.00	14.76	959.40	135.78	8825.70	0.00	0.00
	TOTAL GROUP	670	355.07	19.14	6796.61	249.56	88613.93	4.92	1747.08
223	Cargo securing fitting draw.	673	5.09	47.70	242.75	231.20	1176.58	0.00	0.00
222	Store room and issue room	673	165.00	14.99	2473.35	335.69	55388.85	8.67	1430.55
221	Auxiliary Equipment space	673	153.80	15.00	2307.00	131.71	20257.00	1.89	290.68

Appendix C Space Allocations

	Mission Support Area		Area	
SSCS	GROUP	Required	Allocated	Difference
1	MISSION SUPPORT	170476.7083	170476.7083	0
1.1	COMMAND,COMMUNICATION+SURV	23178.79637	23178.79637	0
1.11	EXTERIOR COMMUNICATIONS	1466.77315	1466.77315	0
1.12	SURVEILLANCE SYS	5481.00758	5481.00758	0
1.13		12958.04112	12958.04112	0
1.131	COMBAT INFO CENTER	10000	10000	0
1.132	CONNING STATIONS	2958.04112	2958.04112	0
1.14	COUNTERMEASURES	758.173	758.173	0
1.15	INTERIOR COMMUNICATIONS	2393.49384	2393.49384	0
1.16	ENVIORNMENTAL CNTL SUP SYS	121.30768	121.30768	0
1.2	WEAPONS	5788.94246	5788.94246	0
1.3	AVIATION	141062.2306	141062.2306	0
1.311	LAUNCHING+RECOVERY AREAS	85000	85000	0
1.3123	HELICOPTER RECOVERY	40000	40000	0
1.32	AVIATION CONTROL	2000	2000	0
1.34002	HELICOPTER HANGAR AFT	2000	2000	0
1.35	AVIATION ADMINISTRATION	2000	2000	0
1.36	AVIATION MAINTENANCE	10000	10000	0
1.37	AIRCRAFT ORDINANCE	2062.23056	2062.23056	0
1.9	SM ARMS, PYRO+SALU BAT	446.73886	446.73886	0
1.91	SM ARMS (LOCKER)	374.42082	374.42082	0
1.94	ARMORY	72.31804	72.31804	0
2	HUMAN SUPPORT	103495.6943	103495.6943	0
2.1	LIVING	75000	75000	0
2.11	OFFICER LIVING	5500	5500	0
2.13	CREW LIVING	40000	40000	0
2.14	GENERAL SANITARY FACILITIES	145.8025	145.8025	0
2.14003	DECK WASHRM&WC	145.8025	145.8025	0
2.15	SHIP RECREATION FAC	2689	2689	0
2.16	TRAINING	1200	1200	0
2.2	COMMISSARY	21295.21	21295.21	0
2.22202	WARD ROOM GALLEY	1112	1112	0
2.22204	CREW GALLEY	10000	10000	0
2.22403	CREW SCULLERY	583.21	583.21	0
2.231	CHILL PROVISIONS	2400	2400	0
2.232	FROZEN PROVISIONS	3600	3600	0
2.233	DRY PROVISIONS	6000	6000	0
2.3	MEDICAL+DENTAL (MEDICAL)	1200	1200	0
2.4	GENERAL SERVICES	4350	4350	0
2.41	SHIP STORE FACILITIES	2000	2000	0
2.42001	LAUNDRY	650	650	0
2.44	BARBER SERVICE	450	450	0
2.46	POSTAL SERVICE	450	450	0
2.47		1000	1000	0
2.48	RELIGIOUS	450	450	0
2.5	PERSONNEL STORES	76.98372	76.98372	0

2.6	CBR PROTECTION	1456.85858	1456.85858	0
2.7	LIFESAVING EQUIPMENT	116.642	116.642	0
3	SHIP SUPPORT	40006.68643	40006.68643	0
3.1	SHIP CNTL SYS(STEERING&DIVING)	3723.79585	3723.79585	0
3.2	DAMAGE CONTROL	7139.07361	7139.07361	0
3.3	SHIP ADMINISTRATION	4360.30802	4360.30802	0
3.301	GENERAL SHIP	493.97887	493.97887	0
3.302	EXECUTIVE DEPT	1133.17703	1133.17703	0
3.304	SUPPLY DEPT	1817.86557	1817.86557	0
3.305	DECK DEPT	300.35315	300.35315	0
3.306	OPERATIONS DEPT	314.9334	314.9334	0
3.307	WEAPONS DEPT	300	300	0
3.5	DECK AUXILIARIES		4357.74512	0
3.6	SHIP MAINTENANCE	20425.76383		0
3.62	OPERATIONS DEPT (ELECT SHOP)	653.1952	653.1952	0
3.63	WEAPONS DEPT (ORDINANCE SHOP)	332.4297	332.4297	0
3.64	DECK DEPT (CARPENTER SHOP)	659.61051		0
3.71	SUPPLY DEPT	13760.25674		0
3.73	OPERATIONS DEPT	428.07614	428.07614	0
3.74	DECK DEPT (BOATSWAIN STORES)	3796.6971	3796.6971	0
3.75	WEAPONS DEPT	273.52549	273.52549	0
3.76	EXEC DEPT(MASTER-AT-ARMS STOR)	317.26624	317.26624	0
3.78	CLEANING GEAR STOWAGE	204.70671		0
3.8	ACCESS (INTERIOR-NORMAL)	10060.95571		0
3.9	TANKS	797.24807		0
4	SHIP MACHINERY SYSTEM	52166.96808		0
4.1	PROPULSION SYSTEM	13545.63546	13545.63546	0
4.3		11549.30763	11549.30763	0
4.31	GENERAL (AUX MACH DELTA)	6679.50413	6679.50413	0
4.32		4869.8035	4869.8035	0
4.321 4.322	A/C(INCLUDE VENT) REFRIGERATION	3586.15829	3586.15829	0
4.322 4.341	SEWAGE	999.62194	999.62194	0
4.341	TRASH	189.54325 94.48002	189.54325 94.48002	0 0
4.342 4.35	MECHANICAL SYSTEMS	94.48002 703.93447	94.48002 703.93447	0
4.35 4.36			15000	0
4.30		15000		
	SUM	366146.0571	366146.0571	0

Appendix D Tank Weights

OOC POSSE-LOAD V2.2 01-23-03

SOF -- SOF Rev. 1 (by: WOLF-BAB)

TANK WEIGHT SUMMARY FAIRED LINES PLAN

ruel Oil Tanks

	WEIGHT		CAPACITY	VOLUME	NET VOL.	API	TEMP.	SP.VOL.	KG	LCG	TCG	F.S.
TANK NAME	LTons	Full	LTons	Bbls	Bbls	GRAV.	oF	Bbls/LT	ft-BL	ft-FP	ft-CL	ft-LTons
W3D 8-80-2	272	98.0	278	1,893	1,893		60.0	6.9465	6.82	545.63A	41.58P	157
W3D 8-80-1	274	98.0	279	1,900	1,900		60.0	6.9465	6.75	545.37A	41.475	149
W3B 8-68-1	274	98.0	280	1,903	1,903		60.0	6.9465	6.71	444.04A	41.30S	149
W3B 8-68-2	232	98.0	237	1,613	1,613		60.0	6.9465	6.04	443.87A	41.05P	53
W3C 8-74-1	279	98.0	284	1,936	1,936		60.0	6.9465	6.67	494.78A	41.415	149
W3C 8-74-4	237	98.0	242	1,647	1,647		60.0	6.9465	6.01	494.37A	41.18P	53
TOTALS	1,568	98.0	1,600	10,891	10,891				6.52	495.98A	2.285	710

Diesel Oil Tanks

	TANK NAME	MEIGHT	% Full	CAPACITY LTons	VOLUME Bbls	NET VOL. Bbls	API GRAV.	TEMP.	SP.VOL. Bbls/LT	KG ft-BL	LCG ft-FP	TCG ft-CL	F.S. ft-LTons
	DP 8-32-1	662	98.0	675	4,596	4,596		60.0	6.9465	9.43	169.71A	10.135	1,725
	DP 8-32-2	635	98.0	648	4,412	4,412		60.0	6.9465	9.46	168.92A	10.31P	1,640
	W3A 8-62-1	0	0.0	263	0	0		60.0	6.9465	7.60	393.80A	40.84S	0
	W3A 8-62-4	195	98.0	199	1,356	1,356		60.0	6.9465	6.57	393.87 . A	40.48P	80
	W4 8-86-3	447	98.0	456	3,106	3,106		60.0	6.9465	6.49	615.11A	40.525	236
	W4 8-86-6	452	98.0	461	3,141	3,141		60.0	6.9465	6.45	615.71 A	40.40P	236
	DB4A 8-98-01	166	98.0	170	1,155	1,155		60.0	6.9465	4.37	694.03A	21.758	626
÷.	B4A 8-98-2	150	98.0	153	1,043	1,043		60.0	6.9465	4.50	693.16A	23.70P	355
1	DP 6-116-1	168	98.0	172	1,169	1,169		60.0	6.9465	30.16	837.48A	30.615	557
	ST 5-116-3	409	98.0	418	2,843	2,843		60.0	6.9465	46.75	847.28A	24.425	411
	ST 5-116-1	369	98.0	376	2,560	2,560		60.0	6.9465	46.75	851.50 A	11.005	188
	SV 5-116-0	750	98.0	765	5,209	5,209		60.0	6.9465	46.75	852.05A	7.56P	1,265
	DP 6-116-4	168	98.0	172	1,169	1,169		60.0	6.9465	30.16	837.48 .	30.61P	557
	TOTALS	4,572	92.8	4,928	31,760	31,760					579.79A	0.125	7,876

Lube Oil Tanks

	WEIGHT		CAPACITY	VOLUME	SP.VOL.	KG	LCG	TCG	F.S.
TANK NAME	LTons	Full	LTons	ft3	ft3/LT	ft-BL	ft-FP	ft-CL	ft-LTons
RGS 5-116-11	71	98.0	72	2,988	42.2134	46.74	838.34A	48.945	23
SSDG 5-116-9	13	98.0	13	531	42.2134	46.71	831.00A	45.508	1
RGSL 5-116-7	50	98.0	51	2,129	42.2134	47.65	836.69A	41.00S	10
TOTALS	134	98.0	136	5,648		47.08	837.03 A	45.628	34

OOC POSSE-LOAD V2.2 01-23-03

TANK WEIGHT SUMMARY FAIRED LINES PLAN

Fresh Water Tanks

	WEIGHT	٩	CAPACITY	VOLUME	SP.VOL.	KG	LCG	TCG	F.S.
TANK NAME	LTons	Full	LTons	ft3	ft3/LT		ft-PP	ft-CL	ft-LTons
POT 5-116-6	88	67.0	132		35.8814	48.21	838.50A	30.50P	42
POT 5-116-8	88	67.0	132	3,164	35.8814	48.21	838.50A	39.50P	42
DIS 5-116-10	57	67.0	85	2,054	35.8814	48.26	838.47A	49.92P	12
DTA 6-116-0	194	67.0	290	6,801	35.0062	27.91	838.00A	0.238	2,056
APF 6-126-1	248	67.0	371	8,696	35.0062	33.90	862.98A	20.78S	7,980
APF 6-126-2	248	67.0	371	8,696	35.0062	33.90	862.98A	20.78P	7,980
TOTALS	925	67.0	1,381	32,575		36.26	851.55A	9.72P	18,114

SW Ballast Tanks

		WEIGHT	\$	CAPACITY	VOLUME	SP.VOL.	KG	LCG	TCG	F.S.
	TANK NAME	LTons	Full	LTons	ft3	ft3/LT	ft-BL	ft-FP	ft-CL	ft-LTons
							· • • • • • • • • •			
	FPK 612-0	0	0.0	733	0	35.0062	43.53	10.76A	0.00	0
	NO1 8-25-0	0	0.0	1,090	0	35.0062	17.75	86.42A	0.00	0
	W2A 8-44-01	0	0.0	310	0	35.0062	10.49	234.93A	20.928	0
	W2A 8-44-4	0	0.0	309	0	35.0062	10.49	235.65A	21.02P	0
	W2B 8-50-1	0	0.0	244	0	35.0062	10.43	290.31A	32.995	0
	W2B 8-50-2	0	0.0	232	0	35.0062	10.22	290.93A	32.96P	0
	W2C 8-56-1	0	0.0	224	0	35.0062	10.18	340.87A	39.635	0
L	2C 8-56-2	132	60.0	219	4,605	35.0062	10.17	340.45A	39.68P	588
C	- DB3F 8-62-0	0	0.0	412	. 0	35.0062	2.75	415.07A	11.465	0
	DB3F 8-62-2	342	98.0	34.9	11,980	35.0062	2.75	414.55A	13.52P	798
	DB4F 8-86-0	0	0.0	415	0	35.0062	2.76	621.99A	11.498	0
	DB4F 8-86-2	345	98.0	352	12,085	35.0062	2.76	621.99A	13.54P	802
	LC 7-94-1	0	0.0	341	0	35.0062	11.72	687.09A	38.738	0
	LC 7-94-2	334	98.0	341	11,695	35.0062	11.72	687.12A	38.74P	1,046
	DB3A 8-74-2	332	98.0	338	12,931	39.0015	2.75	520.00 A	14.00P	744
	DB3A 8-74-0	257	65.0	395	10,006	39.0015	2.75	520.00A	12.005	4,803
	TOTALS	1,741	28.3	6,304	63,301		5.03	538.00A	16.67P	8,780

Misc. Tanks

	WEIGHT	*	CAPACITY	VOLUME	SP.VOL.	KG	LCG	TCG	F.S.
TANK NAME	LTons	Pull	LTons	ft3	ft3/LT	ft-BL	ft-FP	ft-CL	ft-LTons
LOSM 8-104-1	53	98.0	54	1,911	35.8814	10.48	738.89A	17.815	78
LOSM 8-105-2	38	98.0	39	1,374	35.8814	10.71	742.30A	17.74P	58
LORG 4-106-2	13	98.0	14	484	35.8814	52.33	746.50A	10.00P	7
LORG 4-106-4	10	98.0	10	363	35.8814	52.33	746.50A	17.00P	4
OWHT 8-98-0	21	98.0	21	743	35.8814	2.81	677.49A	5.928	29
WOT 8-98-02	49	98.0	50	1,765	35.8814	2.90	683.62A	2.49P	151
LODT 8-103-4	50	98.0	51	1,796	35.8814	9.27	723.62A	18.21P	35
ERMO 8-104-0	79	98.0	80	2,827	35.8814	8.05	732.90A	0.00	102
GTWD 8-107-0	18	98.0	18	643	35.8814	9.58	756.79A	0.23P	25
'OPS 7-112-2	11	98.0	12	411	35.8814	16.04	797.48A	7.76P	8
/PST 7-112-1	11	98.0	11	399	35.8814	16.02	797.54A	7.565	8

OOC POSSE-LOAD V2.2 01-23-03

TANK WEIGHT SUMMARY FAIRED LINES PLAN

Misc. Tanks

TANK NAME	WEIGHT LTons	۹ Full	CAPACITY LTons	VOLUME ft3	ft3/LT		LCG ft-FP	TCG ft-CL	F.S. ft-LTons
GWT 5-126-1 SWHT 5-130-1	63 39	98.0 98.0	64 40	2,252 1,408	35.8814 35.8814	45.76 46.63	854.50A 866.57A	39.40S 37.835	139 29
TOTALS	456	98.0	464	16,376		19.15	758.59A	6.578	674

OOC POSSE-LOAD V2.2 01-23-03

Misc. Weig							
	WEIGHT	KG	LCG	TCG	F.S.	FWD BND	AFT
ITEM	LTons	ft-BL	ft-FP	ft-CL	ft-LTons	ft-FP	ft-)
CREW	360	35.00	544.50A	0.00	° 0	528.10A	560
MISS EXPENS	120	32.00	522.50A	0.00	0	506.10A	538
HELLO	127	80.00	472.00A	0.00	0	455.60A	488
BOATS	117	80.00	472.00A	0.00	0	455.60A	488
SWIPS STORES	678	28.00	475.00A	0.00	0	458.60A	491
MEDICAL	19	47.40	365.50A	0.00	0	349.10A	381
DRY STORES	260	28.00	510.00A	0.00	0	493.60A	526
FREEZE STORE	180	28.00	509.30A	0.00	0	492.90A	525

CARGO SUMMARY

OOC POSSE-LOAD V2.2 01-23-03

22.38 579.79A 0.12S 31,249

~

TANK WEIGHT SUMMARY FAIRED LINES PLAN

Fuel Oil T	anks											
	WEIGHT		CAPACITY	VOLUME	NET VOL.	API	TEMP.	SP.VOL.	KG	LCG	TCG	F.S.
TANK NAME	LTons	Pull	LTons	Bbls	Bbls	GRAV.	oF	Bbls/LT	ft-BL	ft-FP	ft-CL	ft-LTons
W3D 8-80-2	186	67.0	278	1,294	1,294		60.0	6.9465	6.82	545.63A	41.58P	1,482
W3D 8-80-1	187	67.0	279	1,299	1,299		60.0	6.9465	6.75	545.37A	41.475	1,482
W3B 8-68-1	187	67.0	280	1,301	1,301		60.0	6.9465	6.71	444.04A	41.30S	1,432
W3B 8-68-2	159	67.0	237	1,103	1,103		60.0	6.9465	6.04	443.87A	41.05P	1,432
W3C 8-74-1	191	67.0	284	1,324	1,324		60.0	6.9465	6.67	494.78A	41.415	1,485
W3C 8-74-4	162	67.0	242	1,126	1,126	••••	60.0	6.9465	6.01	494.37A	41.18P	1,485
TOTALS	1,072	67.0	1,600	7,446	7,446				6.52	495.98 A	2.285	8,799
Diesel Oil	Tank	s										
	WEIGHT		CAPACITY	VOLUME	NET VOL.	API	TEMP.	SP.VOL.	KG	LCG	TCG	F.S.
TANK NAME	LTons	Full	LTons	Bbls	Bbls	GRAV.	oF	Bbls/LT	ft-BL	ft-FP	ft-CL	ft-LTons
DP 8-32-1	452	67.0	675	3,142	3,142		60.0	6.9465	9.43	169.71A	10.135	4,038
DP 8-32-2	434	67.0	648	3,017	3,017		60.0	6.9465	9.46	168.92A	10.31P	3,914
W3A 8-62-1	0	0.0	263	0	+		60.0	6.9465	7.60	393.80A	40.84S	0
W3A 8-62-4	133	67.0	199	927	927		60.0	6.9465	6.57	393.87A	40.48P	997
W4 8-86-3	306	67.0	456	2,124	2,124		60.0	6.9465	6.49	615.11A	40.528	2,428
W4 8-86-6	309	67.0	461	2,147	2,147		60.0	6.9465	6.45	615.71A	40.40P	2,501
DB4A 8-98-01	114	67.0	170	790	790		60.0	6.9465	4.37	694.03A	21.758	6,065
B4A 8-98-2	103	67.0	153	713	713		60.0	6.9465	4.50	693.16A	23.70P	4,508
DP 6-116-1	115	67.0	172	799	799		60.0	6.9465	30.16	837.48A	30.618	2,239
ST 5-116-3	280	67.0	418	1,944	1,944		60.0	6.9465	46.75	847.28A	24.425	429
ST 5-116-1	252	67.0	376	1,750	1,750		60.0	6.9465	46.75	851.50A	11.005	189
SV 5-116-0	513	67.0	765	3,561	3,561		60.0	6.9465	46.75	852.05A	7.56P	1,702
DP 6-116-4	115	67.0	172	799	799		60.0	6.9465	30.16	837.48A	30.61P	2,239

Lube Oil Tanks

TANK NAME	WEIGHT LTons	¥ Pull	CAPACITY LTons	VOLUME ft3	SP.VOL. ft3/LT	KG ft-BL	LCG ft-FP	TCG ft-CL	F.S. ft-LTons
RGS 5-116-11	48	67.0	72	2,043	42.2134	46.74	838.34A	48.945	23
SSDG 5-116-9	9	67.0	13	363	42.2134	46.71	831.00A	45.50S	1
RGSL 5-116-7	34	67.0	51	1,455	42.2134	47.65	836.69A	41.00S	53
TOTALS	. 91	67.0	136	3,861		47.08	837.03A	45.628	77

TOTALS 3,126 63.4 4,928 21,714 21,714

OOC POSSE-LOAD V2.2 01-23-03

TANK WEIGHT SUMMARY FAIRED LINES PLAN

	WEIGHT	*	CAPACITY	VOLUME	SP.VOL.	KG	LCG	TCG	F.S
TANK NAME	LTons	Pull	LTons	ft3	ft3/LT	ft-BL	ft-FP	ft-CL	ft-LT
POT 5-116-6	43	33.0	132	1,558	35.8814	48.21	838.50A	30.50P	4
POT 5-116-8	43	33.0	132	1,558	35.8814	48.21	838.50A	39.50P	4
DIS 5-116-10	28	33.0	85	1,012	35.8814	48.26	838.47A	49.92P	1
DTA 6-116-0	96	33.0	290	3,350	35.0062	27.91	838.00A	0.235	2,05
APF 6-126-1	122	33.0	371	4,283	35.0062	33.90	862.98A	20.785	7,98
APF 6-126-2	122	33.0	371	4,283	35.0062	33.90	862.98A	20.78P	7,98

SW Ballast Tanks

	WEIGHT	\$	CAPACITY	VOLUME	SP.VOL.	KG	LCG	TCG	F.S.
TANK NAME	LTons	Full	LTons	ft3	ft3/LT	ft-BL	ft-FP	ft-CL	ft-LTons
FPK 612-0	0	0.0	733	0	35.0062	43.53	10.76A	0.00	0
NO1 8-25-0	0	0.0	1,090	0	35.0062	17.75	86.42A	0.00	0
W2A 8-44-01	. 0	0.0	310	0	35.0062	10.49	234.93A	20.925	0
W2A 8-44-4	0	0.0	309	0	35.0062	10.49	235.65A	21.02P	. 0
W2B 8-50-1	0	0.0	244	0	35.0062	10.43	290.31A	32.998	0
W2B 8-50-2	228	98.0	232	7,968	35.0062	10.22	290.93A	32.96P	399
W2C 8-56-1	0	0.0	224	0	35.0062	10.18	340.87A	39.638	0
2C 8-56-2	136	62.0	219	4,758	35.0062	10.17	340.45A	39.68P	588
B3F 8-62-0	0	0.0	412	0	35.0062	2.75	415.07A	11.468	0
DB3F 8-62-2	342	98.0	349	11,980	35.0062	2.75	414.55A	13.52P	798
DB4F 8-86-0	249	60.0	415	8,718	35.0062	2.76	621.99A	11.495	4,949
DB4F 8-86-2	345	98.0	352	12,085	35.0062	2.76	621.99 λ	13.54P	802
LC 7-94-1	334	98.0	341	11,708	35.0062	11.72	687.09A	38.735	1,033
LC 7-94-2	334	98.0	341	11,695	35.0062	11.72	687.12A	38.74P	1,046
DB3A 8-74-2	332	98.0	338	12,931	39.0015	2.75	520.00A	14.00P	744
DB3A 8-74-0	387	98.0	395	15,086	39.0015	2.75	520.00A	12.005	1,033

TOTALS	2,687	43.3	6,304	96,929		5.99	542.22A	7.19P	11,392

Misc. Tanks

	WEIGHT		CAPACITY	VOLUME	SP.VOL.	KG	LCG	TCG	F.S.
TANK NAME	LTons	Full	LTons	ft3	ft3/LT	ft-BL	ft-FP	ft-CL	ft-LTons
LOSM 8-104-1	. 36	66.0	54	1,287	35.8814	10.48	738.89 A	17.815	261
LOSM 8-105-2		66.0	39	925	35.8814	10.71	742.30A	17.74P	212
LORG 4-106-2	9	66.0	14	326	35.8814	52.33	746.50A	10.00P	11
LORG 4-106-4	7	66.0	10	244	35.8814	52.33	746.50A	17.00P	5
OWHT 8-98-0	14	66.0	21	500	35.8814	2.81	677.49A	5.925	86
WOT 8-98-02	33	66.0	50	1,189	35.8814	2.90	683.62A	2.49P	595
LODT 8-103-4	34	66.0	51	1,209	35.8814	9.27	723.62A	18.21P	94
ERWO 8-104-0	53	66.0	80	1,904	35.8814	8.05	732.90A	0.00	194
GTWD 8-107-0	12	66.0	18	433	35.8814	9.58	756.79A	0.23P	61
"OPS 7-112-2	8	66.0	12	277	35.8814	16.04	797.48A	7.76P	33
.PST 7-112-1	7	66.0	11	268	35.8814	16.02	797.54A	7.56S	29

00C POSSE-LOAD V2.2 01-23-03

TANK	WEIC	GHT	SUN	MARY
FAI	IRED	LIN	IES	PLAN

misc. Tank	8								
	WEIGHT	۰.	CAPACITY	VOLUME	SP.VOL.	KG	LCG	TCG	P.S.
TANK NAME	LTons	Full	LTons	ft3	ft3/LT	ft-BL	ft-FP	ft-CL	ft-LTons
GWT 5-126-1	42	66.0	64	1,517	35.8814	45.76	854.50A	39.40S	317
SWHT 5-130-1	26	66.0	40	948	35.8814	46.63	866.57A	37.835	40
TOTALS	307	66.0	464	11,029		19.15	758.59A	6.575	1,937

00C POSSE-LOAD V2.2 01-23-03

凤 』

Misc. Weights

ITEM	WEIGHT LTons	KG ft-BL	LCG ft-FP	TCG ft-CL	F.S. ft-LTons	FWD BND ft-FP	AFT BND ft-FP
CREW	360	35.00	544.50A	0.00	0	528.10A	560.90A
MISS EXPENS	40	32.00	522.50A	0.00	0.	506.10A	538.90A
HELO	127	80.00	472.00A	0.00	0	455.60A	488.40A
BOATS	117	80.00	472.00A	0.00	• •	455.60A	488.40A
SHIP'S STORE	224	28.00	475.00A	0.00	· 0	458.60A	491.40A
MEDICAL	19	47.40	465.40A	0.00	0	449.00A	481.80A
DRY STORES	86	28.00	510.00A	0.00	0	493.60A	526.40A
FREEZE STORE	59	28.00	509.30A	0.00	0	492.90A	525.70A
TOTALS	1,032	43.25	505.08A	0.00	0		

