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I. Summary
In this report we summarize our accomplishments in the research program

supported by Grant AFOSR-88-0032 over the period from October 1, 1987 to

September 30, 1991. The basic scope of this program is the analysis, estimation, and

control of complex systems with particular emphasis on (a) multiresolution modeling and

signal processing; (b) the investigation of theoretical questions related to singular systems;

and (c) the analysis of complex systems subject to or characterized by sequences of discrete

events. These three topics are described in the next three sections of this report. A full list

of publications supported by Grant AFOSR-88-0032 is also included.

The principal investigator for this effort is Professor Alan S. Willsky, and Professor

George C. Verghese is co-principal investigator. Professors Willsky and Verghese were

assisted by several graduate research assistants as well as additional thesis students not

requiring stipend or tuition support from this grant.

We feel that our work under this grant has been highly successful not only in

producing a significant number of results and publications but also in both uncovering new

research questions and directions for future investigations and in providing advanced

technology presently being transitioned into significant Air Force programs at both the 6-2

and 6-3 levels. In total the publications resulting from research supported by Grant

AFOSR-88-0032 include 29 papers that have appeared or been submitted to journals, 11

journal papers presently in preparation, 32 papers presented at conferences, 4 S.M. theses,

and 5 Ph.D. theses. We anticipate that several additional papers will also be written. In

addition, Prof. Willsky has been invited to give numerous lectures on the results of these

efforts, including plenary lectures on our work on wavelet transforms, data fusion, and

multiresolution statistical signal processing given at the 1991 IEEE-AES International

Conference on Systems Engineering held in Dayton, Ohio in August and the 1991 SIAM

Workshop on Linear Algebra and Signal Processing held in Minneapolis, MN in

September. Further evidence of Prof. Willsky's leadership position in this particular field

can be found in his serving as one of the guest editors (along with Dr. I. Daubechies of

AT&T Bell Labs and Prof. S. Mallat of The Courant Institute) of the special issue of the

IEEE Transactions on Information Theory on Wavelet Transforms and Multiresolution

Signal Analysis. Furthermore, there have been and continue to be a number of applications

of Prof. Willsky's research to a variety of Air Force programs, ranging from application of

his work on failure detection to the design of fault-tolerant control systems for the

Advanced Tactical Fighter to application of our recently developed multiresolution signal

and image processing methods to surveillance and reconnaissance problems at both Rome

and Wright Laboratories.



II. Multiresolution Modeling and Signal Processing

In this section we describe that portion of our proposed research program dealing

with multiresolution signal and image analysis. In the past few years we have had

considerable success in our efforts to develop the theoretical foundation and methodology

for multiresolution stochastic signal processing by providing a stochastic modeling and

filtering framework complementary to the wavelet transform in much the same way that that

the framework of stationary stochastic processes and recursive dynamic models

complement the Fourier transform. The result of this effort is a new class of stochastic

models for signals in one or several dimensions (e.g., images) that explicitly display their

multiresolution characterization and that have led to the development of efficient and

optimal algorithms for several signal processing and reconstruction problems, identifying

explicitly the role of scale-domain filtering and the wavelet transform. As shown in

[32,42,66,72-74], a special example of this class of models yields processes which

closely resemble so-called fractal "l/f" noise processes, but the full richness of the models

described in [54,55,66,72-74] and the range of problems to which they can be applied

appears to be substantially greater than even this important class of applications.

At this point it is useful to identify both the conceptual reasons for examining multi-

resolution methods and some specific military contexts in which such reasons might apply.

To begin, it is important to realize that there are three distinct ways in which multi-

resolution features enter into a signal or image analysis problem. First, the phenomenon

under investigation may possess features and physically significant effects at multiple

scales. For example, fractal models have often been suggested for the description of

natural scenes, topography, ocean wave height, textures, etc. Also, anomalous broadband

transient events or spatially-localized features can naturally be thought of as the

superposition of finer resolution features on a more coarsely varying background. Second,

whether the underlying phenomenon has multi-resolution features or not, it may be the case

that the data that has been collected is at several different resolutions. For example the

resolutions of sensors operating in different bands- such as IR, microwave, and various

band radars - may differ. Furthermore, even if only one sensor type is involved,

measurement geometry may lead to resolution differences (for example if two sensors with

good angle but poor range resolution view a phenomenon from different perspectives or if

radar-produced terrain data is gathered from radars flying at different altitudes). Third,

whether the phenomenon or data have multi-resolution features or not, the signal analysis

algorithm may have such features.



