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Executive Summary 

The Submarine Launched Undersea Research Vessel (SLURV) is a concept 

design for the conversion of an OHIO class (SSGN) Submarine to host a deep-diving 

submersible, ALVIN.  The primary modifications involved are the design and 

construction of an ALVIN Dry Deck Shelter (ADDS), modification of the SSGN to 

support the ADDS, and modifications to ALVIN to allow submerged launch and 

recovery from the ADDS.  The proposed ADDS would attach to the SSGN in a manner 

similar to the current Dry Deck Shelter (DDS) configuration over lock-out chamber 

(LOC) 1 or 2.  ALVIN would be modified slightly by removing its sail to allow it to fit 

within the hangar of the ADDS.  The principal characteristics of the SLURV are 

summarized below: 

 

     Modified SSGN (ADDS & ALVIN installed) 
Length 560 ft 
Diameter 42 ft 
Displacement  16,600 ltons (surfaced) 

18,750 ltons (submerged) 
Draft 34.57 ft 
BG 1.70 ft (submerged, flooded) 
GMT 1.65 ft (surfaced, dry) 
Reserve Buoyancy 14.0% 
Propulsion 60,000 hp 
Speed Reduction  5% (submerged) 
Crew (SSGN) 155 
ALVIN Crew 8 

ADDS Characteristics 
LOA 46 ft 
Length of Hangar 35 ft 
Diameter 14 ft (outside diameter) 
Weight 58.5 ltons 
Displacement 195.0 ltons 
Design Depth Test depth of SSGN 

Conversion Cost 
Total (ADDS, ALVIN, SSGN) $39.17 M 

 

 The design is modular in nature, allowing the ADDS to be loaded only when 

necessary to conduct ALVIN missions.  When installed, the ADDS covers one LOC, 
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precluding the use of that LOC for other missions.  The strike mission of the SSGN 

would not be affected by the addition of the ADDS.  ALVIN can be loaded in the ADDS 

pier side, and launched and recovered covertly when the SSGN is submerged.  The 

ADDS and ALVIN can be completely removed when not required for missions, and the 

SSGN returned to its baseline configuration.  Graphical renderings of the concept design 

are shown below. 

 

 

 

 Preliminary structural, stability, and speed analyses were conducted on the 

SLURV concept design.  All analyses showed the design to be feasible.  The SLURV 

concept design is a cost-effective solution to provide a covert undersea research platform. 
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1.0 Mission Need 

1.1 Defense Guidance and Policy 

      The Mission Need Statement (MNS), Appendix A, provides requirements for a 

deep-sea research vessel for the 21st Century.  The MNS complies with the defense 

guidance and policy set forth in Joint Vision 2020 [1] and Sea Power 21 [2].  The 

Submarine Launched Undersea Research Vessel (SLURV) meets the requirements of the 

MNS and specifically addresses the Joint Vision 2020 and Sea Power 21: Sea Shield 

issue of information superiority. 

 In the rapidly changing and constantly fluctuating international political 

environment of the 21st century, information superiority will play an increasingly 

important role in military conflicts.  The SLURV will provide national leaders with an 

innovative means to covertly obtain undersea information.  This information could be 

scientific or military in nature.  Military undersea intelligence gathering is essential to the 

operational concepts of dominant maneuver and full-dimensional protection. 

Additionally, the MNS and the subsequent SLURV address “the need to prepare 

now for an uncertain future” [1].  The SLURV is a transformational system in that it 

recombines existing technologies, SSGN and ALVIN, in new ways to yield new 

capabilities.  The system could serve as a baseline for future undersea research 

developments and should influence 21st century Deep Ocean research, design, 

development, and acquisition program decisions. 

1.2 Adversary Capabilities Analysis 

  The current paradigm in defense planning is to focus on how a potential adversary 

will fight as opposed to where the conflict will occur or who the adversary will be.  

Information is the most essential element for successful planning.  Asymmetric warfare, 

reduced protection from geographical distances, and vulnerabilities of foreign 

governments result in the need for the United States to maintain the ability to gather 

intelligence in all forms and in all areas of the globe.  A key element of intelligence 

gathering is the ability to conduct undersea research and recover objects from the ocean 
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floor.  The value and utility of undersea research is greatly enhanced if it can be carried 

out covertly, undetected by the adversary.  The SLURV will provide such a capability. 

 It is unknown whether any other nations or organizations possess a capability for 

covert undersea research.  However, the SLURV is not intended as a direct 

countermeasure for any specific adversarial system.  Therefore, the adversary capabilities 

are not applicable to the SLURV design. 

1.3 Current United States Capability Assessment 

The principal deep-sea research submarine of today’s Navy is the NR-1.  NR-1 is 

a small nuclear-powered submarine launched in 1969.  NR-1 has successfully completed 

many classified and unclassified missions, including search, object recovery, geological 

survey, oceanographic research, and installation and maintenance of underwater 

equipment.  NR-1 provides a functional covert undersea research capability.  However, 

the vessel is limited in depth to 3000 ft and must be towed to a research site by a surface 

ship.  Additionally, NR-1 is nearing the end of its design life [3]. 

Several existing U.S. attack submarines are configured to carry the Deep 

Submergence Rescue Vehicle (DSRV).  The vehicle is capable of limited research 

operations.  Details of these operations are classified. 

Other existing undersea research capabilities all require the use of a surface 

support ship.  Several vehicles currently exist that are capable of reaching the deepest 

parts of the ocean bottom.  The SLURV utilizes one of these vehicles, ALVIN. 

ALVIN, which is owned and operated by Woods Hole Oceanographic Institution 

(WHOI), has been in operation since 1964. It was affectionately named after WHOI 

engineer Allyn Vine, whose influence was pivotal in ALVIN’s conception.  ALVIN was 

the first deep-sea submersible capable of carrying passengers, usually a pilot and two 

observers. After numerous upgrades and reconstruction, ALVIN can plunge to a 

maximum depth of 14,764 feet.  It is equipped with two manipulator arms for handling 

objects and is capable of maneuvering around rugged bottom areas to perform scientific 

tasks or take still and video photography [4].  More details on ALVIN are found in 

Appendix B.  
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1.4 Mission Need 

The roles of a future SLURV will include the following principal areas of naval 

operations and research: 

A. Oceanographic Sciences.  The SLURV will provide support for research in a 

variety of fields including Physical Oceanography, Geology/Geophysics, Marine 

Biology, Atmospheric Science, Ocean Engineering, Chemical Oceanography, Maritime 

Archeology, and Environmental Science. 

B. Object Manipulation and Recovery.  The SLURV will be able to locate, 

manipulate, and recover objects of military or scientific interest from the ocean floor.   

C. Underwater Intelligence, Surveillance, and Mapping.  The SLURV will 

provide a platform to investigate and monitor deep ocean areas covertly and relay 

essential military information to higher authorities. 

      Appendix A contains more detailed information regarding the mission need. 

1.5 Recommended Alternatives 

 Potential alternatives for meeting the mission need described above include:  

A. Design of an entirely new class of submarine.   

B. Modification of an Improved LOS ANGELES class submarine to meet the 

mission requirements. 

C. Modification of an OHIO class (SSGN) submarine to meet the mission 

requirements. 

D. Modification of a SEAWOLF class submarine to meet the mission requirements. 

E. Modification of a VIRGINIA class submarine to meet the mission requirements. 

 
      The OHIO class submarine is the largest of the candidates and provides the 

greatest available area and volume for modifications.  Additionally, the first four OHIO 

class submarines are currently scheduled for conversion to the new SSGN configuration.  

The required SLURV modifications could be incorporated into the ongoing SSGN 

modifications.  For these reasons, the OHIO class (SSGN) Design Modification is 

selected for further investigation. 
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2.0 Design Requirements and Plan 

2.1 Required Operational Capability 

      The SLURV must be capable of conducting military and scientific research 

missions while remaining undetected and without affecting OHIO class SSGN combat 

missions.  These military and scientific research missions include, but are not limited to, 

the collection of environmental, geological, or biological data; the retrieval of small 

objects from the ocean floor; and the placement of small instruments or other objects on 

the ocean floor.   

The SLURV modifications must not affect the operating depth capability of the 

SSGN during normal operations (i.e., not launching or recovering ALVIN).  

Additionally, the effect on SSGN speed caused by modifications must be minimized.  

The SLURV must be capable of conducting several undersea missions without surfacing 

or receiving assistance from other support vessels.   

2.2 Concept of Operations/Operational Scenarios/Performance Assessment Models 

The concept of operations for the SLURV includes combat missions and a variety 

of military and scientific research missions.  Combat missions (relating to the SSGN) will 

be largely unaffected by the modifications and will not be discussed here.  The research 

missions of the SLURV are similar to those currently performed by other research 

submarines such as NR-1.  Two potential scenarios for these missions are listed below. 

2.2.1 Scenario 1: Conduct Scientific Research 

 The variety of possible scenarios for scientific research is limitless.  For this 

discussion, a simplified example is used that represents typical scientific operations 

performed by ALVIN.   

The SLURV will transit to the region of interest while remaining undetected.  

Once on station, ALVIN will be manned and launched from the host ship.  ALVIN will 

then transit to the target area to take samples or make observations at deep depths and on 

the ocean bottom.  Scientific sensors can also be carried by ALVIN to the target area and 

deployed.  Once mission objectives are accomplished, ALVIN will return to the host ship 
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for recovery.  The SLURV will then remain on station for further missions or transit out 

of the area, still undetected.    

2.2.2 Scenario 2: Locate, Identify and Recover an Object of Interest 

  Recovery of objects by ALVIN is limited by the size and weight of the object.  

ALVIN is outfitted with two jettisonable, hydraulically powered manipulators with a 

weight limit of approximately 250 pounds.  Objects must fit into the scientific basket for 

transport to the host ship and are limited in size to approximately 20 cubic feet. 

 The host ship will receive queuing information from off-board sensors providing 

coordinates for an object of interest.  Based on these coordinates, the SLURV will transit 

to the region of interest while remaining undetected.  Once on station, ALVIN will be 

manned and launched from the host ship.  ALVIN will then transit to the target area and 

conduct a search for the object using a variety of sensors including side scan sonar and 

cameras.  After the object has been located and identified, ALVIN will use its 

manipulator arms to place the object into the scientific basket, then return to the host 

ship.  The SLURV will then remain on station for further missions or transit out of the 

area, still undetected.   

2.2.3 Performance Assessment Model (PAM)   

A PAM was created to evaluate the effectiveness of various SLURV designs.  The 

following four factors were considered to be the most important aspects of system 

performance:   

• Effect on SSGN combat missions 

• Effect on SSGN speed 

• Maximum number of ALVIN undersea research missions  

• Depth restrictions for ALVIN launch and recovery 

By evaluating the above factors for several different ship designs, an optimum design can 

be selected.   
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2.3 Goals, Thresholds, and Constraints 

A number of goals and constraints were considered in the design of the SLURV.  

Table 1 below shows the design thresholds and goals for what were considered the four 

key design parameters of the SLURV. 

Table 1.  SLURV Design Thresholds and Goals 

 Threshold Goal 

SSGN Mission Capability Affect 2 missions* No effect 
ALVIN Mission Capability 3 ALVIN missions Unlimited 
Depth Limit for Transfer Operations 200 ft Test depth of SSGN 
SSGN Speed Reduction 30% 0% 

*  Effect on SSGN mission is described in Section 2.5.1 
 

The ship must also meet the general submarine design requirements listed in Table 2, 

which were derived from the Massachusetts Institute of Technology Professional 

Summer Class Notes on Submarine Design Trends [5]. 

Table 2.  General Submarine Design Objectives 

Requirement Description 
Reserve Buoyancy 12% Minimum 
Margin Lead No less than current amount 
BG No less than 1.0 ft 
Acoustic Signature Equal to baseline SSGN 

 

 

     The MNS (Appendix A) provides the following design constraints: 

A. Key Boundary Conditions.  

1) Architecture - The ship design must employ a total ship 

architectural/engineering approach that optimizes mission effectiveness and 

performance while minimizing cost of conversion.   

2) Design - Consideration should be given to the maximum use of modular 

designs in the host vessel’s infrastructure. Emerging technologies must be 

accounted for during the developmental phase.   

B. Operational Constraints. 
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1) The host vessel must remain fully functional and operational in all 

environments.  Host vessel performance limitations, similar to current 

limitations associated with hosting the Advanced Seal Delivery System 

(ASDS) and Dry Deck Shelter (DDS), are considered acceptable.   

2) The host vessel must provide launching and recovery facilities for ALVIN. 

3) The host vessel must be able to operate in U.S., foreign, and international 

waters in full compliance with existing U.S. and international pollution 

control laws and regulations. 

4) The host vessel must be able to transit through the Panama Canal 

(PANAMAX). 

2.4 Design Philosophy  

 The overarching goal of this project is to provide a covert undersea research and 

object placement or retrieval capability while minimizing the effect on the host platform.  

A design philosophy was adopted to achieve this goal.  The design philosophy consists of 

several principles:   

A. Maximize the use of existing systems and technology to the greatest extent 

possible. 

B. Minimize changes to the physical characteristics and operational doctrine of 

ALVIN. 

C. Maintain the baseline combat capabilities of the host submarine where possible. 

D. Minimize the amount of modification necessary to the systems on the host 

submarine.  This will minimize the cost of the conversion. 

