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PREFACE

The most -fundamental eonCepts in the theory of stochastic

processes are the Markov property and the martingale property.

This book is written for those who are familiar with both of
these ideas in the discrete-time setting, and who now wish to

explore stochastic processes in the continuous-time context. It

- has been our goal to write a systematic and thorough exposition

of this subject, leading in many instances to the frontiers of-

kncwledge; At the same time, we have endeavored to keep the

mdthematical prerequisites as low as possible, hamely, knowledge

of measure—theoretlc probablllty and some acqualntance with
dlscrete-tlme processes. The vehlcle we have chosen for this

task is Brownian motion, which we present as the canonical

- example of both a Markov process and a martingale in ‘continuous

time. "We support this point of view by showing how, by means

of stochastie integration and random time change, all continuous

martingales and a multitude of continuous Markov processes can

be represented in terms of Brownian motion. This approach

forces us to leave aside those processes which do not have

contlnuous paths. Thus, the P01sson process is not a primary

' object of study, although 1t.1s developed in Chapter 1 to be

used as a tool when we later study passage times of Brownian motion.

At this time, onlf the first three chapters of this book are
. | ,
complete. We provide, however, a table of contents for the

entire work. The material in-Chapters 6 and 7 on Brownian

*The complete book will be published by Springer-Verlag.
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local time and its applications to stochastic control will be
appearing in a form suitable as a text for the first time. It
is our desiré to give an éccoﬁnt of these topics which motivates
the entire book. ‘

We are greatly indebted to Sanjoy Mitter and Dimitri Bertsekas
for generously extending to us the invitétion to work this past
year at M.I.f., for their support ahdvencouragement during the
writing of this bodk, and for pro&iding the intellectual environ-
ment which made this task more;agreeable than it might otherwise
~ have been. We also wish to acknowledge the allowances made by
6ur. :espectiﬁé home departments and institutions, which made
this year of close,cbllaboration possible. Parts of the book
grew out-ofAnotes.og'lectures'giVeﬁ by,oné of us at Columbia
University over:seVeral.years, and we owe much to the audiences
in tho;e cdﬁrsés. | | |

- Typing of this manuscript was done with remarkable care
and efficiency by Dbodmatie Kalicharan, Stella DeVito,
Katherine Tougher, and ﬁuriel Knowles. We wish to thank
. them all.

We,wefe able to de?ote the necessary time and energy to
this project becéuseiof finanéial support pro&ided by the
ﬁational'Science Foﬁndation_ﬁnder gfant DMS-84-16736, the
Air Force Office of Scientific Research under grant AFOSR 82-0259,

and the Army Research Office under grant DAAG-29-84-K-0005.




Chapter 1

iii

TABLE OF.CONTENTS

Elements of the General Theory of Processes

1.1
1.2
1.3

1.4

1.5
1.6
1.7

1.8

"Chapter 2

Stochastic processes and o-fields
Stopping times _
Continuous-time martingales

The Doob-Meyer decomposition

Continuous, sduare-integrable martingales
Solutions to problems and exercises
Notes - 4

References .

Brownian motion

2.1
2.2
2.3
2.4

2.5

2.6
2.7
2.8
2.9
2.10
2.11
2.12

Chgpter'3

Introduction

First.qonstruction of Brownian motion

Second construction of Brownian motion

The . space C[O,co),'weék convergence, and Wiener measure
The Markov property

The strong Markov property and.the reflection principle

 Bfownian filtrations

Computations based on passage times
The Brownian sample paths
Solutions to problems and exercises
Notes ‘

References

Stochastic Integration

3.1
3.2
3.3
3.4

3.5

Introduction
Construction of the stochastic integral
The change-of-variable formula

Representations of continuous martingales in terms
of Brownian motion

The Girsanov theorem
Local time and a generalized Itd rule

Solutions to problems and exercises

 Notes

References




iv

Chapter 4 Brownian Motion and ?artial Differential Equations
4.1 Introduction
4.2 -~ The Dirichlet problem
4.3 The one-dimensional heat eguation
4.4 The formulas of Feynman and Kac
.4 5 - Solutions to problems and exercises
4.6 Notes
4.7 Refeérences
Chapter 5 Stochastic Differential Equations
5.1 Introduction o
5.2 = Strong solutions ~ :
5.3 - Weak solutions and the martlngale problem
5.4 Speczal methods
5.5 - Examples
5.6 Approx1matlon and modelllng
5.7 aolutlons to problems and exercises
5.8 Notes:
5.9 4 Refefences
‘ Chapter 6 Brownian Local Time
6.1 Introduction
6.2 Representatlons of local time
'6.5 The Skorochod descrlptlons of reflected Brownlan motion
6.4 Elastic Brownian motion and applications
6.5 - Solutions to problems and exercises
6.6 - Notes ‘ ’
6.7 - References
Chapter 7 Applications .
7.1 Introduction
7.2 Optimal stopping .
7.3 - Optimal control
7.4 - Singular optimal control
- 7.5 - Filtering . '
7.6 Solutions to problems and exercises
7.7 thes '
7.8 - References




CHAPTER 1

ELEMENTS OF THE GENERAL THEORY OF PROCESSES




1.1
1.2

' 1.3
1.4

1.5
1.6

1.7

1.8

.o

.e

CHAPTER 1

TABLE OF CONTENTS

Stochastic processes and o-fields
Sfopping times i |
Continuous-time martingales

The Doob-Meyer decompogition

Continuous, squaré-integrable martingales
Solutions to problems

Notes

References




1.1: STOCHASTIC PROCESSES AND g-FIELDS

A stochastic process is.a mathematical model for the occurrence,

at each moment after the initial time, of a random phenomenon. The
randomness is captured by the introduction of a measurable space

(Q,F), called the sample space, on which probability measures can be

placed. Thus, a stochastic process is a collection of random variables
X = [Xt; Ost<=} on (0Q,3%), which take values in a second measurable

space (S,s), called the state space. For our purposes, the state

space (S,o), will be the d-dimensional Euclidean space equipped with

d, s = !B(Rd), where R (U)

the g-field of Borel sets, i.e., 'S = R
will always be used to denote the smallest c-fleld containing all

opeﬂ sets of a topological space U. The index te[0,=«) of the

random variables Xt admits a convenient interpretation as time.

For a fixed sample point weq, the function t.— Xy (@)

t20, 1is the sample path (realization, trajectory) of the process

X associated with w. It provides the mathematical model for a
random’experiment, whose outcome can be observed continuously in
time.(e.g., the number of customers in a queue observed and recorded
over a period of time, the trajectory of a molecule subjected to the
random diéturbances of its neighbours, the output of a communications

channel operating in noise, etc).

Let us consider two stochastic processes X and Y defined
on the same probability space (,%,P). When regarded as functions -
of t and w, we would say X and Y were the same if .and only

if X, (o) = ¥ (o) for all ta0 and all wen. However, in the
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presence of the probability measure P, we could weaken this

requirement in at least three different ways to obtain three
related concepts of "sameness'" between two processes. We list

them here.

'1.1. Definition: Y 1is a modification of X 1if, for every t=20,

we have P[Xt = Yt] = 1.

1.2. Definition: X and Y have the same finite-dimensional dis-

tributions if, for any integer nzl, real numbers

Ostl<t2<;..<tn<m, and AeB(Rnd), we have:

PI(X. 4. X, YeA] = PI{Y. +..u)¥. )eA].
[(X ooy YAl = PLUT, .00 o)

1.3, Definition: X and Y are called indistinguishable if almost

all thelr sample paths agree:
P[Xt(w) = Yt(w), Y Ogt<w] = 1.
The third property is the strongest; it implies trivially the
'first'one, which in turn yields the second. On the other hand, two
processes can be modifications of one another and yet have completely

different sample paths. Here is a standard example:

1.4, Example: Consider a positive random variable T with a con-

113t =T,

tihuOus distribution, put XtEO, and let v .{O; t £ T
. t"
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Y is a modification of X, ' since for every t20 we have

= P[T#t] = 1, but on the other hand: P[Y =X Y t20] = O.

P[Ytsx i3

+]

A positive result in this direction 1s the following.

1.5. Problem: ILet Y be a modification of X, and suppose that

hoth procésses have a.s. right-continuous sample paths. Then

X and Y are indistinguishable. 0

It does not make sense to ask if Y i1s a modification of X, or
if' Y and X are indistinguishable,unless X and Y are defined
én the‘éame probablility space andvhave the same state space. However,
if X and Y have the same state space but are defined on different
probability spaces, we can ask if they have the same finite dimensional

distributions.

1.27 Definition: TLet "X and Y be stochastic processes defined on

probability spaces (Q,%,P) and (5,3;?) respectively, and having

the same state space (Rd,a(Rd)). X and Y have the same finite-

dimensional distributions if, for any integer nzl, real numbers

- Ost <t <Ll oKt Koy and Aéﬁ(Pnd), we have

)eA] .

-P[(Xt seeesX, JeA] = PI(Y, 5...5Y
1 n 1 n Q

t
Many processes, including d-dimensional Brownian motion, are
defined in terms of their finite-dimensional distributions irrespec-
tive of their probability space. Indeed, in Chapter 2 we will
construct a standard d-dimensional Brownian motion B on a canoci-

cal probabiiity space and then state that any process,on any prob-
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ability space,which has state space (Rd, B(Rd)) and which has
the same finite-dimensional distributions as B, is a standard d-

dimensional .Brownian motion.
0

For technical reasons in the theéry of Lebesgue integration,
probability measures are defined on g-fields and random variables
are assumed to be measurable with respect to these o-fields. Thus,
implicit in.the statement that a random process X = {Xt; Ogt<{=} is

d, ﬁ(Rd))-valued random variables on (Q,&), is

a collection of (R
the assumption that each X  1is E/ﬁ(Rd) - measurable. However,
X is really a functibn of thé pair of variables (t,w), and so
“for technical'reasons, it is often convenient to have some joint

measﬁrability properties.

1.6. Definition: The stochastic process X 1is called measurable

if, for every Aeﬁ(Rd),the set {(t,w); Xt(w)eA} ‘belongs to
fhe product g-field 8([0,~)) ® ¥F; in other words, if the

mapping

(t50) = Xy (@): ([0,=) % 0, 8([0,)) 2 3) ~ (&% a(r%))
is measurable. 4 0]

It is an immediate consequence of Fubini's Theorem that the
trajectories of such a process are Borel-measurable functions of
te[0,=), and provided that the components of X have defined
'expectations, then the same is true for the function m(t) = EX,,
where E denotes expectation with respect to a probability measure

P on (Q,3) that integrates X, for all ta0. Moreover, if X
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takes values in R and I 1is an inteval of [0O,=) such that

[ EIx |dt<e, then
1t

fI ]Xt]dt < = Ia.s.P, and: f EXtdt = Ef Xt dt.
I

! a

~There is a.very important, nontechnical reason to include
~og-fields in the study of stochastic processes, and that is to keep
track of information. The temporal feature of a stochastic process
suggests a flow of time, in which, at every moment {20, we can

talk about a past, present and future and can ask how much an

observer of the process knows about it at present as compared to how
much he knew at some point in the past or will know at some point

in the future. We equip our sample space (Q,F) with a filtration,

i.e., a nondecreasing family {3t; t20} of sub-g-fields of

c ¥ for Ogs<tw. We set F_=go( U 7).

F: F_c &
s . t20

t
Given a étochastic process, the simplest choice of a filtration

" is that generated by the process itself, i.e.,

X
gt é G(XSS O‘S‘t)o

We interpret A€3X to mean that by time t, an observer of X

t
knows whether or not A has occurred. The next two problems

illustrate this point.

1.7. Problem: ILet X Dbe a process with every sample path right-

continucus. Let A be the event that X 1is continuous on

. X
[O,ﬁo). Show Ae?to.
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1.8. Problem: Let X be a process whose sample paths are right-

continuous a.s., and let A be the event that X 1is continuous

on [0,t ). Show that A can fail to be in J but if

X
.t L
(o]
[3,; tz0} 1is a filtration satisfying 3; ¢ ¥, t20, and &,

O

is complete under P, then Ae&t .
o)

Let {3 t20} be a filtration. We define Fo_ A c( U ss)
- s<t

- to be the g-field of events strictly prior to t>0 and

F A N & to be the g-field of events immediately after t20.

We decree 30_ A 30 and say that the filtration {3t} is right

(left) continuous if F_= &

t t+ t t-

(resp., &, =%, ) holds for every t=0.
The concept of measurability for a stochastic process, intro-

duced in Definition 1.6, is a rather weak one. The introduction of

a filtration {3t} opens up the possibility for more interesting

4

and useful concepts.

1.9. Definition: The stochastic process X 1is adapted to the filtra-

tion {3t} if, for each t20, X, is an & -measurable random

variable.
O
Obviously, every process‘ X 1is adapted to {35}. Moreover, if
X is adapted to tat} and Y 1is a modification of X, then Y is
also adapted to {3t} provided that 30 contains all the P-negligible
sets in 3J. Note that this requirement is not the same as saying that
30 ‘is complete, since some of the P-negligible sets in §F may

not bé in the completion of 30.
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1.10 Problem: Let X be a process with every sample path left-

continuous, and let A  be the event that X 1is continuous on

[O,to}. Let X Dbe adapted to a right-continuous filtration

(3,]. Show that AeF,_ .

%o

1.11 Definition: The stochastic process X 1s called progressively

measurable with respect to the filtration {3t} if, for each
t20 and Asﬁ(Rd), the set [(s,w); Ossst, weQ, Xs(m)eA}
belongs to the product g-field gR([0,t]) 2 Fys in other words,
if the mapping (s,w)m X_(@): ([0,t] x Q R([0,t]) R 3t) -
(Rd; ﬁ(Rd)) is measurable, for each t=z0.

]

The terminology here comes from Chung & Doob [ 3], which is
a basic reference for this section and the next. Evidently, any
progressively measurable process is measurable and adapted; the

following theorem of Chung & Doob [ 3] provides the extent to which

the converse is true.

1.12 Proposition: If the stochastic process X 1is measurable and

- adapted to the filtration {3t}, then it has a progressively

measurable modification.

The reader is referred to the book of Meyer [16; p. 68] for the-
(lengthy, and rather demanding) proof of this result. It will be
used only once in the sequel, and then again in a tangential fashion.
Nearly*all processes of interest are either right or left continuouo,

for them the proof of a stronger result is easier and will now be

given.

and



1.1.8

1.13 Proposition: If the stochastic process X 1is right (left)

continuous and adapted to the filtration [Et}, then 1t is

also progressively measurable with respect to {3t}.

Proof: With t>0, n2l, k = 0,1,...,27-1 and Os<s<t, we define:

(n) - k k+1 ! (n) ,
X (w) = Xk+l.L«D)for = t<s s—= t, as well as Xj (w) = Xo(w).

nt 2 2

The so-constructed map (s,w) Xén)(w) from [0,t] x @ into Rd'

is demonstrably R([0,t]) R Foo- measurable. Besides, by right-

continuity we have: 1lim Xén)(@) = Xs(m), ¥ (s,w) € [0,t] x Q.

N

Therefore, the (limit) map (s,w) Xs(w) is also R([0,t]) 2 Fe

measurable.
0

1.14 Remark: If the stochastic process X is right (or left)
continuous, but not necessarily adapted to g 1, then the

same argument shows that X 1is measurable.

A random time T i1is an & - measurable random variable, with

values in [0,«].

1.15 Definition: If X 1s a stochastic process and T 1is a

random time, we define the function XT on the event {T<=}

by
If Xm(w) is defined for all weQ, then X, can also be

T
defined on @, by setting X (w) 4 X_(0), on {T=e}.
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1.16 Problem: If the process X is measurable and the random time

T is finite, then the function X defined above is a random

T
variable.

We shall devote our next section to a very special and

extremely useful class of random times, called stopping times.

These are of fundamental importance in the study of stochastic
processes, since they constitute our most effective tool in the

effort to "tame the continuum of time", as Chung [ 2 ] puts it.




1.2: STOPPING TIMES

Let us keep in mind the interpretation of the parameter t
as time, and of the g-field 3t as the accumulated information up
to t. Iet us also imagine that we are interested in the occurrence
. of a certain phenomenon: an earthguake with intensity above a
certain level, a number of customers exéeeding the safety require-
ments of our facility, and so on. We are thus forced to pay particu-
lar attention to the instantr T(w), at which the phenomenon mani-

fests itself for the first time. It 1is quite intuitive then that

the event {w; T(w)st}, which occurs if and only if the phenomenon
has appeared prior to (or at) time t, should be part of the

information accumulated by that time.

We can now formulate these heuristic considerations as follows:

2.1 Definition: Let us consider a measurable space (Q,%) equipped

with a filtration {3t}. A random time T is a stopping

time of the filtration, if the event {Tsgt} Dbelongs to the

g-field 3t, for every t=20. A random time T is an optional

time of the filtration, if {T<t}est, for every t=0.
0

‘ X
- 2.2 Problem: Let X be a stochastic process and T be an [3.1
stopping time. Choose w, w'€Q and suppose Xt(w)=Xt(w’)

for all te[0,T(w)] n [0,=). Show that T(w) = T(w").

2.3 Proposition: Every random time equal to a positive constant

is a stopping time. Every stopping time is optional, and




l1.2.2

the two concepfs coincide if the filtration is right-continuous.

Proof: The first statement is trivial; the second is based on the

observation: {T<t}= U [Tst - %}est, because if T 1is a stopping
n=1

time, then {Tgt -,%}est 1c 3t for n2l. For the third claim,

n

supposé that T 1is an optional time of the right-continuous filtration

{F_.}. Since {[Tst} = n {T<t+e}, we have {Tst}ed for every
t €S0 t+e
t20 and every e>0; whence {Tst}63t+ = 3, -

Coréllary: T 1s an optional time of the filtration {St},
if and only if it is a stopping time of the (right-continuous!)

filtration {3, ].

2.4 FExample: Consider a stochastic process X with right-continuous

paths, which is adapted to a filtration {3t}. Consider a subset

d .
TeR(R™) of the state space of the process, and define the hitting

time

Hr(@) - {inf{tzo; X, (w)er}s 1if this set is nonempty

+ ;3 oOtherwise.

2.5 Problem: If the set T© in Example 2.4 is open, show that H

T
is an optional time.

2.6 Problem: If the set o in Example 2.4 is closed and the sample

paths of the process X are continuous, then HP is a stopping’

time.
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Let us establish some simple properties of stopplng times.

2.7 Lemma: If T 1s optional and a6 1is a positive constant, then

T+5 is a stopping time.

Proof: If Ogt<gs, then {T+6st} =g € 3t.

If t=8, then

C F,.
(t-8)+ t o

{T+est]} = {Tst-8}eF
2.8 lemma: If T,S are stopping times, then so are T,S, TvS,

T+S.

Proof: The first two assertions are trivial. For the third, start

with the decomposition, valid for t>0:

[T+S>t} = {T=0; S>t} U [O<T<t, T+S>t} U
U {T>t, S=0} U {T=t, S>0].

The first, third and fourth events in this decomposition are in St,
either trivially or by virtue of Proposition 2.3. As for the second

event, we rewrite it as:

U {Hr, sS>t-ri,
reQ :

{r<t

‘where Q 1is the set of rational numbers in [0,®). Membership in

3 .

t is now trivial.

[
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2.9 2Problem: Let T,S be optional times; then T+3S is optional.

It is a stopping time, 1f one of the following conditions holds:

(1) T>0, S>0.

(i1) ™90, T 1is a stopping time.

2.10 Lemma: Let {Tn}§=l be a sequence of optional times; then

the random times

sup T, inf T, 1im T , 1lim T
n=l 7 n21 Now 0 Noe O
are all optional. PFurthermore, if the Tn's are stopping

times, then so 1s sup T..
n=1l

Proof: Obvious, from Corollary to Proposition 2.3 and from the
identities

{sup T _st} _ ; {T <t} and {inf T <t} = S {T <t1.
nzl * n=1 =  nzl B n=1 =
a

How can we measure the information accumulated up to a stopping
time' T? In order to broach this question, let us suppose that an
event A 1is part of this information, i.e., that the occurrence
or nonocéurrence of A has been decided by time T. ©Now if by
time t one observes the value of T, which can happen only if
Tst, then one must also be able to tell whether A has occurred.
In other words, A n {T<t} and A n [T<t} must both be

%, -measurable, and.this must be the case for any t20. Since

t

C
A n [Tet} = {Tst} n (A n {Tst}) ,




it is enough to check only that A n{Tst}est, t=0.

2.11 Definition: ILet T be a stopping time of the filtration

{3t}. The g-field & of events determined prior to the

the stopping time T consists of those events AeF for

which A n {Tst]e&t for every t=0.

2.12 Problem: Verify that is actually a o-field and T 1is

&

3T—measurable.

. 2.1%3 Problem: ILet T Dbe a stopping time and S a random time

- such that SzT7 on Q. If S 1is KT—measurable, then it is

also a stopping time.

2.14 Lemma: For any two stopping times T and S, and for any

'Aegs, we have: A n{SsT}egT.

In particular, if ST on Q, we have 38 c Fp-

Proof: It is not hard to verify that, for every stopping time T
and positive constant t, T.t 1is an F,-measurable random vari-

able. With this in mind, the claim follows from the decomposition:
ANg{SsT} n {T<t} = [AN{S<t}] n {Tst} n §S.t s T.t],
which shows readily that the left-hand side 1s an event in Et'
- (W

2.15 Lemma: Let T and S be stopping times. Then each of the

events
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Besides, F. o = 3. N F..

belongs to dp N & T.3 T S

S°.

Proof: For the last claim, we notice first that T.S¢T, so, by

Lemma 2.14, & c 3T N ¥,. In order to establish the opposite

TS = S
inclusion, let us take Ae&s n 3T and observe that
An{S.Tet} = An[{S<t} U {T<t}]

[An{S<st}] U [An{Tst}] €%y s and

therefore AegS.T'

From Lemma 2.14 we have {SsT}eJF;, and thus {S>T}eF,. On

the other hand, consider the stopping time R = S.T which, again

by virtue of Lemma 2.14, is measurable with respect to & There-

T.
fore, {S<T} = {R<T}e3T. Interchanging the roles of S,T we see

that ({T>S}, {T<S} belong to ¥ and thus we have shown that

S’

both these events belong to h JS. But then the same is true

for their complements, and consequently also for {S=T}.
' O

2.16 Problem: Let T,S be stopping times and Z an integrable

random variable. We have
(1) E[Z‘ET] = E[Z’ss,T]’ P -a.s. on {T<S}

(i1) E[E(zlgT)lgs] = E[ZIES‘T], P - a.s.
: ]

Now we can start to appreciate the usefulness of the concept

of stopping time in the study of stochastic processes.
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2.17 Proposition: Let X = {X,; 0st{«} be a progressively

measurable process with respect to {St}, and let T be a
stopping time of the filtration {Et}. Then the random

variable XT of Definition 1.14 is 3T—measurable and the

"stopped process" Ko 3 Ogtl{w} 1is progressively measurable.

Proof: For the first claim, one has to show that, for any

Beﬁ(Rd) and any t=20, the event: {XTeB} n {Tst} 1is in &

but this event can also be written in the form ({X €B} n {Tst},

Tat
and so it is sufficient to pfove the progressive measurability

of the stopped proceés.
To this end, one observes that the mapping (s,w) — (T(w).s,w)

t
by the assumption of progressive measurability, the mapping

of [0,t] x o into itself is @8([0,t]) ® ¥ _-measurable. Besides,

(8:0) 1 X_(0): ([0,t] x 0, 8([9,¢]) 2 3,.) ~ (%, a(ad)).

is measurable, and therefore the same is true for the composite

mapping

(S,0) XT(&),S(w): ([0,t]x0, B([O,t])R Et) - (Rd’ @(pd)),
»

2.18 Problem: Under the same assumptions as in Proposition 2.17,

and with f(t,x): [O,w) X Rd - R a bounded, 8([0,«)) ® ﬁ(Rd) -

measurable function, show that the process Y, = jt f(s,xs)ds;
' : 0

t20 1is progressively measurable with respect to [3t], and

that YT is an ST—measurable random variable.
O
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2.19 Definition: ILet T Dbe an optional time of the

filtration {3t}. The g-field 3T+ of events determined

immediately after the optional time T consists of those events

Aex for which An{Tst}63t+ for every t=0.

2.20 Problem: 7Verify that the class 3T+ is indeed a g-field

with respect to which T 1is measurable, that it coincides
with {AeF; Aﬂ{T<t}€3t, YV t20}, and that if T 1is a stopping

are defined), then 3 c 3 .

time (so that both & T T -

T’ 3T+

2.21 Problem: Verify that analogues of Lemmas 2.14 and 2.15 hold

if T and S "are assumed to be optional and Feps Fq and

STAS .are ?eplgced by ,3T+’ Fo, and 3(T.S)+’ respectively.

Prove that if S 1s an optional time and T 1is a stopping

time with ST, and S<T on {S<=} n {T>0}, then Fq, € Fpe

2.22 Problem: Show that if {Tn};;l is a sequence of optional
«©
times and T = inf T, then J = N F . Besides, if
n=l n T+ n=1 Tn+

each Tn is a stopping time and T<Tn on {T<=} N {Tn>0},

then we have JF = N F_ .




2.23 Problem: Given an optional time T for the family of

-F3 1 i ®
g-fields {St;, consider the sequence {Tn}n=l of random

times given by

Tn(a)) = T(w); on {w; T(w) = +e}
= gﬁ 5 on  {w; K;% s T(w) < gﬁ}

for na2l, kzl. Obviously TnzTn+1zT: for every nzl. Show that

each Tn is a stopping time, that 1lim Tn = T, and that for

Neo

every A€3T+’
o

K
nzl, k2l we have: AN{T, = Eﬁje3k .
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1.3.1

1.%: CONTINUOUS - TIME MARTINGALES

We assume in this section that the reader is familiar with
the concept and basic pfbperties of martingales in discrete time.
An excellent presentation of this material can be found in Chung
[1, §9.3 and 9.4, pp. 319-341] and we shall cite from this
source frequeﬁtly. The purpose of this section is ta extend the

discrete-time results to continuous-time martingales.

The standard example of a continuous-time martingale is one-
diménsional Brownian motion. This process can be regarded as fhe
'éontinﬁous-time version of the one-dimensional symmetric random
walk, as we shall see in Ckapter 2. Since we have not yet 1lntroduced
Brownian motion, ﬁe>shall take instead the compensated Poissoh'process
55 a continuing exaﬁple developed in the problems throughout this
section. The compensated.Poisson process is a martingale which will
serve us later in thé‘conétruction of Poisson random'measures, a

tool necessary for the treatment of excursions of Brownian motion.

In this section we shall consider exclusively real-valued
procééses X = {Xt; Ogt<=]} on a probability space (Q,% P), adapted
fo a given filtration {3t} and such that EiXt1<» holds for every
t=0.

3.1. Definition: {Xt’3t5 Ost<u}'.as above is said to be a

submartingale (respectively, a supermartingale) if, for every '

Oss<t{w we have, a.s. P: E(X |&,) = X; (respectively,

CE(X [F) = X).

We shall séy that {Xt,gﬁg Ogt{»} 1is a martingale if it
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(111)

1.3.3

Show.that for 9Ogs<t, Nt-NS is independent of 3§~

(Hint: It suffices to show that for arbitrary positive

integer m, -

' N

P[S > ths eees TNs+m >t |3.]

- s>t., T
N +1 1’ N+2

is constant. Indeed, it equals P[Tl>tl, T2>t2,...,
Tm>tm]).

t-Ns is a Poisson random

Prove that for Ogs<t, N
variable with mean \(t-s).

exist.

Definition: A Poisson process with intensity a>0 {Nt, tzO}

is an integer-valued, righf-continuous process such that

No=0

a.s., and for~ Ogs<t, Nf-NS is independent of 35

and is Poisson distributed with mean A (t-s).

We have demonstrated in Problem 3.2 that Poisson processes

Given a Poisson process N

£ with intensity A, we define

the compensated Poisson. process

Mt = Nt—xt; t20.

‘Note that the filtrations (3;} end {F] agree.

3.4. Problem: Prove that a compensated Poisson process

v, B

£3 t20] is a martingale.
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The following theorem extends to the continuous-time case

certain well-known results of discrete martingales.

3.6. Theorem: Let {Xt,st; Ogt<=} be a right-continuous sub-
martingale, [g,T] an interval of [0, o) and a<B, A>0

given real numbers. We have the following results:

(i) First submartingale inequality:

%.P[ sup X2 Al s E(X+)-
ostsT i

(1i) Second submartingale ineguality:

A.P[ inf X.s -2] = E(X]) - E(X ).
ostsr T @

(1ii) Upcrossings inequality:

_ E(XD)+|a|
EV[G,T)(‘D; [C‘,B]) = ——B—:‘;—-— .

.(iv) Doob's maximal inequality:

P
E( sup Xt)p = (p—gr)p E(X:‘.): p>1,
ost<sT

provided X.20 a.s. P for every tz0, and E(Xp)<a.
_ T

(v) Regularity of the paths: Almost every sample path

{Xt(w); Ogt{«=} 1is bounded on compact intervals, and is
free of discontinuities of the second kind, i.e., admits

left-hand limits everywhere on (0, ).
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ot

3.7. Problem: Let “Nt be a Poisson process with intensity .

(a) For any c>0,

Iim P[ sup (N xs) = c it } ol
tee Ossst °~/

(b) For any c>0,

Tim P[ inf (N xs) € - c/At] = _%@T*‘
tow Ogs<t - Cufem

(¢) For 0< g< 1, we have

E[ sup (—-- 2)? 1= A
. ‘tST a

3.7’ Remark : From Problem 3.7 (a) and (b), we see that for each c>0,
there exists T,>0 such that '

N | :
P[I?E -l =z ¢/ %] < EJ%? Y tzTc.

From this we can conclude the "weak law of large number" for Poisson
N

procesSesg- ?E - X ,in probability as t-a=. In fact, by choosing

g = 2“ and T = 2n+1 in Problem 3;7 (¢c) and using Chebyshev's

inequality, one can show

8a

P[ sup - A=z €] € 5
n n+1't ‘ € 2n
2 ¢tg2

Tor every nzl, €>0. Then by a Borel-Cantelli argument (see Chung

[1A], Theorems Lh.2.1, 4 2.2), we: obtain the "strong law of large




2ll the P-negligible events in &.

3.11. Theorem: Let {Xt’3t3 Ost<{=} be a submartingale, and

assume the filtration {gt} setisfies the usual conditions.
Then the process X = {Xt; Ogt<=} has a right-continuous
modification if and only if the function t EX, from [0,=)
to R 1s right-continuous. If this right-continous modifica-~
tion exists, it can be chosen so as to be adapted to {3t},

hence a submartingale with respect to {3t}. ,
0

The proof of Theorem 3.11 requlres the following proposition,

which we prove first.

3.12 Proposition: Let {Xt,st; Ogt{=} be a submartingale.

We have the following:

(1) The limits X (w) b 1im X, @), %,_(@)  1im X, (o)
;seQ ' seQ

exlst almost surely,for every tz0 (respectively,

£>0).
(ii) The limits in (i) satisfy
E(X, ]5.) = X, a.s. P, ¥ t20.

E(X %, _) =2 X,_ a.s. P, V t>0.

(111) X Ogt<=} 1is a submartingale.

t+’ t+

Proof: (i) We wish to imitate the proof of (v), Theorem 3.6, but

because we have not assumed right- contlnulty of sample paths, we
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as well as the P. Lévy Theorem 9.4.8 in Chung [ 1], help us identify

this limit as X, _ - E(th$t_), which is thus shown to be non-

positive.

