MASSACHUSSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR INFORMATION AND DECISION SYSTEMS

REPORT ON

ACOUSTIC TELEMETRY NETWORKING

for the period July 1, 1984 to August 31, 1985

by
Prof R.G. Gallager Prof P.A. Humblet

Whay Lee
Wen K. Han

This research was supported in its entirety by the Charles Stark Draper
Laboratory

1) INTRODUCTION

This report studies some networking problems that are relevant to a communication system for use by a small fleet of submarines involved in detection and tracking operations. The fleet may consist of between 3 and 5 platforms separated by about 15 km and moving in formation at about $5 \mathrm{~km} / \mathrm{h}$. Communication between the submarines takes place on a sonar channel at a yet to be specified frequency between 1000 and 40000 Hz . The requirements for the data rate are between 10 and 100 bps. Low probability of intercept is a key requirement and spread spectrum modulation will be used. The determination of many operational parameters will depend on an ongoing study of wave propagation performed at CSDL and MIT's Department of Ocean Engineering.

Aspects of the study
We have focused our attention on three aspects of the system:
-channel sharing methods
-data routing patterns
-combination of coding and automatic repeat request (ARQ) for low probability of intercept (LPI) operations.

Details about these three aspects are developed below. Before giving more details we will recall some physical parameters that determine many characteristics of the system.

Physical characteristics

Wavelenth: The speed of sound in water is about $1500 \mathrm{~m} / \mathrm{s}$, depending on depth, temperature, salinity etc... The wavelength corresponding to a frequency of 1000 Hz is about 1.5 m , while the wavelenght corresponding to 20 khz is 7.5 cm . Especially at the higher frequency, the wavelength is reminiscent of those associated with microwave operation in the air or in space and high antenna gains can be achieved with moderately
sized antennas.

Propagation delay: It takes about 10 s for a soundwave to propagate in water between platforms separated by 15 km . This is an unusually large delay for communication systems. However this represents only 1000 "bit times" if transmission takes place at 100 bps .

Attenuation: Waves attenuate as a function of distance. The dependence of the field strength with distance r is of the form $1 / r^{2} \exp (-a r)$. The constant a, which represents attenuation due to absorbtion, varies with frequency. It is about equal to $10^{-3} \mathrm{db} / \mathrm{km}$ at $100 \mathrm{~Hz}, 10^{-1}$ at 1000 Hz , 1 db at 10 khz and 3.5 dB at 20 khz ; these numbers are approximate as they depend on temperature, depth, salinity etc...

Multipath propagation: The velocity gradient of the ocean causes the sound beam to be refracted, causing multipath propagation and fading. Geometric propagation models based on the thermal gradient predict that in ocean deeper than 1 km many propagation paths caused only by refraction will have propagation times within 350 ms of the fastest ray. In addition to those, other paths undergo bottom or surface bounces; their extra delays are much higher, the precise values depend on the depth of operation and on the depth of the ocean.
As if this was not enough, closely spaced multipath distortion (time smear) also occurs because of forward scattering in the medium. This scattering is the result of the thermal microstructure of the water. The signal is also subject to random fluctuating Doppler shifts and spread because of surface and internal wave motion.

Effects due to the movement of the platforms: No significant doppler shift is expected from the movement of the patforms, as they will move in formation. If their speed is $5 \mathrm{~km} / \mathrm{h}$ (about $1.38 \mathrm{~m} / \mathrm{s}$), this would correspond to about 1 wavelength per second at 1000 hz , and 20 wavelength per second at 20 khz . As fading characteristics change drastically with distance in about half a wavelength, the coherence time of the channel will range from 500 to 25 ms (this assumes that there are scatterers nearby the receiver and may not be very accurate).

2) CHANNEL ACCESS METHOD

This section deals with the way the communication channel should be organized. We immediately distinguish between two main modes of operation:
-) point-to-point, where directional antennas are used to establish point-to-point communication lines between the submarines. If there is little interference between different beams, there is no need to have different transmitters use different frequency bands (FDMA), time slots (TDMA), or different spread spectrum patterns (CDMA).
-) broadcast mode, where omnidirectional antennas are used that allow all the submarines to hear each other. That mode of operation may be advantageous if the same data must be used by many different submarines.
However the broadcast nature of the channel necessitates some precautions in the channel access method to avoid interference.

Among those interference avoiding techniques are FDMA and TDMA. They are not very efficient from a channel use point of view if the data is bursty. There is also the possibility to use contention methods where different transmitters may transmit simultaneously, and collisions are resolved by a protocol. These techniques can be very efficient in situations where it can be quickly determined if a channel is idle, and (ideally) if a collision is occuring, like in ETHERNET.

Initially we were planning to spend a fair amount of time determining the best access method and possibly developing multiaccess protocols. However we quickly realized that point to point communication was preferable. Here are the reasons:

The long propagation times make the efficient determination of channel idleness impossible, except if very long blocks of data are being exchanged. Also the determination of collisions occuring would be a
difficult task due to the fading nature of the channel and to the spread spectrum modulation. Thus very efficient contention access did not seem possible. This leaves open the possibility of standard ALOHA, or some type of FDMA, TDMA, or CDMA.

However, the operation in broadcast mode appears undesirable for a number of reasons.
-It may not be required from a data processing point of view.
-Even if it were, reliable communication would be difficult to achieve as the different receivers would see different fading patterns, so that ARQ schemes would be complicated and less efficient than on point to point channels.

- From an LPI viewpoint the operation in broadcast mode is very undesirable as power is transmitted in all directions, giving a big advantage to the interceptor; this can be justified in more details by a method as that in section 3 .

The previous remark implies that directional antennas should be used. At the higher frequencies they will have enough directionality so that simultaneous transmissions and receptions can take place at a given platform.

This need not be true at the lower frequencies (with reasonable array size) where the field of view of an antenna may include many transmitters. However in typical situations the transmitters will be at different distances and the section on routing below will explain that information should only be received from the closest transmitter. Interference can still be produced by the farther transmitters. It will be considerably attenuated due to three factors:

- the directionality of the transmit and receive antennas
- the larger distances from the interferers than from the desired source
- the use of spread spectrum waveforms

We expect that the combination of these three factors (which might easily be 50 dB) will be enough to reduce interference to levels small
enough even for operation in a fading environment.

3) Routing

A network issue arising in the system is that of routing. Specifically, if there are 4 submarines arranged as 3 at the corners of an equilateral triangle and one at the center, then it is not clear if the traffic between corner submarines should be direct, or if it should transit via the center submarine.

In the routing problem for wire networks, the links and their capacities are given, and the only issue is that of deciding the routing pattern that will minimize some network cost, like message delay. The problem at hand is very different in that delay is not an important issue, and it is the existence of the links that is questioned. As LPI is an important requirement of the system, we have attacked the routing problem from that angle.

Specifically in the next section, we will find the routing pattern that requires the least total power for a given data rate, the idea being that larger power increases the probability of detection. We will see that routing through the center is preferable, as the increase in power required at the center is made up by an even higher decrease at the corners.

That approach neglects the fact that as the data rate is increased on the link between the center and the corner, then the spread spectrum margin must be reduced if the total bandwidth is kept constant. That gives an advantage to the interceptor. However that advantage does not get close to making up for the reduction of power possible by routing through the center.

Implicit in these analyses is that the channel bandwidth is much larger than the data rate, so that signal power only increases linearly with rate for a given probability of error (the increase in rate is handled by using more dimensions in the available signal space, not by transmitting more bits per dimension).

3.1 Minimizing total power

The transmission loss (in dB) between points located at distance r can be written as
$T L=10 \log (e)\left[K\left(\ln r-\ln r_{0}\right)+a(f)\left(r-r_{0}\right)\right]$
where r_{0} is a reference distance, $a(f)$ is an attenuation coefficient depending on the frequency f, and $K=0,1,2$ or 3 depending on the mode of the wave spreading (none,cylindical,spherical or hyperspherical; in the open ocean it would be 2).

Consider now Figure 1. There are 3 nodes, A, B and C . There are two ways through which data can flow from A to B; either directly through a distance r_{1}, or via C. The latter case corresponds to two transmissions, each over a distance of r. The transmitted power in the first case will be denoted by P_{1}, while P denotes the transmitted power at A and at C in the second case. There is a relationship between P_{1} and P imposed by the fact that the received power P_{0} at B should be the same in both cases.

Figure 1 : platform configuration

Using the formula given above for the transmission loss we obtain: $\ln P_{1}-\ln P=K \ln \left(r_{1} / r\right)+a(f)\left(r_{1}-r\right)$

It is convenient to def ine the angle (ACB) as t and to note that
$r_{1} / r=2 \sin (\varphi / 2)$
The power efficiency of the double-hop routing with respect to the single-hop routing is defined naturally as
$G(r, t)=10 \log (e) \ln \left(P_{1} /(2 P)\right) d B$

$$
=10 \log (e)[(2 \sin (\varphi / 2)-1) a(f) r+w(\varphi)]
$$

where $w(\varphi)=K \ln (\sin (\varphi / 2))+(K-1) \ln (2)$ is independent of r.
That formula is plotted in Figure 2 for $\mathrm{K}=2$ (open ocean).
Note that in region i) ($\varphi<\pi / 3$) both $w(\varphi)$ and the coefficient of r in the formula for $G(r, t)$ are negative, thus at acute angles double-hop routing never reduces total power.

In region ii) $(\pi / 2<\varphi<\pi)$ both $w(\varphi)$ and the coefficient of r are positive, thus double-hop routing always helps.
This is the case with the triangular configuration.
Finally in region iii) ($\pi / 3<\varphi<\pi / 2$) the coefficient of r is positive, but $w(\varphi)$ is negative. Thus double-hop routing reduces total power if the distance r is large enough. The value of the treshold depends on the attenuation coefficient $a(f)$

In conclusion, from a total power point of view double hop routing is always appropriate in the triangular configuration. The next section
analyzes what happens if the reduction in spread-spectrum margin on link $C B$ due to the increase in data rate on that link is taken into account.

Figure 2
Power Efficiency for $k=2$

3.2. Network Routing Patterns - LPI Consideration

3.2.1. Network Configuration and routing alternatives

The expected submarine network configuration consists of 4 submarines, 3 of them at the corners of an equilateral triangle and a fourth one at the center as shown in figure 1. In this network configuration a routing issue appears: should communication between the corners of the triangle be direct, or should it be relayed through the center.

Figure 1. Network Configuration

We may simplify the problem by concentrating, without any loss of generality, only on the communications from submarines A and C to submarine B . In a direct routing situation, as shown in figure 2a, submarines A and C transmit directly to submarine B , with equal data rate R_{D}. In an indirect routing situation, data rate of transmission from submarines C to B is increased to $2 R_{D}$, due to the additional traffic routed through submarine C, but originated from submarine A. The data rate from A to C is R_{D}.

Fig 2a. Direct Routing

Fig 2b. Indirect Routing

We first note that a larger power is needed to transmit over a longer distance, and if the distance between submarines A and B is larger than that between submarines A and C, then the probability for the transmission from submarine A to be intercepted is lower in the indirect routing case than that in the direct routing case. However, with the increase in data rate over the link between submarines C and B , the probability for the transmission from submarine C to be intercepted is larger in the indirect routing case than that in the direct routing case.

To study the trade-off between the two routing options in terms of the over-all probability of interception for the whole fleet of submarines, it is first necessary to know the amounts by which the probability of intercept decreases for transmission from submarine A and increases for transmission from submarine C, by going from a direct routing option to an indirect routing option. A relationship is needed to illustrate how distances and data rates affect probability of interception. This is done in the following section.

3.2.2. LPI Analysis

In the Low Probability of intercept (LPI) analysis presented here, the interceptors are assumed to be hydrophones, randomly placed over the ocean floor. Each of these hydrophones is modelled as a chip radiometer, which is a simple energy detector, over a part of the total transmission bandwidth.

By considering these hydrophones to be randomly, and uniformly, distributed over the whole ocean floor, comparison of probabilities of interception of a submarine under different routing options can be done simply by comparing the ranges over which an interceptor hydrophone could detect, for some probability of detection and false alarm, transmission from the submarine under these routing options.

As shown in figure 3, consider a transmission of data rate R_{D} from submarine A to submarine B , a distance r_{s} apart. The received carrier power C_{s} to noise power spectral density N_{o} ratio at submarine B receiver is

$$
\begin{equation*}
\frac{C_{s}}{N_{o}}=P_{T} G_{S T} \frac{G_{S R}}{T_{S R}} \frac{1}{k M}\left(\frac{\lambda}{4 \pi r_{S}}\right)^{K} \exp \left(-\alpha r_{S}\right) \tag{1}
\end{equation*}
$$

where
$P_{T}=$ submarine A transmitter power (watts)
$G_{S T}=$ gain of submarine A transmitting antenna in the direction of submarine B.
$G_{S R}=$ gain of submarine B receive antenna to the desired signal
$T_{S R}=$ system noise temperature of submarine B
$\mathrm{M}=$ submarine A to submarine B link margin
$\lambda=$ wavelength of the transmitted signal
$\mathrm{k}=$ Boltzmann's constant $=1.38 \times 10^{-23}(\mathrm{~J} / \mathrm{K})$
$\mathrm{K}=$ spreading index (to be explained later)

Similarly, the received power to noise power spectral density at the hydrophone is

$$
\begin{equation*}
\frac{C_{I}}{N_{o}}=P_{T} G_{I T} \frac{G_{I R}}{T_{I R}} \frac{1}{k}\left(\frac{\lambda}{4 \pi r_{I}}\right)^{K} \exp \left(-\alpha r_{I}\right) \tag{2}
\end{equation*}
$$

where
$r_{I}=$ interceptor range
$G_{I T}=$ gain of submarine A transmitting antenna in the direction of the interceptor
$G_{I R}=$ gain of the interceptor's receive antenna in the direction of submarine A
$T_{I R}=$ system noise temperature of the interceptor
Note that a simple accounting of power levels and transmission losses, at the receiver of submarine B and at the interceptor hydrophone, has been used here to arrive at the above two equations. In general, the power level at the receiver, or hydrophone, depends on the position of the receiver relative to the line of transmission and on the orientation of the receive antenna. These are accounted for by the gain terms in the two equations.