E. Minimize the effect on the host submarine’s operational schedule during the 

conversion process.  Accomplish as much work as possible off-hull. 

F. Maximize flexibility of the system by using a high degree of modularity. 

 

2.5 Decision Process 

      The decision process involves the comparison of possible concept designs to 

determine which design or combination of designs best meets the mission requirements.  

A weighted scoring scheme was developed to quantify the four design parameters of 
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Table 1.  These four parameters were then used in an analytic hierarchical process (AHP) 

to determine a numerical performance index for each concept design. 

2.5.1 Effect on SSGN Mission 

 The first design parameter, SSGN mission capability, was quantified on a discrete 

scale from 0 to 1.  The SSGN combat capabilities were grouped into three categories:  

•  Dry Deck Shelter (DDS) capability 

• Advanced SEAL Delivery System (ASDS) capability 

• Tomahawk Land Attack Missile (TLAM) capability  

A score of 1 means the SLURV modifications have no effect on the SSGN combat 

capabilities.  A score of 0.666 means 1 of the 3 capabilities is degraded or reduced.  This 

could occur by ALVIN utilizing one of the existing SSGN lockout chambers (LOCs) or 

obstructing one or more TLAM tubes.  A score of 0.333 means 2 of the 3 capabilities is 

degraded or reduced.  A score of 0 means all 3 capabilities are degraded or reduced.  

Table 3 summarizes the mission effect scoring. 

Table 3.  SSGN Mission Effect Scoring 

Mission Effect Score 
No Effect 1.00 
Affect 1 Combat Capability 0.666 
Affect 2 Combat Capabilities 0.333 
Affect 3 Combat Capabilities 0.00 

  

2.5.2 Undersea Mission Capability  

 The second design parameter, undersea mission capability, was quantified as 

either 0 or 1.  A score of 1 means that all systems on ALVIN can be recharged or 

replenished between missions while the SLURV is submerged, yielding virtually 

unlimited mission capability.  To accomplish this level of performance, the design must 

permit access to the exterior of ALVIN in a dry enclosure to allow refilling of oil tanks 

and recharging HP air.  A score of 0 means that one or more system on ALVIN cannot be 

replenished while submerged.  Therefore, the number of missions is limited. 
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2.5.3 Depth Limit for ALVIN Transfer 

 The third design parameter, depth limit for ALVIN transfer operations, was also 

quantified as either 0 or 1.  A score of 1 means that transfer and recharging operations 

can be completed down to SSGN test depth.  A score of 0 means the transfer and 

recharging operations are limited to some depth shallower than test depth, but still 

submerged. 

2.5.4 SSGN Speed Reduction 

 The fourth design parameter, SSGN speed reduction, was quantified as 0, 0.5, or 

1.0.  A score of 1.0 means the SLURV modifications have no effect on SSGN speed.  

This is only possible if the modifications fit entirely within the envelope of the original 

SSGN.  A score of 0.5 means that the modifications will cause a speed reduction of up to 

15% of the base SSGN speed.  A score of 0 means that the modifications will cause a 

reduction between 15% and 30% of the base SSGN speed.  The speed reduction for the 

various alternative designs was estimated using empirical data from similar previous 

designs, such as a DDS mounted on a LOS ANGELES class submarine.  The speed 

reduction scoring is summarized in Table 4 below. 

 

Table 4.  SSGN Speed Reduction Scoring 

Reduction, as % of SSGN Base Speed Score 
0% 1.0 

1%-15% 0.5 
16%-30% 0 

 

2.5.5 Factor of Operational Effectiveness 

 Once the individual design parameters were quantified, they were combined in a 

weighted AHP scheme to yield a single Factor of Operational Effectiveness (FOE).  The 

final effectiveness index was a number between 0 and 1, with 1 being best and 0 being 

worst.  The four design parameters were prioritized and weighted based on overall 

importance to the SLURV mission.  The weighting factors are shown in Table 5. 
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Table 5.  Design Parameter Weighting Factors 

Design Parameter Factor 
SSGN Mission Effect 0.3 
Undersea Mission Capability 0.3 
Depth Limit for ALVIN Transfers 0.2 
SSGN Speed Reduction 0.2 

  

2.5.6 Difficulty of Modification 

In addition to performance, the difficulty of making the proposed modifications 

for each alternative design was assessed.  Difficulty of modification could then be 

qualitatively related to the “cost” of the modification.  Rather than attempting to quantify 

the actual monetary cost of each design, a Difficulty Factor (DF) scale was used.  The DF 

was broken into two subcategories: modifications to the SSGN, and modifications to 

ALVIN or fabrication of other off-hull structures.  Each subcategory was quantified on a 

scale of 1 to 3, with 1 being the simplest modification and 3 being the most complex or 

time-consuming modification.  The subcategories were then weighted based on overall 

contribution to difficulty of the SLURV modification.  The SSGN modifications were 

weighted more heavily (0.7) than the off-hull modifications (0.3).  This is because the 

SSGN modifications will require removing the ship from service for some period of time, 

and will have a significant effect on naval operational capabilities.  The modifications to 

ALVIN or other off-hull structures have a lesser effect because they can be carried out in 

smaller facilities and do not require taking a national asset out of service.    

The FOE of each concept design was plotted versus its DF of the modifications.  

This plot was then used to determine the ‘best’ design(s) for further development.  The 

details of the concept designs investigated for this study and the subsequent results are 

described in Chapter 3. 
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3.0 Concept Exploration 

3.1 Baseline Concept Design 

  The current design of the OHIO class SSGN serves as the baseline for the 

SLURV concept design.  The baseline characteristics of the SSGN are summarized in 

Figure 1. 

Figure 1.  SSGN Baseline Characteristics [6] 

66 Dedicated Special
Operating Forces (SOF)

Accommodations

Replace Strategic
Weapon System

(SWS) Missile Fire
Control with
Tactical Fire

Control Systems

Lockout Chamber
(Tubes 1&2) and

Reconfigurable SOF
Stowage Tubes

(Tubes 3-10)

Existing Missile Tubes House
Tactical Missile Canisters for up to

154 TOMAHAWK Missiles

Dual ASDS or
Dry Deck Shelter

Capability

Mod/Replace SWS
Navigation Equipment,
Add SOF Control Room
and Mission Planning

Center

Enhanced ECS,
Masts and Antennas

Ship Characteristics
Length 560 ft
Displacement 18750 tons
No. Of VLS Missiles Up to 154
DDS/ASDS Capability Dual

3.2 Modification Options 

 Based on the given operational requirements, a total of six design options were 

investigated to allow the SSGN to host ALVIN.  The designs were then subjected to the 

FOE-DF evaluation scheme described in Chapter 2 to determine the optimum selection.  

The six concept design options are described below. 

3.2.1 Option 1:  ALVIN attached in manner of ASDS with fairing 

 This design involves attaching ALVIN to the SSGN using a transfer trunk and 

hold down arrangement similar to the method proposed for the ASDS.  ALVIN would 

mate with the transfer trunk and attach to the SSGN superstructure.  Personnel and 

 23



equipment would be passed to/from ALVIN through the associated lockout chamber on 

missile tube 1 or 2.  A fairing would be added to the SSGN in front of missile tube 1 or 2, 

which would redirect some flow around ALVIN, thus reducing the hydrodynamic forces 

on ALVIN.  Some minor modifications to ALVIN would be required which would 

include adding a fairing to mate with the associated LOC on the SSGN.  More significant 

modifications include adding a bottom hatch to ALVIN and adding hold-down equipment 

to allow ALVIN to attach to the SSGN superstructure.  

 Benefits of this design include very little modification to the host SSGN, which 

would in turn mean a lower cost for the conversion.  By attaching ALVIN in a manner 

similar to ASDS, there would be very little effect on current mission capability of the 

SSGN.  Problems with this design include a limitation on number of missions for ALVIN 

due to the inability to refill or recharge all support systems.  The SSGN would also be 

limited in speed based on the hydrodynamic limits on ALVIN and its associated 

structure. 

3.2.2 Option 2:  Large DDS to house ALVIN 

 This option involves housing ALVIN in a large DDS structure on the 

superstructure of the SSGN.  This ALVIN Dry Deck Shelter (ADDS) would mate to the 

existing LOC on either missile tube 1 or 2.  The ADDS would be approximately 14ft in 

diameter and 40ft in length.  It would sit on either the port or starboard side of the 

superstructure and is not anticipated to interfere with the other LOC.  The structure of the 

ADDS would be very similar to a DDS, with the exception that the ADDS would not 

contain a hyperbaric chamber.  For initial concept exploration, the ADDS was considered 

pressure-tight to a depth of 200ft.  All ALVIN transfer and charging operations would 

occur shallower than 200ft, when the ADDS is dry.  Below 200ft, the ADDS would be 

flooded and ALVIN would be inaccessible. [For later designs, the ADDS depth limits 

were increased to coincide with the test depth of the SSGN] 

 Because the ADDS would use the same mating surfaces and hold-down 

connections as the DDS, very little modification to the SSGN would be necessary.  Some 

auxiliary systems, such as hydraulics and high-pressure (HP) air, may need to be rerouted 

to provide service to the ADDS.  However, no major structural modifications would be 
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needed.  The only significant modification to ALVIN would be removing the sail.  The 

major modifications required for this design would be the design and construction of the 

ADDS.  However, because of its similarity to a DDS, this should be relatively simple. 

 Benefits of this system include very minor modifications to the SSGN and 

complete modularity with existing systems.  The drawbacks include an SSGN speed 

reduction, due to the increased drag on the ADDS and possible strength considerations 

for the ADDS foundations, and the depth limitation on ALVIN transfer operations. 

3.2.3 Option 3:  ALVIN attached to Missile Compartment Logistics Trunk 

 This design would substitute a transfer trunk and hold down arrangement in place 

of the Missile Compartment Logistics Trunk.  ALVIN would then attach to this module 

in a manner similar to the method proposed for the ASDS.  When attached, ALVIN 

would sit below the superstructure.  The Towed Buoyant Antennas (TBAs) would be 

removed and the associated hydraulics would be used to shut a large “clamshell” over 

ALVIN to reduce hydrodynamic drag.  

     Benefits of this method include no reduction in SSGN mission capability and very 

little reduction in maximum SSGN speed.  The main drawback of this design is a 

limitation on ALVIN endurance due to the inability to refill/recharge all support systems. 

     Difficulty of modification associated with the SSGN would be due to removal of 

the TBAs and creation of a large hydraulic “clamshell”.  The difficulty of modification 

associated with ALVIN would be due to fabrication of the transfer trunk that would sit 

inside the pressure hull in place of the logistics trunk.   

 

3.2.4 Option 4:  ALVIN housed inside Missile Tube (vertically) 

 This option involves housing ALVIN vertically in one of the SSGN missile tubes 

that can currently support Special Operations Forces (SOF) canisters (missile tubes 3-10).  

A retractable launch and recovery skid would be used to raise and lower ALVIN for 

launch and recovery.  Significant modifications to ALVIN would be required to allow it 

to fit within the current missile tube diameter.  The SSGN would also require 

modification of the missile tube to allow flooding and draining of the tube and 
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installation of the lift and skid mechanism.  Personnel and equipment transfer to ALVIN 

would be through a hatch in the side of the missile tube.  

 The merits of this design include very little effect on the current capability of the 

SSGN.  Since ALVIN is completely housed in the missile, there is no reduction in SSGN 

speed and very little reduction in SSGN mission capability.  Additionally, since the 

missile tube is normally dry, all support services can be provided to ALVIN allowing 

performance of multiple missions.  Problems include the massive modifications to 

ALVIN to allow it to fit inside the missile tube.  ALVIN would have to be reduced in 

diameter by roughly four feet, which would make the interior of the vessel too small for 

its current manning.  Housing ALVIN vertically would also pose problems for personnel 

entry and support service connections.    

3.2.5 Option 5:  ALVIN recessed in bottom hangar 

 This option involves carrying ALVIN in an enclosed hangar bay in the bottom of 

the missile compartment.  The hangar would be placed in the bottom of missile tubes 2, 

4, and 6.  The hangar bay would extend from the ship centerline to the port side of the 

pressure hull.  The hangar would be 33ft long and 11.5ft high, and would fit entirely 

below the lowest platform in the missile tubes.  This area is currently void space, so no 

other capabilities would be affected.  The hangar would be a free-flood area, with large 

doors that open hydraulically to allow ALVIN to move in or out.  A pressure-tight deck 

would be installed above the hangar, with a hatch that would mate directly to the top 

hatch of ALVIN.  The deck and hatch would become part of the submarine pressure hull.  

These modifications would also require cutting ten circular frames, which would have a 

significant structural effect on the ship.   

The port side location of the hangar was chosen to minimize interference with the 

sanitary tanks located on the starboard side.  The port side location would also require 

moving Auxiliary Tank 4 approximately 20ft aft.  The fourth level of missile tube 2 

would be converted from an ordnance magazine to a lockout chamber to allow access 

into the hangar bay. 

This design would require moderate modifications to ALVIN.  The sail would be 

removed, but the top access hatch would be retained.  Additionally, the battery and air 
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charging connections would have to be moved to allow access through the transfer trunk.  

Most significantly, this option would require a change in the operational doctrine of 

ALVIN to allow the vehicle to operate and dock below a host ship. 

The major benefit of this design is that the hangar bay is totally enclosed.  