There are two strong motivations for considering multi-resolution algorithmic

structures, especially in imaging contexts, motivated by the two principal manifestations of

the at least superficially daunting complexity of many image processing problems. The

first and more well-known of these is the use of multi-resolution algorithms to combat the

computational demands of such problems by solving coarse (and therefore computationally

simpler) versions and using these to guide (and hopefully speed up) their higher resolution

counterparts. Multigrid relaxation algorithms for solving partial differential equations are

of this type as are a variety of computer vision algorithms, as well as the electromagnetic

imaging algorithm that provided some of the motivation for the methods on which the work
in [54,55,66,72-74] is based. The second, and equally important reason, is that a multi-

resolution formalism allows one to exercise very direct control over "greed" in image

reconstruction. In particular, many imaging problems are, in principle, ill-posed in that

they require reconstructing more degrees of freedom then one has elements of data. In

such cases one must "regularize" the problem in some manner, thereby guaranteeing

accuracy of the reconstruction at the cost of some resolution. Since the usual intuition is

precisely that one should have higher confidence in the reconstruction of lower resolution

features, we are led directly to the idea of reconstruction at multiple scales, allowing the

resolution-accuracy tradeoff to be confronted directly. Surprisingly this concept has not

been as widely developed as one might expect. This work also points to another feature that

such a framework allows, namely the use of spatially-varying resolutions, in which the

resolution is matched both to the phenomenon being reconstructed and the available data.

For example, in surface reconstruction from irregularly sampled measurements, one might

expect that it would be best to use a spatially-varying resolution in which finer detail was

reconstructed near the points at which samples were available.

The analytical setting for the theory of multiscale statistical signal modeling and

processing that we have developed, which is rich enough to address all of these issues,

has as its starting point the structure suggested by the wavelet transform, which we now

briefly review. For simplicity we describe everything for 1-D signals but the extension to

images in two or more dimensions introduces only notational rather than mathematical

complexity.

The multiscale representation of a continuous signal f(x) consists of a sequence of

approximations of that signal at finer and finer scales where the approximation of f(x) at the

mth scale is given by



+ 00oo

fm(x) = A f(m,n) 4(2mx-n) (1)
n = -oo

As m - cc, the approximation consists of a sum of many highly compressed, weighted,
and shifted versions of the function b (x) whose choice is far from arbitrary. In particular,

in order for the (m + l)st approximation to be a refinement of the mth, we require that
¢(x) be exactly representable at the next scale:

¢(x) = I h(n) ¢(2x - n) (2)
n

Furthermore, in order for (1) to be an orthogonal series, ¢(x) and its integer translates must

form an orthogonal set. The function h(n) must satisfy several conditions for this and
several other properties of the representation to hold. In particular h(n) must be the impulse
response of a quadrature mirror filter (QMF).

By considering the incremental detail added in obtaining the (m + l)st scale
approximation from the mth, we arrive at the wavelet transform. Such a transform is based
on a single function r(x) that has the property that the full set of its scaled translates

( 2 m/2 (2m x-n)) form a complete orthonormal basis. It can be shown that q and Nl are

related via an equation of the form

Nr(x) = _ g(n) 0(2x-n) (3)
n

where g(n) and h(n) form a conjugate mirrorfilter pair, and the evolution from one scale to

the next is of the form

fm+l(X) = fm(x) + I d(m,n) Nf(2 mx-n) (4)
n

Thus fm(x) is simply the partial orthonormal expansion of f(x), up to scale m, with respect
to the basis defined by N and the wavelet transform of f(x) consists of the set of

coefficients { d(m, n) I at all scales m and all translational offsets m.
One of the critical elements in understanding why such a transform might be of

value is in the interpretation of (4) as a dynamical relationship from one scale to the next.
Specifically, if we let fm and dm denote vectors containing, respectively, all of the values

of f(m, n) and d(m, n) at the mth scale. Then (1) - (4) imply that

fm+l = H* fm + G* dm (5)



where H and G are linear transformation computed directly from h(n) and g(n), and H* and