In general, sonar transmission over a distance r_{s} suffers two major types of transmission losses. Firstly, loss due to spreading, accounted for by the $\left(\frac{\lambda}{4 \pi r s}\right)^{K}$ term, where K is the spreading index and

$$
\begin{aligned}
\mathrm{K}= & 0 \text { for no spreading } \\
& 1 \text { for cylindrical spreading } \\
& 2 \text { for spherical spreading } \\
& 3 \text { for hyperspherical spreading }
\end{aligned}
$$

and secondly, loss due to absorption, accounted for by the $\exp \left(-\alpha r_{s}\right)$ term, where α is the absorption coefficient. The absorption coefficient is a well-tabulated parameter that depends on the temperature of the sea water, the depth of the submarines and the sonar transmit frequency.

The bit energy $E_{b s}$ to noise power spectral density N_{o} at the receiver of submarine B is

$$
\begin{equation*}
\frac{E_{b s}}{N_{o}}=\frac{C_{s}}{N_{o} R_{D}} \tag{3}
\end{equation*}
$$

where R_{D} is the data rate of the transmission.
From equation (1) and (3),

$$
\begin{equation*}
\frac{E_{b_{s}}}{N_{o}}=P_{T} G_{S T} \frac{G_{S R}}{T_{S R}} \frac{1}{k M} \frac{1}{R_{D}}\left(\frac{\lambda}{4 \pi r_{S}}\right)^{K} \exp \left(-\alpha r_{S}\right) \tag{4}
\end{equation*}
$$

Inserting the relationship of P_{T} from equation (2) and (4) gives

$$
\begin{equation*}
\frac{C_{I}}{N_{o}}=\left[\frac{G_{I T}}{G_{S T}} \frac{G_{I R}}{G_{S R}} \frac{T_{S R}}{T_{I R}} M \frac{E_{b s}}{N_{o}}\right] R_{D}\left(\frac{r_{S}}{r_{I}}\right)^{K} \exp \left[\alpha\left(r_{S}-r_{I}\right)\right] \tag{5}
\end{equation*}
$$

The effective post-detection $S N R$ in the interceptor chip radiometer is well-known to be, in the absence of fading,

$$
\begin{equation*}
d=\frac{C_{I}}{N_{o} \xi}\left(\frac{W_{I}}{W}\right) \sqrt{\frac{T}{W_{I}}} \tag{6}
\end{equation*}
$$

where
$\xi=1$ for $W_{I} T$ products greater than 10
$\mathrm{T}=$ total integration time
$W=$ total transmission bandwidth
$W_{I}=$ bandwidth of interceptor receiver $\leq W$
The communication signal will be detectable for some probability of detection P_{D} and false alarm $P_{F A}$, if the interceptor's SNR exceeds some threshold value d_{T}. Hence at the threshold, let $d_{T}=d$, and from equations (5) and (6),

$$
\begin{equation*}
d_{T}=\left[\frac{G_{I T}}{G_{S T}} \frac{G_{I R}}{G_{S R}} \frac{T_{S R}}{T_{I R}} M \frac{E_{b s}}{N_{o}}\right] \frac{1}{\xi} R_{D}\left(\frac{W_{I}}{W}\right) \sqrt{\frac{T}{W_{I}}}\left(\frac{r_{S}}{r_{I}}\right)^{K} \exp \left[\alpha\left(r_{S}-r_{I}\right)\right] \tag{7}
\end{equation*}
$$

By letting

$$
\begin{equation*}
\beta=\left[\frac{G_{I T}}{G_{S T}} \frac{G_{I R}}{G_{S R}} \frac{T_{S R}}{T_{I R}} \frac{M}{\xi d_{T}} \frac{E_{b s}}{N_{o}}\right]\left(\frac{1}{W}\right) \sqrt{W_{I} T} \tag{8}
\end{equation*}
$$

a constant in our analysis, we now arrive at the desired equation relating r_{I}, the interceptor range, with r_{s}, the distance between the transmitter and the receiver, and R_{D} the transmission data rate.

$$
\begin{equation*}
r_{I}{ }^{K} e^{\alpha r_{I}}=\beta R_{D} r_{S}{ }^{K} e^{\alpha r_{s}} \tag{9}
\end{equation*}
$$

Note that in arriving at this relationship, we have assumed that the interceptor's hydrophone listens to a fixed band of frequency W_{I} with integration time T .

To compare two routing options, assume that in case $1 r_{s}$ and R_{D} are r_{1} and R_{1} respectively and in case $2, r_{s}$ and R_{D} are changed to r_{2} and R_{2} respectively,

For case 1,

$$
\begin{equation*}
r_{I 1}^{K} e^{\alpha r_{r_{1}}}=\beta R_{1} r_{1}{ }^{K} e^{\alpha r_{1}} \tag{10}
\end{equation*}
$$

For case 2,

$$
\begin{equation*}
r_{I 2}^{K} e^{\alpha r_{I 2}}=\beta R_{2} r_{2}^{K} e^{\alpha r_{2}} \tag{11}
\end{equation*}
$$

where $r_{I 1}$ and $r_{I 2}$ are the interceptor ranges for case 1 and case 2 respectively.
From equations (10) and (11) we have,

$$
\begin{equation*}
\left(\frac{r_{I 2}}{r_{I 1}}\right)^{K} \exp \left[\alpha\left(r_{I 2}-r_{I 1}\right)\right]=\left(\frac{R_{2}}{R_{1}}\right)\left(\frac{r_{2}}{r_{1}}\right)^{K} \exp \left[\alpha\left(r_{2}-r_{1}\right)\right] \tag{12}
\end{equation*}
$$

Let

$$
\begin{aligned}
& \theta=\frac{r_{I 2}}{r_{I 1}} \\
& \mu=\frac{r_{2}}{r_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \rho=\frac{R_{2}}{R_{1}} \\
& \Delta=\frac{r_{I 1}}{r_{1}}
\end{aligned}
$$

Substituting these ratios into equation (12), we have,

$$
\begin{equation*}
\theta^{K} e^{\alpha \Delta r_{1}(\theta-1)}=\rho \mu^{K} e^{\alpha r_{1}(\mu-1)} \tag{13}
\end{equation*}
$$

This equation therefore relates θ, the proportional change in interceptor range with μ, proportional change in transmission distance, and ρ, proportional change in transmission data rate. Δ is the ratho between interceptor range and transmission distance in case 1 , and depends mostly on antennas gains. As mentioned before, the interceptor range is used as a measure of the probability of interception when the transmission data rate and the distance between the transmitter and receiver change under different routing options. This equation will be analyzed in detail in the next section for tradeoffs between direct and indirect routing options.

3.2.3. Numerical Results

As in figure 3, let
$\mathrm{r}=$ the distance between submarines A and B .
$\phi=$ the angle ACB

Figure 3. Network Geometry
From geometry, the distance between submarines A and C, which is equal to the distance between submarines C and B, is

$$
\begin{equation*}
r^{\prime}=r\left[\frac{1}{2(1-\cos \phi)}\right]^{1 / 2} \tag{14}
\end{equation*}
$$

For submarine A, there is no change in transmission data rate, hence, $\rho_{A}=1$. The proportional change in transmission distance is

$$
\begin{equation*}
\mu_{A}=\frac{r^{\prime}}{r}=\left[\frac{1}{2(1-\cos \phi)}\right]^{1 / 2} \tag{15}
\end{equation*}
$$

Hence equation (13) becomes

$$
\begin{equation*}
\theta_{A}{ }^{K} \exp \left[\alpha \Delta r\left(\theta_{A}-1\right)\right]=\mu_{A}^{K} \exp \left[\alpha r\left(\mu_{A}-1\right)\right] \tag{16}
\end{equation*}
$$

for submarine A, where θ_{A} is the proportional change in interceptor range for submarine A.

For submarine C, there is no change in transmission distance, hence, $\mu_{C}=1$. But the transmission data rate has doubled to give

$$
\begin{equation*}
\rho_{C}=\frac{2 R_{D}}{R_{D}}=2 \tag{17}
\end{equation*}
$$

Hence equation (13), together with equation (15), gives

$$
\begin{equation*}
\theta_{C}{ }^{K} \exp \left[\alpha \Delta r^{\prime}\left(\theta_{C}-1\right)\right]=\rho_{C} \tag{18}
\end{equation*}
$$

for submarine C, where θ_{C} is the proportional change in interceptor range for submarine C. Substituting equation (14) into (18), we have,

$$
\begin{equation*}
\theta_{C}{ }^{K} \exp \left[\alpha \Delta \mu_{A} r\left(\theta_{C}-1\right)\right]=\rho_{C} \tag{19}
\end{equation*}
$$

Table 1 tabulates the results of some numerical computation using equations (16) and (19). The value of α, the absorption coefficient, used is $3.5 \mathrm{~dB} / \mathrm{km}$. This is the absorption coefficient corresponding to an ocean temperature of $40^{\circ} \mathrm{F}$, sonar frequency of 20 kHz at a depth of about $1 / 2$ miles. Some other values used include $K=2$, for spherical spreading, $r=15 \mathrm{~km}$, and $\Delta=10^{-2}$ for both submarines.

We first note that for $\phi \leq 60^{\circ}, r^{\prime} \geq r$. It is obvious that indirect routing is inferior compared to direct routing in such cases. For $\phi \geq 60^{\circ}$, Table 1 tabulates the values of μ_{A}, θ_{A} and θ_{C}, using $\rho_{C}=2$.

It is observed that for very small increase in ϕ, i.e., a very small decrease in transmission distance, the LPI performance for submarine A improves tremendously. For example, for $\phi=95^{\circ}, \theta_{A}=0.1$, in other words, the interceptor range for submarine A drops by some 10 folds by going from a direct to an indirect routing. This is achieved with an increase of only 39% in the interceptor range for submarine C, since $\theta_{C}=1.39$. In the configuration described in figure $1, \phi=120^{\circ}$.

Table 2 tabulates ρ_{C} and θ_{C} for more values of ρ_{C} other than 2 , for $\phi=90^{\circ}$ and 120°. It is again observed that a large amount of increase in ρ_{C} is needed to bring about a significant increase in θ_{C}.

Table 1. Numerical Computation of Eq. (16) and (19)

ϕ	μ_{A}	θ_{A}	$\theta_{C}\left(\rho_{C}=2\right)$
60	1	1	1.385
65	0.93	0.63	1.385
70	0.87	0.42	1.385
75	0.82	0.29	1.385
80	0.78	0.21	1.39
85	0.74	0.16	1.39
90	0.71	0.13	1.39
95	0.68	0.10	1.39
100	0.65	0.085	1.39
105	0.63	0.071	1.395
110	0.61	0.061	1.395
115	0.59	0.053	1.395
120	0.58	0.048	1.395

Table 2. Effect of a Change in Data Rate On LPI Performance. From Eq. (19)

$$
\phi=90^{\circ} \quad \phi=120^{\circ}
$$

ρ_{C}	θ_{C}	ρ_{C}	θ_{C}
1			
1.5	1.21	1	1.5
2.0	1.4	2.0	1.22
3.0	1.68	3.0	1.40
10.0	2.91	10.0	1.7
20.0	3.94	20.0	2.96
30.0	4.68	30.0	4.00
50.0	5.75	50.0	4.80
100.0	7.56	100.0	5.95
1000.0	16.38	1000.0	7.87
10^{4}	29.54	10^{4}	17.67
			32.88

3.2.4. Conclusion

It is found out that transmission distances affect LPI performance much more serverly than would transmission data rates. So it is better, when considering the network LPI requirement, to relay transmission through a nearby submarine, which in our network configuration is the submarine at the center. Indirect routing provides a better LPI performance for the whole fleet of submarines.

4) Coding and ARO for reliable transmission and LPI

The last part of our research was devoted to the use of forward error correction (FEC) and automatic repeat request (ARO) to provide reliable communication without using much power, thus resulting in good LPI performance. A complete analysis is attached in Appendix. It assumes that non-conherent FSK modulation is used on a Rayleigh fading channel.

Four systems are analyzed:

- plain ARO without coding
- ARQ with Block Coding
- ARQ with Convolutional Coding
- ARO with time diversity signaling (repetition coding)

In each system data bits are formed in groups of size n to which is appended an error detection checksum and framing overhead of size h. The resulting frame of $n+h$ bits is passed to an encoder of rate R_{C} (either block or convolutional; in the case of block, the block size is K). The output of the encoder is then passed to a modulator.

At the receiver demodulation is followed by error correction. If any residual errors are detected (through the checksum) a repetition is requested.

The key performance criteria used are the detectability of the signal (called λ) and the efficiency with which the channel is used (called μ). A key variable that must be optimized on is the block size n. The key results are summarized in figure 25 of the Appendix where it is shown that using Block or Convolutional codes allow to operate with both a higher efficiency and lower detectability than using plain ARQ, even with diversity transmission. Except in the case of plain ARO without diversity it appears to be fruitless to try to vary μ, its value at a reasonable operating pint is very much dictated by the other parameters of the system.

The Appendix considers only systems where the probabilty of undetected
error is negligible. In some situations it is permissible to have many errors in the data; such situations can also be depicted on figure 25 . For example the operating point for a system without FEC and ARO has efficiency $\mu=1$ and requires a signal to noise ratio x of 20 dB for a Probability of error of 10^{-2}; for such a walue of $x, \lambda\left(=\mu / x^{2}\right)$ is 10^{-4} which is surprisingly still not as good from a LPI standpoint as using an "error free" ARQ combined with $F E C$. It is only for larger protability of error that dropping $A R Q$ and $F E C$ pays off from an LPI standpoint.

ERROR CONTROL IN

LOW-PROBABILITY-OF-INTERCEPT COMMUNICATIONS

Whay Chiou Lee

Abstract

The problem of error control in low-probability-of-intercept (LPI) communications is complicated by two somewhat conflicting performance objectives, namely throughput efficiency and LPI performance . Maximizing throughput calls for a high signal-to-noise ratio, whereas a high signal-to-noise ratio often leads to poor LPI performance. The trade-off between the throughput of an ideal selective repeat ARQ system and its corresponding LPI performance, based on the quality factor of an energy detector, is analyzed. The analysis assumes that the channel error probability is given. In particular, the channel error probability corresponding to a non-coherent binary FSK over a Rayleigh fading channel is used as an example. The application of FEC coding for improved system performance is investigated. ARQ systems with time diversity signaling of orders 2,4 and 8 are also studied. It is shown that, in all cases, any optimal operating point with respect to a given reward function of throughput and LPI performance lies on an Efficiency Frontier. The Efficiency Frontiers for ARQ systems with various length of the header, and those operating in fading channels with various attenuation are generated on the computer.