(i1ii) ©Now we take two monotone decreasing sequences {s } -1 @and
{tn};=l of rational numbers, with Oss<s <t<t  holding for every
nzl and 1im-sn = 8, lim t = t. For fixed nzl and arbitrary e

Neee Neee

in (0,s -s), the submartingale property yields f X dP « [ x dpP
n ‘ ‘A ®n A tn ’

for every event A 1in ss+e’ and therefore for every A in

38% = N te * By the uniform integrability of both sequences
_ €>0

-] ’ x .
{Xsn}n=l’ {th]n=1’ we conclude that ijS 4P < ijt (4P, ¥ AeF_,

]

Proof of Theorem 3.11:

Let X., be as in Prop051t10n 3. 12. Since {3t} is a

right-contihuous flltratlon and 30 contains all P-negligible

events of 3§, X,  1s & -measurable. Proposition 3.12 (i1)

‘implies Xt+ = Xt a.s. P,for every t=0. Thus, the (right-con-

'tinuéus!) process {X OSt(m} is a modification of the process
{X ; Ogt<e} if and only if EXt = EXt for every t20. But the
Aunlform 1ntegrab111ty of {X } -1 with arbitrary sequence t gt

not necessarlly through Q (Problem 3.8),yields E(Xy,) = lim E(Xt ),

N

and the stated condition amounts to right-continuity of the function
~ Conversely, if {Yt; t20} is a right-continuous modification

of  {X; t=0}, then E(Yt) = E(Xt) holds for every t=0; besides,
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E|X, | ;.?E(X:) - B(X,) < oc - EX

shows that the assumption sup E(Xz) < « is equivalent to the
- t20

apparently stronger one sup E|X,| < « which in turn forces the
t20

integrability of Xw, by Fatou's Lemma.
O

3,14 Problem: Let {Xt,gt; Ogt{=} be a right-continuous non-

negative supermartingale; then Xm(w) = lim Xt(w) exists

- GO

fér P-a.e. we, and {Xt,gt; Ostg=} 1is a supermartingale.

3.15 Definition: A right -continuous ﬁonnegative supermartingale

{2,,3:3 Ost<¥}' with %im E(Z,) = 0 1is called a potential. -

Problem 3.14 guarantees that a potential f{Z,.¥.; Ost<=} has

a last element 2Z , and 'Zw =0 a.s.P.

3.16 Problem: Suppose that the;filtration {3t} satisfies the

.usual conditions. Then every right-continuous, uniformly

"integrable supermartingale {Xt,E Ost{=} admits the Riesz

ts
decpmnosition Xt = Mt + Zt’ a.s. P, as the sum of a right-

-.continuous, uniformly integrable martingale {Mt,st; Ot}

‘and a potential {2,135 Ost<e]}.

3.17 Problem: The following three conditions are equivalent for a

‘ rightfcontinﬁpus submartingale (X Ogtdw] ¢

.t’ 3t3
 a it is a uniformly integrable family of random variables;
i 3
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‘What can happen if one sampléé a martingale a2t random, instead
of fixed, times? For instgnce, if Xt represents the fortune,
at time t, of an indefatiguable gambler (who plays continuously!)
engaged in ‘a "fair" game, can he hope to improve his expected fortune
by Jjudicious choice of the timeeto-qﬁit? If no clairvoyance into the
- future is allqwed (in other wofds, if our gambler is restricted to
quit at stopping times), and if there is any justice'in the world,
the answer should be "no". Doob's Optional Sampling Theorem tells

us under what conditions we can expect this to be true.

3,20 Theorem: Optional Sampling

Let {xt,st; O<¢tgws} be a right-continuous submartingale
with a last element X‘.,° ;ahd let ©S¢T be two optional times

‘of the filtration {3 }. We have
E(XT$35+) = Xgs- a.s.‘P.

If S 1is a stopping time, then 38' can replace Io, above.
In particular, EXT 2 EXO,' and for a martingale with a last

_element, we have EXp, = EX_.

Proof: .Consider the'sequence of random times

S(w) if S(w) = +=

nte E o1r Elise) <k,
o' 2 2

“and the similarly defined sequences {Tn}. These were shown in
Problem 2.24 to be stopping times. Fof every fixed intéger nzl,

both Sn and T, take on a countable number of values and we
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3.22 Problem: Suppose that. {Xt,3t; Ogt<e} 1is a right-continuous

submartingale and S<T -are stopping times of {3 }. Then

(1) Xqp ¢s3;5 Ost<=] 1is a submartingale;

(11) E[X; tl3S] 2 Xg . a.s. P, for every tzo.

3,23 Problem: A submartingale of constant expectation, i.e., with

E<Xt) = E(XO) for every tz0, 1is a martingale.

_2,24 P:leem: A process X = SO M Ogt<=} with E{Xt}<e, Ogt<w,

is a submartingale, if and only if for every pair SgT of

bounded stopp;ng times of the filtration [zt} we have:

E(XT) z E(ks), a.s. P.

3.25 Problem: Let Z = {Zt,st; O¢t<»}} be a continuous, nonnegative

martingale with 2 A lim Z, = 0, a.s. P. Then for every

t-.cn
s=0, b>0:
(1) P[igp Z,2b|3F ] = %- s on {Z.<b}.
s

(ii) P[Eig Z zb] P[Zszb]'+ B-E[Z l{Z <b}]
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1.4 THE DOOB-MEYER DECOMPOSITION

4.1 Definition: Consider a probability space (Q,% P) and a

random sequence {An}:_o adapted to the discrete filtration

{gn};zo. The sequence 1is called increasing, if for P - a.e.
weQ we have 0 = Ao(w) s Aj(w) s ..., and E(An) < «» holds

for every nzl.

An increasing sequence is called integrable if E(Am) { =

where A_ = lim An‘ An arbitrary random sequence is called predict-
"N : B )

able for the filtration {En};;o, if for every n=l the random
var}able An is 3n—l - measurable. Note that if A = {An’gns,
n=0,1,...} 1is predictable with‘ E]An}  » for every n, and if

{Mn’3ﬁ5 n=0,1,...} 1is a bounded martingale, then the martingéle

transform of A by M defined by

Y. =0,
(4.1)

n
Y = ¢ AK(MK-M

nZl,
R |

k-1
is itself a martingale. This martingale transform is the discrete-
time version of the stochastic integral with respect to a martingale,

"defined in Chapter 3. A fundamental property of such integrals is
that they are martingales when parameterized by their upper limit

of integration.'
g

Let us recall from Chung [ 1], Theorem 9.3.2 and Exercise 9.3.9,

that any submartingale {Xn,sn; n=0,1,...} admits the Doob decomposi-
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tion Xn = Mh + An as the summation of a martingale {Mh,gn}

and an increasing sequence {An,gn}. It suffices for this to take
: n

Ao=O and An+l = An-Xn+E<Xn+lldn) - kEO[E(XK+113k) B Xk]’ for

n=0. This increasing sequerice is actually predictable, and with

this proviso the Doob decomposition of a submartingale is unique.

We shall try in this section to extend the Doob decomposition
to suitable continuous-time submartingales. 1In order to motivate
the developments, let us discuss the concept of predictability for

stochastic sequences in some further detail.

L,2 Definition: An increasing seqguence {An’3n3 n=0, 1l,...} 1is

called natural if for every bounded martingale {Mn,sn; n=0,1,.
we have
n
(4.2) E(Mn An) =E I Mk-l(Ak - Ak-l)’ A4 nzl.»
k=1

A simple rewrite of (4.1) shows that an increasing sequence
A is natural if and only if the martingale transform Y = {Yn};;o
of A; by every bounded martingale M satisfies EYn = 0, n20.
It is clear then from our discussion of martingale transforms that
every predictable increasing sequence is natural. We now prove

the equivalence of these two concepts.

L.3 Proposition: An increasing random sequence A 1is predictable

if and only if it is natural.
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Proof: It remains only to show that a natural increasing sequence

is predictable. Suppose that A 1is natural and M is a bounded

martingale. With {Yn};=o defined by (4.1), we have

E[A (M, -M )] = EY -EY_,'= 0, nal.

1

It follows that
(4.3) E[M (A -E(A I3 _,)1] =
= BL(M - _)A ] + E[M (A -E(A_|5, ;)}]

- B[4, -M__;) E(A[3, ()] = 0

for every nzl, Let us take anarbitrary but fixed integer nzl,
and show that the random wvariable An is 3n-l - measurable.

Consider (4.3) for this fixed integer, and let the martingale M

be given by
sgn[AnfE(An}sn_l)}, kK = n,
MK = Mn’ k > n,
E(MH\EK), k=90,1,...,n
" We obtain E‘An-E(An‘3n~l)‘ = 0, whence the desired conclusion.

-

From now on we shall revert to our filtration {3t} parametrized
by te[J,=) on the prbbability space (Q,%,P). Let us consider

a‘process A = JA ;5 Ostl«} adapted to {Et}. By analogy with

Definitions 4.1 and 4.2, we have the following:
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L.,4 Definition: A process A as agbove is called increasing if

for P - a.e. wen we have Ao(w) =90, and t A (w) 1is
. L
a nondecreasing, right-continuous function, and E(A,) < =

holds for O¢tle.

An increasing process is called integrable if E(A ) < o,
(v~

where Aw = 1lim A

t—'co

g3 an arbitrary process A adapted to the filtra-

tion {Et} is called predictable with respect to {3t} if A, is
[
3t_ - measurable for every Ost<le.
4.5 Definition: An increasing process A 1is called natural if
for every bounded, right-continuous martingale (Mt,at; Ogtl»}
we have
(4.1) E | MdA =E @ M_ dA_.
s S J S~ S 1
(O,t] : ’ (O:tJ

Clearly, any increasing and continﬁous process 1is both pre-
dictable and natural. It can Be shown that every natural increas-
ing process is predictable (Theorem 3.10 in Liptser & Shiryaev
-[13]). Rather than dealing with this thorny issue, we will not
use the .concept of predictability for continuous-time processes,
although our proof of the existence of a "Doob decomposition" for
continuous~time processes does rely on the equivalence proved

in Proposition 4.3 for discrete-time processes.

4.6 Remark on notation: If A 1is an increasing and X. a measurable

process, then with weQ fixed the sample path (X, (w); Ost<l=]
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is a measurable function from [J,«) 1into R. It follows

that the Lebesgue-Stieltjes integral

It(w) A E(O,t]Xs(w)dAs(w)

is well-defined; in particular, if X 1s progressively

measurable (e.g.,right-continuous and adapted), then the right-

continuous process {It; Ost{x} with Io = 0 1is also progres-

sively measurable.

4.7 Lemma: In Definition 4.5, condition (4.4) is equivalent to

= Ef M dA .

L.y o E(M,A .
(4.4) B o,y Mots

¢)

Proof: Consider a partition @ = {to,tl,...,tn} of [0,t]. with

0 = tostls...stn = t, and define

o 3 (s)
Mi= ¥ M 1 s).
s po1 bt (Yo%)

' The martingale property of M yields

. n ( n n-1
I(O,t} s™s k=1 %k ‘k k-l k=1 Yk “k k=1 Tkl
E 3 .
= + - =
EM A, KflAtk(Mt Mtk) E(M, A,).

k+1

 Now let ||f)] A max (t ) - 0, so Mg

- Ms’ and vuse the
~ 1l<ken :

K tk-1

A, ]
Ty

Béuhded Convergence Theorem for Lebesgue-Stieltjes integration to

obtain
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A r
(4.5) E(Mt At)-= ! MSdAS. -
(0, t]
The following concept is a strengthening of the notion of

uniform integrability for submartingales.

4.8 Definition: ZLet us consider the class S(Sa) of all stopping

times T of the filtration {F.} which satisfy P(T<=) =1
(respectively, P(Tsa) = 1 for a given finite number a>0).

The right-continuous submartingale {Xt,st; Ogt{»} 1is said to

be of class D, if the family {XT}TES is uniformly integrahle;

of class DL, if the family {XT}TGS is uniformly integrable,
a

for every OKalw.
O

4.9 Problem: Suppose X = {Xt,at; Ogt<{»} 1is a submartingale.

Show that under -any one of the following, conditions, X is of

class DL.

(a) X, 20 a.s. for every t=0.
_(p) X has the special form

(4.6) X, = M_ + A, Ost< e

'suggested by the Doob decomposition, where {Mt,gt; Oct<=} is

a martingale and {At,gt; Ogt{=»} 1is an increasing process.

(¢) X 1is a martingale.

Show also that if X 1is a uniformly integrable martingale,

then it is of class D.
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' The celebrated theorem which follows asserts that membership
in DL is also a sufficient condition for the decomposition of the

semimartingale X in the form (4.6).

4,10 Theorem: Doob-Meyer decomposition.

Tet {3t} satisfy the usual conditions (Definition 3.10).
If the right-continuous submartingale X = [Xt,at; Ogt{=} 1is
of class DL, then it admits the decomposition (4.6) as the
summation of a right-continuous martingale M = {Mt,st; Ogtl=}

and an increasing process A = {At;gt; Ogtd=}.

The latter can be taken to be natural; under this further
condition the decomposition (4.6) is unique (up to indistinguish-
ability). Further, if X is of class D, then M is a uniformly

integrable martingale, and A 1s integrable.

0
Proof: For uniqueness, let us assume that X admits both decom-po-
sitions Xt = Mé + A{ = M€'+ Aé: where M”° and M” are martingales
and AJA” are natural increasing processes. Then [Bt A Aé—A€'=

Mé’—M£,3t; Ost{=} 1is a martingale (of bounded variation), and for

every bounded and right-continuous martingale {gt,gt} we have

m
n
"i
E[ A7-A” = E dB,. = 1lim E T ¢ B - B
[gt( t 7t )] J gS— 5 ' now j=l—t(n)[ t(.n) t(n)]’
(0,t] 3-1 73 j-1

where 1, = {tén),...,tén>}, nzl is a sequence of partitions of -

n

= max \t(n) - t§?%\ converging to zero as nN-w.

[0,t] with |m 3
T lsjsnn




But now

)] = 0, and thus E[gt(Aé - Aéﬁ] - 0.

Elg (B - B
SRR

For an arbitrary bounded random variable g, we can select {gt’3t3
to be a right-continuous modification of {E[£|3. ], §. ] (Theorem
3.11); we obtain E[g(A{ - A)] = 0 and therefore P(Aé = AEU =1,
for every t:0. The right-continuity of A’ and A” now gives

us their indistinguishability.

For the existence of the decomposition (4.6) on [0,=), with
X of élass DL, it suffices to éstablish it on every finite interval
[0,a]s by uniquéness, we can then extend the construction to the
entire of [0, ). .Thus, for fixed O0<alw, 1let us select a right—

continuous modification of the nonpositive submartingale

Y, AKX

‘ - E[X_|3,], Ostsa.

t

Let us consider the partitions 0, = {tén),t£n),...,tég)} of the

interval [0,a] of the form t§n)= L a, J=0,1,...,2". For
. . 2

~every nzl, we have the Doob decomposition

= ul®) (n) i n
Y () " Mt(n) NS 3=0,1,...,2
J J J

where the predictable increasing sequence A(n) is given by

_ ol . _
A T8 = A * B () < Y ()17, ()]

J J-1 J -1 7j-1
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j-1

= ¥ E[Y n) - Y o IF (n 1, J=1, , o0,
k=0 t]:(i'*"l t}(( ) tk_ )
We also notice that
. = A(n) - (1’1) | K] =Uy n
(4 7) Ytgn) t{n) E[Aa ]3t§n)] j=0,1, s2 .
J J J

[--}
n=1
integrable. With >0, we define the random times

We now show that the sequence {Aén)} is uniformly

/{min{tg?%;-A(n)) > A for some j, lsjs2n},

(n) tgn
T =
. J
a, 1f the above set is empty.
We have [T§n> < tg?i} = [A(?%) > ) € & (n) for j:l,...,En, and
‘ ti t:
J Jg-1

{Tin) < a} = {Aén) > 2}. Therefore, Tin)esa. On eéch set

{Tin) = t§n)}, we have E[A§H)13t(n)] = E[Aén)13T§n)], so (4.7)
- implies
(4.8) Y (g = a® 0wz 1 e - maPlE
Txn' T&p) T{n) a Tin)
on {Tin) < a}. Thus
(4.9) i Aén)dP < xP[Tin)<a] - Y (n)dP.

{Aén)>x} {T£n)<a}
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Replacing A by % in (4.8) and integrating the equality over

the 7 (n)~ measurable set ,{T(n) < a}, we obtain

Tk’é | | %
S [ ey @ [ e
n). A\ nj)._ 2
[T, <a} [jl <a} A |
2 2
> j (Aén)-Aé?%))dP > % P[T§n><a],
{T§H)<a} Y
and thué (4.9) leads to
11e r (n) i i,
(4.10) [ oalMeps-2 | Y (n)%P I Y (n)%F-
(n) (n) X (n) A
(a7 />0) | (T, A<} . {T,"/<a]

The family {XT}Tes is uniformly integrable by assumption, and
S, |

thus so 1is {YT}Teg . But
“a
. (n)
E(A E(Y
P[Tin)<a] = P[Aén)>x] < —S—%;—z = - (xO) ,

S0
sup P[T(n)<a] -0 as K\ = o .
na2l A

Since the sequence {Y (n)}“ is uniformly integrable for every
: ‘ T n=1

¢>0, it follows from (4.10) that the sequence {Aén)}:;o is also

uniformly integrable.
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. By the Dunford-Pettis compactness criterion (Meyer [16], p. 20
or Dunford & Schwartz [6 ], p. 294), uniform integrability of the
sequence {A<n)} -1 guarantees the existence of an integrable
TR,

a

random variable Aa’ as well as of a subsequence which

k=1
converges to Aa weakly in Ll:

lim E(gAink))

Ko oo = E(eA,)

for every bounded random variable €. To simplify typography we
shall assume henceforth that_the above subsequence has been .
relabelled, and we shall denote it henceforth by {A§n>}§=l. By
analogy with'(4.7), we define the process {At,gt} as a right-
continuous modifigation of

(4.11) A =Y +E(A|3.); Ostga.

4.11 Problem: Show that if {A(n)];;l is a sequence of integrable

random variables on a probability space (Q,%,P) which converges

weakly in Ll to an integrable random variable A, then for
each ¢- fleld % c ¥, the sequence E[A( )|g] converges to E[A[.4]
weakly in L

-
Let [ = U N, For tem, we have from Problem 4,11 and a
=1
. comparlson of (h 7) and (4. ll) that 1im E(eg A<n)) = E(g A ) for

Neww

every bounded random variable g. For s,tell with Ogs<tga, and
any bounded and nonnegative random variable &, we have

E[g(At-AS)] = lim E[g(Aén)—Aén))] z 0, and by selecting

N

E = l[A >At} we get ASsAt, a.s. P. ‘Because 1 is countable, fof
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for a.e. weq the function tkq‘At(w) is nondecreasing on T,
and right-continuity shows that it is nondecreasing on [0,a] as

well. It is trivially seen that A, = O, a.s. P. Further, for

0
any bounded and right-cdntinuous martingale {gt,gt}, we have from

(4.2) and Proposition 4.3:

| n
E(z,a™) = E 3 ¢ [A(?%) - a0y
& J=1 t§?3 tj tj—l
21’1
=E ¢ g [Y -Y ]
3=1 t§§% t§“) | tgﬁi
21’1
=E ¥ g, \[A A
j=1 tgl:l% t§n) té?{

where we are making use of the fact that both sequences
, (n) _ | ‘  nes
A, Yt,st} and {At : Yt,mt}, for tell , are martingales.

Letting n-e one obtains by virtue of (4.5):

E f g dA_ = E j g, A,
(05a] (0,a]
: . . ‘
as well as: E i gy dA_ = E | g, dA, ¥ te[0,a] , if one
(0,t] (0,t]

remembers that {gs.t’ 3y Osssé} is also a (bounded) martingale
(cf. Problem 3.22). Therefore, the process A defined in (4.11)
is natural increasing, and (4.6) follows with M, = E[X -A 15,1,
Ogtsga.

Finally, if the submartingale X 1s of class Dsit is uniformly

integrable; hence it possesses a last element X°° to which it
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convérges both in Ll and almost surely as t-e (Problem 3.17).
" The reader Will have no difficulty repeating the above argument,

with a = «, and observing that E(Aw) < o . .

Much of this book is devoted to the presentation of Brownian
motion as the typical continuous martingale. To develop this theme,
we must specialize the Doob-Meyer result just proved to continuous
submartingales, where we discover. that continuity and a2 bit more
implies that both processes in the decomposition turn out to also
be continuous. This fact allows us to conclude that the guadratic
variation process for a continuous martingale (Section 1.5) 1is

itself continuous.

4,12 Definition: A submartingalé {Xt,gt; Ogt<*} 1is called

regular if for every a>0 and every nondecreasing sequence

of stopping times '{Tn}n=l = with T = 1lim Tn’ we have

Nl=c
lim E(X, ) = E (X

'L.13 Remark: It can be verified easily that a continuous,vnonnegative

submartingale is regular.

- 4,14 Theorem: Suppose that X = [X,; Ost{=} 1is a submartingale of

class DL with respect to thg filtration {Et}, which satisfieé
the usual conditions, and let A = {At5 Ogt{=»} be the natural
increasing process in the Doob-Meyer decomposition (4.6). The

process A 1is continuous if and only if X 1is regular.




Proof: Continuity of A yields the regularity of X quite

easily by appealing to the Optional Sampling Theorem for bounded
stopping times (Problem 3.21 (i)).

Conversely, let us suppose that X 1is regular; then for any
sequence {Tn};_l as in Definition 4.12, we have by Optional

Sampling: 1lim E(AT ) = lim E(X ) - E(MT) = E(A and therefore

Noe n N Th
AT fAT a.s. P as n-oe. Now let us consider the same sequence
[qn}g;l of partitions of the interval [O,a] as in the proof of
Theorem 4,10, and select a number A>0. For each interval |
'(t§n) 52%), Jj=9, l,...,2 -1 we consider a right-continuous modifica-
tion of the martingale

gén) = E[).A (n)lgt], tJ/tStgii R
J+l

This is p0581ble by virtue of Theorem 3.11. The resulting process
{g(n), Ostgal 1is right-continuous on' (0,a) except poss1bly at the
points of the partition, and dominates the increasing process

{xAAtg Ostga}; in particular, the two processes agree a.s. at the

points tén),...,t(g). Because A 1is a natural increasing process,

2
we have from (4.4)
E j (n)dA =4E gé?)dAS; §=0,1,...,2" -1
(5050 (e§), e300

and by summing over Jjs we obtain

N . n r (n)
(4.12). E | gé dan_ =& [ elaa,

.(Ojt] : (O:t]
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for any Ostsga. Now the process

ﬂ(n>= j.géi) - (XAAt), Ogt<a,

t L 0 , t = a,

is right-continuous and adapted to ({3, }; therefore, for any e>0

the random time

inf{Ogt<a; n(n>>e}= inf{Ostsa; gén)~(kﬂA > €},

t t>

Ta(e) = a , if {...} =4,

is an optional time of the right-continuous filtration {3t},
hence a stopping time in § (cf. Problem 2.5 and Proposition 2.3).

Further, defining for each nzl . the function @n(.): [0,a] - I

_ (), L(n) (n)
by mn(t) = tj+l’ tj <t = tj+l’ we have

0, (T (€)) € 8.

Because g(n) is increasing in 'n, the limit T_ = lim Tn(e)

N

exists a.s., is a stopping time in ga’ and we also have

T, = 1lim o (T (¢)) a.s. P.
N )

By Optional Sampling we obtain now

-t
ele{™ 1= 3

T _(¢) J

) E[E(kAAt(n)!3Tn(€)) 1

J+1

n) ]

SRENOPI e

I

By (2 e )
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and therefore

)))"(XAATH(G))] = E[gézge)"(K‘ATn(e))] =

m

E[(X‘Amn(Tn<

(1) |
- (A.A eP[T (€) < .
E[l{Tn(e)<a}<ng(e) ( Tn(e)))J z €P[T _(¢) < a]
We employ now the regularity of A to conclude that for every e>0,
1 :
- 7 = _
P{Qn>€] = P[Tn<€)\a] < e E[()‘AACQn(Tn(e)) (XAATn(G))] - 0

as n-e, where Qn A Osup [gén) - (x,At)\. Therefore, this last
ztga

éequence of random variables converges to zero in probability , and
hence also almost surely along a (relabelled) subsequence. We
apply this observation to (4.12), along with the Monotone Convergence

Theorem for Lebesgue-Stieltjes integrétion, to obtain

B j (XAAS)dAS = E f (X‘A }dAS’ Dgt< o,
(9, t] (0, t]

which yields the continuity of the path t - xAAt(w) for every

>0, and hence the continuity of t 4 At(w) for P - a.e. weQ.
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1.5 CONTINUOQOUS, SQUARE- INTEGRABLE MARTINGALES

In order to properly éppreciate Brownian motion, one must
understand the rale it plays as the canonical example of various
classes of processes. One such class is that of continuous,
square-integrable martingales. Throughout this section, we have
a fixed filtrétion {3t} on a probability space (Q,%,P), which

satisfies the usual conditions (Definition 3.10).

5.1 Definition: Let X = {Xt,st; Ost{=s} Dbe a right-continuous

mértingale. We say that X 1is square-integrable if EX2

£
for every t20. If, in addition, 'Xo =0 a.s., we write

Xem, ( or XGM;, if X 'is also continuous).

5.2 Remark: Although we have defined Wé so that its members have

every sample path continuous, the results which follow are also
true if we assume only that P-almost every sample path is

continuous.

.For any Xemg, we have that X2

= {Xi,&t; Ogt{=} 1is a nonnega-
tive submartingale (Proposition 3.5), hence of class DL, and so X2

has a (unique) Doob-Meyer decomposition (Theorem 4.9):

2
Xt = Mt + At5 Ogt<e
where M = fMt,3t; Ogtle]} is a martingale and A = {At,gt; Ogtlx}
is a natural increasing process. We normalize these processes, so '
_ . c
that MO = AO = 0, ?'S‘ P. If Xeme, then A and M are con-
tinous (Theorem 4.14 and Remark 4.13); recall Definitions 4.4 and 4.5

for the terms "increasing" and "natural".




1.5.

5.3 Definition: For Xemg, we define the quadratic variation of
X to be the process <X>t é At’ where A 1is the natural
increasing process in the Doob-Meyer decomposition of Xg.
In other words, <X> 1is that unique (up to indistinguish-

ability) adapted, natural increésing process, for which

<X>O =90 a.s. and X2 - <X> 1is a martingale.

5.4 Example: Let{Nf,st; Ogtl=]} be a Poisson process (Definition

3.3) with associated martingale Mt &
N

we take Foo=3, = 3%).\ It 1s easy to verify that Memg,

= N, - At (Problem 3.4;

and <M>t = \t.
'If we take two elements X,Y of mz, then both processes
(X+Y)2 - <X+Y> and (X—Y)2 - <X-Y> are martingales, and therefore

so is their difference 4XY - [KX+¥> - <X-V>].

5.5 Definition: For any two martingales X,Y 1in mg, we define

their cross-variation process <X,Y> by

KT, 8 FIKKHD, - <KX-T> ]3Ot

and observe that XY - <X,Y> "is a martingale. Two elements

X,Y of me are called orthogonal, if <X,Y>t = 0, a.s. P,

holds for every Ostle,
a
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5.6 Remark: In view of the identities

E((Xt-xs)(Yt—ys)lgs] E[X, Y, - XY |5,]

S S

]

E[KX, >, - <X,Y>s[as],

valid P - a.s. for every Oss{t{w, orthogonality of X,Y
in  m, is equivalent to the statements "XY 1is a martingale"
or "the increments of X and Y over [s,t] are conditionally

uncorrelated, given 38".

5.7 Problem: Show that <.,.> 1s a bilinear form on mz, 1.4,

for any members X,Y,Z of m2 and real numbers a,B, Wwe
have

(1) <oX + BY,Z> = okX, 2> + BLY, 2>,

(i) <X T> = <Y,X.

The use of the term "quadratic variation" in Definition 5.3
may appear to be unfounded. Indeed, a more conventional use of
this term is the following. Let X = {Xt; Ogt{=} be a process,

fix t>0, and let T = {t,, tl,...,tm}, with 0 = t. <t stzs...stm=t,

1
be a partition of [O,t]. Define the p-th variation (p>0) of X

over the partition 1 to be

o L I7

®)(qy - - ;
Vt (1) | K§l1xtk X -
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Now define the mesh of partition 1 as ||Ill = max |t -t .|, and
lgkgm

choose a sequence of partitions {nn};;l of [0,t] for which

lim ”nn” = 0. If Vég)(nn) converges in some sense as n-e, the
N

limit is entitled to be called the quadratic variation of X on

" [0,t]. Our justification of Definition 5.3 for continuous martin-

gales (on which we shall concentrate from now on) is the the

following result:

5.8 Theorem: Let X be in *mg, and let {nn};;l be a sequence

of partitions of [O,t] with 1lim Hnnn = 0. Then Vég)(nn)
N

converges in probability to <X>t'

The proof of Theorem 5.8 proceeds through two lemmas. The
key fact emplbyed here is that, when squaring sums of martingale
increments and taking the expectation, one can neglect the cross-

product terms. More precisely, if XGW% and Ogs<tgulv, then

B[ (X,~X,) (X,-X,)] = E{E[X -X_|%,1(X,-X)} = O.

We shall apply this fact to both martingales Xe77z2 and X2 - <X>.

In the latter case, we note that because

il

E[(XV—XU)EISt]  E[X§l—'2XuE[XV13u] + Xilst]

2 2
E[X, - X 18,1 = B[O - <o 15,7,

the increment Xi - <X>V - (Xi - <X>u)’ may be replaced by
(X#-Xu)2 - (X - <X>u), and the expectation of products of such

terms over different intervals is still zero.
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5.9 Lemma: Let Xeﬁg satisfy le‘ € K o for all se[0,t].

et [ = {to,tl,...tm} with 0 = tostls...stm = t, be a

partition of [0,t]. Then E[Vég)(n)]2 < 48 K4

Proof: Using the martingale property, we have for Ogkgm-1,

m m

° 2
Blz (% - X ) |8, 1= E[lr =z (X, =X 3
J=k+1 £ | tk j=x+1( £ tj_l)} 13, ]

2 2
= E[(Xtm - th) 13tk] s 4K

o)
m-1 m -

2
5.1) El x £ (X =X )T (X X
(5-1 kel j=k+1 tj tj-1 te tke1

=E[ ¥ (X, X ¥ | F.011]
k=1 'k k-1 j=k+l 3 F5a17 Utk

m-1 A
T (X, X )21
=]

s 4K2 E[ £ Xy
K= k k-1

< 16K4.

We ‘also have
m
(5.2) E[ = (X, X )4] < IX° E 3 (X, =X, )2
k= k k-1

< 16 Ku.

Inequalities (5.1) and (5.2) imply
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(2) 2 _ n
E[V T = E X, =X

m-1 m o o
+ QE[ z z (Xt -Xt ) (Xt -Xt ) ]
k=1 j=k+1 J j-1 k k-1
< 48Ka.
Lemma 5.10: Let Xemg satisfy [XSj € K< e a.s.P for all
se[0,t]. Let {Un}m be a sequence of partitions of
n=1
[0,t] with 1im|m_ || = 0. Then
) N n
lim E Vé“)(n ) = 0.
n
N :
Proof': For any partition [ as before, Halder'svinequality

- implies

v () « v (m) . max (x 2

-X )
lgkgm

e Tty

and

(1) @) (22 ; 4k
BV () s (BE[V.S/(m)]%) (E[1§§§m<xtk th—l) 1)%.