G* denote their adjoints. Furthermore a direct consequence of the construction is that (5)

can be reversed. Specifically

fm = Hfm+l, dm = Gfm+l (6)

The wavelet analysis equation (6) describes an efficient fine-to-coarse dynamic
structure for computing the wavelet transform: at each scale, we transform the signal

approximation fm+l 1 at the current scale in order to "peel off' the component, dm, at that

scale and to compute the approximation, fm, at the next, coarser scale. Furthermore, it is

usually the case that h(n) and g(n) are localized- e.g., they are of finite extent - so that

the H* and G* are extremely sparse. This leads to very efficient and highly parallelizable

procedures for computing wavelet transforms. Similarly the wavelet synthesis equation (5)

describes a dynamical relationship for constructing signals from coarse to fine scales. This

also can be computed efficiently but it has another even more significant role here.

As we have argued, for the wavelet transform to be of significant value in problems

of signal and image analysis, we require not only the simplicity of its computation but also

the simplification it brings to various problems of signal analysis. In particular, one would

expect the transform to be of considerable value if the statistical description of the transform

coefficients {d(m, n)} is dramatically simpler than that of the original signal. The key to

identifying such a signal class is the observation that (5) describes a dynamic system in

scale with dm as the input. If this input is uncorrelated from scale to scale, then the wavelet

analysis equation (6) performs a scale-by-scale whitening of the signal, resulting in the

desired simplification. While this is an important observation, it is not completely

satisfactory. In particular, if we think of scale as a time-like dynamic variable, then (5)

represents a first-order system. As we know, first-order systems driven by white noise

yield a comparatively small class of processes which can be broadened dramatically if we

allow higher-order dynamics. Also, in sensor fusion problems one wishes to consider

collectively an entire set of signals or images from a suite of sensors. In this case one is

immediately confronted with the need to use higher-order vector models in which the

actually observed signals may represent samples from such a model at several scales,

corresponding to the differing resolutions of individual sensors.

These motivations, together with the interpretation of wavelet transforms as

dynamic models in scale, has led over the past three years [32,44,66,72-74] to a

substantial generalization of (5), (6) to vector state models in scale:

x(m+l) = A(m) x(m) + B(m) w(m) (7)



y(m) = C(m) x(m) + v(m) (8)

where x(m) is a vector process representing higher-order multiscale characteristics and/or

the joint description of the scale-dependent character of a set of sensor signals. Here y(m)

represents the "observed signal" at the mth scale (i.e., those sensor signals with the

corresponding resolution), v(m) and w(m) are white noise processes in scale, and A(m),

B(m), and C(m) are operators describing the scale-to-scale evolution. An alternate form for

such multiscale models as higher-order multiscale autoregressive processes has also been

completely developed [33,54,55,66].

Several important observations must be made about this model. First, by allowing

A, B, and C to depend on m, we can capture a wide variety of scale-dependent effects.

The most obvious of these is C(m) which can be used to select signals at their appropriate

scales. In addition scale variations in A(m) and B(m) can be used to capture statistical

variations from scale to scale. For example, geometric dependence on m allows one to

capture so-called self-similar stochastic phenomena, while other variations, especially in

B(m) allow one to isolate critical scales in multi-channel signals and images (e.g., as is

often done heuristically in modeling atmospheric turbulence). Furthermore, by defining the

structure of these operators carefully, we can retain all of the advantages of wavelet
transforms. Specifically, as discussed in [66] the localized nature of h(n) and g(n) imply a

lattice structure on the coefficient f(m,n), where f(m,n) at one scale is connected to

f(m+l,n) if the value of f(m+l,n) depends on f(m,n). By maintaining this lattice structure

in (7), (8) (which corresponds to considering multichannel wavelet transforms or to higher-

order models for the wavelet coefficients), we find that the use of a multichannel wavelet

transform again leads to a whitening of the data and model in that the transform yields a set

of decoupled dynamic systems (in scale) for the different multiscale components of the full

set of signals.