TABLE OF CONTENTS

Section Page
1 Introduction 6
2 Problem Statement 9
3 Analysis 11
3.1 Plain ARQ 11
3.2 ARQ with Block Coding 32
3.3 ARQ with Convolutional Coding 40
3.4 ARQ with Time Diversity Signaling 48
4 Summary 59
4.1 General Formulation 59
4.2 Approximations with Large Values of h 61
4.3 Numerical Results 63
5 Conclusion and Suggestions for Future Research 70
6 Appendix 72
7 Acknowledgement 78
8 References 79

LIST OF ILLUSTRATIONS

Figure Page
1 System Block Diagram 10
2 LPI Performance for Plain ARQ 14
3 ($x_{\lambda}^{*}, n_{\lambda}^{*}$) for Plain ARQ 16
4 Bounds on ($x_{\lambda}^{*}, n_{\lambda}^{*}$) for Plain ARQ 20
5 Approximate $\mu_{\lambda_{m a z}}$ for Plain ARQ 25
6 Approximate $\lambda_{\text {max }}$ for Plain ARQ 26
7 Approximate Locus of $\left(\mu_{\lambda_{\max }}, \lambda_{\max }\right.$) for Plain ARQ 27
8 Iso-x Lines 29
9 Iso-n Curves 29
10 Trade-off Between Throughput \& LPI Performance 30
11 The Efficiency Frontier for Plain ARQ 31
$12\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)$ for ARQ with $\operatorname{Golay}(24,12)$ Block Code 38
13 The Efficiency Frontier for ARQ with Golay $(24,12)$ Block Code 39
14 ($x_{\lambda}^{*}, n_{\lambda}^{*}$) for ARQ with Convolutional Coding 46
15 The Efficiency Frontier for ARQ with Convolutional Coding 47
$16\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)$ for ARQ with 2-Diversity Signaling 52
$17\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)$ for ARQ with 4-Diversity Signaling 53
$18\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)$ for ARQ with 8-Diversity Signaling 54
19 The Efficiency Frontier for ARQ with 2-Diversity Signaling 56
20 The Efficiency Frontier for ARQ with 4-Diversity Signaling 57
21 The Efficiency Frontier for ARQ with 8-Diversity Signaling 58
22 The Efficiency Frontiers for Various Channel Attenuation 65
23 The Efficiency Frontiers for Various Modems 66
24 The Efficiency Frontiers for Various Length of Header 67
25 The Efficiency Frontiers 69

LIST OF THEOREMS

Theorem Page
$1.1 \hat{n}_{\lambda}$ for Plain ARQ 21
$1.2 \hat{x}_{\lambda}$ for Plain ARQ 22
$1.3 \hat{\mu} \& \hat{\lambda}$ for Plain ARQ 23
$2.1 \hat{n}_{\lambda}$ for ARQ with Block Coding 35
$2.2 \hat{x}_{\lambda}$ for ARQ with Block Coding 35
$2.3 \hat{\mu} \& \hat{\lambda}$ for ARQ with Block Coding 36
$3.1 \quad \hat{n}_{\lambda}$ for ARQ with Convolutional Coding 43
$3.2 \hat{x}_{\lambda}$ for ARQ with Convolutional Coding 43
$3.3 \hat{\mu} \& \hat{\lambda}$ for ARQ with Convolutional Coding 44
$4.1 \quad \hat{n}_{\lambda}$ for ARQ with Time Diversity Signaling 49
$4.2 \hat{x}_{\lambda}$ for ARQ with Time Diversity Signaling 50
$4.3 \hat{\mu} \& \hat{\lambda}$ for ARQ with Time Diversity Signaling 50

LIST OF TABLES

Table Page
1 Results for Plain ARQ 24
2 Golay $(24,12)$ Block Code 36
3 Results for ARQ with Golay $(24,12)$ Block Code 37
4 Results for ARQ with Convolutional Coding 45
5 Results for ARQ with Time Diversity Signaling 55
$6 x_{\mu}^{*}, n_{\mu}^{*}, \mu_{\max }$ and $\lambda_{\mu_{\max }}$ for ARQ with Time Diversity Signaling 55
7 Generalized System Variables 60
8 Approximations with Large Values of h 62

§1 INTRODUCTION

There are two basic approaches to error control, namely Forward-Error-Correction (FEC) and Automatic-Repeat-and-Request (ARQ) schemes [1]. ARQ techniques are particularly useful for low-probability-of-intercept (LPI) communications because they allow signals to be transmitted at low signal-to-noise ratios, at the expense of multiple transmissions. However, when the number of retransmissions is very large, the probability of intercept becomes considerable. The expected number of retransmissions can be reduced by improving the channel bit error probability. One way to lower the bit error probability is to use FEC coding in addition to ARQ. The error correction coding and the error detection coding in the ARQ system may be concatenated as two separate operations [2]. They may also be combined into a so called hybrid ARQ [3]. If very low error probability is not an objective (as for non-control data here), then FEC can be used without ARQ for potential LPI improvement. This will not be investigated in this report.

There are many different ARQ schemes, the throughputs of which are well known [3]. In particular, the throughput of an ideal selective-repeat ARQ system (in data bits per channel transmitted bit) with infinite buffering is given by

$$
\begin{equation*}
\mu=\left(\frac{n}{n+h}\right) P_{c} \tag{1}
\end{equation*}
$$

where n is the length of the data block in bits, h the length of the header in bits (Including the Cyclic-Redundancy-Check bits), and P_{c} the probability that a transmitted block contains no error. It is widely known that (1) represents an upper bound on the throughput of all ARQ systems [4].

The problem of error control in LPI communications is complicated by two somewhat conflicting performance objectives, namely throughput efficiency and LPI performance. Maximizing throughput calls for a high signal-to-noise ratio. On the contrary, a high signal-to-noise ratio often leads to poor LPI performance. There is a significant trade-off between throughput efficiency and LPI performance. The above trade-off and its implications on system design for LPI communications are discussed in subsequent sections.

The basic purpose of an LPI capability is to minimize the probability that the transmitted signals are intercepted by an adversary. In [5], several types of intercept detectors for spreadspectrum signals have been described. One common intercept detector is an energy detector. The performance of an energy detector is measured by its effective post-detection signal-to-noise ratio, d, given below [5] [6].

$$
\begin{equation*}
d=G\left(\frac{E_{b} / N_{0}}{W / R_{D}}\right) \sqrt{W_{I} T} \tag{2}
\end{equation*}
$$

where T is the total time taken in seconds to transmit a given message, R_{D} the data rate in bits per second, W the bandwidth of the system in hertz, W_{I} the bandwidth of the interceptor in hertz, and E_{b} / N_{0} the average energy-to-noise ratio per data bit. G is a scenario-dependent factor [6].

A signal is said to be detectable by the interceptor if

$$
\begin{equation*}
d \geq d_{T} \tag{3}
\end{equation*}
$$

where d_{T} is the interceptor's detection threshold for given probabilities of detection and false alarm. Equivalently, a signal is detectable if

$$
\begin{equation*}
G \geq d_{T}\left(\frac{W / R_{D}}{E_{b} / N_{0}}\right) \sqrt{\frac{1}{W_{I} T}} \tag{4}
\end{equation*}
$$

Note that the detection threshold is modified by the processing gain due to modulation and coding, bandspreading, as well as a factor that is inversely proportional to \sqrt{T}. This threshold multiplier is often known as the quality factor of the LPI system. The larger the value of this quality factor, the greater the threshold that the interceptor must exceed in order to detect the signal. Let this quality factor (i.e. the threshold multiplier in (4)) be denoted by Q.

Suppose that the total length of the message is S bits, and the transmission rate is R encoded information bits per second. Let β be the expected number of transmissions of each communicated block. Then, the total time to transmit the message is

$$
\begin{equation*}
T=\beta\left(\frac{S}{n}\right)\left(\frac{n+h}{R}\right) \tag{5}
\end{equation*}
$$

But, it is easy to verify that

$$
\begin{equation*}
\beta=P_{c}+2\left(1-P_{c}\right) P_{c}+3\left(1-P_{c}\right)^{2} P_{c}+\ldots=\frac{1}{P_{c}} \tag{6}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
T=\frac{S}{\mu R} \tag{7}
\end{equation*}
$$

And, the quality factor, Q, can be written as follows.

$$
\begin{equation*}
Q=\left(\frac{W / R_{D}}{E_{b} / N_{0}}\right) \sqrt{\frac{\mu R}{W_{I} S}} \tag{8}
\end{equation*}
$$

Let x be the average energy-to-noise ratio per ARQ bit, and R_{A} be the ARQ bit rate. Then,

$$
\begin{equation*}
\left(E_{b} / N_{0}\right) R_{D}=x R_{A} \tag{9}
\end{equation*}
$$

And therefore,

$$
\begin{equation*}
Q=\frac{1}{x}\left(\frac{W}{R_{A}}\right) \sqrt{\frac{\mu R}{W_{I} S}} \tag{10}
\end{equation*}
$$

Assuming that all the variables in (10), except for μ and x, are given, we can define a corresponding LPI performance index, λ, based on the quality factor Q.

$$
\begin{equation*}
\lambda=\frac{\mu}{x^{2}} \tag{11}
\end{equation*}
$$

Note that $\sqrt{\lambda}$ is proportional to the quality factor, Q. From (1) and (11), we obtain

$$
\begin{equation*}
\lambda=\left(\frac{1}{x^{2}}\right)\left(\frac{n}{n+h}\right) P_{c} \tag{12}
\end{equation*}
$$

In general, P_{c} increases monotonically with x, with a decreasing rate. It is clear from (1) and (12) that there exists no value of x that maximizes both μ and λ simultaneously.

In practice, one cannot choose an x that is arbitrarily large.

The block length, n, can also be used to control the throughput and LPI performance of the system [7] [8] [9]. Strictly speaking, n is a positive integer. However, for mathematical simplicity, let's pretend that n is a positive real number for the subsequent analysis. It is understood that in case the analysis results in an optimal n that is not an integer, it will be replaced by its closest integral neighbor. As n is usually a large number, the above treatment is not very critical.

Let's now state the problem more precisely. Figure 1 shows the block diagram of the ARQ system we are interested in. The system consists of four abstract layers of communications, namely the Physical Layer, the Modem, the Codec and the Data Link Control. In our analysis, the forward channel in the Physical Layer is assumed to be a Rayleigh fading channel. The analytical results can readily be modified for other channels of interest. Suppose that non-coherent binary frequency-shift-keying (FSK) is used. Then, the channel bit-error-probability is given below [10],

$$
\begin{equation*}
p(x)=\frac{1}{2+\rho R_{c} x} \tag{13}
\end{equation*}
$$

where R_{c} is the FEC code rate ($R_{c}=1$ if $F E C$ is not used), and ρ is the expected value of the square of the attenuation factor associated with the fading channel. Other modulation schemes are considered in section 4.3.

Throughout this report, we assume that the Codec is separated from its adjacent layers. ARQ systems with joint coding and modulation schemes or with hybrids of Codec and Data Link Control are beyond the scope of this work. The sending and receiving terminals perform the usual functions of a Data Link Control. The feedback channel is assumed to be error-free. This can be achieved by using appropriate link level protocols.

The design objective is to jointly maximize μ and λ, with respect to x and n, subject to some practical constraints on the control variables, and possibly a reward function of μ and λ. If the constraints and the reward function are all known, the problem is just a fairly straight-forward constrained optimization problem with multiple objectives. Suppose they are not given. Let's take a look at the set of all feasible pairs of μ and λ, for all practical combinations of x and n. It will be shown in the analysis that only a subset of these pairs are potential optimal operating points. We will discover that this subset of operating points lie on a curve which dictates the trade-off between the throughput and LPI performance of the ARQ system. In addition, this curve varies with different values of ρ and the length of the header.

Figure 1

SYSTEM BLOCK DIAGRAM

We first consider the plain ARQ system. The general results are mostly applicable to the cases with FEC coding, and those with time diversity signaling, all of which will be considered in subsequent sections.

3.1 PLAIN ARQ

With neither FEC coding nor diversity signaling, $R_{c}=1$, and the probability that a transmitted block contains no error is

$$
\begin{equation*}
P_{c}=(1-p(x))^{(n+h)} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
p(x)=\frac{1}{2+\rho x} \tag{15}
\end{equation*}
$$

This assumes that errors are independent. This is true for many channels, but may not be entirely realistic for a fading channel, except when frequency hopping and interleaving are employed.