Therefore, the speed and acoustic signature of the SSGN are unaffected.  The major 

drawback is that the hangar bay is never dry, even on the surface.  Therefore, ALVIN 

maintenance and replenishment of some operating fluids is impossible.  This would limit 

the mission capability of ALVIN. 

3.2.6 Option 6:  ALVIN attached to Engineroom Logistics Trunk with fairing 

 This option would substitute a transfer trunk and hold down arrangement in place 

of the Engineroom Logistics Trunk.  ALVIN would then attach to this module in a 

manner similar to the method proposed for the ASDS.  When attached, ALVIN would sit 

below the superstructure.  A fairing would be placed over ALVIN to reduce 

hydrodynamic drag.  

      Benefits of this method include no reduction in SSGN mission capability.  The 

main drawbacks of this concept are a limitation on ALVIN endurance due to the inability 

to refill or recharge all support systems and a reduction in maximum SSGN speed. 

      Difficulty of modification associated with the SSGN would be due to removal of 

sections of the superstructure and fabrication of a fairing.  The difficulty of modification 

associated with ALVIN would be due to fabrication of the transfer trunk that would sit 

inside the pressure hull in place of the logistics trunk.   

 

3.3 Concept Design Assessment 

 After each design option was defined, the scoring system described in Section 2.5, 

“Decision Process”, was applied to each one.  Table 6 below shows the individual values 

for Factor of Operational Effectiveness (FOE) and Difficulty Factor (DF) used to 

determine an overall FOE and DF, respectively.  
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Table 6.  Individual Design Option FOE and DF  

 Concept design 

FOE 1 2 3 4 5 6 
Depth Restriction 1 0 1 1 1 1 
ALVIN Endurance 0 1 0 1 0 0 
Speed Limit 0 0.5 0.5 1 1 0.5 
SSGN Mission Effect 0.666 0.666 1 0.666 1 1 
DF       
SSGN Modification 1 1 2.5 2 3 2 
ALVIN Modification 2 2 2 3 2 2 
 

      The scoring in Table 6 resulted in the overall FOE and DF shown in Table 7.    

Table 7.  Overall FOE and DF 

Concept design FOE DF 
1 - ALVIN attached in manner of ASDS with fairing 0.4 1.3 
2 - ALVIN inside large DDS  0.6 1.3 
3 - ALVIN attached to MCLET with clamshell doors 0.6 2.35 
4 - ALVIN inside missile tube (vertically) 0.9 2.3 
5 - Bottom recessed hangar in SSGN 0.7 2.7 
6 - ALVIN attached to ERLET with fairing 0.7 2 
 

 Once the overall FOE and DF was determined for each option, the values were 

plotted on a FOE vs. DF graph to determine the Pareto Frontier containing the non-

dominated design option(s).  The results are shown in Figure 2 and Appendix C.   
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Figure 2.  FOE vs. DF 

3.4 Final Baseline Concept Design 

 Due to its combination of relatively high FOE and low DF, Option 2 (oversize 

DDS to house ALVIN) was chosen as the baseline concept design.  While the option to 

house ALVIN vertically inside a missile tube was on the Pareto Frontier, it was 

determined that the reduction in size required to fit ALVIN into the missile tube would 

make it too small for its current missions.  The ADDS option required minimal 

modifications to both ALVIN and SSGN, and the modular nature of the design allowed 

complete return of the SSGN to its full mission capability upon removal of the ADDS 

hangar.  Figures 3, 4, and 5 show concept design sketches. 
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Figure 3.  Forward View of ADDS Mated to Starboard Lockout Chamber 

 

 

Figure 4.  Aft View of ADDS Mated to Starboard Lockout Chamber  
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Figure 5.   ADDS Detail 
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4.0 Feasibility Study and Assessment 

4.1 Design Analysis 

 The Final Baseline Concept Design was analyzed to evaluate its feasibility.  The 

principal tool used for this analysis was the Massachusetts Institute of Technology XIII-A 

Submarine Math Model [7].  The standard SSN model was modified to approximately 

represent an SSGN.  The SSGN model is included as Appendix D.  

4.1.1 Baseline Ship Attributes 

 The OHIO class SSGN serves as the starting point for the Final Baseline Concept 

Design.  The SSGN is a modified strategic missile submarine (SSBN) that has been 

converted to allow it to launch TLAMs; handle ASDS and DDS; and deploy Special 

Operations Forces (SOF).  SSGN basic ship characteristics are listed in Table 8.  

Table 8.  SSGN Principal Ship Characteristics [8] 

Displacement  16,600 ltons (surfaced) 
18,750 ltons (submerged) 

Length 560 ft 
Diameter 42 ft 
Draft 36.4 ft 
Propulsion Nuclear, 2 Main Engines, 1 Shaft 

60,000 hp 
Speed >20 kts (submerged) 
Crew 155 
Embarked SOF capability 66 
Number of VLS Missiles Up to 154 
DDS/ASDS Capability Dual 

 

The SSGN is configured with two LOCs in missile tubes 1 and 2.  These LOCs are 

designed to allow SOF to exit the submarine while submerged and also allow for the 

transfer of personnel to and from an ASDS or DDS, attached to the back of the ship.  The 

topside arrangement of the ASDS and DDS is shown in Figure 6.    
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Figure 6.  ASDS and DDS topside arrangement 

To allow the SSGN to launch and recover ALVIN, the ALVIN Dry Deck Shelter 

(ADDS) was designed to be large enough to completely house ALVIN and be attached in 

a manner similar to the current DDS. 

4.1.2 ALVIN Characteristics and Required Modifications  

 ALVIN is a deep-sea manned submersible built by the Applied Science Division 

of Litton Industries in 1964 with funds from the Office of Naval Research. The vehicle 

consists of a titanium pressure hull, batteries (and associated electronic systems), 

ballasting system, thrusters, manipulators, and sensors, all connected within a tubular 

frame.  Portions of this frame are enclosed within a fairing to reduce hydrodynamic drag.  

A small sail is attached at the top of the vehicle to prevent taking water down the top 

pressure hull hatch when on the surface.  ALVIN’s overall specifications are summarized 

in Table 9.   
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Table 9.  ALVIN Specifications [9] 

Length: 7.1 m (23.3 ft.) 
Beam: 2.6 m (8.5 ft.) 
Operating Depth: 4,500 m (14,764 ft) 
Normal Dive Duration: 6-10 hours 
Speeds:  
Cruising - 0.8 km/hr (0.5 knot) 
Full - 3.4 km/hr (2 knots)  

Height: 3.7 m (12.0 ft) 
Draft: 2.3 m (7.5 ft) surfaced 
Gross Weight: 17 metric tons (35,200 lbs)
Payload: 680 kg (1,500 lbs) 
Complement:  
Pilot - 1 
Scientific Observers – 2 
 

Pressure Hull: 208 cm (82 in) outer diameter, 4.9 cm (1.9 in) thick titanium 
Hatch Opening: 48.2 cm (19 in) max. diameter for science equipment 
Total Power: 46.8 kWh maximum (120V x 390 Ah), 35 kWh usable (120V x 292 Ah) 
Max. Cruising Range: 5 km (3 miles) submerged @ 14 meters/minute 
Life Support Duration: 216 man-hours (72 hrs x 3 persons) 
     

      Figure 7 below provides a diagram showing the layout and subsystem 

arrangement for ALVIN. 
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Figure 7.  General ALVIN Arrangements [9] 
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ALVIN’s mission capabilities are listed below [9]:  

• Carrying one or two observers and various internal and/or external instrumentation 
and tools. 

• Maneuvering within areas of rugged bottom topography. 

• Hovering at neutral buoyancy in mid-water and/or resting on the bottom to perform 
scientific and engineering tasks, including still and video photography. 

• Using its manipulators and storage basket to deploy various scientific tools and to 
collect samples. 

• Providing a limited amount of electric and hydraulic power plus data logging 
capabilities for instruments and equipment not normally part of the submersible.  

To limit the size of the ADDS, ALVIN will have to be modified by replacing the 

permanent sail with a temporary inflatable one.  The sail is only used to add freeboard on 

the surface and prevent water from entering the hatch, so an inflatable sail would satisfy 

the same requirements.  Additionally, the method of battery cell removal will be changed.  

The current method of vertical removal will be altered to a horizontal method where the 

cells are removed from the rear of the vessel.  ALVIN would also require rotating clamps 

at its base to attach itself to the movable sled of the ADDS (see sections 4.1.5 and 

4.1.10).  Finally, a fiber optic data link and inertial navigation system would be added to 

increase accuracy and covertness of communication and positioning.  

4.1.3 ALVIN Dry Deck Shelter (ADDS) 

 Due to the support service requirements for ALVIN, the ADDS was designed to 

completely enclose ALVIN.  In the initial analysis of alternatives, it was assumed that the 

shelter would be flooded at depths greater than 200 feet.  After further review, it was 

determined that the shelter needed to remain dry to the test depth of the SSGN.  

      The final design for the ADDS was a ring-stiffened cylinder 14 feet in diameter 

with a hemispherical forward end and an oblate hemisphere for the rear door.  The total 

length of the assembly is approximately 46 feet with the rear door shut.  A cylindrical 

trunk approximately four feet in diameter extends downward from the front end of the 

ADDS to the SSGN superstructure.  This trunk provides the physical connection between 
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the SSGN and the ADDS in addition to being a means of personnel transfer.  A fairing to 

reduce hydrodynamic drag surrounds the entire assembly. 

      Unlike operations with the DDS, ALVIN should be deployable and retrievable 

from the ADDS with no diver support.  To this end, automatic and remotely controlled 

hydraulic systems are envisioned for the ADDS.  When deploying ALVIN, the outer door 

of the ADDS will be unlocked and opened by an operator onboard the SSGN.  A 

moveable “sled” to which ALVIN is fastened will then slide rearward out of the ADDS.  

An operator within ALVIN will then direct unfastening of the vehicle from the sled to 

conduct the operation.  Retrieving ALVIN will simply be the reverse of deploying.  

Figure 8 below shows the dimensions and general arrangement of the ADDS. 
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Figure 8.  ADDS Characteristics 

4.1.4 Combat Systems/C4ISR 

 The modified SSGN will retain all combat systems and C4ISR systems of the 

baseline SSGN.  When the ADDS is installed, the SSGN will be limited to one ASDS or 

DDS in addition to the ADDS.  Due to the modular nature of the ADDS, the hangar can 

be easily removed while in port, restoring the original configuration of the SSGN. 
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4.1.5 Host Ship Propulsion, Electrical, and Auxiliary Systems  

 In order for ALVIN to be able to perform multiple missions, the host ship must be 

able to supply it with the following services: 

 

I.   A battery charger capable of providing voltage and current of 145V and 

45A, respectively, in addition to stowage space for spare 12V cells 

 

II.   A high pressure air connection to recharge ALVIN’s ballasting system 

 

III.  An oxygen connection for recharging oxygen bottles or stowage space for 

spare oxygen bottles 

 

IV.  Stowage space for sofnalime and lithium hydroxide canisters (used for      

carbon dioxide absorption aboard ALVIN) 

 

V.   Stowage space for various hydraulic and compensating oils 

 

VI. A navigational input to fix ALVIN’s position at time of deployment.  

 

In addition, the SSGN must provide the following services to the ADDS: 

  

 VII.   Hydraulic power to operate the rear door locking ring, door ram, drain 

valves, and sled ram. 

 

VIII.  Electrical power for limit switches associated with door and sled 

operations in addition to overhead lighting. 

 

IX. A drain connection and vent path to drain the ADDS. 

 

The SSGN will address these requirements in the following ways: 
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I.    The government-furnished battery charger installed to recharge batteries 

on the ASDS should suffice to recharge batteries on ALVIN [15].  The hull 

penetrations and associated wiring would remain unchanged. 

 

II.   A 3,000 psig diver air connection for DDS operations already exists [16]. 

 

III.-V. Existing SOF stowage could be used to store oxygen bottles, spare 12V 

cells, lithium hydroxide canisters, and various oils. 

 

VI.   Navigational information is input to ALVIN via a laptop computer 

through an ethernet connection inside ALVIN’s pressure hull.  Additionally, a 

rendezvous sonar transponder placed at the top rear of the SSGN sail for ASDS 

operations [15] will assist in ALVIN’s return to the SSGN at the completion of a 

mission. 

 

VII. Hydraulic power is supplied from the SSGN’s external hydraulic system 

in the vicinity of tubes five and six for use by the ASDS Pylon Hydraulic Control 

System [15].   

 

VIII. Electrical connections in the vicinity of the LOCs are capable of providing 

115V, 25A, three-phase electrical power [16]. 

 

IX.  The ADDS will drain through the LOC upper hatch cavity drain in the 

same way that the ASDS mating trunk is drained.  A standpipe within the ADDS 

will connect to the LOC upper hatch air line to provide a vent path to the SSGN 

atmosphere [15].   

4.1.6 Survivability and Signatures 

 The SLURV utilizes the same hull structure as the OHIO class SSGN, with the 

exception of the ADDS.  No internal structural modifications were done to the host ship.  
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The SLURV is therefore expected to have the same level of survivability as the OHIO 

class SSGN.  More detailed analysis would be necessary to verify survivability. 