It is important to note that this decoupling is critically dependent upon one important

feature not explicitly highlighted in (7), (8). Specifically, for the wavelet transform to

decouple the scale components of such a model, it must be the case that the model (7), (8)

is translation- invariant, i.e. that all variation is only in scale. For example, this requires

that variances and correlation functions of quantities such as f(m,n) and d(m,n) depend

only on m, and not on n. Thus the modeling of localized or transient phenomena or of

spatially-varying textures fall outside the class for which wavelet transforms make life

simple. Also, at least as important a fact is that translation invariance requires that the

measurements be translation-invariant--i.e. if a measurement is taken at a particular scale

and at a particular location (i.e. a particular (m,n) pair), then measurements must be



available at all translational locations at that scale (i.e. at (m,n') for all n'). The implications

of this are that pure wavelet transform-based methods can't be used if either windowed or

irregularly-sampled data are considered. The former of these is actually a much lesser

worry. Specifically, if the only cause of translation-varying behavior is windowing, one

can apply heuristic, approximate methods as in [75] of periodic data repetition or one can

use the optimal adjusted wavelet transform described in [72,74] which produces decoupled

dynamics by modifying the wavelet transform near the window edges.

The issue of irregular data, however, requires a drastically different approach, and

in our work [33,49,66,73] we have developed two alternative methods. One of these

involves multiscale iterative processing very similar to the structure of celebrated multigrid

algorithms which have revolutionized methods for the efficient, highly parallel solution of

partial differential equations. The other involves a pyramidal processing structure in which

fine level data is fused in a fine-to-coarse sweep, followed by an optimal coarse-to-fine

reconstruction/interpolation step. Not only do these methods, together with the wavelet

transform based approach, indicate how one should think about the optimal fusion of

information from heterogeneous suites of sensors but they also provide the basis for

extremely efficient algorithms. In particular these three processing structures provide

optimal Wiener and Kalman smoothing procedures in scale that are far more efficient and

highly parallelizable than their time series counterparts We refer to [32,49, 72-74] for more

detailed discussion of these issues.

Thus we see that the model class (7), (8) is extremely attractive from a

computational perspective and for the apparent promise of providing a natural framework

for capturing multiscale phenomena and measurements. The remaining critical question

then is: Are there large and meaningful classes of space-time stochastic processes that can

be adequately modeled as in (7), (8)? Happily the answer to this is already known to be a

resounding "yes", although there is much unknown territory to be explored here. In

particular, as discussed in [72,75], wavelet transforms - while not performing exact

whitening for large classes of standard process models - come sufficiently close that the

discrepancy is negligible both in the sense that it is small compared to unavoidable errors in

the modeling of the original process, and in the sense that the performance of algorithms

based on neglecting these discrepancies yield impressive results in terms of performance

and efficiency.

As we have indicated, one of the algorithmic structures we have developed has a

pyramidal structure, in which a fine-to-coarse recursion is followed by a coarse-to-fine

step. In these algorithms the variables being reconstructed at any scale essentially

correspond to wavelet transform approximations at that scale. Recently we have begun



work on the development of similarly structured pyramidal parallel processing algorithms

for a different class of statistical signal processing problems in which the variables at

different "scales" represented decimated versions of the quantity to be estimated. The

motivation for their study comes directly from the issue of computational complexity for

multidimensional processing problems. Specifically, if we measure complexity in terms of

required storage, we know that the complexity of a standard recursive filter equals the order

of the filter or equivalently the dimension of its state, which represents in essence a set of

initial conditions that are propagated forward in time to summarize all that is needed to

determine the effects of past inputs on future outputs. In two dimensions, we see that

things are quite different since the counterpart of propagating initial conditions forward is

that of propagating boundary conditions inward and outward. Not only does this lead to a
new notion of recursion in multiple dimensions (see [13,14,20,39, 67-70,76]) but also to

the fact that complexity in 2-D depends upon the size of the boundary, which in turn

depends upon the size of the data region to be analyzed. This suggests the idea of

partitioning the data into many, smaller, subregions, with parallel processing performed in

each subregion outward toward subregion boundaries, followed by an interprocessor data

exchange across boundaries and a final set of parallel inward processing steps within each

subregion. Algorithms of this type have been developed previously by us and by others in

the 1-D case for estimation of standard state space models. In 1-D, of course, the set of

regional boundaries consists of a set of points, representing a decimated version of the

original process. In this earlier work this fact was used to develop approaches to the data

interchange step that propagated boundary information sequentially from one processor to

the next. This idea, of course, doesn't work in 2-D since, for example, the set of

boundaries of a rectangular subdivision don't have any natural order that allows us to

specify a useful sequential form for the data interchange step. However, in our recent
work [69,70,76] we have developed an alternate approach that appears to have