The throughput and the LPI performance index are respectively

$$
\begin{gather*}
\mu=\mu(x, n)=\left(\frac{n}{n+h}\right)(1-p(x))^{(n+h)} \tag{16}\\
\lambda=\lambda(x, n)=\left(\frac{1}{x^{2}}\right)\left(\frac{n}{n+h}\right)(1-p(x))^{(n+h)} \tag{17}
\end{gather*}
$$

Let $\left(x_{\mu}^{*}, n_{\mu}^{*}\right)$ be the pair of control variables that maximizes μ, and $\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)$ be the pair that maximizes λ. It is obvious from (15) and (16) that for $x \leq \bar{x}$,

$$
\begin{equation*}
x_{\mu}^{*}=\bar{x} \tag{18}
\end{equation*}
$$

To determine n_{μ}^{*}, we take the derivative of μ with respect to n, and set that to zero.

$$
\begin{equation*}
\left.\frac{\partial \mu}{\partial n}\right|_{n^{*}}=\left.\left[\frac{h}{n}\left(\frac{1}{n+h}\right)+\ln (1-p(x))\right] \mu\right|_{n^{*}}=0 \tag{19}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
n^{*}(x)=\frac{h}{2}\left\{-1+\sqrt{1-\left[\frac{4}{h \ln (1-p(x))}\right]}\right\} \tag{20}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\left.\frac{\partial^{2} \mu}{\partial n^{2}}\right|_{n^{*}}=-\left.\left[\frac{h}{n}\left(\frac{1}{n+h}\right)^{2}(2 n+h)\right] \mu\right|_{n^{*}}<0 \tag{21}
\end{equation*}
$$

Hence, $n^{*}(x)$ maximizes μ for the given value of x. It follows that

$$
\begin{equation*}
n_{\mu}^{*}=n^{*}(\bar{x}) \tag{22}
\end{equation*}
$$

And, the highest achievable throughput is

$$
\begin{equation*}
\mu_{\max }=\mu\left(x_{\mu}^{*}, n_{\mu}^{*}\right) \tag{23}
\end{equation*}
$$

Since λ is directly proportional to μ, with a multiplier that depends only on x, it is clear that

$$
\begin{equation*}
n_{\lambda}^{*}=n^{*}\left(x_{\lambda}^{*}\right) \tag{24}
\end{equation*}
$$

Maximizing λ with respect to x, we have

$$
\begin{equation*}
\left.\frac{\partial \lambda}{\partial x}\right|_{x^{*}}=-\left.\left\{\frac{2}{x}+(n+h)\left[\frac{1}{1-p(x)}\right] \frac{d p}{d x}\right\} \lambda\right|_{x^{*}}=0 \tag{25}
\end{equation*}
$$

Hence, $x^{*}(n)$ satisfies

$$
\begin{equation*}
-\left.\left[\frac{x}{p(x)}\left(\frac{d p}{d x}\right)\right]\right|_{x^{*}}=\left.\left(\frac{2}{n+h}\right)\left[\frac{1-p(x)}{p(x)}\right]\right|_{x^{*}} \tag{26}
\end{equation*}
$$

From (15) and (26), we obtain

$$
\begin{equation*}
(n+h) \rho x-\left.2(1+\rho x)(2+\rho x)\right|_{x^{*}}=0 \tag{27}
\end{equation*}
$$

In general, there are two roots to the above quadratic equation in x. Consider the second derivative of λ with respect to x.

$$
\begin{equation*}
\left.\frac{\partial^{2} \lambda}{\partial x^{2}}\right|_{x^{*}}=-\left.\left(\frac{2}{x^{2}}\right)\left[\frac{1}{(1+\rho x)(2+\rho x)}\right]\left[(\rho x)^{2}-2\right] \lambda\right|_{x^{*}} \tag{28}
\end{equation*}
$$

Thus, λ achieves a maximum at x^{*} if

$$
\begin{equation*}
\left(\rho x^{*}\right)^{2}>2 \tag{29}
\end{equation*}
$$

From (27), we have

$$
\begin{equation*}
x^{*}(n)=\frac{1}{4 \rho}(n+h-6)\left[1+\sqrt{1-\frac{32}{(n+h-6)^{2}}}\right] \tag{30}
\end{equation*}
$$

Note that $\lambda\left(x^{*}(n), n\right)$ is a local maximum. The global maximum is infinity at $x=0$. There is a local minimum between $x=0$ and $x=\sqrt{2} / \rho$, where ρ is in the order of 1 . Several things break down in our expression for λ when x is betwen 0 and $\sqrt{2} / \rho$. First of all, the expression for $p(x)$ breaks down over this range of x. Also, (1), which relates μ to the block error probability, breaks down. Thus, over the region of interest, $\lambda\left(x^{*}(n), n\right)$ is the only achievable maximum for a given value of n.

Figure 2 shows the LPI performance as a function of x for $n=32$ and $n=80$. In this and all subsequent examples, unless otherwise stated, h and ρ are assumed to be equal to 32 and 1 respectively.

Figure 2

LPI PERFORMANCE FOR PLAIN ARQ

The bounds defined by (37) is shown in Figure 4. Note that ($x_{\lambda}^{*}, n_{\lambda}^{*}$) is very close to a corner of the bounding region. It appears that this corner point is an excellent approximation of ($x_{\lambda}^{*}, n_{\lambda}^{*}$).

Let the above approximation of $\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)$ be $\left(\hat{x}_{\lambda}^{*}, \hat{n}_{\lambda}^{*}\right)$. It can be obtained by solving the following simultaneous equations.

$$
\begin{align*}
& n=(2 \rho x+6-h) \tag{48}\\
& n=\frac{h}{2}\left(\frac{\rho x}{1+\rho x}\right) \tag{49}
\end{align*}
$$

Thus, for $h=32$ and $\rho=1$,

$$
\begin{gather*}
\hat{x}_{\lambda}^{*}=\frac{1}{\rho}\left(\frac{3 h-6}{8}\right)\left\{1+\sqrt{1+\frac{32(h-6)}{(3 h-16)^{2}}}\right\}=20.6 \tag{50}\\
\hat{n}_{\lambda}^{*}=\left(2 \rho \hat{x}_{\lambda}^{*}+6-h\right) \approx 15 \tag{51}
\end{gather*}
$$

Recall that $\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)=(20.4,15)$. Hence, $\left(\hat{x}_{\lambda}^{*}, \hat{n}_{\lambda}^{*}\right)$ is indeed a very good approximation.

Even though (50) and (51) are explicit functions of h it is not immediately transparent how \hat{x}_{λ}^{*} and \hat{n}_{λ}^{*} vary with h. It will be even less transparent if (50) and (51) are used to derive approximations for $\mu_{\lambda_{\max }}$ and $\lambda_{\text {max }}$.

From (37), we see that n_{λ}^{*} is upper bounded by $h / 2$. We now show that n_{λ}^{*} is well approximated by

$$
\begin{equation*}
\hat{n}_{\lambda}=\frac{h}{2}=16 \tag{52}
\end{equation*}
$$

Figure 4

BOUNDS ON $\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)$ FOR PLAIN ARQ

Theorem 1.1

An approximation for n_{λ}^{*} is given by

$$
\begin{equation*}
\hat{n}_{\lambda}=\left(\frac{h}{2}\right) \tag{53}
\end{equation*}
$$

Proof of Theorem 1.1

From (30), we obtain the following lower bound on x_{λ}^{*}.

$$
\begin{equation*}
x_{\lambda}^{*} \geq \frac{1}{4 \rho}\left(n_{\lambda}^{*}+h-6\right) \geq \frac{1}{4 \rho}(h-6) \tag{54}
\end{equation*}
$$

It follows from (15) and (54) that

$$
\begin{equation*}
p\left(x_{\lambda}^{*}\right) \leq\left(\frac{4}{h+2}\right) \ll 1 \tag{55}
\end{equation*}
$$

Thus, $p\left(x_{\lambda}^{*}\right)$ tends to zero with increasing value of h.

From (15) and (44), we have

$$
\begin{equation*}
\lim _{p(x) \rightarrow 0}\{w(x)\}=\lim _{p \rightarrow 0}(1-2 p)=1 \tag{56}
\end{equation*}
$$

It can be verified that

$$
\begin{equation*}
\lim _{p \rightarrow 0}\left\{\frac{p}{-(1-p) \ln (1-p)}\right\}=1 \tag{57}
\end{equation*}
$$

From (41), (56) and (57), we obtain

$$
\begin{equation*}
\lim _{p \rightarrow 0}\{n\}=\left(\frac{h}{2}\right) \tag{58}
\end{equation*}
$$

For $x_{\lambda}^{*} \gg 2 / \rho$, and any practical value of $h, p\left(x_{\lambda}^{*}\right) \ll 1$. Hence, (53) is a good approximation for n_{λ}^{*}.

We can similarly find good approximations for $x_{\lambda}^{*}, \mu_{\lambda_{\max }}$ and $\lambda_{\max }$ respectively.

Theorem 1.2

An approximation for x_{λ}^{*} is given by

$$
\begin{equation*}
\hat{x}_{\lambda}=\frac{3}{4 \rho}(h-4) \tag{59}
\end{equation*}
$$

Proof of Theorem 1.2

From (30), (37) and (52), we have

$$
\begin{equation*}
x_{\lambda}^{*} \leq \frac{1}{4 \rho}\left(\hat{n}_{\lambda}+h-6\right)\left\{1+\sqrt{1-\frac{32}{\left(\hat{n}_{\lambda}+h-6\right)^{2}}}\right\} \tag{60}
\end{equation*}
$$

The following bound on x_{λ}^{*} is tight for $h \gg 8$.

$$
\begin{equation*}
x_{\lambda}^{*} \leq \frac{1}{2 \rho}\left(\hat{n}_{\lambda}+h-6\right)=\frac{3}{4 \rho}(h-4) \tag{61}
\end{equation*}
$$

Hence, (59) is a good approximation for x_{λ}^{*}.
Q.E.D.

Corollary 1

From (15) and Theorem 1.2, we have

$$
\begin{equation*}
p\left(x_{\lambda}^{*}\right)=\frac{1}{2+\rho x_{\lambda}^{*}} \approx \frac{1}{2+\rho \hat{x}_{\lambda}} \tag{62}
\end{equation*}
$$

And, $p\left(x_{\lambda}^{*}\right)$ is well approximated by \hat{p}_{λ} given below.

$$
\begin{equation*}
\hat{p}_{\lambda}=\frac{4}{3 h-4} \tag{63}
\end{equation*}
$$

Theorem 1.3

For $h \gg 8, \mu_{\lambda_{\max }}$ and $\lambda_{\max }$ are well approximated by $\hat{\mu}$ and $\hat{\lambda}$ respectively given below.

$$
\begin{gather*}
\hat{\mu}=\frac{1}{3}\left(\frac{3 h-8}{3 h-4}\right)^{3 h / 2} \approx \frac{1}{3 e^{2}} \ll \frac{1}{3} \tag{64}\\
\hat{\lambda}=\frac{1}{3}\left(\frac{3 h-8}{3 h-4}\right)^{3 h / 2}\left(\frac{4 \rho}{3 h-12}\right)^{2} \approx \frac{16}{27}\left(\frac{\rho}{e h}\right)^{2} \tag{65}
\end{gather*}
$$

Proof of Theorem 1.3

The proof follows from (16),(17),(52),(59),(63) and a well-known fact that $\lim _{t \rightarrow 0}(1+t)^{1 / t}=e$.
Q.E.D.

We conclude from the above Theorems that both x_{λ}^{*} and n_{λ}^{*} increase approximately linearly with h. The approximations in (64) and (65), plotted against $\log _{2}(h)$, are shown in Figures 5 and 6 respectively. The locus of the point, ($\mu_{\lambda_{\max }}, \lambda_{\max }$), for various values of h is shown in Figure 7. Taking into consideration that the approximations are good for $h \gg 8$, we can expect that $\lambda_{\text {max }}$ decreases with the length of the header while $\mu_{\lambda_{\max }}$ depends only slightly on it.

The true values and corresponding approximations for $x_{\lambda}^{*}, n_{\lambda}^{*}, \mu_{\lambda_{\max }}$ and $\lambda_{\max }$ are summarized in Table 1 for comparison. Evidently, the approximations are very good.

Table 1

Results for Plain ARQ			
x_{λ}^{*}	20.4	\hat{x}_{λ}	21
n_{λ}^{*}	15	\hat{n}_{λ}	16
$\mu_{\lambda_{\max }}$	0.0373	$\hat{\mu}$	0.0395
$\lambda_{\max }$	$8.96 * 10^{-5}$	$\hat{\lambda}$	$8.95 * 10^{-5}$

Figure 5

APPROXIMATE $\mu_{\lambda_{\max }}$ FOR PLAIN ARQ

Figure 6

APPROXIMATE $\lambda_{\max }$ FOR PLAIN ARQ

Figure 7

APPROXIMATE LOCUS OF $\left(\mu_{\lambda_{\max }}, \lambda_{\max }\right)$ FOR PLAIN ARQ

We have so far obtained two operating points, namely ($\mu_{\max }, \lambda_{\mu_{\max }}$) and ($\mu_{\lambda_{\max }}, \lambda_{\max }$). When neither throughput nor LPI performance dominates the overall system design objectives, these operating points may not be optimal. We now show that all the potential optimal operating points belong to a small subset, known as the Efficiency Frontier.

Recall that

$$
\begin{equation*}
\lambda=\left(\frac{1}{x^{2}}\right) \mu \tag{66}
\end{equation*}
$$

With a fixed value of x, λ varies linearly with μ for different values of n. Figure 8 shows a family of Iso-x lines. The tip of each Iso-x line corresponds to the operating point with $\mu=\mu\left(x, n^{*}(x)\right)$ and $\lambda=\lambda\left(x, n^{*}(x)\right)$. For a fixed value of n, one can also vary x to trace out an Iso-n curve. As pointed out earlier, we ignore the range of x up to $\sqrt{2} / \rho$ since our model breaks down over this range. Figure 9 shows a family of Iso-n curves.

In Figure 10, the two families of curves are put together. For obvious reasons, the envelope joining A, B and C is called the Efficiency Frontier. Any point that is not on this frontier is not efficient because one can increase either μ or λ without decreasing the other. The Efficiency Frontier describes the trade-off between throughput and LPI performance. It is easily obtained by joining the tips of all the Iso-x lines for x between x_{λ}^{*} and \bar{x}.

A civilian user who cares only about throughput will operate at point C. When LPI performance is the primary concern, point A is the optimal operating point. Suppose that the reward function of μ and λ is

$$
\begin{equation*}
J(\mu, \lambda)=\min (\theta \mu, \lambda) \tag{67}
\end{equation*}
$$

where $\theta \geq 0$ and increasing θ indicates increasing LPI performance requirement relative to throughput efficiency. Then, point B, as shown in Figure 10, is the optimal operating point.

The Efficiency Frontier for the plain ARQ system is shown in Figure 11. It clearly shows that good LPI performance can be achieved at the expense of throughput efficiency.

Figure 8

ISO-X LINES

Figure 9

ISO-N CURVES

Figure 10

TRADE-OFF BETWEEN THROUGHPUT \& LPI PERFORMANCE

Figure 11

THE EFFICIENCY FRONTIER FOR PLAIN ARQ

3.2 ARQ WITH BLOCK CODING

We have learned that without FEC coding, one cannot simultaneously achieve a good LPI performance and any reasonable throughput. We now consider the case with block coding.