 The addition of the ADDS and the performance of scientific and military research 

missions will affect the stealth of the SSGN in transit and on station.  The surface area 

and structure of the ADDS will lead to uneven flow around the shelter and will affect the 

acoustic signature of the SSGN.  The acoustic signature effect is not expected to be 

greater than the dual DDS operations planned for the baseline SSGN.  Additional noise 

sources are anticipated from the operation of the hangar door and the launch and recovery 

sled.  Further analysis would be required to determine the severity of these generated 

noises and their effects on the ship’s mission. 

4.1.7 Manning  

 The scientific and military missions of ALVIN require a three-person crew, 

normally comprised of one pilot and two observers.  An Expedition Leader remains with 

the host ship to provide overall mission supervision.  Since normal dive duration is 

between six and ten hours, a second three-person crew and Expedition Leader would be 

required to perform repeated missions.  Total additional manning for conducting multiple 

ALVIN missions would therefore be 8 personnel.   

It is anticipated that an SSGN conducting ALVIN missions would not require a 

full complement of 66 SOF personnel.  As a result, berthing spaces would be available 

for the additional ALVIN support.  Maintenance and support service for ALVIN will be 

conducted by the SSGN ship’s force Electronics Technicians (ETs), Electricians Mates 

(EMs), and Machinists Mates (MMs).  

Additional personnel are required to load and remove ALVIN pier side (riggers, 

crane operator, truck driver, etc.), but these personnel were not considered as manning for 

the purposes of this report.   

4.1.8 SSGN Arrangements  

 Modifications to the SSGN were concentrated in the missile compartment area.  

No significant structural modifications were required to the baseline SSGN.  Major 

components of the SLURV modification include the installation of the ADDS, oxygen 

 40



bottle and oil stowage, battery charging connections, hydraulic connections, and support 

services for the ADDS.  

The ADDS is attached to the SSGN using foundations on the superstructure 

(similar to the DDS/ASDS foundations) and LOC mating surfaces on missile tubes 1 or 

2.  Figure 9 shows the topside arrangement with the ADDS attached to the LOC of 

missile tube 1.  The hangar door is open and sled extended to show interference paths.  

Figure 10 shows the inboard profile of the missile compartment with the ADDS attached 

to the LOC. 

Figure 9.  Topside Arrangement 

Figure 10.  Inboard Profile of Missile Compartment 

 To allow multiple missions to be conducted by ALVIN, several of its auxiliary 

systems require recharging or refilling.  One of these systems is the oxygen supply on 

ALVIN.  For atmosphere control, ALVIN carries three scuba-sized bottles filled with 

oxygen.  During a normal dive, one oxygen bottle is depleted.  To eliminate the hazard 
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and Quality Assurance (QA) issues of charging oxygen, additional oxygen tanks will be 

loaded to support multiple missions.  The oxygen bottles, 21 of them, will be stored in the 

ordnance magazine on the 4th level of SOF tube 1 or 2.  Oxygen bottles will be mounted 

on specially designed racks to prevent movement and minimize shock.  These racks will 

be attached to the tie-down rails shown in Figure 11.   

 

Figure 11.  Ordnance Magazine – SOF Tube 1 & 2 – 4th Level [10] 

 

Sofnalime canisters are also required for atmosphere control on ALVIN.  

Replacement canisters will be stored in the SOF storage area, located on the Missile 

Compartment 2nd level.  Five-gallon oil containers, 10 of them, will also be stored in the 

SOF storage area. 

 Battery charging will be conducted using the ASDS battery chargers in Auxiliary 

Machinery Room Number One (AMR1).  The battery chargers convert 440V three-phase 

60Hz AC power to 150V-350V DC power.  The chargers are connected via cables to 

connections in the LOC cavity.  Cables from the ADDS will plug into these connections 

when the ADDS is installed, and will terminate at charging connections inside the ADDS 

hangar.  Temporary jumper cables will then connect the ALVIN batteries to the charging 

connections during battery charging operations.  Figure 12 shows the charging station 

arrangement inside AMR1.   
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Figure 12.  ASDS Battery Charging Station 

 

 The baseline SSGN contains a modified external hydraulic system to provide 

hydraulic power to the ASDS latching mechanisms [15].  An ASDS hydraulic control 

station is located on the missile compartment upper level, port side.  Figure 13 shows this 

location in the baseline SSGN. 

 Figure 13.  ASDS Hydraulic Station [10] 

Piping connections run from the control station, through the superstructure, to the 

DDS/ASDS tie-down connections topside.  The ADDS hydraulic piping will be 
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connected to the existing topside fittings when the ADDS is installed.  Further analysis is 

required to determine if the existing external hydraulic system is adequate for the large 

ADDS hydraulic loads.  An additional accumulator and fluid reservoir could be added to 

the ASDS hydraulic station if necessary.  

4.1.9 ADDS Structural Design  

 The ADDS hangar was designed to allow ALVIN (with its sail removed) to 

completely fit inside the hangar.  The current DDS design was used as a starting point for 

this structural model.  It was determined that a hyperbaric chamber would not be required 

for the ADDS because divers would not be used to launch or recover ALVIN.  The 

shelter was therefore sized to allow personnel access when the hangar is dry to conduct 

required ALVIN maintenance.  The hangar portion of the ADDS is a cylinder 14 ft in 

diameter and 35 ft long with a hemispherical forward end, and a hinged oblate 

hemispherical door on the aft end.   Figure 14 shows the details of the hangar. 

 

 

 

 

 

 

 

 

 

 46 ft Overall Length

Vertical Supports Connecting Trunk 

14
 ft

. D
ia

m
et

er
 H

em
is

hp
er

e 

35 ft. Ring-Stiffened Cylinder 
(12 in. frame spacing) 

Figure 14.  Cross Section of ADDS Hangar 

To determine the appropriate size for the shell plating and stiffeners, the hangar 

was analyzed using the MIT Professional Summer Submarine Structural Design Model 
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[11].    This model uses shell theory to calculate five hull limit states, or failure modes, 

for the hangar based upon the assumptions that the hangar bay was a right circular 

cylinder with a ring-stiffened shell. Using an iterative process, an appropriate shell 

thickness was determined to be 1.0 inches.  Internal 5.5 inch-deep ring frames were used 

at 12 inch spacing.  Table 10 shows the principal dimensions for the shell and stiffeners.   

Table 10.  ADDS Principal Dimensions 

material HY-80 material HY-80
diameter 14.0 ft flange thickness 0.75 in
thickness 1.0 in flange width 4.4 in
length 35 ft web thickness 0.4 in
frame spacing 12 in web height 5.5 in

Shell Stiffeners

 

In accordance with Reference 12, a minimum structural design safety factor of 1.5 

was used.   For some failure modes though, higher safety factors were used based on the 

generally accepted uncertainty in the calculations for those specific modes.  Table 11 lists 

the safety factors used in the hangar design.   

Table 11.  Safety Factors 

Failure Mode Safety Factor
Shell Yield 1.5
Lobar Buckling 2.25
General Instability 3.75
Frame Yield 1.5
Frame Instability 1.8

 

Using the appropriate safety factor, a pressure load based on the test depth of the 

SSGN was determined for each failure mode. A failure pressure was then determined 

using the appropriate calculations for each failure mode.  By taking a ratio of the pressure 

load to the failure pressure, a partial safety factor (PSF) was developed which indicates 

how much of the safety factor was used in the design.  A PSF less than 1.0 indicates that 

the design will not fail in the specific mode.  Using the scantlings from Table 10, PSFs 

were determined for the ADDS hangar design. Details of the structural calculations are 

found in Appendix E.  A summary is provided in Table 12.    
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Table 12.  PSF Summary 

Failure Mode PSF Value
Shell Yield gSY 0.535
Lobar Buckling gLB 0.176
General Instability gGI 0.714
Frame Yield gFY 0.999
Frame Instability gFI 0.484

 

The shell and stiffener design is therefore considered adequate, based on all PSFs 

being less than 1.0.  The hemispherical ends on the shelter were designed to be 1.0 in 

thick.  Due to the inherent strength of a sphere, the calculations for failure stress of the 

ends determined the PSF to be 0.35, indicating an adequate design. 

Another major structural concern was the required strength of the tie-down 

connections linking the ADDS to the SSGN.  The ADDS is held in place by the transfer 

trunk and two tie-down cradles which are bolted to the submarine.  The major source of 

stress on these connections will be hydrodynamic drag.  The drag force on the ADDS was 

calculated using hydrodynamic theory.  The ADDS was assumed to be a bullet shape 

with a length-to-diameter (L/D) ratio of 3.  Because the L/D ratio is relatively small, 

pressure (or form) drag has a much greater effect than skin friction drag [13].  A drag 

coefficient of 0.2 was used.  Calculations were done for a maximum speed of 30 knots.  

The total drag on the ADDS was calculated to be 117,900 lbs.  A similar analysis for a 

conventional DDS yields a total drag force of 52,800 lbs.  Thus, the drag force on the 

ADDS is 2.23 times that of the DDS.  The details of the drag calculations are shown in 

Appendix F. 

Next, the hold-down bolt shear stresses were calculated.  The conventional DDS 

transfer trunk is attached to the SSGN with 32 1.7 inch diameter K-Monel bolts.  The two 

pedestal foot pads are each connected with 6 2.25 inch diameter K-Monel bolts [16].  It 

was assumed that the existing connections would be used for ADDS if they proved 

adequate.  Appendix G shows the details of the shear stress calculations.  The ADDS 

drag force creates an average bolt shear stress of 945 psi.  The yield stress of K-Monel is 

160 ksi, yielding a factor of safety of 169.  Thus, the existing hold-down bolt connections 

will be adequate for the ADDS connection. 
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 4.1.10  ADDS Subsystems Description  

 The ADDS is designed so that all ALVIN transfer operations can be completed by 

operators either inside ALVIN or inside the submarine.  Unlike the conventional DDS, no 

diver support will be needed to launch or recover ALVIN from the ADDS.  The hangar 

door on the ADDS will be opened and closed via a hydraulic mechanism and locking 

ring.  The door swings open approximately 105o to allow access to and from the hangar.

 The hangar will contain a hydraulically operated rail-sled system to allow 

launching and recovery of ALVIN.  Longitudinal rails will be installed on the inside of 

the hangar cylinder.  The rails will be mounted to the cylinder shell using expansion 

joints to allow for longitudinal shell compression without causing rail bowing.  The rails 

will run the entire length of the cylinder and contribute to the longitudinal stiffness of the 

ADDS.  A sled consisting of a platform connected to moving rails will slide along the 

fixed rails in the hangar.  The platform and moving rails will be attached using sliding 

expansion joints to allow radial compression of the hangar.  A hydraulic ram located in 

the bottom of the hangar and attached to the sled will be used to extend or retract the sled.  

The total length of the sled mechanism is approximately 30 ft.  The sled will protrude 24 

ft from the aft end of the hangar when fully extended.   The remaining 6 ft of contact 

between the sled rails and the fixed rails will provide adequate cantilever strength to 

support the weight of ALVIN.  The sled will also contain padeyes to allow the rotating 

clamps on ALVIN to attach the vehicle to the sled after landing.  A system of manual tie-

downs will be used to secure ALVIN inside the ADDS once the door is shut and the 

hangar is drained.  Figure 15 illustrates the ADDS launch and recovery system. 
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Figure 15.  ADDS Launch and Recovery System 

  

The launch and recovery system sled will also contain a fiber optic voice 

communications link.  This link will be automatically engaged when ALVIN clamps 

itself to the sled upon landing.  This link will provide reliable and secure communications 

between the ALVIN crew and the control station onboard the SSGN during launch and 

recovery operations. 

The ADDS hangar door and sled system will be operated from a control station on 

the SSGN missile compartment first level.  This control station will be adjacent to the 

LOC Diving Supervisor Station.  The control station will contain fiber optic voice and 

underwater telephone (UWT) communications as well as video monitors from cameras 

inside and outside of the ADDS.   

  

4.1.11 Weights and Stability 

4.1.11.1  Baseline Ship Balance 

 The baseline SSGN balance was demonstrated using the SSGN Math Model 

(Appendix D).  Data for the model was taken from a “Weight and Ballasting” 
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presentation, SSGN Program Review, December 9, 2002 [14].  The accuracy of the 

model was validated by comparing the model results (displacement, speed, draft, etc.) to 

actual SSBN performance and predicted SSGN performance.   

4.1.11.2  ADDS Balance 

 The weight of the ADDS was calculated using the volume of all structural 

components described in Section 4.1.9.  The volume was multiplied by the density of 

steel to yield a structural weight.  An additional weight was calculated and added to 

account for the fairing, handling equipment, hinges, etc.  This weight was estimated as 

15% of the structural weight.  The total weight of the ADDS was calculated as 58.518 

lton.  The longitudinal center of gravity (LCG) was assumed to be at the longitudinal 

center of the ADDS.  The vertical center of gravity (VCG) was assumed to be 4 ft above 

the base of the ADDS.  The VCG is low (i.e., below center) because of the handling 

system and hydraulic ram located in the bottom of the hangar. 

 The buoyancy of the ADDS was computed using the envelope volume of the 

cylinder and hemispherical ends.  The total buoyancy of the ADDS was calculated as 

194.988 lton.   

 The weight of water contained in the ADDS was also computed.  This weight was 

found to be 188.3 lton.  All calculations are shown in Appendix H.     

 The net buoyancy of the ADDS when totally submerged and dry is 136.5 lton.  

When submerged and flooded, the ADDS has a net weight of 51.83 lton.  This difference 

of 188.3 lton must be compensated by the variable ballast system of the SSGN. 