considerable promise in 1-D and in multiple dimensions. In particular in the 1-D case,

rather than performing the data exchange step sequentially, and all at once, we do it by

further decimation steps-- i.e. in parallel we can merge information between disjoint pairs

of neighboring intervals. For example, if we have partitioned our data with boundary

points tl<t2<t3<..., we can fuse the two intervals [tlt2] and [t2,t3] to form [tl,t3], the

two intervals [t3,t4], and [t4,t5], to form [t3,t5], etc., leading to a second decimated

partition tl<t3<t5<... In essence this is nothing more than another outward processing step

in which we grow small intervals outward to form larger ones. Thanks to the Markovian

nature of 1-D state models, all processing on disjoint data intervals can be performed in

parallel, and the fusion of subintervals involves the merging of information about interval



boundaries alone (rather than values at interior points). The result is precisely a fine-to-

coarse estimation step in which we produce estimates of a succession of increasingly

decimated versions of the process based on data in intervals of increasing size. This is then

followed by a coarse-to-fine interpolation step which results in the full exchange of
boundary information among all processors. As discussed in [69], this procedure has

precisely the same pyramidal structure as our multiscale estimation algorithms in
[32,49,66,73], (which thus are perfectly matched to hypercube computer architectures),

although the statistical models and bases for the two algorithms are apparently very

different. While there are a number of open issues related to the 1-D case-- in terms of

understanding more deeply the statistical differences between the approaches, of
developing system theoretic results analogous to those in [49,73], and of extending the

methodology to more general digital filtering applications (leading to new digital filter

structures)-- it is in two and higher dimensions that we expect to devote most of our

attention. In particular, we expect that it will be possible to develop analogous methods for

the optimal estimation of 2-D local and Markov random field models, although there will

necessarily be differences, both in the inward/outward recursions (which must have

varying dimension to reflect changes in boundary lengths) and in the boundary merging

step in which we fuse together boundary information about two neighboring rectangles in

order to obtain an estimate of the outer boundary of the larger, rectangle resulting from their

merger.

We have also had success in another related area of research, namely the multiple

time scale analysis of singularly perturbed systems and processes. This work also involves

the examination of processes at multiple resolutions, where successive levels of

aggregation occur as we look at increasingly longer time scales. Our work in this area,

which has had a considerable history [1,3,6,7,15,18,19], has been motivated by the desire

to develop analytic and quantitative methods capable of dealing with discrete-state systems

of considerable complexity. In many systems of this type--such as large-scale C 3 systems,

flexible manufacturing systems, and interconnected power systems-- there are extremely

large numbers of states and transition events with probabilities of occurrence that vary over

orders of magnitude. For example in many such systems faults represent comparatively

rare events (compared to the events corresponding to normal operation such as successful

message transmission or completion of the manufacture of a part). Moreover, in many

cases, not only are there several orders of magnitude difference among transition

probabilities but also there may be critical event sequences that involve the occurrence

several rare events. For example, a rare fault may, most probably, be correctly detected

and accommodated; however on a rare occasion a misclassification of the fault or a large



delay in detection may occur. Such cascades of events can be found in many complex

systems such as in crashes of distributed communication networks and large-scale

blackouts. Obviously there are strong motivations for developing methods of analysis for

complex systems in order to characterize such behavior and devise effective system-wide

monitoring systems capable of detecting the onset of such event sequences in a timely

enough fashion to institute corrective action. However the sheer complexity of such

systems makes it necessary to seek far more efficient methods than simple enumeration of

all of the possible event sequences in order to isolate the "weak links", i.e., the least rare of

a very large number of possibilities. Developing methods to deal with this complexity has

been the driving force in this portion of our work.