The block diagram in Figure 1 is still applicable. The encoder receives ARQ blocks of $(n+h)$ bits, divides them into FEC blocks of K bits, and then encodes them at a rate of R_{c}. In this case, the probability that an ARQ block contains no error is given by

$$
\begin{equation*}
P_{c}=(1-\xi(x))^{(n+h) / K} \tag{68}
\end{equation*}
$$

where $\xi(x)$ denotes the FEC block error probability. The throughput efficiency and LPI index are respectively

$$
\begin{gather*}
\mu=R_{c}\left(\frac{n}{n+h}\right)(1-\xi(x))^{(n+h) / K} \tag{69}\\
\lambda=\left(\frac{1}{x^{2}}\right) R_{c}\left(\frac{n}{n+h}\right)(1-\xi(x))^{(n+h) / K} \tag{70}
\end{gather*}
$$

We can also go through a similar analysis as before, and obtain the following results.
(a) $\mu_{\max }=\mu\left(x_{\mu}^{*}, n_{\mu}^{*}\right)=\mu\left(\bar{x}, n^{*}(\bar{x})\right)$
(b) $\lambda_{\max }=\lambda\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)$ where $\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)$ solves the simultaneous equations,

$$
n=n^{*}(x) \quad \text { and } \quad x=x^{*}(n)
$$

(c)

$$
\begin{equation*}
n^{*}(x)=\frac{h}{2}\left\{-1+\sqrt{1-\left[\frac{4 K}{h \ln (1-\xi(x))}\right]}\right\} \tag{71}
\end{equation*}
$$

(d) $x^{*}(n)$ satisfies

$$
\begin{equation*}
-\left.\left[\frac{x}{\xi(x)}\left(\frac{d \xi}{d x}\right)\right]\right|_{x^{*}}=\left.\left(\frac{2 K}{n+h}\right)\left[\frac{1-\xi(x)}{\xi(x)}\right]\right|_{x^{*}} \tag{72}
\end{equation*}
$$

(e) $\lambda_{\mu_{\text {mas }}}=\lambda\left(x_{\mu}^{*}, n_{\mu}^{*}\right)$
(f) $\mu_{\lambda_{\max }}=\mu\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)$

Lemma 2

An upper bound on n_{λ}^{*} is given by

$$
\begin{equation*}
n_{\lambda}^{*} \leq\left. h\left\{\frac{1}{2} w(x)\left[\frac{1}{1-\xi(x)}\right]\right\}\right|_{x_{\lambda}^{*}} \tag{73}
\end{equation*}
$$

where

$$
\begin{equation*}
w(x)=-\left[\frac{x}{\xi(x)}\left(\frac{d \xi}{d x}\right)\right] \tag{74}
\end{equation*}
$$

Proof of Lemma 2

The proof follows from the steps outlined in (38) through (43) in the proof of Lemma 1.
Q.E.D.

In general, there is no closed form expression for $\xi(x)$. We will approximate $\xi(x)$ by an upper bound. Suppose that soft-decision decoding is used on a Rayleigh fading channel. Then, the block error probability for any linear block code is upper bounded as follows [10].

$$
\begin{equation*}
\xi(x) \leq \sum_{d=d_{m i n}}^{L} N_{d}\binom{2 d-1}{d}(p(x))^{d}=\hat{\xi}(x) \tag{75}
\end{equation*}
$$

where $L=\left(K / R_{c}\right), N_{d}$ is the number of codewords with weight $d, d_{m i n}$ is the minimum weight of the chosen block code, and

$$
\begin{equation*}
p(x)=\frac{1}{2+\rho R_{c} x} \tag{76}
\end{equation*}
$$

is the bit error probability for the channel.

Using $\hat{\xi}(x)$ as an approximation to $\xi(x)$, we obtain an approximation of $w(x)$, which is given below.

$$
\begin{equation*}
\hat{w}(x)=\frac{g(x)}{\hat{\xi}(x)}\left(\frac{\rho R_{c} x}{2+\rho R_{c} x}\right) \tag{77}
\end{equation*}
$$

where

$$
\begin{equation*}
g(x)=\sum_{d=d_{\min }}^{L} d N_{d}\binom{2 d-1}{d}(p(x))^{d} \tag{78}
\end{equation*}
$$

The bound in (73) becomes

$$
\begin{equation*}
n_{\lambda}^{*} \leq\left. h\left\{\frac{1}{2} g(x)\left[\frac{1}{\hat{\xi}(x)(1-\hat{\xi}(x))}\right]\left(\frac{\rho R_{c} x}{2+\rho R_{c} x}\right)\right\}\right|_{x_{\lambda}^{*}} \tag{79}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\frac{g(x)}{\hat{\xi}(x)} \geq d_{\min } \tag{80}
\end{equation*}
$$

In the practical range of x, the bound in (80) is tight. And, from (77) and (80)

$$
\begin{equation*}
\hat{w}(x) \geq d_{\min }\left(\frac{\rho R_{c} x}{2+\rho R_{c} x}\right) \approx d_{\min } \tag{81}
\end{equation*}
$$

Theorem 2.1

An approximation for n_{λ}^{*} is given by

$$
\begin{equation*}
\hat{n}_{\lambda}=h\left(\frac{d_{\min }}{2}\right) \tag{82}
\end{equation*}
$$

Proof of Theorem 2.1

For $x_{\lambda}^{*} \gg 2 /\left(\rho R_{c}\right), \hat{\xi}\left(x_{\lambda}^{*}\right) \ll 1$. The proof then follows from (73) and (81).
Q.E.D.

Theorem 2.2

An approximation for x_{λ}^{*} is given by

$$
\begin{equation*}
\hat{x}_{\lambda}=\xi^{-1}\left(\hat{\xi}_{\lambda}\right) \tag{83}
\end{equation*}
$$

where $\xi^{-1}(*)$ stands for the inverse of the function $\xi(*)$, and

$$
\begin{equation*}
\hat{\xi}_{\lambda}=\left\{\frac{4 K}{h\left(d_{\min }+2\right) d_{\min }+4 K}\right\} \tag{84}
\end{equation*}
$$

is an approximation for $\xi\left(x_{\lambda}^{*}\right)$.

Proof of Theorem 2.2

The proof follows from (72), (74) and (81), using \hat{n}_{λ} in place of n_{λ}^{*}.

Theorem 2.3

$\mu_{\lambda_{\max }}$ and $\lambda_{\max }$ are well approximated by $\hat{\mu}$ and $\hat{\lambda}$ respectively given below.

$$
\begin{gather*}
\hat{\mu}=R_{c}\left(\frac{d_{\min }}{d_{\min }+2}\right)\left\{\frac{h\left(d_{\min }+2\right) d_{\min }}{h\left(d_{\min }+2\right) d_{\min }+4 K}\right\}^{\left(d_{\min }+2\right) h /(2 K)} \ll R_{c}\left(\frac{d_{\min }}{d_{\min }+2}\right) \tag{85}\\
\hat{\lambda}=\hat{\mu}\left\{\xi^{-1}\left[\frac{4 K}{h\left(d_{\min }+2\right) d_{\min }+4 K}\right]\right\}^{-2} \tag{86}
\end{gather*}
$$

Proof of Theorem 2.3

The proof follows from (69), (70), (82), (83) and (84).

> Q.E.D.

Let's consider the Golay $(24,12)$ block code as an example. The set of values of d, N_{d}, and $\binom{2 d-1}{d}$ are shown in Table 2 [10].

Table 2

Golay(24,12) Block Code		
d	N_{d}	$\binom{2 d-1}{d}$
0	1	1
8	759	6435
12	2576	$1.4 * 10^{6}$
16	759	$3.0 * 10^{8}$
24	1	$1.6 * 10^{13}$

Figure 12 shows the intersection of the two curves, $n^{*}(x)$ and $x^{*}(n)$, for $h=32$ and $\rho=1$. The upper bound on n_{λ}^{*} is also shown in the same figure. The true values and corresponding approximations for $x_{\lambda}^{*}, n_{\lambda}^{*}, \mu_{\lambda_{\max }}$ and $\lambda_{\max }$ are summarized in Table 3.

Table 3

Results for ARQ with Golay(24,12) Block Code			
x_{λ}^{*}	17.6	\hat{x}_{λ}	16.5
n_{λ}^{*}	105	\hat{n}_{λ}	128
$\mu_{\lambda_{\max }}$	0.2820	$\hat{\mu}$	0.3122
$\lambda_{\max }$	$9.10 * 10^{-4}$	$\hat{\lambda}$	$11.47 * 10^{-5}$

Suppose that $\bar{x}=40$. Then, we have $\left(x_{\mu}^{*}, n_{\mu}^{*}\right)=(40,2058)$. And,

$$
\begin{gather*}
\mu_{\max }=0.4847 \tag{87}\\
\lambda_{\mu_{\max }}=3.02 * 10^{-4} \tag{88}
\end{gather*}
$$

Comparing these results with those for the case without FEC coding (See (39),(34),(35) and $(96))$, we find that the $\operatorname{Golay}(24,12)$ block code improves the system performance by an order of magnitude. Figure 13 shows the Efficiency Frontier for the case with Golay $(24,12)$ block code.

Figure 12

$\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)$ FOR ARQ WITH GOLAY $(24,12)$ BLOCK CODE

Figure 13

THE EFFICIENCY FRONTIER FOR ARQ WITH GOLAY $(24,12)$ BLOCK CODE

3.3 ARQ WITH CONVOLUTIONAL CODING

We now consider the case with convolutional coding. In this case, the encoder accepts blocks of ($n+h$) bits, and encodes the whole block using convolutional codes. Strictly speaking, a truncation tail may have to be appended to each block. Nevertheless, we will ignore this for it is usually very short compared to the length of the blocks, and does not affect the results very much.

Let $P_{2}(d)$ be the probability of error in the pairwise comparison of two paths which differ in d bits. Let a_{d} be the number of paths, of distance d from the all-zero path, which merge with the all-zero path for the first time. It is widely known that the first-event error probability, ϵ, is bounded as follows. [10]

$$
\begin{equation*}
\epsilon \leq \sum_{d=d_{f}}^{\infty} a_{d} P_{2}(d) \tag{89}
\end{equation*}
$$

where d_{f} is the free distance of the chosen convolutional code. Suppose that soft-decision decoding is used. Then, $P_{2}(d)$ is bounded as follows.

$$
\begin{equation*}
P_{2}(d) \leq(4 p(x)(1-p(x)))^{d} \tag{90}
\end{equation*}
$$

where $p(x)$ is given in (76).

From (89) and (90), we have

$$
\begin{equation*}
\epsilon(x) \leq \sum_{d=d_{f}}^{\infty} a_{d}(4 p(x)(1-p(x)))^{d}=\hat{\epsilon}(x) \tag{91}
\end{equation*}
$$

The above expression can also be written in terms of the generating sequence, $T(D)$.

$$
\begin{equation*}
T(D)=\sum_{d=d_{f}}^{\infty} a_{d} D^{d} \tag{92}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\hat{\epsilon}(x)=\left.T(D)\right|_{D=4 p(x)[1-p(x)]} \tag{93}
\end{equation*}
$$

Note that $\hat{\epsilon}(*)$ can be expressed as a function of x, p or D.

Given a block of $(n+h)$ bits, the probability of error is bounded as follows.

$$
\begin{equation*}
\varepsilon(x) \leq(n+h) \epsilon(x) \leq(n+h) \hat{\epsilon}(x)=\hat{\varepsilon}(x) \tag{94}
\end{equation*}
$$

Obviously, the above bound is useful only when

$$
\begin{equation*}
\hat{\epsilon}(x) \leq\left(\frac{1}{n+h}\right) \tag{95}
\end{equation*}
$$

From here on, we will use $\hat{\epsilon}(x)$ and $\hat{\varepsilon}(x)$ to approximate ϵ and ε respectively. For convenience, the hats will be dropped. And, no effort is made to distinguish between equality and approximate equality.

The probability that a transmitted block contains no error is

$$
\begin{equation*}
P_{c}=(1-\varepsilon(x))=(1-(n+h) \epsilon(x)) \tag{96}
\end{equation*}
$$

Hence, the throughput and the LPI index are respectively

$$
\begin{gather*}
\mu=R_{c}\left(\frac{n}{n+h}\right)(1-(n+h) \epsilon(x)) \tag{97}\\
\lambda=\left(\frac{1}{x^{2}}\right) R_{c}\left(\frac{n}{n+h}\right)(1-(n+h) \epsilon(x)) \tag{98}
\end{gather*}
$$

A similar analysis as before yields the following results.
(a) $\mu_{\max }=\mu\left(x_{\mu}^{*}, n_{\mu}^{*}\right)=\mu\left(\bar{x}, n^{*}(\bar{x})\right)$.
(b) $\lambda_{\max }=\lambda\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)$ where $\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)$ solves the simultaneous equations,

$$
n=n^{*}(x) \quad \text { and } \quad x=x^{*}(n)
$$

(c)

$$
\begin{equation*}
n^{*}(x)=h\left\{-1+\sqrt{\frac{1}{h \epsilon(x)}}\right\} \tag{99}
\end{equation*}
$$

(d) $x^{*}(n)$ satisfies

$$
\begin{equation*}
-\left.\left[\frac{x}{\epsilon(x)} \frac{d \epsilon}{d x}\right]\right|_{x^{*}}=\left.\frac{2\{1-(n+h) \epsilon(x)\}}{(n+h) \epsilon(x)}\right|_{x^{*}} \tag{100}
\end{equation*}
$$

(e) $\lambda_{\mu_{\text {maz }}}=\lambda\left(x_{\mu}^{*}, n_{\mu}^{*}\right)$
(f) $\mu_{\lambda_{\max }}=\mu\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)$

Lemma 3

A lower bound for n_{λ}^{*} is given by

$$
\begin{equation*}
n_{\lambda}^{*}=h\left\{w\left(x_{\lambda}^{*}\right) / 2\right\} \geq h\left\{\delta\left(x_{\lambda}^{*}\right) d_{f} / 2\right\} \tag{101}
\end{equation*}
$$

where

$$
\begin{equation*}
w(x)=-\left[\frac{x}{\epsilon(x)}\left(\frac{d \epsilon}{d x}\right)\right]=-\left[\frac{x}{D}\left(\frac{d D}{d x}\right)\right]\left\{\frac{\sum d a_{d} D^{d}}{\sum a_{d} D^{d}}\right\} \tag{102}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta(x)=-\left[\frac{x}{D}\left(\frac{d D}{d x}\right)\right]=\left(\frac{\rho R_{c} x}{2+\rho R_{c} x}\right)\left(\frac{\rho R_{c} x}{1+\rho R_{c} x}\right) \tag{103}
\end{equation*}
$$

Proof of Lemma 3

From (99), we have

$$
\begin{equation*}
\left.((n+h) \epsilon(x))\right|_{n^{*}}=\left.\left(\frac{h}{n+h}\right)\right|_{n^{*}} \tag{104}
\end{equation*}
$$

From (100) and (102), we have

$$
\begin{equation*}
\left.((n+h) \epsilon(x))\right|_{x^{*}}=\left.\left[\frac{2}{w(x)+2}\right]\right|_{x^{*}} \tag{105}
\end{equation*}
$$

Combining (104) and (105), we obtain

$$
\begin{equation*}
n_{\lambda}^{*}=h\left\{w\left(x_{\lambda}^{*}\right) / 2\right\} \tag{106}
\end{equation*}
$$

From (102), we have

$$
\begin{equation*}
w(x) \geq \delta(x) d_{f} \tag{107}
\end{equation*}
$$

The inequality in (107) is due to the fact that

$$
\begin{equation*}
\sum_{d=d_{f}}^{\infty} d a_{d} D^{d} \geq \sum_{d=d_{f}}^{\infty} d_{f} a_{d} D^{d} \tag{108}
\end{equation*}
$$

Finally, the expressions in (106) and (107) imply

$$
\begin{equation*}
n_{\lambda}^{*} \geq h\left\{\delta\left(x_{\lambda}^{*}\right) d_{f} / 2\right\} \tag{109}
\end{equation*}
$$

Theorem 3.1

An approximation for n_{λ}^{*} is given by

$$
\begin{equation*}
\hat{n}_{\lambda}=h\left(\frac{d_{f}}{2}\right) \tag{110}
\end{equation*}
$$

Proof of Theorem 3.1

From (103), we know that $\delta(x)$ approaches 1 with increasing value of x. Equation (110) then follows from (109) by letting $\delta\left(x_{\lambda}^{*}\right)=1$.
Q.E.D.