  

4.1.11.3  ALVIN Balance 

 This conversion involves modifying ALVIN to fit inside the ADDS (see Section 

4.1.2).  However, for purposes of the weight analysis, the existing ALVIN configuration 

was used.  The current ALVIN has a weight of 16.6 lton, not including variable ballast, 

and buoyancy of 16.98 lton.  ALVIN’s ballast system allows it to attain neutral 

buoyancy.  It was assumed that the ballast system will be emptied when inside the 

ADDS.  Therefore, ALVIN has a net buoyancy of 0.38 lton in a flooded ADDS and a net 

weight of 16.6 lton in a dry ADDS.    
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4.1.11.4  Equilibrium Polygon 

 The SSGN Math Model produced an equilibrium polygon for the baseline SSGN.  

The SSBN variable ballast system was expanded in the SSGN to allow compensation for 

a wider range of operating conditions.  Specifically, the forward missile compensating 

tank (MCT) was converted into two new tanks, Aux 2A and Aux 2B.  The aft MCT was 

combined with Aux 5.  This additional variable ballast capacity accommodates the 

weight and moment difference between SSGN Strike and SOF missions [14].  The 

equilibrium polygon shown in Figure 16 illustrates the expanded variable ballast 

capacity.   
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Figure 16.  Equilibrium Polygon 

Reservations are taken in several variable ballast tanks to account for operational 

requirements, such as draining a DDS or compensating for TLAM launches.  These 

reservations result in the more restrictive polygon shown in Figure 16.   
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The baseline SSGN equilibrium was analyzed for five different loading conditions:  

• Light (L) 

• Heavy aft (HA) 

• Heavy forward (HF1) 

• Heavy Overall (H2) 

• Normal (N) 

as defined by the governing ship’s documentation.  Additionally, the equilibrium of four 

different ADDS conditions was analyzed: 

• ADDS empty, dry 

• ADDS empty, flooded 

• ADDS with ALVIN, dry 

• ADDS with ALVIN, flooded 

Finally, the equilibrium of the ship with both the ADDS and a conventional DDS was 

analyzed, both dry and flooded.  All loading conditions involving the ADDS were 

assumed to be added to the normal SSGN condition.   

 Figure 16 shows that the light loading condition (L) falls outside the equilibrium 

polygon.  This is because the light condition assumes all missile tubes are empty and dry.  

The SSGN is not designed to operate in this condition; after missiles are launched, the 

empty tubes fill with water.  The heavy aft condition (HA) falls inside the full capacity 

polygon, but outside the restricted polygon.  This indicates that the HA condition limits 

the operational capacity of the SSGN.  All ADDS conditions fall within the inner 

equilibrium polygon.  This indicates that the existing SSGN variable ballast system is 

capable of compensating for all possible ADDS conditions while also allowing full 

SSGN operational capability.  Therefore, the SSGN variable ballast system is adequate 

for SLURV operations. 

 It must be noted that the baseline SSGN will actually have several different 

equilibrium polygons, one for each possible mission configuration.  This is necessary 

because of the vast differences in weights for the mission packages.  For example, the 

current estimates for a single missile tube canister vary as much as 6 lton between a SOF 

mission and a TLAM strike mission.  This results in total weight differences of several 

hundred tons between missions.  The final solution to this problem has not yet been 
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decided, but it may very well require cargo ballast to be added for certain missions [14].  

Because of these uncertainties in final SSGN baseline configuration, a more detailed 

analysis of SLURV equilibrium is impossible.  

4.1.11.5  Lead Solution 

 The SSGN Math Model uses the lead solution given in [14].  Stability lead is 

placed in the bottom of the missile tubes, and margin lead is placed in the forward main 

ballast tanks (MBTs).  The equilibrium polygon (Figure 16) illustrates that all six 

conditions of the ADDS fall inside the equilibrium polygon, meaning they can be 

compensated using the variable ballast system.  Therefore, no changes in lead placement 

are needed to accommodate the ADDS. 

4.1.11.6  Surfaced Stability 

 SLURV surfaced stability was analyzed for the following six cases: 

• Baseline SSGN 

• ADDS empty, dry 

• ADDS with ALVIN onboard, dry 

• ADDS empty, flooded 

• ADDS with ALVIN onboard, flooded 

• ADDS and DDS, both flooded 

It was assumed that, under normal operating conditions, the ADDS is dry when surfaced.  

The conditions with the ADDS flooded are casualty conditions that would result from the 

submarine emergency surfacing.  The stability analysis was done using the SSGN Math 

Model.  Table 13 summarizes the results of the surfaced stability analysis. 

Table 13.  Surfaced Stability 

Condition Draft (ft) Trim by Stern (ft) BMT (ft) GMT (ft) KG (ft) 
Baseline SSGN 34.57 2.86 1.94 1.82 19.860 
ADDS Dry 34.57 2.87 1.94 1.68 19.994 
ADDS+ALVIN Dry 34.57 2.86 1.94 1.65 20.024 
ADDS Wet 34.57 2.86 1.94 1.14 20.532 
ADDS+ALVIN Wet 34.57 2.87 1.94 1.15 20.531 
ADDS+DDS Wet 34.50 1.19* 1.97 0.93 20.716 

*Trim effect caused by relative locations of LCGs of DDS and ADDS 

 52



The addition of the ADDS, with or without ALVIN, does not noticeably affect the draft 

or trim of the SSGN.  This is because the additional weight is small compared to the total 

weight of the ship, and the longitudinal centers of gravity (LCGs) of the ADDS and 

ALVIN are directly above the longitudinal center of flotation (LCF) of the ship.  The 

LCG of the DDS is about 10 ft forward of the LCF.  Therefore, adding the flooded DDS 

alters the trim of the ship significantly.  Adding the ADDS slightly increases the center of 

gravity (KG), due to the increased weight on the top of the submarine.  This results in a 

slight decrease in transverse metacentric height (GMT).  However, the metacentric height 

is greater than the required minimum of 1 ft for all cases.  Therefore, the analysis 

indicates that SLURV surfaced stability is adequate for all normal operating (i.e., dry) 

cases. 

 The casualty conditions with the ADDS flooded on the surface result in 

significant decreases in GMT.  This is because of the large weight of water that is not 

supported by a buoyant force.  The case of both ADDS and DDS flooded on the surface 

results in a GMT less than 1 ft.  This condition could be prevented by prohibiting the 

flooding of both structures at once.  Furthermore, this condition would be temporary, in 

that the ADDS and DDS could be drained as soon as the submarine reaches the surface.  

4.1.11.7  Submerged Stability 

 Submerged stability of the SLURV was analyzed for the following seven cases: 

• Baseline SSGN 

• ADDS empty, dry 

• ADDS with ALVIN, dry 

• ADDS empty, flooded 

• ADDS with ALVIN, flooded 

• ADDS and DDS, both dry 

• ADDS and DDS, both flooded 

In order for a submerged submarine to be stable, the center of gravity must lie below the 

center of buoyancy.  This ensures a positive righting moment for all roll angles.  The 

center of gravity (KG) and distance between center of gravity and center of buoyancy 
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(BG) were computed for each case using the SSGN Math Model.  The results are 

summarized in Table 14. 

 

Table 14.  Submerged Stability 

Condition KG (ft) BG (ft) 
Baseline SSGN 19.860 1.82 
ADDS empty, dry 19.532 2.14 
ADDS with ALVIN, dry 19.573 2.10 
ADDS empty, flooded 19.978 1.69 
ADDS with ALVIN, flooded 19.967 1.70 
ADDS+DDS, both dry 19.459 2.22 
ADDS+DDS, both flooded 20.029 1.65 

 

In all cases, BG was greater than the required minimum of 1 ft, indicating adequate 

submerged stability.  The three conditions with the dry ADDS actually improve stability, 

because the ADDS provides a net buoyant force rather than a net weight.  A potential 

problem requiring further analysis is whether or not the increased buoyancy decreases the 

roll period of the SLURV too much.  This could have implications in the launching and 

recovery of ALVIN.  However, based on the slight increase in BG, this is unlikely.  The 

three flooded conditions decrease stability slightly because of the added weight on top of 

the submarine.  The most severe stability condition is the ADDS and DDS, both empty 

and flooded.   However, even this condition has a BG well above the required minimum. 

 

4.2 Performance Analysis 

4.2.1  SSGN Mission Capability 

The SLURV final concept design will affect, at most, one SSGN combat mission 

(see Section 2.5.1 for a description and definition of SSGN combat missions).  The 

ADDS utilizes one of the two existing LOCs for access between the submarine and the 

ADDS.  The other LOC remains available for use by a conventional DDS or ASDS.  

Figure 17 illustrates this dual capacity. 
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Figure 17.  SSGN with DDS and ADDS 

 

The TLAM capability of the SSGN will not be affected any more than with a 

conventional DDS, since the SLURV modifications will not involve tubes 11-24.  The 

internal modifications to the SSGN are so minor that they will not affect the combat 

capabilities of the submarine. 

The SLURV modifications are intended to be fully modular.  This means that the 

ADDS can be easily removed and the SSGN returned to its baseline configuration, with 

full combat mission capability.  Additionally, the internal modifications are simple 

enough that they could be completed on all four SSGNs during the SSBN-to-SSGN 

conversion process or a follow-on scheduled maintenance period.  This would allow 

greater operational flexibility for the SLURV system. 
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4.2.2  SSGN Speed Reduction 

The SSGN Math Model was used to calculate the effect of the ADDS on SSGN 

submerged speed.  The drag force on the ADDS was calculated as described in Section 

4.1.9.  This additional drag force was added to the drag force of the baseline SSGN to 

determine the resulting reduction in speed.   

The model indicates that the addition of the ADDS will reduce SSGN speed by 

5%.  This result corresponds closely to the actual results obtained for a conventional DDS 

mated to an SSN.  This correlation lends further credibility to the SSGN Math Model 

results. 

 

4.2.3  SSGN Acoustic Signature 

Because of the limited scope of this project, no acoustic calculations or analyses 

were performed.  However, the ADDS design is nearly identical in shape and proportions 

to a conventional DDS (mounted on an SSN).  The outer skin of the ADDS is smooth and 

does not contain cavities.  Provided that all equipment inside the ADDS is securely 

fastened to prevent rattles, the major source of noise from the ADDS during transit will 

be flow noise.  Launch and recovery operations will create transients that may be 

detectable.  Because of the similarities to a DDS, it is reasonable to assume that the 

acoustic effect of the ADDS on an SSGN will be very similar to the acoustic effect of a 

DDS on an SSN.  This effect is considered minimal, and will not significantly alter the 

acoustic signature of the SSGN. 

  

4.3 Operation and Support 

 The SLURV will be operated as a modular unit which includes the ADDS, 

ALVIN, and supporting equipment.  When a SLURV mission is initiated, the host ship 

will be made ready for the mission by removing a DDS or ASDS to provide the necessary 

space for the ADDS to be attached to one of the LOCs and foundations.  The loading and 

unloading of the ADDS and ALVIN will require a rigging crew and crane support.  

Additionally, a truck is required to transport the ADDS and ALVIN from its storage 

location.  These services are normally available at U.S. submarine bases.  Once the 
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ADDS is craned on to the SSGN, it must be connected by Intermediate Maintenance 

Activity (IMA) and ship’s force personnel using appropriate Scope of Certification 

procedures.  ALVIN will then be loaded on to the launch and recovery sled and retracted 

inside the ADDS hangar for storage.  Support equipment and supplies will then be loaded 

by ALVIN crewmembers with support from ship’s force personnel.  Once equipment has 

been stowed, the SLURV is ready to conduct the mission. 

 A typical mission would involve the SLURV transiting to the mission area while 

remaining submerged and undetected.  ALVIN crewmembers would conduct last minute 

operational and system checks during the transit while the hangar and ALVIN remain 

dry.  When the SLURV arrives on station, the pilot, two observers, and Expedition 

Leader would enter the ADDS hangar through the associated LOC.  The crewmembers 

would enter ALVIN through the top hatch and ensure all systems are ready.  The 

Expedition Leader would ensure the ALVIN hatch is shut and personnel are clear of the 

hangar.  Upon exiting the ADDS, the Expedition Leader establishes communications 

with ALVIN via the fiber optic link and the ADDS is then flooded.  The hangar is 

equalized with sea pressure and the outer door is hydraulically opened, allowing the 

launch and recovery sled to extend out of the hangar.  Once outside the hangar, ALVIN 

personnel control the release mechanism that allows ALVIN to operate freely.  ALVIN 

will then perform its assigned mission of up to ten hours in duration.  When the mission 

is complete, ALVIN will rendezvous with the SSGN.  It will land on the launch and 

recovery sled and be remotely retracted into the open hangar.  The hangar door will be 

hydraulically shut and the ADDS will be drained, allowing the ALVIN crewmembers to 

exit the submersible.  For repeated missions, required maintenance will be conducted on 

ALVIN, including the charging of batteries, replacement of oxygen bottles, and the 

filling of oil systems.  Once maintenance is complete, ALVIN can be launched on 

another mission using the second set of crewmembers. 