Appendix E POSSE Intact Stability Analysis

STILL WATER FULL LOAD

OOC POSSE-LOAD V2.2 01-23-03

1

TRIM & STABILITY SUMMARY FAIRED LINES PLAN

- . -

· -- ---

ITEM	WEIGHT	KG	LCG	TCG	FSmom
	LTons	ft-BL	ft-FP	ft-CL	ft-LTons
Light Ship Constant	37,681 0	45.57 0.00	441.70A 452.50A	0.658	0
RoRo Cargo	0	0.00	452.50A	0.00	0
Misc. Weight	· 1,861	36.63	437.82A	0.00	
Fuel Oil	546	6.78	545.50A	0.02S	306
Diesel Oil	5,404	19.97	547.16A	0.65P	8,265
Lube Oil	134	47.08	837.03A	45.62S	34
Fresh Water	230	48.22	838.49A	38.66P	97
SW Ballast	2,625	12.68	645.23A	7.86P	7,737
Misc.	456	19.15	758.59A	6.57S	674
TOTALS	48,937	39.98	471.18A	0.015	17,112

KMt KG GMt FSc GMt (TY CALCULATION 52.27 39.98 12.29 0.35 Corrected 11.94 Required 5.25	ft ft ft	TRIM CALCULATION LCF Draft LCB (even keel) LCF MTlin Trim Prop. Immersion	482.80 9,776 0.20	ft-AFT ft-AFT ft-LT/in ft-AFT
	-		Prop. Immersion	114	20
GMt N	Margin 6.69	ft	List	0.06	deg-STBD

DRAFTS

F.P. 27ft- 8.5in (8.45m) M.S. 27ft- 9.7in (8.48m) A.P. 27ft-11.0in (8.51m) Fwd Marks 27ft- 8.6in (8.45m) M.S.Marks 27ft- 9.8in (8.48m) Aft Marks 27ft-10.9in (8.51m)

STRENGTH CALCULATIONS

Shear Force at	110	4,585 LT		
Bending Moment	at 76	1,107,598	ft-LTons	[HOG]

```
SOF -- SOF
Rev. - (by: WOLF-BAB)
```

5

to esa

GOC POSSE-LOAD V2.2 01-23-03

FAIRED LINES PLAN 5 10 +TENS] 4 8 з 6 BENDING S H E A R 2 4 1 2 0 0 STRESS -1 STRESS -2 -2 -4 -3 -6 Keel Deck -4 -8 -COMP -5 -10 AP 110 98 84 76 68 59 25 FP 51 F42 33 o = Shear Stress = Bending Stress _

		SHE	AR FORCES	в	ENDING MOME	NTS	
	LOCATION	SHEAR	SHEAR STRESS	MOMENT	DK STRESS	KL STRESS	
No.	ft-FP	LTons	ksi	ft-LTons		ksi	
25	55.00A	-1,429	-3.47	49,2658		-2.39	
33	121.00A	-2,644	-2.73	185,367H	2.22	-3.27	
36	148.00A	-3,161	-2.65	264,0298	2.63	-3.70	
F42	199.00A	-3,998	-2.46	447,575H	3.37	-4.51	
51	274.00A	-3,529	-2.41	743,701H	6.08	-7.39	
55	310.00A	-2,827	-1.99	859,240H	7.15	-8.27	
59	343.00A	-2,071	-1.43	940,011H	7.65	-8.46	
62	367.00A	-1,807	-1.19	985,371H	7.63	-8.19	
68	418.00A	-1,043	-0.61	1,064,676H	7.39	-7.53	
MS	452.50A	-657	-0.36	1,089,776H	7.07	-7.00	
72	454.00A	-656	-0.36	1,090,745H	7.10	-7.03	
76	487.00A	-140	-0.08	1,107,598H	7.56	-7.61	
80	520.00A	736	0.43	1,097,524H	7.72	-7.92	
84	556.00A	1,411	0.84	1,058,446H	7.55	-7.91	
93	631.00A	2,660	1.57	885,618H	6.39	-7.01	
98	673.00A	2,765	1.61	776,889H	5.60	-6.31	
F98	709.00A	3,348	1.93	667,409H	4.80	-5.54	
104	724.00A	3,642	2.21	615,177H	4.67	-5.42	
110	775.00A	4,585	3.46	404,1548	3.76	-4.50	
126	851.00A	2,619	3.08	70,660H	1.00	-1,30	
Maxim	um Shear Str	ess at 25:		-3.47 ksi			
Maxim	um Deck Bend	ling Stress	at 80:	7.72 ksi			
Maxim	um Keel Bend	ing Stress	at 59:	-8.46 ksi			

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

STILL WATER FULL LOAD WIND

P

....

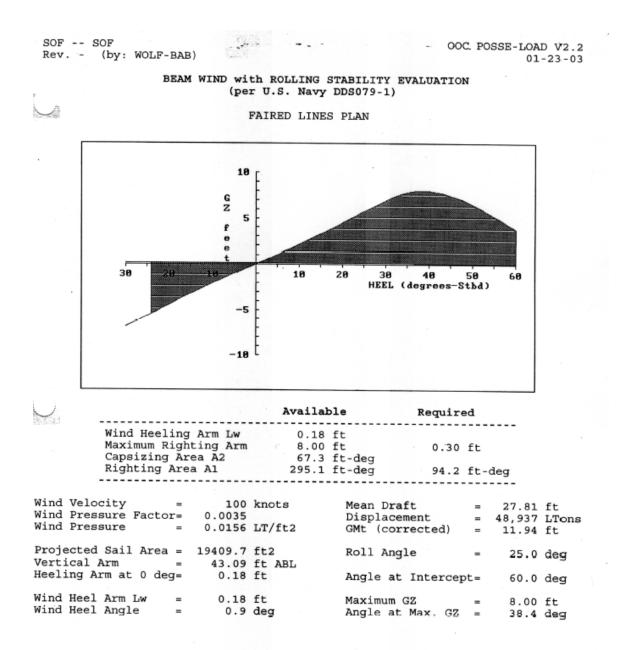
TRIM & STABILITY SUMMARY FAIRED LINES PLAN

1. · · · ·

	Â	

ITEM	WEIGHT LTons	KG ft-BL	LCG ft-FP	TCG ft-CL	FSmom ft-LTons
Light Ship	37,681	45.57	441.70A	0.655	
Constant	0	0.00	452.50A	0.00	0
RoRo Cargo	0	0.00	452.50A	0.00	
Misc. Weight	1,861	36.63	437.82A	0.00	0
Fuel Oil	546	6.78	545.50A	0.025	306
Diesel Oil	5,404	19.97	547.16A	0.65P	8,265
Lube Oil	134	47.08	837.03A	45.62S	34
Fresh Water	230	48.22	838.49A	38.66P	97
SW Ballast	2,625	12.68	645.23A	7.86P	7,737
Misc.	456	19.15	758.59A	6.575	674
TOTALS	48,937	39.98	471.18A	0.015	17,112

STABI	LITY CALCUL	ATTON		TRIM CALCULATION			
KMt		52.27	ft	LCF Draft	27.82	ft	
KG		39.98	ft	LCB (even keel)			
GMt		12.29	ft	LCF		ft-AFT	
FSc		0.35	ft	MTlin	9,776	ft-LT/in	
GMt	Corrected	11.94		Trim	0.20	ft-AFT	
GMt	Required	5.25		Prop. Immersion	114	ale .	
GMt	Margin	6.69	ft	List	0.06	deg-STBD	


DRAFTS

M.S.	27ft- 8.5in 27ft- 9.7in 27ft-11 0in	(8.48m)	M.S	.Marks	27ft-	9.8in	(8.45m) 8.48m)
A.P.	27ft-11.0in	(8.51m)	Aft	Marks	27ft-1	L0.9in	(8.51m)

- -

STRENGTH CALCULATIONS Shear Force at 110

snear Force at	110	4,585 LT		
Bending Moment	at 76	1,107,598	ft-LTons	[HOG]

 \cup

STILL WATER FULL LOAD TURN

ź,

OOC POSSE-LOAD V2.2 01-23-03

EFFECT on STABILITY of HIGH SPEED TURNING (per U.S. Navy DDS079-1) FAIRED LINES PLAN

10 GZ 5 f e e t Ø 10 20 30 48 50 60 HEEL (degrees-Stbd) -5 Available Required ----------Angle of Heel 2.2 deg 0.44 ft 15.0 deg Heeling Arm Lc Maximum Righting Arm 8.00 ft 0.74 ft Total Righting Area Reserve Righting Area 302.6 ft-deg 281.1 ft-deg 121.0 ft-deg ----------24.0 knots 3000 ft 0.44 ft Ship Speed in Turn = Displacement 48,937 LTons = Turn Circle Radius = 39.98 ft 27.81 ft VCG = Heeling Arm at 0 deg= Mean Draft = Angle at Max. GZ Positive GZ Range = Angle at Intercept= 38.4 deg -60.0 deg 60.0 deg

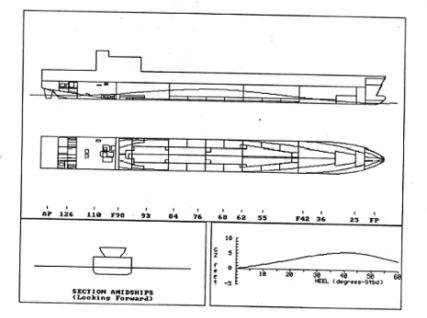
INTACT STABILITY FULL LOAD HOGGING-SAGGING

CVT-1 -- SOF Rev. -

OOC POSSE-SALV V2.2

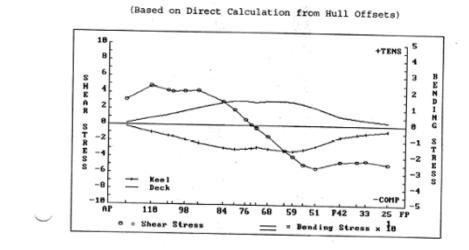
4

-


FREE-FLOATING DAMAGED CONDITION

- - -

....


Damaged Compartments: LORG 4-106-2

	DISPLACEMENT	DRAFT FWD	DRAFT AFT	TRIM	HEEL	UPRIGHT GMt
	LTons	ft	ft	ft	deg.	ft
INTACT	48,937	27.71	27.91	0.20A	0.1S	11.94
DAMAGED	48,923	22.06	26.59	4.53A	0.1S	8.01

CVT-1 S0 Rev	OF		-		4 	-	00C	POSSE-SALV	V2.2
	SHEAR	å	LONGITUDINAL Stresses	BENDING in ksi	STRESS	SUMD	(ARY		

Wave Height: 33.09 ft Wave Position: 452.50A ft-FP Wave Length: 905.00 ft

2 Ŀ

.

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

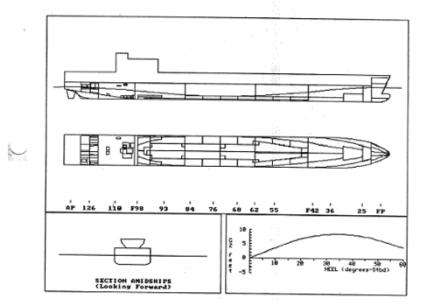
- . -

FAIRED LINES PLAN

		SHE	AR FORCES	BENDING MOMENTS				
	LOCATION	SHEAR	SHEAR STRESS	MOHENT	DK STRESS	KL STRESS		
No.	ft-PP	LTons	ksi	ft-LTons	kei	kei		
					1000			
25	55.00A	-1,988	-4.82	66,7848	2.10	-3.25		
33	121.00A	-4,263	-6.41	271,3308	3.26	-4.80		
36	148.00A	-5,369	-4.50	401,5158	4.01	-5.64		
742	199.00A	-7,353	-4.53	727,3488	5.49	-7.35		
51	274.00A	-7,838	-5.36	1,320,6028	10.82	-13.16		
55	320.00A	-6,977	-4.90	1,590,2648	13.26	-15.34		
59	343.00A	-5,701	-3.94	1,799,8018	14.68	-16.23		
62	367.00A	-4,854	-3.19	1,925,6828	14.95	-16.04		
6.8	418.00A	-2,415	-1.42	2,120,7958	14.76	-15.03		
MS	452.50A	-705	-0.39	2,169,4488	14.11	-13.97		
72	454.00A	-647	-0.36	2,170,4528	14.15	-14.02		
Mx	469.75A	0	0.00	2,176,0678	14.62	14.42		
76	487.00A	1,148	0.66	2,166.9548	14.83	-14.93		
80	520.00A	3,210	1.90	2,094,0608	14.77	-15.14		
84	556.00A	4.947	2.94	1,945,0928	33.91	-14.56		
93	631.00A	7,270	4.28	1,456,0788	10.53	-11.56		
98	673.00A	7,177	4.17	1,155,8058	8.34	-9.41		
F98	709.00A	7,127	4.10	897,6358	6.47	-7.47		
104	724.00A	7,039	4.28	791,5098	6.02	-6.99		
110	775.00A	6,290	4.75	448,2788	4.18	-5.00		
126	851.00A	2,645	3.11	67,331H	0.95	-1.24		

Maximum Deck Bending Stress at 62: Maximum Keel Bending Stress at 59:

14.95 kai -16.23 kai

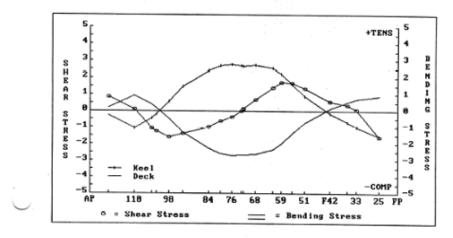

1

FREE-FLOATING DAMAGED CONDITION

Jamaged Compartments: LORG 4-106-2

1

	DISPLACEMENT LTons	DRAFT FWD	DRAFT AFT ft	TRIM ft	HEEL deg.	UPRIGHT GMt ft
INTACT	48,937	27.71	27.91	0.20A	0.1S	11.94
DAMAGED	48,923	36.77	25.93	10.85F	0.0S	20.55



-

CVT-1 -- SOF Rev. -SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

FAIRED LINES PLAN Wave Height: 33.09 ft Wave Position: 0.00 ft-FP Wave Length: 905.00 ft

(Based on Direct Calculation from Hull Offsets)

-10

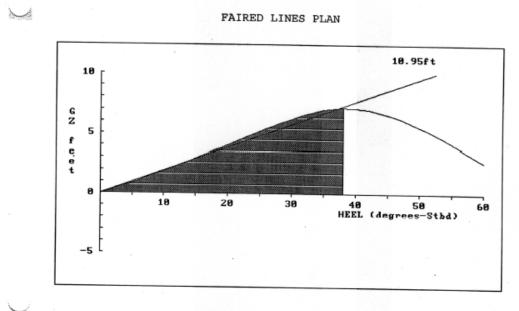
SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

FAIRED LINES PLAN

		SHE	AR PORCES		ENDING MONES	NTS
	LOCATION	SHEAR	SHEAR STRESS	HOMENT	DK STRESS	KL STRESS
No.	ft-#P	LTons	kei	ft-LTons	ksi	ksi
25	55.00 A	-656	-1.59	32, 2588	0.87	-1.57
33	121.00A	66	0.07	56, 724%	0.68	-1.00
36	148.00A	399	0.33	50,6518	0.50	-0.71
F42	199.00A	873	0.54	16,856%	0.13	-0,17
51	274.00A	1,984	1.36	87,7565	-0.72	0.87
55	310.00A	2,352	1.65	166,5208	-1.39	1.60
59	343.00A	2,467	1.70	246,3935	-2.01	2.22
62	367.00A	2,097	. 1.38	302,4918	-2.34	2.52
68	418.003	1,152	0.68	381,1735	-2.65	2.70
MS	452.50A	212	0.12	408,3418	-2.65	2.63
72	454.00%	154	0.08	408,6345	-2.66	2.64
Μх	457.95X	-0	-0.00	409,0005	-2.68	2.66
76	487.003	-643	-0.37	397,6955	-2.72	2.74
80	520.00A	-1,046	-0.62	369,5478	-2,60	2.67
84	556.00A	-1,656	-0.98	320,4525	-2.29	2.40
93	631.00A	-2,363	-1.39	182,4328	-1.32	1.45
98	673.00A	-2,748	-1.60	68,1555	-0.49	0.55
PPB	709.00A	-2,171	-1.25	22,1408	0.16	-0.18
104	724.00%	-1,761	-1.07	51,9228	0.39	-0.46
110	275.00A	100	0.08	96,313H	0.90	-1.07
126	\$51.00k	725	0.85	14,1058	0.20	-0.26
laxim	un Shear Str			1.70 kei		
Axi m	un Deck Bend	ing Streed	at 76;	-2.72 kai		
axim	un Keel Bend	ling Stress	at 76:	2.74 kai		

2.74 ksi

N.


STILLWATER MOC

```
SOF -- SOF
Rev. - (by: WOLF-BAB)
```

- ---

OOC POSSE-LOAD V2.2 01-23-03

STATICAL STABILITY

Angle of Heel	0.4	deg-S	
Angle at Maximum GZ	38.3	deg	
Area to 38.3 degrees	145.93	ft-deg	
Maximum GZ	7.13	ft	

B. A

2

FAIRED LINES PLAN 5 4 10 +TENS] 8 зİ 6 BENDING SHEAR z 4 1 z 0 0 STRESS -1 STRESS -2 -2 -4 -3 -6 Keel -4 Deck -8 -COMP -5 -10 84 76 AP 110 98 68 59 51 F42 25 FP 33 o = Shear Stress = Bending Stress ____

		SHE	AR FORCES		ENDING MOME	NTS
	LOCATION	SHEAR	SHEAR STRESS	MOMENT	DK STRESS	KL STRESS
No.	ft-FP	LTons	ksi	ft-LTons	ksi	ksi
25	55.00A	-1,455		50,711H		
33	121.00A	-2,712	-2.80	190,359H	2.28	-3.36
36	148.00A	-3,183	-2.66	270,258H	2.69	-3.79
F42	199.00A	-3,893	-2.40	451,894H	3.40	-4.56
51	274.00A	-3,577	-2.45	741,861H	6.06	-7.38
55	310.00A	-3,143	-2.21	863,861H		-8.32
59	343.00A	-2,519	-1.74	957,613H	7.79	-8.62
62	367.00A	-2,090	-1.37	1,012,554H	7.84	-8.42
68	418.00A	-1,132	-0.67	1,097,733H	7.62	
MS	452.50A	-564	-0.31	1,124,4748	7.30	-7.23
72	454.00A	-546	-0.30	1,125,2918	7.32	-7.25
76	487.00A	137	0.08	1,134,1998	7.75	-7.80
80	520.00A	1,009	0.60	1,115,046H	7.85	-8.04
84	556.00A	1,683	1.00	1,066,152H	7.61	-7.97
93	631.00A	2,814	1.66	876,269H	6.32	-6.94
98	673.00A	2,811	1.63	763,270H	5.50	-6.20
F98	709.00A	3,367	1.94	652,299H	4.69	-5.42
104	724.00A	3,630	2.21	600,003H	4.55	-5.29
110	775.00A	4,452	3.36	391,831H		-4.37
126	851.00A	2,748	3.23	72,141H	1.02	-1.32
Maxim	um Shear Str			-3.53 ksi		
Maxim	m Deck Bend	ing Stress	at 80:	7.85 ksi	,	
				-8.62 ksi		

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

STILLWATER MOC WIND

Wind Heel Angle

=

1.4 deg

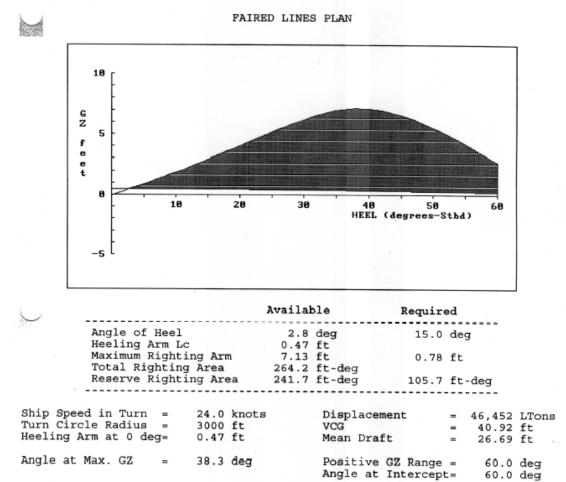
GOC POSSE-LOAD V2.2 01-23-03

BEAM WIND with ROLLING STABILITY EVALUATION (per U.S. Navy DDS079-1)

10 GZ 5 f e e 30 20 30 40 10 50 68 HEEL (degrees-Stbd) -5 -10 Available Required ----------Wind Heeling Arm Lw 0.20 ft 7.13 ft 58.7 ft-deg 256.0 ft-deg Maximum Righting Arm 0.33 ft Capsizing Area A2 Righting Area A1 82.2 ft-deg _____ Wind Velocity = 100 knots Wind Pressure Factor= 0.0035 0.0156 LT/ft2 Mean Draft 26.69 ft 46,452 LTons = Displacement = GMt (corrected) -10.95 ft Projected Sail Area = 20421.9 ft2 Roll Angle -25.0 deg 42.31 ft ABL 0.20 ft Vertical Arm = Heeling Arm at 0 deg= Angle at Intercept= 60.0 deg Wind Heel Arm Lw 0.20 ft = Maximum GZ 7.13 ft

FAIRED LINES PLAN

-


Angle at Max. GZ =

38.3 deg

STILLWATER MOC TURN

j.

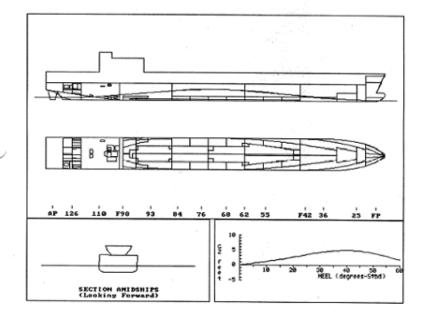
SOF -- SOF Rev. - (by: WOLF-BAB) OC POSSE-LOAD V2.2 01-23-03

EFFECT on STABILITY of HIGH SPEED TURNING (per U.S. Navy DDS079-1)

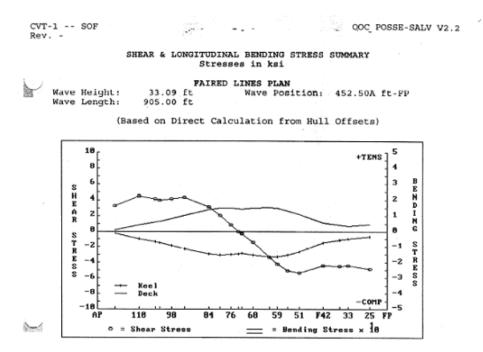
INTACT MOC

þ

OOC POSSE-SALV V2.2


CVT-1 -- SOF Rev. -

U


FREE-FLOATING DAMAGED CONDITION

Damaged Compartments: LORG 4-106-2

	DISPLACEMENT LTons	DRAFT FWD ft	DRAFT AFT ft	TRIM ft	HEEL deg.	UPRIGHT GMt ft
INTACT	46,452	26.87	26.52	0.35F	0.4S	10.95
DAMAGED	46,443	21.48	24.55	3.06A	0.6S	6.79

-

10

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

- 2 -

FAIRED LINES PLAN

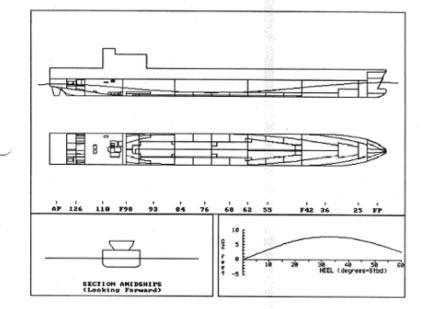
		SHE	AR FORCES	211 B	ENDING MOMEN	TS
	LOCATION	SHEAR	SHEAR STRESS	NOMENT	DK STRESS	KL STRESS
No.	ft-FP	LTone	ksi	ft-LTons	ksi	ksi
25	55.00A	-1.996	-4.85	66,9778	4.37	-3.31
33	121.003	-4,274	-4.42	272,6799	3.33	-4.87
36	148.00A	-5,313	-4.45	402,3018	4.07	-5.70
F42	199.00A	-7,139	-4,40	721,4178	5.51	-7.35
51	274.00A	-7,759	-5.31	1,299,4509	10.77	-13.08
55	310.00A	-7,171	-5.04	1,571,0678	13.25	-15.31
69	343.00%	-6,034	-4.17	1,785,6865	14.76	-16.31
62	367.00A	-5,030	-3.31	1,922,5028	15.09	-16.18
68	418.00A	-2,418	-1.42	2,118,5428	14.90	-15.17
NS	452.50A	-547	-0.30	2,166,2058	14.23	-14.09
72	454.00A	-471	-0.26	2,166,9568	14.27	-14.14
Mx	463.348	-0	-0.00	2,169,2838	. 14.48	-14.41
76	487.00A	1,469	0.85	2,153,7038	14.89	-14.98
80	520.00A	3,501	2.07	2,070,6988	14.75	-15.12
84	556.00A	5,206	3.09	1,911,0109	13.81	-34.45
93	631.00A	7,332	4.32	1,409,5838	10.30	-11.29
98	673.00A	7,079	4.12	1,109,9818	8.09	-9.11
258	709.00A	6,953	4.00	856,377H	6.23	-7.19
104	724.00A	6,013	4.14	753,2368	5.78	-6.73
110	775.00%	5,904	4.46	425, 3648	4.01	-4.79
126	051.00A	2,747	3.23	68,7908	0.99	-1.28
Maxin	un Shear Sti	ceas at 51		-5.31 kai		
Maxán	un Deck Ben	ing Stress	s at 62:	15.09 ksi		
Maxim	um Keel Send	ling Stree	s at 59:	-16.31 kei		

 \sim

CVT-1 -- SOF Rev. -

OOC POSSE-SALV V2.2

FREE-FLOATING DAMAGED CONDITION

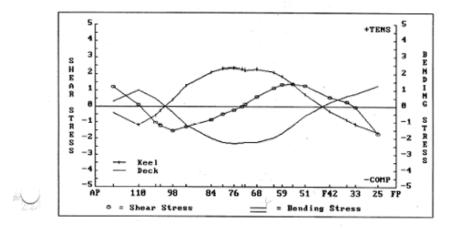

- : : :

25

Damaged Compartments: LORD 4-106-2

۰.