As the mesh approaches zero, the first factor on the right-hand
side remains bounded and the second term approaches zero by the

bounded convergence theorem.
. o




Proof of Theorem 5.8 :

le consider first the case that [X_| s K<= for all se[0,t].

For any partition 1T =’{to,t1,...,tm} as above we may

write (see the discussion preceding Lemma 5.9):

m 2 ' 2
2) _ 2 _ X, -X Yoo (XD, - <K> )]
E(vt( (m) - <X>y) E[KEJ( t, teo1 ( £y te 1
S E[(X, X, )P - (<0, <O )1°
) El : bk Tk-1 fe o kel
m 4 . 2
€2 I E[(Xt X, )+ (<X>t - <> )71
k=1 k k-1 k k-1
< EEVSA)(ﬁ) + 2 E[<X>t' max {<X>t - <X>t 1].
- l<kgm k k-1

As the mesh of 11 approaches zero, the first term on the right-
hand sidé of this inequality converges fo zero because of Lemma
5.10; so does the second term as-well, by the bounded convergence
theorem. Convergence in L2 implies convergence in'probability,

so this proves the theorem for martingales which are uniformly

bounded..

Now suppose Xemg is not necessarily bounded. We

use the technigue of localization 'to reduce this case to the one

already studied. Let us define a sequence of stopping times (Problem

2.6) for n=1,2,... by

inf{t=20; |Xt[§ n or <X = n}

n ©s if {...] = &.
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Now Xén)g Xt T is a bounded martingale relative to the filtraticn
= N
2

{3t} (Problem 3.22), and likewise, Xp p = <Xy g0 s Ot}
“n “"n

is a martingale. From the uniqueness of the Doob-Meyer decomposi-
tion, we see that
<X(n>>t = <X>tATn'

Therefore, for partitions 1 of [0,t], we have

2

1l

m
- 2
lim E[ T (Xy o "X, g )T =< 17 =0
An A

a2 k=1 "k k-1+"n n

Since T te a.s., we have for any fixed t that 1lim P[Tn<t] = 0.
These facts can be used to prove the desired convergence of

Vég)(n) to <X>, in probability. o

5.11 Problem: Let (X,,3,; Ostl=] be a continuous process with the
property that'for each fixed t>0 and for some p>O,

1im Vép)(H) = Lt (in probability),
IR

where Lt is a random variable taking values in [0,«) a.s.

Show that for P,  lim ng)(ﬂ) = 0 (in probability), and
: | =O

q

for 0<g<p, lim Vt(n) - » (in probability) on the set

[1l[-0
{L,>0}.
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5.12 Problem: Let X be in m;. Show that if for some t>0, we

have <X>_ = 0 a.s., then XS = 0, Ogsst, a.s.

t O

The conclusion to be drawn from Theorem 5.8 and Problems 5.11
and 5.121is that for continuous; square-integrable martingales,
quadratic variation is the "right" variation to study. All varia-
tions of higher order are zero, and, except in trivial cases where
the martingale is a.s. constant on an initial interval, all varia-

‘tions .of lower order are infinite with positive probability. Thus,

the sample paths of continuous, square—integrable martingales are
quite different from "ordinary" continuous functions. Being of
unbounded first variation, théy cannot be differentiable, nor is

it possible to define integrals of the form jz Ys(w)dxs(w) with
respect to Xemg in'a pathwise (i.e., for every or . P-almost

every we(l), Lebesgue-Stieltjes sense. We shall return to this
problem bf the definition of stochastic‘integrals in Chapter 3,

where we shall give ItS% construction and change-of-variable formula;
the latter is the counterpart of the chain rule from classical
'caiculus, adapted to account for the unbounded first, but bounded

second variation of such processes.

It is also worth noting that for Xemg, the process <X>,
being monotone, is its own first variation process and has quadratic
variation zero. Thus, an integral of the form rY a<x> is defined

J7t t
in a pathwise, Lebesgue-Stieltjes sense.

We discuss now the cross-variation between two continuous,

square-intégrable martingales.
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5.1% Theorem: Let X = {X,,3.; Ost{w} and Y = {Y,,&; Ogtix} Dbe

members of mg. There is a unique (up to indistinguishability)
{3t}—adapted, continuous. process of bounded variation

;At,gt; Dgt<e} satisfying AO =0 a.s. P, such that

by the cross-variation <X,Y> of Definition 3.4,

Ost<{»} is a martingale. This process 1s given

Proof: Clearly, = <X,Y> enjoys the stated properties (con-
tinuity is a consequence of Theorem L4.14 and Remark 4.,13). This
shows existence of A. To prove uniqueness, suppose there exists

another process B satisfying the conditions imposed on A. Then

M (XY-A) - (XY-B) = B-A
is a continuous martingale with finite first variation. If we define
T, = inf{t20: M| = nl,

n
then {Mg ) AM ¥, ; Ost{es} 1is a continuous, bounded (hence

t.T * Y¢?

‘ n
square-integrable) martingale, with finite first variation on every
interval [0O,t]. It follows from Theorem 5.8 and Problem 5.11 that

(cf. proof of Theorem 5. 8):

<M>tAT = <M(n)>t =0 a.s., t20.
n :

Problem 5.12 shows that M(n) =0 a.s., and since T te as Nae, .

we conclude that M = Qa.s. P.
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5.14 Problem: Show that for X,Yemg and I = {ty,tyse.0st }

m
a partition of [O,t],-

n .
lim % (X, -X
Im-0 k=1 ‘kx °©

) = <K, > (in probability).

t
1

Twice in.this section we have used the technique of localiza-
tion, once in the proof of Theorem 5.8 to extend a result about
bounded martingales to square-integrable ones, and again in the
proof of Theorem 5.11to apply a result about square-integrable
martinéales to a continuéus martingale which was not necessarily
square-iﬁtegrable. The next defihitions and problem develop this

idea formally.

5.15 Definition: Let X = {Xt,gt; Ogt<{=} Dbe a (continuous) process

with XO =

O a.s. If there exists a sequence ’{Tn}:_l such
that x(7) 5 {Xén) A X

£.T 3t; O§t<w} is a martingale for
“"n

each n, and if T te a.s., then we say that X is a:(continuous)

local martingale and write Xemloc (respectively, Xemc’loC

if X 1is continuous).

Remark: Every martingale is é local martingale (cf. Problem 3.22),
but the converse is not true. We ‘shall encounter in Problem 3.4,12
a continuous process X with E|Xt[ < ® for every t=0, which

is a local martingale but not a martingale. However, every bounded

local martingale is a martingale.
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The reader will verify easily that a nonnegative local martingale

is a supermartingale, and that

mg < mc,loc.

5.16 Problem: Let X,Y be in mc,loc' Then there is a unigue

(up to indistinguishability) adapted, continuous process of

bounded variation <X,Y> satisfying <X,¥™>. =0 a.s. P,

o
such that XY - <X, ven™’ %%, 1r X = v, we write

<X> = <X,X>, and this process is nondecreasing.

5.17 Definition: We call the process <X,Y> of Problem 5.14 the

cross-variation of X and VY, in accordance with Definition

5.5. We call .<X> the quadratic variation of X.

O

We shall show in Theorem 3.2.6 that.one-dimensional Brownian

motion {Bt,Sts O¢t<{=»} 1is the unique member of mc,loc whose quadratic
variation at time t is t, i.e., Bi - t 1is a martingale. We

shall also show that d-dimensional Brownian motion

1 a ' . .
{(Bé ),...,Bé )), st; Ogt{=} 1is characterized by the condition

B =
< ) B > . a.jt’ . tzo,

- where 6ij is the Kronecker delta.
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5.18 Problem: 'Suppose Xemg. has stationary, independent
increments. Then <X>, = t(EXi), t=0.

5.19 Remark: The reader can employ the localization technique

used in the solution of Problem 5.16 to establish the following
extension of Problem 5.12: If Xemc’loc, and for some t>0

We close this section by imposing a metric structure on m2,
and diécussing the nature of both m2 and 1ts subspace mg under

this metric.

5.20'Definition: For any Xem2 and Ogtles, we define
2
X, & ¥ E(XP).
@ IX]) .1
We also set: Xl 4 =z —— - O
" n=1 2

.Let us observe that the function t - IXll, on [0,=) is
'hondecreasing, because X2 is a submartingale. Further, |X-yj
is a psegdo—metric on mg, which becomes a metric if we identify
indistinguishable processes. Indeed, suppose that for X,Yem2 we
have |[|[X-Y|| = O; this implies Xn = Yn a.s. P, for every n2l, and
thus X, = E(angt) = E(Yntst) =Y,  a.s. P, for every Ostsn.
Since X and Y are right-continuous, they are indistinguishable:

(Prqblem 1.5).
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5.21 Proposition: Under the above metric, m2 is a complete

metric space, and m; a closed subspace of m2.

(n)
Proof: Let us consider a Cauchy sequence (X };=l g_mgz

1im (P - X(m)” = 0. For any >0, T>0 we have by the first
n,m—t&

submartingale inequality (Theorem 3.6 ):

‘ . 1
P[OEEET\Xén) - Xém){ = €] = zg-EIXén) - Xém){Q =

= %{[X(n) - X(m)”T -0
€ .

as . n,m - =. We deduce that there exists a process X = {X,; Ostl=}

such that: sup ]Xén)-x -0 as n 4 o in probability,

OgtsT
as well as almost surely along an appropriate subsequence {nk}.

¢

It follows that this proéess is adapted to {3t}, and we have
E(X%) < ® as well as 1lim ElXén) - the = 0, for every Ogt<e.

n-.co

n n .
Furthermore, the sequences {Xé )};;l’ {Xé )};;l with Ogs5<{t<w

. . : 2
are uniformly integrable, because sup E(Xén)) < o, Therefore,

nal
(n) (n . .
E[lA Xt ] = E[lA XS ?] implies E[lA Xt] = E{lA XS] for every
Ae&s; and X 1s seen to be a martingale; we can choose a right-
continuous modification so that Xgmg. If {X(n)}g_l is a sequence
in ms, then X 1is continuous, as the (a.s.) uniform limit of

continuous processes.

5.22 Problem: TLet M = [M,,3,; Ogt{=x} be a martingale in Mo

and assume that its quadratic variation process <M>




-
.
wm
.
b
Ul

is integrable: E<M>a < w. Then:

(i) the martingale M and the submartingale M°  are both

uniformly integrable; in particular, Mm = lim MJr exists

2 t—-»co
a.s. P, and EM°° = E<M> .

-

(11) Z, = E(M |3 ta0 is a potential.
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1.6: SOLUTIONS TO PROBLEMS

1.5 Solution: If @ 1is the set of rational numbers in [O,m),

then the event A = U {w; Xs(m)4# Ys(w)} has zero proability.
S€Q

Besides,

{w; X (w) # Y (w), for some ta0} c A,

by right-continuity of the processes. The result follows.

1.7 Solution: ILet An be the event that X has a jump of size

-
on [O,ty)r Then A= y A so it suffices

greater than
‘ n=1

n’

e

to prove Aneat. Letting Q Dbe the set of rational numbers
(o)

in [O,«), we have

, 1
An ={¥mgzal, aq,l,qzeQn[O, to) with lql'q2'< m and

1
X, =X > =]

- n U {lx

1, X
m=l a1, a,€QN[0,t) % % Tt

1

1.8 Solution: We first construct an example with Atsg . The

. 0
collection of sets of the form . { (X, ,X, , ... )€B} where
1 2

Be@(Rd) <] B(Rd) g ... and Ost <t <...st; forms a g-field
X

to" Choose Q = [0,2), & = B([0,2)),

and each sudh set is in &

and for FeJF, let

P(F) = A (F N[0,11),
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where ) 1is Lebesgue measure. For we[0,1], define
Xt(w) =0 ,Y t20; and for we(1l,2), define Xt(w) =0
= ' = X
if  téw, Xw(m) = 1. Choose t, =2. If Ae&to,
some Be B8(R) 2 8(R) 2 ... and some Ogt <t <...€2, we

then for

have A={(thsxt2:---)€B}.ChOose te(1,2), Tttt 0
Since w =t is not in A and xtk(f) = 0, k=1,2,...,
we see that (9,90,...)¢fB. Since th(w) = 0, kK=1,2, 444,

for all we[0,1], we conclude that ([0,1] n A = g, which

contradicts the definition of A and the construction of X.

We next show that if 3X c & and F is complete, then
. ty ty ty
Aest». Let N c Q be the set on which X is not right-continuous,
O .
and le
N = {weN; X 1is continuous on [O,to)}.
Then
A=[(Uu A)NKI\TDN,
n=1
where
® : 1
A= n U {IXq_-X | > &3

m=1 q1:q2€Qﬂ[0:t] %
1
la, e, 1< 7

1.10 Solution:

' 1
Set A = N U {1Xqg Xq | > =1,
Ky,n . 1 q n
’ m=1 ql,qgeQﬂ[O,to+ E) 4 79
‘ 1
19,-%I< 5
so.
‘ . © c
AK 2 2 A € &

-
W
-
o]
ot
+
e
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' 1
is the event that X 1is continuous on [0sty+ £ ). Since

©

A= N AK for any positive integer K, we have
k=K
Aen 3 1 = & .
tAt+
k=1 to+ ' 0
'1.16 Solution: XT(w) is the composition of the two measurable
mappings

@ (T(w)sw): (2F) - ([9=) x 0, B([%=)) 2 3)  and

(t:e) = X (@) ([0,°) x 0, 8([0,2)) 2 3) - (35 8(z7)).

2.2 Solution: Let t, = T(w), and let A = [Tsty}. Since wea,

Il

‘Aesx > and X (@) = X (o), te[0,t ] n [0,»), we have  cA.
tO t th 0

X
(See the characterization of Iy in Solution 1.8.) Therefore
-~ 9 .
T(w") s T(w). Reversing the roles of « and w , WwWe can now

argue that since X, () = X (0") for all te[0,T(w’)] n [0, =),

we have T(w) s T(w’).

2.5 Solution: Try to argue the validity of the identity:

{HIgt} = U {Xser}, for any t>0. The inclusion 2 is
s€Q . -
Ogs<t

obvious, even for sets which are not open. Use right-continuity,

and the fact that T 1is open, to go the other way.

2.6 Solution: (Wentzell [19]): For xegd, let p(x,T)=1inf{||x-yll; yeT},
and consider the nested sequence of open neighborhoods of ™ |

given by T, = {xeRd; o(%,T) < %}. By virtue of Problem 2.5,
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s nzl, are optional., They fcrm a non-

the times T A H
n =T,

T
decreasing sequence, dominated by H = Hf, with 1imiz
T A 1im Tn = H,' and we have the following dichotomy:

- ndeo

On {H = 0}: Tn = 0, V nz2l.
On ({H>0}: there exists an integer k = k(w)zl such that

T =09; Vlsn<k, and T T  ,<H; V¥ nz2k.

1

We shall show that T = H, and for this it suffices <o

establish: T2H on {H0, T{«}.

On the indicated event we have, by continuity of the sample

. - 3 M A4
paths of X: XT lim XT and XT €3, & Ty ¥ m>nzk. Now

n-e n m
we can let m.w, to obtain XTGPn; Y nzk, and thus
o 4
XT € N T_ =T. We conclude with the desired result HgT.
n=1
The conclusion follows now from {Hgt} = n {Tn<t}, valid for
. n=1
n=1

t>0, and {H=0} = {Xoer} .

2.9 Solution: Optionality of T+S follows from Corollary to Proposition 2.

and Lemma 2.8, or directly from: {T+S<t} = U ({TKr, S<t-r}.
_ . req
Ogre<t
For the rest, use again the decomposition in the proof of Lemma

2.8, just a little bit more subtlyl

2.16 Solution: For any event Aedp, and any t20, we have

AnfT=S} n {T+Sst} = An{T<S} n {Tst}est, because the event
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{TsS} 1s in I (Lemma 2.15). Therefore, An{TsS}eST q ond

"1{TsSJ E(Z|3p )dP = j

I, zap = | E(Z(3.)dP =

°T
AN{T<S} AN{TsS} '
-IAlthS} E(Z|3;)dP, so (i) follows.
For claim (ii) we conclude from (i) that

- E[1iqey B(213g 1) 13g]

E[E(Z|¥

= Irresy ELZ13g 2

which proves the desired result on the set {TgS}. Interchanging

the roles of S and T and replacing Z by E(Z\&T), we can also

conclude from (i) that

Les<Ts E[E(Z]3q) 3] lrscry E[E(Z|3p) |3g )

I

'2.18 solution: By assumption, the mappings

2

C(850) = (s,X (@)): ([0st] x 0, B8([0,t]) 2 F) < ([0,t] x r

R([0,t]) 2 8(z%))
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and (s,x) — £(s,x): ([O,t] x Pd, R([0,t]) 2 ﬁ(Rd)) - (RyB(R))

are messurable, and then so is the composite mapping
(sy0) e £(s,X_(@)): ([05t] x 0, 2([0,t]) 2 3,) ~ (= 2(R)).

The Fubinl theorem yields 3t~measurability of the random
variable _Yt,
measurable with respect to {st}, since 1t is adapted and

has continuous paths (Proposition 1.13). The xT—measurability
of YT now follows from Proposition 2.17.

Solution: We only discuss the second claim, following Chung

2.

~ because AN{S = O}eF . . It follows that Ae3

22

[2]. For any Ae3g,, we have
A= ( UQ[AH{S<r<T})u [ANLS = «}] U [AN{T = O}].
re

Now AN{S<r<T} = An{S<r} n (T>T} is an event in Fps as is
easily verified, because An{S(r}égr. On the other hand,

An{S = =} = [AN{S = =}] N {T = =} is seen to be in &, since
AN{S = =}eF_. Finally, AN{T = 0} = [Ah{s = 0}1 n {T = 0} &3,

T.

Solution: T 1is an optional time, by Lemma 2.10,and so &

T+
is defined and contained in F; . for every nzl. Therefore,
n

©

423 c N JF . To go .the other way, consider an event A
T+ = n=1 Tn+

such that Aﬂ{Tn<t}€3t, for every n2l1 and tz20. Obviously

then, AN{T<t} = An( U {T <t}) = U (AN{T <t})edF,, and thus
g n=1

n=1

A€Fnp, -

and so the process Y 1is seen to be progressively

. The second claim is justified similarly, using Problem 2.21.



16 .7

2.2% Solution: Because ({T = k 1= {IK E-—}\[T<-—K—1—-} is an event
h n 2n 2n 2n
in 3& s Wwe have
- 2n
(T st} U T = £ teq v t20
= = e € P .
n k, nal n 2n t
kgt2”
On the other hand, for AeFy, we have
Kk K K-
LT, = 21 = (ARET < S PN(ALT < E1y)eq
2 2 oh k
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3.2 Solution

(1)

Fix s20 and a nonnegative integer n. Consider the
"trace" g-field & of all sets obtained by intersecting the
members of 35 with the set {Ns=n}. Consider also the
similar trace g-field ¥ of g(Tl,...,Tn) on {N_=n}. A
generating family for & 1is the collection of sets of the

l""’Nt snk,NS=n}, where Ostls...st
K

each such set is a member of ¥H. A generating family for ¥

<s, and

form {Ntlsn Kk

is the collection of all sets of the form {Slstl,...,
Sn-l‘tn-l’Nt=n}’ where O;tls...gtkss, and each such set is

a member of %. It follows that & = H.

For Kesg and A A X O{Ns=n}, we have A€l c c(Tl,...,Tn),
so T, ,, 1s indeed independent of (Sn,lA). It follows that
the pair of random variables (Tn+l’sn)’ when restricted to

A, induces on '(Re; a(Rg)) the measure

P[Tn+1 edr] , P[Snedg; Al,

where

P[T

il edr] = ke—XTdT, 120,

and P[Sneda; A] 1is the measure defined by

J P[S, €ds; A] = P[S_eB; A], VY Be(R).
B

We may now compute

P[T

- j . f_ . P[Tn+l edr] P[S edo; A]




e 'P[Snedc; Al,

—)\S .rs
J
c=0

Ae
P[T 4 * 5,>8s S ss, Al = e e ”P[snedo; Al,

and if P(A) > O, then

" P[S,,>t, N_=n, X]
B[S,y >t|N_ =n, i] = —2L s

n+1l P[S

el ” S Ny=n, A]

PIT p*+8. >, 8,55, A] _ A (tee)

P[Tn+l-FSn}>s, Snss, A]

From this, we may-conc;ude that whenever KeaN and

)
P(X) > 0, then

(-]
B RIS >t No=n, )
PISy 41> tIK] = B2
S % P[N, =n, %]
n=0
= e Mtms),

Therefore, for any Kesg, whether or not P(ﬁ) > 0, we have

P[A N{Sy 4 > t}] = e M (t-s) P(R),
S .

and (i) is proved.




(i1)
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For Ogs<t, N is a Borel function ¢ of the inter-

t-s

arrival times T T2,.... With the same function o, we have

l’

Nt-NS = C'D(SNS'I']_ - S’ TNS+2, TNS“"'B’ --o)o

Thus, to prove that Nt-Ns is independent of ag, it suffices

to prove that for arbitrary positive integer m, and for

t . tm in [O:‘”)-'

l’t2"'

is constant. We shall in fact show that this expression
equals P[Tl>tl’ T2>t2, ey Tm>tm], so the distribution of

N,-N is the same as that of N
t s : t-8

We compute as follows:

P[S

: N
—S>tl:T >t .,.',TN +m>tm‘3s]

NS+1 NS+2 2 s

-}

r 1 _
n=0 {Ns"n}

P[S - S>tl,T 2>t2’oo¢,T

Ns+l Ns+

-]
= ¥ 1

P[S >t. +s, T >t
N_ =n} n ’
n=0 { S

+1 1

_ . N
On the set (N_ = n}, the g-fields &F_ and O(Tn+2""Tn+m)

are independent (i.e., the tréce g-fields are independent).

The random variable Sn+l is not independent of 35 on

[N, = n}, but its conditional distribution was computed in

" (i). It follows that

Ns+m:>tm13

N
s

N
n+2 2""’Tn+m:>tm1351'

]




P[S . >t.+s, T . >t

n+l 1 n+2 2

-x(t + e o 0 +t )
2 m N
= e P[SNt+l>>tl+s|3S]

-x(tl-+t

...+t )

2

P[T1> tl’ 'I‘2>t2,..., Tm> tm].

(1ii) 1In light of (ii), it suffices to prove that N, is Poilsson
with mean At. A standard computafion reveals that Sn has

a gamma distribution with parameters (n,\), i.e.,

' n n-1 .
P[S_eds] = 28 ¢7AS gg s>0.
_ n (n-1)!1
It is then easy to see that since .P[Ntsn] = P[Snzt], we

-must have

n
P[Nt =n] = 0t) e Mt

nit

2.7 Solution

Let {M.; t=0] be the martingale [N, - at; t=20].

- We have
® k
+ . n -n
E = I (k-n) e
Mh/A k =n+l :
® k © k
n -n n -n
=z k-T ¢ - Dr ¢
k=n+l K = n+2
n+l -n
= e

,,,,,



According to Stirling's approximation, this implies

EMt
vim —24 o L
Now MO 2T

Now {MI, t20} 1is a submartingale (Proposition 3.5), so for

E%L et g2 ; we have EM;_l s EM < M7 , and thus

X n
A A
vt
1 gyt /n—l t < n/}A/ '
——-——’ l L ]
l\/n—l -n_):-— '\/ t ’\/—-‘
Upon letting n-w, we conclude that
at
lim —= = ——
toe ,/}\t ,\/211'
From Theorem 3.6 (i), we have
( ) v o) e
P[ sup N - AS) = ¢ ] =
Ogssgt e/Ant

1.6.1

and (a) is proved. Part (b) follows in the same way from Theorem

3.6 (ii).. We obtain (c) by applying Theorem 3.6 (iv) to the sub-

martingale {]Mt]; t2013.

Indeed,

E[ sup (ﬁi - x)2] < E[ sup M2 ]
gstsT © —? OstsT
1 2
= =5 B[ sup [M.]]
o Ost<r
o2 4Ty
s 7 B o=—"
g - o
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2.8 Solution:

Thanks to the Jensen inequality (as in Proposition 2.5) we
have that {XZ, 3,3 nzl} is also a backwards submartingale, and so

. ' . + +
with >0: WP[X I>A)sE[X | = -E(X) +2E(X) < -4 +2E(X]) < .

It follows that sup P[an]3>x] converges to zero as -, and
nzl

by the submartingale property:

r + r xt r
| X, dP & | Xy dP s X

RESERY REIRY x>

H +

Therefore, [X;}§=l is a uniformly integrable sequence. On the other

hand,
0 2 j’ X aP = E(X ) - | XaP=E(X ) -l X_dP
£x, < -1} {X 2 - 1) X,z -3}
=E(X ) -E(X)+ [ X dP, for n>m.
n m Y1x, <) m

Given >0, we can certainly choose m so large that

OsE(Xm) - E(Xn) < % holds for every n>dm, and for that m we

select >0 1in such a way that

Consequently, for these choices of m and ) we have:

sup f X dP < e, and thus {X }> ; is also
n>m -
(X, >}
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uniformly integrable.

3,14 Solution:

The existence and integrability of the limit follow from
Theorem 3.13 applied to the nonpositive submartingale {—Xt,s 5 Ost<=}.

It-remains to show

f X dP s | X.dP, V¥ Aex
A ® Jp S s

for an. .arbitrary Osgs<«.  But we have E[lAXt] < E[lAXS] for every

t>s, and now the result follows from Fatou's Lemma.

3,16 Solution:

Uniform integrability implies that sup E]th { w», 50 Theorem
t=0
3.7 gives the existence and integrability of X°° = 1lim Xt’ and
Theorem 3.11 guarantees the existence of a right-continuous modifica-

tion M, of the uniformly integrable martingale E(Xalg‘). Finally,

obse?ve that Zt A Xt-Mts

(by Problem 3.14) supermartingale, with 1lim E(Zt) = 1lim E(X,)-E(X_)=0

t20 1is a right-continuous, nonnegative

Toox

(by uniform integrability).

3,17 Solution:

Exactly as in Theorem 9.4.5, Chung [ 1].

%.18 Solution:

Exactly as in Theorem 9.4.6, Chung [1].
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3,19 Solution

(1)

(11)

Choose 0Ogs<t. Recall from Problem 3.2 (b) that Nt
is independent of 3?. Therefore,

..NS

]

E[Xt13§] E[XS eXP{N%‘NS—X(t-S)(e-l)}}gg]

= X exp{-r(t-s)(e-1)} E[exp(Nt~NS)] = X_.

No. Since tho, Problem 3.14 implies X, converges to

a limit X a.s. From Problem 3.7 (a), we have that for

each c>O; there exists TC>O such that

2
P[N_-xt =2 ¢ AAT] ¢ , ¥V t2T .
t ‘ /30 c

It follows that

P[X, = exp(c AT - at(e-2))] s —2—, ¥ taT ,
c./er ¢

SO Xt - O 1in probability and X°° =0 a.s. But

» N
EXt = 1, Ogt<e, and EXQ = 0, so [Xt,gt; O¢tgw}
is not a martingale (cf. Problem 3.18 (d)).

3.21. Solution

(1)

- (11)

Repeat verbatim the proof of Theorem 3.13, except that
now you can refer to the "discrete" optional sampling

Theorem 9.3.4 in Chung [ 1] for bounded stopping times.

The submartingale has a last element X_ = E[Y|3 ].

(-]

Theorem 3.20 thus applies.
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3.22 Solution

(1) We have to establish, for every Ogs<t<e.
(*) E(Xp 13,1 2 X o 3 a.s. P.

From the optional sampling theorem applied to the bounded stopping
times T.s < T.t, we have (Problem 3.21 (i)): E(XT.tigTﬁs] z Xo o
a.s. P. But from Problem 2'16(1)’E£XTAt'3TAs] = E[XTAttgs], a.s. P

on {T=s}, and so (*) is seen to hold on this event.

On the other hand, we have trivially E[XTAt‘gs] = XTAS ,a.5. P

on {T<s}.

(ii) The proof is similar.

3.2% Solution:

With 0Ogs<t<w, suppose that the event A = (E(X.13,) > X}

has positive probability. We have

E(Xy) = E[E(X.]5,)] = E[1,E(X |&,) + 1ACE(Xt138)],

as well as E(thss) 2 X, a.s. on 0. The assumption P(A) > O
thus leads to E(X,) > E(X_), which contradicts the premise of

the proposition.

3.24 Solution: Necessity of the above condition follows from the

version of the opntional sampling theorem for bounded stopping times
(Problem 3.21 (i)). For sufficiency, consider Oss<t<?, Aess and
define the stopping'time S(w) A slA(w) + tlAC(w). The condition
E(Xt) 2 E(XS) a.s. P is tantamougt to the submartingale property

E[X.1,] ;E[XslA].
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3.25 Solution: (Robbins & Siegmund (1970)): With the stopping time

- {?nf{tzs; Z,=b}

+ ©, if {...}=¢,

the process {Z t* 3.5 Ostle} 1is a martingale (Problem 3.22(1)).
It follows that for every Aess, tes:

Z_dP = Zn 4P = b.P[AN{Z _<b, Tgt}] +
“An{z <b} S °rAﬂ{ZS<b} Tat s ,”.
‘ z, 1 dp .

The integrand Zt 1[T>t} is dominated by b, and converges
to zero as t-e by assumption; it develops then from the

dominated'convergence theorem that

[ Z 4P = b.P[AN{Z,<b, Ke] = b [ P[1<=| 5, ]aP,
'AnN{Z <b} ‘angz <v}

establishing the first conclusion. The second follows readily.
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4.9 Solution: According to the Optional Sampling Theorem 3.20 as

extended in Problem 3.21 (i), we have

[ X, dPe [ X, dP V¥ Tes,

) (X))
and from Theorem 3.6 (1), P{XT>X} approaches zero uniformly
in T as Ai1O0. This proves (a). Applying this same argument
to the nonnegative submartingale M and observing that
Ap s A for Tes , we obtain (b). Part (c) is a special
case of (b) with A = 0. If X 1is uniformly integrable; the

optional sampling theorem and Problem 3.18 imply

n
i

| X 4P j X_dP , ¥ Tes.

{X&>X} - {Xp2l

4,11 Solution: Let & Dbe a bounded, F-measurable, randcm variable.

We have

mre 52217 = mrereis] 2a(™ (203

i

Ere(E(g]2] A(P) (213

E{E[els] A(M)y

which converges to E{E[Z|g] A} = E{gE[A[2]].
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5.7 Sblution: (1) It is easily verified that

(aX + BY) Z - a KX,Z> - B <Y,2Z>

is a martingale.

5.11 Solution: Let 1T = [t,,...,t }, with O = t st,s...st , De

a partition of [O,t]. For g>p, we have

v{D ) « vl (m).  max 1x

x, |97P,
l<kem

Y Ttk

k

The first term on the right-hand éide has a finite 1limit in

probability, and the second term converges to zero in probability.
Therefore, the product converges to zero in probability. For
<g<p and a sequence'of'partitions {nn};;l with im_f - o,

the seqﬁence {Véq)(nn)jzzl must be unbounded on the set

{Lt>0}, for otherwise the argument just given (but with the

rales of p and q interchanged) would show that

Vép>(nn) - O 1in probability on this set. Since every such

sequence {V£Q)(nn)};=1 is unbounded, we have lim V() = o

im0 *
(in probability) on {L,>0}.

5.12 Solution: Since <X> .is nondecreasing, <X>t = O implies

<X>S = 0 for Ossst. For each se[0, t],
2 2
0 = E[X; - <X>_] = E(X3) ,

which implies that X =0 a.s. Since X is continuous,

we must have that P-almost every sample path is identically

zero on [O,t].
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Solution: Write

(x, X, ) (¥, -¥, )

k k-1 k k-1
1 2
= X, +Y - (X +Y
| 21' [ ( tk+ tk) | ( tk-l tK—l) ]
-3 I, IR DI )%,

tx k-1 C‘g-1

and use Theorem 5.8 and the propertiesof A = <X,¥> in

Theorem 5.13.