 Upon completion of the SLURV mission(s), the system will be removed in the 

same manner it was installed.  The ADDS, ALVIN, and support equipment can be off-

loaded at the port of origin, or be dropped off at another port with appropriate support 

services.  Once the equipment is removed, the SSGN can be restored to its original 

configuration and return to normal mission status. 
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 Casualty operations for ALVIN or the ADDS involve two main scenarios.  The 

first scenario involves a casualty on board ALVIN that requires the submersible to go to 

the surface.  This could be as a result of flooding or other system failure.  For emergency 

surfacing, ALVIN is equipped with descent weights that can be jettisoned from the 

vessel, causing it to become positively buoyant and ascend to the surface.  ALVIN will 

also be equipped with an inflatable sail to provide adequate freeboard over the hatch 

while on the surface.  In the case of an emergency surfacing, the host SSGN would 

surface in the vicinity of ALVIN and provide lifeguard services and possible evacuation 

of crewmembers.  ALVIN would not be able to return to the ADDS while on the surface, 

and would have to be recovered by another support ship.  The second scenario involves a 

casualty where ALVIN was trapped inside a flooded ADDS.  In this case, an attempt 

would be made to close the outer hangar door and drain the ADDS with ALVIN inside.  

Once the hangar was drained, ALVIN crewmembers could be evacuated from the ADDS.  

If the hangar door could not be closed and it remained flooded, the SSGN would surface 

with ALVIN still attached in the ADDS.  Once on the surface, gravity would cause the 

water to drain from the ADDS and the ALVIN crewmembers could then be evacuated. 

 

4.4 Rough Cost Estimate 

 The cost for converting an SSGN to a SLURV system was broken down into three 

major cost areas:   

• ADDS Construction 

• SSGN Modifications 

• ALVIN Modifications 

To get a rough estimate of each of these cost areas, the ‘Very Simplified Cost Model’ 

portion of the MIT Submarine Math Model [7] was used.  This is a weight-based 

parametric model that calculates the cost of labor, material, overhead, and profit to 

provide a rough estimate of the overall construction cost.  Table 15 shows the parameters 

used in the model for this design.   
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Table 15.  Cost Estimating Parameters 

Labor Rate $150 per man-hour 
Overhead Factor 1.5 
Profit Rate 0.11 

 

The cost estimating parameters were taken from recent submarine design and 

construction trends and course notes from Reference 5. 

 The three cost areas were each evaluated separately and then combined for an 

overall cost.  The major costs associated with the ADDS construction were associated 

with the structural cost of the hangar itself.  Weights for electrical and auxiliary 

components of the ADDS were taken to be a percentage of the overall weight of the 

system.  The major costs associated with the SSGN modifications were involved in the 

changes to the hydraulic and electrical systems required to support the ADDS.  An 

estimate was made for the weight of these modifications and was then entered in the 

model.  For the SSGN modifications, labor and integration were increased by a factor of 

three from the baseline, due to the difficulty of performing modifications on an already 

existing platform.  Finally, the costs associated with ALVIN modifications were based on 

the minor changes to remove the sail on ALVIN and realign the mounting of the 

batteries.  Details of the cost models are found in Appendix I.   

 After developing a cost model for each area of the conversion, the totals were 

summed to develop an overall cost of the conversion project for an SSGN to host 

ALVIN.  A summary is provided in Table 16. 

Table 16.  Cost of Conversion Project 

ADDS SSGN Mods ALVIN
Direct Cost Labor $9.89 $0.80 $0.15

Material $1.95 $0.28 $0.03

Indirect Cost Overhead $17.76 $4.00 $0.28
Profit $3.25 $0.73 $0.05

$32.85 $5.81 $0.51

Total Cost: $39.17
* All figures in $M
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5.0 Design Conclusions 

5.1 Summary of Final Concept Design 

 The Submarine Launched Undersea Research Vessel final concept design consists 

of an OHIO class (SSGN) Submarine, modified to host the submersible ALVIN.  The 

primary modification was the design and construction of an ALVIN Dry Deck Shelter 

(ADDS) that would attach to LOC 1 or 2 in a manner similar to the current Dry Deck 

Shelter (DDS).  The ADDS would be larger than the current design to allow ALVIN to 

be housed in a dry shelter during transit.  Table 17 lists the principle characteristics of the 

SLURV. 

Table 17.  Submarine Launched Undersea Research Vessel Characteristics 

     Modified SSGN (ADDS & ALVIN installed) 
Length 560 ft 
Diameter 42 ft 
Displacement  16,600 ltons (surfaced) 

18,750 ltons (submerged) 
Draft 34.57 ft 
BG 1.70 ft (submerged, flooded) 
GMT 1.65 ft (surfaced, dry) 
Reserve Buoyancy 14.0% 
Propulsion 60,000 hp 
Speed Reduction  5% (submerged) 
Crew (SSGN) 155 
ALVIN Crew 8 

ADDS Characteristics 
LOA 46 ft 
Length of Hangar 35 ft 
Diameter 14 ft (outside diameter) 
Weight 58.5 ltons 
Displacement 195.0 ltons 
Design Depth Test depth of SSGN 

Conversion Cost 
ADDS Construction $32.85 M 
SSGN Modifications $5.81 M 
ALVIN Modifications $0.51 M 

Total Conversion $39.17 M 
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5.2 Final Conversion Design Assessment 

 The SLURV final concept design meets or exceeds all design thresholds and 

design objectives defined in Section 2.3.  Table 18 summarizes the design goals and 

actual performance of the SLURV final concept design.   

Table 18.  Comparison of Final Concept Design to Design Objectives   

SLURV Design Parameters Threshold Goal Concept Design 
SSGN Mission Capability Affect 2 missions No effect Affect 1 mission* 
ALVIN Mission Capability 3 ALVIN missions Unlimited 10 ALVIN missions 
Depth Limit for Transfer Operations 200 ft Test depth of SSGN Test depth of SSGN 
SSGN Speed Reduction 30% 0% 5% 
Submarine Design Objectives    
Reserve Buoyancy 12% -- 14% 
Margin Lead No less than baseline SSGN -- Same as baseline SSGN 
BG 1.0 ft -- 1.70 ft 
Acoustic Signature Equal to baseline SSGN -- Equal to baseline SSGN 

*only while ADDS is installed 

 

 The SLURV modifications will not permanently affect the mission capabilities of 

the SSGN.  When installed, the ADDS will occupy one LOC and will therefore remove 

the capability to carry one DDS or ASDS.  The other LOC will remain available for use.  

Preliminary analysis shows that the SLURV can operate and remain stable with both 

ADDS and a conventional DDS attached.  The SLURV modifications will not affect the 

ship’s TLAM capability any more than a DDS or ASDS. 

 The installation of the ADDS on the SSGN will create a submerged speed 

reduction of approximately 5%.  This reduction is similar to the effect of a DDS on an 

SSN, and will not significantly degrade the performance of the ship.  The acoustic 

signature of the SLURV will be very similar to that of the baseline SSGN, with the 

exception of transients caused during ALVIN launch or recovery operations. 

 Based on the results of this study, the design team concludes that the proposed 

SLURV concept design is feasible.  All design thresholds and objectives were met or 

exceeded.  The entire conversion project will cost approximately $39.17 M. 
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5.3 Areas for Further Study 

 This project was a preliminary investigation into the feasibility of the SLURV 

concept.  Many areas of design or analysis require additional analysis.  Specific items for 

further study include: 

• Detailed hydrodynamic analysis of the ADDS to determine speed and acoustic 

effects 

• Detailed calculations of ADDS hydraulic system loads 

• Optimization of ADDS geometry to coincide with ALVIN redesign 

• Optimization of ADDS structural design 

• Analysis of SSGN and ALVIN maneuvering requirements during launch and 

recovery 

• Analysis of ADDS ventilation requirements  

• Analysis of SLURV shock performance 

• Detailed cost model for ADDS construction, SSGN modification, and ALVIN 

modification  
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APPENDIX A : Mission Need Statement 

Mission Need Statement 

For 

Submarine Launched Undersea Research Vessel 

 

1.   Defense Planning Guidance Element.  This Mission Need Statement provides 

requirements for deep-sea research vessels for the 21st Century.  This Mission Need 

Statement should guide research/host vessel design, research, development, and 

acquisition program decisions. 

 

2. Mission Analysis 

A. Mission.  The general mission of this ship is to perform specialized military and 

scientific missions in deep water and on the ocean floor using a manned deep-sea 

research vessel, ALVIN, to perform missions independent of the host platform.  The host 

ship must be able to independently transit to the mission location, perform military and 

scientific missions of interest, including the launch, recovery, and support of ALVIN, and 

return to its base of operations without additional support from other vessels.  

B. Military Mission Needs (ALVIN) 

1) Systems Manipulation/Implantation/Control.  The vessel must be able to 

implant mission related objects in precise locations and manipulate objects 

found in the ocean. 

2) Recovering Objects.  The vessel must be able to recover objects that have 

been located by onboard or off-board sensors. 

3) Disabling/Removing Objects.  The vessel must be able to manipulate and/or 

remove objects of military interest. 

4) Area Survey/Investigation.  The vessel must be able to locate objects of 

military importance within its operating area.   

5) Support to Military Research and Development.  The vessel will be an 

integral part of Department of Defense research and development related to 

the ocean.   
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C. Scientific Mission Needs.  The vessel must be able to conduct research in a 

variety of scientific fields including: 

1) Physical Oceanography.   

2) Geology/Geophysics. 

3) Marine Biology.  

4) Atmospheric Science.   

5) Ocean Engineering 

6) Chemical Oceanography 

7) Maritime Archeology 

8) Environmental Science 

D. Capabilities and Requirements of the host ship or ALVIN 

1) Host ship operational depth not affected by ALVIN during transit 

operations.  Launch/recovery depth limits may be implemented.  

2) Operation, including launch and recovery, in 1.5 knot current at 

launch/recovery depth. 

3) Assume host of single ALVIN submersible and support equipment. 

4) Maximize modularity. 

5) Maintain acoustic signature less than or equal to baseline of host submarine.   

6) Maintain resistance to underwater shock of host submarine.  Payload does 

not have to be shock hardened. 

7) Maintain minimum required values for host GM, BG, reserve buoyancy, 

non-nuclear margin, seawater density range, and loads provided for.  If this 

is not feasible, quantify trade-offs. 

3. Non-Material Alternatives 

A. Any system capable of performing this mission will require significant material 

development. 

B. Changes in operational doctrine will not accomplish these missions. 

4. Potential Material Alternatives 

A. A deep-sea submarine is the only type of platform capable of performing many of 

these missions. 

B. Alternative design concepts include: 
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1) Design of an entirely new class of submarine.   

2) Modification of a Flight III SSN-688I Design to meet the host requirements. 

3) Modification of a SEAWOLF Class Design to meet the host requirements. 

4) Modification of a VIRGINIA Class Design to meet the host requirements. 

5) Modification of a SSGN Design to meet the host requirements. 

C. Design concepts are not limited to U.S. only shipbuilding programs.  All 

meaningful cooperative opportunities with Allied countries should be examined relating 

to development programs for deep ocean research vessels. 

5. Constraints 

A. Key Boundary Conditions.  

1) Architecture - The ship design must employ a total ship 

architectural/engineering approach that optimizes mission effectiveness and 

performance; minimizes cost of conversion.   

2) Design - Consideration should be given to the maximum use of modular 

designs in the host vessel’s infrastructure. Emerging technologies must be 

accounted for during the developmental phase.   

B. Operational Constraints. 

1) The host vessel must remain fully functional and operational in all 

environments.  Host vessel performance limitations similar to current 

limitations associated with hosting the Advanced Seal Delivery System 

(ASDS) and Dry Deck Shelter (DDS) are considered acceptable.     

2) The host vessel must provide launching and recovery facilities for ALVIN. 

3) The host vessel must be able to operate in U.S., foreign, and international 

waters in full compliance with existing U.S. and international pollution 

control laws and regulations. 

4) The host vessel must be able to transit through the Panama Canal 

(PANAMAX). 
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APPENDIX B : ALVIN Characteristics 

Source:  Woods Hole Oceanographic Institution web site [9] 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Specifications 

 
Length: 7.1 m (23.3 ft.) 
Beam: 2.6 m (8.5 ft.) 
Operating Depth: 4,500 m (14,764 ft.) 
Normal Dive Duration: 6-10 hours 
Speeds: 

 
Cruising - 0.8 km/hr (0.5 knot) 
Full - 3.4 km/hr (2 knots)  
 

 

 

Height: 3.7 m (12.0 ft.) 
Draft: 2.3 m (7.5 ft.) surfaced 
Gross Weight: 17 metric tons (35,200 
lbs.) 
Payload: 680 kg (1,500 lbs.) 
Complement: 

 
Pilot - 1 
Scientific Observers - 2 
 

 
 
Pressure Hull: 208 cm (82 in.) OD, 4.9 cm (1.9 in.) thick titanium 
Hatch Opening: 48.2 cm (19 in.) max. diameter for science equipment 
Total Power: 46.8 KWH maximum (120V x 390 AH), 35 KWH usable (120V x 292 
AH) 
Max. Cruising Range: 5 km (3 miles) submerged @ 14 meters/minute 
Life Support Duration: 216 man-hours (72 hrs. x 3 persons) 

 

Alvin was constructed in 1964 by the Applied Sciences Division of Litton Industries 

with funds provided by the Office of Naval Research. The submersible remains state-

of-the-art due to numerous reconstructions and improvements made over the years. 

These improvements make possible the complex operations which Alvin is capable of 

performing today. 
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Alvin is capable of the following:  

• Operating at any depth from the surface to 4,500 meters (14,764 ft.) at 

speeds of 0-3.4 km/h (0-2.0 knots), and remaining submerged for 

approximately 10 hours (72 hours under emergency conditions). 