One of the models that we have studied in detail in this portion of our work has

been that of a perturbed finite-state Markov process, whose probability distribution, p(t),

evolves according to

p(t)= A(e)p(t)
where A(£) is an infinitessimally stochastic matrix. The parameter £ represents a small

variable that makes explicit the different orders of magnitude of various events (so that

transition rates of order 1,£,£ 2, etc. may be present). Briefly stated our contributions to

date include the following:

*The development of hierarchical aggregation methods for this model capturing the
critical events at each time scale and performing successive aggregation to obtain
simpler models. Specifically using singular perturbation methods we show in [1]
(and in [6] for discrete-time chains) how we can construct a sequence of far simpler
models, capturing events that have a significant probability of occurring at

increasingly long time scale (of orders 1,1/e,1 /e 2 ... ) and blurring out the detail of
events (and aggregating the corresponding states) that occur at shorter time scales.
Together this set of models allows us to construct an asymptotically accurate
description of the full transition behavior of the original system using a set of far
simpler models. Results of this type have been available for some time, motivated
by applications such as queuing and computer systems. However, prior to our
work all previous work required conditions of "near decomposability" which
completely leaves out the possibility of sequences of rare events that are
characteristic of catastrophic behavior, such as blackouts and distributed system
crashes. In our work [1,3,15,19] we have been able to overcome this restriction
completely by identifying the crucial role of so-called "almost transient states", i.e.
states that are entered after the occurrence of a rare event and from which recovery
is quite likely but not absolutely certain (since a second rare event may occur prior
to recovery).

*We have developed some results of the same type for semi-Markov processes [7].
A key here is that rare events can occur for two reasons: the presence of rare
transitions and the presence of holding time distributions with heavy tails. The
latter aspect had not been considered at all in any previous work, and its presence



leads to a far richer class of behavior (e.g. without it, the first step of the
aggregation process leads immediately to a Markov rather than semi-Markov
process).

*We have also developed some initial results [8,15] on the structural analysis of
perturbed Markov chains. Specifically, it is possible to develop a completely
integer-based algorithm (keeping track of orders of £) that determines the structure

of the multiple time scale models corresponding to an A(c) which is also specified
structurally (in terms of the orders of magnitude of transitions). This result
separates completely the determination of the critical time scales and the structure of
the corresponding models from the numerical problem of computing the coefficients
of the corresponding transition probabilities.

-In [19] we present some initial results on the use of our methodology to evaluate
performance measures for complex processes. In particular in [19] we examine the
situation in which certain events in the full process are to be counted (corresponding
in [19] to the completion of a product in a manufacturing system). Two critical
points to make are: (1) while such events appear as individual counts at the original
process level, the count of their occurrence may appear as a random variable at
subsequent levels at which the states associated with the event have been
aggregated; and (2) just as the work in [1] requires more care with £-dependent
quantities, the work in [19] requires slightly more than in [1]. Specifically, in
many situations the event count we wish to make corresponds to counting
occurrences of any of a set of transition events in our process. For example,
counting failed message transmissions in a communication network requires
counting such events when the network is operating normally, and when it is
operating in a degraded mode; since these modes of operation represent different
states, we must count transitions from both. This requirement demands some care,
since a low rate of occurrence from a state with high probability is of the same
importance as a high rate of occurrence from a state with low probability.

We have also made considerable progress in our study of multiresolution modeling for

control in an interesting class of discrete-event, continuous-time systems, namely power

electronic circuits. These circuits are usually modeled as interconnections of linear, time

invariant circuit components and ideal switches. The switching events are determined by

the relationship between time varying control inputs and periodically varying clocking

waveforms. In steady state, the behavior of a power convertor is periodic. To design

controllers that regulate departures from steady state, we need appropriate dynamic models.

The main focus of our research so far has been on averaged models, [34-37], [47],

[62]. This focus reflects the fact that in many power circuits - high frequency PWM

converters in particular- we are interested in controlling the local average of circuit

waveforms, not the instantaneous values. If the clocking waveform in the circuit has

period T, the local average of interest for a variable x(t) is defined by



xtto = TJ xk'~)but
t-T

This average is not the one produced by the classical averaging methods developed in

nonlinear mechanics.

Using the fact that the derivative of the local average equals the local average of the

derivative, and making reasonable approximations, we can obtain continuous-time dynamic

models for the averaged variables by taking the local average of dynamic models for the

instantaneous variables. It is also possible to obtain these averaged dynamic models

directly in circuit form by direct averaging of the instantaneous circuit, [36]. The

continous-time averaged models are usually far simpler than the instantaneous switched

models to analyze and simulate, and are more fruitful in developing controller designs,

[62].