Theorem 3.2

An approximation for x_{λ}^{*} is given by

$$
\begin{equation*}
\hat{x}_{\lambda}=\epsilon^{-1}\left(\hat{\epsilon}_{\lambda}\right) \tag{111}
\end{equation*}
$$

where $\epsilon^{-1}(*)$ stands for the inverse of the function $\epsilon(*)$, and

$$
\begin{equation*}
\hat{\epsilon}_{\lambda}=\frac{1}{h}\left(\frac{2}{d_{f}+2}\right)^{2} \tag{112}
\end{equation*}
$$

Proof of Theorem 3.2

For $x_{\lambda}^{*} \gg 2 /\left(\rho R_{c}\right), D \ll 1$, and we have

$$
\begin{equation*}
w(x) \approx \frac{\sum d a_{d} D^{d}}{\sum a_{d} D^{d}} \approx d_{f} \tag{113}
\end{equation*}
$$

The proof then follows from (105), (110) and (113). Alternatively, it can also be derived from (104) and (110).

Theorem 3.3

$\mu_{\lambda_{\max }}$ and $\lambda_{\max }$ are well approximated by $\hat{\mu}$ and $\hat{\lambda}$ respectively given below.

$$
\begin{gather*}
\hat{\mu}=R_{c}\left(\frac{d_{f}}{d_{f}+2}\right)^{2} \tag{114}\\
\hat{\lambda}=\hat{\mu}\left\{\epsilon^{-1}\left[\frac{1}{h}\left(\frac{2}{d_{f}+2}\right)\right]\right\}^{-2} \tag{115}
\end{gather*}
$$

Proof of Theorem 3.3

The proof follows from (97), (98), (110), (111) and (112).
Q.E.D.

As an example, consider the rate $1 / 2$ convolutional code with $d_{f}=5$ and the following generating sequence. [11]

$$
\begin{equation*}
T(D)=\left(\frac{D^{5}}{1-2 D}\right) \tag{116}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\epsilon(x)=\left.\left(\frac{D^{5}}{1-2 D}\right)\right|_{D=4 p(x)[1-p(x)]} \tag{117}
\end{equation*}
$$

It can be verified that

$$
\begin{equation*}
\sum_{d=d_{f}}^{\infty} d a_{d} D^{d}=D\left(\frac{d T}{d D}\right)=\left(\frac{5-8 D}{1-2 D}\right) T(D) \tag{118}
\end{equation*}
$$

It follows from (102), (92) and (118) that

$$
\begin{equation*}
w(x)=\left.\delta(x)\left(\frac{5-8 D}{1-2 D}\right)\right|_{D=4 p(x)[1-p(x)]} \tag{119}
\end{equation*}
$$

where $\delta(x)$ is given in (103).

Figure 14 shows the intersection between $n^{*}(x)$ and $x^{*}(n)$. The lower bound on n_{λ}^{*} is also included in the graph. The true values and corresponding approximations for $x_{\lambda}^{*}, n_{\lambda}^{*}, \mu_{\lambda_{\max }}$ and $\lambda_{\max }$ are summarized in Table 4.

Table 4

Results for ARQ with Convolutional Coding			
x_{λ}^{*}	24.2	\hat{x}_{λ}	24.8
n_{λ}^{*}	77	\hat{n}_{λ}	80
$\mu_{\lambda_{\max }}$	0.2496	$\hat{\mu}$	0.2551
$\lambda_{\max }$	$4.26 * 10^{-4}$	$\hat{\lambda}$	$4.15 * 10^{-4}$

Suppose that $\bar{x}=40$. Then, $\left(x_{\mu}^{*}, n_{\mu}^{*}\right)=(40,332)$. It follows that

$$
\begin{gather*}
\mu_{\max }=0.4228 \tag{120}\\
\lambda_{\mu_{\max }}=2.64 * 10^{-4} \tag{121}
\end{gather*}
$$

Again, the above example shows that with FEC coding, the system performance can be improved by an order of magnitude. Without FEC coding, the system performance is often not acceptable.

Figure 15 shows the Efficiency Frontier for the case with the rate $1 / 2$ convolutional code.

Figure 14
$\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)$ FOR ARQ WITH CONVOLUTIONAL CODING

Figure 15

THE EFFICIENCY FRONTIER FOR ARQ WITH CONVOLUTIONAL CODING

3.4 ARQ WITH TIME DIVERSITY SIGNALING

To complete the analysis, we now look at the case with time diversity signaling of order V. When non-coherent orthogonal binary FSK with square-law combining is used, the bit error probability for $x \gg V / \rho$ is given below. [10, formula 7.4.35]

$$
\begin{equation*}
\varphi(x) \approx\left(\frac{V}{\rho x}\right)^{V}\binom{2 V-1}{V} \tag{122}
\end{equation*}
$$

where V is a positive integer.

When $V=1$, this case degenerates to the plain ARQ system. Equations (122) and (15) are, however, not exactly the same because (122) is an approximation of the actual channel bit-errorprobability.

The throughput and LPI index are respectively

$$
\begin{gather*}
\mu=\left(\frac{1}{V}\right)\left(\frac{n}{n+h}\right)(1-\varphi(x))^{(n+h)} \tag{123}\\
\lambda=\left(\frac{1}{x^{2}}\right)\left(\frac{1}{V}\right)\left(\frac{n}{n+h}\right)(1-\varphi(x))^{(n+h)} \tag{124}
\end{gather*}
$$

Again, a similar analysis as before leads to the following results.
(a) $\mu_{\text {max }}=\mu\left(x_{\mu}^{*}, n_{\mu}^{*}\right)=\mu\left(\bar{x}, n^{*}(\bar{x})\right)$
(b) $\lambda_{\max }=\lambda\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)$ where $\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)$ solves the simultaneous equations,

$$
n=n^{*}(x) \quad \text { and } \quad x=x^{*}(n)
$$

(c)

$$
\begin{equation*}
n^{*}(x)=\frac{h}{2}\left\{-1+\sqrt{1-\left[\frac{4}{h \ln (1-\varphi(x))}\right]}\right\} \tag{125}
\end{equation*}
$$

(d) $x^{*}(n)$ satisfies

$$
\begin{equation*}
-\left.\left[\frac{x}{\varphi(x)}\left(\frac{d \varphi}{d x}\right)\right]\right|_{x^{*}}=\left.\left(\frac{2}{n+h}\right)\left[\frac{1-\varphi(x)}{\varphi(x)}\right]\right|_{x^{*}} \tag{126}
\end{equation*}
$$

(e) $\lambda_{\mu_{\text {max }}}=\lambda\left(x_{\mu}^{*}, n_{\mu}^{*}\right)$
(f) $\mu_{\lambda_{\text {max }}}=\mu\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)$

Lemma 4

An upper bound for n_{λ}^{*} is given by

$$
\begin{equation*}
n_{\lambda}^{*} \leq\left. h\left\{\frac{1}{2} w(x)\left[\frac{1}{1-\varphi(x)}\right]\right\}\right|_{x_{\lambda}^{*}} \tag{127}
\end{equation*}
$$

where

$$
\begin{equation*}
w(x)=-\left[\frac{x}{\varphi(x)} \frac{d \varphi}{d x}\right]=V \tag{128}
\end{equation*}
$$

Proof of Lemma 4

The proof follows from the steps outlined in (38) through (43) in the proof of Lemma 1.

> Q.E.D.

Theorem 4.1

An approximation for n_{λ}^{*} is given by

$$
\begin{equation*}
\hat{n}_{\lambda}=h\left(\frac{V}{2}\right) \tag{129}
\end{equation*}
$$

Proof of Theorem 4.1

The bound in (127) tends to $h(V / 2)$ with decreasing $\varphi\left(x_{\lambda}^{*}\right)$. For $x_{\lambda}^{*} \gg V / \rho, \varphi\left(x_{\lambda}^{*}\right) \ll 1$. From (125), (126) and (128), we obtain

$$
\begin{equation*}
n=h\left(\frac{V}{2}\right)\left\{\frac{\varphi(x)}{-(1-\varphi(x)) \ln (1-\varphi(x))}\right\} \tag{130}
\end{equation*}
$$

It can be verified that

$$
\begin{equation*}
\lim _{\varphi \rightarrow 0}\left\{\frac{\varphi}{-(1-\varphi) \ln (1-\varphi)}\right\}=1 \tag{131}
\end{equation*}
$$

Hence, (129) is a good approximation for n_{λ}^{*}.
Q.E.D.

Theorem 4.2

An approximation for x_{λ}^{*} is given by

$$
\begin{equation*}
\hat{x}_{\lambda}=\varphi^{-1}\left(\hat{\varphi}_{\lambda}\right)=\frac{V}{\rho}\left\{\binom{2 V-1}{V}\left[\frac{V(V+2) h+4}{4}\right]\right\}^{1 / V} \tag{132}
\end{equation*}
$$

where $\varphi^{-1}(*)$ stands for the inverse of the function $\varphi(*)$, and

$$
\begin{equation*}
\hat{\varphi}_{\lambda}=\left\{\frac{4}{V(V+2) h+4}\right\} \tag{133}
\end{equation*}
$$

Proof of Theorem 4.2

The proof follows from (126), (128) and (129).
Q.E.D.

Theorem 4.3

$\mu_{\lambda_{\max }}$ and $\lambda_{\max }$ are well approximated by $\hat{\mu}$ and $\hat{\lambda}$ respectively given below.

$$
\begin{equation*}
\hat{\mu}=\left(\frac{1}{V+2}\right)\left\{\frac{V(V+2) h}{V(V+2) h+4}\right\}^{(V+2) h / 2} \ll \frac{1}{V+2} \tag{134}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\lambda}=\hat{\mu}\left(\frac{\rho}{V}\right)^{2}\left\{\binom{2 V-1}{V} \frac{V(V+2) h+4}{4}\right\}^{-2 / V} \tag{135}
\end{equation*}
$$

Proof of Theorem 4.3

The proof follows from (123), (124), (129), (132) and (133).
Q.E.D.

The intersections of $n^{*}(x)$ and $x^{*}(n)$ for $V=2, V=4$ and $V=8$ are shown in Figures 16,17 and 18 respectively. In each of the three figures, the upper bound on n_{λ}^{*} is also included.

Figure 16
$\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)$ FOR ARQ WITH 2-DIVERSITY SIGNALING

Figure 17
$\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)$ FOR ARQ WITH 4-DIVERSITY SIGNALING

Figure 18
$\left(x_{\lambda}^{*}, n_{\lambda}^{*}\right)$ FOR ARQ WITH 8-DIVERSITY SIGNALING

The true values and corresponding approximations for $x_{\lambda}^{*}, n_{\lambda}^{*}, \mu_{\lambda \max }$ and $\lambda_{\max }$ are summarized in Table 5. We see that, within round-up errors, the approximations are indeed very good.

Table 5

Results for ARQ with Time Diversity Signaling			
V	2	4	8
x_{λ}^{*}	27.9	36.3	53.7
n_{λ}^{*}	32	64	128
$\mu_{\lambda_{\operatorname{maz}}}$	0.0925	0.1014	0.0778
$\lambda_{\max }$	$11.88 * 10^{-5}$	$7.71 * 10^{-5}$	$2.70 * 10^{-5}$
\hat{x}_{λ}	27.9	36.3	53.7
\hat{n}_{λ}	32	64	128
$\hat{\mu}$	0.0927	0.1012	0.0779
$\hat{\lambda}$	$11.89 * 10^{-5}$	$7.70 * 10^{-5}$	$2.70 * 10^{-5}$

Suppose that $\bar{x}=40$. Then, we obtain $x_{\mu}^{*}, n_{\mu}^{*}, \mu_{\max }$ and $\lambda_{\mu_{\max }}$ as shown in Table 6.

Table 6

$x_{\mu}^{*}, n_{\mu}^{*}, \mu_{\max }$ and $\lambda_{\mu_{\max }}$ for ARQ with Time Diversity Signaling			
V	2	4	8
x_{μ}^{*}	40	40	40
n_{μ}^{*}	51	81	31
$\mu_{\max }$	0.1645	0.1206	0.0216
$\lambda_{\mu_{\max }}$	$10.28 * 10^{-5}$	$7.54 * 10^{-5}$	$1.35 * 10^{-5}$

Figure 19

THE EFFICIENCY FRONTIER FOR ARQ WITH 2-DIVERSITY SIGNALING

Figure 20

THE EFFICIENCY FRONTIER FOR ARQ WITH 4-DIVERSITY SIGNALING

Figure 21

THE EFFICIENCY FRONTIER FOR ARQ WITH 8-DIVERSITY SIGNALING

In this section, we summarize the analytical results presented in the previous sections. We also present some numerical results for various levels of channel attenuation and length of the header.