	DISPLACEMENT	DRAFT FWD	DRAFT AFT	TRIM	HEEL	UPRIGHT GMt
	LTons	ft	ft	ft	deg.	ft
INTACT	46,452	26.87	26.52	0.35F	0.4S	10.95
DAMAGED	46,443	35.82	24.90	10.92F	0.2S	19.99



CVT-1 SOF Rev		OOC_POSSE-SALV V2.2

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

Wave Height: 33.09 ft Wave Position: 0.00 ft-FP Wave Length: 905.00 ft

(Based on Direct Calculation from Hull Offsets)

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

. . .

123

FAIRED LINES PLAN

	SHEAR FORCES			BENDING MOMENTS				
	LOCATION	SHEAR	SHEAR STRESS	NOMENT	DK STRESS	KL STRESS		
No.	ft-FP	LTons	ksi	ft-Lilons	ksi	kai		
25	55.00Å	-701	-1.70	33,3628	1.26	-1.62		
33	121.00A	-64	-0.07	63,9678	0.77	-1.13		
34	148.0CA	300	0.25	61,0278	0.61	-0.86		
742	199.00A	880	0.54	29,8548	0.23	-0.30		
51	274.0CA	1,835	1.26	73,2605	-0.60	0.73		
55	310.0CA	1,941	1.36	141,9930	-1.19	1.37		
59	343.0CA	1,934	1.34	205,9125	-1.68	1.66		
62	367.0CA	1,735	1.14	250,4645	-1.95	2.09		
68	418.0CA	399	0.59	319,6215	-2.23	2.27		
MD	452.5CA	253	0.14	343,1425	-2.24	2.21		
72	454.00A	213	0.12	343,5095	-2.24	2.22		
Жc	461.79A	-0	-0.00	344,4800	-2.28	2.26		
76	487.00A	-403	-0.23	339,0375	-2.32	2.34		
80	520.0CA	-796	-0.47	318,9565	-2.25	2.31		
84	556.00A	-1,389	-0.82	279,1638	-2.00	2.09		
93	631.00A	-2,170	-1.28	159,3945	-1.16	1.27		
28	673.00A	-2,636	-1.53	\$1,5805	-0.37	0.42		
P98	709:00A	-2,059	-1.18	34,3718	0.25	-0.29		
104	724.00A	-1,670	-1.02	62,6168	0.48	-0.55		
110	775.00A	107	0.08	103,6558	0.97	-1.16		
126	851.00A	1,037	1.21	22,6608	0.32	-0.42		
Maxim	un Shear Str			-1.70 kai	,			
Maxim	un Deck Bend	ting Stress	at 76:	-2.32 ksi				
Maxim	um Keel Bend	ting Stress	at 76:	2.34 ksi				

.....

Appendix F POSSE Damaged Strength Analysis

STILLWATER FULL LOAD FWD DAMAGE

- OOC. POSSE-SALV V2.2 01-23-03

48.69

---- 4,449 ---- 1,086,867H

0.24

8.12

\smile	ITEM	WEIGHT LTons	KG ft-BL	LCG ft-FP	TCG ft-CL	FSmom ft-LTons
	Light Ship Constant	37,681	45.57	441.70A	0.655	
	RoRo Cargo Misc. Weight					0
	Fuel Oil Diesel Oil	546 5,404	6.78	545.50A 547.16A	0.02S	306
	Lube Oil Fresh Water SW Ballast Misc.	134 230 2,625	47.08 48.22 12.68	837.03A 838.49A 645.23A	45.62S 38.66P 7.86P	34 97 7,737
	Misc. TOTALS					
			INTA		ER OUTFLOW	AS DAMAGED
1	Draft at A.P.	(ft) (ft) (ft)	27.7	71		26.97 30.23
\sim	Trim Draft at Fwd Marks Draft at Aft Marks Static Heel Angle	(ft) (ft)	27.5			30.23 3.26A 27.04 30.14 0.1P
	Total Weight KG	(LT) (ft)	48,93	37 98	45,675 40.03	50,943 38.02
	LCG (f	t-FP) t-CL)	471.1	18A 01S	444.91A 0.01P	479.00A 0.02P
1	Buoyancy KB LCB (f	(LT) (ft) t-FP) t-CL)	48,93	37		50,943 15.95 479.08A 0.06P
		(6.)				

FREE-FLOATING DAMAGED CONDITION

AFTER OUTFLOW CONDITION:

Bending Moment (ft-LT)

Shear Force (LT) ----

KMt

- - - - - -

FSc

GMt

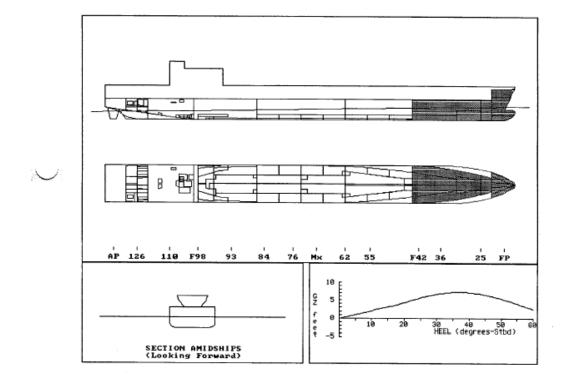
Displacement, KG, LCG, TCG include the effects of fluid outflow & flooding without free-communication. AS DAMAGED CONDITION:

----_____

Displacement, KG, LCG, TCG include the effects of the flooded water at the equilibrium trim/heel.

Buoyancy, KB, LCB, TCB are for an intact hull at the equilibrium heel and drafts.

KMt is for the damaged hull at the upright flooded drafts. GMt is the slope of the GZ curve at 0 degrees.

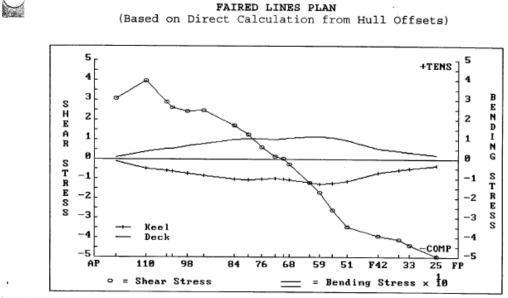

F.S. correction accounts for the free surface of intact tanks and is corrected for outflow-

(ft) 52.27 (ft) 0.35 (ft) 11.94

Rev. 1 (by: WOLF-BAB) 01-23-03	CVT-1 SOF Rev. 1 (by: WOLF-BAB)				QOC POSSE-SALV V2.2 01-23-03
--------------------------------	------------------------------------	--	--	--	---------------------------------

FREE-FLOATING DAMAGED CONDITION

amaged FOCSLE DP 8-32-	Compartments: FPK 612-0 1 DP 8-32-2	FB 811-0	HOLD 1	BOW THR	USTER	NO1 8-25-0
	DISPLACEMENT	DRAFT FWD	DRAFT AFT	TRIM	HEEL	UPRIGHT GMt
	LTons	ft	ft	ft	deg.	ft
INTACT	48,937	27.71	27.91	0.20A	0.1S	11.94
DAMAGED	54,325	38.92	22.46	16.46F	0.1S	11.16


.

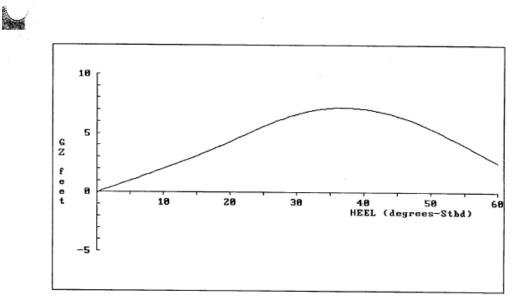
Y

.....

CVT-1 -- SOF Rev. 1 (by: WOLF-BAB) 00C POSSE-SALV V2.2 01-23-03

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

SHEAR FORCES BENDING MOMENTS LOCATION SHEAR SHEAR STRESS MOMENT DK STRESS KL STRESS No. ft-FP LTons ksi ft-LTons ksi ksi ----------------25 55.00A -2.040 -4.95 67,248H 1.86 -3.26 33 121.00A -4,230 -4.37 274,630H 3.30 -4.86 148.00A 36 -4,893 -4.10 397,816H 3.96 -5.58 F42 199.00A -6.361 -3.92 683,609H 5.15 -6.90 51 274.00A -5,049 -3.45 1,141,902H 9.34 -11.37 310.00A 55 -3,721 -2.61 1,300,856H 10.83 -12.5459 343.000 -2.448 -1.69 1,402,372H 11.42 -12.63 62 367.00A -1,844 -1.21 1,452,545H 11.26 -12:09 68 418.00A -473 -0.28 1,517,658H 10.55 -10,75 Mx 432.45A 1 0.00 1,520,793H 10.27 -10.33 MS 452.50A 240 0.13 1,517,254H 9.86 -9.76 72 454.00A 253 0.14 1,516,868H 9.88 -9.79 76 487.00A 1,015 0.58 1,499,482H 10.25 -10.32 80 520.00**A** 2,078 1.23 1,448,080H 10.20 -10.46 84 556.00A 2,881 1.71 1,358,169H 9.70 -10.16 93 631.00A 4,161 2.45 1,071,918H 7.74 -8.50 98 673.00A 4,142 2.41 902,411H 6.51 -7.34 F98 709.00A 4,538 2.61 746,500H 5.37 -6.21 104 724.00A 4,733 2.88 677,145H 5.14 -5.98 110 5,241 775.00A 3.95 420,944H 3.92 -4.69 126 851.00A 2,611 3.07 67,219H 0.95 -1.24 -----........... -----Maximum Shear Stress at 25: -4.95 ksi -Maximum Deck Bending Stress at 59: 11.42 ksi Maximum Keel Bending Stress at 59: -12.63 ksi


21

CVT-1 -- SOF Rev. 1 (by: WOLF-BAB) 00C POSSE-SALV V2.2 01-23-03

RIGHTING ARM (GZ)

- · ·

.....

Stability Evaluation:

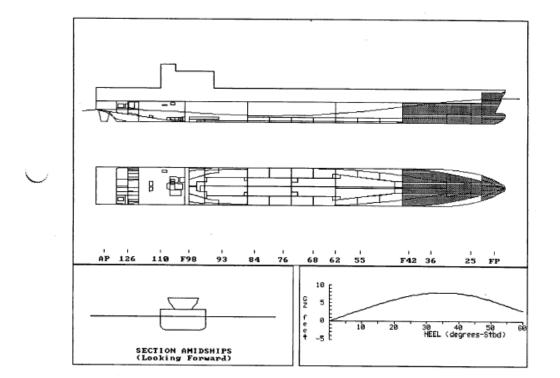
\$

-			
	Static Heel Angle	0.1S deg	
	Freeboard to Margin Line	53.65 ft	0.00 ft
	Wind Heel Angle	0.9S deg	
	Angle at Maximum GZ	37.0S deg	
	Maximum GZ	7.19 ft	
	Range of Positive GZ	>59.9 deg	
	Gmt (upright damaged)	11.16 ft	

•

(Based on Direct Calculation from Hull Offsets)

Freeboards are calculated perpendicular to the water surface


SAGGING FULL LOAD FWD DAMAGE

CVT-1 SOF	 		QOC POSSE-SALV V2.2
Rev. 1 (by: WOLF-BAB)		-	01-23-03

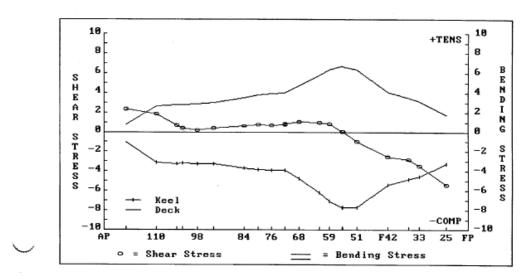
 \sim

FREE-FLOATING DAMAGED CONDITION

FOCSLE DP 8-32-	Compartments: FPK 612-0 1 DP 8-32-2	FB 811-0	HOLD 1	BOW THR	USTER	NO1 8-25-0
	DISPLACEMENT	DRAFT FWD	DRAFT AFT	TRIM	HEEL	UPRIGHT GMt
	LTons	ft	ft	ft	deg.	ft
INTACT	48,937	27.71	27.91	0.20A	0.1S	11.94
DAMAGED	60,247	56.55	18.21	38.34F	0.0S	17.28

2

1.1


121

....

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

FAIRED LINES PLAN Wave Height: 33.09 ft Wave Position: 0.00 ft-FP Wave Length: 905.00 ft

(Based on Direct Calculation from Hull Offsets)

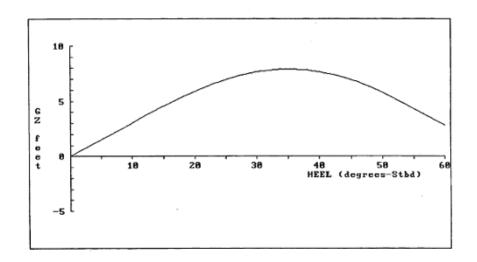
_ QOC_POSSE-SALV V2.2 01-23-03

....

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

FAIRED LINES PLAN

		SHEA	R FORCES	в	ENDING MOME	NTS
	LOCATION	SHEAR	SHEAR STRESS	MOMENT	DK STRESS	KL STRES
No.	ft-FP	LTons	ksi	ft-LTons	ksi	
25	55.00A	-2,243	-5.44	67,306H		
33	121.00A	-3,343	-3.46	257,0878	3.09	-4.54
36	148.00A	-3,351	-2.81	347,4728	3.46	-4.87
F42	199.00A	-4,148	-2.56	533,250H	4.02	-5.38
51	274.00A	-1,457	-1.00	777,7498	6.36	-7.74
Mx	308.08A	0	0.00	801,738H	6.67	-7.74
55	310.00A	75	0.05	801,671H	6.67	-7.72
59	343.00A	1,165	0.80	780,5728	6.35	-7.03
62	367.00A	1,445	0.95	747,783H	5.80	-6.22
68	418.00A	1,711	1.01	670,492H	4.66	-4.75
MS	452.50A	1,456	0.80	611,909H	3.97	-3.93
72	454.00A	1,424	0.78	609,731H	3.97	-3.93
76	487.00 A	1,176	0.68	569,419H	3.89	-3.92
80	520.00 A	1,221	0.72	529,870H	3.73	-3.82
84	556.00A	987	0.59	490,218H	3.50	-3.66
93	631.00 A	682	0.40	411,7278	2.97	-3.26
98	673.00A	297	0.17	397,558H	2.87	-3.23
F98	709.00A	745	0.43	380,197H	2.74	-3.16
104	724.00A	1,066	0.65	366,872H	2.78	-3.24
110	775.00A	2,459	1.86	278,021H	2.59	-3.10
126	851.00A	1,967	2.32	55,726H	0.79	-1.02
			at 51:	6.67 ksi		


-

123

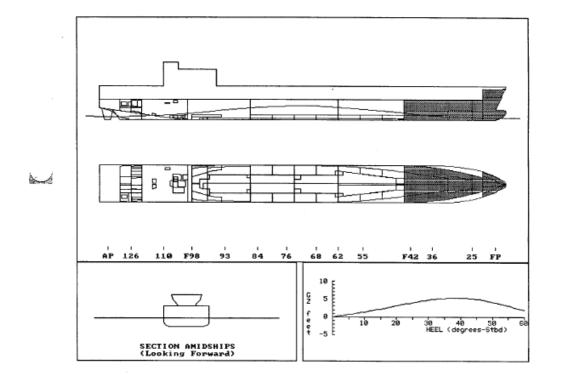
OOC POSSE-SALV V2.2 01-23-03

CVT-1 -- SOF Rev. 1 (by: WOLF-BAB)

RIGHTING ARM (GZ)

Stability Evaluation:

Static Heel Angle Freeboard to Margin Line Wind Heel Angle Angle at Maximum GZ Maximum GZ Range of Positive GZ Gmt (upright damaged)	0.0S 35.43 0.4S 35.1S 7.90 >60.0 17.28	ft deg deg ft deg	0.00 ft
Gmt (upright damaged)	17.28	ft	


(Based on Direct Calculation from Hull Offsets) Preeboards are calculated perpendicular to the water surface

HOGGING FULL LOAD FWD DAMAGE

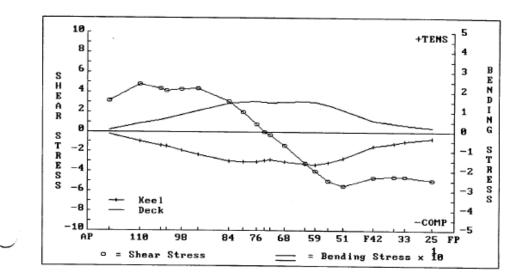
CVT-1 SOF		OOC POSSE-SALV V2.2
Rev. 1 (by: WOLF-BAB)		01-23-03

FREE-FLOATING DAMAGED CONDITION

amaged FOCSLE DP 8-32-	Compartments:	FB 811-0	HOLD 1	BOW THRU	ISTER	NO1 8-25-0
	DISPLACEMENT	DRAFT FWD	DRAFT AFT	TRIM	HEEL	UPRIGHT GMt
	LTons	ft	ft	ft	deg.	ft
INTACT	48,937	27.71	27.91	0.20A	0.1S	11.94
DAMAGED	49,452	23.48	25.80	2.32A	0.1S	7.85

H

1


CVT-1 SOF Rev. 1 (by: WOLF-BAB)	· · ·	- GOC POSSE-SALV V2.2
Nevi a (by: Nobr-BAB)		01-23-03

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

 $\sum_{i=1}^{n}$

FAIRED LINES PLAN Wave Height: 33.09 ft Wave Position: 452.50A ft-FP Wave Length: 905.00 ft

(Based on Direct Calculation from Hull Offsets)

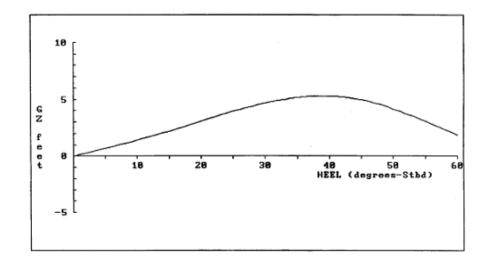
-

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

FAIRED LINES PLAN

		SHEAR FORCES		в	BENDING MOMENTS		
	LOCATION	SHEAR	SHEAR STRESS	MOMENT	DK STRESS	KL STRESS	
No.	ft-FP	LTons	ksi	ft-LTons	ksi.	ksi	
25	55.00 A	-2,031	-4.93	67,641H	1.97	-3.29	
33	121.00A	-4,428	-4.58	279,632H	3.36	-4.95	
36	148.00A	-5,474	-4.58	413,398H	4.12	-5.80	
F42	199.00A	-7,542	-4.65	744,7888	5.62	-7.52	
51	274.00A	-8,024	-5.49	1,356,654H	11.11	-13.51	
55	310.00A	-7,088	-4.98	1,631,656H	13.59	-15.73	
59	343.00A	-5,749	-3.97	1,843,7953	15.02	-16.62	
62	367.00A	-4,863	-3.20	1,970,3398	15.28	-16.40	
68	418.00A	-2,353	-1.38	2,164,0203	15.05	-15.33	
MS	452.50A	-608	-0.33	2,209,874H	14.37	-14.22	
72	454.00A	-546	-0.30	2,210,728H	14.41	-14.27	
Mx	467.47A	-0	-0.00	2,214,672H	14.72	-14.67	
76	487.00A	1,275	0.73	2,203,4568	15.07	-15.17	
80	520.00A	3,356	1.98	2,126,035H	14.99	-15.36	
84	556.00A	5,105	3.03	1,971,5788	14.09	-14.75	
93	631.00A	7,421	4.37	1,470,7578	10.63	-11.67	
98	673.00A	7,306	4.25	1,164,5738	8.40	-9.47	
F98	709.00A	7,226	4.16	902,2638	6.50	-7.50	
104	724.00A	7,124	4.33	794,749H	6.04	-7.02	
110	775.00A	6,308	4.76	449,0078	4.19	-5.01	
126	851.00A	2,649	3.12	67,471H	0.95	-1.24	
Maxim	num Shear St	ress at 51		-5.49 kai			
Maxin	mm Deck Ben	ding Stress	at 62:	15.28 ksi			

Maximum Deck Bending Stress at 62: - Maximum Keel Bending Stress at 59:


15.28 kmi -16.62 kmi

128

OOC- POSSE-SALV V2.2 01-23-03

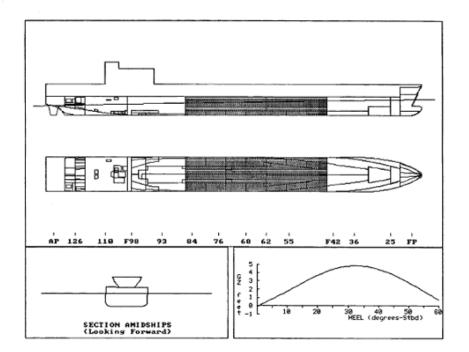
CVT-1 -- SOF Rev. 1 (by: WOLF-BAB)

RIGHTING ARM (GZ)

Stability Evaluation:

Static Heel Angle	0.15	deg		
Freeboard to Margin Line	67.08	ft	0.00	ft
Wind Heel Angle	1.65	deg		
Angle at Maximum GZ	39.08	deg		
Maximum GZ	5.29	ft		
Range of Positive GZ	>59.9	deg		
Gmt (upright damaged)	7.85	ft		

(Based on Direct Calculation from Hull Offsets) Freeboards are calculated perpendicular to the water surface


STILLWATER FULL LOAD MD DAMAGE

CVT-1 -- SOF Rev. 1 (by: WOLF-BAB)

00C POSSE-SALV V2.2 01-23-03

FREE-FLOATING DAMAGED CONDITION

HOLD 2	W2A 8-44-01	FB 8-44-1	W2A 8-44-4	FB 8-44	-2	W2B 8-50-1
W2B #-50-2	W2C 8-56-1	W2C 8-56-2	HOLD 3	W3A 8-6	2 - 1.	DB3F 8-62-0
D03F 8-62-2	W3A 8-62-4	M3B 8-68-1	W3B 8-68-2	N3C 8-7	4-1	DB3A 8-74-0
DB3A 8-74-2	W3C 8-74-4	W3D 8-80-1	W3D 8-80-2			
1	DISPLACEMENT LTons	DRAFT FWD ft	DRAFT AFT ft	TRIM ft	HEEL deg.	UPRIGHT GMt ft
NTACT	48,937	27.71	27.91	0.20A	0.15	11.94
AMAGED	77,652	50.70	31.07	19.64F	0.65	10.34

Ý	ITEM	WEIGHT LTons	KG ft-BL	LCG ft-FP	TCG ft-CL	FSmom ft-LTons
		37,681 0	45.57	441.70A	0.658	0
	RoRo Cargo Misc. Weigh	0 t 1,861	0.00 36.63	452.50A 437.82A	0.00	0
	Fuel Oil Diesel Oil Lube Oil Fresh Water SW Ballast Misc.	546 5,404 134 230 2,625 456	6.78 19.97 47.08 48.22 12.68 19.15	545.50A 547.16A 837.03A 838.49A 645.23A 758.59A	0.02S 0.65P 45.62S 38.66P 7.86P 6.57S	306 8,265 34 97 7,737 674
	TOTALS	48,937	39.98	471.18A	0.015	17,112
			INTAC			AS DAMAGED
a l	Draft at F.P. Draft at A.P. Trim Draft at Fwd Mar Draft at Aft Mar Static Heel Angl	(ft) (ft) (ft) ks (ft) ks (ft)	27.7 27.9 0.2 27.7 27.9	21 20A 22		38.92 22.46 16.46F 38.55 22.91 0.1S
	Total Weight KG LCG TCG	(LT) (ft) (ft-FP) (ft-CL)	48,93 39.9 471.1 0.0	7 8 .8A 1S	47,640 40.81 479.39A 0.01S	54,325 38.37 436.54A 0.01S
	Buoyancy KB	(LT) (ft) (ft-FP)	48,93	7		54,325 17.10
	KMt FSc GMt	(ft) (ft) (ft)	52.2 0.3	5		52.53 0.29
	Shear Force Bending Moment	(LT)		-		-6,361
	AFTER OUTFLOW CONDITION					

FREE-FLOATING DAMAGED CONDITION

AFTER OUTFLOW CONDITION:

. Displacement, KG, LCG, TCG include the effects of fluid outflow & flooding without free-communication. AS DAMAGED CONDITION:

.

Displacement, KG, LCG, TCG include the effects of the flooded water at the equilibrium trim/heel.

Buoyancy, KB, LCB, TCB are for an intact hull at the equilibrium heel and drafts.

NMt is for the damaged hull at the upright flooded drafts. GMt is the slope of the GZ curve at 0 degrees. F.S. correction accounts for the free surface of intact tanks and is corrected for outflow.