The converter considered in [62] is driven by a periodically varying voltage source,

and thus has two natural averaging periods associated with it: the long period TL of the

voltage source, and the short period TS of the clocking or switching waveform. We

demonstrate in [62] the advantages of a multiresolution approach that uses averaged models

at both these time-scales. The Ts-averaged model is periodic with period TL, because it is

driven by the periodic voltage source. The TL-averaged model is time invariant, and is

obtained by averaging the Ts-averaged model. We are not aware of a similar two-stage

procedure being treated in the classical averaging literature, and intend to pursue this

possibility.

The time invariant controllers designed in [62] are derived using the TL-averaged

model. By using the Ts-averaged model instead, we obtain periodically varying controllers

that enable much faster recovery from transients, [63]. We are now studying the

possibility of tuning the parameters in the Ts-controller on the basis of computations that

involve the TL-model. Such hierarchical control based on aggregation at successively

larger time scales is an important theme in both the multiresolution and discrete-event

aspects of our research.

In many other situations in power electronics, it is not the local average but the

component at the switching frequency (or some other frequency) that is of primary interest.

This is the case with so-called resonant converters, for instance. Also, even with PWM

converters, we often wish to refine the predictions of an averaged model by computing the

"ripple', which is the switching-frequency component. This motivates the definition of the

local o-component as the local average of x(t)e-j ° t. If x(t) is periodic, this is just the

Fourier series coefficient at the frequency co. With this definition, we can again obtain



dynamic models for the local 0-component from the instantaneous dynamic models. The

value of this approach for resonant converters is demonstrated in [28].

III. Systems Subject to Discrete Events

In this section we describe that portion of our research dealing with the qualitative
analysis of systems subject to discrete events and in particular with the development of
feedback control concepts and a servomechanism theory for such systems. Problems of
this type arise in contexts that are completely described at a discrete level (such as a military
C 3 system) as well as in systems that involve the interaction of continuously-evolving
dynamics with event-driven elements (as in the integrated intelligent control of an advanced

fighter).

Our work in this area, described in [30,31,43,44,45,46,71] has focused on
developing a number of control concepts for a particular class of discrete-event dynamic
systems (DEDS). Specifically, the motivation for our work on DEDS came from a desire
(a) to investigate the concepts of reliability, resiliency, and error recovery in DEDS; and (b)
to develop counterparts in the DEDS framework to standard control system concerns such
as stabilization and tracking. In order to begin to understand these issues we chose as our
initial focus of study the class of systems introduced in the initial investigations of control
for DEDS. Specifically we focused attention on control systems modeled as
nondeterministic finite-state automata with intermittent event observations. These models
are defined over the quintuple

G = (x, ,Dr, )
where X is the finite set of states, with n=IXI, Z is the finite set of possible events, 0 c I

is the set of controllable events, F c ; is the set of observable events, and .= c Z is the set

of tracking events. Also, let U = 2z denote the set of admissible control inputs consisting
of a specified collection of subsets of ;. The dynamics defined on G are as follows, where

1 denotes the complement of D:
x[k + 1] E f(x [k], a[k + 1])

oI[k+ 1] E (d(x [k])nu[k])u(d(x [k])nr)

Here, x[k] E X is the state after the kth event, a[k] = Z is the (k+l )st event, and u[k] CE

U is the control input after the kth event. The function d: X -- 2z is a set-valued function

that specifies the set of possible events defined at each state (so that, in general, not all



events are possible from each state), and the function F: X x E -X is also set-valued, so

that the state following a particular event is not necessarily known with certainty.

Our model of the output process is quite simple: whenever an event in G occurs, we

observe it; otherwise, we see nothing. Specifically, we define the output function

h: -- Fu(e}, where e is the "null transition" by

h(c)f { if E IF
e otherwise

Then, our output equation is

y[k+ 1] = h(c[k + 1])
The set , which we term the tracking alphabet, represents events of interest for

tracking purposes. This formulation allows us to define tracking over a selected alphabet

so that we do not worry about listing intermediary events that are not important in tracking.

We use t: Z* -- *, to denote the projection of strings over a into *.

In our work to date on this class of models we have accomplished the following:

(1) The development of a theory of stability and stabilization by state feedback.

This represents our first attempt to capture the concept of error recovery for

DEDS. Specifically we assume that we are given a set of states E c X

which can be thought as "good" states from which the DEDS can begin to

perform desired operations. For example in a manufacturing system E

might consist of start-up states for the production of different parts.