4.1 GENERAL FORMULATION

All the cases analyzed in the previous sections share a common general formulation. We now attempt to recapture all the important features of the models in a general framework. We will not explicitly include the operating point with maximum throughput since it can be obtained from the Efficiency Frontier.

With reference to Table 7, we have the following results.
(a) The generalized throughput is

$$
\begin{equation*}
\mu=R_{o}\left(\frac{n}{n+h}\right)(1-\sigma(n) \phi(x))^{l(n)} \tag{136}
\end{equation*}
$$

(b) The generalized LPI index is

$$
\begin{equation*}
\lambda=\left(\frac{1}{x^{2}}\right) R_{o}\left(\frac{n}{n+h}\right)(1-\sigma(n) \phi(x))^{l(n)} \tag{137}
\end{equation*}
$$

(c) $n^{*}(x)$, the optimal n given x, satisfies

$$
\begin{equation*}
\frac{1}{\gamma(n)}\left(\frac{h}{n+h}\right)=-\ln (1-\phi(x)) \tag{138}
\end{equation*}
$$

(Note that (138) is only an approximation for the case with convolutional coding. It is a reasonably good approximation over the range of x where $\phi(x) \ll 1$.)
(d) $x^{*}(n)$, the optimal x given n, satisfies

$$
\begin{equation*}
\phi(x)=\frac{1}{\sigma(n)}\left\{\frac{2}{l(n) w(x)+2}\right\} \tag{139}
\end{equation*}
$$

where

$$
\begin{equation*}
w(x)=-\left\{\frac{x}{\phi(x)} \frac{d \phi}{d x}\right\} \tag{140}
\end{equation*}
$$

(e) An approximation for n_{λ}^{*} is

$$
\begin{equation*}
\hat{n}_{\lambda}=h\left(\frac{\hat{w}}{2}\right) \tag{141}
\end{equation*}
$$

where \hat{w} is an approximation for $w(x)$.
(f) An approximation for x_{λ}^{*} is

$$
\begin{equation*}
\hat{x}_{\lambda}=\phi^{-1}\left\{\hat{\phi}_{\lambda}\right\} \tag{142}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\phi}_{\lambda}=\frac{1}{\sigma\left(\hat{n}_{\lambda}\right)}\left\{\frac{2}{l\left(\hat{n}_{\lambda}\right) \hat{w}+2}\right\} \tag{143}
\end{equation*}
$$

(g) An approximation for $\mu_{\lambda_{m a z}}$ is

$$
\begin{equation*}
\hat{\mu}=R_{o}\left(\frac{\hat{w}}{\hat{w}+2}\right)\left\{\frac{l\left(\hat{n}_{\lambda}\right) \hat{w}}{l\left(\hat{n}_{\lambda}\right) \hat{w}+2}\right\}^{l\left(\hat{n}_{\lambda}\right)} \ll R_{o}\left(\frac{\hat{w}}{\hat{w}+2}\right) \tag{144}
\end{equation*}
$$

(h) An approximation for $\lambda_{\max }$ is

$$
\begin{equation*}
\hat{\lambda}=\hat{\mu}\left\{\phi^{-1}\left[\frac{1}{\sigma\left(\hat{n}_{\lambda}\right)}\left(\frac{2}{l\left(\hat{n}_{\lambda}\right) \hat{w}+2}\right)\right]\right\}^{-2} \tag{145}
\end{equation*}
$$

Table 7

Generalized System Variables					
Variables	No FEC	Block	Convolutional	Diversity	
R_{o}	1	R_{c}	R_{c}	$1 / V$	
$\phi(x)$	$p(x)$	$\xi(x)$	$\epsilon(x)$	$\varphi(x)$	
$\sigma(n)$	1	1	$(n+h)$	1	
$l(n)$	$(n+h)$	$(n+h) / K$	1	$(n+h)$	
$\gamma(n)$	n	n / K	$(n+h)$	n	
\hat{w}	1	$d_{\min }$	d_{f}	V	

It is interesting to observe that \hat{w}, the approximation for $w(x)$, plays an important role in the approximate solutions. Moreover, it is clearly a measure of the minimum distance between transmitted words of the ARQ systems.

4.2 APPROXIMATIONS WITH LARGE VALUES OF h

For sufficiently large values of h, we further have the approximations shown in Table 8. In particular, as h tends to infinity, the approximation for $\mu_{\lambda_{\text {maz }}}$ tends to $1 /\left(3 e^{2}\right)$ if no coding or diversity is used. Although the approximation is upper bounded by the code rate, R_{c}, significant improvement seems to be possible when FEC coding is used. For the case with time diversity, the approximation for $\mu_{\lambda_{m a z}}$ suggests that improvement is possible only for a small range of V.

Table 8

APPROXIMATIONS WITH LARGE VALUES OF h

	Plain ARQ	Block Coding	Convolutional Coding	Time Diversity
$l\left(\hat{n_{\lambda}}\right)$	$3 h / 2$	$\frac{1}{K}\left(\frac{d_{\text {min }}}{2}+1\right) h$	1	$\left(\frac{v}{2}+1\right) h$
$\lim _{l \rightarrow \infty}\left[\frac{l \hat{\omega}}{l \hat{w}+2}\right]^{l}$	$\left(\frac{1}{e}\right)^{2}$	$\left(\frac{1}{e}\right)^{2 / d_{\text {min }}}$	1	$\left(\frac{1}{e}\right)^{2 / V}$
$\hat{\mu}$	$\frac{1}{3}\left(\frac{1}{e}\right)^{2}$	$\left\lvert\, \begin{gathered} R_{c}\left(\frac{d_{\min }}{d_{\min }+2}\right)\left(\frac{1}{c}\right)^{2 / d_{\min }} \\ \rightarrow R_{c} \text { for large } d_{\min } \end{gathered}\right.$	$\begin{aligned} & R_{c}\left(\frac{d_{f}}{d_{f}+2}\right)^{2} \\ \rightarrow & R_{c} \text { for large } d_{f} \end{aligned}$	$\begin{aligned} & \left(\frac{1}{V+2}\right)\left(\frac{1}{e}\right)^{2 / V} \\ & \rightarrow 0 \text { for large } V \end{aligned}$

* For $\hat{x}_{\lambda} \leq \bar{x}, \hat{\lambda}=\frac{\hat{\mu}}{\hat{x}_{\lambda}^{2}} \geq \frac{\hat{\mu}}{\bar{x}^{2}}$

4.3 NUMERICAL RESULTS

In this section, we substantiate our analytical results by numerical computations. Due to the lack of simple closed form expressions of the bit-error-probabilities for the ARQ systems with block or convolutional coding, we will limit our computations only to ARQ with time diversity signaling, which includes the plain ARQ system.

A simple BASIC program, to be found in the Appendix, is used to generate the Efficiency Frontier of a given ARQ system with time diversity signaling. The program can be used to model four different modulation and detection combinations. The channel bit-error-probabilities for the four combinations are given below. [10, page 470]

$$
\begin{equation*}
p(x) \approx \frac{1}{m \rho R_{\mathrm{c}} x} \tag{146}
\end{equation*}
$$

where $R_{c}=1 / V$ and

$$
m= \begin{cases}1 & \text { for Non-Coherent Binary FSK; } \tag{147}\\ 2 & \text { for Coherent Binary FSK; } \\ 2 & \text { for Binary DPSK; } \\ 4 & \text { for Coherent BPSK. }\end{cases}
$$

The corresponding ARQ bit-error-probability is as follows. [10, section 7.4]

$$
\begin{equation*}
\varphi(x)=\binom{2 V-1}{V}(p(x))^{V} \tag{148}
\end{equation*}
$$

While square-law combining is used with non-coherent binary FSK, maximum ratio combining is used with the other three cases.

Note that $\varphi(x)$ for $V=1$ is only an approximation of that in (15). For large values of x , the approximation is fairly good. We will not separately use (15) for the plain ARQ system in our computations since the small difference is not worth such effort.

By letting $y=m \rho x$, it is not difficult to see from (123) and (124) that the Efficiency Frontier is shifted downwards with decreasing ρ, or upwards with increasing m. The above prediction is confirmed by the numerical results shown in Figures 22 and 23.

In Section 3.1, we predicted that the optimal LPI performance degrades with increasing length of the header. This is confirmed by the numerical results shown in Figure 24.

Figure 22

THE EFFICIENCY FRONTIERS

FOR VARIOUS CHANNEL ATTENUATION

Figure 23

THE EFFICIENCY FRONTIERS
FOR VARIOUS MODEMS

Figure 24

THE EFFICIENCY FRONTIERS
FOR VARIOUS LENGTH OF HEADER

Figure 25 shows the Efficiency Frontiers for ARQ with time diversity signaling of orders 1, 2, 4 and 8. The Efficiency Frontiers for the two cases with FEC coding, considered in Sections 3.2 and 3.3, are also included for comparison. It is rather convincing that FEC coding outperforms time diversity signaling by an order of magnitude. In general, system performance, in terms of the Efficiency Frontier, degrades with increasing order of diversity. However, ARQ systems with diversity of orders 2 and 4 outperform the plain ARQ system if \bar{x}, the upper operating limit of x, is approximately $23 d B$ and $18 d B$ respectively.

Figure 25
THE EFFICIENCY FRONTIERS $\quad(e=1)$

§5 CONCLUSION AND SUGGESTIONS FOR FUTURE RESEARCH

In Low-probability-of-intercept communications, there is a significant trade-off between the throughput of an ARQ system and the LPI performance. All the potential optimal operating points lie on an Efficiency Frontier, whose extreme ends correspond to the point with maximum throughput and the point with maximum LPI performance respectively.

FEC coding can be used to improve the system performance by an order of magnitude. Time diversity signaling may or may not help to improve the system performance. When the order of diversity is high, the low signaling rate dominates over the saving in retransmissions, and the system performance becomes worse than that with no diversity signaling.

In our analysis, we consider, as an example, non-coherent binary FSK signals transmitted over a Rayleigh fading channel. The generalized formulation presented in the Summary is useful for the study of cases with other modulation and detection schemes, and those operating in different channels.

A computer program has been used to generate the Efficiency Frontiers for ARQ systems with time diversity signaling operating in the Rayleigh fading channel. It is discovered that system performance generally degrades with increasing order of diversity. The computer program also incorporates different types of modems with binary signaling, namely, non-coherent FSK, coherent FSK, DPSK and coherent PSK. The numerical results show that coherent BPSK has the best performance amongst the four schemes. For operations in the fading channel, coherent BPSK is perhaps the most difficult to achieve. It appears that better throughput and LPI performance can also be achieved with sophisticated modems. System performance for various channel attenuation and length of the header has also been examined. The results are consistent with those predicted in the analysis.

In this report, several assumptions have been made to simplify the mathematics involved. More work needs to be done to relax these assumptions.

The assumption that channel bit errors are independent is not entirely realistic, especially for a fading channel. However, if fast frequency hopping and interleaving techniques are used for transmissions, this assumption may still be reasonable. Otherwise, further research in this aspect is in order.

We have considered only one type of interceptor, namely the energy detector. In practice, there are many other types of interceptors with different quality factors.

An ideal selective repeat ARQ system has been analyzed. Nonetheless, the results are to a large extent applicable to a general ARQ system, since the performance of an ideal selective repeat ARQ system provides a bound on the performance of the other ARQ systems.

§6 APPENDIX

Computer Program for generating Efficiency Frontiers

```
1000
100E FILENAME: ARGDIV
I004, WHAY CHIOU LEE
1OOE, LAEDRATORY FOR INFDRMATION AND DECISION SYSTEMS, M.I.T.
100日, 渞***********************************************************************
1010,THIS DROGRAM GENERATES THE EFFICIENCY FRONTIER OF A EIVEN ARU SYSTEM
IOEO ,WITH OR WITHOUT TIME DIUERSITY SIGNALING
```



```
1050 PRINT "SPECIFY THE UPDER LIMIT OF X IN DE"
10EO INPUT LEXU
1070 PRINT "SPECIFY THE LDWER LIMIT OF X IN DE"
10B0 INPUT LGKL
IOЭO PRINT "SPECIFY THE RESOLUTION OF THE EFFICIENCY FRONTIER IN DE OF X"
1100 INPUT RESOLUTION
I1\XiO LET UPT = INT((LGXLILLEXL)/RESOLUTION)
1140 DIM LEX(UPT)
I1EO DIM X(UPT)
11BO LET LGX(O) = LGXL
1EOO LET X'(0) = 10%(LGX1_/10)
1E\XiO FOR I=1 TO UFT
1ミ40 LET LGX(I) = LGX(I-1) + RESDLUTION
IEEO LET X(I) = 10^(LEX(I)/10)
IESO NEXT I
```



```
1400 PRINT "IS DEFAULT OKAY (ANSWER YES OR NO)"
14\XiO INPUT SKIPs
1440 IF (SKIFs 〈> "YES") THEN EOO0
```



```
1530
IE40 LET H=\Xiこ
IEEO LET RHE:=1
1580 LET MODULGTION=0
1EOO LET DETEETIDN=O
IEEO GOTD EこOO
```

（continue）

1700
$E 000$
EOEO INPLT H
EO40 PFENT＂SPECIFY THE VALUE CF RHO＂
EOEO INPUT REO
EIOO PRINT＂SPEEIFY THE MODLLATION SCHEME（O EOR BINARY FSK：I FDR EPGK）＂
EsEO INPUT MOELLATION
E140 PRINT＂SPECFFY THE DETECTIDN SEHEME（O FOR NONGEOHERENT： 1 FDR EOHERENT）：
こ1G0 INPUT DETECTIDN
2130