OOC POSSE-SALV V2.2 01-23-03

CVT-1 -- SOF Rev. 1 (by: WOLF-BAB)

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

FAIRED LINES PLAN (Based on Direct Calculation from Hull Offsets)

5, 5 +TENS 4 4 3 з BENDING SHEAR zĺ 2 1 1 0 ø STRESS S T R E S S -1 -1 -2 -2 -3 -3 Keel -4 Deck -4 -COMP -5 -5 25 FP 110 Mx 84 76 68 59 51 F42 33 AP ____ = Bending Stress o = Shear Stress

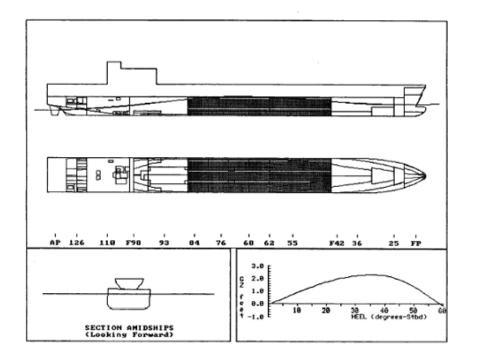
		SHE	WR FORCES	2	ENDING MOME	NTS
	LOCATION	SHEAR	SHEAR STRESS	NOMENT	DK STRESS	KL STRESS
No.	ft-PP	LTons	ksi	ft-LTons	ksi	ksi
25	55.00A	-758		34,8088		
33	121.00A	32	0.03	66,808H	0.82	-1.19
36	148.00A	626	0.52	58,5258	0.59	-0.83
P42	199.00A	2,182	1.34	10,8245	-0.08	0.11
51 '	274.00A	1,675	1.15	176,8245	-1.47	1.78
55	310.00A	1,135	0.80	226,8908	-1.92	2.21
59	343.00A	650	0.45	256,6618	-2.12	2.34
62	367.00A	-100	-0.07	264,7825	-2.08	2.23
68	418.00A	-1,028	-0.60	230,0038	-1.62	1.65
MS	452.50A	-1,867	-1.03	184,4725	-1.21	1.20
72	454.00A	-1,921	-1.06	181,6465	-1.20	1.19
76	487.00A	-2,724	-1.57	102,0805	-0.71	0.71
80	520.00A	-3,303	-1.95	3,0228	-0.02	0.02
84	556.00A	-4,304	-2.56	133,2189	0.96	-1.01
93	631.00A	-2,023	-1.19	383,910H	2.81	-3.08
98	673.00A	-835	-0.49	448,7118	3.27	-3.69
Мх	694.37A	-0	-0.00	457,8779	3.34	-3.81
F98	709.00A	580	0.33	453,587H	3.30	-3.81
104	724.00A	1,196	0.73	440,4429	3.38	-3.93
110	775.00A	3,116	2.35	328,533H	3.10	-3.70
126	851.00A	2,304	2.71	61,978H	0.89	-1.16
				2 22 had		
	un Shear Sti			2.71 ksi		
			s at 104:			
Maxin	un Keel Ben	ling Stress	at 104:	-3.93 kai		

CVT-1 -- SOF Rev. 1 (by: WOLF-BAB) OOC POSSE-SALV V2.2 01-23-03

Stability Evaluation:

Static Heel Angle	0.6S deg	
Freeboard to Margin Line	41.78 ft	0.00 ft
Wind Heel Angle	1.1S deg	
Angle at Maximum GZ	32.3S deg	
Maximum GZ	4.83 ft	
Range of Positive GZ	>59.4 deg	
Gmt (upright damaged)	10.34 ft	

(Based on Direct Calculation from Hull Offsets) Freeboards are calculated perpendicular to the water surface

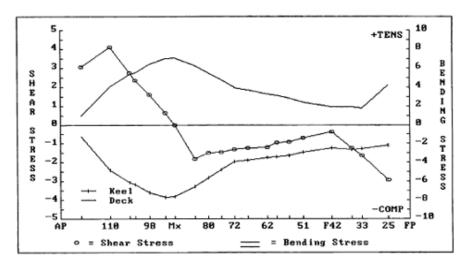

15

HOGGING FULL LOAD MD DAMAGE

CVT-1 -- SOF Rev. 1 (by: WOLF-BAB) 000 POSSE-SALV V2.2 01-23-03

FREE-FLOATING DAMAGED CONDITION

HOLD 2	W2A 8-44-01	FB 8-44-1	W2A 8-44-4	FB 8-44-	-2	W2B 8-50-1
W2B 8-50-2	W2C 8-56-1	W2C 8-56-2	HOLD 3	N3A 8-62	2-1	DB3F 8-62-0
DB3F 8-62-2	W3A 8-62-4	W3B 8-68-1	W3B 8-68-2	M3C 8-74	-1	DB3A 8-74-0
DB3A 8-74-2	W3C 8-74-4	W3D 8-80-1	W3D 8-80-2			
DI	SPLACEMENT LTons	DRAFT FWD ft	DRAFT AFT ft	TRIM ft	HEEL deg.	UPRIGHT GMt ft
NTACT	48,937	27.71	27.91	0.20A	0.15	11.94
	87,412	53.25	33.62	19.63F	1.05	6.55


CVT-1 -- SOF Rev. 1 (by: WOLF-BAB)

OOG POSSE-SALV V2.2 01-23-03

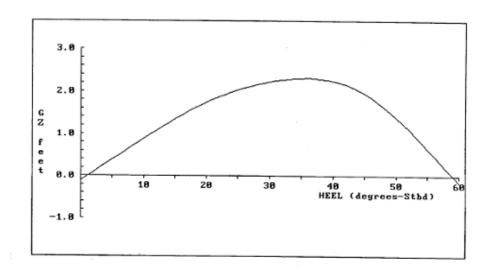
SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

FAIRED LINES PLANWave Height:33.09 ftWave Position:452.50A ft-FPWave Length:905.00 ft

(Based on Direct Calculation from Hull Offsets)

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

FAIRED LINES PLAN


		SHEA	NR FORCES	в	ENDING MOME	NTS
	LOCATION	SHEAR	SHEAR STRESS	MOMENT	DK STRESS	KL STRESS
No.	ft-FP	LTons	ksi	ft-LTona	ksi	ksi

25	55.00A	-1,205	-2.92	44,044H	4.17	-2.20
33	121.00A	-1,585	-1.64	142,082H	1.76	-2.56
36	148.00A	-1,494	-1.25	184,348H	1.89	-2.63
F42	199.00A	-584	-0.36	241,986N	1.87	-2.49
51	274.00A	-1,023	-0.70	286,2888	2.40	-2.91
55	310.00A	-1,279	-0.90	329,1718	2.81	-3.24
59	343.00A	-1,390	-0.96	372,991H	3.11	-3.43
62	367.00A	-1,851	-1.22	410,014H	3.25	-3.48
68	418.00A	-2,129	-1.25	518,426H	3.68	-3.74
MS	452.50A	-2,378	-1.31	592,6678	3.93	-3.89
72	454.00%	-2,403	-1.32	596,250H	3.96	-3.92
76	487.00A	-2,547	-1.47	682,483H	4.76	-4.79
80	520.00A	-2,500	-1.48	764,343H	5.49	-5.63
84	556.00A	-3,030	-1.80	860,981H	6.27	-6.56
Mx	607.17A	-53	-0.03	966,288H	7.09	-7.66
93	631.00A	1,072	0.63	952,019H	7.01	-7.68
98	673.00A	2,735	1.59	874,682H	6.43	-7.24
F98	709.00A	4,076	2.34	751,056H	5.51	-6.35
104	724.00A	4,537	2.76	686,555H	5.32	-6.16
110	775.00A	5,447	4.11	426,914H	4.07	-4.85
126	851.00A	2,594	3.05	65,548H	0.95	-1.23
		•••••				
Maxim	wum Shear St	ress at 11	0:	4.11 ksi		
Maxie	un Deck Ben	ding Stres	s at Mx:	7.09 ksi		

Maximum Deck Bending Stress at Mx: Maximum Keel Bending Stress at 93:

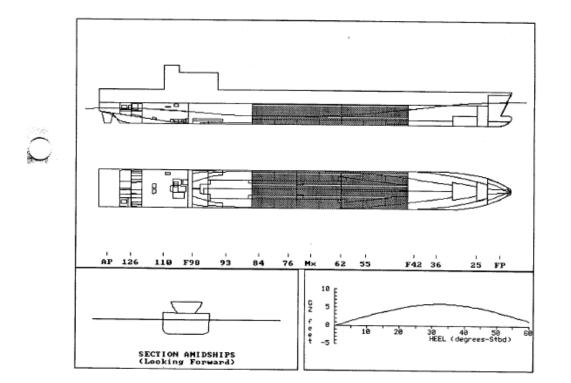
7.09 ksi -7.68 ksi CVT-1 -- SOF Rev. 1 (by: WOLF-BAB)

OOC POSSE-SALV V2.2 01-23-03

RIGHTING ARM (GZ)

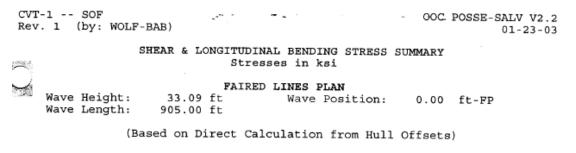
Stability Evaluation:

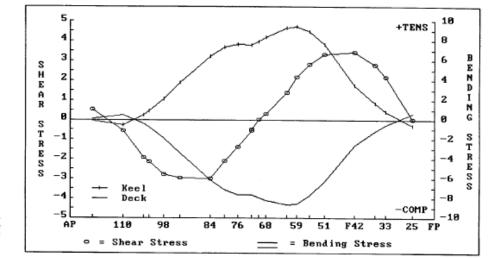
- a du c du c				
Static Heel Angle	1.0S	deg		
Freeboard to Margin Line	39.22	ft	0.00	ft
Wind Heel Angle	1.75	deg		
Angle at Maximum GZ	35.7S	deg		
Maximum GZ	2.31	ft		
Range of Positive GZ	58.0	deg		
Gmt (upright damaged)	6.55	ft		


(Based on Direct Calculation from Hull Offsets) Freeboards are calculated perpendicular to the water surface

SAGGING FULL LOAD MD DAMAGE

CVT-1 SOF Rev. 1 (by: WOLF-BAB)	 OOC POSSE-SALV V2.2
Rev. I (by: WOLF-BAB)	01-23-03


FREE-FLOATING DAMAGED CONDITION


2						
amaged	Compartments:					
HOLD 2	W2A 8-44-01	FB 8-44-1	W2A 8-44-4	FB 8-44	-2	W2B 8-50-1
W2B 8-50	-2 W2C 8-56-1	W2C 8-56-2	HOLD 3	W3A 8-6	2-1	DB3F 8-62-0
DB3F 8-6	2-2 W3A 8-62-4	W3B 8-68-1	W3B 8-68-2	W3C 8-7	4-1	DB3A 8-74-0
DB3A 8-7	4-2 N3C 8-74-4	W3D 8-80-1	W3D 8-80-2			
	DISPLACEMENT LTons	DRAFT FWD ft	DRAFT AFT ft	TRIM ft	HEEL deg.	UPRIGHT GMt ft
INTACT DAMAGED	48,937 67,749	27.71 52.41	27.91 26.89	0.20A 25.52F	0.1S 0.4S	11.94 15.52

9.0000

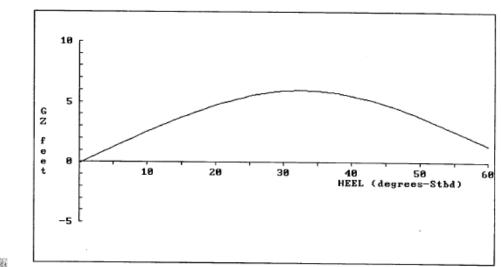
Ċ

-

- OOC POSSE-SALV V2.2 01-23-03

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi




FAIRED LINES PLAN

	SHEAR FORCES		в	BENDING MOMENTS		
	LOCATION	SHEAR	SHEAR STRESS	MOMENT	DK STRESS	KL STRESS
No.	ft-FP	LTons	ksi	ft-LTons	ksi	ksi
25	55.00A	2	0.01	11,836H	0.63	-0.58
33	121.00A	2,088	2.16	44,6478	-0.54	0.80
36	148.00A	3,308	2.77	117,1938		
F42	199.00A	5,528	3.41	343,7185	-2.61	3.49
51	274.00A	4,872	3.33	759,9188	-6.27	7.62
55	310.00A	4,012	2.82	920,392S	-7.73	8.94
59	343.00A	3,158	2.18	1,038,6075	-8.53	9.43
62	367.00A	2,126	1.40	1,103,3485	-8.63	9.25
68	418.00A	539	0.32	1,167,6528	-8.18	8.33
Mx	436.04A	13	0.01	1,172,4785	-7.92	7.95
MS	452.50A	-899	-0.49	1,165,2438	-7.63	7.55
72	454.00A	-980	-0.54	1,163,8505	-7.64	7.57
76	487.00A	-2,388	-1.38	1,106,1645	-7.62	7.67
80	520.00A	-3,530	-2.08	1,008,3955	-7.16	7.34
84	556.00A	-5,017	-2.98	854,3145	-6.15	6.44
93	631.00A	-5,038	-2.97	471,2158	-3.43	3.76
98	673.00A	-4,779	-2.78	258,3975	-1.88	2.11
F98	709.00A	-3,719	-2.14	103,8845	-0.75	0.87
104	724.00A	-3,126	-1.90	52,2798	-0.40	0.46
110	775.00A	-739	-0.56	47,782H	0.45	-0.54
126			0.53		0.08	
Maximum Shear Stress at F42: 3.41 ksi						
Maximum Deck Bending Stress at 62: -8.63 ksi						

9.43 ksi

Maximum Keel Bending Stress at 59:

Stability	Evaluation:		
	Static Heel Angle	0.45	deg
	Freeboard to Margin Line	39.91	ft
	Wind Heel Angle	0.85	deg
	Angle at Maximum GZ	32.55	deg
	Maximum GZ	5.98	ft
	Range of Positive GZ	>59.6	deg
	Gmt (upright damaged)	15.52	ft

0.00 ft

Range of Positive GZ Gmt (upright damaged) (Based on Direct Calculation from Hull Offsets)

Freeboards are calculated perpendicular to the water surface

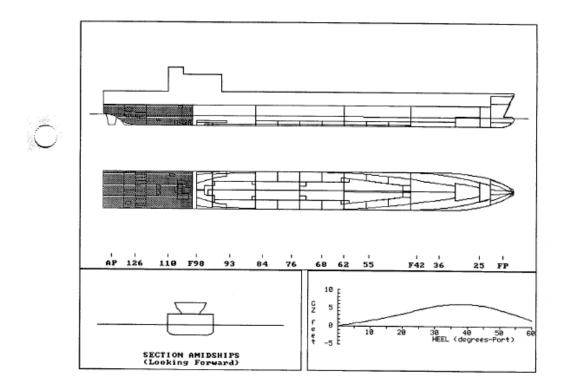
FREE-FLOATING DAMAGED CONDITION

ITEM	WEIGHT LTons	KG ft-BL	ft-FP	TCG ft-CL	FSmom ft-LTons
Light Ship Constant	37,681 0	45.57	441.70A	0.65S 0.00	0
RoRo Cargo Misc. Weigh	0 t 1,861	0.00 36.63	452.50A 437.82A	0.00	0
Fuel Oil Diesel Oil Lube Oil Fresh Water SW Ballast Misc.	546 5,404 134 230 2,625 456 48,937	6.78 19.97 47.08 48.22 12.68 19.15	545.50A 547.16A 837.03A 838.49A 645.23A 758.59A	0.02S 0.65P 45.62S 38.66P 7.86P 6.57S	306 8,265 34 97 7,737 674
TOTALS	48,937	39.98	471.18A	0.015	17,112
		INTACI	r aft	ER OUTFLOW	AS DAMAGED
Draft at F.P. Draft at A.P. Trim Draft at Fwd Mar Draft at Aft Mar Static Heel Angl	(ft) (ft) (ft) ks (ft) ks (ft)	27.73 27.93 0.20 27.72 27.93			50 70
Total Weight KG LCG TCG	(ft) (ft-FP) (ft-CL)	48,937 39.98 471.18 0.03	7 8 8 A. 1 S	46,359 41.84 472.12A 0.16S	77,652 33.50 441.50A 0.16S
Buoyancy KB LCB TCB	(LT) (ft) (ft-FP) (ft-CL)	48,93	7 - 9A. -		77,652 22.74 441.27A 0.28S
KMt	(ft) (ft) (ft)	52.23 0.35 11.94	7 5 1		52.78 0.32 10.34
Shear Force Bending Moment					-4,304 457,877H

AFTER OUTFLOW CONDITION:

Displacement, NG, LCG, TCG include the effects of fluid outflow & flooding without free-communication. As DAMAGED CONDITION:

Displacement, NG, LCG, TCG include the effects of the flooded water at the equilibrium trim/heel.

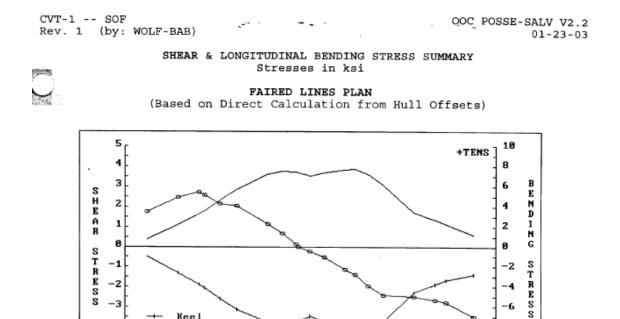

Buoyancy, KD, LCB, TCB are for an intact hull at the equilibrium heel and drafts. NMt is for the damaged hull at the upright flooded drafts. GMt is the slope of the GZ curve at 0 degrees.

F.S. correction accounts for the free surface of intact tanks and is corrected for outflog

STILLWATER FULL LOAD AFT DAMAGE

FREE-FLOATING DAMAGED CONDITION

mpartments:					
LODT 8-103-4	ERMO 8-104-0	LOSM 8-104-1	LOSM 8-	105-2	LORG 4-106-2
GTWD 8-107-0	BOLR CASCADE	FPST 7-112-1	LOPS 7-	112-2	AFT
DP 6-116-1	SSDG 5-116-9	RGSL 5-116-7	ST 5-11	6-3	DTA 6-116-0
SV 5-116-0	DP 6-116-4	POT 5-116-6	POT 5-1	16-8	DIS 5-116-10
APF 6-126-1	APF 6-126-2	SMHT 5-130-1			
ISPLACEMENT LTons	DRAFT FWD ft	DRAFT AFT ft	TRIM ft	HEEL deg.	UPRIGHT GMt ft
48,937 50,943	27.71 26.97	27.91 30.23	0.20A 3.26A	0.1S 0.1P	11.94 8.12
	LODT 8-103-4 GTMD 8-107-0 DP 6-116-1 SV 5-116-0 AFF 6-126-1 ISPLACEMENT LTONS 48,937	LODT 8-103-4 ERMO 8-104-0 GTMD 8-107-0 BOLR CASCADE DP 6-116-1 SSDG 5-116-9 SV 5-116-0 DP 6-116-4 APF 6-126-1 APF 6-126-2 ISPLACEMENT DRAFT FWD LTons ft 48,937 27.71	LODT 8-103-4 ERWO 8-104-0 LOSM 8-104-1 GTND 8-107-0 BOLR CASCADE FPST 7-112-1 DP 6-116-1 SSDG 5-116-9 RGSL 5-116-7 SV 5-116-0 DP 6-116-4 POT 5-116-6 APF 6-126-1 APF 6-126-2 SMHT 5-130-1 ISPLACEMENT DRAFT FWD DRAFT AFT LTONS ft ft 48,937 27.71 27.91	LODT 8-103-4 ERMO 8-104-0 LOSM 8-104-1 LOSM 8- GTND 8-107-0 BOLR CASCADE FPST 7-112-1 LOPS 7- DP 6-116-1 SSDG 5-116-9 RGSL 5-116-7 ST 5-11 SV 5-116-0 DP 6-116-4 POT 5-116-6 POT 5-1 APF 6-126-1 APF 6-126-2 SNHT 5-130-1 SNHT 5-130-1 SU SPLACEMENT DRAFT FWD DRAFT AFT TRIM LTONS ft ft ft 48,937 27.71 27.91 0.20A	LODT 8-103-4 ERMO 8-104-0 LOSM 8-104-1 LOSM 8-105-2 GTND 8-107-0 BOLR CASCADE FPST 7-112-1 LOPS 7-112-2 DP 6-116-1 SSDG 5-116-9 RGSL 5-116-7 ST 5-116-3 SV 5-116-0 DP 6-116-4 POT 5-116-6 POT 5-116-8 APF 6-126-1 APF 6-126-2 SMHT 5-130-1 USPLACEMENT DRAFT FWD DRAFT AFT TRIM HEEL LTONS ft ft ft deg. 48,937 27.71 27.91 0.20A 0.1S



 \mathbb{C}

147

ing and a state of the

NE CO

76

68

59

51

= Bending Stress

F42 33

84

-6

-8

-10

. N-17

-COMP

25 FP

		SHEA	R FORCES	Е	ENDING MOME	TS
	LOCATION	SHEAR	SHEAR STRESS	MOMENT	DK STRESS	KL STRESS
No.	ft-FP	LTons	ksi	ft-LTons	ksi	ksi
25	55.00A	-1,445	-3.51	49,824H	1.21	-2.75
33	121.00A	-2,671	-2.76	187,306H	2.25	-3.32
36	148.00A	-3,193	-2.67	266,758H	2.66	-3.75
F42	199.00A	-4,031	-2.48	452,0119	3.41	-4.57
51	274.00A	-3,536	-2.42	749,899H	6.14	-7.47
55	310.00A	-2,803	-1.97	865,169H	7.21	-8.35
59	343.00A	-2,011	-1.39	944,587H	7.70	-8.52
62	367.00A	-1,714	-1.13	988,120H	7.67	-8.23
68	418.00A	-865	-0.51	1,060,611H	7.38	-7.52
MS	452.50A	-409	-0.22	1,078,393H	7.01	-6.94
72	454.00A	-405	-0.22	1,078,988H	7.04	-6.97
Mx	480.86A	-0	-0.00	1,086,867H	7.37	-7.39
76	487.00A	187	0.11	1,086,318H	7.43	-7.48
80	520.00A	1,152	0.68	1,064,044H	7.50	-7.69
84	556.00A	1,930	1.15	1,008,171H	7.21	-7.55
93	631.00A	3,429	2.02	787,317H	5.69	-6.25
98	673.00A	3,695	2.15	642,959H	4.64	-5.23
F98	709.00A	4,427	2.55	497,355H	3.58	-4.14
104	724.00A	4,449	2.71	429,470H	3.26	-3.79
110	775.00A	3,254	2.46	235,499H	2.20	-2.63
126	851.00 A	1,487	1.75	54,076H	0.76	-0.99
	um Shear Sti			-3.51 ksi		
	um Deck Bend			7.70 ksi		
		-	at 59:			
		-				200 A.S. 190

 \bigcirc

-3

-4

-5

AP

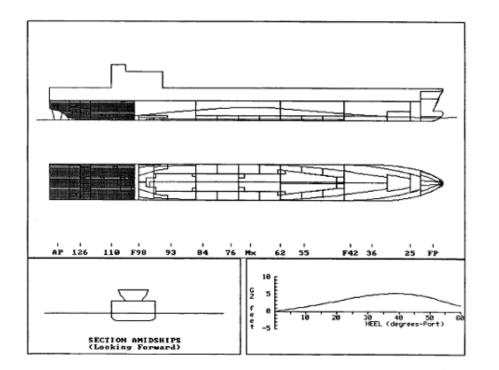
Keel

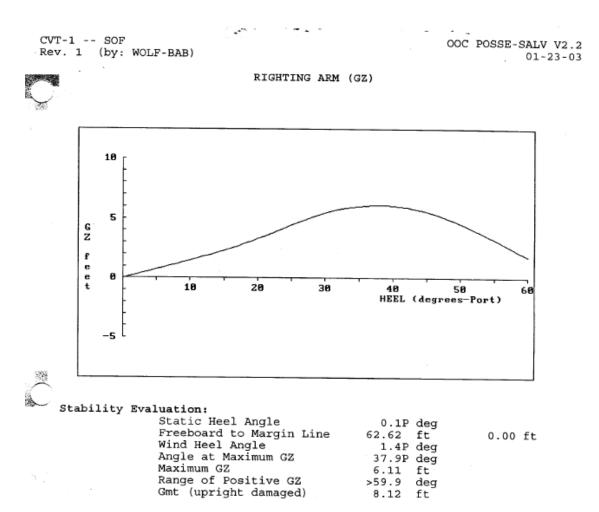
Deck

• = Shear Stress

98

110


HOGGING FULL LOAD AFT DAMAGE


CVT-1 -- SOF Rev. 1 (by: WOLF-BAB)

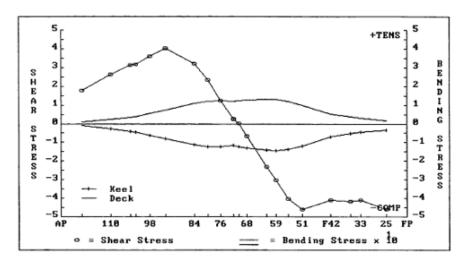
00G POSSE-SALV V2.2 01-23-03

FREE-FLOATING DAMAGED CONDITION

Jamaged (Compartments:					
MACHY	LODT 8-103-4	ERWO 8-104-0	LOSN 8-104-1	LOSM 8-3	105-2	LORG 4-106-2
LCRG 4-10	6-4 GTND 8-107-0	BOLR CASCADE	FPST 7-112-1	LOPS 7-	112-2	AFT
RGS 5-116	-11 DP 6-116-1	SSDG 5-116-9	RGSL 5-116-7	ST 5-11	6-3	DTA 6-116-0
ST 5-116-	1 SV 5-116-0	DP 6-116-4	POT 5-116-6	POT 5-12	16-8	DIS 5-116-10
GWT 5-126	-1 APP 6-126-1	APP 6-126-2	SWRT 5-130-1			
	DISPLACEMENT LTons	DRAFT FWD ft	DRAFT AFT ft	TRIM ft	HEEL deg.	UPRIGHT GMt ft
INTACT DAMAGED	48,937 46,207	27.71 28.28	27.91 17.62	0.20A 10.66F	0.1S 0.1P	11.94 7.61

(Based on Direct Calculation from Hull Offsets) .