5.16 Solution: There are sequences {Sn}, {Tn} of stopping times
s 1 (n)
such that Snfm, Tntm and Xt A Xt.Sn’
Yén) A YtAT are {3t} - martingales. Define

n

R. A SnATnﬂlnf{tzO: [ X

¢l =n or \Ytl = nj,
5(n) _ (m) _ ;
'and set t X, R’ ?’ = ¥, R Note that R te a.s.
"Since é n) . (n) » and 1likewise for ?(n)’ these processes

are also {gt} - martingales (Problem 3.22), and are in m;

because they are bounded. For mdn, ién) = i(m) and so

t.R
n

2 o
(Xén)) - \X(m)>thRn = (X £.R

is a martingale. This implies {i(n)>t = <X(m)>t g+ Ve can

thus define <X>t = <(5(J<n)>t whenever tsRn and Hé assured

that -<X>t is ﬁellfdefined.v The process <X> 1s adapted,




‘continuous, nondecreasing, and satisfies <X>O =0 a.s.
FPurthermore,
2 ¢ - (x(m)y2 _ x(n)
XtAR - \X>t.R = (Xt )¢ - <X >t
n n
. . 2 c,loc .
is a martingale for each n, so X - <X>em . As in

Theorem 5.13, we may now take

KX+T> - <X-Y>] .

=

KX, > =

As for_the question of ﬁniqueness,lsuppose both A and 'B
satisfy the conditiéns required of <X,Y>. Then M 2 XY-A and
N & XY - B ére in mf’loc, so just as before we can construct
a séquence {Rn} of stopping times with R te such that

(n) , (n) 7 ; c
Mt A MtARn - and Nt é NtAR' are in mg. Consequently

(n) _ y(n) _ o(n) _ ,(n) c . C s
Mt Nt = Bt At € mé, and be}ng of bounded variation
this process must be identically zero (see the proof of Theorem

5.13). It follows that A = B.

‘5,18 Solution: Let A = EX?. The martingale property implies
2 1 2 > 1 __ D >
e L L e Y S L
n n n n

%%E for all positive integers

1t

. 2
Similarly, we can sth Exk/n

k and n. Since both EX2 and <X> are nondecreasing

t t
functions of t, we have EX% = xt, t=20. We now show that
X2 - At 1is a martingale. For Ogs<t,

t
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e : 2 -
B(x2 - at]3;] = BL((Kgxg) +%,)° - at]5.] -
E[ (X,-X)° - At]3.] + X5 = EX}__ - At + X2 = X2 - s,

5..22 Solution: From E(Mi) = E<M>t s EKM> < = we obtaln

sup E(Mi) < o, which implies the uniform integrability of
t=0
M (Chung [1 ], Exercise 4.5.8). From Problem 1.3.18 we have

that M_ = 1lim M, exists a.s. P, and that E(M_|5,) = M

holds a.s. P, for eVery t20. TFatou's lemma now yields

E(Mi) = E(1lim Mi) s lim E(Mi) = lim EQM>, = KD { ® ,

t-—o@ t—»cn t—»co ®
o . - 2
and Jensen's inequality: L = E(M¢|3t)’ a.s. P, for every
t20. Tt follows that the submartingale M- has a last

element, i.e., that {ME, 3t;

o 5
besides, we have E(Mi) s E(Mi) whence EKM> s E(M).

Ogtgo} 1s a submartingale;

Therefore, lim E(Mi) = E(Mi) = EKM> - and so, by Problem
too : ®

1.%.17, the submartingale M? is uniformly integrable.

2

. 2
Finally, Z, = E(Mm\St) - My

‘tinuous, by appropriate choice of modification) nonnegative

is now seen to be a (right-con-

supermartingale, with E(Z,) = E(Mi) - E(M%) converging to

zero as tow.
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1.7 : NOTES

Sections 1.1, 1.2: These two sections could have been lumped

together under the rubric "Fields, Optionality and Measurability"

after the manner of article [3] by Chung & Doob. Although slightly

dated, this article still makes excellent reading. Good accounts
of this material in book form have been written by Meyer [16;
Chapter IV], Dellacherie [4; Chaﬁter ITITI and to a lesser extent
Chapter IV], and Chung [2; Chapter 1]. These sources provide.
material on the classification of stopping times as "predictable",
"sccessible” and "totally inaccessible", as well as corresponding
notions of measurability for stpchastic processes, which we need
not broach here.

A,new notion of "sameness" between two stochastic processes,
called "synoﬁimity", has been introduced by Aldous. It was
expounded in a recent paper by Hoover [10] and was found to be

useful in the study of martingales.

" Section 1.3: The term "martingale" was introduced in Probability

Theory by J. Ville in his 1939 book "Btude critique de la notion
a1 collectif". The concept had been created by P. Leévy back in
193@,.in an attempt to exteﬁd the Kolmogorov inequality and the
law of large numbers beyqnd the cése of independence. 'Lévy's 0-1
law (Theorem 9.4.8 and Corollarj in Chung [1]) is the first
martingale convergencé theorem. The general theory, as we know
it today, sprang fully armed from the forehead of -J.L. Doob.[5]. "

For the foundations_of. the discrete-parameter case there is

pérhaps no better source than the relevant

- S
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sections in Chapter 9 of Chung [1] that we have already mentioned;
fuller accounts are Neveu [17] and Hall & Heyde [9]. Other books,
which contain material on the continuous-parameter case, include
Meyer [16; Chapter V, VI], Liptser & Shiryaev [13; Chapter 2, 3]
and Elliott [7; Chapters 3, 4].

Section 1.4: Theorem 4.10 is due to P.A. Meyer [14, 15]; its proof

was later simplified by K.M. Rao [18]. Our account of this theorem,
as well as that of Theorem 4.14, follows closely Ikeda & Watanabe
' [ll]..

Section 1.5: The'study of square-integrable martingales began
with Fisk [8] and continued with the seminal article [12] by

Kunita & Watanabe. Theorem 5.4 is due to Fisk [8].
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2.1 INTRODUCTION,:

"Brownian movement“ was the name given to the irregular move-
ment of pollen, suspended in water, observed by the botanist Robert
Brown in 1828. This random movement, now attributed to the buffeting
of the pollen by water molecules, results in a dispersal or "diffu-
sion" of the pollen in the water. The range of application of
Brownlan motion as defined here goes far beyond a study of micro-
scopic particles in suspension and includes modelling of stock
prices, modelling of thermal noise in electrical circuits, modelling
of certain limitingtmhaviourin‘queueing and inventory systems, and
modelling of random perturbations in a variety of other physical,
economic, biological, and management systems. In addition, ‘
integration with respect to Brownian motion gives us a unifying
representation for a large class of martingales and diffusion
processes. Diffusion processes represented this way exhibit a
rich connection With the theory of partial differential equations.
In particular, to each such process there corresponds a second
order parabolic equation which governs the transition probabilities
vof-the process. The history of Brownian motion is discussed more

extensively in Section 10.

Definition 1.1: A (standard, one-dimensional) Brownian motion

is a continuous, adapted process B = [Bt,sts Ogtd =} defined:
on some probability space (Q,%,P) with the properties that
.BO = O a.s. and for 0Ogs<t, the increment B, - By 1s
independent of ’ 38 and is normally distributed with mean



- zero and variance t-s. We shall speak sometimes of a
Brownian motion B = {Bt,gt; OgtgT} on [0,T], for some

T > 0, and the meaning of this terminology is apparent.

If B is a Brownian motion and 9 = t0<t1<...<tn, then the

increments {B, - B, }?—l are independent and the distribution
J Jj-1 <
of Bt -Bt depends on tj and tj—l only through the difference
J 3-1 ,
t,-t to wit, it 1s normal with mean zero and variance tj-tj_l.

jTry-1?
We say that the process B has stationary, independent increments.

It is easily verified that B is a square integrable martingale and
<B>, = t, t20. ' ’ | o ‘

The filtration {3t} is a part of the definition of Brownian
motion. However, if we are given {Bt; O2t{=} but no filtration,
and if we know that B has stationary, independent increments and
that Bt=Bt--BO is normal with mean zero and variance t, then
{Bt,sf; Ogt<«} is easily seen to be a Brownian motion. Moreover,
if (3.} is a "larger" filtration in the sense that 3? c 3, for

t20, and if Bt-BS is independent of 33 whenever Ogs<t, then

{B Ogt<=} 1is also a Brownian motion.

£2 ¥
The first problem one encounters with Brownian motion is its
existence. One approach to this question iéitkorite\down_what the
finite-dimensional diétributions of this process must be (based
" on thevstationarity, independence, -and normality of its increments),
and then construct a probability measure and a process on an
appropriate measurable space in such a way that we obtain the pre-
scribed finite-dimensional distributions. This direct approach is' 
the one most often used to construct -a Markov procéss, but is rather‘

lengthy and technical; we spell it out in section 2. A more elegant
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i

approach for Browﬁian motion, based on Hilbeft space theory, is
provided in Section 3; it is close in spirit to Wiener's [ ]
original construction, which was modified by Lévy [ ] and later
further simplified by Ciesielski [ ]. Sections 2 and 3 are
independent of one another, and with the exception of Problem 2.9
and Remark 2.12, which are used in Chapter 5, the only result we
need from these sections 1s the fact that Brownian mbtion exists.
Section 4 provides yet another proof of the existence of this pro-
cess, - this time based on the idea of Brownian motion as the weak
limit of a sequence of random walks. The properfies of the space
C[0,») . developed in this section will be used extensively through-
out the book. »

Section 5 defines the Markov property, which is enjoyed by
Brownian motion. Séction 6 presents the strong Markov property,
and, using a proof based on the optional sampling theorem for
martingales, shows tﬁat Bfownian motiqn is a strong Markov process. In
Section 7 we discuss various choices of the filtration for Brownian
motion. The central idea here is augmentation of the filtration
geneiated by the process, in order to obtain a right-continuous
filtration. Developing this material in the context of strong
Markov processes requires no additional effort, and so we adopt
this level of generality.

Sections 8 and 9 are devoted ﬁo properties of Brownian motion.
In Section we compute distributions of a number of elementary
Brownian functionals; among these are first passage times, last
exit‘times; and time and level of the maximum over a fixed time-

interval. Section 9. deals with almost sure properties of the
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Brownian sample path. Here we discuss its growth as tae, 1ts
oscillations near t = O (law of the iterated logarithm), its
nowhere differentiability and nowhere monotonicity, and the

topological perfectness of the set of times when the sample path

is at the origin.
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2.2 FIRST CONSTRUCTION OF BROWNIAN MOTION

Let R[o’”) denote the set of all real-valued functions on

[0,»). An n-dimensional cylinder set in R[o’w) is a set of the

form
(2.1) c & twert )5 (w(t)s .t ))eal,

where t.€[0,=), i=1,...,n, and Ae@(R"). Let ¢ denote the
\
field of all cylinder sets (of all finite dimensions) in R[O’°),

and let . B(R[Oiw)) denote the smallest g-field containing c.

2.1 Definition: Let T Dbe the set of finite sequences

2 = (tl,...,tn) of distinct, nonnegative numbers, where the
length n of these sequences ranges over the set of positive
integers. Suppoée that for eachi E of length n, we have

a probability measure Q. on (R, B(rR™)). Then the collection

{Qt}teT is called a family of finite-dimensional distributions.

-This family is said to be consistent provided that the follow-

ing two conditions are satisfied:

(a) 1if s = (t; st s..est, ) 1s a permutation of
~ 1 1l
1 2 n

,--.,n,

we have

Xeoe XA )3

QtN(AlXAEX oo XA = c:g%(z-\ile:.L2 ]



(b) 1f &= (tyst,,...,t ) with nal,

lm

and Aea(R™1), then

Q't(A X R) = Q (A)’
~ §v ' D
If we have a probability measure P on (R[O’Q),Q(R[O’w))),

then we can define a family of finite-dimensional distributions

by
(2.2) Q,(8) = P[mea[o’“>- (w(t,) w(t ))eA]
. ,& S l)"‘) n 2
where AeB(R") and t = (tl,...,tn)eT. This family is easily
seen to be consistent. We are interested in the converse of this

fact,because it will enable us to construct a probability measure

P from the finite-dimensional distributions of Brownian motion.

2.2 Theorem: Daniell (1918), Kolmogorov (1933).

Let {Qt} be a consistent family of finite-dimensional dis-
tributions. ~Then there is a probability measure P on

(r[% =), g(r[%9=)}), such that (2.2) holds for every ter.

Proof': We begin by‘defining a set function Q on the field of
cylinders ¢. If C 1is given by (2.1) and § = (tl’tE""’tn)ET’

we set

(2.%) Q(c) = Qt(A), Cec.
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Such a definition is indeed possible because of the consistency of

the family of finite-dimensional distributions.

2.3 Problem: The set function @ 1is well-defined and finitely

additive on ﬁ(R[O’w)), with Q(R[O’w)) = 1.

We now prove the countable additivity of Q on C, and we
can then draw on the Carathéodory Extension Theorem to assert the
‘existence of the desiredvextension P of Q@ to B(R[O’”)). Thus,
suppose. {BK};;l is a sequence of disjoint sets in ¢ with

® ' m

B4 y B, alsoin ¢. Let C =B\ U B
T = k=1 " k=1

K’ SO

Q(B) = q(c ) + E Q(By)-
' k=1

Countable additivity will follow from

(z.u) Lim a(c,) = 0.

- O

Now Q(Qm) = Q(Cm+l) + Q(Bm+l) 2 Q(Cm+l)’ so the above limit exists.

-]
Assume that this limit is equal to €>0, and note that n ¢ =4.
m=1
«® 2 -]
From {Cm}m=l we may construct another sequence {Dm}m=l
-]

2..., n D =@ and
m=1

1im Q(Dm) = e¢>0. Furthermore, each Dm has the form

Mo

which has the properties: D,2D

1="2
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Dm» = {weR (9 w); (w(tl), . .>.,w(tm))eAm}

m, . s _
for some Ameﬁ(R ) and the finite sequence tm A (tl,...,tm)eT

~o

is an extension of the finite sequence fm-l A (tl""’tm-l)eT’ m=2.

This may be accomplished as follows. Each Ck has a form

Ck x “{a;ea[g’ a); (w(tl),...,w(tmk))'eAmk}; A eB(R 5,

where Emk = (tl,...,tmk)eT. Since Ck+1 E-Ck’ we can choose these

representations so that t. - is an extension of t
~m ~m
k+1 k
o okl Mk ‘
A cA XR . Define

s and

m,-1
D, = {w; w(tl)ep],...,Dm1f1f={w: (w(tl>""’w(tml—l))€R 1 ]

and D = C
m

1’ as well as
1 R '

s ( ' €A X R}sees
D 4q = [ (w(tl),...,m(tml),m(tml+l)) my Iseees

oy
' ‘ _ ' m2-ml~l
D, .1=10; (w(tl), ...,w(tm.),co(tm +l)"“’w(tm"—l))€Am‘ XR ]
2 - 1 1 2 1
and Qm = 02. Continue this process, and note that by construction
2
-] -]

oo
o
i
D
Q
il

2.

2.4 Problem: »Let Q be a probability measure on (Rn,ﬁ(Rn)),

We say that AeB(Rn) is regular if for every >0, there

is a closed set F and an open set G such that FcAcG

and Q(G\F)<e. Show that every set in B(Rn) is regular.

(Hint: Show that the collection of regular sets is a oc-field

containing all closed sets.)
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According to Problem 2.4, there exists for each m a closed
' €
set F_c Ay such that ggm(Am\Fm) < gm. By intersecting F_ = with
a sufficiently large closed sphere centered at the origin, we obtain

a compact set K_ such that, with
E A {weﬁ[o’m)- (m(t‘) ceesw(t_))eK 3
m = 2 17’ ? m m?’
we have E ¢ D and
m = "m
€
w—— / —
Q.(Dm\Em) = Q (A \K,) < = -
~m 2
The sequence {Em} may fail to be nonincreasing, so we define

E
m

!
o)
e

and we have

Eﬁ {w€R[O,m); (w(tl),...,w(tm))éﬁm},
where

~S

K

-2

m-1 _ m
(X, xR )n(Ky, x R T)neeon(Byp X R)NK 5

which is compact. We can bound Qt (ﬁm) away from zero, since

~m
QEm(Em) =) = a@,) - QD \E,)
m
- Q@) - & U (O,\E)
: m
= Q(D,) - Q(Kgl(ék\,EK))
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€ .
"'"EA > Oo

v
m
|
(YR
’_J
n

Therefore, R% is nonempty for .each m, and we can choose

(x§m),...,x£m))e§§. Being contained in the compact set Kl’ the
' m)y= t h t sub (2,
sequence {xl }m=l mus | ave a convergent subsequence {xl }k=l
e Com) @)
with limit Xl' Bu {xl ,x2 '}k=2 is contained in K2, SO

it has a convergent subsequence with limit (xl,xg). Continuing
this process, we can construct (xl,xg,,..)eﬁztR X... , such that

(Xl,...,xm)eﬁm for each m . Consequently, the set

S = {weR[o’m); w(ti) = X5, 1=1,2,...1

> 3 3 [~ - 3 >
is contained in each Em, and hence in each Dm' This contradicts

. ©
the fact that n D = #. We conclude that (2.4) holds. O
m=1 '

Our aim is to construct a probability measure . P on (9,3)
A (R[O’w), ﬁ(R[O’”))) so that the process B = {B,, 3%; Ogt< =}

defined by Bt(w) A w(t), the so-called coordinate mapping process,

is almost a standard, one-dimensional Brownian motion under P.

We say "almost" because we leave aside the requirement of sample
path continuity for the moment, and concentrate on the finite-dimen-
' sionalidistributions. Recalling the discussion following Definition
1.1, we see that whenever O = S'<Sl<52<“'<sn? the cumulative

0

distribution function for (BS s+ e-s By ) must be
1 n
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(Sl,...’sn)(xl’."',xn,) =

X, x x
?l r,2 .rn
R I “’,,_wp(sl’ 0,¥1) P(sy=8y3 ¥ys¥p)ees

...p(sn—sn_l; ynrl,yn)dyn...dygdyl

for (xl,...,xn)eRn, where p 1is the Gaussian kernel

(2.6) p(t; x,y5) A ;t e 2 | 0, x,yer.
.. Tr

The reader can verify (and should, if he has never done so!) that

(2.5) is equivalent to the statement that the increments

| n
{B, B }

3850 j=1 are independent,and B, -Bg is normally dis-

J 73-1
tributed with mean zero and wvariance sj-sj-l°
Now let t = (tl’tz""’tn)’ wherg the tj are not
necessarily ordered but are distinct. Let the random vector
(B ;,B'_,o-o’B )
tlA t2 tn
(where the t, must be ordered from smallest to largest

‘ J
to obtain (sl,...,sn) appearing in (2.5)). For AGQ(RH), let

have the distribution determined by (2.5)

Qt}A) be the probability under this distribution that
(B, »By ,.;.Bt ) 1is in A. This defines a family of finite-
1 2 "' '
dimensional distributions {Q,} ..
L teT

2.5 Problem: Show that the family {Q } defined above is
' t LeT

~o

consistent.
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2.6 Corollary to Theorem 2.2: There is a probability measure
P on (R[O’m),ﬁ(ﬁ[o’m))), under which the codrdinate mapping
process

B (0) = o(t), werl?®), ta0,

has stationary, independent increments. An Iincrement Bt-BS
where Ogs<t, 1is normally distributed with mean zero and

variance - t-s.

Qur construction of BroWnian motion would now be complete,
were it not»fOr the'fact thaé we have bullt the process on the
sample space' R[O’”) of all real-valued functions on [0, =) rather
than on the space C[0,=) of continuous functions on this half-
line. One migh£ hope to overcome this difficulty by showing that
the probability measure P 1in Corollary 2.6 assigns measure one to
C[0,=). However, as the next problem shows, C[0,»), 1is not in the
g-field ﬁ(ﬁ[o’w)), so P(C[0,«)) 1is not defined. This failure
is a manifestation of the fact that the g-field B(R[O’w)) is,
“quite uncomfortably, "too small" for a space as big as R[O’“>; no
set in ﬁ(R[O’Q)) can have restrictions on uncountably many
coordinates. In contrast to tﬁe space C[0,=), ’it is not possible

to determine a function in «R{O’m)

by specifying its values at only
countably many coordinates. Consequently, the next theorem takes
a different approach, which is to construct a continuous modification

of the cobOrdinate mapping process in Corollary 2.6.

-
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2.7 Problem: Show that the only ﬁ(R[O’”))—measurable set contained

in C[0,») 1is the empty set. (Hint: a typical set in

a(R[O’“)) has the form

[O: ‘-”) |

E = {weR 3o (0(ty)s o(ty)s--)ehl,

where A€R(R X R X +..).

R v
2.8 Theorem: KXolmogorov , Centsov (1956).

Suppose that a process X = {Xt; OgtgT} on a probability

space (Q,%,P) satisfies the condition

for some positive constants a,f and C. Then there exists
a continuous modification X = {X,; OstsT} of X, which is
locally HS8lder continuous with exponent y for every
Ye(O,%§, i.e., |
1%, (@) - X_ ()]
(2.7) Plw; sup < 6| =1,

0<t-s<h(w) Y
S,te[0,T] | t-s]

where h(w) is an a.s. positive random variable and &>0

"is an appropriate constant.

Proof: For notational simplicity, we take T=1l. Much of what
follows 1s a consequence of the Eebygev inequality. PFirst, for

any €>0, we have
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BlXX 1%
t s < C ¢ a\t-s\l+a’

a

P[]Xt-XS!zE ]l s
: €

and so Xs“X in probability as s-t. Secondly, setting

t

t = Eﬁ, s = E%E and e = 2° "%
2 2

inequality, we obtain

(where 0 < vy < %) in the above

PlIX -X 2~YR | o 2-n(1+8-ay),
a k/2" (k—l)/2n‘ =21

and consequently,

-yn.
P[ max |X - X 227
1eke2” k/20  (k-1)/2"
2 —va
s P[ U |X - 22 ')

X
k=1 k/2"  (k-1)/2"

< c 2 n(B-ay)

The last expression is the general term of a convergent series;
. by the Borel-Cantelli Lemma, there is a set 0% € § with P(q*)

such that for each weQ¥*,

-Yn

(2.8) max |X (w) = (w)] < 27", ¥ nan*(w),

n k/2" * k-1)/2"
lgke?2 ( !

where n*(w) 1is a positive, integer-valued random variable.

For each integer nzl, 1let us consider the partition

@©

D = £ k=0,1,..,2"} of [0,1], and let D= y D_ be the
n. 2n n=1 D&

= 1
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set of dyadic rationals in [0,1]. We shall fix wen*, nan*(w),

and show that for every m}n, we have

m . .
’ - -n
(2.9) X (@)X ()] 2 = 2 YJ; ¥ t,seD , O<t-s<2 .
S J=n+1
| .k k-1
For m=n+l, we can only have t =—/ s =-—/= and (2.9) follows
’ 2 2

from (2.8). Suppose (2.9) is valid for m = n+l,...,M-1. Take

s < t, s,teD, consider the numbers t1 = max{ueDM_ls ugt} and

M
sl = min{ueDM_ls uzs]}, and notice the relationships ssslstl;t,
stosee™ totte2™. From (2.8) we have |X (0)-X_(o)| < o~ Y™,
vM S

1%, (@) - th(w)] €2 ", and from (2.9) with m = M-1,

o M-1 .
X j(@) - X (@) s2 3 27"
t .8 J=n+1

We obtain (2.9) for m = M.

We can show now that {Xt(w); teD} ~is uniformly continuous

in t for every weQ¥*. For any numbers s, teD with O<t-s<h(w)

(n+1) n

-n* - -
s 278 (w), we select nzn*{(w) such that 2 st-s<2 . We

have from (2.9)

. ® -YJ
(2.10) X (@)X (@) s2 £ 2 J ¢ 8)t-s]”, 0<t-s<h(w),
: J=n+1
where 0§ = 2_y . This proves the desired uniform continuity.
1-2

We define X as follows. For wén*, set it(m) = 0,
Ostgl. For weQ* and teD, set %t(w) = Xt(w). For "weQ* and

te[O,l}nDc, choose a sequence {Shf= <D with snat. Uniform
‘ . n=1
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continuity and the Cauchy criterion imply that {X_ (©)17_, has a
n

limit which'depends on t but not on the particular sequence
- " ~/ - .
{snkpd_gp chosen to converge to t. We set Xt(w) ilﬁt Xsn(w),
. n n
The resulting process X 1is thereby continuous; indeed, X

ny

satisfies (2.10), so (2.7) is established.

To see that X 1is a modification of X, observe that

it = Xt a.s. for teD; © for te[0,1]nD° and {s 1D with
ant, we have Xsd*xt in probability and Xsna Xt 8.S.y, SO Xt=Xt a.s.
' I

2.9 Problem: A random field is a collectioh of random variables

{Xt}, where t 1is chosen from a partially ordered set.

Suppose {Xt; te[O,T]d}, d22, 1s a random field satisfying
' d+
(2.11) E|X, - xsla s Cllt-s| B

for some positive constants a,B and C. Show that the
conclusion of Theorem 2.8 holds with (2.7) replaced by
X, (@)X (@)
(2.12) Plw; sup t S s 0]
oKl t-slI<h(w) It-silY
s,te[O,T]d ‘

2.10 Problem: Show that if B

t—BS, Ogs<t, 1s normally distributed

with mean zero and variance t-s, then for each positive

integer n, there 1s a positive constant Cn,for which

2n ) n
E\Bt—le = Cnlt—sl .
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2,11 Corollary to Theorem 2. 8

0 0
There is a probability measure P on (R[ ’w), ﬁ(R[ ’“))),
and a stochastic pfocess W = [W, 3@; t20} on the same space,

such that under P, W 1is a Brownian motion.

Proof: According to Theorem 2.8 and Problem 2.10, there is for
each T>0 a modification MF of the process B 1n Corollary

2.5 such that Wt is continuous on [0,T]. Let

Qp = {w: W%(m)‘= Bt(w) for every rational te[0,T]3,
~ -]
so P(Q,) =1. On QA n Qps Ve have for positive integers T
and T2,
T1 T2
Wit (w) = W, (w) , for every rational te[O,Tl‘TQ].

Since both processes are continuous on [O’Tl‘T2]’ we must have
- T T, : ;
th(w) = th(w) for every te[0,T,.T,], weh. Define Wt(w) to

be this common value. For wéQ, set Wi(w) = 0 for all t=20.

2.12 Remark: Actually, for P-a.e. meR{O’a), the Brownian

sample path {Wt(w); Ogt<=} 1is locally HOlder continuous
with exponent vy, for every ve(0,1/2). This is a consequence

of Theorem 2.8 and Problem 2.10.
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2.3 'SECOND CONSTRUCTION OF BROWNIAN MOTION

If B33 t20} 1is a Brownian motion and Ogs<t, then
conditioned on By = % and B, = Xz the random variable Bs+t
X1+X3 ' 2 t-s :
is  normal with mean p A and variance o A . To

2
verify this, observe that the known distribution and independence

of the inc?ements BS, B - BS, and’ Bt - Bs+t results in a

s+t
: _ 2 _ 2
Joint density
P[Bsedgl, Bs+tedx2, BtEQXB]
| : 2 2
_ X3 (x2 xl) (x xg)
= lﬂ 1 : 1 _ e 2s e T-s e t-s dxldxodx3
J2rs fa(t-s) Ju(t-s) °
5 2
o (xgx)© | )
. - - 2
- 1 _e 28 ¢ 2(t-8) . 1 . '_25 dx, dx,.dx. .
Jems L fen(t-s) ' oJan 1723
Dividing by
2 2
| _a (%)
P[B edx,,B edx;] = ;ﬁ 1 e “% ¢ 2(t-s) dx, dx,,
s 27 Jems Jem(t-s)
we obtain
: 2
. (Xg-u)
1 ) 2
= = = (o2
P[By, €dx,|B, = %), B, = x,] = © dx,.
= ovem
The simple form of this conditional distribution of B suggesté

t+s

2
that we can construct Brownian motion on some finite time-interval,

say [0,1], by interpolation. Once we have completed the construction
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on [0,1], a simple "patching together” of a sequence of such

Brownian motions will result in a Brownian motion defined for all

t20.
To carry out this program, we begin with a countable collection

5 of independent, standard (zero mean and
unit variance), normal random variables on a probability space
and

£0"); keI(n), n=0,1,...]

(Q; %, P). Here I(n) is the set of odd integers between O

n
ng0, we define a process B(n) = {Bén); O<tgl} by interpolating

etc. For each

‘linearly between these points. For nal, Bén) will agree with

2n—l

e
1 Thus, for each value of n,

B(n-l>, k=0,1,...,27 . we need only

k__
n-1
er
specify Bén) for keI(n). We set
EE

(9) = o, 5(9) - £(0).
BO - O, Bl - gl .
If the values of Bén-l) k=0,1,<...,2n-l have been specified (so

‘ 21’1-—1
Bén-l) is defined for Ostgl by piecewise-linear interpolation)
o k-1 _ k+1 _ 1,4(n-1) (n-1)
and keI(n), we denote s = o t = el o= 2(BS + B} ),
2 t-s 1
and g = T = 2n+1 and set
(n) _ g(n) _ (n)
B 7= Bpg =t o g
= 5

2

We shall show that, almost surely, Bén) converges uniformly in t

to a cbntinuous function Bt’ and {Bt, 3?; ODgtgl} 1is a Brownilan
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motion.
Our first step is to give a more convenient representation

for the processes B(n), n=0,1,... . We define the Haar functions

by H§O)(t)‘= 1, Ogtgl, and for n=2l, keI(n),

n-1
2 ,E%];St<"}§“':
n
nol 2 2
> k
Hén)(t) = {-2%2, I <t<E,
: 2 2

0 , otherwise.

We define the Schauder functions by

)(t) = ()
sén (t) = [ H{™ (u)au, Ostsl, n20, keI(n).
‘0 .

Note that S§Q)(t) = t, and for nzl the graphs of Sén) are
~ (n+1) ~ .

little tents of height 2 2 centered at EH and nonoverlapping

2
for different values of keI(n). It is clear that

5(0) g§°)’s§o)(t):

and by induction on n, it is easily verified that

n

(3.1) B{™) (o) _ g™ (o) 5{™(t), Ostsl, n20.

m=0 keI (m)

Lemma 3.1 As n-o«, the sequence of processes [Bén)(m); Ogtgl}, -
nzl, given by (3.1) converges uniformly in t to a con-

tinuous process {B,(w); Ostsl}, for a.e. weQ.




Proof:

P[] g™ |>x] =

(3.4

~which. gives

P[bn>n1
_nf
© n 2
But 3 2 =
- n=1

“there is a set | with P(S) =1

Define b -
n

Ie
N

is an integer n(w)

But then

co

z |
n=n(w) keI(n)

so for weq, £

S (n)

z
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For x>0

max n)[.
keI(n)

B

Pl y (1g{®)|>n1]
kel

2% p() g{™)>n]

[2 ot o= 2
1T n

@, SO the Borel-Cantelli lemma implies that

such that for each weq there

satisfying bn(w) ¢ n for all nzn(w).