ごぎミ
EESO，$Y=R H C * R * X$
Eこ40，$D(X)=1 / Y$ EOR NUN－CDHERENT EINARY FSK
Eモも ，$P(X)=1 /(\Xi * Y)$
Eego ，$P(X)=1 /(E * Y)$
ここ00，$P(X)=1 /(4 * Y)$
2300
2480
こ500
こちこ0
EOOO PRINT＂ENTER ORDER DF DIVERSITY：DR I FOR PLAIN ARQ．＂
GO10 INPUT V
EO40＇
GOEO，GENERATING（（EV－1）CHDOSE V ）FOR $V=1$ TD $V=1 \in$
GOGO FOR THE DRDER DF DIVERSITY UP TO $1 \in$.
EOEG DIM E（15）
6070 LET $G(0)=1$
GOEO FOR I＝1 TO 15
EIOOLETG（I） $\operatorname{LE} G(I-1) * E *(E * I+1) /(I+1)$
E：IO NEXT I
G120 DEF FNCHOQSE（N）$=G(N-1)$
6130 ，－－－ー－ー－ー－ー－
6170 LET R $=(1 / \mathrm{V}$
6180 IF $V<=1 G$ GOTO GESO
EEOO PRINT＂THIS PROGRAM ACCEPTS V FROM 1 TO $1 \in$ ONLY．＂；
EEEO PRINT＂TO CONTINUE，ENTER THE VALUE CF（（こU－i）CHCOSE V ）＂
Eこ40 INPUT COEFF
EESO IF V＞ 16 THEN E 300
SEBO LET COEFF＝FNCHOQSE（V）
Єこ90
6こ00
6こ0こ
Eこ10 DEF FNPHI（S）＝COEFF＊（FNP（RHO＊R＊S）\cdots ）
EJEO IF（FNPHI（X（O））（1）THEN EJ40
EJE4＇THE MODEL EREAKS DOWN WHEN THE ELCCK－ERROR－PRCBABILITY，PHI (X) ，
GここS，IS GREATER THAN OR EOURL TD UNITY
EJこS PRINT＂THE MODEL EREAKS DUWN FOR X（ $=$＂：LEX（O）：＂DE．＂
EJこO PRINT＂INCREASE THE LCWER LIMIT QF X AND TRY AGAIN．＂
Eこコこ GOTO 9780
（continue）

モここ
Eここも
モここと
6340
EJ4E，THE FOLLDWING THREE STEPS PREVENT DIVIDING BY ZERO IN LENE EJ4O
EJ4E IF LDE（I－FNPHI（X（UPT）））（Q THEN EJEO
EE48 PRINT＂UPPER LIMIT OF X IS TDO LARGE．TRY AGAIN＂
EこEO EOTO EF8O
Eこう4

Еここコ
EこEO
6380
6400

BOOE
8010 DIM N（UPT）
80EO DIM MU（UPT）
8040 DIM LAMBDA（UPT）
BOEO FDR I＝0 TD UPT
8080 LET $N(I)=$ FNNSTAR $(X(I))$
8100 LET MLU（I）$=(N(I) /(N(I)+H)) * F N P C(X(I)) * R$
EIEO LET LAMEDA（I）＝MU（I）／（X（I）＊こ）
8130 NEXT I
813 E
EIS4，APPROXIMATION OF ERROR PRCBAEILITY IS POOR FOR X LESS THAN ABCUT $1 O$ DE
E1こE IF LEXL $>=10$ THEN 8150
8140 PRINT＂WARNINE：THE MODE：MAY EREAK DOWN FOR VERY LDW VALUES OF $x . "$
814E PRINT＂CERTAIN APPROXIMATIONS USED IN THE MODE：ARE GNLY GOOD FOR $x \gg "$
8144 PRINT USING＂\＃\＃．\＃＂；10＊LOG（1／（M＊RHC＊R））／LDG（10）；
814E PRINT＂DE．＂
8148 ＇
815O，CHECKINE TD SEE IF THE EFFICIENCY FRONTIER CAN BE GENERATED FRCM ANY
815E PART OF THE SPECIFIED RANGE OF X ．
81EO IF LAMEDA（UPT）（＝LAMEDA（UPT－1）THEN SEOO
8：EE PRINT＂WARNING！NO VALUE OF x WITHIN SPEEIFIED RANGE CORRESPCNDS TO＂；
8：70 PRINT＂ANY PART OF THE EFFICIENCY FRONTIER．INCREASE UPDER LIMIT OF X．＂
8190 PRINT＂TRY AGAIN．＂
B190 GOTD 9980
日1ヨє，
8： 38 ，DETERMINING THE DPERFTING POINT WITH MAXIMUM LPI PERFORMANCE
BEOO LET PT＝1
GEこO WHILE（LAMEDA（PT））LAMEDA（PT－1））AND（PT（LPT）
قこ40 LET PT＝PT＋ 1
8ESO WEND
BESO LPT＝PT－：
（continue）

```
日ごЭ0
8400 PRINT
8410 PRINT " THE EFFICIENCY FRONTIER OF AN ARQ SYSTEM FDR LPI CSMMUNICATIONS:
94EO PRINT
8430 IF M<4 THEN g450
8440 PRINT " COHERENT EPSK"
8445 GOTD 8500
8450 IN (M+MODULATION) EOTD 84E0, 8470,9430
84EO PRINT "
NON-CIHERENT FSK"
846E GOTO 8500
B470 PRINT " COHERENT FSK"
8475 EOTO 8500
848O PRINT " BINARY DPSK"
8SOO IF U\ I THEN 85SO
日5i0 PRINT " PLAIN ARQ"
85EO GOTO 8560
GSEO PRINT " ARQ WITH TIME DIVERSITY SIGNALING GF GRDER"; V
8560 PRINT
8580 PRINT " LENETH OF HEADER IS"; H:"BITS"
8GOO PRINT " VALUE OF RHO IS';RHO
86EO PRINT
8640 PRINT " X IN DS X N NMMEDA"
8EEO LET L=LPT
BEBO WHILE L <= UPT
8700 PRINT USING "############ "; LGX(L), X(L);
g7EO PRINT USING " #######.# "; N(L);
8740 PRINT USING "#. ####`八人ल "; MU(L), LAMBDA(L)
GTEO LET L=L+1
9790 WEND
8800 PRINT
98EO PRINT "MAXIMUM LAMEDA IS ";
8g30 .PRINT USING " #. #####い人八"; LAMEDA(LPT);
8840 PRINT " AND CORRESPONDING MU IS ";
8850 PRINT USING " #. ####"ハ人N": MU(LPT)
8BEO PRINT "MAXIMUM MU IS ";
9日70 PRINT USING " #. ####``人い"; MU(LUPT):
8880 DRINT " AND CORRESPONDING LAMEDA IS ";
g8GO PRINT USING " #. ####**N*"; LAMEDA(UPT)
9980 END
9799
Ok.
```


Sample Run

```
RLN
GPECTFY TME UDOEF LIMTT OF }X\mathrm{ IN DE
? E
GREこTFY THE SONER LIMIT OF X IN DE
? 10
GPEORFY THE RESQLUTION QF THE EFFICIENCY FRONTIER IN DE DF }
? 0.5
IS DEFALLT OKAY (ANSWER YES OR ND)
? YES
ENTER DRDER OF DIVERSITY: OR 1 FOR PIATN ARQ.
? 1
THE EFTEIENCY FRONTIER OF AN ARQ SYSTEM FOR LPI COMMUNICATIONS
                                    NON-COHERENT FSK
                                    PlatN ARO
                                    LENGTH OF HEADER IS ZE EITS
                                    VGLUE OF RHO IS 1
\begin{tabular}{|c|c|c|c|c|}
\hline \(X\) IN DE & \(x\) & N & ML & LAmEDA \\
\hline \(\pm 4.00\) & ご．1E & 16．3 & 0．4743E－01 & 0．7518E－04 \\
\hline 14.50 & 29．13 & 17．9 & 0．5S14E－01 & 0． \(7445=-04\) \\
\hline 15．00 & こ1． E こ & 19.4 & 0．7E37E－01 & O． \(7 \pm 37 E-64\) \\
\hline 15.50 & 35．48 & E1：1 & \(0.8708 \mathrm{E}-01\) & \(0.65: 7 E-04\) \\
\hline 16.00 & 37.81 & E3． 9 & 0． \(103 \pm \underline{0}+00\) & O． \(65 \pm E E-94\) \\
\hline 16．50 & 44.67 & こ4．9 & \(0.1 E 07 E+00\) & 0． \(5048 \mathrm{E}-04\) \\
\hline 17.00 & 50．1E & E． 9 & ○．139 \({ }^{\text {¢ }}\)＋00 & 0．5547E－04 \\
\hline 17.50 & 56．こう & 29．\({ }^{\text {e }}\) & 0．1591E＋00 & 0．50JこE－04． \\
\hline 18.00 & 63.10 & 31.5 & \(0.1799 E+60\) & 0．4518E－04 \\
\hline 18． 50 & 70.79 & 34.1 & \(0 . E 015 E+00\) & \(0.4019 E-04\) \\
\hline 19.00 & 79.43 & 36． 7 & \(0 . E E 37 E+00\) & 0．354EE－04 \\
\hline 19.50 & 89.13 & 39．6 & O． \(24 E E E+00\) & 0． \(3104 \mathrm{E}-04\) \\
\hline \(\because \% .00\) & 100.00 & 4E． 7 & \(0 . E 698 E+00\) & O．\(E 69 \mathrm{E}-04\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline MAXIMUM & LGMEDA & 15 & 0．751． 5 E－04 & AND & CORRESPONDING & MU IS & & \(0.474 .5 \mathrm{E}-\mathrm{O}\). \\
\hline MAXIMLM & MU IS & & O．\(=6985+00\) & AND & CORRESPONDING & LAmEDA & 15 & \(0.2695 E-04\) \\
\hline
\end{tabular} CK．
```


Sample Run

```
RLN
SPEDTFY THE MPPER UTMT DF }X\mathrm{ IN DE
? 20
EPEOIFY THE LCWER STMT DF X IN DE
? 10
SPECIFY THE RESQLUTION OF THE EFFICIENCY FRCNTIER IN DE OF X
?0.5
IS dEFRULT OKAY (ANSWER YES OR NO)
? NC
SPEEPFY THE LENGTH OF THE HEADER
? ここ
gpECIFY THE vALUE OF RHD
? 1
SPECIFY THE MODULATION SCREME (O FOR EINARY FSN: 1 FOR EPSK)
?
SPECIEY THE DETECTIDN SCHEME (O FOR NON-COHERENT: 1 FOR COHERENT)
?0
ENTER DRDER GF DIUERSITV, DR I FOR PIGIN ARQ.
? E
THE EFFICIENCY FRONTIER DF AN ARQ SYSTEM FOR LDI COMIUNICATIONS
NON－COHERENT FSK
GRO WITH TIME DIVERSITY SIGNALING OF ORDER E
```

```
LENGTH OF HEADER IS SE ETTS
```

LENGTH OF HEADER IS SE ETTS
VALLE DF RHC IS I

```
                                    VALLE DF RHC IS I
```

$X I A D E$	x
14.50	$E 日 .18$
15.00	31.63
15.50	35.48
16.00	39.81
1.50	44.67
17.00	50.13
17.50	56.32
18.00	63.10
18.50	70.79
19.00	79.43
19.50	89.13
$E 0.00$	100.00

N	mL	LAMEDA
3こ．${ }^{\text {E }}$	$0.9438 E-61$	0．119日E－03
37.7	O．1：$\ddagger \in E+00$	0．11EEE－05
44.0	$0.1398 E+00$	0．1110E－03
50.8	0．1635E＋00	0．103こE－03
58.6	0．187E5＋00	0． $3384 E-04$
67．3	O．ご0EE＋OO	$0.8385 E-04$
77.1	O．$こ 334 \mathrm{E}+00$	$0.7380 E-64$
8日．${ }^{\text {e }}$	O． $255 \mathrm{EE}+00$	O． $64 \pm 1 E-04$
100.6	O．E7E0E＋00	0．5508E－04
114.6	$0.2957 E+00$	0． $4686 E-04$
130.4	$0.31415+00$	0． $39545-04$
$14 \mathrm{B}$. \％	O． $33 \pm=5+00$	0．3ЗさこE－04

MAXIMUM LAMBDA IS
$0.1198 E-03$
MAXIMUM MU IS O．ЗЗ1EE＋00

AND CORRESPONDING MU IS
0． $9432=-01$
GND CORRESPGNDING LAMEDA IS
0．3こ士こE－04

§7 ACKNOWLEDGEMENT

The author would like to thank Charles Stark Draper Laboratory for providing the research funding. He is also indebted to Prof. Robert Gallager and Prof. Pierre Humblet for their invaluable guidance.

§8 REFERENCES

[1] H.O. Burton \& D.D. Sullivan, 'Errors and Error Control", Proc. IEEE, Vol.60, NO.11, Nov. 1972, pp1293-1301
[2] T. Klove \& M. Miller, "The Detection of Errors After Error-Correction Decoding", IEEE Trans. Communications, Vol.COM-32, No.5, May 1984, pp511-517
[3] S. Lin, et.al., "Automatic-Repeat-Request Error-Control Schemes", IEEE Communications Magazine, Vol.22, No.12, Dec. 1984, pp5-17
[4] E.J. Weldon, Jr., "An Improved Selective-Repeat ARQ Strategy", IEEE Trans. Communications, Vol.COM-30, No.3, March 1982, pp480-486
[5] J.D. Edell, "Wideband, Non-Coherent, Frequency-Hopped Waveforms and Their Hybrids in Low-Probability-of-Intercept Communications", Naval Research Laboratory Report 8025, Nov. 1976
[6] A.B. Glenn, "Low Probability of Intercept", IEEE Communications Magazine, July 1983, pp2633
[7] L.B. Sklar, "Efficiency Factors in Data Communications", IEEE Communications Magazine, Vol.22, No.6, June 1984, pp33-36
[8] J.M. Morris, "Optimal Blocklengths for ARQ Error Control Schemes", IEEE Trans. Communications, Vol.COM-27, No.2, February 1979, pp488-493
[9] W.W. Chu, "Optimal Message Blocksize for Computer Communications with Error Detection and Retransmission Strategies", IEEE Trans. Communications, Vol.COM-22, No.10, October 1974, pp1516-1525
[10] J.G. Proakis, Digital Communications, McGraw-Hill, 1983
[11] A.J. Viterbi \& J.K. Omura, Principles of Digital Communication and Coding, McGraw-Hill, 1979
[12] R.G. Gallager, L.I.D.S., M.I.T., private communications
[13] P.A. Humblet, L.I.D.S., M.I.T., private communications
[14] A.S. Tanenbaum, Computer Networks, Prentice-Hall, 1981