Freeboards are calculated perpendicular to the water surface


00G POSSE-SALV V2.2 01-23-03

CVT-1 -- SOF Rev. 1 (by: WOLF-BAB)

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

FAIRED LINES PLAN Wave Height: 33.09 ft Wave Position: 452.50A ft-FP Wave Length: 905.00 ft

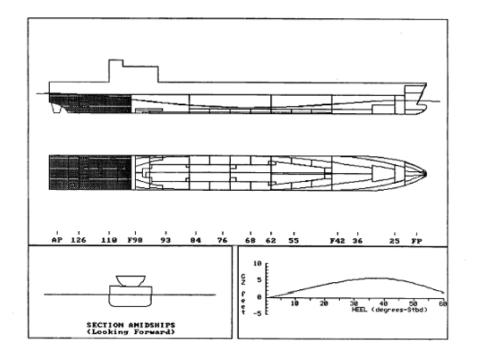
(Based on Direct Calculation from Hull Offsets)

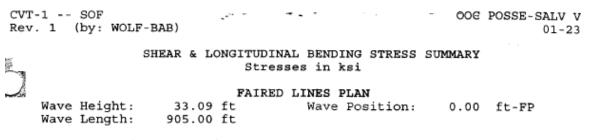
SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

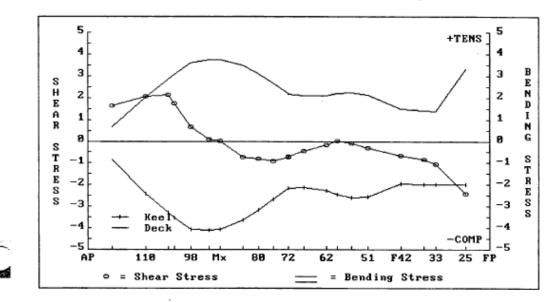
FAIRED LINES PLAN

		SHEA	R FORCES	в	ENDING MOMEN	TS
	LOCATION	SHEAR	SHEAR STRESS	MOMENT	DK STRESS	KL STRESS
No.	ft-FP		ksi		ksi	kei
25	55.00A	-1,895	-4.60	64,218%		-3.56
33		-3,979				
36		-4,967		377, 9858		
F42		-6,673	-4.11	676,430H		
51	274.00A	-6,746		1,202,450H		
55		-5.747		1,430,1988		
59		-4,398	-3.04	1,597,7898		
62	367.00A	-3,533	-2.32	1,692,094H		
68	418.00A	-1,153	-0.68	1,820,794H		
Mx	439.35A	1	0.00	1,831,0788		
MS	452.50A	442	0.24	1,827,694H		-11.77
72	454.00A	495	0.27	1,826,981H	11.91	-11.80
76	487.00A	2,122	1.22	1,788,420%	12.24	-12.32
80	520.00A	3,961	2.34	1,686,9078	11.90	-12.19
84	556.00A	5,393	3.20	1,516,1978	10.84	-11.35
93	631.00A	6,869	4.05	1,023,7558	7.40	-8.12
98	673.00A	6,177	3.59	752,604H	5.43	-6.13
F98	709.00A	5,545	3.19	540,738H	3.90	-4.50
104	724.00A	5,150	3.13	460,415H	3.50	-4.07
110	775.00A	3,490	2.63	240,599H	2.25	-2.69
126	851.00A	1,499	1.76	54,6388	0.77	-1.01
Maxim	num Shear St	ress at 51:		-4.61 ksi		-
Maxin	rum Deck Berry	ding Stress	at 62:	13.13 ksi		
Maxin	num Keel Ben	ding Stress	at 59:	-14.41 ksi		

153


SAGGING FULL LOAD AFT DAMAGE


CVT-1 -- SOF Rev. 1 (by: WOLF-BAB) OOC POSSE-SALV V2.2 01-23-03


FREE-FLOATING DAMAGED CONDITION

.

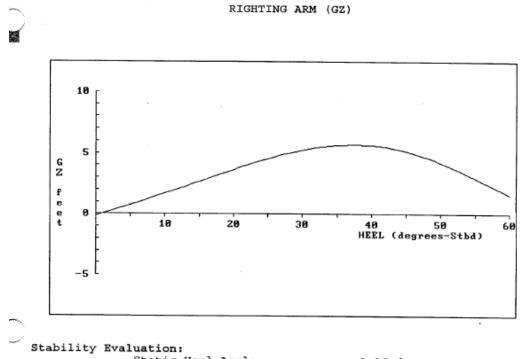
Jamaged (Compartments:					
MACHY	LODT 8-103-4	ERNO 8-104-0	LOSM 8-104-1	LOSM 8-1	105-2	LORG 4-106-2
LORG 4-10	6-4 GTWD 8-107-0	BOLR CASCADE	FPST 7-112-1	LOPS 7-	12-2	AFT
RGS 5-116	-11 DP 6-116-1	SSDG 5-116-9	RGSL 5-116-7	ST 5-11	- 3	DTA 6-116-0
ST 5-116-	1 SV 5-116-0	DP 6-116-4	POT 5-116-6	POT 5-13	16-8	DIS 5-116-10
GWT 5-126	-1 APF 6-126-1	APF 6-126-2	SWRT 5-130-1			
	DISPLACEMENT LTons	DRAFT FWD ft	DRAFT AFT ft	TRIM ft	HEEL deg.	UPRIGHT GMt ft
INTACT DAMAGED	48,937 64,300	27.71 26.83	27.91 45.00	0.20A 18.17A	0.1S 0.8S	11.94
	04,300	40.83	45.00	18.17A	0.85	10.40

(Based on Direct Calculation from Hull Offsets)

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

FAIRED LINES PLAN

		SHEA	R FORCES	в	ENDING MOMEN	TS
	LOCATION	SHEAR	SHEAR STRESS	MOMENT	DK STRESS	KL STRESS
No.	ft-FP	LTons	ksi	ft-LTons	ksi	ksi
25	55.00A	-1,004	-2.44	40,050H	3.30	-1.99
33	121.00A	-1,032	-1.07	111,306H	1.37	-2.00
36	148.00A	-1,022	-0.86	139,264H	1.42	-1.98
F42	199.00A	-1,082	-0.67	192,134H	1,48	-1.97
51	274.00A	-442	-0.30	254,683H	2.12	-2.58
55	310.00A	-132	-0.09	264,607H	2.25	-2.59
59	343.00A	36	0.03	266,136H	2.21	-2.44
62	367.00A	-230	-0.15	267,283H	2.11	-2.26
68	418.00A	-767	-0.45	297,9428	2.11	-2.14
MS	452.50A	-1,287	-0.71	330,0608	2.18	-2.16
72	454.00A	-1,325	-0.73	332,001H	2.20	-2.18
76	487.00A	-1,608	-0.93	383,555M	2.66	-2.68
80	520.00A	-1,393	-0.82	433,638H	3.10	-3.18
84	556.00A	-1,208	-0.72	481,284H	3.49	-3.66
Mx	606.98A	1	0.00	514,027H	3.76	-4.06
93	631.00A	144	0.08	511,903H	3.76	-4.12
98	673.00A	1,148	0.67	492,315H	3.61	-4.06
F98	709.00A	3,052	1.76	418,819H	3.06	-3.53
104	724.00A	3,485	2.12	367,551H	2.84	-3.29
110	775.00A	2,719	2.05	212,632H	2.02	-2.41
126	851.00A	1,375	1.62	44,730H	0.65	-0.84
Maxim	um Shear St	ress at 25:		-2.44 ksi		


-

Maximum Shear Stress at 25: Maximum Deck Bending Stress at Mx: Maximum Keel Bending Stress at 93:

-2.44 KS1 3.76 ksi -4.12 ksi

·· . · CVT-1 -- SOF Rev. 1 (by: WOLF-BAB)

OOC POSSE-SALV V2.2 01-23-03

Static Heel Angle Freeboard to Margin Line Wind Heel Angle	0.8S deg 46.88 ft 1.6S deg	0.00 ft
Angle at Maximum GZ Maximum GZ Range of Positive GZ	37.58 deg 5.68 ft >59.2 deg	
Gmt (upright damaged)	10.40 ft	

(Based on Direct Calculation from Hull Offsets) Freeboards are calculated perpendicular to the water surface

STILLWATER MOC FWD DAMAGE

.

....

- OOC, POSSE-SALV V2.2 01-23-03

Ч	ITEM Light Ship Constant RoRo Cargo Misc. Weight Fuel Oil Diesel Oil Lube Oil Fresh Water SW Ballast Misc.	LTons 37,681 0 1,032	ft-BL 45.57 0.00 0.00 43.27	ft-FP 441.70A 452.50A 452.50A 464.10A	0.655 0.00 0.00 0.00	ft-LTons 0 0
	TOTALS Draft at F.P. Draft at A.P. Trim Draft at Fwd Marks Draft at Aft Marks Static Heel Angle	46,452	40.92 INTAC	469.22A	0.07S ER OUTFLOW	50,662 AS DAMAGED 25.86 29.25 3.39A 25.93
	Total Weight KG LCG (f	(LT) (ft) t-FP) t-CL)	46,45 40.9 469.2 0.0	52 92 22A 97S	43,743 41.12 446.08A 0.07P	0.13P
	Buoyancy KB LCB (f TCB (f	(LT) (ft) t-FP) t-CL)	46,45 470.0 	52 		48,621 15.37 478.93A 0.39P
	KMt FSc GMt	(ft) (ft) (ft)	52.9 1.0 10.9	96 09 95		49.38 0.87 7.09
	Shear Force Bending Moment (f					

FREE-FLOATING DAMAGED CONDITION

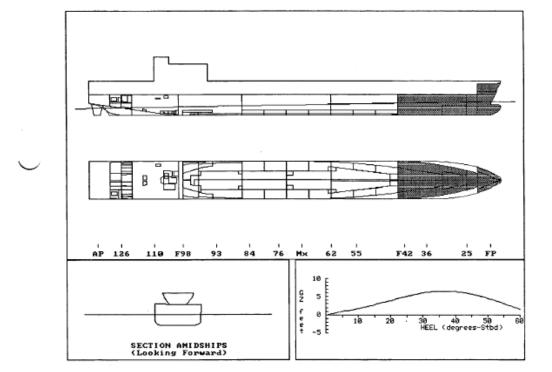
AFTER OUTFLOW CONDITION:

Displacement, KG, LCG, TCG include the effects of fluid outflow & flooding without free-communication. AS DAMAGED CONDITION:

no brenou

Displacement, KG, LCG, TCG include the effects of the flooded water at the equilibrium trim/heel.

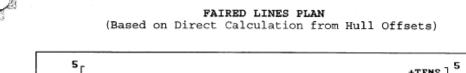
Buoyancy, KB, LCB, TCB are for an intact hull at the equilibrium heel and drafts.

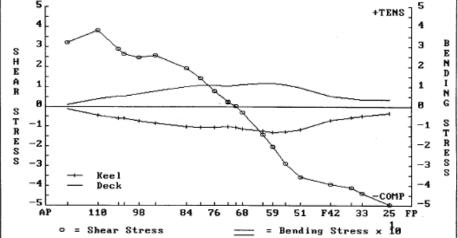

NMt is for the damaged hull at the upright flooded drafts. GMt is the slope of the GZ curve at 0 degrees.

F.S. correction accounts for the free surface of intact tanks and is corrected for outflog_

CVT-1 SOF	*****	· ·	- OOC_POSSE-SALV V2.2
Rev. 1 (by: WOLF-BAB)			01-23-03

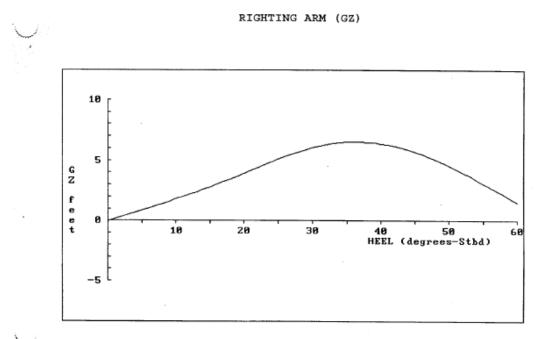
Damaged	Compartments:					
POCSLE	FPK 612-0	FB 811-0	HOLD 1	BOW THR	USTER	NO1 8-25-0
DP 8-32	-1 DP 8-32-2					
	DISPLACEMENT LTons	DRAFT FWD ft	DRAFT AFT ft	TRIM ft	HEEL deg.	UPRIGHT GMt ft
INTACT DAMAGED	46,452 52,197	26.87 38.93	26.52 20.55	0.35F 18.38F	0.4S 0.4S	10.95 10.32
DAMAGED	52,197	38.93	20.55	18.38F	0.45	10.32


....


CVT-1 -- SOF Rev. 1 (by: WOLF-BAB) OOC- POSSE-SALV V2.2 01-23-03

~

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

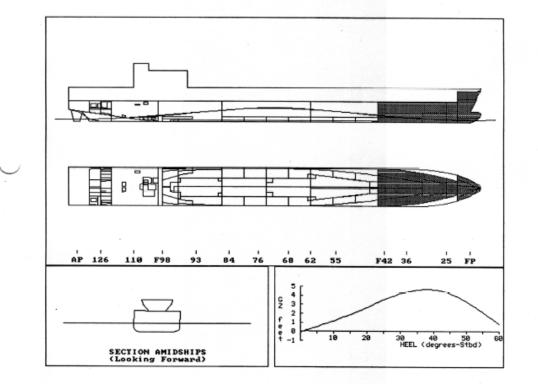

÷.,

		SHEAD	R FORCES	в	ENDING MOMES	TS
	LOCATION	SHEAR	SHEAR STRESS	MOMENT	DK STRESS	KL STRESS
No.	ft-FP	LTons	ksi	ft-LTons	ksi	ksi
25	55.00A	-2,041	-4.95	67,269H	3.38	-3.30
33	121.00A	-4,237	-4.38	274,906H	3.34	-4.89
36	148.00A	-4,904	-4.11	398,330H	4.01	-5.62
F42	199.00A	-6,386	-3.93	685,001H	5.20	~6.96
51	274.00A	-5,206	-3.56	1,148,211H	9.47	-11.50
55	310.00A	-4,105	-2.88	1,316,839H	11.05	-12.78
59	343.00A	-2,928	-2.02	1,432,990H	11.76	-13.00
62	367.00A	-2,138	-1.41	1,493,252H	11.66	-12.51
68	418.00A	-533	-0.31	1,563,716H	10.95	-11.15
Mx	434.08A	0	0.00	1,567,683H	10.63	-10.67
MS	452.50A	381	0.21	1,563,599H	10.23	-10.13
72	454.00A	413	0.23	1,562,988H	10.25	-10.15
76	487.00A	1,355	0.78	1,535,791H	10.57	-10.64
80	520.00A	2,422	1.43	1,473,083H	10.45	-10.71
84	556.00A	3,228	1.92	1,370,710H	9.86	-10.32
93	631.00A	4,377	2.58	1,062,180H	7.72	-8.47
98	673.00A	4,232	2.46	886,057H	6.43	-7.25
F98	709.00A	4,579	2.63	727,452H	5.27	~6.08
104	724.00A	4,731	2.88	657,784H	5.03	-5.84
110	775.00A	5,074	3.83	404,9698	3.80	-4.54
126	851.00A	2,718	3.20	68,754H	0.98	-1.27
Maxim	um Shear Sti	ress at 25:		-4.95 ksi		
Maxim	um Deck Bend	iing Stress	at 59:	11.76 ksi		
Maxim	um Keel Bend	ing Stress	at 59:	-13.00 ksi		

CVT-1 -- SOF Rev. 1 (by: WOLF-BAB) OOC POSSE-SALV V2.2 01-23-03

Stability Evaluation:

Static Heel Angle	0.45	deg		
Freeboard to Margin Line	53.59	ft	0.00	ft
Wind Heel Angle	1.45	deg		
Angle at Maximum GZ	36.45	deg		
Maximum GZ	6.53	ft		
Range of Positive GZ	>59.6	deg		
Gmt (upright damaged)	10.32	ft		-

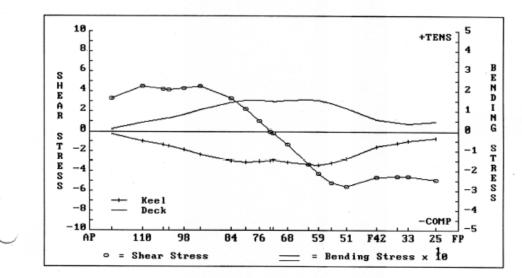

(Based on Direct Calculation from Hull Offsets) Freeboards are calculated perpendicular to the water surface

HOGGING MOC FWD DAMAGE

CVT-1 -- SOF Rev. 1 (by: WOLF-BAB) 00C- POSSE-SALV V2.2 01-23-03

FREE-FLOATING DAMAGED CONDITION

FOCSLE DP 8-32-1	Compartments: FPK 612-0 DP 8-32-2	FB 811-0	HOLD 1	BOW THR	USTER	NO1 8-25-0
	DISPLACEMENT	DRAFT FWD	DRAFT AFT	TRIM	HEEL	UPRIGHT GMt
	LTons	ft	ft	ft	deg.	ft
NTACT	46,452	26.87	26.52	0.35F	0.4S	10.95
AMAGED	47,412	24.14	23.02	1.12F	0.6S	6.85


-

CVT-1 -- SOF Rev. 1 (by: WOLF-BAB) OOC- POSSE-SALV V2.2 01-23-03

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

FAIRED LINES PLANWave Height:33.09 ftWave Position: 452.50A ft-FPWave Length:905.00 ft

(Based on Direct Calculation from Hull Offsets)

-

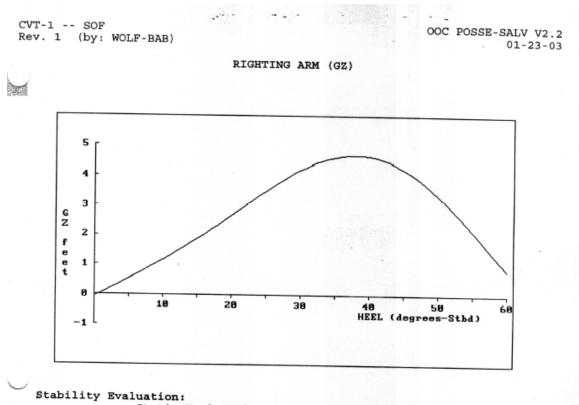
 $\mathbf{M}_{\mathbf{a}}$

00C POSSE-SALV V2.2 01-23-03

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

- . -

.....


- 100

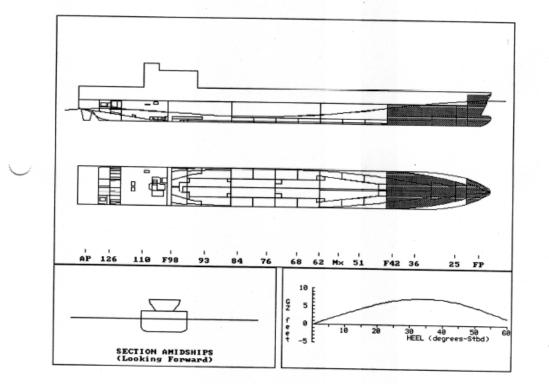
~

FAIRED LINES PLAN

			AR FORCES	I	ENDING MOME	NIS
	LOCATION	SHEAR	SHEAR STRESS	MOMENT	DK STRESS	KL STRESS
No.	ft-FP	LTons	ksi	ft-LTons	ksi	ksi
25	55.00A	-2,239	-5.43	66,662H		
33	121.00A	-3,323	-3.44	255,9528		-3.25
36	148.00A	-3,323		345,744H		-4.54
F42	199.00A	-4,175	-2.57			-4.87
51	274.00A	-1,666	-2.57	531,901H 783,195H		-5.39
55	310.00A	-381	-0.27	819,038H		-7.82
Mx.	322.30A	-301	0.00			-7.92
59	343.00A	600	0.41	821,435H		-7.74
52	343.00A			815,154H		-7.37
68	418.00A	1,061	0.70	794,554H		-6.64
		1,553	0.91	727,4578		-5.17
MS	452.50A	1,502	0.82	672,501H		-4.34
72	454.00A	1,488	0.82	670,240H		-4.34
76	487.00A	1,427	0.82	623,174H		-4.30
80	520.00A	1,487	0.88	575,094H	4.07	-4.17
84	556.00A	1,272	0.76	525, 520H	3.77	-3.94
93	631.00A	888	0.52	427,520H	3.10	-3.40
98	673.00A	415	0.24	406,464H	2.94	-3.32
798	709.00A	853	0.49	384,706H	2.78	-3.21
104	724.00A	1,150	0.70	369,931H	2.82	-3.27
110	775.00A	2,443	1.84	278,494H	2.61	-3.12
126	851.00A	2,210	2.60	60,571H	0.86	-1.12
axim	um Shear St	ress at 25		-5.43 kmi		
			s at 55:	6.85 ksi		

Maximum	Deck	Bending	Stress	at	55:	6.85	ksi	
Maximum	Keel	Bending	Stress	at	55:	-7.92	ksi	

Static Heel Angle Freeboard to Margin Line Wind Heel Angle Angle at Maximum GZ Maximum GZ Range of Positive GZ Gmt (upright damaged)	0.6S 68.52 2.5S 38.0S 4.67 >59.4 6.85	ft deg deg ft deg	0.00 ft
--	---	-------------------------------	---------

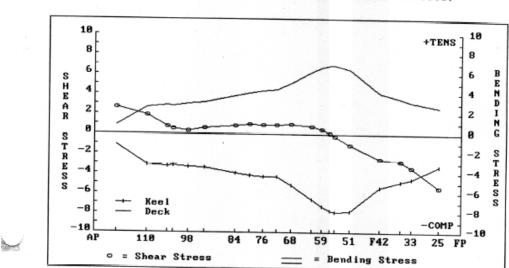

(Based on Direct Calculation from Hull Offsets) Freeboards are calculated perpendicular to the water surface

SAGGING MOC FWD DAMAGE

CVT-1 -- SOF Rev. 1 (by: WOLF-BAB) OOC POSSE-SALV V2.2 01-23-03

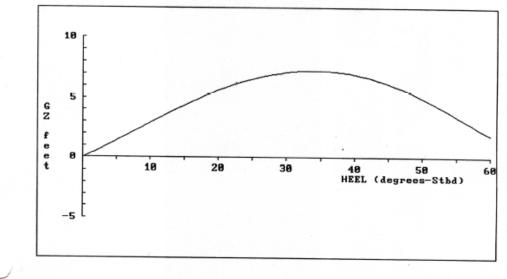
FREE-FLOATING DAMAGED CONDITION

LTONS ft ft ft deg. ft INTACT 46,452 26.87 26.52 0.35F 0.4S 10.95 DAMAGED 58.038 55.89 10.05 20.35F 0.4S 10.95	Damaged FOCSLE DP 8-32-1	Compartments: PPK 612-0 DP 8-32-2	FB 811-0	HOLD 1	BOW THR	USTER	NO1 8-25-0
DAMAGED 58,038 55,99 16,05 0.35F 0.4S 10.95							UPRIGHT GMt ft
							10.95 17.42


170

- OOC POSSE-SA	TV VO O
	1-23-03
	0

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi


FAIRED LINES PLANWave Height:33.09 ftWave Position:0.00 ft-FPWave Length:905.00 ft

Y

(Based on Direct Calculation from Hull Offsets)

```
CVT-1 -- SOF
Rev. 1 (by: WOLF-BAB)
RIGHTING ARM (GZ)
```


Stability Evaluation:

Static Heel Angle	0.25	deg		
Freeboard to Margin Line	35.97	ft	0.00 ft	
Wind Heel Angle	0.65	deq		
Angle at Maximum GZ	34.15	deq		
Maximum GZ	7.26	-		
Range of Positive GZ	>59.8			
Gmt (upright damaged)	17.42			

(Based on Direct Calculation from Hull Offscts) Preeboards are calculated perpendicular to the water surface 1

00C POSSE-SALV V2.2 01-23-03

WEIGHT KG LCG TCG

- -

FREE-FLOATING DAMAGED CONDITION

ITEM	WEIGHT LTons	KG ft-BL	LCG ft-FP	TCG ft-CL	FSmom ft-LTons
Light Ship Constant	37,681 0	45.57 0.00	441.70A 452.50A	0.65S 0.00	0
RoRo Cargo Misc. Weight	0 1,032	0.00 43.27	452.50A 464.10A		0
Fuel Oil Diesel Oil Lube Oil Fresh Water SW Ballast Misc.	368 3,639 90 119 3,216 307	19.97 47.08 48.22 14.90	547.16A 837.03A 838.49A 644.76A	45.62S 38.66P 6.40P	2,965 35,656 77 97 9,930 1,937
TOTALS	46,452	40.92	469.22A	0.075	50,662
		INTAC	T AFTE	R OUTFLOW	AS DAMAGED
Draft at F.P. Draft at A.P. Trim Draft at Fwd Marks Draft at Aft Marks Static Heel Angle	(ft)	26.8 26.5 0.3 26.8 26.5 0.	2 5F 6 3		38.93 20.55 18.38F 38.52 21.06 0.4S

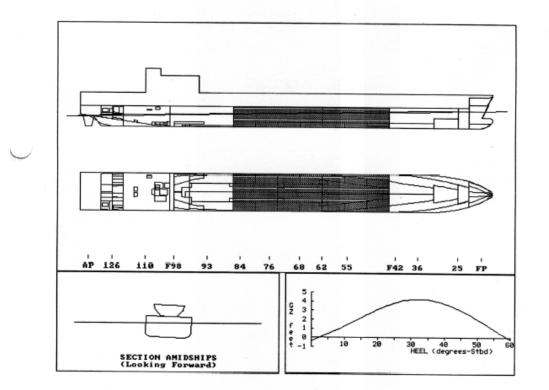
ŕ	Draft at Fwd Ma Draft at Aft Ma Static Heel Ang	arks (ft)	26.86 26.53 0.45		18.38F 38.52 21.06 0.4S
	Total Weight KG LCG TCG	(LT) (ft) (ft-FP) (ft-CL)	46,452 40.92 469.22A 0.07S	45,579 41.52 474.96A 0.07S	52,197 38.90 431.34A 0.07S
	Buoyancy KB LCB TCB	(LT) (ft) (ft-FP) (ft-CL)	46,452 470.07A		52,197 16.66 430.89A 0.22S
	KML FSc GML	(ft) (ft) (ft)	52.96 1.09 10.95		53.06 0.94 10.32
	Shear Force Bending Moment	(LT) (ft-LT)			-6,386 1,567,683H
	A PUTPED OTTERET ON COMPAREMENT				

AFTER OUTFLOW CONDITION:

Displacement, KG, LCG, TCG include the effects of fluid outflow & flooding without free-communication. AS DAMAGED CONDITION:

Displacement, KG, LCG, TCG include the effects of the flooded water at the equilibrium trim/heel.