© _ ntl
n n),
\gé Vs s = ne 2 <a
\ n=n(w)
(w) converges uniformly in t to a limit

Bt(w)g Continuity of {Bt(w); Ostgl} follows from the uniformity




no
W
n

of the convergence. -

1
Under the inner product <f,g> = f f(t) g(t)dt, Lg[o,l] is
J
0
a Hilbert space,and the Haar functions [Hén); keI(n), nz=0} form

a complete, orthonormal system (see, e.g., Kaczmarz-Steinhaus (1951)).

The Parseval equality

-

'<f,g> = Z z <f, Hén)> <g:H1({n>>:

n=0 keI(n)
applied to f = l[O,t] and g = l[O,s] yields
(3.2) p) z Sén>(t) Sén)(s) = min(s,t); O<s, tgl.
‘ n=1 keI(n)

— 14m (D)
£ = lim Bt 3

/ . Noeo
. the process {Bt, 353 Ostgl} 1is a Brownian motion on [0,1].

Theorem 3.2: With {Bén)};;l defined by (3.1) and B

Proof: It suffices to prove that, for O = tO<tl<...<tnsl, the

increments {Bt --Bt }?_1 are independent, normally distributed,
j o tg-1dm
with mean zero and variance tj-tj-l‘ We prove this by showing

that for kJGR: j=1,.;.,n,

n ) .
(3.3) E[exp{i 551 ;j(Btj-Btj_l)}] =

=

1 .2
expf{- = 2\:(t.-t. .

RN N—



2.3.6

Set A,,q = 0. Using the independence and standard normality of

the random variables {gén)}, we have from (3.1)

. M
E[expf-i le(kg+l 'j) ng)}]
= E[exp{-i g 2‘ g ) Z (A )S(m)(t ) 1]
me0 keI(m) % j=1 dt1 T
M n
_ o1 g(m) - (m)
" o kgI(m) stexpl=t & JZ (XJ+1 2308 (tj)}l
M
~ (m) 2
} _1 208 ™ (¢,
a1 kEI(m) exp| (le( 41 XJ)'k (t5)37]

™M=

T s"“><t 5™ (£4)7.
m=0 keI(m)

Letting M - « and using (3.2), we obtain

E[exp{i 2 A5 (B, -B )31
Jj=1 t5 t5-1

= Efexp{-i Z (Ai q-%5)B, 1]
3= J+1 73 tj

n-1 n

1 2
=exp{-2 = (x ) (M)t S 2 (A ry)7ty]
5=1 i=j+1 J+1 J i+l J 23 j+1 J

n-1

1 n
= exp{- 2 (XJ+1 A (Agp)ty -3 L

2
., a~As /)t
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1 .,.2 2 1.2
= — - . t, - t
exp{3 J_El(xjﬂ xJ) 375y )
n
1 .2
= 1 expf- 3 \ (t,-t, )}
3=1 2759 9t =
3.3 Problem: Prove Theorem 3.2 without resort to the Parseval
identity (3.2),by completing the following steps.
. . (n) _(n).2" .
(2) The increments {Bk - Bk~l}k=l are independent, normal
o0 of

; s . . 1
random variables with mean zero and variance =5
_ 2

(b) If O = t,<t,<...<t sl and each tj is a dyadic rational,

then the increments {B, -B }9 are independent,

normal random variables with mean zero and variance
t.'-t. [] |

(t 3-1)

(c) The assertion in (b) holds even if {tj}?=1 is not

contained in the set of dyadic rationals.

3.4 Corollary: There is a probability space (Q,%, P) and a stochas-

‘ B
~tic process B = {Bt’st

standard, one-dimensional Brownian motion.

5 Ogst{x} on it, such that B is a

Proof: According to Theorem 3.2, there is a sequence (Qn’an’Pn)*
n=1,2,... of probability spaces together with a Brownian motion

n v -
[Xér); Ogtgl} on each space. Let Q = Ql X QQ X eeesy F = 31 4 32 Revey
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and P =P, x P. X ... . Define B on ( recursively by

w
i
P

£ £ Ogt‘l,;
B, = Bn + Xé?gl), ngtgn+l.

This process is clearly continuous, and the increments are easily
seen to be independent and normal with zero mean and the proper

variances.



2.44: THE SPACE C[0, =), WEAK CONVERGENCE, AND WIENER MEASURE

The sample spaces for the Brownian motions we built in Sections
2 and 3 wére,respectively, the space Rio’w) of all real-valued
function on [0,«) and a space Q rich enough to carry z count-
able collection of independent, standard normal random variables.
The "canonical" space for Brownian mofion, the one most convenient
for many future developments, is C[0, =), the space of all con-

tinuous, real-valued functions on [0,«) with metric

.,
bh.1 Plwgswy) & £ = max (|o;(t)-wo,(t)]r 1).
(4.1) (oy05) & T 2 max (o (6)-my(t) 1 1)

In this section, we show how to .construct a measure, called Wiener
measure, on this space so that the coordinate mapping process 1is
Brownian motiﬁn. This construction is given as the-proof of
Theorem 4.16 (Donsker's Theorem), and involves the notion of weak

convergence of random walks to Brownian motion.

4.1 Problem: Show that p defined by (4.1) is a metric on

C[0,=) and,under p , C[O,=) is a complete, separable,

“metric space.
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4.2 Problem: Let c(ct) be the collection of finite-dimensional

cylinder sets of the form
(2.1)* C = f{weC[0,=); (w(tl),...,w(tn))eA}; nzl, Aeﬁ(Rn),

where,for all i=l,...,n, tiE[O,w) (respectively, tief0,t]).

Denote by Q(qt) the smallest g-field containing c(ct).

Show that G = 8(C[0,=)), the Borel g-field generated
by the open sets in C[Q,=), and that Gy = @El(ﬁ(C[o,m)))
g-ﬁt(C[O,w)), where o,: C[0,®) - C[0,=) is the mapping
(pw) (s) = w(t.s); Oss<«.
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4,3 Definition: ILet (S,p) be a metric space with Borel o-field

8(s). Let {Pn}°° be a sequence of probability measures
n=1
(S,B8(S)), and let P be another measure on this space. We

. - ] w
say that {Pn}n=1 converges wgakly to P and write Pn —> P,

if and only if

1im [ £(s) ap_(s) = [ £(s) ap(s)
Noe “S ’S

for every bounded, continuous, real-valued function f on S.

It follows, in particular, that the weak limit P is a

probability measure, and that it is unique.

Whenever X 1s a random variable on a probability space
(0,3, P) with values in (S,R(S)),i.e., the function X: Q - S 1is
3/B(S) - measurable, then X induces a probability measure PX_lon

(ss8(S)) by

px~ ¥ (B) = P{weq; X(w)eB}, Ber(S).

4L,4 Definition: Let {(Qn’gn’Pn)};;l be a sequence of probability

spaces, and on each of them consider a random variable Xn
~with values in fhe metric space (S,p). Let (Q,&P) be

another probability space,- on which a random variable X

with values in (S,p) is given. We say that (X 3} , con-

verges to X in distribution, and write Xn §L> X, 1if

and only if the sequence of measures induced on (S,8(S))

by{Xn};_lconverges weakly to the measure induced by X.
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Equivalently, Xn §—> X 1if and only if

lim En f(Xn) = E’f(X)
N .

for every bounded, continuous, real-valued function f on

S, where En and E denote expectations with respect to P

n
and P, respectively.

Recall that if S in Definition 4.4 is Rd, then X/ 5 x
- if and only if the sequence of characteristic functions

o, (W) 4 B exp{i (u,X )} converges to wo(u) A E exp{i (u,X)}, for
every ueRd. This is the so-called Cramér-Wold device (Theorem

7.7 in Billingsley [1%8]).

The most important example of convergence in distribution
is that provided by the Central Limit Theorem. InAthe Lindeberg-
Lévy form used here, the theorem asserts that if . {g 1o, 1is
a sequence of iﬁdependent, identically distributed random variables
with mean zero and variance 02, then {Sn} defined by

s - 1%
n cJﬁ‘kEl ®x

converges 1n distribution to a standard normal random variable.
It is this fact which dictates that, properly normalized, a
sequence of random walks will converge in distribution to Brownian

motion.
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L.5 Problem: Suppose {Xn};=l is a sequence of random variables

taking values in (Srpl) and converging in distribution to
X. Suppose (Sg’pg) is another metric space, and ®: Sl...s2

is continuous. Show that Yn g m(Xn) converges in distribu-

tion to Y & ®(X).

4,6 Definition: Let (S,p) be a metric space and let [ be a

family of probability measures on (S,8(S)). We say that

I 1is relatively compact 1if every sequence of elements of
I contains a weakly convergent subsequence. We say that |
is tight’if for every €>0, there exists a compact set

K ¢S such that P(K) 2 1 - €, for every Pell. If {X<1}a€A

is a family of random variaples taking walues in S, we say that

this family is relatively compact or tight if the family of

1
}aeA

induced measures fo; has the appropriate property.
The following theorem is stated without proof; its special

case S = R 1s used to prove the central limit theorem. In the

form provided here, alproof can be found in several sources, for

instance Billingsley [1968], pp. 35-40, or Parthasarathy (1967, pp.
h7-bg, |

4.7 Theorem: Prohorov (1956)
: Let 1 be a family of probability .
measures on a complete, separable metric space S. This

family is relatively compact if and only if it is tight.
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We are interested in the case S = C[0,»). For this case,
we shall provide a characterization of tightness (Theorem 4.10).

To do so, we define for>each weC[0, =), T>0, and 5>0 the modulus

of continuity on [O,T]:

mT(w,5) & max  |o(s)-o(t)|.
|s-t|=8

Ogs, tgT

4.8 Problem: Show that - mT(w,ﬁ) is continuous in weC[0, =)
under the p metric, is nondecreasing in &, and
lim m¥(w,5) = O for each weC[0,w).

510

We shall need the following version of the Arzeld-Ascoli

Theorem.

4,9 Theorem: A set A c C[0,») has compact closure if and only
Jif

(bi2) sup|w(9)| < =
WEA

“and for each T>0,

(4.3) lim sup m’(w,5) = O.
510 weA
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Proof:

Assume that the closure of A, denoted by E, is compact.

Since A is contained in the union of the open sets
G’n = {(DEC[O, 03); IU.)(O)‘ < n}, n=l,2,coo

it must be contained in some particular G, and (4.2) follows.

For >0, let Ke = {weh; mT(w,S) 2z €}. Each K. 1is closed

o)
(Problem 4.8) and is contained in A, so each Ky 1s compact.
Problem 4.8 implies n Ky = g, so for some B&(e) > 0, we

8>0
have Kﬁ(e) = Z. This proves (4.3).
We now assume (4.2), (4.3) and prove compactness of A&.
Since C[O,w)» is a metric Space, it suffices to prove that every
sequence {wﬁ3:=l € A has a éonvergent subsequence. We fix T>0 and
note that for some 51>O; we have mT(w,ﬁl) = 1 for each weA; so for

fixed integer mal and (m-l)ﬁl <t £md,e«T, we have from (4.3):

1

m-1
lo(t)] = |o(0)] + k§ilw(k61) - w((k-l)ﬁl)] + !w(t)-m((m—1)61)|

s |0(0)] + m.

It follows that for each reQ, the set of nonnegative rationals,

{wn(r)}:=l is bounded. Let {ro,rl,rg,...} be an enumeration

0).= :
of Q.. Then choose {wé )}n=l’ a subsequence of {mn};;l with
. - 0 :
wgo)(ro) ~converging to a limit denoted w(ro). From {wé )3§=1’

choose a further subsequence {wgl)};;l such that wél)(rl)
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converges to a limit w(rl). Continue this process, and then let

X1® = re®)ae be the "diagonal sequence". We have

Eh(r) - w(r) for each  reQ,

Let us note from (4.3) that for each €>0, there
exists &(e) > O such that \&%(s) - a%(t)l s e‘ whenever
Ogs,tsT and. |s-t| < 5(e). The same inequality therefore holds
for w when we impose the additional condition s,teQ. It follows
that o 1s uniformly continuous on [O,T] N Q@ and so has an
extension to a continuous function, also called w, on [O,Tj; further-
Amore,.‘ lo(s) - w(t)|s € whenever O<s,tsT and |s-t| s 6(€).
For n sufficiently large, we have that whenever te[0,T], there
is some TKEQ wifh' ken and [t-rk[ < 6(e). For sufficiently
iarge Mzn, we have |$m(rj) - w(rj)l € € for all

j=0,1,...,n and ma=M. Consequently,
|3, ()-0(t)]| s &, (£)-8 (r,)] + |3 (r,)-w(r,)]
+ |o(r)-o(t) |

£ 3€, ' ¥ m=M, OgtgT.

We can make this argument for any T>0, so {$h};=l converges

uniformly on bounded intervals to the function weC[O0, ).
]

4,10 Theorem: A sequence {Pn};;l of probability measures on

(C[0, =), B(C[O,=))) 1s tight if and only if

(b.b)- lim sup P_[w; |w(0)] > A1 = O,
Ao n2l D
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‘and for each positive T and e,

(4.5) lim sup P_J[w; mT(w,ﬁ) > €] = 0.
510 n2l

. Proof:

Suppose first that (Pn};;l is tight. Given w0, there
is a compact set K with Pn(K) 2z 1-n, for every na2l. According
to Theorem 4.9, for sufficiently large >0, we have {w(O)] < 2\
for all weK; this proves (4.4). Acéording to the same theorem,
-1f T and € ‘are also given, then there exists 60 such that
T )
m (w,8) € € for O<b<6, and weK. This gives us (4.5).
Let us now assume (4.4) and (4.5). Given a positive integer

T and ™m0, we choose >0 so that

sup P_[w; |o(0)] > ] s n/2THL |
nal

We choose 6K>O, k=1,2,... such that

sup Pn[w; mT(m,6k) > %] = 'n/2T+k+l .

ngl
Define
An = {w; |o(2)] < A mT(m-B ) L k=1,2
T ] : ’ "k ‘k,-—,,...},
A = Vﬂ A,
T=1 T

©
T+k+1 T ' ‘
so. .Pn(AT) 21- 3z n/2 = 1-n/2" and P (A) = 1-n, for every

k=0

nzl. By Theorem 4.9, X 1is compact, so (P 12 is tight.
‘ n°n=1 )
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(-]

m=1 be a sequence of continuous

4,10’ Problem: Let {X(m)}

stochastic processes X(m) = {Xgm); Ogti=} on (Q,3,P),

satisfying the follbwing conditions:

(1) sup Bx(™|V 8 M < o
mal -

(i1) sup E\Xﬁm) - Xém)‘a s CTlt-s{l+B; ¥ T>O and Ogs,tgT
mel

for some positive constants a,B,v (universal) and CT

(depending on T>0).

Show that the probability measures P 4 P(X(m))’l; mal
induced by these processes on (C[O,w)’ Q(C[O,w))) form a
tight sequence.

4

(Hint: Follow the technique of proqf in the Kolmogorov—gentsov
Theorem 2.8, to verify the conditions (4.4), (4.5) of Theorem
4.10).
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Suppose X 1s a continuous process on some (Q,% P). For
each w, the function t w~ Xt(w) 1s a member of C[0,=), which
we denote X(w). Since B8(C[O,=)) 1is generated by the one-dimen-
sidnal cylinder sets and Xt(.) is J-measurable for each fixed t,
" the random object X: Q - C[O,®) is %/B(C[O,»)) - measurable.
Thus, if {X(n)};;l i1s a sequence of continuous processes (with
each X(n) defined on a perhaps distinct probability space
(23,5 P,))s we can ask if x(®) 25 X in the sense of Defini-
tion 4.4. We can also ask if the finite-dimensional distributions
. of {X(n)}:;l converge to those of X, i.e., if

(n) x(n) (n)y_# cees .
(x,Cl B xt2 s eees xtd ) —> (X, » X, s Xy )

t7 Tty a

The latter question is considerably easier to answer than the former,
since the convergence in distribution of finite-dimensional

random vectors can be resolved by studying characteristic functions.

For any finite subset {tl,...,td} of [0,=), let us define

the projection mapping T £ ° C[0 &) = Rd as
1,..-’ 2

Meseent (@) = (@0t olty).

d

If the function f: R - R 1is bounded and continuous, then the

composite mapping fom_ : C[0,®) - R enjoys the same
. tl’...,td

properties; thus, X(n)_g_:? X 1implies
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1im B_£(x(™), .. ,x(P)) - 1in B_(fom, L) x®)y
o Dt tg " pae D Froeesfy
- E(forr CLU)X) = E £(X, ,...X, ).
( tl,c-o’td tl td

In other words, if the sequence of processes {X(n)}gzl converges
in distribution to the process X, then all finite-dimensional
distributions converge as well. The converse holds in the presence
of tightness (Theorem 4.12), but not in general; this failure is

~illustrated by the following example.

4.11 Problem: With probability one, let

nt 5 O.s-ts %ﬁ
(n) 1 1
Xt - l—l’lt, 'é'n‘t‘H’
0. ’ tz%;

and let Xt = 0, ta20. Show that all finite-dimensional dis-
; tributions of X(n) converge weakly to the corresponding

finite-dimensional distributions of X, but the sequence of

processes {X(n)}g;l does not converge in distribution to the

- process X.

4.12 Theorem: Let {X(n)];;l be a tight sequence of continuous

processes with the property that, whenever Ost1<...<td { ey

‘then the sequence of random vectors f(Xén), cens Xén))}:;l
1 d -
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converges in distribution. Let Pn be the measure induced
n ®

on (C[0,=), B(C[9,=))) by x(®) . Then {P ), , converges

weakly to a measure P, under which the coordinate mapping

process Wt(w) A w(t) on C[0,®) satisfies

(Xén)’“.’xén))_@__} (W l,...,wtd), Ostl<...<t {ew, dzl.
1 d

Proof': ~
Every subsequence {i(n)} of (X(n)} is tight, and so has

a further subsequence {ﬁ(n)} such that the.measures induced on
c[0,=) by {i(n)} converge weakly to a probability measure P
by the Prohorov Theorem 4.7. If a different subsequence {g(n)}
induces measures on C[0, =) éonverging to a probability measure

' Q, then P -and Q must have the same finite-dimensional distri-

butions, i.e.,

P[weC[O,w); (@(tl),...,w(td))eA]

Q[weC[0, &) (w(tl),...,m(td))eA],
. a
Ost <t <...<{ty, AeR(R ), dal.

‘l1te

This means P

I

Q.

-] s

| s n (n)q=
Suppgse the sequence of measures {Pn}nzl induced by {X }n=l
did not converge weakly to P. Then there must be a bounded, continuous

function f : C[0,w) = R such that 1lim I f(w) Pn(dw) does not

Neeo
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exist, or else this limit exists but is different from (f (o) P(dw).
In either case, we can choose a subsequence {?n};;l_for which

lim j f(w)'gn (dw) exists but is different from J f(w) P(dw).

N~

This subsequence can have no further subsequence {P} -1 with
Pn 114> P, and this violates the conclusion of the previous

paragraph.

We shall need the following result.

L.13 Problem: Let {X(n)}° 19 {Y(n)]°° ;1 and X be random

varlables with values in the metric space (S,p); we assume
thau for each nzl, X( ) and Y( ) are defined on the same
probability space. If X(n) §—> X and [X(n) - Y(n)lﬁ o)

in probability, as n-a«, then Y(n) §—> X as nN-e.

Let us consider now a sequence _{gj};zl of independent,

identically distributed random variables with mean zero and variance
2 2

o » Ko <=, as well as the sequence of partial sums SO=O,

k
Sk = I g » k2l. A contlnuous time process Y = {Yt; t20} can
j=1
“be. obtalned from the sequence k}k=0 by linear interpolation,
1.€.,
(4.6) Y, = s[t] + (t - [t])g[t]+1’ t20,

where [t] denotes the greatest integer less than or equal toc
t. Scallng appropriately both time and space, we obtain from Y

a sequence of processes {X(n)]
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AY
/V \ t
1 2 3 \7 5 7

(n) _ 1 :
(L!'o?) X‘t = o’_\/ﬁ Ynt, tzo. -
Note that with s = % and t = k;l’ the 1nc?ement

n)

X(n) - X(n) E?ﬁ €.y 1s independent of ﬁx (gl,...,gk).

Furthermore, Xgn) - Xén) has zero mean and varlance t-s. This
suggests than {Xén)g t20} 1is approximately a Browniaﬁ motion.
We now show that, even though the random variables gj are not
necessarily normal, the Central Limit Theorem dictates that the

limiting distributions of the increments of X(n) are normal.

4.14 Theorem: With {X(™)} defined by (4.7) and Ost <. . .<ty,

we have

(X(n),...,X§2)) §—> (B ..,Bt ) as Noow,
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where {Bt,éfg t20} 1is a standard, cne-dimensional Brownian
motion.
Proof:

We take the case d=2; the other cases differ from this one

only by being notationally more cumbersome. Set s=tl, t=t2.

We wish to show
(x(n) X(n)) 2 (B B, ).

Since
(n) _ 2

1
|X¢ o7& Steny! £ 578 18eny a1ls

we have by the CebySev inequality,

P“X(n) T [t ]' > G] ST -0

as nNaw, It is clear then that

l(Xén (n))_ 57=( [sn]‘s[tn})l - O in probability ,

so, by Problem 4.13, it suffices to show:

1 8
—7= Bren)’ Spen)) > (BgsBy)-
From Problem 4.5 we see that this is equivalent to proving

1 [sn] [tn] 9 ’
B ( "ok '=%sn]+l e5) —> (B(s),B(t)-B(s)).
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The independence of the random variables {gj}g;l implies

[en] iy [tn]

(%.8) | éf:. Elexe {T J= 1 A mj:{:sn]ﬂ g5 =

[sn] [tn]

. iu .
= lim E[exp{;vﬁ T ~j}] . lim E[exp{—-:rrJ E ]+l €511,

N J=1 Nao

A!]

provided both limits on the right-hand side exist. We deal with
liﬁ E[exp{iu_. ; £.11; tﬁe other can be treated similarly. Since
o/0 "d ;
1 [sn] = [sn]

> . - — z
oV’ le'gJ o/lsnl 54 gJ

-0 in probability ,

, . I [sn]
and, by the Central Limit Theorem, = 5

—_— N g'
ov[sn] J'il J

distribution to a normal random variable with mean zero and

converges in

variahce s, we have

11 Bfemil T g1) S
im exp z = e .
Similarly,
[tn] : _,_ v (t s)
1im E[exp{—v;: bX gj}] =
Ao j=[sn]+1

Substitution of these last two equations into (4.8) completes the

yroof.
P : o
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The following two lemmas will enable us to prove tightness in

Donsker's Theorem.

k4

4.15 Lemma: Set S, = 351 g5» where {517, 1is a sequence
of independent, identically distributed random variables,

. . 2 2
with mean zero and variance g, OKg <«. Then, for any >0,

lim Tm = P[ max |Sj\ > ¢ o/n] = 0.

510 noe 0 1lgjs[ndl+l

Proof:
By the Central Limit Theorem, we have for each ©&>0 that

1 ‘ . . . .
—_ S8 converges in distribution to a standard
o/[nd1+1 [n6]+l .

normal random variable Z. But Eﬁﬁ?s[n6]+l - = [ié}+l S[n6]+l_ **()

in probability, so Eéﬁﬁs[na]+1‘§*> Z. Fix >0 and 1let

{@1};=1 be a sequence of boundéd, continuous functions on R

‘Wlth- @i‘l(—m,-x]tj[x,m)' We have for each i,

Tim P[|S

Noeo

. 1
e+l =2 ?Jﬁg]‘ i By (G7as5ne1+1)

o= E@i(Z).
Iet 14« to conclude
(4.9). Eéz P[ls[n5]+ll 2 ) oy/mB]g P[|Z] = ]

o, 3
‘s ;3 E|Z]7, »>0.
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We now define r = min{jal; |S,| > ¢ o/A} . With 0<B<e° /2,

we have

(4.19) P[ max }sj( > ¢ o,/n]
Ogjs[nd]+1

s P[‘s[n5]+1| z gﬁ(e - '\/_276)]

[nd]
+ ¢ P[]|S
j=1

rmp1e1l < O/A(e = 2B)| =3 PLT=5].

But if T=3j,  then 'S[n5]+1‘ < o/n(e - /256) implies

,Sj;s[n6]+ll > o./2nd. By the 5ebyéev inequality, the probability

of this event is bounded above by

[n6]+1

1 - 2 | o0 1 . .
——= E[(S,-5 Yo lT=3] = E( ¢ ES )gx, 1ej=[nd].
onbo” J "[nd]+l onbo® - iej4l 12

Returning to (4.10), we may now write

P[ max |S.]> € gvm]
Osjs[nd]+1

< Pl[S[ng141| = ovA(e-yE8)] + 5 P[Ts[no]]
< P[IS[nS]_’_ll e O',\/T“I(G—A/Q—ﬁ‘)]

+ = P[ max |s.| > e a/nl,
Osjs[n6]+1 Y
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from .which follows

P[osj2?§6]+1lssl>€?Jﬁ]'s 2P[|S 5741/ 200/A(€ - J38)].

Setting x = (e - ./26)//6 in (4.9), we see that

2A[6‘ E!Z,B,

= = P[ max |S.|>e o/n] = —
J (e-./20)

N Ogj=s[nd]+1

and letting 0610 we obtain the desired result.

4,16 Lemma: Under the assumptions of Lemma 4.15, we have for

any T>0,
lim 1im P[ max |Sj+k-SK] > € o] = 0.
810 n-e 4 _somB]+1
Ogks[nT]+1

Proof:

For O<5&T, let m = m(5) = 2 be the unique integer satisfy-

ing %»< 5 ¢ ﬁng. Since

T]+1

— /
= __.I <m,
Nae [n6]+1

we have [nT]+1l < ([nd] +1)m for sufficiently large n. For such
a large n, suppose ‘Sj+k"sk! > € gJ/n' for some Kk,

Oskk[nT]+l and some Jj, lsjs[nd]+l. There is a unique integer
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o, '3spsm-l, such fhat
((nd]+1)ps k < ([nd]+1) (p+1).
There are two possibilities for k+j. One possibility is that

([n8]+1) p = k+j < ([n8]+1) (p+1),

in which case either !Skfs([n6]+l)p’ > % € gyn' or else

Isk+j - S(fn5]+l)pll> %-e ovB, The other possibility is that
([nB3]+1) (p+1) < k+j < ([nd]+1) (p+2),

N | 1
in which case either |8 S([n6]+1p, > 3 € o/

1 -
1S (tns1+1)p = S(nsj+1) (1)) > F € o, o
ls([n6]+1)(p+l) - sk+j' > %-e o/o . In conclusion,

we see that

max 1S5 | > € oym}
lgjs[nd]+1 Jtk K

Ogkg[nT]+1

m-1
1
gpi’oflsjﬁ?ﬁmﬂlSj+p([n5]+1)‘sp([na]+1)‘> 5 € oA}
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But
P[lsjz?§6]+1383+p([n6]+1) p([n5]+1)\ -'€ o/’
=P max ]S’> 50’»\/-\],
lsgs[n6]+1
SO
P[lsj§?§6]+1lsj+k—skl > € o/n]
O<ks[nT]+1
< m P[ max [s.] > ¢ o/A].

lejs[nd]+1 J

Since m =

ol

+ 1, we obtain the desired conclusion from Lemma

4,15,
[

We are now in a position to establish the main result of
this section, namely the convergence in distribution of the

sequence of normalized random walks in‘{h.7) to Brownian motion.

L.17 Theorem: Donsker (1951),.
| Let (0,3, P) be a probability space on wvhich is.given
a sequence {gj};;l of independent, identically distributed
- random variables with meah zero and variance 02, O<02<m.
Define ( n) {X( ), t20} by (4.7), and let P be the
measure induced by X( on (C[0,=»), B(C[O,=))). Then
{Pn};;i converges weakly to a measure P, under which the
colrdinate mépping process wt(m) 8 w(t) on C[0,y=) is a

standard, one-dimensional Brownian motion.
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This result is a special case of Theorenm 4,12, and, in light
of Theorem 4.14, it remains only to prove that {X(n)};;l is tight.
For this we use Theorem 4.10, and, since X(n) =0 a.s. for every

o)
n, we need only show that for each positive T and ¢,

lim sup P[ max [X(n) - Xgn)\ > e] = 0.
810 nal |s-t <0
€S, tgT

We may replace sup in this expression by Tim , since for a

finite number of integers n~ we can make P[ max ]X(n)—xén){>e} "
|s-t |5
Ogs, t<T

as small as we choose, by reducing ©&. Now

P[ max ‘X(n) X(rl |>e] = P[ max \Y —Yt\ > ¢ o/mn],
|s-t |5 |s-t|snd
Ogs,tsT - Og|s-t|enT
and
max |Y -Y.[ s max | Y -7, |
|s-t|snd |s-t|<[nd]+1
Ogs, tsnT Ogs, tg[nT]+1
B - max  |S.,, -S|,
1gje[no]+1 ITE K
Ogks[nT]+1

where the last inequality follows from the fact that Y is
plecewise linear and changes slope only at integer values of ¢t.

Tightness follows from Lemma 4.16.
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4.18 Definition: The probability measure P on (C[0O,e),

8(C[Q,=))), under which the codrdinate mapping process
wt(w) A w(t), Ostlws, is a standard, one-dimensional Brownian

motion, is called Wiener measure.

0
4.19 Remark:

A standard, one-dimensional, Brownian motion defined on any
probability space can be thought of as a random variable with values
in C[O,=); regarded this way, Brownian motion induces the Wiener
measure on (C[0,e), B(C[O,»))). For this reason, we call
(C[0s =), B(C[O,®)), P), where P is Wiener measure, the canonical

Q;obabiiity space for Brownian motion.
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.~ 2.5: THE MARKOV PROPERTY

In this section we define the notion of a d-dimensional
Markov process and cite d-dimensional Brownian motion as an example.
There are a number of equivalent statements of the Markov property,

and we spend some time developing them.

5.1 Definition: Let d be a positive integer and u a probability

measure on (Rd,B(Rd)). Let B = {B;,3.; t20} be an adapted,
d-dimensional ﬁrocess on some (Q,%P), with components

1 d . ~ ~(1) ~(d
B‘l(: )’.'.,Bé )O Deflne Bt = (B_g LA I .B_t(: )) = Bt-B The

O.
process B = {Bt,at; t20} 1is a d-dimensional Brownian motion

with initial distribution u, if and only if

(1) P[B,eT] = u(f), v reﬁ(ﬁd);‘

(ii) For each i=l,....,d, the process {ﬁﬁl),sts t20} is

a standard, one-dimensional Brownian motion; and

(iii) The processes ﬁ(l), i=l,...,d are independent of one

another and are also independent of 305 i.e. the
B(1). 3 (@)

O-fields & seees & and 30 are independent.

If p assigns measure one to some singleton ({x}, we

say that B is a d-dimensional Brownian motion starting at x.
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Here is one wéy to construct a d-dimensional Brownian motion
with initial distribution ‘u. Let X(wo) = w, be the identity
random variable on (Rd, B(Rd), n), and for 1i=1,...,d, let
3(1) {%éi),ﬁﬁ . ; t20} be a standard, one-dimensional, Brownian

motion on some (Q(l),a(l),P(l)). On the product space

d)

(Rdx Q(l> XeeoX Q( ,,@(Rd) 2 3(1) 2...8 3(d)

s ,U.X“P(l:)_lx .. ‘Xp(d))’
define
Ble) = X{ag) + (ﬁﬁl)(wl)""’ﬁéd)(wd)):

and set 3, = 3p. Then B = [B,,F,; ta0] is the desired object.

There is a second construction of d-dimensional Brownian
motion with initial distribution pu, a construction which motivates

the concept of Markov family to be introduced in this section.