Because of either normal operation (e.g. part production) or errors (e.g.

during the production cycle) the system makes excursions out of E. It is
then of interest to make sure that the system returns to E so that desired

operation can continue (if the excursion is simply due to the normal

production cycle) or be recovered (if an error occurred). We have

developed tests for what we term E-stability and E-stabilizability via state

feedback and algorithms for constructing stabilizing state feedback laws.

An important point to note is that these concepts seem to be of central

importance in DEDS control. In particular they are necessary for the

analysis in all of the problems we have considered.

(2) The development of a theory of observability and observer design for

DEDS. The model of DEDS observation we have described includes what



we feel is an essential feature. Specifically in complex systems the sensed

information often concerns events rather than states, and furthermore these

observations are often received sporadically and asynchronously, as only a

subset of the full range of events is observed. While our model also is rich

enough to capture regular event (and state) information, this more general

notion includes an extremely important characteristic: between observable

events DEDS evolution is not visible, and thus even if we know the state at

some point, the possible occurrence of unobservable events leads to

uncertainty in state knowledge at least until the occurrence of the next

observable transition. In our work we have analyzed the natural DEDS

observer for such a system in which the state of the observer is the set of

states in which the system might have been immediately following the last

observable transition. In this case observability defined as stability of the

observer, in the sense of (1), with respect to the singleton sets-

corresponds to being able to determine the system state at intermittent

points in time. In addition, we have shown that in this case the observer is

robust to errors-i.e. the observer will recover correct operation after a

burst of observation errors corresponding to false alarms (i.e. indication of

observable events when none occurred), missed detections (i.e. no

observation indicated when an observable event has occurred) or incorrect

identifications (an observable event being incorrectly identified as a

different event).

(3) The synthesis of (1) and (2) to develop a theory of output stabilization.

There are two major differences between this theory and that for standard

control problems. First, because of the sporadic nature of observations,

observability and stabilizability do not guarantee stabilizability by output

feedback (this highlights the problem of synchronization of state

knowledge and control action). Secondly, there are two notions of output

stabilization. In the weaker of these we design a compensator that is

guaranteed to drive the system through E at intermittent points in time, but

we may never know exactly when the system is in E. In the stronger

notion, we design a compensator that guarantees that at intermittent points

in time the system is in E and we know it. The latter problem can be

directly formulated as a state feedback stabilization problem for the



observer. Again we also have developed notions of error recovery in this

context as well.

(4) The reconstruction of complete event history from the observed events.

This is important in trouble-shooting in complex systems and also in

complex estimation and inference problems in which many information

sources are being fused. It also provides us with a first setting in which to

examine nonresilient behavior analogous to the concept of catastrophic

error propagation for convolutional codes. In particular in addition to

developing a theory for reconstructing event sequences we have also

developed methods for determining if reconstruction can be made robust to

error bursts in the sense that correct reconstruction is recovered a bounded

number of steps after an error burst.

(5) Tracking and restrictability of DEDS. This represents our first examination

of command-following for DEDS. We have developed methods for

tracking specific sets of strings (by state or output feedback), for restricting

event behavior to specified sets of strings, and for identifying sets of

starting states for tracking and restriction. This latter specification then

provides a constructive method for finding the set E with respect to which

we wish to consider stability. Our notion of restrictability is a slight

generalization of Wonham and Ramadge's notion of a controllable

language. However, in our investigation we examine two other significant

extensions which seem to be natural in a control context. The first of these

is eventual restrictability-i.e. the output tracks the commanded string set

after an initial transient (much as in the tracking of a step, ramp, or other

command input in a classical servo loop). The second is reliable

restrictability-i.e. the ability to resume correct event sequence restriction

after a transient recovery period following a burst of errors or failure

events.

(6) Task following, aggregation, and higher level modeling. Using the results

of (5) we have developed a theory for controlling DEDS so that one of a

specified set of tasks is performed, where a task is specified as the

completion of one of a set of tracking event strings. Doing this in a

compatible way requires the development of notions of task independence,



reachability, and observability (so that we know when a task has been

completed). This leads directly to the task-level modeling of a DEDS in
which "words"-i.e. event sequences-at the lower level are aggregated

into single "letters"-representing tasks-at the higher level. This has the

potential to reduce model complexity considerably and thus to enhance our

ability to consider complex and higher-level control questions.
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