Buoyancy, KB, LCB, TCB are for an intact hull at the equilibrium heel and drafts.


NOME is for the damaged hull at the upright flooded drafts. GMt is the slope of the GZ curve at 0 degrees.

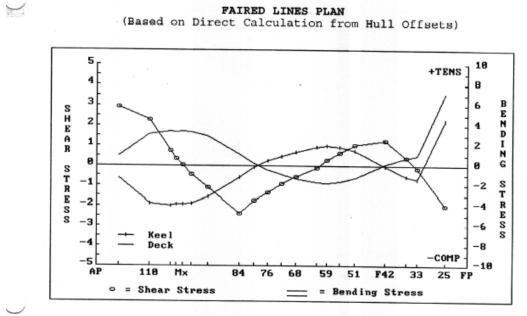
F.S. correction accounts for the free surface of intact tanks and is corrected for outflow .-

STILLWATER MOC MD DAMAGE

FREE-FLOATING DAMAGED CONDITION

N2B 8-50-2 DB3F 8-62-2 DB3A 8-74-2	W2C 8-56-1 W3A 8-62-4 W3C 8-74-4	FD 0-44-1 W2C 8-56-2 W3B 8-68-1 W3D 8-80-1	W2A 8=44=4 HOLD 3 W3B 8-68-2 W3D 8-80-2	FB 8-44 W3A 8-6 W3C 8-7	2-1	W2B 8-50-1 DB3F 8-62-0 DB3A 8-74-0
D	ISPLACEMENT LTons	DRAFT FWD ft	DRAFT AFT ft	TRIM ft	HEEL deg.	UPRIGHT GMt
NTACT	46,452 74,620	26.87 49.28	26.52 29.92	0.35F 19.36F	0.45	10.95 9.09

.

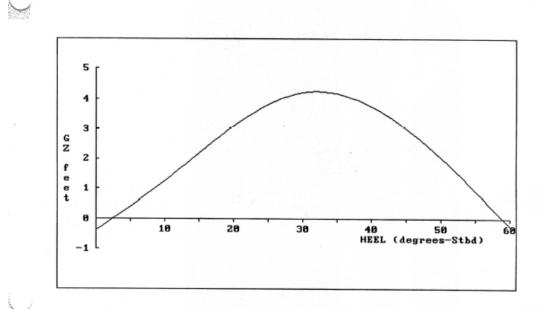

....

CVT-1 -- SOF Rev. 1 (by: WOLF-BAB)

000 POSSE-SALV V2.2 01-23-03

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

......


		SHE	AR FORCES	I	ENDING MOME	NTS
	LOCATION	SHEAR	SHEAR STRESS			
	ft-FP	LTons	ksi	ft-LTons		ksi
25	55.00A			36,1328		
33	121.00A	-161	-0.17	76,702H	1.00	-1.42
36	148.00A	436	0.36	73,620H	0.78	-1.08
F42	199.00A	2,035	1.25	13,120H	0.10	-0.14
51	274.00A	1,478	1.01	141,1875	-1.22	1.47
55	310.00A	894	0.63	193,3638	-1.62	1.06
59	343.00A	370	0.26	204,5205	-1.76	1.94
62	367.00A	-168	-0.11	207,6578	-1.70	1.82
68	418.00A	-944	-0.56	177,0985	-1.29	1.32
MS	452.50A	-1,636	-0.90	135,3285	-0.92	0.91
72	454.00A	-1,674	-0.92	132,8625	-0.91	0.90
76	487.00A	-2,346	-1.35	65,1538	-0.47	0.47
80	520.00A	-2,963	-1.75	22,042H	0.16	-0.17
84	556.00A	-4,005	-2.38	146,767H	1.10	=1.15
93	631.00A	-1,865	-1.10	379,719H	2.88	-3.15
98	673.00A	-785	-0.46	440,087H	3.33	-3.73
Mx	693.17A	3	0.00	448,130H	3.38	-3.85
F98	709.00A	609	0.35	443,238H	3.34	-3.84
104	724.00A	1,195	0.73	429,873H	3.42	-3.95
110	775.00A	3,008	2.27	319,890H	3.14	-3.73
126	851.00A	2,468		64,473H	0.98	-1.26
	um Shear Str			2.91 ksi		•••
Maxim	um Deck Bend	ling Stress	at 25:	7.12 ksi		
Maxim	um Keel Bend	ing Stress	at 25:	4.51 ksi		

176

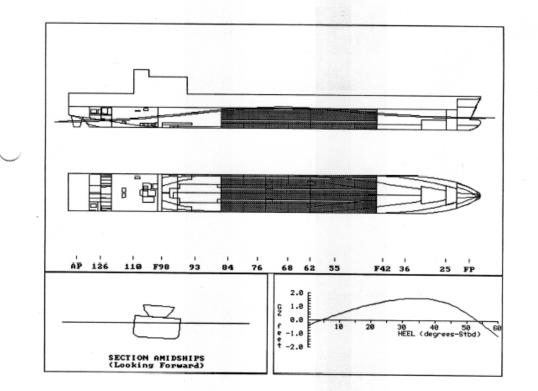
CVT-1 -- SOF Rev. 1 (by: WOLF-BAB) OOC POSSE-SALV V2.2 01-23-03

RIGHTING ARM (GZ)

+***

Stability Evaluation:

Static Heel Angle	2.55	dea	
Freeboard to Margin Line	42.90	_	0.00 ft
Wind Heel Angle	3.15	deg	
Angle at Maximum GZ	32.15	deg	
Maximum GZ	4.25	ft	
Range of Positive GZ	56.5	deg	
Gmt (upright damaged)	9.09	ft	

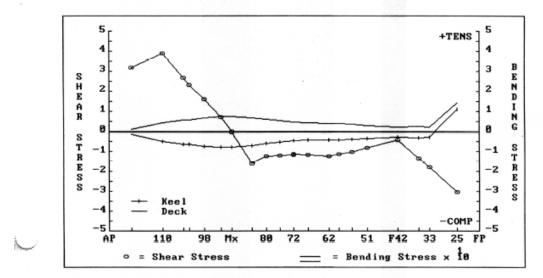

(Based on Direct Calculation from Hull Offsets) Preeboards are calculated perpendicular to the water surface

HOGGING MOC MD DAMAGE

CVT-1 -- SOF Rev. 1 (by: WOLF-BAB) OOC POSSE-SALV V2.2 01-23-03

FREE-FLOATING DAMAGED CONDITION

HOLD 2 W2B 8-50	W2A 0-44-01	FB 8-44-1 W2C 8-56-2	W2A 8-44-4 HOLD 3	PB 8-44 W3A 8-6	-		
DB3F 8-6		W3B 8-68-1	W3B 8-68-2	W3C 8-74-1		DB3F 8-62-0 DB3A 8-74-0	
DB3A 8-7	4-2 W3C 8-74-4	W3D 8-80-1	W3D 8-80-2				
	DISPLACEMENT LTons	DRAFT FWD ft	DRAFT AFT ft	TRIM ft	HEEL deg.	UPRIGHT GMt ft	
INTACT DAMAGED	46,452 84,321	26.87 51.84	26.52 32.07	0.35F 19.77F	0.4S 4.1S	10.95	



179

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

FAIRED LINES PLANWave Height:33.09 ftWave Position:452.50A ft-FPWave Length:905.00 ft

(Based on Direct Calculation from Hull Offsets)

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

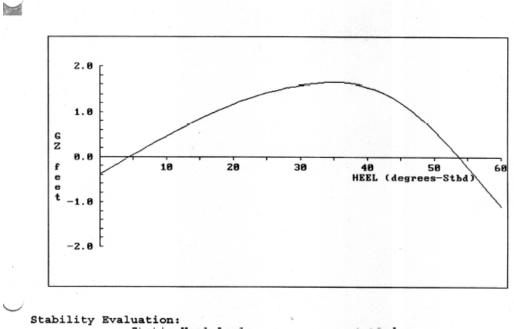
Euros

FAIRED LINES PLAN

		SHE	AR FORCES	В	ENDING MOME	TS		
	LOCATION	SHEAR	SHEAR STRESS	MOMENT	DK STRESS	KL STRESS		
No.	ft-FP	LTons	ksi	ft-LTons	ksi	ksi		
25	55.00A	-1,241	-3.01	44,765H	14.07	10.84		
33	121.00A	-1,724	-1.78	148,795H	2.03	-2.84		
36	148.00A	-1,622	-1.36	194,699H	2.17	-2.94		
F42	199.00A	-666	-0.41	257,835H	2.14	-2.79		
51	274.00A	-1,164	-0.80	309,241H	2.78	-3.33		
55	310.00A	-1,464	-1.03	358,137H	3.28	-3.74		
59	343.00A	-1,625	-1.12	408,514H	3.64	-4.00		
62	367.00A	-1,873	-1.23	449,696H	3.81	-4.06		
68	418.00A	-2,001	-1.18	553,149H	4.17	-4.24		
MS	452.50A	-2,075	-1.14	620,212H	4.36	-4.32		
72	454.00A	-2,084	-1.15	623,339H	4.39	-4.35		
76	487.00A	-2,105	-1.21	695,425H	5.15	-5.18		
80	520.00A	-2,122	-1.25	763,916H	5.93	-5.96		
84	556.00A	-2,711	-1.61	848,289H	6.56	-6.85		
Mx	604.91A	-25	-0.02	939,985H	7.32	-7.86		
93	631.00A	1,200	0.71	921,599H	7.21	-7.85		
98	673.00A	2,717	1.58	841,896H	6.56	-7.34		
F98	709.00A	4,002	2.30	719,610H	5.60	-6.40		
104	724.00A	4,420	2.69	656,532H	5.39	-6.20		
110	775.00A	5,173	3.90	406,074H	4.13	-4.87		
126	851.00A	2,692	3.17	66,950H	1.07	-1.35		

Maximum Shear Stress at 110: 3.90 ksi Maximum Deck Bending Stress at 25: 14.07 ksi

Maximum Keel Bending Stress at 25:


10.84 ksi

181

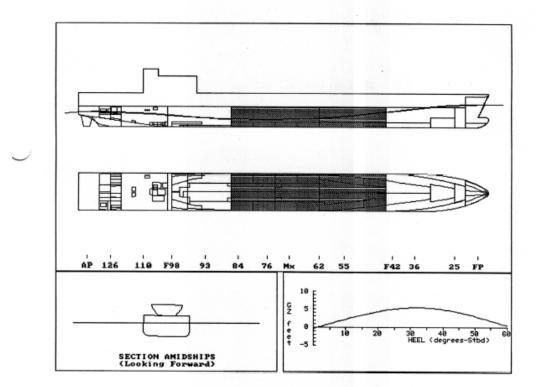
CVT-1 -- SOF Rev. 1 (by: WOLF-BAB) OOC POSSE-SALV V2.2 01-23-03

RIGHTING ARM (GZ)

....

-	Static Heel Angle	4.15	deg		
	Freeboard to Margin Line	39.38	ft	0.00	ft
	Wind Heel Angle	5.25	deg		
	Angle at Maximum GZ	34.85	deg		
	Maximum GZ	1.65	ft		
	Range of Positive GZ	49.5	deg		
	Gmt (upright damaged)	6.19	ft		

(Resed on Direct Calculation from Hull Offsets) Freeboards are calculated perpendicular to the water surface


SAGGING MOC MD DAMAGE

FREE-FLOATING DAMAGED CONDITION

ź

-

Damaged	Compartments:					
HOLD 2	W2A 8 44 01	PD 0-44-1	W2A 8-44-4	FB 8-44	-2	W2B 8-50-1
W2B 8-50	-2 W2C 8-56-1	W2C 8-56-2	HOLD 3	W3A 8-6	2-1	DB3F 8-62-0
DB3F 8-6	2-2 W3A 8-62-4	W3B 8-68-1	W3B 8-68-2	W3C 8-74	4-1	DB3A 8-74-0
DB3A 8-7	4-2 W3C 8-74-4	W3D 8-80-1	W3D 8-80-2			
	DISPLACEMENT LTons	DRAFT FWD ft	DRAFT AFT ft	TRIM ft	HEEL deg.	UPRIGHT GMt ft
INTACT DAMAGED	46,452 64,620	26.87 50.48	26.52 26.11	0.35F 24.36F	0.4S 1.5S	10.95 15.22

CVT-1 SOF Rev. 1 (by: WOLF-BAB)	 	-	OOC POSSE-SALV V2.2
Kev. I (Dy: WOLF-BAB)			01-23-03

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

FAIRED LINES PLANWave Height:33.09 ftWave Position:0.00 ft-FPWave Length:905.00 ft

5, 10 +TENS] 4 8 3 BENDING 6 SHEAR 2 4 1 2 0 Ø STRESS -1 S T R E S S -2 -2 4 -3 -6 Keel Deck -8 -COMP -5 -10 110 98 76 AP 84 68 59 51 F42 33 25 FP o = Shear Stress ____ = Bending Stress

(Based on Direct Calculation from Hull Offsets)

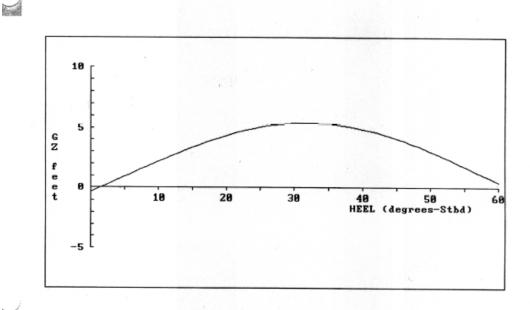
SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

FAIRED LINES PLAN

- - -

. 24 ·

		SHE	AR FORCES	В	ENDING MOMEN	NTS .
	LOCATION	SHEAR	SHEAR STRESS	MOMENT	DK STRESS	KL STRESS
No.	ft-FP	LTons	ksi	ft-LTons	ksi	ksi
25	55.00 A	-69		14,825H		0.81
33	121.00A	1,998	2.07	36,6865	-0.46	0.67
36	148.00A	3,187	2.67	106,3755	-1.10	1.53
F42	199.00A	5.389	3.32	325,9345	-2.54	3.38
51	274.00A	4,655	3.18	729,7145	-6.18	7.47
55	310.00A	3,743	2.63	881,4585	-7.59	8.75
59	343.00A	2,844	1.96	990,0588	-8.34	9.19
62	367.00A	2,021	1.33	1,048,9678	-8.40	8.99
68	418.00A	581	0.34	1,115,4428	-7.99	8.13
Mx	436.77A	0	0.00	1,120,8185	-7.73	7.74
MS	452.50A	-714	-0.39	1,115,2528	-7.46	7.38
72	454.00A	-779	-0.43	1,114,1518	-7.47	7.40
76	487.00A	-2,057	-1.19	1,066,7695	-7.51	7.55
80	520.00A	-3,238	-1.91	979,2728	-7.10	7.28
84	556.00A	-4,766	-2.83	834,9605	-6.14	6.42
93	631.00A	-4,915	-2.90	466,3465	-3.47	3.80
98	673.00A	-4,748	-2.76	256,8025	-1.91	2.14
F98	709.00A	-3,692	-2.12	103,6115	-0.77	0.88
104	724.00A	-3,120	-1.90	52,2555	-0.41	0.47
110	775.00A	-807	-0.61	48,603H	0.47	-0.56
126	851.00A	709	0.84	12,7628	0.19	-0.24


ksi ksi

Maximum	Deck	Bending	Stress	at	62:	-8.40
Maximum	Keel	Bending	Stress	at	59:	9.19

CVT-1 -- SOF Rev. 1 (by: WOLF-BAB) OOC POSSE-SALV V2.2 01-23-03

RIGHTING ARM (GZ)

200

Stability Evaluation:

Static Heel Angle	1.55	deg		
Freeboard to Margin Line	41.86	ft	0.00	ft
Wind Heel Angle	1.95	deg		
Angle at Maximum GZ	31.75	deg		
Maximum GZ	5.40	ft		
Range of Positive GZ	>58.5	deg		
Gmt (upright damaged)	15.22	ft		

(Based on Direct Calculation from Hull Offsets) Freeboards are calculated perpendicular to the water surface

- OOG POSSE-SALV V2.2 01-23-03

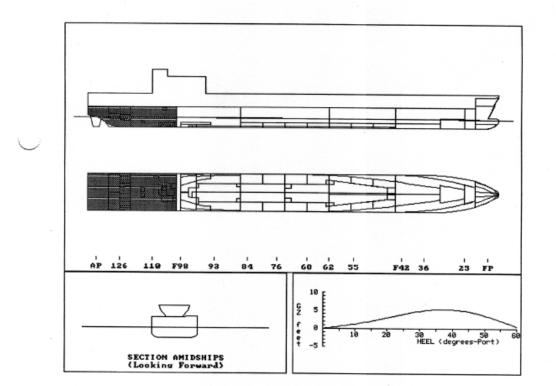
FREE-FLOATING DAMAGED CONDITION

ITEM	WEIGH		LCG ft-FP	TCG ft-CL	FSmom ft-LTons	
Light S. Constan		1 45.57 0 0.00		0.65S 0.00	.0	
RoRo Ca: Misc. W		0 0.00 2 43.27		0.00 0.00	0	
Fuel Oi Diesel (Lube Oi Fresh Wa SW Balla Misc.	Dil 3,63 l 9 ater 11	9 19.97 0 47.08 9 48.22 6 14.90	547.16A 837.03A 838.49A 644.76A	0.02S 0.65P 45.62S 38.66P 6.40P 6.57S	2,965 35,656 77 97 9,930 1,937	
TOTALS	46,45	2 40.92	469.22A	0.075	50,662	

		INTACT	AFTER OUTFLOW	AS DAMAGED
Draft at F.P.	(ft)	26.87		49.28
Draft at A.P.	(ft)	26.52		29.92
Trim	(ft)	0.35F		19.36F
Draft at Fwd Ma		26.86		48.85
Draft at Aft Ma		26.53		30.46
Static Heel Ang	le (deg)	0.45		2.55
Total Weight	(LT)	46,452	44,307	74,620
KG	(ft)	40.92	42.57	33.61
LCG	(ft-FP)	469.22A	471.06A	440.71A
TCG	(ft-CL)	0.075	0.445	0.635
Buoyancy	(LT)	46,452		74,620
KB	(ft)			22.06
LCB	(ft-FP)	470.07A		440.47A
TCB	(ft-CL)			1.155
KMt	(ft)	52.96		52.80
FSc	(ft)	1.09		0.87
GMt	(ft)	10.95		9.09
Shear Force	(LT)			-4,005
Bending Moment				448,130H

AFTER OUTFLOW CONDITION:

Displacement, KG, LCG, TCG include the effects of fluid outflow & flooding without free-communication. AS DAMAGED CONDITION:

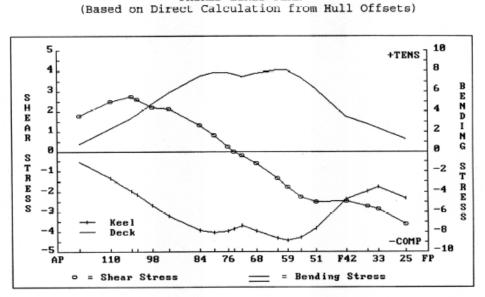

Displacement, XG, LCG, TOG include the effects of the flooded water at the equilibrium trim/heel. Buoyancy, KB, LCB, TCB are for an intact hull at the equilibrium heel and drafts.

KMt is for the damaged hull at the upright flooded drafts. GMt is the slope of the GZ curve at 0 degrees. F.S. correction accounts for the free surface of intact tanks and is corrected for outflow.

STILLWATER MOC AFT DAMAGE

FREE-FLOATING DAMAGED CONDITION

MACHY	LODT 8-103-4	ERMO 8-104-0	LOSM 8-104-1	LOOM 0-1	105-2	LORG 4=106-2
LORG 4-1		BOLR CASCADE	FPST 7-112-1	LOPS 7-1	112-2	AFT
RGS 5-11	6-11 DP 6-116-1	SSDG 5-116-9	RGSL 5-116-7	ST 5-116	5-3	DTA 6-116-0
ST 5-116	-1 SV 5-116-0	DP 6-116-4	POT 5-116-6	POT 5-11	L6-8	DIS 5-116-10
GWT 5-12	6-1 APF 6-126-1	APF 6-126-2				
	DISPLACEMENT LTons	DRAFT FWD ft	DRAFT AFT ft	TRIM ft	HEEL deg.	UPRIGHT GM ft
INTACT	46,452	26.87	26.52	0.35F	0.45	10.95


190

-

CVT-1 -- SOF Rev. 1 (by: WOLF-BAB)

1

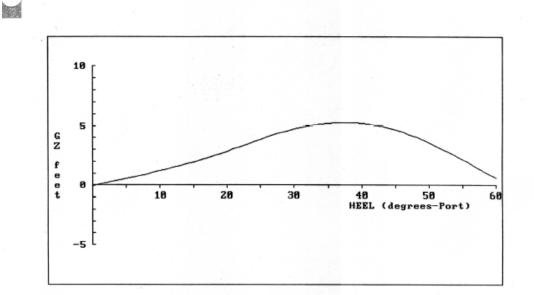
- OOC POSSE-SALV V2.2 01-23-03

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

FAIRED LINES PLAN

- -

.....


		SHEA	R FORCES		ENDING MOME	NTS
	LOCATION	SHEAR	SHEAR STRESS	MOMENT	DK STRESS	KL STRESS
No.	ft-FP	LTons	ksi	ft-LTons	ksi	ksi
25	55.00A	-1,480		50,980H		
33	121.00A	-2,762	-2.86	193,015H		-3.46
36	148.00A	-3,244	-2.72	274,422H		
F42	199.00 A	-3,971	-2.45	459,671H	3.51	-4.69
51	274.00A	-3,645	-2.49	755,461H	6.27	-7.60
55	310.00A	-3,107	-2.24	879,52911	7.42	8.58
59	343.00A	-2,528	-1.75	974,198H	8.04	-8.88
62	367.00A	-2,067	-1.36	1,028,989H	8.08	-8.66
68	418.00A	-1,020	-0.60	1,110,839H	7.81	-7.96
MS	452.50A	-376	-0.21	1,132,444H	7.44	-7.37
72	454.00A	-355	-0.20	1,132,977H	7.46	-7.39
Mx	473.51A	-0	-0.00	1,136,941H	7.71	-7.70
76	487.00A	413	0.24	1,134,208H	7.84	-7.89
80	520.00A	1,383	0.82	1,104,393H	7.87	-8.96
84	556.00A	2,175	1.29	1,039,943H	7.51	-7.86
93	631.00A	3,595	2.12	802,709H	5.87	-6.43
98	673.00A	3,779	2.20	653,060H	4.76	-5.36
F98	709.00A	4,510	2.59	504,137H	3.67	-4.23
104	724.00A	4,519	2.75	435,120H	3.34	-3.88
110	775.00A	3,301	2.49	238,163H	2.25	-2.68
126	851.00A	1,511	1.78	54,389H		-1.01
	um Shear St			-3.59 ksi		•••
Maxim	um Deck Ben	ding Stres	s at 62:	8.08 ksi		
Maxim	um Keel Ben	ding Stres	s at 59:	-8.88 ksi		

OOC POSSE-SALV V2.2 01-23-03

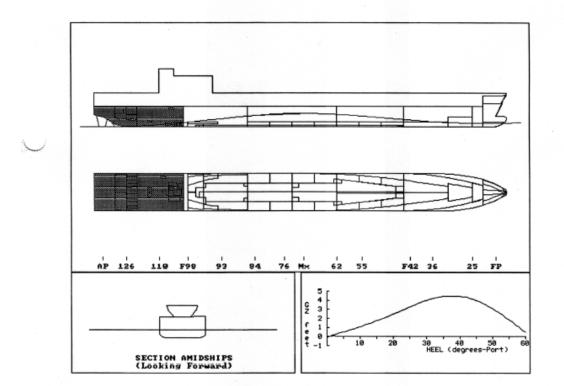
CVT-1 -- SOF Rev. 1 (by: WOLF-BAB)

RIGHTING ARM (GZ)

....