• Carrying one or two observers and various internal and/or external 

instrumentation and tools. 

• Maneuvering within areas of rugged bottom topography. 

• Hovering at neutral buoyancy in mid-water and/or resting on the bottom to 

perform scientific and engineering tasks, including still and video 

photography. 

• Using its manipulators and storage basket to deploy various scientific tools 

and to collect samples. 

• Providing a limited amount of electric and hydraulic power plus data logging 

capabilities for instruments and equipment not normally part of the 

submersible.  

The depth capability is based on a design collapse depth of 5,720 meters for the 

personnel sphere. A duplicate sphere, however, has been tested to the equivalent of 

6,850 meters (22,475 ft.) without failure.  

 

Alvin’s 1,500 lb. payload includes the pilot, two passengers, the manipulators, and 

the science basket. The port and starboard manipulators each weigh 117 lbs. in 

water. The empty science basket weighs approximately 105 lbs. in water. The 

remaining payload is available for user equipment and samples taken during the 

dive. This load may be divided between internally and externally loaded equipment, 

subject to some restrictions. Internally mounted equipment must fit in a standard 

19-inch panel rack. All equipment entering the sphere must pass through a 19-inch 

circular opening so as to fit through the hatch with adequate clearance. With 

advance planning, the user’s portion of the payload can be increased by the removal 

of one or both manipulators, the science basket, or one observer.  

 

Normal dive duration varies from six to ten hours, but this time may be reduced by 

excessive 120V or 26V power usage. The primary direct consumers of the 120V 

power are the propulsion system and external lights. High speed or current-fighting 

transits and excessive use of the lights represent loads on the 120V system that 
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might be avoidable with proper dive planning. The 26V power, derived from the 120V 

batteries, supplies all services within the sphere (including 110 VAC power) as well 

as the control systems, instruments and the computers. Judicious use of other 

instruments such as the CTFM sonar and underwater telephone can result in 

significant power savings and can thus prolong dive time.  

 

During any given dive, the percentage of time actually spent on the bottom or at 

desired depths depends upon the amount of time it takes to travel to and from that 

depth. As a rule of thumb subtract 1.25 hours from the total dive time for each 

1,000 meters of depth. The difference will be a rough estimate of total working time 

on the bottom (i.e. for a ten-hour dive to 4,500 meters, 5.6 hours will be spent in 

vertical transits leaving 4.4 hours of “bottom time”).  

 

Dive duration may also be affected by the need to perform launch and recovery 

operations during daylight hours in all but the best of weather conditions. 

Additionally, deteriorating weather conditions may require the early termination of a 

dive, as may any malfunction which could affect safety or the continuation of 

operations. The Expedition Leader, with advice from the Pilot and Surface Controller, 

is responsible for making decisions based on these factors.  

 

Personnel on any given dive are normally one pilot and two observers. In certain 

cases, such as where bottom conditions are unknown or where extremely rugged 

terrain and high currents are anticipated, the Expedition Leader may choose to 

assign two pilots to the dive. Also, the user may elect to assign only one observer to 

a dive in order to utilize the extra payload capacity for other purposes. Finally, on 

one dive out of every five during each cruise, a pilot-trainee or other person 

designated by the Alvin Group must fill one of the two observer positions, leaving 

only one space for a science user. Although there is flexibility in deciding which 

specific dives will be of this type, it is recommended that the pilot training dives not 

be postponed to the end of the cruise, but rather, that science program planning 

allow them to be completed routinely on every fifth dive. 

 

The potential user must carefully consider which aspects of the proposed research 

require use of the submersible and how it can best be utilized to realize dive 

objectives. Frequently, extensive investigations are required prior to an Alvin cruise 

in order to ensure the availability of adequate information for conducting an efficient 

diving program. Additionally, the capabilities of Atlantis beyond those of supporting 

the submersible should be considered in order to maximize the value of the cruise 

and to minimize the effect of dive time lost due to unforeseen problems. Generally, 

Alvin should be used to accomplish those tasks which cannot be accomplished with 
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other available oceanographic tools.  

 

Alvin has proven most effective when used in a well planned, coordinated program, 

where its abilities to observe directly, photograph selectively, and sample in situ are 

complemented by other research techniques. Due to its slow speed and limited 

power, Alvin is not an effective vehicle for large area searches and surveys. 
 

Manipulators 

Alvin is fitted with two jettisonable, hydraulically powered manipulators. The figures 

below illustrate the working range of these manipulators superimposed on the 

horizontal field of view from Alvin’s viewports and the manipulators in elevation view 

with information on their geometry.  
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The starboard manipulator has six degrees of movement: shoulder pitch and yaw, 

elbow pitch, wrist pitch and rotate, and hand open and close. The arm can be fitted 

with a hydraulic actuator that can be used as a trigger mechanism to operate devices 

held by the hand. Details are shown below. The manipulator has a maximum 

extension of 69 inches and a lift capacity of 100 pounds at maximum extension. 

Remote operation is controlled by a switch panel in the personnel sphere. The arm 

may be viewed from either the front or starboard side viewports during operation.  
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The port manipulator has the same six degrees of movement with the additional 

capability of wrist yaw. Maximum extension is 74 inches, with a fully extended lift 

capacity of 150 pounds. Wrist torque is rated at 30 ft/lbs and has a maximum 

rotational speed of 65 RPM. A second wrist assembly can be installed having half the 

torque but twice the speed. This arm is controlled by a position feedback 

master/slave mechanism, with the spatially correspondent master located in the 

personnel sphere allowing viewing and control through the front and port side 

viewports. This manipulator can also be fitted with an auxiliary hydraulic ram to 

trigger special equipment.  

 

The hands of both manipulators are functionally equivalent and consist of opposing 

overlapping finger pairs. They are specifically designed to grip instruments which are 

fitted with a standard “T” handle (see below). The user should align the “T” with the 

vertical load. The user is cautioned not to assume compatibility between his tools 

and Alvin’s manipulators, even if the tools are fitted with T handles. It is best to seek 

the advice of the Alvin Group on instruments which have not been previously used 

with the manipulators, regardless of how dependable they may seem. If it is 

discovered that the equipment is incompatible with the manipulators in its current 

state, alterations rendering it acceptable can probably be developed by the Alvin 

Group if given adequate advance notice. Many biologically and geologically oriented 

tools, including a variety of pry bars and other rock breaking tools, soft and hard 

sediment corers, box corers and a current meter have been adapted for use in 

conjunction with the manipulator hands and the actuator mechanism. 
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Pressure Hull 

The Alvin pressure hull has an outside diameter of 82 inches and an inside diameter 

of 78 inches. The hatch opening is 20 inches in diameter; any equipment which users 

wish to bring on board must be capable of passing through the hatch with its sealing 

surface protection ring in place (19” maximum diameter suggested). Four conical 

acrylic plastic viewports, each 3.5 inches thick with a 5-inch inside diameter and a 

12-inch outside diameter, are set at different points in the hull. A fifth, smaller 

viewport is located in the hatch. The arrangement is shown below, along with 

photographs of the hull interior. Note that the bottom viewport is always covered by 

the floorboards and is not useful for observation.  
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Electrical Systems 

Standard 19-inch rack space, up to 35 inches in height, is available for instruments 

to be mounted inside the pressure hull. This space is variable depending on 

submersible load. Depth behind the rack varies from 14 to 18 inches, as shown 

below. 
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All equipment used inside the personnel sphere must fit through a 19” diameter ring 

to assure adequate clearance through the hatch. A panel mounted at the top of the 

science rack contains 12 and 26 VDC power for instruments and the termination of 

wires entering the hull from the external science basket area and junction boxes.  

 

Four separate 26 VDC power circuits are available on the science panel. One of the 

circuits has a 10A breaker and three have 5A breakers; two of these circuits are 

remotely switched from a panel near the starboard observer. 26V power for devices 

requiring more than 10A is available by connecting directly to the 50A breaker that 

supplies the panel. Although the panel breaker is rated at 50A, the actual power 

available is dependent on other submarine requirements; a total of 100A of 26V is 

produced, of which 25-50A can be used by permanent equipment in addition to the 

inverter (described below).  

 

Similarly, there are four 12V circuits with 10A circuit breakers, two of which can be 

remotely switched; a total of 33 amps of 12V is available.  
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1,000 watts of 115VAC 60Hz is available from an inverter powered from the 26V bus. 

At maximum load, the inverter consumes 40A of the available 100A from the 26V 

bus.  

 

All of Alvin’s electrical systems and through-hull wiring must be UNGROUNDED to 

limit the chance for corrosion of structural parts in the event of inadvertent 

grounding of any conductor. Alvin’s electrical systems are frequently checked for 

grounds during each dive. There are four requirements that each science device 

must meet:  

1. No device may permit, or cause, a direct DC path between any source of 

Alvin power and the submarine’s hull, frame or seawater.  

2. No device connected to through-hull wires may permit any DC path 

between any through-hull wire and the submarine’s hull, frame or seawater.  

3. All devices connected to through-hull wires must provide a DC path from 

an Alvin power source to all such through-hull wires so that the submarine’s 

ground detection system can be used to check for inadvertent grounding of 

through-hull wires. The easiest way to provide this connection is with a 

resistance of from 0 to 3 Kohms between the instrument’s internal ground 

and the input power common (for DC powered equipment). An alternative to 

this requirement is for the instrument to provide a means of continuously 

monitoring the through-hull wires for ground.  

4. Isolated or battery-powered equipment may not be used to avoid these 

requirements.  

Wires leading from inside the sphere are available for science use and terminate 

outside the submersible as follows:  

 

Junction (“J”) boxes  

• Sail (forebody): 25 singles & 2 twisted shielded pairs  

• Port (afterbody): 22 singles & 3 twisted shielded pairs  

• Starboard (afterbody): 18 singles & 2 twisted shielded pairs  

All the wires in the port and starboard J boxes may be extended forward to the 

science basket disconnect boots. 
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The figure below shows the general arrangement of these junction boxes. 

 
All single wires are #16 AWG and are rated at 13A. Shielded pair wires are #18 

AWG. All wires are fused at 10A. Outboard scientific equipment to be wired into any 

of the above must be fitted with a suitable length (normally 15 feet) of an oil 

compatible cable; Teflon insulated wire/polyurethane jacketed cable is 

recommended. Acceptable jacket outside diameters for user-supplied cable are 

0.148, 0.290, 0.420, and 0.750 inches, since these sizes will fit standard Alvin 

stuffing tube packing assemblies.  

 

Equipment and devices may be externally mounted on the forebody structure 

(sponson, light bar, sail). The exact location and mounting method will be at the 

discretion of the Alvin Group. Forebody-mounted equipment must terminate in the 

Sail J box in order not to interfere with emergency release mechanism of the 

forebody. Cables from installed devices must be of sufficient length to reach and 

enter the J box (filled with Bray 726 oil). Cables will enter the J box through a 

stuffing tube and therefore will fill with compensating oil unless dammed or 

otherwise blocked. Polyurethane cable jacket is preferred over neoprene/SO types 

because of it's superior oil resistance.  

 

Afterbody-mounted equipment (below viewports, aft of sphere) must terminate in 

the Port or Starboard J boxes. Science basket-mounted equipment must terminate in 

one of the three science pull-apart disconnect boots, which allow the basket wiring to 

separate from the submersible in the event that the basket has to be jettisoned. 

These disconnects are located on the skin under the forward viewport and are also 

filled with Bray 726 oil. Wires from science equipment in the basket must be long 
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enough (15 feet) to reach these disconnects. The figure below shows the general 

layout of a science disconnect boot.   

 
 

This information is provided to assist the user in preparing wiring harnesses and 

checking the operation of equipment with the completed harness well in advance of a 

cruise. The circular plastic (CPC) connectors depicted plug together as well as 

directly to the Alvin through-hull wiring. The Alvin wiring has a one-to-one 

correspondence with these connectors, minimizing the chance of wiring errors which 

helps expedite final equipment installation. The connectors, pins and tools are 

available from most major electronics suppliers. 