Let P(l), i=l,...,d, be d copies 6f Wiener measure on
(C[Oy=), B(C[Ds®))). . Then Po.é P(l)zc...JcP(d) is a measure,

called d-dimensional Wiener measure, on (C[O,m)d, ﬁ(C[O,m)d)).

‘Undef PO, the codrdinate mapping process B, (») 4 o(t) together
with the filtration {é%} is a d-dimensional Brownian motion
starting at the origin. For xeRd, we define the probability

measure P. on (C[O,m)d: ﬁ(C[O:m)d)) by

(5.1) PX(F) = PO(F-x), Fed(C[0,=)%),

where F-x = {weC[0,=)%; w(.) + xeF}. Under P*,B 8 [B,,3o; tad]

is a d-dimensional Brownian motion starting at x. Finally, for
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L 2 probability measure on (Rd,ﬁ(ad)), we define P* on

(cro, =%, s(cro,=)%)) vy

(5.2) P (r) = | ; PX(F) u(dx), Fez(c[o,=)%).
R

Problem 5.1 * shows that such a definition is possible. The solution
of this problem, as well as the proof of several other results in
this and the next section, can be conveniently based on the Dynkin
System Theorem (cf. Ash [1972], p. 169), which we now state for future

reference.

5.1 Definition: Let ® be a collection of subsets of a set Q.

Then § 1is a Dynkin System if and only if the following con-

ditions hold:
(1) Qed;
(ii) If A,Be8 and B c A, then A\Begs;

(111) If {A} ;< and A cA

1 C «¢.s then

n

I8

Anes.

2 1

5.1° Dynkin System Theorem: Iet C be a collection of subsets of

Q which is closed under pairwise intersection. If @ is
a Dynkin system containing ¢, then § also contains the

g-field generated by cC.

5.fIProblem: Show that for each Feﬁ(C[O,u)d), ‘the mapping

X — PY(F) ‘is ﬁ(Rd)/ﬁ([O,l]) - measurable.
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5.2 Proposition: The codrdinate mapping process

B : d da
B = {B,,3 t20} on (C[0, =), B(C[O,») ), P} 1is a d-dimen-

sional Brownian motion with initial distribution u.

Proof':
We verify (1) - (iii) of Definition 5.1. With
F = {w: w(0)el'}, we have

P¥(F) = BO(F-x) = 1.(x)

and (i) follows directly from (5.2). Let ﬁt = By -B,. For
FeB(C[0,=)%), (5:1) implies

P*[B.eF] = P [B.eF+x] = PO[B.cF],

so under any PX, B.  induces d-dimensional Wiener méasure on
(C[O,m)d, a(C[O,m)d)). It thus must also induce this measure under
P, and (ii) is proved. Finally, for re@(Rd), Feﬁ(C[O,m)d),

we have

P*[B.eT, B.eF] = [ PY[B.er, B.eF] p(dx
R g 0
R

- f dlp(x) PO[B.éﬁ] u(ax) = (1) 22[B.eF] = P”[Boer] PH[B.eF],
R

B n :
o) 3B is independent of & under PY. The independence of

g(lf
3&

ﬁ(d) is a consequence of the product form of d-dimen-
3 o o ey ©

sional Wiener measure. This proves (1i1). -
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5.3 Definition: Given a metric space (S,0), we denote by

B(S)" the completion of the Borel g-field R8(S) (generated
by thée open sets) with respect to the finite measure p on
(S,8(S)). The universal g-field is Uu(S) A n B(S)" , where
the intersection is over all finite measuresu(or, equivalently,
all probability measures) u. A U(S)/8(R) - measurable, real-

valued function is said to be universally measurable.

\J1
\N
[N

Problem: Let (S,p) be a metric space and let f Dbe 3
real-valued fuhction defined on S. Show that f is
universally measurable if and only if for every finite
measure on (S, ®8(S)), there is a Borel-measurable

function g,° S -~ R such that u{xesS; f(x) # gu(x)} = O.

5.4 Definition: A d-dimensional Brownian family is an adapted,

d-dimensional process B = {Bt,at; ta0} on a measurable

. v
space (Q,%)s and a family of probability measures {P} qs
' XeR
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such that:
(1) For each FeJ, the mapping Xx - PX(F) is universally
measurable;

(ii)  For each xepd, PX[BO=x] = 13
: X
(iii) Under any P, the process B is a d-dimensional

Brownian motion starting at x.

O

We have already seen how to construct a family of probability
Ameasufés {P*] on the canonical space (C[O,m)d, ﬁ(C[O,w))d) so
that the codrdinate mapping process, relative to the filtration
it generates, is a Brownian motion starting at x under anj .PX.
With F = B(C[O,m)d), Problem 5.1 shows that the universal
measurability requirement (i) of Definition 5.4 is satisfied.
Indeed, for this canonical example of a d-dimensionai Brownian
family, the mapping X - ?X(F) is acﬁually Borel-measurable for
each FeF. The reason we formulate Definition 5.4 with the
weakgr measurability condition_is to allow expansion of & to a

larger o-field. See Remark 7.1k, a

Suppose 0Ogs<t, and we observe a Brownian motion with initial
distribution u up to time s.. In particular, we see the value of

Bs’ which we call y. Conditioned on these observations, what is

the probability that B, 1is in some set FeB(Rd)? Now

t
B, = (Bt-BS) + Bs’ and the increment B,-B, 1is independent of
the observations up to time s and is distributed just- like

Bt-s under PO. On.the other hand, Bs does depend on the
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observations; indeed, we are conditioning on Bs =y. It follows

that the sum (Bt-BS) + B, 1s distributed like B under PY.

t-s
Two things then become clear. First, knowledge of the whole past
up to time s provides no more useful informatlion about By than
knowing the value of BS; in other words,

(5.3)  P*[B,er|3 ] = P[B er|B 1, Oss<t, Tea(r").

Secondly, conditioned on BS = ¥, Bt is distributed 1like Bt-s

under Py; i.e.,

(5.4) P“[Bter{Bs =y] = Py[Bt__Sel“], Oss<t, I‘eaa(Rd).

5.5 Problem:  Make the above discussion rigorous by proving the

following. If X and Y are d-dimensional random vectors

on (q,%,P), 4 is a sub-g-field of ¥, X is independent of

4 and Y is Jg-measurable, then for every rea(Rd):
(5.5) P[X + Yer|&] = P[X +Yer|Y], a.s. P;

(5.6) P[X+YeT|Y=y] = P[X +yeT], for'PY"l - a.e. yeRd.

Here,PY-lis the probability measure induced on Rd by Y.
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5.6 Definition: Let d be a positive integer and u a probability

measure on (Rd, B(Rd)). An adapted, d-dimensional process

X = {Xt,st; t201} on some probability space (Q,&,P“) is said

to be a Markov process with initial distribution uy 1if and

only if

(1) P“fxoerl = u(r), ¥ rea(rY);

(ii) For s,t20 and reﬁ(Rd),

P, o673 1 = PHx erIx 1, PP - als.

t+s t+s

Our experilence with Brownian motion indicates that it is
notationally and conceptually helpful to have a whole family of
probability measures rather than just one. Toward this end, we

define the concept of a Markov family.

5.7 Definition: ILet d be a positive integer. A d-dimensional

Markov family is an adapted process X = {Xt’3t3 t201} on
‘some (Q,&), together with a family of probability nmeasures

{Px}xiad on (Q,¥),. such that:
<

v(aj For each Fe3¥, the mapping x - PX(F) is universally

measurable;
(b) P[X, =x] =1, V¥ xer%;

(c) For xeRd, s,t20 and P€ﬁ(Rd),

X X ’
t+serlzs] =P [xt+ser1xs], P” - a.s
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(d) For xeRd, s,t20 and re@(ad),

X _ S X -1
PUX,, ST|X =y] = P'[X,eT], P" X" - a.e. v,

where P~ X;l is the measure induced on R" by X, under

px.

The following statement is a consequence of Problem 5.5 and the

discussion preceding it.

5.8 Theorem: A d-dimensional Brownian motion is a Markov process.

A d-dimensional Brownian family is a Markov family.

The Markov property, encapsulated by conditions (c) and (d)
of Definition 5.7, can be reformulated in several equivalent ways.
Some of these formulations amount to incorporating (¢) and (d)
into a single condition; others replace the evaluation of X at
the single time s+t by its evaluation at multiple times after
s. The bulk of the remainder of this section presentsAthose
formulations of the Markov property which we shall find most

convenient in the sequel.

Given an adapted process X = {Xt,st; t20} on (Q,%) and
given'a family of probability measures {PX} a such that con-
dition (a) of Definition 5.7 is.satisfied, ichan define a
collection of operators {Ut}tao which map bounded, Borel
measurable, real-valued functions on Rd into bounded, universally

measurable, real-valued functions on the same space. These are
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defined by
(5.7) (U, £) (%) & B £ (X,).

In the case where f 1is the indicator of Peﬁ(Rd), we have

Exf(Xt) = PX[Xter], and universal measurability of U,f follows

t
directly from Definition 5.7 (a); for an arbitrary, Borel
measurable function f, the universal measurability of Utf is

then a consequence of the Bounded Convergence Theorem.

5.9 Proposition: Conditions (c¢) and (d) of Definition 5.7 can

be replaced by:

(e) For xer?, s,t20 and reﬁ(Rd),
X - X '
P [Xs+t'€r|asj = (U41.) (Xg)s P - a.s.
Proof:

"First, let us assume that (c), (d) hold. We have from the

-latter:

X K- d
PTX X =y] = (U f P 1. Le. s .
[ t+s€ l s ] ( tlr)(y)’ or Xq a.e. ye€R

a d
If the function a(y) A (Utlr)(y): R™ . [0,1] were 8(R ) ~-
measurable, as is the case for Brownian motion, we would ther be

d
able to conclude that, for all =xe€R , s20:

X
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s . X _ X
and from condition (c): P [Xiys€T | &.] a(X,), a.s. P, which

would then establish (e).

However, we only know that Uflr(') is universally measurable.

This means (from Problem 5.37) that, for given s, tz0, xeRd,

there exists a Borel-measurable function g: Rd - [0,1] such that

(5.7)° V(Utlr)(Y) = g(y), for Pxxgl - a.e. yerY,

or

(5.7)~ (’Utlr)(xs) = g(xs); a.s. P7.

One can then repeat the preceding argument with g replacing

the function a.

Secondly, let us assume that (e) holds; then for any given

s,t20 and XeRd, (5.7);' gives

(5.7) PX[Xt+S€I‘!3s] = g(X)), a.s. P".

- X
It follows that P [Xt+s

and this establishes (c). From the latter and (5.7) " we conclude

€r|38] has a o(XS) - measurable version,

x ' x, -1 d
PU[X, ST|X =y] = g(y); for P X~ - a.e. yeR,

and this in turn yields (d) thanks to (5.7)°.
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For given égQ, s20, we denote by XS+.(w) the function
t - X +t(w). Thus, X , ~ 1s a measurable mapping from (Q, )
into ((Rd)[o’m), B((Pd){o’m>)), the space of all &% - valued
functions on [0, «) eQuipped with the smallest g-field containing
all finite-dimensional cylinder sets.

X} g’ We have:

XeR

5.10 Proposition: For a Markov family X, (Q,3), {P

X

x X
PUIX .eFISS] = PU[X,, €F|X_ 1, P" - a.s;

s+

(d') For xaﬁd, s20 and Fe@((nd)[o’m)),

X

PT[X eFIXS==y] = Py[X.eF], p* X;l - a.e.y.

S+.

Note: If reﬁ(Pd) ‘and F = {ws(Rd)[o’w); w(t)er}, for
fixed tz0, then (c') and (d') reduce to (c) and (d),

respectively, of Definition 5.7.

vPTQOf of Proposition 5.10:

The collection of all sets FeB((Rd)[O’w)) for which (c')
and (d') hold forms a Dynkin .system; so by Theorem 5.1°, it suffices

to prove (c') and (d') for finite-dimensional cylinder sets of the
form ‘

0

. d . ]
Where O = to<tl<- . '<tn’ Fieoa (R ), 3—:0’ l, e o’n, and nzo-

For such an F, condition (c') becomes
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X
(5-8) Pr[XserO’""Xs+tn_1€rn—l’ Xs+tn€rn]&s]

X X
= PU[X €T e+ X oy ern_l,xs+tnern]XS], P” - a.s.

n-1

We prove this statement by induction on n. For n=0, it is

obvious. Assume it true for n-1l. A consequence of this acsump-

tion is that for any bounded, Borel measurable : Rdn

P - R,

(5.9) E‘X[m(xs,..’.,xs“n_i){&s] = EX[co(XS,...,Xs+tn_l)]XS],‘ P*-a.s.

Now (c) implies that

X ' .
P [XSGPO"'"Xs+tn_l€rn—l’xs+tnern{Es]

X ‘ X
- EX[1 . P[X_ .. €T |5 R
{Xsero""’xs+tn_l€rn—l] st+t,"'n s+t 1 l s

X X '
= E[1 PU[X ¢ €T, IX 1137,
[X €TgseeesX €T 4]} n'Ts+t _,7's

s+t
n-1 n

As in the proof of Proposition 5.9, we see that the universal measur-

ability assumption (a) of Definition 5.7 yields the existence of a

Borel-measurable function g: Rd - [0,1], such that

X

PX[X er|X ] = 8(X ¢ ), a<s. P°. Setting
n-1.

s+tn s+t

n-1
¢(xo,...,xn_l) A lFO(XO)'°'lP

l(xn_l). g(xn_l), we can use (5.9)'
n-

to replace Fq by c(XS) in this last expression, and then,

reversing the previous steps, we obtain (5.8). The proof of (d')

is similar, although notationally more complex. ‘EJ
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It happens sometimes, for a given process X = {Xt,g;; t20}
1%
on a measurable space (Q,%), that one can construct a family

of so-called shift-operators eS: Q- Q, s20, such that each Gs

is J/% measurable and

(5.10) Xs+f(w) = Xt(esw); Y weQ, s,t20.

The most obvious examples occur when Q 1is (Rdfo’w), the space of

all Rd - valued functions on [0,«), or q is C[O,w)d, the
space of all continuous,. Rd - valued functions, F is the
smallest g-field containing all finite-dimensional cylinder sets,
and X 1is the codrdinate mapping process X (w) = o(t). We can

then define @ w = w(s+.), 1i.e.,

(5.11) (8.@)(t) = w(s+t), ta0.

s+t o~ >

<

—nn
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When the shift operators exist, then the function X, (w)
appearing in (c') and (d') is none other than X.(esw), SO
-1 d, [0, =
S+'eF} = 8, {X.€F}. As F ranges over &((R )[ ? )}, {X.eF}
.4

ranges over 3_. Thus, (c¢') and (d') can be reformulated as:

(X

X

®©

(c™) For Fed and 20,
x. -1 -1
Pl o F|3, ] = PX[QS F|X ], P* - a.s.

(a") For Fe&i ~and  s20,

S 21 -1
P [ o, FIX, = y] = P[F], P* X S - a.e. y.

In a manner analogous to what was achieved in Proposition 5.9,

we can capture both (c¢") and (d") in the condition

(e") For Feéx and s=20,
(-~}

Since (e") is often given as the primary defining property for
a Markov family, we state a result about its equivalence to our

| definition.

5.11 Theorem: ZILet X = {Xt,gt; t20} be an adapted process on a

measurable space (Q,3), let {p,} 4 be a family of
X€R . :
probability measures on (Q,3), and let {8 }g,0 De a family

of &/F - measurable shift operators satisfying (5.10). Then
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X, (Qs%), {PX}XeRd ig a Markov family if and only if (a),
(b) and (e") hold..

(C"')

Markovhfémily;

5.13

Problem: Suppose that X, (Q,3F), {PX} g 1s a Markov family
XER
. . ) .
with shift operators {es}szo. Use (c¢") to show that:

For xeRd, sz0, GeF, and Fe&i,

P*[G n e;1F|xs] = P[G]x,] PX[G;IF{XS], P* - a.s.

We may interpret this equation as saying the "past" G and
the "future" e;lF are conditionally independent, given

the "present" X, -

Conversely, show that (c"') implies (c"). O

We close this section with two additional'exémples of a

I B -

Problem: Suppose X = {Xt,st; t20}, (Q, %), {PX} d is

5.14

XER
a Markov family and v: [0r=) = Rd and ¥: [0, ®) - L(Rd,R

the space of linear transformations from Rd to Rd, are

d

)s

given (nonrandom) functions with v, = 0 and Y, nonsingular

for every tz0. Set Yt = o, + Yt'Xt' Then Y = {Yt,gt; tzo},

(n:3), (P*} 4 1is also a Markov family.
XER

X
Definition: "Let B = {B;,3.; t20}, (Q,%), {P'} 4 bea

d XeR ™ 9 4
d-dimensional Brownian family. TIf ueR and o<L(R ,R )

are constant and o 1is nonsingular, then with Yt A ut-+oBt,




we say

Y = {Y,,3,; t20}, (%), {p"} 4 is a d-dimensional
X€R

Brownian family with drift py and diffusion coefficient o.

This family is Markov . . We may weaken the assumptions on

the drift and diffusion coefficients considerably, allowing them

to'depend on both time and the location of the transformed process,

and still obtain a Markov family. This is the subject of Chapter 5

on Stochastic Differential Equations.

5,15 Definition: A Poisson family with intensity A>0 1is a process

N = {Nt

sFs t=0} on a measurable space (Q,5) and a family

of probability measures {PX}X€R s such that

(1)

(i1)

(111)

For each Ee€¥, the mapping x - PX(E) is universally

measurable;

For each Xe€R, PX[NO = x] = 1;

X ~
Under any P , the process {Nt = Ny -Nys &y s t20} 1is
a Poisson process with intensity A and 1s independent

. N .
of 30, i.e., 3& and 30 are independent.

5.16 Problem: Show that a Poisson family with intensity »>0 1is

a Markov family.

Standard, one-dimensional Brownian motion is both a martingale

and a Markov process. There are many examples of Markov processes,

such as Brownian motion with nonzero drift and the Poisson processes,
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which are not martingales. There are also martingales which do

not enjoy the Markov property. We leave the construction of such

an example as a problem.

5.17 Problem: Construct a martingale which is not a Markov process.
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2.6: THE STRONG MARKOV PROPERTY AND THE REFLECTION PRINCIPLE

Part of the appeal of Brownian motion lies in the fact that
the distribution of certain of its functionals can be obtained
in closed form. Perhaps the most fundamental of these functionals

is the passage time T, to a level ber, defined by

b}
® if {...} = 2.

I

inf{t=0; Bt(w)
(6.1) T (@) =

We recall that a passage time for a continuous process 1s a stopping

time (Problem 1.2.6).

We shall first obtain the probability density function of Tb

by a heuristic argument, based on the so-called reflection principle

of Désiré André (Lévy [1948], p. 293). A rigorous presentation of

this argument requires use of the strong Markov property for

Brownian motion. Accordingly, after some motivational discussion,

we define the concept of a strong Markov family, and prove that

any Brownian family is strongly Markovian. This will allow us to
'place the heuristic argument on firm mathematical ground.

Here is the argument of Désiré André. Let {Bt,st; Ogtlw}
be a standard, one—dimensional Brownian motion on (Q,E,PO), For

- >0, we have

0 0 0
P [T,<t] = P [T,<t;B,>b] + P [T,<t,B,<b].

Now PO[T <t,B>b] = P°[B,>b]. On the other hand, if T.<t

and B

t<b, then sometime before time t the Brownian path reached




2.6.2

level b, and then in the remaining time it travelled from b

to a point ¢ 1less than b. Because of the symmetry with respect
to b of a Brownian motion starting at b, the "probability" of
doing this is the same és the "probability" of travelling from b
to the point 2b-c. The heuristic rationale here is that, for
every path which crosses level b and is found at time t at a
point below b, there is a "shadow path" (see figure) obtained
from reflection about the level b which exceeds this level at
time t, and these two paths have the same "probability". Of
course, the actual probability for the occurrence of any particular
vath is zero, so this argument is only heuristic. Nevertheless,

it leads us to the equation

0 0 0

Shadow path
2b-C - "
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whica then yields

0 0 o % -
(6.2) P [T, <t] = 2P [B >b] = /;f e
. bt~

Differentiating with respect to t, we obtain the density of the
passage time

2
'b ‘
(6.3) Po[Tbedt] = ;74%%?a-e TFF'dt; t>0.
21T

The above reasoning is based on the assumption that Brownilan

motion "starts afresh”" (in the terminology of Itd & McKean [1974])

at the stopping time Tb’ 1fe., that the process {Bt+Tb-BTb;
Ost<e»} 1s Brownian motion, independent of the ¢g-field 3T .

' b
If Tb were replaced by a nonnegative constant, it would not be
hard to show this; if Tb were replaced by an arbitrary random

timé, the statement would be false (cf. Problem 6.1 below). The
fact, that this "starting afresh" actually takes place at stopping
times like Tb’ is a consequence of the strong Markov property
for Brownian motion.

6.1 Problem: Let {Bt,3t; t=0} be a standard, one-dimensional
Brownian motion. Give an example of a random time S with
P[0g8<=] = 1 ,such that with W

W= {Wt’3¥5 t20} 1is not a Brownian motion.

t 4 Bgyty - Bgs» the process
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6.2 Definition: Let d be a positive integer and y a probability

measure on (Rd, ﬁ(Rd)). A progressively measurable, d-dimen-
sional process X = {X5 3,5 t20} on some (Q,%,P") is said

to be a strong Markov process with initial distribution u if

and only if
(1) P*[X er] = u(r), ¥ rea(rY);

(i1) For any optional time S of {3t}, t=z0 and reﬁ(Rd),

W _ pH "
PP[Xg,  €T[F 1 =P [Xg,6TIX s P¥ - aus. on [<a].

6.3 Definition: Let d be a positive integer. A d-dimensional,

strong Markov family is a progressively measurable process

X = {Xt,st; téO} on some (Q,%), together with a family

of probability measure {PX}. q on (0,%), such that:
S X€R ‘

(2) For each Fe¥F, the mapping X+~ PX(F) is universally

measurable;

(b) P[Xy=x]=1,Y xer%s

(c) For xeRd, t=20, reB(Rd) and any optional time S of

P [Xg,€T|3g,] = Px[xsfterlxs}, P* - a.s. on {S<«};

(d) For xeRd, t20, Peﬁ(Rd) and any optional time S of
(7, b

X : x _ l
P [Xg, (€T|Xg = ¥] = Py[xter], P" X7 - a.e. y.
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6.4 Remark: On the set {S = o}, Xg,t is undefined. Thus, the

event {X.,.€'} appearing in Definitions 6.2 and 6.3 is

S+t

(X 'y S<=}.

s+t°

6.5 Remark: An optional time of {Jt} is a stopping time of

S+u

{3t+} (Corollary to Proposition 1.2.3). Because of the
assumption of progressive measurability, the random variable

Xy appearing in Definitions 6.2 and 6.3 is Jg, - measurable

(Proposition 1.2.17). Moreover, if S 1is a stopping time

of {St}, then X is Fg - measurable. In this case, we

S

can take conditional expectations with respect to & on

S
both sides of (c¢) in Definition 6.3, to obtain:

PY[x

erl¥g] = P [Xg,

Setting S equal'to a constant ézO, we obtain condition
(c) of Definition 5.7. Thus, every strong Markov family is a
Markov family. Likewise, every strong Markov process is a
Markov process. = However, not every Markov family enjoys the
strong Markov property; a counterexample to this effect,
involving a progressively measurable process X, appears in

Wentzell [f981], p. 161.

Whenever S is an optional time of {3t} and w0, then

is a stopping time of {3t} (Problem 1.2.9). This fact can -

be used to replace the constant s in the proof of Proposition

5.10 by the optional time S, thereby obtaining the following

result.



2.6.6

6.6 Proposition: - For a strong Markov family X = (X 55,3 t=0},
(Q,F), {PX} g e have:
XER
1 d dy[0, =) } .
(c') TFor xeR, Feg((R") ) and any optional time S
of {3},

x X x
P'[Xg, €Flg,] = P [Xg, €F[X.], PT-a.s. on {S<=};

(a')  For xeRd, Feﬁ((Rd)[o’“)) and any optional time S
of {31:}:

x | | -1
P [Xg, €F|Xg = y] = P[X.eF], F'X; - a.e. y . -

‘Using the operators [Ut}tzo in (5.7), conditions (c¢) and

(d) of Definition 6.3 can be combined.

6.7 Proposition: Let X = {Xt,zt; tzO} be a progressively . =

measurable process on (Q,&), and let {PX} q be a family

X€R
- of probability measures satisfying (a) and (b) of Definition

6.3. Then X, (Q,3), {Px} g 1s strong Markov if and only

X€R
if for any {St} - optional time S and tz0, one of the

- following holds:

(e) For any Feﬁ(Rd),

X X
P [Xg (6Tl 1 = (U, 1) (X)) P° - as. on {Ke};
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(e') "For any bounded, continucus f: Rd - R,

EN[£(Xg, ) |Fg,] = (UF)(Xg), P° - aus. on {s<}.

Proof:

The proof that (e) is equivalent to (e¢) and (d) is the same
as the proof of the analogou§ equivalence for Markov families
given in Propositioﬁ 5.9. Since any bounded, continuous, real-
valued function on Rd is the pointwise limit of a bounded
seqﬁence of linear combinations of indicators of Borel sets,

(e') follows from (e) and the Bounded Convergence Theorem. On the

other hand, 1if (e') holds and T ¢ Rd is closed, then lF is

-]

n=1’ where

the pointwise limit of '{fn}

fn(x) = [1-n p(x,T)] v O,

p(x,T) = inf{|lx-yll; yeT}.

Each fn is bounded and continuous, so (e) holds for closed sets r.
~ The collection of sets. rea(Rd) ‘for which (é) holds forms a Dynkin
system, so, by Theorem 5.1°, (e) holds for all reg(rR%).

| | a
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6.7° Remark:

If X = {Xt,gt;.tao}, (Q,s), [PX} 4 is a strong Markov
' X€ER

family and W 1is a probability measure on (Rd,ﬁ(Rd)), we can
define a probability measure Pu. by PM(F) A f 4 PX(F) p(dx);
Fed, and then X on (Q,&,P“)' is a strong Markov process with
initial distribution p. Condition (ii) of Definition 6.2 can be
verified upon writing condition (e) in integrated form:

X X . B,
IF (U 1) (Xg)aP™ = P7[Xg, €D, F]; Fed

and then‘integrating both sides with respect to w. Similarly,

if X, (%), [P"} 4 is a Markov family, then X on (0,8,P")
: © X€ER v

is a Markov process with initial distribution u.

a

It is often convenient to work with bounded optional times
only. The following problem shbws that stating the strong Markov
property in terms of such optional times entails no loss of
‘geﬁerality. We shall use this fact in our proof that Brownlan

families are strongly Markovian.
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6.8 Problem: Let S Dbe an optional time of the filtration

{3, } on some (0,3 P).

(1) ' Show that if z, and Z, are integrable random vari-

ables, s 1s a positive constant, and Z,=2

1=Z, on {S<s], then

E[less+] = E[22]38+], a.s. on {S<s}.

(ii) Show under the conditions of (i) that

E[Zl\38+] = E[ZQIS(SAS)+], a.s. on {S<s}.

(Hint: Use Problem 1.2.16 (i) ).

(i11) Show that if (e) (or (e')) in Proposition 6.6 holds for
every bounded, optional time S of {St}, then it
hdlds for every optional time.

a

Conditions (e) and (e') are statements about the conditional

distribution of X at a single time S+t after the optional
time S. If there are shift operators {eS}SzO satisfying (5.10),
then for any random time S we can define the random shift

eS:V{S<m} -0 by

(eS w)(t) = (eS w)(t) on {S=s}.

In other words, @; 1s defined so that whenever S5(w)<=, then

Xs (@)t (@) = X (8g(0))-
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In particular, we have {Xs+

are respectively equivalent to the statements:

€E} = eél{X.eE}, and (c') and (d')

(c™) For xeRd, Fe&f and any optional time S of (3.1
P¥[ealr|3. ] = PY[eoir|x p* <o}

(am For XeRd, Fegi and any optional time S of {3t},'

X, -1 % X -1
PUlog F|Xq = ¥] = P°(F), P X~ - a.e. y.

Both (c") and (d") can be captured by the single condition:
1 d X s . '
(e") For =xeRr, Fe§_ and any optional time S of {&. 1,

X
X, =1 S X ;
Pl eg F\3S+,] =P "(F), P - a.s. on {SK«}.

Since (e") is often given as the primary defining property

for a strong Markov family, we summarize this discussion with a

theorem.
6.9 Theorem: Let X = {Xt,gt; t201 be a progressively measurable -
process on (Q,3%), let '{Px} g be a family of probability

X€R
measures on (Q,%), and let {gs}sao be a family of

/3 - measurable shift operators satisfying (5.10). Then
X, (Q,F), {PX} g 1S a strong Markov family if and only if

. X€ER
(a), (b) and (e") hold.
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6.10 ‘Problem: Show that (e") is equivalent to the following

condition:

(e"') For any xeRd, any bounded ,3§ - measurable random
variable Y, and any optional time S of [3t}, we
have

X
B [Yogg!Fy,] = E 5

Y), Px - 8.5, on {S<Q}o
Note: If we write this equation with the arguments filled in,
it becomes

X |
EX[YoeSlsS+](w) = f Y(w®) P 5(@) (*)

0

(dw”),

P* - a.e. @ in (K=,

where (Yoes)(w”v) g Y(eS@n”) (0” )). -

We now begin the discussion onthe strong Markcev property of

Brownian motion.

6.11 Definition: Let X Dbe a random variable on a probability

space (Q,&,P) taking values in a complete, separable metric
space  (S,BR(S)). Let & Dbe a sub-g-field of 3. A regular

conditional probability of X. given & 1is a function

Q: 0 x 8(S) - [0,1] such that

(1) for each weqQ, Q(w; .) 1is a probability measure on
(5,8(8), ‘ .
(i1) for each Ee®(S), the mapping - Q(w;E) is G -

measurable, and




2.6.11

(iii) for each. EeB(S), P[XcE|&](w) = Q(w; E), P - a.e. w.

Under the conditions of Definition 6.11 on X,
(Qs%P), (8, 8(S)) and 4 a regular conditional probability
for X given & exists (Ash [1972 , pp. 264-265] or
Parthasarathy [196F, pp. 146-150]). One consequence of this
fact is that the conditional characteristic function of a
random vector can be used to determine its conditional dis-

tribution, in the manner outlined by the next lemma.

Lemma : Let X Dbe a d-dimensional random vector on (Q,&P).

Suppose 4 is a sub-g-field of & and suppose that for each

weQ, there is a function gpw; .): Rd - € such that for

each ueRd,

Cp(w; u) = Etei(u’x)lj](m), P - a.e. w.

If, for each , o(w; .) 1s the characteristic function of

some probability measure PY on (Rd, ﬁ(Rd)), i.e.,

CP(ws u) = ‘fd ei(u’X) Pw(dx):
R

then for each reﬁ(Rd), we have

P[Xer|4](w) = (1), P ; .. W,
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| Let Q Dbe a regular conditional probability for X given
& so for éach fixed uGRd we can builld up from indicators to show
that

(6.3)' cp'(CD; u) = E[ei(u’x)l.&](m) = J 5
: - - - R

el(u’x) Q(w; dx) , P -a.e. w.

The set of w for which (6.3)’ fails may depend on u, but
we can choose a countable, dense subsét D of Rd and an event
Qed  with P(ﬁ) = 1, so that (6;3)' holds for every wen and ueD.
Continuity in u of both sides of (6.3)° allows us to conclude its
validity for‘every .weﬁ and ueRd. Since a measure is uniquely
determined by its characteristic function, we must have P® = Qlw; )

for P - a.e. w, and the result follows.