Stability Evaluation:

~1	Druzuu Czoni.				
	Static Heel Angle	0.6P	deg		
	Freeboard to Margin Line	63.15	ft	0.00 ft	2
	Wind Heel Angle	2.3P	deg		
	Angle at Maximum GZ	37.4P	deg		
	Maximum GZ	5.28	ft		
	Range of Positive GZ	>59.4	deg		
	Gmt (upright damaged)	7.09	ft		


(Based on Direct Calculation from Hull Offsets) Freeboards are calculated perpendicular to the water surface

HOGGING MOC AFT DAMAGE

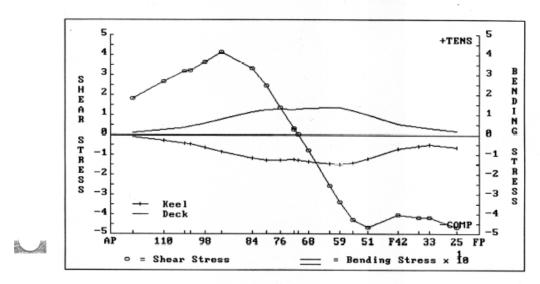
CVT-1 -- SOF Rev. 1 (by: WOLF-BAB) - OOC_POSSE-SALV V2.2 01-23-03

FREE-FLOATING DAMAGED CONDITION

1	Jamaged C	compartments:						
	MACHY	LODT 8-103-4	ERWO 8-104-0	LOSM 8-104-1	LOSM 8-	105-2	LORG 4-106-2	
	LORG 4-106	-4 GTWD 8-107-0	BOLR CASCADE	FPST 7-112-1	LOPS 7-	112-2	AFT	
	RGS 5-116-	DP 6-116-1	SSDG 5-116-9	RGSL 5-116-7	ST 5-11	6-3	DTA 6-116-0	
	ST 5-116-1	SV 5-116-0	DP 6-116-4	POT 5-116-6	POT 5-1	16-8	DIS 5-116-10	
	GWT 5-126-	APF 6-126-1	APF 6-126-2					
		DISPLACEMENT LTons	DRAFT FWD ft	DRAFT AFT ft	TRIM ft	HEEL deg.	UPRIGHT GM ft	It
-	NTACT	46,452 44,178	26.87 26.96	26.52 16.73	0.35F 10.23F	0.4S 0.7P	10.95 6.44	
_								

5

194


....

CVT-1 -- SOF Rev. 1 (by: WOLF-BAB) - OOC_POSSE-SALV V2.2 01-23-03

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

FAIRED LINES PLANWave Height:33.09 ftWave Position:452.50A ft-FPWave Length:905.00 ft

(Based on Direct Calculation from Hull Offsets)

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

- - -

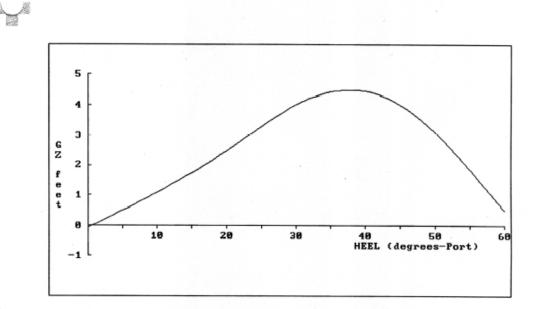
- 1 and -

 \geq

-

FAIRED LINES PLAN

		SHE	AR FORCES	В	ENDING MOME	TS
	LOCATION	SHEAR	SHEAR STRESS	MOMENT	DK STRESS	KL STRESS
No		LTons	ksi	ft-LTons	ksi	ksi
25		-1,923	-4.67	64,991H	1.63	-6.16
33	121.00A	-4,041	-4.18	261,160H	3.19	-4.68
36	148.00A	-4,980	-4.17	383,193H	3.88	-5.44
F4:	2 199.00A	-6,567	-4.05	679,458H	5.20	-6.94
51	274.00A	-6,825	-4.67	1,200,427H	9.97	-12.10
55	310.00A	-6,113	-4.30	1,436,113H	12.14	-14.02
59	343.00A	-4,909	-3.39	1,618,562H	13.37	-14.77
62	367.00A	-3,886	-2.55	1,724,052H	13.55	-14.53
68	418.00A	-1,319	-0.78	1,862,408H	13.12	-13.35
Mx	442.36A	2	0.00	1,876,285H	12.59	-12.56
MS	452.50A	457	0.25	1,873,646H	12.33	-12.20
72	454.00A	527	0.29	1,872,897H	12.35	-12.24
76	487.00A	2,324	1.34	1,828,9288	12.66	-12.74
80	520.00A	4,165	2.46	1,720,716H	12.28	-12.58
84	556.00A	5,608	3.33	1,542,476H	11.16	-11.68
93	631.00A	7,001	4.13	1,036,064H	7.58	-8.31
98	673.00A	6,229	3.62	760,985H	5.56	-6.26
F9	8 709.00A	5,600	3.22	546,892H	3.99	-4.60
10	4 724.00A	5,191	3.16	465,855H	3.58	-4.16
11	0 775.00A	3,528	2.66	244,115H	2.31	-2.75
	6 851.00A	1,528	1.80	55,218H	0.80	-1.03


Maximum	Deck	Bending	Stress	at	62:	1
Maximum	Keel	Bending	Stress	at	59:	-14

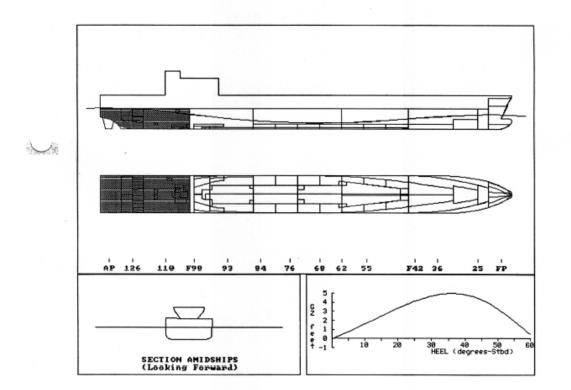
13.55 ksi

4.77 ksi

196

Stability Evaluation:

_				
	Static Heel Angle	0.7P	deg	
	Freeboard to Margin Line	65.76	ft	0.00
	Wind Heel Angle	2.9P	deg	
	Angle at Maximum GZ	37.9P	deg	
	Maximum GZ	4.49	ft	
	Range of Positive GZ	>59.3	deg	
	Gmt (upright damaged)	6.44	ft	


ft

(Based on Direct Calculation from Hull Offsets) Freeboards are calculated perpendicular to the water surface

SAGGING MOC AFT DAMAGE

FREE-FLOATING DAMAGED CONDITION

MACHY	LODT 8-103-4	ERWO 8-104-0	LOSM 8-104-1	LOSM 8-105-2	LORG 4-106-2
LORG 4-10		BOLR CASCADE	FPST 7-112-1	LOPS 7-112-2	AFT
RGS 5-116	-11 DP 6-116-1	SSDG 5-116-9	RGSL 5-116-7	ST 5-116-3	DTA 6-116-0
ST 5-116-	SV 5-116-0	DP 6-116-4	POT 5-116-6	POT 5-116-8	DIS 5-116-10
GWT 5-126	-1 APF 6-126-1	APF 6-126-2			
	DISPLACEMENT	DRAFT FWD	DRAFT AFT	TRIM HEEL	
	LTons	ft	ft	ft deg.	ft
INTACT	46,452	26.87	26.52	0.35F 0.4	IS 10.95

199

....

SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

FAIRED LINES PLANWave Height:33.09 ftWave Position:0.00 ft-FPWave Length:905.00 ft

5 5 +TENS] 4 4 з з BENDING SHEAR 2 2 1 1 0 0 STRESS -1 STRESS -1 -2-2 -3 -3 Kee -4 Deck -4 -COMP -5 [AP -5 110 98 Mx 80 72 25 FP 62 51 F42 33 o = Shear Stress = Bending Stress =

(Based on Direct Calculation from Hull Offsets)

CVT-1 -- SOF Rev. 1 (by: WOLF-BAB)

- OOC POSSE-SALV V2.2 01-23-03

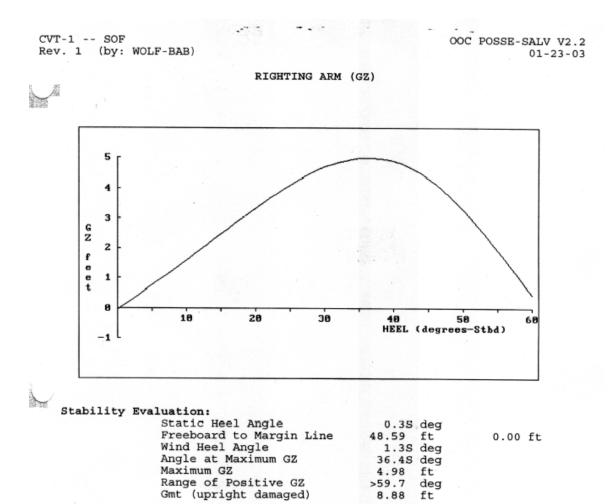
SHEAR & LONGITUDINAL BENDING STRESS SUMMARY Stresses in ksi

•. •

FAIRED LINES PLAN

· ··· [1]

		SHE	AR FORCES	В	ENDING MOME	NTS
	LOCATION	SHEAR	SHEAR STRESS	MOMENT	DK STRESS	KL STRESS
No.	ft-FP	LTons	ksi	ft-LTons	ksi	ksi
25	55.00A	-1,033	-2.51	40,637H	1.93	-1.99
33	121.00A	-1,127	-1.17	116,379H	1.41	-2.07
36	148.00A	-1,079	-0.90	146,435H	1.47	-2.07
F42	199.00A	-1,025	-0.63	199,572H	1.51	-2.03
51	274.00A	-537	-0.37	259,648H	2.14	-2.60
55	310.00A	-492	-0.35	277,686H	2.33	-2.69
59	343.00A	-449	-0.31	293,529H	2.41	-2.66
62	367.00A	-548	-0.36	305,114H	2.38	-2.55
68	418.00A	-885	-0.52	343,282H	2.40	-2.45
MS	452.50A	-1,219	-0.67	377,968H	2.47	-2.45
72	454.00A	-1,239	-0.68	379,795H	2.49	-2.47
76	487.00A	-1,350	-0.78	424,134H	2.92	-2.94
80	520.00A	-1,134	-0.67	465,708H	3.30	-3.38
84	556.00A	-945	-0.56	503,955H	3.62	-3.79
Mx	599.15A	6	0.00	524,928H	3.80	-4.08
93	631.00A	304	0.18	517,640H	3.76	-4.13
98	673.00A	1,209	0.70	493, 348H	3.58	-4.03
P98	709.00A	3,095	1.78	417,681H	3,02	-3.49
104	724.00A	3,508	2.13	365,947H	2.79	-3.25
110	775.00A	2,716	2.05	210,547H	1.98	-2.36
126	851.00A	1,352	1.59	44,273H	0.63	-0.82

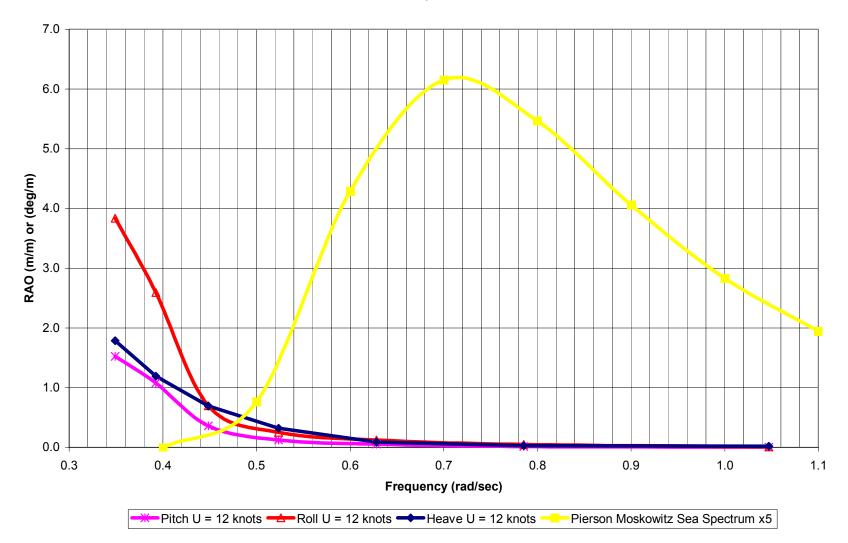

Maximum Shear Stress at 25: Maximum Deck Bending Stress at Mx:

-2.51 ksi

Maximum Keel Bending Stress at 93:

3.80 ksi -4.13 ksi

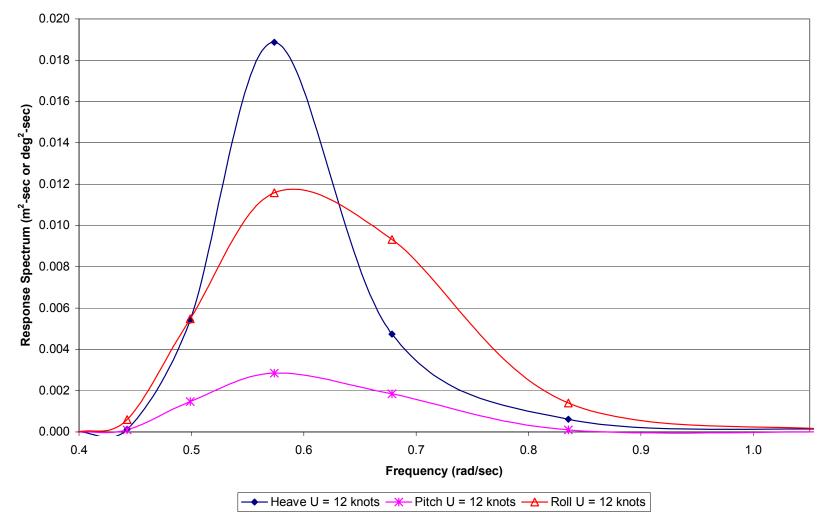
201



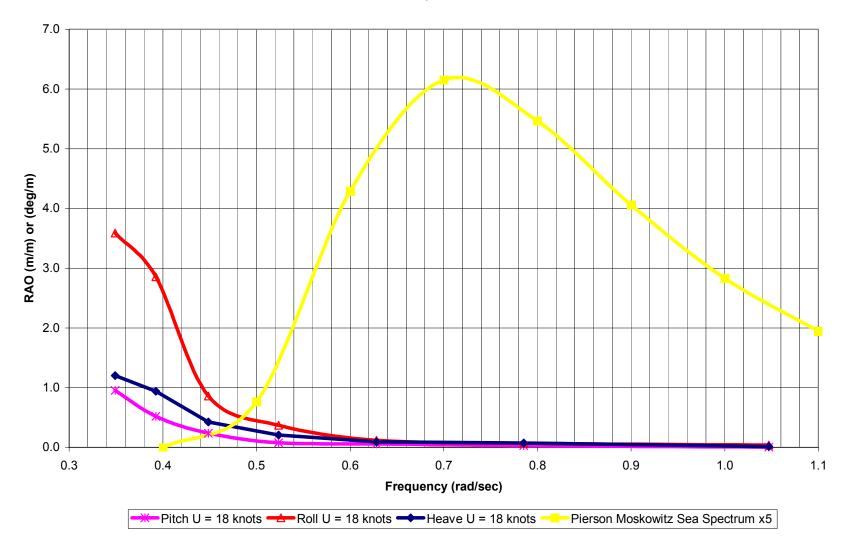
(Based on Direct Calculation from Hull Offsets) Freeboards are calculated perpendicular to the water surface

.

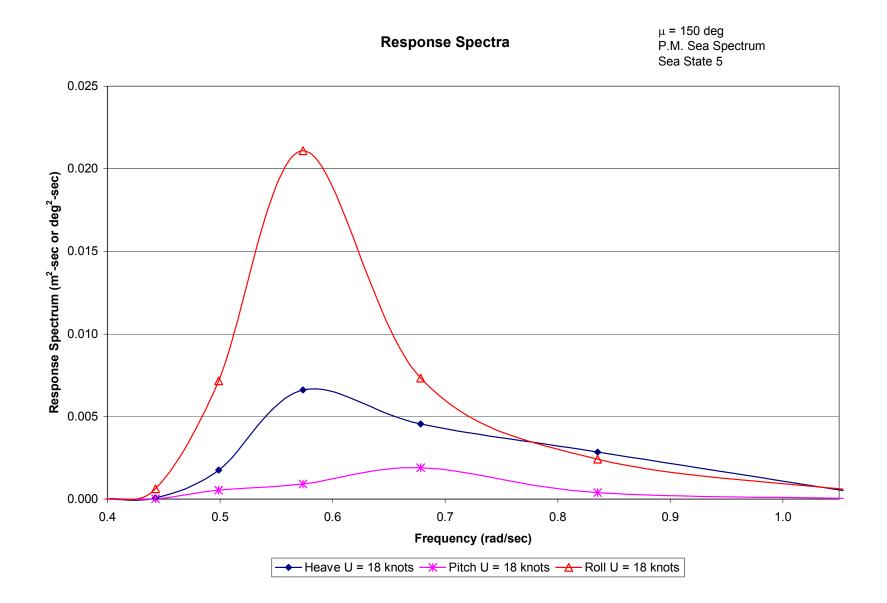
Appendix G SWAN Seakeeping Analysis


12 KNOTS

RAO for Heave, Pitch and Roll

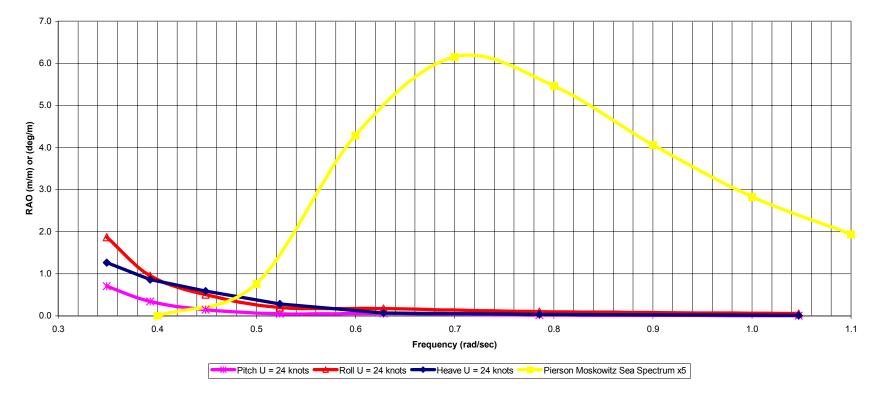


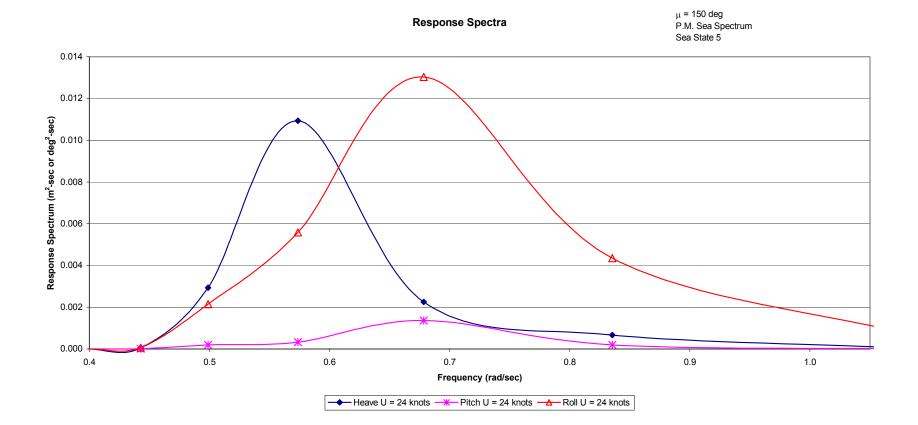
μ = 150 deg P.M. Sea Spectrum Sea State 5



	SI	WAN2 20	02 SC	DLVE		
Ma	ssachus		istitut	ce or	f Technolog	_
Name	-	RID INE	ORMATI	ON		
Sheet# 1	NPI 16		N 92		KP 3	MP 0
2	4	30	12		3	0
3	21	30	63		2	1
4	30	30	90	0	1	0
Waterl	ine Len ine Beau m Draft	m	(m) (m) (m)		2.525E+2 3.224E+1 6.888E+0	
	um Draft		(m)	:	6.888E+0	
-	cement Surfac		(m^3)		2.496E+4 7.148E+3	
	from orio		(m 2) (m)		-1.997E+0	
	from ori		(m)		0.000E+0	
VCB (f	from orio		(m)		-2.526E+0	
 Watawa	lane Ar	 ea	(m^2)	:	6.070E+3	
waterp					-1.333E+1	
LCF (f		gin)				
LCF (f	rom orio					
LCF (f					6.865E+0 3.992E+7	
LCF (f Metace Mass Mass/d	entric he	eight 	(m) (kg) (m^3)	:	6.865E+0 3.992E+7 3.895E+4	
LCF (f Metace Mass Mass/c LCG (f	entric ho density from orio	eight gin)	(m) (kg) (m^3) (m)	:	6.865E+0 3.992E+7 3.895E+4 1.347E+2	
LCF (f Metace Mass Mass/c LCG (f TCG (f	entric ho lensity from orio	eight gin) gin)	(m) (kg) (m^3) (m) (m)	:	6.865E+0 3.992E+7 3.895E+4 1.347E+2 1.545E-1	
LCF (f Metace Mass Mass/c LCG (f TCG (f VCG (f	entric ho density from orio from orio	eight gin) gin) gin)	(m) (kg) (m^3) (m) (m) (m)	:	6.865E+0 3.992E+7 3.895E+4 1.347E+2 1.545E-1 2.720E+0	(ro]
LCF (f Metace Mass Mass/d LCG (f TCG (f VCG (f Radii	entric ho lensity from orio	eight gin) gin) gin)	(m) (kg) (m^3) (m) (m)	:	6.865E+0 3.992E+7 3.895E+4 1.347E+2 1.545E-1	(rol (pit

18 KNOTS


RAO for Heave, Pitch and Roll



	SI	WAN2 20)02 SC	OLVE		
Ma	assachus		nstitut	te o	f Technolog	-
	-	RID INF	 Formati	EON		
Name	e :	SOF				
Sheet#					KP	MP
1	16		92		3	0
2 3	4 21	30	12		3 2	0 1
3 4	21 30	30 30	63 90		2	1
	line Len Line Bear	-	(m) (m)		2.525E+2 3.224E+1	
				:		
	um Draft acement		(m) (m^3)	:	6.888E+0 2.496E+4	
-	d Surface				7.148E+3	
LCB (f	from ori	gin)	(m)		-1.997E+0	
	from ori	-	(m)		0.000E+0	
VCB (f	from ori	gın) 	(m) 	:	-2.526E+0	
					6.070E+3	
LCF (f	from orio	gin)	(m)	:	-1.333E+1	
Metace	entric h	eight 	(m)	:	6.865E+0	
Mass			(kg)	:	3.992E+7	
	density		(m^3)	:	3.895E+4	
		gin)	(m)	:	1.347E+2	
LCG (f		· ·				
LCG (f TCG (f	from ori		(m) (m)	:	1.545E-1 2 720E+0	
LCG (f TCG (f VCG (f	from orio	gin)	(m)	:	2.720E+0	
LCG (f TCG (f VCG (f Radii	from ori	gin)		::		(rol

24 KNOTS

RAO for Heave, Pitch and Roll

	SI	WAN2 20	02 SC	DLVE		
Ma	ssachus		istitut	ce or	f Technolog	_
Name	-	RID INE	ORMATI	ON		
Sheet# 1	NPI 16		N 92		KP 3	MP 0
2	4	30	12		3	0
3	21	30	63		2	1
4	30	30	90	0	1	0
Waterl	ine Len ine Beau m Draft	m	(m) (m) (m)		2.525E+2 3.224E+1 6.888E+0	
	um Draft		(m)	:	6.888E+0	
-	cement Surfac		(m^3)		2.496E+4 7.148E+3	
	from orio		(m 2) (m)		-1.997E+0	
	from ori		(m)		0.000E+0	
VCB (f	from orio		(m)		-2.526E+0	
 Watawa	lane Ar	 ea	(m^2)	:	6.070E+3	
waterp					-1.333E+1	
LCF (f		gin)				
LCF (f	rom orio					
LCF (f					6.865E+0 3.992E+7	
LCF (f Metace Mass Mass/d	entric he	eight 	(m) (kg) (m^3)	:	6.865E+0 3.992E+7 3.895E+4	
LCF (f Metace Mass Mass/c LCG (f	entric ho density from orio	eight gin)	(m) (kg) (m^3) (m)	:	6.865E+0 3.992E+7 3.895E+4 1.347E+2	
LCF (f Metace Mass Mass/c LCG (f TCG (f	entric ho lensity from orio	eight gin) gin)	(m) (kg) (m^3) (m) (m)	:	6.865E+0 3.992E+7 3.895E+4 1.347E+2 1.545E-1	
LCF (f Metace Mass Mass/c LCG (f TCG (f VCG (f	entric ho density from orio from orio	eight gin) gin) gin)	(m) (kg) (m^3) (m) (m) (m)	:	6.865E+0 3.992E+7 3.895E+4 1.347E+2 1.545E-1 2.720E+0	(ro]
LCF (f Metace Mass Mass/d LCG (f TCG (f VCG (f Radii	entric ho lensity from orio	eight gin) gin) gin)	(m) (kg) (m^3) (m) (m)	:	6.865E+0 3.992E+7 3.895E+4 1.347E+2 1.545E-1	(rol (pit

Appendix H Cost Models

COST MODEL--Construction LMSR

MIT 13A

Definitions (units):	Mdol := coul	$Bdol := 1000 \cdot Mdol$	$Kdol := \frac{Mdol}{1000}$	$dol := \frac{Kdol}{1000}$
	$lton := 2240 \cdot lb$			
	CNA := 2.2	CND := 0.5		

1. Single Digit Weight Summary: i1 := 100,200..700

Base Weight

$$\begin{split} & \text{WA}_{100} \coloneqq 25332.18 \cdot \text{lton} & \text{WA}_{400} \coloneqq 61.06 \cdot \text{lton} & \text{WA}_{700} \coloneqq 4.15 \cdot \text{lton} \\ & \text{WA}_{200} \coloneqq 1984.52 \cdot \text{lton} & \text{WA}_{500} \coloneqq 4074.85 \cdot \text{lton} \\ & \text{WA}_{300} \coloneqq 668.04 \cdot \text{lton} & \text{WA}_{600} \coloneqq 1771.71 \cdot \text{lton} \end{split}$$