 

The inboard CPC connector terminates at the top of the science rack, located at the 

rear of the personnel sphere. Power for science applications is provided in this same 

panel (see above for number of 12V and 26V circuits). 120VDC service (protected at 

either 80A or 15A) can be installed outside and controlled from within the sphere to 

operate afterbody-mounted equipment. 
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APPENDIX C:  FOE and DF Calculations 

 

FOE 1 2 3 4 5 6
Depth Restriction 1 0 1 1 1 1
ALVIN Endurance 0 1 0 1 0 0
Speed Limit 0 0.5 0.5 1 1 0.5
SSGN Mission Capability 0.666 0.666 1 0.666 1 1

DF
SSGN Modification 1 1 2 2 3 2.5
ALVIN Modification 2 2 2.5 3 2 2.5

FOE DF
0.4 1.3
0.6 1.3
0.6 2.15
0.9 2.3
0.7 2.7
0.7 2.5

Variant

2 - ALVIN inside large DDS 
1 - ALVIN attached in manner of ASDS with fairing

Variant

Factor of Operational Effectiveness (FOE) and Difficulty Factor (DF)

5 - Bottom recessed hangar in SSGN
6 - ALVIN attached to ERLET with fairing

4 - ALVIN inside missile tube (vertically)
3 - ALVIN attached to MCLET with clamshell doors

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

00.511.522.53

Difficulty Factor

O
pe

ra
tio

na
l E

ffe
ct

iv
en

es
s

Pareto Frontier
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AHP Weights
FOE DF

Projected Remarks Remarks
0.200 Speed Limit 0.5 > 25 knots = 1.0 0.3 ALVIN 2 Easy = 1

20-25 knots = 0.5 Difficult = 3
<20 knots = 0.0

0.7 SSGN 1 Easy = 1
0.300 ALVIN Endurance 1 Unlimited = 1.0 Difficult = 3

Limited = 0.0
Overall FOE

0.600 1.300

0.200 Op. Depth Restraint 0 Unlimited = 1.0
Limited = 0.0

0.300 SSGN Mission Impact 0.666 No Impact = 1.0
Impact 1 Asset = 0.666
Impact 2 Assets = 0.333
Impact 3 Assets = 0.0
An "Asset" is defined as 
ability to carry ASDS/DDS or 
Full Tomahawk capability

Difficulty Weighting Factor

Overall DF

SSGN Conversion FOE/DF Model
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APPENDIX D:  SSGN Submarine Math Model 

(Results included in report.  Refer to MIT 13A Program Office) 
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APPENDIX E:  ADDS Structural Design 

(Results included in report.  Refer to MIT 13A Program Office) 
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APPENDIX F:  Drag Force Calculations 

ratio 2.232=

ratio
DADDS
DDDS

:=

DDDS 5.282 104
× lbf=

DDDS .5 ρ⋅ CD⋅ U2
⋅ d⋅ h⋅:=

h 11.5ft:=

d 9ft:=

DDS Drag Calculations
DADDS 1.179 105

× lbf=

DADDS .5 ρ⋅ CD⋅ U2
⋅ d⋅ h⋅:=

ADDS Drag Calculation

Reynolds number indicates turbulent flow.
Choice of CD=0.2 is correct.

Rd 5.627 107
×=

Rd U
d
ν

⋅:=

Reynolds Number Calculation

ν 1.26 10 5−
×

ft2

s
:=Kinematic viscosity of seawater:

CD .2:=Drag Coefficient:

U 30 knot⋅:=Speed:

knot 1.688
ft
s

:=Conversion:

ρ 1.99
slug

ft3
:=Seawater density:

h 16.5ft:=Height:
d 14ft:=Diameter:

ADDS Geometry and Constants
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APPENDIX G:  Hold-down Bolt Shear Stress Calculations 

FS 169.204=

FS
σy
τ

:=Factor of Safety:

σy 160 103psi⋅:=K-Monel yield stress:

Factor of Safety
τ 945.606 psi=

τ
D
A

:=Shear Stress:

D 117900lbf:=Drag Force:

Stress Calculation

A 124.682 in2
=

A A 1 A 2+:=

Total Bolt Area

A 2 n2
π

4
⋅ d2

2
⋅:=Bolt Area:

n2 12:=Number of Bolts:

d2 2.25in:=Bolt Diameter:

Pedestal Foot Bolts

A 1 n1
π

4
⋅ d1

2
⋅:=Bolt Area:

n1 32:=Number of Bolts:

d1 1.75in:=Bolt Diameter:

Transfer Trunk Bolts
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APPENDIX H:  ADDS Weight and Volume Calculations 

Shell Volume 
Vshell π Ro

2 Ri
2

−



 Ls⋅:= Vshell 2.204 105

× in3
=

Weight of Shell Wtshell Vshell ρ st⋅:= Wtshell 62359.42lbf=

Stiffner Weight: Number of Stiffners Num 35:=

Row Ri:= Riw Row hw−:=Web 

Vweb π Row
2 Riw

2
−



 tw⋅:= Vweb 1.109 103

× in3
=

Flange Rof Riw:= Rif Rof tf−:=

Vflange π Rof
2 Rif

2
−



 wf⋅:= Vflange 1.599 103

× in3
=

Stiffner Volume Vstiffner Vweb Vflange+( ) Num⋅:= Vstiffner 9.48 104× in3=

Weight of Stiffners Wtstiffner Vstiffner ρ st⋅:= Wtstiffner 26827.15lbf=

Cylinder Weight:
Wtcylinder Wtshell Wtstiffner+:=

Wtcylinder 8.919 104
× lbf= Wtcylinder 39.815lton=

ADDS Weight and Volume Calculations

1.  Structural Design Inputs

Material: σy 80000
lbf

in2
⋅≡ ρ st 0.283

lbf

in3
≡ E 29.5 106

⋅
lbf

in2
⋅≡ ν 0.3≡

Geometry:
shell diameter D 14.0 ft⋅≡ flange tickness tf .75 in⋅≡R

D
2

≡
frame spacing Lf 12 in⋅≡ flange width wf 4.4 in⋅≡

bulkhead spacing Ls 35 ft⋅≡ web thickness tw .4in≡

shell thickness tp 1 in⋅≡ web height hw 5.5 in⋅≡

2.  Weight Calculations lton 2240lbf:=

Ro R:= Ri R tp−:=Shell Weight:
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∆DDS 194.988lton=
∆DDS

Vtotal

35
ft3

lton
⋅

:=

Total DDS Displacement:

Vtotal 6824.59ft3=Vtotal Vcylinder Vends+:=

Total DDS Volume:

Vends 1436.76ft3=
Vends

4
3

π Ro
3⋅:=

Volume of Ends:

Vcylinder 5387.83ft3=
Vcylinder π Ro

2⋅ Ls⋅:=

Volume of Cylinder:

3.  Volume Calculations

Wttotal 58.518lton=Wttotal 131079.49lbf=

Wttotal Wthangar Wtadd+:=

Total DDS Weight:

Wthangar 50.885lton=

Wtadd Wthangar A⋅:=Wthangar Wtcylinder Wtends+( ):=

A .15:=
Additional weight for transfer trunk, hinges, fairing
hold-downs, launch/retrival system, etc.:

DDS Hangar Weight:

Wtends 24795.59lbf=
Wtends 11.069lton=

Wtends Vhemi ρ st⋅:=

Assume each end is
half sphere.

Vhemi
4
3

π⋅ Ro
3 Ri

3
−



:=

Hemi Volume

Hemispherical End Weight:
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APPENDIX I:  Simplified Cost Model 

ADDS: 

Production Rate (per year): RP 1:=

B.  Inflation:

Base Year: YB 2000:= iy 0 YB 2001−..:=

Average Inflation Rate (%):
(from 2000)

R 3.5:=

FI
iy

1
R

100
+



∏:= FI 1.071=

C.  Labor Cost:

Man Hour Rates Taken from MIT Professional
Summer Submarine Math Model - 2002

Mh
150 dol⋅

hr
:=

Structure KN1
486 hr⋅

lton
:= CL1

KN1 W1⋅ Mh⋅:= CL1
3.583Mdol=

+ Propulsion KN2
560 hr⋅

lton
:= CL2

KN2 W2⋅ Mh⋅:= CL2
0Mdol=

+ Electric KN3
1838 hr⋅

lton
:= CL3

KN3 W3⋅ Mh⋅:= CL3
0.161Mdol=

+ Command, Control, Surveillance

KN4
3066 hr⋅

lton
:= CL4

KN4 W4⋅ Mh⋅:= CL4
0Mdol=

Approximate Weights: Overall Weight of ADDS = 58.518 ltons (APP G)

W1 49.155lton:= Hull --based on ADDS overall weight minus auxillaries

W2 0lton:= Propulsion 

W3 .585lton:= Electrical --based on 1% of overall weight of ADDS

W4 0lton:= Command & Control

W5 8.778lton:= Auxillaries --based on 15% of overall weight of ADDS

W6 0lton:= Outfitting 

W7 0lton:= Armament 

Establish Cost units: Bdol 1000 Mdol⋅:= Kdol
Mdol
1000

:= dol
Kdol
1000

:=

A.   Additional characteristics:

Ship Service Life: LS 30:= Initial Operational Capability: YIOC 2010:=

Total Ship Acquisition: NS 1:=
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CM3
FI KM3⋅ W3⋅:= CM3

0.062Mdol=

+ Command, Control, Surveillance

KM4
78.23 Kdol⋅

lton
:= CM4

FI KM4⋅ W4⋅:= CM4
0Mdol=

+ Auxiliary KM5
107.6 Kdol⋅

lton
:= CM5

FI KM5⋅ W5⋅:= CM5
1.012Mdol=

+ Outfit KM6
125.6 Kdol⋅

lton
:= CM6

FI KM6⋅ W6⋅:= CM6
0Mdol=

+ Armament KM7
8.251 Kdol⋅

lton
:= CM7

FI KM7⋅ W7⋅:= CM7
0Mdol=

E.  Integration & Assembly:

+ Integration (16.4% of labor and 4% of Material)

CL8
.164

1

7

i

CLi∑
=

⋅:= CL8
0.89Mdol=

CM8
.04

1

7

i

CMi∑
=

⋅:= CM8
0.061Mdol=

+ Auxiliary KN5
1278 hr⋅

lton
:= CL5

KN5 W5⋅ Mh⋅:= CL5
1.683Mdol=

+ Outfit KN6
1470 hr⋅

lton
:= CL6

KN6 W6⋅ Mh⋅:= CL6
0Mdol=

+ Armament KN7
810 hr⋅

lton
:= CL7

KN7 W7⋅ Mh⋅:= CL7
0=

D.  Material Cost:

Structure KM1
8.513 Kdol⋅

lton
:= CM1

FI KM1⋅ W1⋅:= CM1
0.448Mdol=

+ Propulsion KM2
55.61 Kdol⋅

lton
:= CM2

FI KM2⋅ W2⋅:= CM2
0Mdol=

+ Electric KM3
99.36 Kdol⋅

lton
:=
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CBCC 32.849Mdol=CBCC 1 profit+( ) DC IC+( )⋅:=

 H.  Total Construction Cost: (BCC):

Profit 3.255Mdol=Profit profit IC DC+( )⋅:=

profit .11:=Enter Profit Rate:G.  Profit:

IC 17.756Mdol=IC DC ovhd⋅:=

ovhd 1.5:=Enter Overhead Rate:F. Overhead :

DC 11.837Mdol=DC CL CM+:=

3.  Direct Cost:

CM 1.949Mdol=CM
1

9

i

CMi∑
=

:=

2.  Material Cost:

CL 9.889Mdol=CL
1

9

i

CLi∑
=

:=
1.  Labor Cost:

E.  Direct Costs:

CM9
0.365Mdol=

CM9
.24

1

7

i

CMi∑
=

⋅:=

CL9
3.571Mdol=

CL9
.658

1

7

i

CLi∑
=

⋅:=

+ Assembly (65.8% of labor and 24% of Material)
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SSGN Modifications:  (Only pertinent portions of the model shown) 

dol
Kdol
1000

:=Kdol
Mdol
1000

:=Bdol 1000 Mdol⋅:=Establish Cost units:

Armament W7 0lton:=

Outfitting W6 0lton:=

Auxillaries W5 1.2lton:=

Command & ControlW4 0lton:=

Electrical W3 .75lton:=

Propulsion W2 0lton:=

Hull W1 0lton:=

Overall Weight of ADDS = 58.518 ltons (APP G)Approximate Weights:

 

**Calculations performed are the same as in the ADDS model. 

 

CBCC 7.401Mdol=CBCC 1 profit+( ) DC IC+( )⋅:=

 H.  Total Construction Cost: (BCC):

Profit 0.733Mdol=Profit profit IC DC+( )⋅:=

profit .11:=Enter Profit Rate:G.  Profit:

IC 4Mdol=IC DC ovhd⋅:=

ovhd 1.5:=Enter Overhead Rate:F. Overhead :

DC 2.667Mdol=DC 3CL CM+:=
*Labor increased 
for on hull mods.

3.  Direct Cost:

CM 0.279Mdol=CM
1

9

i

CMi∑
=

:=

2.  Material Cost:

CL 0.796Mdol=CL
1

9

i

CLi∑
=

:=
1.  Labor Cost:

E.  Direct Costs:
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ALVIN Modifications:  (Only pertinent portions of the model shown) 

dol
Kdol
1000

:=Kdol
Mdol
1000

:=Bdol 1000 Mdol⋅:=Establish Cost units:

Armament W7 0lton:=

Outfitting W6 0lton:=

Auxillaries W5 .1lton:=

Command & ControlW4 0lton:=

Electrical W3 .1lton:=

Propulsion W2 0lton:=

Hull W1 .5lton:=

Overall Weight of ADDS = 58.518 ltons (APP G)Approximate Weights:

 

**Calculations performed are the same as in the ADDS model. 

 

CMC 0.516Mdol=CMC 1 profit+( ) DC IC+( )⋅:=

 H.  Total Modification Cost: (MC):

Profit 0.051Mdol=Profit profit IC DC+( )⋅:=

profit .11:=Enter Profit Rate:G.  Profit:

IC 0.279Mdol=IC DC ovhd⋅:=

ovhd 1.5:=Enter Overhead Rate:F. Overhead :

DC 0.186Mdol=DC CL CM+:=

3.  Direct Cost:

CM 0.034Mdol=CM
1

9

i

CMi∑
=

:=

2.  Material Cost:

CL 0.152Mdol=CL
1

9

i

CLi∑
=

:=
1.  Labor Cost:

E.  Direct Costs:
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