O

Recall that a d-dimensional random vector N has a d-variate

‘ . . . d : .
normal distribution with mean peR~ and covariance matrix

ser%%xr%,  if and only if it has chardcteristic function

(6.4) g ot (WN) _ o1(usn) -‘%(u,zu); uer?.

 Suppose B = {B., ¥ tz0}, (0,¥), {P'} 4 is a d-dimensional
X€R
Brownian family. Choose ueRd and define the complex-valued

process

. £ o2
MtéeﬂphObB0‘+§”uH ], t=0.

We denote the real and imaginary parts of this process by Rt

and It’ respectively.
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6.13 Lemma: For each xePd, the processes {Rt,3 t20} and

£3

IPPR t=20} are martingales on (Q,G,Px).

Proof:

For ©Osgs<{t, we have

. t-
EX[Mt‘gs] EX[MS exp(l(u,Bt—BS) + —§i ”u”2 '38]

. £-
M, B [exp(1(u,B,-B ) + === Jui®y

=M,
where we have used the independence of B,-B, and J_, as well

as (6.4). Taking real and imaginary parts, we obtain the

martingalé property for ({R,,&_ ; ta0} and (I _,%_; t=0]}.
OF IRprdy £29¢5 -

6.14 Theorem: A d-dimensional Brownian family is a strong Markov
family. A d-dimensional Brownian motion is a strong Markov

"process.

Proof:

‘We verify that a Brownian family B = [B,%; t=0}, (Q,3),
{p*3 g sSatisfies condition (e) of Proposition 6.7. Thus, let
S bgein optional time of ({J.}. 1In light of Problem 6.8, we may
assume that S i; bounded. Fix XeRd. The Optional Sampling
Theorem (Theorem 3.20 and Problem 3.21 (i)) applied to ‘the

martingales of Lemma 6.1% yields
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| Ex[exp(i(u,Bs+t))f3s+](®)

exp[- 3(S(w)+t) ui®] . EX

Mgyt 135, 1 (@)

il

Mg oy (@) - L= B(S(@)+t) %]

exp[i(u, BS(w)(w)) - %Q HUHQ} , PX - a.e. w.

Comparing this to (6.4), we see that the conditional distribution

of BS+t’

matrix t I.,. This proves (e).
a O

We can carry this line of argument a bit farther, to obtain

a related result.

6.15 Theorem: If S 1is an a.s. finite optional time of .{¥,]

. for a d-dimensional Brownian motion B = {Bt,st;
W

BS’ the process W = {Wt,st; t20} 1is a

t20}, then

with Wt A BS+t_

standard, d-dimensional, Brownian motion, independent of J

Proof:

d
We show that for Ostos...stn and ul,...,uneR R

n .
(6.5) Elexp (1 = (gk’wtk—W?k-f )13, ]

- 2(t. -
l exp[ Q(tk tk—l)

I
=S

2
fu "], P - a.s.;
K K

i is normal with rariar
given J. ., ormal with mean BS(w)(w) and covariance

S+°

thﬁs, according to Lemma 6.12 and (6.4), not only are the increments
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{w, -W }n independent normal random vectors with mean zero

tk tk—l k=1
and covariance matrices (tk K- l) I,, but they are also independent
of the og-field 3S+; This substantiates the claim of the theorem.

We prove (6.5) for'bouhded, optional times S of {St}; the
argument given in Solution 6.8 can be used to extend this result
to a.s. finite S. Assume (6.5) holds for some n, and choose
Ostos...stnstn+l. Applying the Optional Sampling Theorem to the
martingales in Lemma 6.13 with u = U1 and the optional time

S+tn s WwWe have

V(6.6) , E[exp{i(un+l: W, )353(S+tn)+}

n+l n

1°

exp[- B(S+t - Hpy10 By )T EDgre  [F (st 4]

n+1)”un+l n+1l

il
D

2
Xp[_' %(tn_‘_l-tn) ”un+1” ]’ -P - a.s.

Therefore,

n+l

E[exp(i kfl (uk’wtk_wt DRk

]
k-1 S+

E[exp (i Z (u,»

-W: ))
k tk tk-l

. E{eXp(i(un+i,wtn+l th)) |:"(S+tn)+”38+3

= exp[- 3(tp,q- )“un+1” ] E[exp(d 2 e e )]

n+l

Hl exp[— é’(tk_tk_l) ”uk”g]‘ P - a.s.,
k= . :
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which completes the induction step. The proof that (6.5) holds

for n=1 1is obtained by setting t =0 in (6.6).
a

To make rigorous the derivation of the passage time density
with which we began this section, a slight extension of the strong

Markov property for right-continuous families will be needed.

6.16 Proposition: Let X = {X.,3;

t20}, (Q,%), [P’} 4 be
XER

a strong Markov family, and the process X Dbe right-continuous.
Let S be an optional time of {F.} and T an 3, -
measurable random time satisfying T(w) = S(w) for all weQ.

Then, for any xemd and any bounded, continuous f: Rd'q R,

(6.7) B35, 1) = (Vg g ) Cig ey @)
Cfor PX - a.e. W FT< o}«

Proof:

For nzl, let
1 n .
S+ Eﬁ([ 27°(T-8) J+1), if e,
o, 1if - T=e,

so that T = S + 5— when E:l s T-S < . We have T T on
n n : 21’1. n

2
{T<w}. From (e') we have for k20,

e
2

EX[f(XS . K)Igs+] = (Uk f)(XS): P* - a.s. on {S<=},

2].’l : 21’1




and Problem 6.8 (i) then implies

EX[f(XTn>f3S+](w> = (UTn(w)-S(w)f)(XS(w)(w))’ P’ - ae. we{T<e}.

The Bounded Convergence Theorem for conditional expectations and
the right-continuity of X imply that the left-hand side con-

verges to EX[f(XT)§3s+](w) as n-e. Since (U.f)(y) = Eyf(Xt)
is right-continuous in t for every yeRd, the right-hand side

converges to (UT(w)_S(w)f)(XS(w)(w)). o

6.17 Corollary: Under the conditons of Proposition 6.16, (6.7)

holds for every bounded, Q(Rd)/a(R)‘- measurable function f.

- In particular, for any Feﬁ(Rd) we have

PX[XT€T133+](w) = (UT(m)-S(m) 1r)(XS(w)(w))’

Px - a.€. (D€{T<co}.

Proof:

Approximate the indicator.of a closed set T by bounded,
continuous functions as in the proof of Proposition 6.7. Then
prove the result for any reﬁ(Rd), and extend to bounded, Borel-

measurable functions.
0

6.18 Proposition: Let {B,,&. ;5 t20} De a standard, one-dimensional

"Brownian motion, and for b#0, let Tb be the first passage

has density (6.3).

time to b given by (6.1). Then T,
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Because {-Bt,3 t20} is also a standard, one-dimensional

ts
Brownian mption, it suffices to consider the case bH>0. In

Corollary 6.17 set S =T,

b
th if  S<t,

T =

' ‘Lco if S?..t, .

and T = (-®,b). On the set {TK=} = {S<t}, we have BS(w)(w) =b

2nd (Up () 5 () 1) (B (o) (@) = 2

Therefore,

o .. 0 o , o
P [Ty<t, By<b] = f Pv[BTGFI38+]dP = 3 PP[T,<t] .
{Tb<t}
Thus,

av)
O
~
=3
\
ct
—
il

(o} o]
PU[T,<t, BO>D] + g [T,<ts B.<b]

(0] o
P [B>b] + %P [T <t]s

and (6.2) is proved.
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2.7 BROWNIAN FILTRATIONS

The inquisitive reader may well have wondered why we have
made a point of defining Brownian motion B = {Bt,gt; t20} with
a filtration {3t} which is not necessarily the same as {3%},
the one generated by the process itself. One reason has to do
with the fact that, although the filtration {35} is left-con-
tinuous, 1t fails to be right-continuous (Problem 7.1). Some of
the developments in later chaptersrequire either right or two-
sided continuity of the filtration {3t}, and so in this section
we construct filtrations with these properties.

Let us recall the basic definitions from section 1.l1. For a

filtration {3t; t20} on the measurable space (Q,3), we set

F..= n 7 for t20, §._=0( U &) for t>0,
t+ >0 t+e t act S
F, =& and ¥ =0(.U Jt). We say that {Et} is

right (respectively, left) - continuous if Fep = 3t (respectively,

¥, = 3t) holds for every Ost{e. When X = {Xt’3§5 t20} is a

t-
process on (Q,%), then left-continuity of {3%} at some fixed
t>0 !can be interpreted to mean that Xt can be discovered by
'bbserVing XS, Ogs<t. Right-continuity means intuitively that if
Xs has'been observed for Ogs<t, then nothing more can be learned
by peeking infinitesimally far into the future. We recall here

that ﬁi = c(XS; Ogsst).

7.1 Problem: Let {Xt,aig Ogt{=} be a d-dimensional process.

(1) Show that the filtration {3%+] is right-continuous.

(ii) Show that if X is left-continuous, then the filtration
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{3?} is left-continuous.

(iii) Show by example that, even if X 1is continuous, {3%}
can fail to be right-continuous and {3§+} can fail

to be left-continuous.

We shall need to develop the important notions of "completion"
and "augmentation" of g-fields, in the context of a strong Markov
process X = {Xt,3§; Ost<o} with initial distribution pu on the
space (Q,S,Pu). We start by setting, for Ostse,

ﬁzvé {F c Qs SGEE% with F c G, PY(g) = 03 .

ni will be called "the collection of PH-null sets", and denoted

simply by 7™,

7.2 Definition: For any Os<t<{«, we define the completion

E% i} 0(3¥ U h%), and the augmentation

gt

X . W
t & o(3 un)

e

of the g-field 3% under P%, TFor t=e the two concepts

agree, and we set simply

F A 6(32 unh).

The augmented filtration ({3 ] possesses certain desirable

properties, which will be used frequently in the sequel and are

developed in the ensuing problems and propositions.
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of =

7.3 Problem: For any sub-g-field ¢ ¥, define

and

¢ = o(g U7
¥ = {F c Q; 3GeG such that FaGen'}.

U')'

Show that GM=y. We now extend P* by defining P*(F) 2 P*(G)
whenever Fequ, and GeG 1s chosen to satisfy FAGeN™. Show

that the probability space (Q,G"™,P*) is complete:

Fegt, P*(F) = 0, D c F = DegH.

7.4 Problem: From Definition 7.2 we have 3% E_é%, for every

Ogtl{w. Show by example that the inclusion can be strict:
M
jg < Fy

7.5 Problem: Show that the g-field 3“ of Definition 7.2 agrees

with

34 o( U 3%)-
t20

7.6 Problem: If the process X has left-continuous paths, then

the filtration {3%} is left-continuous.
a

We are ready now for the key result of this section.

7.7 Proposition: For a d-dimensional, strong Markov process

X = {Xt,gf; t20} with initial distribution p, the augmented

filtration {3%} is right~continuous.
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Proof:

Let (q, 3§, P*) be the probability space on which X is
defined. Fix s20 and consider the degenerate, {3%} - optional
time S=s. The strong Markov property implies for t>0 and

res(r"),
" _ ol o
Pix er|F, ] = PUix er|X ], P - aus.

For t>s, we see then that PM[X eT|3.,] has an 3 -measurable

version. For tss, X, 1is 3§ measurable, so again P“[Xtérl5§+]
has an 3§—measurable version. The collection of all sets

Fe3§ for which PM[FJSS+] has an 3§—measurable version is a

g-field, and since si is generated by sets of the form {Xter},
we geé that Pu[F}3S+) has an 3§-measurable version for every
X

F€3°° “But suppose F§3§+ 5.32'

Then
" _ b
P [Flé‘i‘] - lF’ P a.S.,

so lF has an 3§-mea$urable version, whichiwe call Y. Let
G = {Y =1} € ﬁi. Since FAG E_[IF # Y} € VP, we have
Fes‘s* . Therefore,

i
3§+ S 3 szof

Suppose now that F€3§+. Then for each positive integer n,

Fe3§+l/n, so there exists G €

n%s+1/n such that FAGneﬁi. Set
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x© -} (-] [+ -]
GA n U G, and since G = N U G for any positive integer
= m=1 n=m " m=M n=m
: X M : . X
M, we have G€3S+ c SS. To prove that F€3t, it suffices to prove

that F A GenW'. Now

G\F c ( S Gn)\F
: n=1

(%ﬁﬂeﬁ‘.

U
n=1

On the other hand

)C

]
£
D

N
C
-]
Qo

Fnanln u G

F\G
m=1 n=m O

u[Fa(n &)lec U (Fnag)
m=1 n=m - m=1

- U(ma,) €

m=1
It follows that Fe¥, so JFy, ¢ F; and right-continuity is

roved.
P O

7.8 Corollary: For a d-dimensional,left-continuous, strongly

Markov process X = {Xt’é§5 t20} with initial distribution

s -the augmented filtration {3%} is continuous.

7.9 Theorem: Iet B = {Bt,3E; tiO} be a d-dimensional Brownian

motion with initial distribution u on (@, PY). Relativs
to the right-continuous filtration {3?}, {Bt, t20} 1is still

a d-dimensional Brownian motion.
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Proof:

Augmentation of g-fields does not disturb any of the

independence assumptions of Definition 5.1. -

Since any d-dimensional Brownian motion is strongly Markov
(Theorem 6.14), the augmentation of the filtration in Theorem 7.9
does not affect the strong Markov property. Thils raises the

following.general question. Suppose {Xt,sxs t20} 1is a d-dimen-

t
sional, strong Markov process with initial distribution p on
(Q,Si B P“). Is the process {Xt,3%; t=0} also strongly Markov?

In other words, is it true, for every optional time S of {3%},

t20 and Ter(RY), that

(7.1) PHx oot

gt €TI18G,T = PPxg  eT|X ], PP -als. on {s<e)?
Although the answer to this question is affirmative, phrased in
thié generality, the question is not as important as it might
appear. In each particular case, some technique must be used to
prove that {Xt,ﬁig t20} 1is strongly Markov in the first place,
and this technique can usually be employed to establish the strong
Markov property for _{Xt’3%§ t20} as well. Theorems 7.9 and 6.14
exemplify this kind of argument for d-dimensional Brownian motion.
The iﬁterested reader can work though the following series of
problems, to verify that (7.1) is valid in the generality claimed.

We shall make no subsequent use of them.
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X

In Problems 7.10 - 7.13, X = {Xt,gt; Ost{=} 1is a strong

Markov process with initial distribution pu on (Q,&X,P“).
) <

7.10 Problem: Show that any optional time S of {3&} is also
[

a stopping time of thisfiltration, and for each such S there
exists an optional time T of {3%} with [S£T}en*. Conclude
that 3§+ = Eg = g% , where 3% is defined to be the collec-
tion of sets AegF” satisfying A n{Tst}eg? s Y Ostlo.

7.11 Problem: Suppose that T is an optional time of {3%}.

For fixed positive integer n, define

T, on l{T:w}

T = :
K k-1 k
n =, on {—=s T< =}.

2 2 2

Show that T_ 1is a stopping time of (&}, and

' T} 1L X ot .
3% c c(3§n un). Conclud; that 3, ¢ g(3T+ U n“). (Hint:

Use Problems 1.2.22 and 1.2.23).

‘7.12 Problem: Establish the following proposition: if for each

t=0, reﬁ(Rd) and optional time T of {3%}, we have the

strong Markov property

(7.2) PHx Tt

X 1 _ pH
pt T80 ] = PIX

er]XT], Y - a.s. on [TK=],

then (7.1) holds for every optional time S of {3%}.
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This completes our discussion of the augmentation of the
'filtration generated by a strongly Markov process. At first glance,
augmentatiqn appears to be a rather artifical device, but in retro-
spect, it can be seen to be more useful and natural than merely
completing each g-field 3% with respect to P*. Tt is more
nafural because it involves only one cqllection of Pu-null_sefs,
the collection we calledwﬁu, rather than a separate collection for,
X

each t20. It is more useful because completing each og-field &

does not result in a right-continuous filtration, as the next -problem
demonstrates.

7.1% Problem: Let {Bt, t20} Dbe the coBrdinéte mapping process
on (C[0,«), ﬁ(C[O,é))), and let P° be Wiener measure..

Let F denote the completion of 3? under P°. Consider

t
the set

F = {weC[0,»)5 w 1is constant-on [O,e¢] for some ¢e>0}.

Show that: (i) PO(F) = 0, (ii) Fes’,, and (iii) TF£F .
O+ (o)

The difficulty with the filtration (#.}, obtained for a
strong Markov process with initial distribution pu, is its
dependence on p. In particular, such a filtration is inappropriate
- for a strong Markov family, where there is a continwum of initial
conditions. We now construct a filtration which is well suited

for this case.

‘ ' X X . .
Let {Xt,3§; t201, (Q,sm), {P )xeﬂd be a d-dimensional,
strong Markov family., For each probability measure y on

(Rd; ﬁ(ﬁd)), we define P as in (5.2):
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PH(F) = f S PX(F) w(dx), VY Fesi ,
R

and we construct the augmented filtration {3%} as before. We

define
(7.3) L ong,
t t
. S
where the intersection is over all probabllity measures

d, B(Rd)). Note that 3% E.gt c E%,

probability measure u on (Rd, ﬁ(Rd)); therefore, if {Xt’3¥5 t20}

w on (R Ost{e for any
‘and {Xt,g%; t20} are both strongly Markovian under PY, then so
is {Xt’§t5 t=20}. Because the order of intersection is interchange-

able and {3%} is right-continuous, we have

¥ = n n3=nn az =N 3% =g

s>t S L s>t s t

Thus {%t} is also right-continuous.

7.14 Theorem: Let B = {B,3.; t20}, (0,3.), {P'} 4 bea
. x€R ~
- d-dimensional Brownian family. Then ({B.,¥.; t=0}, (Q,%),

{PX} Rd is also a Brownian family.
Xe€

Proof:

It is easily verified that {B_,¥ ; t20] is a d-dimensional
Brownian motion starting at x. It remains only to establish the
universal measurability of condition (i) of Definition 5.4, Fix
Fe¥_ . For each probability measure u on (r%, E(Rdy): we have

Fe&”, so there is some ,GeSE with F A Geﬂ“. Let Négz satisfy
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FaAoGec N and P*(N) = 0. The functions g(x) A PX(G) and

n(x) & PX(N) are universally measurable by assumption. Furthermore,

J" n(x) p(dx) = pPH(N) = O,

Rd

so n=0, p - a.e. The nonnegative functions hl(x) iy PX(F\G)
and h,(x) & P*(G\F) are dominated by n, so h; and h, are

zero W - a.e., and hence hl and h2 are measurable with respect

to ﬁ(Rd)u, the completion of B(Rd) under u. Set f(x) é'PX(F).

We have

£(x) = g(x) + hy(x) - h, (%),

so f is also @(Rd)u - measuréble. This is true for every u;

thus, f 1is universally measurable. O

7.15 Remark: In Theorem 7.1l4, even if the mapping X ~» PX(F)
ié Borel-measurable for each FGEE (c.f. Problem 5.1),
we can conclude only its universal measurability for each
Féﬁw. This explains why Definition 5.4 was designed with

a condition of universal rather than Borel measurability.

We close this section with a useful consequence of the results

concerning augmentation.
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7.16 Theorem: Blumenthal (1957) Zero-One Law

Let {B_%¥; t20}, (0,3), {P°} 4 be a d-dimensional
g2 9 © N xeR °
Brownian family, where 3t is given by (7.3). ITf Fego R

d
then for each xeR™ we have either PX(F) =0 or PX(F) = 1,

Proof':
For Fe¥  and each xeRd, there exists Ge&% such that

PX(F A G) =90. But G must have the form G = {B,eI'} for some

FEB(RG), SO

P (F) ='PX(G) = P*{B.er} = 1 (%),

which is either zero or one.

7.17 Problem: Show -that a standard, one-dimensional Brownian

motion changes sign infinitely many times in any time-interval

[0,€], €0, with probability one.

7.18'Problem: Let {Wt,3t5 Ogt<»«} be a standard, one-dimensional

Brownian motion on (Q,%, P), and define

S, = inf{tz0: W, >b};  b=0.

(1) Show that for each b20, P[T, # S,] = O.

(ii) Show that if L 1is a finite, nonnegative random vari-
able on (Q,% P) which is independent of 32, then

{wen; TL(w)(w)aésL(w)(@)}ez and P[Ty # SL]‘= 0.
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2.8: COMPUTATIONS BASED ON PASSAGE TIMES

In ordef to motivate the strong Markov property in §2.6, we
derived the density for the first passage time of a one-dimensional
Brownian motion from the origin to b # 0. In this section we
obtain a number of distributions related to this one, including

-the distribution of reflected Brownian motion, Brownian motion on

[0,a] absorbed at the endpoints, the time and value of the maximum

of Brownian motion on a fixed time interval, and the time of the

1ast exit of Brownian motion from the origin béfore a fixed time.
While derivations of all of these distribﬁtions can be based on

the strong Markov property and the reflection principle, we shall
occasionallywprqvidezarguments based on the optional sampling theorem
for martingales. The former method yields densities;jwhereas

the létteryieldslaplace transforms of -densities. The reader

should be acquainted with both methods.

Taroughout this section, ({[W,,3.; Oeti=), (Q,3), {PX}X€R

will be a one-dimensioal Brownian family. We recall from (6.1)

the passage times

T

3 = 1nf{tzq; W,=b}; DeR,

and define the running maximum (or maximum-to-date)

(8.1) M, = max W_.
Ogsst
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8.1 Proposition: We have for t>0:

(8.2) PO[Wteda, Mt€db] = éighzgl exp{- igg—il~}da db; as<b, ba0.
' ' 2nt 2t :
Proof:
j‘F'or agh, b20, the symmetry of Brownian motion implies that

PP[

il

(Ugos L(ou,a]) (@) W,__ea) = PO[W___22b-a]

t-s

I

(Ugos Y[ob-a,w)) (P)s Ossst.

Corollary 6.17 then yields
PO[W, sa|Fn L] = (U 1 ) (b)

t Tb+ t-Tb (-w,&]
= Wep 1obea, )’ (P)

0 , . 2 .
=P [Wtsz—a]STb_,_], a.g.,P on {T st}.

'Integrating both sides of this equation over {Tb<t} and noting
that (T, <t} = {Mt>b}, a.s. PO, we obtain

0 0
P [W,ga, M >b] = P [W 22b-a, M >b]

8%

= PO[W,a2b-a] = dt.

-3
1 I e
Jermt “2b-a
Differentiation leads to (8.2). . O

‘8.2 Problem: Show that for t>9,

(8.3) | PO[Mtedb] ='Po[lwt]edb] %.PO[Mt-Wtedb]
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52
= —2_e Y ap; bv>O.
Jert
8.% Remark: From (8.3) we see that
© __}32
(8.4) Porr st] = POmuab] = —2- [ e Zax; b>o.
’ J2m T b
Jt
By differentiation, we recover the passage time density (6.3):
b2
(8.5) PO[T edt] = —Rmme 20 dt; b>0, t>O.
P errt3 .

For future reference, we note that this density has Laplace

transform

2

(8.6) e P = e 2% 155, o0,
By letting tte in (8.4) or oi0 'in (8.6), we see that

PO[Tb<w] = 1. Tt is clear from (8.5), however, that EOTb =

l
- 8

- 8.4 Exercise: Derive (8;6) (and consequently (8.5)) by applying

the optional sampling theorem to the {3t}-martingale

1 2
(8.7) | My = exp{Mi, - 5 \"t}; Ostds,
with A = J2a > 0.
8.5 Problem: Derive the transition density for Brownian motion

absorbed at the origin {Wt T 3t; Ost{=}, by verifying
*=0
that
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(8.8) Px[wtedy,‘TO>t] =p (t; xy)dy

A [p(t; x,5) - p(t; x,-y)]dy; t>0, x,y>0.

8.6 Problem: Show that under PO, reflected Brownian motion

W] A [ﬁwt],st; Ost<«} 1s a Markov process with transition

density
(8.9)  PPLyw,, leay| 1w, = x] = p,(s: x,y)dy

A [p(s: x,5) + p(s; x,-y)]dy; s>0,t20 and x,y=20.

8.7 Problem: Dafine Yt AM 4Wt; Ogt<{e». Show that under PO,

the process Y = {Yt,Et; Ogt<{=} 1is Markov and has transition

density

(8.10) PO[¥t+S€dy{Yt=X] = p+(s; x,y)dy; s>0,t20 and x,y=0.

Conclude that under PO the processes |W| and Y have

"the same finite-dimensional distributions.

The surprising equivalence in law of the processes Y and
|W] was observed by P. Lévy (1948), who employed it in his deep
study of Brownian local time (c f. Chapter 6). The third process
M appearing in (8.3) cannot be equivalent in law to Y and |W|
since the paths of M are nondecreasing, whereas those of Y and
\W| are ndt. Nonetheless, M will turn out to be an object of

considerable interest because it is the local time at the origin

of the reflected Brownian motion Y.
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The following simple proposition will also be extremely help-

ful in our study of local time.

8.8 Proposition:

- The procecs of pascage times T = {T ,gT L3 Osade)

has the property that, under PO and for Oga<lb, the

increment ' T, -T_ 1is independent of 3Ta+ and has the density

b-a 2
P [T -T edt] = 5=€ dt; O0<Kt<e
Jr%t
In particular,
| ~a(T,-T,) | “(b-2).Pa
(8.11) ®[e P ?¥'s T L) = en(Pmalvea

Proof:
This is a direct consequence of Theorem 6.15 and the fact

W = b-a}- O

that T -Ta = inf{t20; WT it T Ta

b

In Problem 8.5 we computed the transition density for
Brownian motion absorbed at the origin. We now undertake the

‘study of Brownian motion on [0O,a] absorbed at O and a; to

wit, {Wt WTy.T, s &3 Ost(w}.

8.9 Proposition: Choose Kx<a. Then

. .
ST, > t] = ¥ p_(t; x,y+2na); O0<y<a, t>0.

- X
(8.12) P"[W,edy, T,
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Proof:
We follow Dynkin and Yushkevich (1969). Set o 40,
™ A TO’ and define recursively on 4 inf{tzTn_l; wt = a},
T, = inf{tao; W,.=0}; n=1,2,... . We know that P*[1<=] = 1,

and using Theorem 6.15 we can show by induction on n that

o, Tl is the passage time of the standard Brownian motion

W - W to a, T _-0o is the passage time of the standard
FTh-l Thal non
Brownian motion W to WG to -a, and the sequence of dif-
RS o} n
ferences G1~Tgs T1~0qs Op~Tys To=Ons - consists of independent

and identically distributed random variables with Laplace trans-
form e;aJ§a1 (cf. (8.11)). It follows that T,"To» Dbeing the
sum of 2n such differences, has Laplace transform e—2naJ§5:
and SO
PX[r_-1.et] = PO[T. st].
n O 2na

We have then

(8.13) lim PX[Tnst] = 0; Ogt<w.

Neo

For any ye(0,), we have from Corollary 6.17 and the symme-

try of Brownian motion that

X _ X
P [wtzyjsTn+] =P [wts—yisTn+] on {r st},

and so

(8.14) P*[W,zy, T.st] = P*[W s-y, 7. &t] = P°[W,_<-¥,0. st]; n=0
’ t=9? 'n t*7J Tn t 20n > Hav.

Simiiarly, for ye(-=,a), we have

PX[wtsy[EC +] = PX[wt22a7y130n+} on (gnst},
n .



2.8.7

and

1

(8.15) P [W,ey, o, st] P*[W, 228-y, o st]

b
P_[wtzEa-y, Tn_l‘t]; nz1l.

We may apply. (8.14) and (8.15) alternately and repeatedly to con-

clude that

Px[Wtzy,.Tn‘t] Px[wts -y-2nal; Ky<a, nz29,

PX[thy,-cn‘t] 'Px[Wt‘ y-2na]; 90<y<a, na0.

Differentiation with respect to y results in the formulas

(8.16) PX[Wt€dy, T st] = p(t; X,-y-2na); O<y<a, nz0,

(8.17) PX[wtedy, o,st] = p(t: x,y-2na) ; O<y<a, n20.

Now set o = 0, = Ta and define»recursively

Po
m = inf{tap _,; W, =0}, p, = inf{tam ; W.=a}; n=1,2,... .
We may proceed as above to obtain the formulas

(8.18) - 1im P*[p _st] = 0; Ost<=,

je Y-

I

(8.19) Px[wtedy, pnst] p(t; x,-y+(2n+l)a); O<Ky<a, na9,

(8.20) P%[wtedy, nnst] p(t; x,y+2na); {y<a, n=z0.
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| It is easily verified by considering the cases TO<Ta and
Ty>T, that T _.vp, 1 = 0,7, and o vm = Th~Py3 D=l. Con-

sequently,

(8.21) PX[Wtedy, Tn_l.pn_lst]‘= Px{wtedy, Th-15t]

+ P[W edy, ° _,et] - P*[W edy, o .m st],

and
(8.22) P [W,edy, o_.m _st] = PX[W, edy, o <t] + PX[W,ed t
. t s n“n ‘ _ t 3 Un t Ys 'nn‘ ]
- P [Wtedy, Tn.pn;t].

Successive application of (8.21) and (8.22) yields for every
integer kal:

X . k X .
,('8'23) - P [W edy, To-*pQ‘-t] = n;s:l{P [Weedy, 7, yst] 3

: X v » X ' X

+ ? [wtedy, Pn-l‘t] - ? [Wtedy, o,st] - P [W,edy, nnst]}

X
+ P [Wtedy, fk.pkst].

Now we let k tend to infinity in (8.23); because of (8.13),
(8.18) the last term converges to zero, whereas using (8.16),

(8.17) and (8.19), (8.20) the reﬁaining terms give

X X X
P [Wtedy, To“Ta >t] =P [Wtedy] - P [Wtedy, TO“pO‘t]

= £ p_(t; x,y+2na)dy; Oy<a, 0. . g

N=-e
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8.10 Exercise: Show. that

. ) 2
(8.24) PX[TO.Taedt] = fl==3=. T [(2na+x) exp{- (2na+x) ]
. ,'/ETT't‘ n=-eo 2t

+ (2nata-x) expl- Qﬁﬁi’i—l }]dat; t>0,0<x<a.

It is now tempting to guess the decomposition of (8.24):

(8.25)  PF[Tedt, T<T, 1 = 7_—:_;3? . (2na+x expf - .(22%32&1_}&;

>0, OKx<a,

{8.26) p* [T edt, T /TO] ;Fi=33 ; (2nata-x)exp{-

ETTt Nn=~ew
t>0, 0KxLa.

2
(2na+a-x) Jat;
2t

Indeed, one can use the identity (8.6) to compute the Laplace
transforms of the right-hand sides; then (8.25), (8.26) are seen

to bebequivalent to

-aT

(8.27) Exe 0 1{!11 ¢T } = Sinh((a-X)«/Qa) <x£a, C‘>O,
‘ 0 "a sinh (a,/2a)
-aT .
(8.28) Ee 21 - 5ioh(x/2a) ; OKx<a, a>0.

(T,<Tp) sinh(a/2a)

We leave the verification of these identities as a problem. Note

that by adding (8.27) and (8.28) we obtain the transform of (8.24):

-a(TA.T.) cosh({x- ~)J2a
(8.29) E'e 0%7al ; 0<x<a, a>0.

cosh(§ JEQ)

This provides an independent verification of (8.24).
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8.11 Problem: Derive the formulas (8.27), (8.28) by applying the

optional sampling theorem to the martingale of (8.7).

8.12 Problem: Show that

X a-x X X
PY[T<T, ] = &, PY[T,<T ] = &5 Osxsa, a>0.