2. Additional Characteristics:

Total Weight Added:

WAdd :=
$$\left(\sum_{i1}^{i1} WA_{i1}\right)$$
 WAdd = 31911.99 ton

Manning: (crew + air detachment + staff) Officers: N_O := 8 Enlisted: N_E := 22 Officers: CPO's: $N_{C_3} := N_E - N_{C_2}$ Enlisted: $N_{C_2} := 0$ Initial Operational Capability: Ship Service Life: $L_{S} := 30$ $Y_{IOC} := 2004$ Total Ship Acquisition: $N_{S} := 1$ Production Rate (per year): $R_{P} := 1$

3. Inflation:

Base Year:
$$Y_B := 2003$$

 $R_{I} := 3.$

Average Inflation Rate (%): (from 1981)

$$F_{I} := \prod_{iy} \left(1 + \frac{R_{I}}{100} \right) \qquad F_{I} = \mathbf{I}$$

4. Lead Ship Cost:

Lead Ship Addition Cost - Shipbuilder Portion:

SWBS costs: includes escalation estimate

Structure
$$K_{N1} := \frac{.55 \cdot Mdol}{lton^{.772}}$$
 $CA_{L_{100}} := .03395 \cdot F_{I} \cdot K_{N1} \cdot 2.2 \cdot (WA_{100})^{.772}$ $CA_{L_{100}} = \bullet Mdol$

+ Propulsion
$$K_{N2} := \frac{1.2 \cdot Mdol}{lton^{.808}}$$
 $CA_{L_{200}} := .00186 \cdot F_I \cdot K_{N2} \cdot 2.2 \cdot (WA_{200})^{.808}$ $CA_{L_{200}} = \bullet Mdol$

+ Electric
$$K_{N3} := \frac{1.0 \cdot Mdol}{lton^{.91}}$$
 $CA_{L_{300}} := .07505 \cdot F_{I} \cdot K_{N3} \cdot 2.2 \cdot (WA_{300})^{.91}$ $CA_{L_{300}} = \bullet Mdol$

+ Command, Control, Surveillance

$$K_{N4} := \frac{2.0 \cdot Mdol}{lton^{.617}} \qquad CA_{L_{400}} := .10857 \cdot F_{I} \cdot K_{N4} \cdot 2.2 \cdot (WA_{400})^{.617} \qquad CA_{L_{400}} = \bullet Mdol$$
(less payload GFM cost)

+ Auxiliary
$$K_{N5} := \frac{1.5 \cdot Mdol}{lton^{.782}}$$
 $CA_{L_{500}} := .09487 \cdot F_{I} \cdot K_{N5} \cdot 2.2 \cdot (WA_{500})^{.782}$ $CA_{L_{500}} = \mathbf{M} dol$

+ Outfit
$$K_{N6} := \frac{1.0 \cdot Mdol}{lton^{.784}}$$
 $CA_{L_{600}} := .09859 \cdot F_I \cdot K_{N6} \cdot 2.2 \cdot (WA_{600})^{.784}$ $CA_{L_{600}} = \bullet Mdol$

+ Armament
$$K_{N7} := \frac{1.0 \cdot Mdol}{lton^{.987}}$$
 $CA_{L_{700}} := .00838 \cdot F_{I} \cdot K_{N7} \cdot 2.2 \cdot (WA_{700})^{.987}$ $CA_{L_{700}} = Mdol$ (Less payload GFM cost)

+ Integration/Engineering: (Lead ship includes detail design engineering + plans for class)

$$K_{N8} := \frac{10. \cdot Mdol}{Mdol^{1.099}} \qquad CA_{L_{800}} := .034 \cdot K_{N8} \cdot 0.5 \cdot \left(\left(\sum_{i1} CA_{L_{i1}} \right) \right)^{1.099} CA_{L_{800}} = \mathbf{I} Mdol^{1.099} CA_{L_{800}}$$

+ Ship Assembly + Support: (Lead ship includes all tooling, jigs, special facilities for class)

$$K_{N9} := \frac{2.0 \cdot Mdol}{(Mdol)^{.839}} \qquad CA_{L_{900}} := .135 \cdot K_{N9} \cdot 0.5 \cdot \left(\left(\sum_{i1} CA_{L_{i1}} \right) \right)^{.839} \quad CA_{L_{900}} = \bullet Mdol$$

= Total Cost for addition of all strutures

CAtot :=
$$\sum_{i1} CA_{L_{i1}} + CA_{L_{800}} + CA_{L_{900}}$$

CAtot = ∎ Mdol

= Total Cost for conversion of SOF

CTOT := CAto	ot	CTOT = ∎ Mdol	
+ Profit:	- 10	a e atot	
ł	$F_{\mathbf{P}} := .10$	$C_{LP} := F_P \cdot CTOT$	$C_{LP} = \mathbf{I} Mdol$
= <u>Lead Shi</u>	i <u>p Price</u> :		
I	$P_L := CTOT + C_l$	LP	P _L = ∎ Mdol
= <u>Total Sh</u>	ipbuilder Portio	<u>n:</u>	
	$C_{SB} := P_{I}$		$C_{SB} = \mathbf{I} Mdol$

b. Lead Ship Cost - Government Portion

	go. Zeroe	ere the cost of SOF equipment would d for this evaluation. provide for their own equipment.
+ Ordnance and Electrical GFE: (Military Payload GFE)	$C_{LMPG} := 0 \cdot Mdol$	
	$C_{LMPG} = \mathbf{I} Mdol$	(or incl actual cost if known)
+ Outfittimg Cost :	$C_{LOUT} := .02 \cdot P_L$	$C_{LOUT} = $ Mdol
= <u>Total Government Portion:</u>		
$C_{LGOV} := C_{LMPG} + C_{LOUT}$		$C_{LGOV} = $ Mdol
c. Total Lead Ship End Cos	t: (Must always be less	s than appropriation)
* <u>Total End Cost:</u> C _{LEND} := C	SB C _L	END = ∎ Mdol
d. Total Lead Ship Acquisition	on Cost:	
+ Post-Delivery Cost (PSA):	$C_{LPDEL} := .05 \cdot P_L$	C _{LPDEL} = ∎ Mdol

= Total Lead Ship Acquisition Cost:

 $C_{LA} := 0.5 (C_{LEND} + C_{LPDEL}) + C_{LGOV}$

 $C_{LA} = \bullet Mdol$

e.Introduction of the correction factor

This factor introduces a correction to the price of a follow on LMSR new construction ship, which is \$250 million according to Avondale Industrie's seventh ship contract. The cost that our math model calculates is \$434.292million. (based on a weight break down for Navy Combatants)

= Correction Factor: ε

 $\epsilon \coloneqq \frac{250}{434.292}$

a = 3

Total Lead Ship Acquisition Cost (corrected):

 $C_{LAc} := C_{LA} \cdot \epsilon$

 $C_{LAc} = \mathbf{I} Mdol$

COST MODEL--Construction SOF

MIT 13A

Definitions (units):Mdol := coulBdol := 1000 · MdolKdol := $\frac{Mdol}{1000}$ dol := $\frac{Kdol}{1000}$ Iton := 2240 · Ib
CNA := 2.2CND := 0.51. Single Digit Weight Summary:i1 := 100, 200.. 700

Base Weight

 $WA_{100} := 29114.79 \cdot Iton \qquad WA_{400} := 137.25 \cdot Iton \qquad WA_{700} := 42.21 \cdot Iton$ $WA_{200} := 1984.52 \cdot Iton \qquad WA_{500} := 4831.93 \cdot Iton$

 $WA_{300} := 707.75 \cdot Iton$ $WA_{600} := 3078.57 \cdot Iton$

2. Additional Characteristics:

Total Weight Added:

WAdd := $\left(\sum_{i1} WA_{i1}\right)$ WAdd = \mathbf{I} too

Manning: (crew + air detachment + staff)

indrining. (or other and		Officers:	N _O := 8	Enlisted:	N _E := 22
Officers:	CPO's:	$N_{C_2} := 0$	Enlisted:	$N_{C_3} := N_E -$	N _{C2}
Ship Service Life:	L _S := 30	Initial Operation	al Capability:	Y _{IOC} :=	2004
Total Ship Acquisition	on: N _S := 1	Production Rat	e (per year):	Rp := 1	

3. Inflation:

Base Year: Y_B := 2003 iy := 1.. Y_B - 1998

 $R_{I} := 3.$

Average Inflation Rate (%): (from 1981)

$$F_{I} := \prod_{iv} \left(1 + \frac{R_{I}}{100} \right) \qquad F_{I} = \mathbf{I}$$

4. Lead Ship Cost:

Lead Ship Addition Cost - Shipbuilder Portion:

SWBS costs: includes escalation estimate

Structure
$$K_{N1} := \frac{.55 \cdot Mdol}{lton^{.772}}$$
 $CA_{L_{100}} := .03395 \cdot F_{I} \cdot K_{N1} \cdot 2.2 \cdot (WA_{100})^{.772}$ $CA_{L_{100}} = \bullet Mdol$

+ Propulsion
$$K_{N2} := \frac{1.2 \cdot Mdol}{lton^{.808}}$$
 $CA_{L_{200}} := .00186 \cdot F_I \cdot K_{N2} \cdot 2.2 \cdot (WA_{200})^{.808}$ $CA_{L_{200}} = \bullet Mdol$

+ Electric
$$K_{N3} := \frac{1.0 \cdot Mdol}{lton^{.91}}$$
 $CA_{L_{300}} := .07505 \cdot F_{I} \cdot K_{N3} \cdot 2.2 \cdot (WA_{300})^{.91}$ $CA_{L_{300}} = Mdol$

+ Command, Control, Surveillance

$$K_{N4} := \frac{2.0 \cdot \text{Mdol}}{\text{lton}^{.617}} \qquad CA_{L_{400}} := .10857 \cdot F_I \cdot K_{N4} \cdot 2.2 \cdot (WA_{400})^{.617} \qquad CA_{L_{400}} = \bullet \text{Mdol}$$
(less payload GFM cost)

+ Auxiliary
$$K_{N5} := \frac{1.5 \cdot Mdol}{lton^{.782}}$$
 $CA_{L_{500}} := .09487 \cdot F_{I} \cdot K_{N5} \cdot 2.2 \cdot (WA_{500})^{.782}$ $CA_{L_{500}} = Mdol$

+ Outfit
$$K_{N6} := \frac{1.0 \cdot Mdol}{lton^{.784}}$$
 $CA_{L_{600}} := .09859 \cdot F_{I} \cdot K_{N6} \cdot 2.2 \cdot (WA_{600})^{.784}$ $CA_{L_{600}} = Mdol$

+ Armament
$$K_{N7} := \frac{1.0 \cdot Mdol}{lton^{.987}}$$
 $CA_{L_{700}} := .00838 \cdot F_{I} \cdot K_{N7} \cdot 2.2 \cdot (WA_{700})^{.987}$ $CA_{L_{700}} = \bullet Mdol$ (Less payload GFM cost)

+ Integration/Engineering: (Lead ship includes detail design engineering + plans for class)

$$K_{N8} := \frac{10. \cdot Mdol}{Mdol^{1.099}} \qquad CA_{L_{800}} := .034 \cdot K_{N8} \cdot 0.5 \cdot \left(\left(\sum_{i1} CA_{L_{i1}} \right) \right)^{1.099} CA_{L_{800}} = \bullet Mdol$$

+ Ship Assembly + Support: (Lead ship includes all tooling, jigs, special facilities for class)

$$K_{N9} := \frac{2.0 \cdot Mdol}{(Mdol)^{.839}} \qquad CA_{L_{900}} := .135 \cdot K_{N9} \cdot 0.5 \cdot \left(\left(\sum_{i1} CA_{L_{i1}} \right) \right)^{.839} CA_{L_{900}} = \mathbf{M} dol$$

= Total Cost for addition of all strutures

CAtot :=
$$\sum_{i1} CA_{L_{i1}} + CA_{L_{800}} + CA_{L_{900}}$$

CAtot = ∎ Mdol

= Total Cost for conversion of SOF

CTOT := CAtot	CTOT = ∎ Mdol	
+ Profit: Fp := .10	$C_{LP} := F_P \cdot CTOT$	C _{LP} = ∎ Mdol
= <u>Lead Ship Price</u> : P _L := CTOT +	C _{LP}	P _L = ∎ Mdol
= <u>Total Shipbuilder Por</u> C _{SB} :=		C _{SB} = ∎ Mdol

b. Lead Ship Cost - Government Portion

	This is where the cost of SOF equipment would go. Zeroed for this evaluation. SOF will provide for their own equipment.
+ Ordnance and Electrical GFE: (Military Payload GFE)	$C_{LMPG} := 0 \cdot Mdol$
	$C_{LMPG} = \mathbf{I} Mdol$ (or incl actual cost if known)
+ Outfittimg Cost :	$C_{LOUT} := .02 \cdot P_L$ $C_{LOUT} = I Mdol$
= <u>Total Government Portion:</u>	
$C_{LGOV} := C_{LMPG} + C_{LOUT}$	$C_{LGOV} = \mathbf{I} Mdol$
c. Total Lead Ship End Cost	: (Must always be less than appropriation)
* <u>Total End Cost:</u> $C_{LEND} := C_S$	B $C_{\text{LEND}} = \mathbf{I} \text{ Mdol}$

d. Total Lead Ship Acquisition Cost:

+ Post-Delivery Cost (PSA):	$C_{LPDEL} := .05 \cdot P_L$	$C_{LPDEL} = I Mdol$
-----------------------------	------------------------------	----------------------

= Total Lead Ship Acquisition Cost:

$$C_{LA} := 0.5 (C_{LEND} + C_{LPDEL}) + C_{LGOV}$$

 $C_{LA} = \mathbf{I} Mdol$

e.Introduction of the correction factor

This factor introduces a correction to the price of a follow on LMSR new construction ship, which is \$250 million according to Avondale Industrie's seventh ship contract. The cost that our math model calculates is \$434.292million. (based on a weight break down for <u>Navy</u> <u>Combatants</u>)

= Correction Factor: E

$$\varepsilon := \frac{250}{434.292}$$

∎ = 3

Total Lead Ship Acquisition Cost (corrected):

 $C_{LAc} \coloneqq C_{LA} \cdot \epsilon$

 $C_{LAc} =$ Mdol

COST MODEL--Conversion of LMSR to SOF

MIT 13A

Definitions (units):	Mdol := coul	Bdol := 1000 · Mdol	$Kdol := \frac{Mdol}{1000}$	$dol := \frac{Kdol}{1000}$
	$lton := 2240 \cdot lb$			
	CNA := 2.2	CND := 0.5		
1. Single Digit Weight	Summary:	i1 := 100, 200 700)	
Removed Weight		,		
$WD_{100} := 607.37 \cdot \text{lton}$	$WD_{400} := 0 \cdot lton$	$WD_{700} := 0 \cdot lt$	on	
$WD_{200} := 15.74 \cdot lton$	$WD_{500} := 695.63$ ·	lton		
$WD_{300} := 34.19 \cdot \text{lton}$	WD ₆₀₀ := 99.09 · 1	ton		
Added Weight				
$WA_{100} := 5703.21 \cdot lton$	$WA_{400} := 76.19$	lton WA	$_{700} := 38.06 \cdot \text{lton}$	
$WA_{200} := 15.74 \cdot lton$	WA ₅₀₀ := 859.08	3. lton		
WA ₃₀₀ := 69.9 · Iton <u>2. Additional Charac</u>). lton		
Total Weight Remove	ed:			
WDel := $\left(\sum_{i1} WD_{i1}\right)$	WDel = ∎ It	ton		
Total Weight Added:				
WAdd := $\left(\sum_{i1} WA_{i1}\right)$	WAdd = \blacksquare	lton		
Manning: (crew + air	detachment + staff) Officers: NO:	= 8 Enlist	ted: N _E := 22
Officers:	CPO's:		listed: $N_{C_3} := N_{C_3}$	
Ship Service Life:	L _S := 30	Initial Operational Ca	pability: <mark>Y_{IO}</mark>	_C := 2004
Total Ship Acquisition	N: N _S := 1	Production Rate (pe	er year): R _P :=	1
3. Inflation:				
Base Year: Y _B :=	2003 iy := 1	Y _B – 1998		
Average Inflation Rate (from 1981)	(%): R _I := 3.	$F_{I} := \prod_{iy} \left(1 + \frac{R_{I}}{100} \right)$	$F_{I} = \mathbf{I}$	

4. Lead Ship Cost:

a. Lead Ship Removal Cost - Shipbuilder Portion:

SWBS costs: includes escalation estimate

Structure
$$K_{N1} := \frac{.55 \cdot Mdol}{lton^{.772}}$$
 $CD_{L_{100}} := .03395 \cdot F_{I} \cdot K_{N1} \cdot 0.5 \cdot (WD_{100})^{.772}$ $CD_{L_{100}} = \bullet Mdol$

+ Propulsion
$$K_{N2} := \frac{1.2 \cdot Mdol}{lton^{.808}}$$
 $CD_{L_{200}} := .00186 \cdot F_I \cdot K_{N2} \cdot 0.5 \cdot (WD_{200})^{.808}$ $CD_{L_{200}} = \mathbf{M} Mdol$

+ Electric
$$K_{N3} := \frac{1.0 \cdot Mdol}{lton.^{91}}$$
 $CD_{L_{300}} := .07505 \cdot F_{I} \cdot K_{N3} \cdot 0.5 \cdot (WD_{300})^{.91}$ $CD_{L_{300}} = \mathbf{M} Mdol$

+ Command, Control, Surveillance

$$\begin{split} \mathrm{K}_{N4} \coloneqq & \frac{2.0 \cdot \mathrm{Mdol}}{\mathrm{lton}^{.617}} \qquad \mathrm{CD}_{L_{400}} \coloneqq .10857 \cdot \mathrm{F_{I}} \cdot \mathrm{K}_{N4} \cdot 0.5 \cdot \left(\mathrm{WD}_{400}\right)^{.617} \qquad \mathrm{CD}_{L_{400}} = \bullet \mathrm{Mdol} \\ & \text{(less payload GFM cost)} \end{split}$$

+ Auxiliary
$$K_{N5} := \frac{1.5 \cdot Mdol}{lton^{.782}}$$
 $CD_{L_{500}} := .09487 \cdot F_{I} \cdot K_{N5} \cdot 0.5 \cdot (WD_{500})^{.782}$ $CD_{L_{500}} = \bullet Mdol$

+ Outfit
$$K_{N6} := \frac{1.0 \cdot Mdol}{lton^{.784}}$$
 $CD_{L_{600}} := .09859 \cdot F_{I} \cdot K_{N6} \cdot 0.5 \cdot (WD_{600})^{.784}$ $CD_{L_{600}} = \bullet Mdol$

+ Armament
$$K_{N7} := \frac{1.0 \cdot Mdol}{lton^{.987}}$$
 $CD_{L_{700}} := .00838 \cdot F_{I} \cdot K_{N7} \cdot 0.5 \cdot (WD_{700})^{.987}$ $CD_{L_{700}} = \bullet Mdol$ (Less payload GFM cost)

+ Integration/Engineering: (Lead ship includes detail design engineering + plans for class)

$$K_{N8} := \frac{10. \cdot Mdol}{Mdol^{1.099}} \qquad CD_{L_{800}} := .034 \cdot K_{N8} \cdot 0.5 \cdot \left(\left(\sum_{i1} CD_{L_{i1}} \right) \right)^{1.099} CD_{L_{800}} = \bullet Mdol^{1.099} CD_{L_{800}} = \bullet O(\bullet CD_{L_{80}} CD_{L_{80}} = \bullet O(\bullet CD_{L_{80}} CD$$

+ Ship Assembly + Support: (Lead ship includes all tooling, jigs, special facilities for class)

$$K_{N9} := \frac{2.0 \cdot Mdol}{(Mdol)^{.839}} \qquad CD_{L_{900}} := .135 \cdot K_{N9} \cdot 0.5 \cdot \left(\left(\sum_{i1} CD_{L_{i1}} \right) \right)^{.839} \quad CD_{L_{900}} = \bullet Mdol$$

= Total Cost for removal of all strutures

$$CDtot := \sum_{i1} (CD_L)_{i1} + CD_{L_{800}} + CD_{L_{900}}$$

CDtot = ∎ Mdol

b. Lead Ship Addition Cost - Shipbuilder Portion:

SWBS costs: includes escalation estimate

Structure
$$K_{N1} := \frac{.55 \cdot Mdol}{lton^{.772}}$$
 $CA_{L_{100}} := .03395 \cdot F_I \cdot K_{N1} \cdot 2.2 \cdot (WA_{100})^{.772}$ $CA_{L_{100}} = \mathbf{M} dol$

+ Propulsion
$$K_{N2} := \frac{1.2 \cdot Mdol}{lton^{.808}}$$
 $CA_{L_{200}} := .00186 \cdot F_{I} \cdot K_{N2} \cdot 2.2 \cdot (WA_{200})^{.808}$ $CA_{L_{200}} = \bullet Mdol$

+ Electric
$$K_{N3} := \frac{1.0 \cdot Mdol}{lton^{.91}}$$
 $CA_{L_{300}} := .07505 \cdot F_{I} \cdot K_{N3} \cdot 2.2 \cdot (WA_{300})^{.91}$ $CA_{L_{300}} = \bullet Mdol$

+ Command, Control, Surveillance

$$K_{N4} := \frac{2.0 \cdot Mdol}{lton^{.617}} \qquad CA_{L_{400}} := .10857 \cdot F_{I} \cdot K_{N4} \cdot 2.2 \cdot (WA_{400})^{.617} \qquad CA_{L_{400}} = \bullet Mdol$$
(less payload GFM cost)

+ Auxiliary
$$K_{N5} := \frac{1.5 \cdot Mdol}{lton^{.782}}$$
 $CA_{L_{500}} := .09487 \cdot F_{I} \cdot K_{N5} \cdot 2.2 \cdot (WA_{500})^{.782}$ $CA_{L_{500}} = \bullet Mdol$

+ Outfit
$$K_{N6} := \frac{1.0 \cdot Mdol}{lton^{.784}}$$
 $CA_{L_{600}} := .09859 \cdot F_{I} \cdot K_{N6} \cdot 2.2 \cdot (WA_{600})^{.784}$ $CA_{L_{600}} = \bullet Mdol$

+ Armament
$$K_{N7} := \frac{1.0 \cdot \text{Mdol}}{\text{lton}^{.987}}$$
 $CA_{L_{700}} := .00838 \cdot F_{I} \cdot K_{N7} \cdot 2.2 \cdot (WA_{700})^{.987}$ $CA_{L_{700}} = \mathbf{I} \text{ Mdol}$
(Less payload GFM cost)

+ Integration/Engineering: (Lead ship includes detail design engineering + plans for class)

$$K_{N8} := \frac{10. \cdot Mdol}{Mdol^{1.099}} \qquad CA_{L_{800}} := .034 \cdot K_{N8} \cdot 0.5 \cdot \left(\left(\sum_{i1} CA_{L_{i1}} \right) \right)^{1.099} CA_{L_{800}} = \bullet Mdol$$

+ Ship Assembly + Support: (Lead ship includes all tooling, jigs, special facilities for class)

$$K_{N9} := \frac{2.0 \cdot Mdol}{(Mdol)^{.839}} \qquad CA_{L_{900}} := .135 \cdot K_{N9} \cdot 0.5 \cdot \left(\left(\sum_{i1} CA_{L_{i1}} \right) \right)^{.839} CA_{L_{900}} = \bullet Mdol$$

= Total Cost for addition of all strutures

$$CAtot := \sum_{i1} CA_{L_{i1}} + CA_{L_{800}} + CA_{L_{900}}$$

CAtot = ∎ Mdol

= Total Cost for conversion of SOF

CTOT := CDtot + CAtot	СТ	OT = ∎ Mdol
+ Profit: $F_P := .10$	$C_{LP} := F_P \cdot CTOT$	C _{LP} = ∎ Mdol
= <u>Lead Ship Price</u> : P _L := CTOT +	C _{LP}	$P_L = \mathbf{I} Mdol$
= <u>Total Shipbuilder Port</u> C _{SB} := 1		C _{SB} = ∎ Mdol

b. Lead Ship Cost - Government Portion

	This is where the cost of SOF equipment would go. Zeroed for this evaluation. SOF will provide for their own equipment.
+ Ordnance and Electrical GFE: (Military Payload GFE)	$C_{LMPG} := 0 \cdot Mdol$
	$C_{LMPG} = \mathbf{I} Mdol$ (or incl actual cost if known)
+ Outfittimg Cost :	$C_{LOUT} := .02 \cdot P_L$ $C_{LOUT} = \mathbf{I} Mdol$
= <u>Total Government Portion:</u>	
$C_{LGOV} := C_{LMPG} + C_{LOUT}$	$C_{LGOV} = $ Mdol
c. Total Lead Ship End Cost.	: (Must always be less than appropriation)
* <u>Total End Cost:</u> $C_{LEND} := C_S$	B $C_{\text{LEND}} = \mathbf{I} \text{ Mdol}$

d. Total Lead Ship Acquisition Cost:

+ Post-Delivery Cost (PSA):	$C_{LPDEL} := .05 \cdot P_L$	C _{LPDEL} = ∎ Mdol
-----------------------------	------------------------------	-----------------------------

= Total Lead Ship Acquisition Cost:

 $C_{LA} := 0.5 (C_{LEND} + C_{LPDEL}) + C_{LGOV}$

e.Introduction of the correction factor

This factor introduces a correction to the price of a follow on LMSR new construction ship, which is \$250 million according to Avondale Industrie's seventh ship contract. The cost that our math model calculates is \$434.292million. (based on a weight break down for <u>Navy</u> <u>Combatants</u>)

= Correction Factor: ε

 $\varepsilon := \frac{250}{434.292}$

ε = **ι**

Total Lead Ship Acquisition Cost (corrected):

 $C_{LAc} \coloneqq C_{LA} \cdot \epsilon$

 $C_{LAc} = \mathbf{I} Mdol$