8.13 Problem: ' Show that E (T,.T.) = x(a-x); Osx<a.

Proposition 8.1 coupléd with the Markov property enables one
to compute distributions for a wide variety of Brownian functionals.
We illustrate the méthod by computing the joint distribution of

(W ,M,) and the last time at which- W achieves its maximum over
[0,t].

8.14 Proposition: Define

(8.30) 8, A sup{Ossst; W =M.}.
Then

0
(8.31) PY[W eda, My

e@b, eteds]

2

| L
b(b-a) b b-2) 1da db ds;

= ,\eXp(- —— -
nJ%B(t s)3 es  2(t-s

a€R, bza, b2D, 0Ks<t.

Proof:

For baD, €>5>0, x=20, agb and 0<s<t, we have




(8.32)  P[b<M_sb+d,

< PO[b<M

t‘b+5,

8¢

W _eb-dx,
S

max W <b,
sguct

P Po[b<MS‘b+6, W_eb-ax,

Divide by ©6- and let 80,

€0

(in that order).
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W, eda]

<s, wsebbdxf wteda]

max W _gb+e, W eda]
sgust

The upper and

‘lower bounds in the above inequalities converge to the same limit,

which is

PO[Mtedb, 8

(8.33) t

o .
= PU[M edb, W eb-dx,

- b+x

T /52 (t-s)

{exp{ -

- éxp{-

where we have used (8.3) and

A b(t-s)+(a-b)s
t

+ =

Z ° -
In terms of &(z) A J%F'f e
-

= (bsu,)”
(b+x)exp{ ———1?——-]dx

and so integrating out x.

P [M edb, W €b- dx]

€S, Wseb—dx, W

2

teda]

max W &b, W eda]

ssust t
b X[Mt_ssb, W, _c€da]
2
()% (2p.a)? ]
252 2t
(xtu ) 2
———5——— - §€}dx da db,
20
s 02 é..‘5 t;S
5?

we may now evaluate the integrals

2
s
202

+<%(bi(b-a))cJ55ﬁ§ (- %i):

in (8.33) and using the equality



2 ' o
My b+ (b-a 1% b-a
(8.324) —5 + _(____(____).l = 53 +

2.8.12

20 -2t

we arrive at the formula

Note that =z(-

‘8.15

o .
P [Mtgdb, 8,=S, Wteda]

1
1
—~
]
|
o

[¢]
o]
o)
s
|
ik
—
(o}
o
o

[e %

€da]

0. . |
35 P LMtedb, etss, Wt
- 'b(bga) > eXp{-.__ - iE_El.}da db ds. -
WJQ (t-s)- 2s  2(t-s) |

8.16

‘is still valid when 6, 1is replaced by

Remark: If we define et A inf{O<s<t; W "Mt} to be the

first time W attains its maximum over [0,t], then (8.32)
: et. Thus, et
and ‘et have the same distribution, and since et‘et’ we

see that Po[et=et] = 1. 1In other words, the time at which

the maximum over [0,t] 1is attained is almost surely unique.

PO[M edb, o cds] =

Problem: Show that

b2

2s

db ds; ba0, 0<s<t,

m/s(ts)
ds

PO[GtGdS] = "—-—____—-—-:._:: 0<s<t,
' ‘n’,\/S(t S) .
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2

b
PO[Mtedb]e£=s] = % e % db; b20, O<s<t.

In particular, the cénditional density of Mt given et
does not depend on t. We say that By obeys the arc-sine

-law, since

Po[et‘s] = % arcsin /_ts_ 3 Ossgt, t>0.

8.17 Problem: Define the time of last exit from the origin before
t ~by
(8.35) Y, 8 sup{Ossst; W _=0}.
Show that Y obeys the arc-sine law, i.e.,
~ds )
B .__...__._.." - 2
m/s (t-s)

(Hint: Use Problem 8.7).

PO[y eds] = 0<s<t.

8.18 Exercise: With Y defined as in (8.35), derive the

quadrivariate density

'pO[W eda, M

tedb, yfeds, etedu]

be a2

2
-2ab : 4 u
)3/2 exp{~ Su(s-u) - 2(t-é73da db ds du;

) (2mu(s-u) (t-s)

<us<t, a<b.
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2.9 THE BROWNIAN SAMPLE PATHS

We present in this section a detailed discussion of the basic
"absolute" properties of Brownian motion, i.e., those properties
which hold with probability one (also called "sample path" properties).

These include characterizations of "bad" behaviour (nondifferenti-

ability and lack of points of increase) as well as "good" behaviour

(law_of the iterated logarithm and Lévy modulus of continuity) of

the Brownian paths. We also Study the 1qcal maxima and the zero

. sets of thesé paths.‘ We shali see in Section 3.4 that the sémple

" paths of any continuous martingale can be obtained by running those
of é Brownian motion according to a different, path-dependent clock.
Thus, this study of Brownian motion has much to say about the
sample path properties of much more general classes of processes,

including continuous martingales and diffusions.

We start by collecting together, in Lemma 9.4, the fundamental
"equivalence transformations" of Brownian motion. These will prove
‘handy, both in this seCtion and throughout the book; indeed, we

made frequent use of symmetry in the previous section.

9.1 Definition: A real-valued stochastic process X = {Xt; Ogtl e}

is called Gaussian if, for any integer ka1l and real numbers
Ost, <t <...<ty <=, the random vector (th,th,...,th) has

a k-variate normal distribution.

If X is a Gausslan process, then its finite-dimensional

distributions are determined by its expectation function
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m(t) 4 EX_; tz0, and its covariance function

.t)

p(sst)

he>

E[(Xs—m(s))(Xt—m(t))]g s, t=0.

If m(t) = 0; t=0, we say that X is a zero-mean Gaussian

process.

9.2 Remark: Brownian motion is a zero-mean Gaussian process with

covariance function

(9.1) _ p(s,t) = s.t; s,t=0.

: X
Conversely, any zero-mean Gaussian process X = {Xt’3ﬁ5 Ogt<d =}
with a.s. continuous paths and covariance function given by

(9.1) is a Brownian motion. See Definition 1.1.

Throughout this section, W = {Wt,3t; Ost<=} 1is a
standard, one-dimensional Brownain motion on (Q,&,P). In
particular W, = O, a.s.P. For fixed weQ, we dencte

by W.(w) the sample path tHwt(w).

9.3 Problem (Strong law of large numbers):
Show that
(9.2) liz — =0, a.s.

(Hint: Recall the analogous property for the Poisson process,

Remark 1.3.7°).
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9.4 Lemma: When W = {Wt,st; Ogt<®} 1is a standard Brownian
motion, so are the processes obtained from the following "equiva-

lence transformations":

(1) Scaling: X = {X,>3,15 O5t<=} defined by

S 1 ;
(9‘3) Xt = ﬁwct; OCt'\u,

where ¢>0;

(ii)  Time -inversion: Y = {Yt,3§; Ogt{=} defined by
| t W, 3 O<t<e;
‘ 0 ;5 t=0;

(i11) Time-reversal: Z = {Z,; &%; OstsT} defined by

(9.5) Z, =W - Wt Osth, for every fixed T>0;
(iv)  Symmetry: - W= [-W.,3; Ost=].
Proof:

We shall discuss only part (ii), the others being either
similar or completely evident. The process Y of (9.4) 1is easily
seen to have a.s. cqntinuous:paths; continuity at the origin is
.a coroliary of Problem 9.3.' On the:other hand, Y 1is a zero-

mean, Gaussian process with covariance function
E(YY,) = st . 1) = s.t; 5,50
s't s °t mew ?

and the conclusion follows from Remark 9.2. -
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9.5 Problem: Show that the‘probability that Brownian motion

returns to the origin infinitely often is one.

We take up now the study of the zero set of the Brownian path.

Define

(9:6)  z & ((t.o)e[0,=) x 0 W, (w) = O3,

and for fixed weQ, define the zero set of W.(w):

(9.7) z, & {0st<e; W (o) = 0}.
9.6 Theorem: For P -a.e. weR, the zero set gz,
(1) has Lebesgue measure zero,

(i1) is closed and unbounded,
(iii) has an accumulation point at t=0,
(iv) has no isolated point in (0,=), and therefore

(v) - 1is dense in itself.

Proof:
‘We start by observing that the set z of (9.6) is in
R[0,») ® &, because W 1is a (progressively) measurable process.

By Fubini's theorem,
: ®
E [meas(Z,)] = (meas x P )(Z) = J P [W,=0]dt = O,
® 0

and therefore meas(zw) =0 for P -a.e. weQ, proving (i);
here and in the sequel, "meas" means "Lebesgue measure". On the
other hand, for P —a.é. weQn the mapping tHWt(w) is continuous,

-and  Z =~ is the inverse-image underlthis mapping of the closed
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set {0}. Thus, for every such w, the set Z, is closed,
unbounded (Problem 9.5), and has an accumulation point at the

origin t=0 (Problem 7.17).

For (iv), let us observe that {usen;z(D has an isolated point

in (0,«)} can be written as

(9.8) U {weq; there is exactly one se(a,b) with Ws(w)=0}
a,beq

Oga<b<le

where Q 1is the set of rationals. Let us consider the family of

almost surely finite optional times (Problem 1.2.5)
Bt A inf{s>t; WS=O}; t=20.

According to (iii) we have BO=O, a.s. P; moreover,

iﬁf{s)ﬁt(w); W, (w) = 0}

il

BBt(m)(w)

By (w) + inf{s>0; WS+Bt(w)(w)-WBL(w)(w) = 0}

By (@)

for P-a.e. weQ, Dbecause {WS+5t-WBt; Ogs<=} 1is a standard

Brownian motion (Thedrem 6.15). Therefore, for Csa<b<a,

{weq; there is exactly one se(a,b) with W, (o) = 0}

c {weq; Ba(w) < b and BE’ (w)(a)) > b}
a

has probability zero, and the same is then true for the union

(9.8). |
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9.7 Remark: From Theorem 9.6 and the strong Markov property

in the form of Theorem 6.5, we see that for every fixed

beR and P-a.e. we(, the level set
Z,(P) & [0t We(w) = b]

is closed, unbounded, of Lebesgue measure zero and dense in

itself. O

The following Problem strengthens the result of Theorem

1.5.8 in the special case of Brownian motion.

9.8 Problem: Let {nn};=l be a sequence of partitions of the

interval [O,t] with 1im.HnnH = 0. Then the quadratic varia-
’ N
tions
m
2) Y ’ 2
V( I A 1) - W
t ( n) 2 K—Ell 'tl(:n) t}({n)‘

of the Brownian motion W - over these partitions converge
_to t in L2, as nNow. If, furthermore, the partitions
become so fine that
NI < =
n=1 "

holds, the above convergence takes place also with probability

one. a

As discussed in section 1.5, one can easily show using

Problem 9.8 that for almost every weQ, the sample path W.(w)
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is of unbounded variation on every finite interval [O,t]. 1In

the remainder of this section we describe just how oscillatory

the Brownian path is.

9.9 Theorem: For almost every we(Q, the sample path W.(w) is

monotone in no interval.

Proof:
If we denote by F the set of we with the propérty that
W.(w) is monotone in some interval, we have
F - U {weQ; W.(w) is monotone on [s,t]}],
s,teq
Ogs<te
since every nonempty interval inéludes one with rational end-
points. Therefore, it suffices to show that on any such interval,
say on [D,1], the path W.(w) is monotone for almést no w.
By virtue of the symmetry property (iv) of Lemma 9.4, it suffices

then to show that the event

A A f{weq; W.(w) is nondecreasing on [0,1]}

is in & and has probability zero. But A = n An’ where
' n=1"
n-1 :
A A igo{weng Wi+l(w) - Wi‘w) z 0}ed
- n n
n-1 : -n
has probability P(A_) = 10 P[W, - W, 2 0] =2 "7, Thus,
n . i+l i
i=1 — =
n n
P(A) = lim P(An) = 0. 4 O

Nee
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In order to proceed with our study of the Brownian sample

paths, we need a few elementary notions and results concerning

real-valued functions of one variable.

9.10 Definition: Let f: [0,®) - R be a given function. A number

t=0 is called

(1) a point of increase of size &, if for given B&>0
we have
max f(s) = £(t) = min f(s);
(t-6)+5sst tgsgt+d

(i1) a point of increase, if it is a point of increase of

size © for some ©&>0;

(1i1) a point of local maximum, if there exists a number

5>0 with f(s) ¢ £(t) valid for every se[(t—6)+,
t+6]; and |

(iv) a point of strict local maximum, if there exists a

number ©&>0 with £f(s) < f£(t) wvalid for every
se[(t-8)F, t+5]\[t}.

9.11 Problem: Let f: [O,») - R be continuous.

(1) Show that the set of points of strict local maximum

for f is countable.

(i1) If f 4is monotone on no interval, then the set of

points of -local maximum for f is dense in [0, =).
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' 9.12 Theorem: For almost every weQ, the set of points of local

maximum for the Brownian path W.(w) is countable and dense

in [0,%), and all local maxima are strict.

Proof:

Thanks to Theorem 9.9 and Problem 9.11, it suffices to show

that the set
A = {weq; every local maximum of W.(w) is strict}

includes an event of’probability one. Indeed, A 1includes the

(countable) intersection of events of the type

(9.9) A A { weQ; max W, (o) - max W, (o) £ 01,
Byseeaty = tyststy £ stst, :

taken over all quadruples (tl’tz’tB’tA) of rational numbers
satisfying Ostl<t2<t3<tu<m. Therefore, it remains to prove that
for every such quadruple, the event in (9.9) has probability one.
But the difference of the two random variables in (9.9) can be
written as

(Wt -Wy ) + min (W, (w)—wt(w)] + max  [W(0)-W, (0)],

3 2 tlstsfc2 2 t35t5t4 3

and the three terms appearing in this sum are independent.
Consequently,

o« O
P[A, ] = P[W, -W, # x+y] P[ min (W
tysnnsty jo I_w £y s (

-W,_)edx]
tistst, °2 t

P[ max (wt-wt Jedy] = 1
3

t3$tst4
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‘because P[W, -wt"# x+y] = 1.

3 2 =

Let us now discuss the question of occurrence of points of

increase on the Brownian path. We start by observing that the

set
A= {(tyw)e[0,=) x Q5 t is a point of increase of W. (w)}
is product measurable: A € g[0,=) ® F. Indeed, A can be
’ @
written as the countable union A = y A(m), with
m=1
A(m) & {(t,w)e[0,=) x Q3 max W, (o)

(t- %)+ssst

= VW (o) = min W ()3,
1 S
tssst+ﬁ

and éach A(m) is in g[0,=) ® J. We denote the sections of A

by
Ay & {weqs (t,w)eA}, A 8 [te[0,=); (t,w)eh},
and’ At(m) , Aw(m) have a similar meaning. For Ogt<e,
' 1
P._[At(m>] s P[W W‘t =2 0; V se[0, EJ] =0

s+t~

because {W W ; s20} is a standard Brownian motion (Problem
® _

s+t 't

7.17); now A. = U A.(m) gives also
t m=1 't

(9.10)  P(A,) = 0: Ostle

as well as
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Jovmeas(A@)dP B (éeas x PY(R) = j: P(At)dt = 0

from Fubini's theorem. It follows that Plwen; meas(Aw) = 0] = 1.
The question is whether this assertion can be strengthened to

.Plwen; Ay = 2] ='l, or equivalently

(9.11) Plwen; the path W.(w) - has no point of increase] = 1.

That the answer to this question turns out to be affirmative is

perhaps one of the most surprising aspects of Brownian sample
‘path behaviour. We state this result here but defer the proof

to Chapter 6.

9.13 Theorem: Dvoretzky, Erdds and Kakutani (1961)

Almost every Brownia@ sample path has no point of increase

'(or decrease); that is, (9.11) holds. Cl

9.14 Remark: We have already seen that almost every Brownian

?ath has a deﬂse set of local maxima. If T(w) is a local
maximum for W. (w), then'one might imagine that by reflection
(replacing Wt(m)—wT(w)(w) by - (Wt(w)-WT(w)(m)) for
taT(w)), one could turn the point T(w) into a point of
increase for a new Brownian motion. Such an approach was
used successfully at the beginning of Section 2.6 to derive
the passage time distribution. Here, however, it fails

~ completely. of course, the results of Section 2.6 are
inappropriate in this context because T(w) is not a

stopping time. Even if the filtration (3,1 is right-
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continuous, so that {we0; W.(w) has a local maximum at t)
is in 3t for each t20, it is not possible to define a
stopping time T fof {¥.1 such that W.(w) has local
maximum at T(w) for all w in some event of positive
probability. In other words, one cannot specify in a'proper
way" which'of the numerous times of local maximum is to be
selected. Indeed, if it were possible to do this, Theoreﬁ

9.13% would be violated.

9.15 Remark: It is quite possible that, for each fixed ta0,

a certain property holds almost surely, but then it fails to
‘hold for all t20 simultaneously on an event whose probability
is one (or_even'positive!), "As an extreme and rather trivial

example, consider that PlweQ; Wt(w)¥1]=1 holds for every Ogt<es, whil

Plwen: Wt(w) # 1 , for every te€[0,=)] = 0. The point here
is that in order to pass from the consideration of fixed but
arbitraiy t to the consideration of all t simultaneously,
"it is usually necessary to reduce the latter consideration
to that of a couptable number of coCrdinates. This is
precisely the problem which must be overcome in the passage
from (9.10) to (9.11), and the proof of Theorem 9.13 in
Dvoretzky, Erd&é and Kakutani (1961) is demanding because of
the difficﬁlty of reducing the property of "being a point of
increase" for éll t20 to a description involving -only
countably many coordinates. We choose to give.a completely

different proof of'Theofem 9.1% in Chapter 6 based on
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the concept of local time. We do, however, illustrate the
abovementioned technique by taking up a less demanding

question, the nondifferentiability of the Brownian path.

9.16 Definition: For a continuous function f: [0,=) 4 R, we

denote by

(9.12) pt r(t) = Tim
h-0%

£(t+h) - £(t)
h

the upper (right and left) Dini derivates at t, and by

(9.13) Dilf(t) - 1im f(t+h)h- £(t)
4 hoO

the lower (right and left) Dini derivates at t. The func-

tion f .is said to be differentiable at t from the right

(respectively, the left), if D+f(t) and D, f(t) (respectively,
D'f(t) and D_f(t)) are finite numbers and equal. The func-

tion f i1s said to be differentiable at t>0 if it is

differentiable from both the right and the left and the four
Dini derivates agree. At t=0, differentiability is defined

as differentiability from the right.

' 9.17 Problem: Show that

(9.14) PlweQ; D+Wt(w) = « and D+Wt(w) = -~»] = 1; Ostw.

9.18 Theorem: Paley, Wiener and Zygmund (1932)
- For almost every weQ, the Brownian sample path W. (w) 1is

nowhere differentiable. More precisely, the set
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al

(9.15) [weq; for each te[0,=), either D‘“wt(w)=°° or D, W, (w)==]

contains an event FeF with P(F) = 1.

Remark: At every point t of local maximum for W.(w) we have D+Wts0,

and at every point s of local minimum, D+WSzO. Thus, the "or"

in (9.15) cannot be replaced by "and".

Remark: We do not know whether the set in (9.15) belongs to 3" .
S ——— -

Proof:

It is enough to consider the interval [9,1]. For fixed

integers Jzl1, k21, we define the set

(9.16) AjK = {weﬁ; [Wt+h(w)-wt(w)dsjh for some te[0,1]
and all he[0,%]].

Certainly we have

{weQ 5 ~» < D+Wt(‘°) 5D+wt(cn) {w, for some te[0,1]} = U U A..,
4 et - Jjk
| J=1 k=1

and the prqof of the theorem will be complete if we find, for each

fixed Jj,k, an event CeF with P(C) = 0 and A € C.

Let -us fix a sample path meAjk’ i.e., suppose there exists

a number te[0,1] with {Wt+h(w)-wt(w)lsjh for every Oghg % .

Take an integer nazdk. Then there exists an integer 1, lgi<n,
1-1 i '
such that o s t < o

+1
vl ‘.% (v=1,2,3). It follows that

s and it is easily verified that we also

have 3%2 -t g

=24
n

o] S8

o ’ 2. -

' }Wi'f'l (w)-Wi(w) I-‘.’Wi_ﬂ_ ((D) 'wt (w) ’+]w_j;(w)'wt ((.0) l‘ in *
n n . n , n

The crucial observation here is that the assumption weAjk provides

information about the gizs of the Brownian increment, not only over
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the interval [%», i%l], but also over the neighbouring intervals

AL, 1E2y ana [ifE, igz]. Tndeed,

n n n
- - i - 23 .23 _5
My yp (@) = Wyq (@)W - WelHlWy gy - W] 825+ 5= 24,
n n n n
| by 33 _ 74
Wy gz (@) = Wy o (@)W 5 = W lH[Wy o = W] s 5+ 5= 7=
n ' n n n
Therefore, with
3
n . 2v+1 .
C§ } L0 fwens Wy (@) - Wi, (@] s == 3)
v=1 e T

, n |
. we have observed that A, < U C£ holds for every nzbk.

jk
- But now

SR, = Wy, ) 825 v=1,2,3
n n

are independent, standard normal random .variables, and one can

easily verify the bound P[|Zv1 € €] £ €. It develops that

105 37
n

i=l’2,...,n.

(9.17) P(C£n)) <
We have Ajk c C wupon taking
(9.18) ¢ca n u cPes,

n
and (9.17) shows us that P(C) g inf P(y Cén))

= 0.
naltk  i=1 a

9.19 Problem: By modifying the above proof, establish the

following stronger result: for almost every -wEQ, the

»

Brownian path W.(w) is nowhere H8lder continuous with
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exponent Y > 2. (Hint: By analogy with (9.16), consider

the sets

(9.19) Ajk A {weQ; |wt+h(m)-wt(w)j < jhY for some te[0,1]

and all  he[0,3])

and show that each A,  is included in a P-null event).

Jk 0
Our next result is the celebrated "law of the iterated
logarithm", which describes the oscillations of Brownian motion
near t=0 and as t-w. In preparation for the theorem, we
recall the following upper and lower bounds on the tail of the
normal distribution.
9.20 Problem: For every x>0, we have
2 2 2
- X - -2 - X
(9.29) _5;? e “ g I e 2 qu s<% e °
14+x b’
9.21 Theorem: Law of the iterated logarithm (A. Hinéin (1933)).
‘For almost every weQ, we have
— V(o) W, (o)
(1) Tim t =1, (ii) lim t =
' €10 Jé£ log log %- t10 Jét log log %
W, (o)
(11i1) Tim t =1, (iv) 1lim Wy () _

taw /2t log log t'

Remark: By symmetry, property (ii) follows from (i), and by

. time inversion, properties (iii) and (iv) follow from

(1) and (ii), respectively (cf. Lemma 9.4). Thus if suffices

to establish (i). -

Coe J2t log log t

-1.
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Proof:

The submartingale inequality (Theorem 1.3.6 (i)) applied to
the exponential martingale {M,,3 ; Ost<=} of (8.7) gives

(9.21)  P[ max (W_- % s) = 8] = P[ max M_ = e*”] ¢ e™F; 150,p50.
Ogs<t Ogs<t

-

With the notation h(t) Jét log log % and fixed numbers 6,5
in (0,1), we choose A = (1+6)6™" h(e”), B = % n(e"), and

t=6" in (9.21), which becomes:

1 .
P[ max n(WS-- % s) 2 B] & ; n= 1 .

OSSSB (n log le 1+5

The last expression is the general term of a convergent series;

by the Borel-Cantelli lemma, there exists an event Q

85 € § of
probability one and an integer-valued random variable Neﬁ’ SO
that for every cere5 we have

LV @) - 32 567 n(6™)1 < 3 0(6™); nal 4 (0).
O‘sse
Thus, for every te(en+l en]:

W (@) = max W= (14 -g—)h(en) (1 + ) ~% h(t).

Dgsgp
Therefore,
W, (@) 5. -
By -3
sup s (1 +3)8 ; n2N.. (w),
en+l/t‘e hiti | 2 ? 8%

holds for every w6966 » and letting nte we obtain
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— W (w)
lim
t10 h(t)

the rationals, we deduce

s (1 + %)e-% s a.s. P. By letting 610, g1l through

W
(9.22) lim s 1 a.s.P.
ti0 h(t) |

In order to obtain an inequality in the opposite direction,
we have to employ the second half of the Borel-Cantelli lemma,

which relies on independence. We introduce the independent events

: n
A = {wén - Wen+1 =/ 1-8 h(s™)}; n=1,2,...,

again for fixed 0<g<l. Inequality (9.20) with

-

x = ,/2 logn + 2 log log % provides lower bounds on the prob-

abllities of these events:

: X
W - W - =

n n+l e const
6 2 x] 2 = > 5 nz2.

i) n logn

P(A,) = P[
: en _ en+l o (X+

Now the last expression is the general term of a divergent series,
and the second half of the Borel-Cantelli lemma (Chung (1974),
p. 76 or Ash (1972), p. 272) guarantees the existence of an event

Q.€F with P(Oé) = 1 such that, for every weQ and kz2l, there

8
exists an integer m = m(k,w) = k with

8

(9.23) wem(w) - Wem+1(w> 2 J/1-9 h(d").

On the other hand, (9.22) applied to the Brownian motion -W

shows that there exist an event q¥eF of probability one and
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an integer-valued random variable N¥, so that for every weQ*
(9.24) - W 1 (@) &2n(6™) s e n(e"); namk(w).

- 8

From (9.23) and (9.24) we conclude that, for every meQe n Q¥ and
~every integer k21, there exists an integer m = m(k,w) = k v N¥(w)

such that

Wt

= /1-5 - Jig holds

By letting m-e, we conclude that 1lim

t40 h(t)
a.s.P, and 1letting o190 through the rationals we obtain
W A
lim = 1: a.s.P.- o

t40 h(t)

We observed in Remark 2.12 that almost every Brownilian sample
path is locally H8lder continuous with exponent y for every

Ye(O,%J, and we also saw in Problem 9.19 that Brownian paths are

1

nowhere locélly H8lder continuous for any exponent Y > 5 - The

Law of the Iterated Logarithm applied to {Wt+h-wh; Osh<{«} for
fixed t=20 gives

_ W W .
(9.25) Tim —B_ Y - o', P - almost surely.

hiO

Thus a typical Brownian path cannot be "locally H8lder continuous

l._n
2

conclude from this that such a path has the abovementioned property

with exponent vy = " everywhere on [0O,«); however, one may not

nowhere on [0,=); see Remark 9.15 andbthe Notes, section 11.
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Another way to measure the oscillations of the Brownian path
is to seek a modulus of continuity. A function h(.) 1is called

a modulus of continuity for the function f: [0,T] - R if

Oss<tgT and |t-s| = & dimply |f(t)-f(s)| € h(B), for all
sufficiently small positive 6. Because of the Law of the Iterated
Logérithm, any modulus of continuity for Brownian motion on a
bounded intérval, say [0,1], should be at least as large as

n Y

J@ﬁ log log % s but because of the established local HSlder

continuity it need not be any'larger than a constant multiple'of
8Y, for any ve(9,1/2). A remarkable result by P. Lévy (1937)

‘"asserts that with

(9.26) h(6) & v26 log = ; ©>0;

ch(d) is a modulus of corntinuity for almost every Brownian path
on [0,1] if ¢e>1, but is a modulus for almost no Brownian path

~on [0,1] if O<e<l. We say that h in (9.26) is the exact

modulus of continuity of almost every Brownian path. The assertion

Just made is a straightforward consequence of the following theorem.

Q.22 Theorem: Lévy modulus (1937)

With h: (0,1] - (O,=) -given by (9.26), we have

—_— 1 R
(9.27) P[1im B(5T . Max IWt~WSl = 1] = 1.
510 . 0
Proof:
With n=zl, 0<8<1l, we have by the independence of increments

and (9.20):
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. 1 - o n
P[ max _|W, =W, .|=(1-8)Z n(2™™)] = (1-8)° sexp(-£2") ,
2ol j-1 ) p(-g27)
on o
2
. - X
' )
wnere g 8 2p[2™%w > (1-e)F 22 ey, 2. & -
. l//2 J 2T X + X

and X =‘J(l-e) 2n log 2. It develops easily that for n=2l1

sufficiently large, we have £ = (const.) . Q-H(I-G), and thus

. | n | N
! m%X'n’Wi_ - W-_l‘ s (l‘e)é h(2 )] s (const.) . exp(=2"7).
1< j=s2 = ﬂ?r'
2 2
By the Borel-Cantelli lemma,
P =
(2,)

for every weQ, ,

there exists an event Q.€&

9 with

1 and an integer-valued-random variables N such that,

we have

1

max |W, (w)-Wj_l(w)]>./i-6; nzNe(w).
h(e ") l=ds2 ‘215 5

Consequently, we obtain

— 1
1lim max |W._-W_| = J1-9
510 h(%) t s

Ogs<tgl
t-s<6

and by letting 610 along the rationals, we have

Tim — max |W
6190 h(5) Ogs<tgl
t-s«b

t"‘ws‘ = l, a.S. P.
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For the proof of the opposite inequality, which is much
1+8

more demanding, we select eé(O,l) and € > I - l, and observe
the inequalities '
l .
(9.28)  P[ max —— W, - W, | a l+e]
leigje2” h(k2™) L I
. . .n§ e e
k=j-1<2
neg .
= Pl W - W] e (1re) (5]
€ X P max - W, = +€ —_—
k=1  Osi<i+kgo? XL 1 oh
, 2 P
ng w o n'

: 2 n
< 2" © P[ __542_ z (l+€) Jlog 5

k=1 = J/k2

The probability in the last summand of (9.28) is bounded above,

. 2
thanks to (9.20), by a constant multiple of n'%(ke-n)(l+€) ,
ne ne_ , 1 +e)2
2 2 +1 2 ng, .y (1+(1+€)°)
and v ‘k(1+€) < 12 x(l+e) dx = 12 +1) 5 )
k=1 S 0 . 1+(1+¢)
Therefore,
woo-w ]
P[ max . j/e i/2 x 14e] s const. o—Pn ,
l<igje? h k Jn
. ng 075)
k=j-ig2 2

with p = (146)(1+e)2 - (1+8), a positive constant by choice of
€. Again by the Borel-Cantelli lemma, we have the existence of

an event Qe€3 with P(Qe) =1, and of an integer-valued random

~ variable Ne such'that
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W (e) - wi/én(w>a

(9.29) max i/2 < 1+e; naN_(w)
l<igjs2 h(g_) ®
k=j-ig2™® n

9.2% Problem: Consider the set D = Dn of dyadic rationals
' n=1

n

in [0,1], with D_= {k2™": k=0,1,...,2"}. For every

weQe and -every nzNe(w), the inequality

(9.30) W (@)-W_(w)] s (1+¢) [2 5 _ h(27) +n(t-s)]
: , . Jj=n+1

is valid for every pair (s,t) of dyadic rationals satisfying
oct-s<2 (170,

(Hint: Proceed as in the proof of Theorem 2.8 and use the

fact that h(.) is strictly increasing on (9,1]). O

Returning to the proof of Theorem 9.22, let us observe that
if the dyadic rationals s,t in (9.30) are chosen to satisfy

_the'stronger condition
(9.31) 2~ (-8) g5y s < 22170,

thenAbecause

- n(29) g en(2™® —c__om#8(n+l) (5

J=n+l l-9

holds for an appropriate constant ¢>0, we may conclude from

(9.30) and the continuity of W.(w) that for every weQy and

nzNe(w),
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1

T o @) - Ha(e)] & (s Fp T

t-s=0

holds for all 66[2_(n+l)(1_6>, 2_n(l-e)) Letting n-owe, we obtain

1im - max ]Wt(w) - W (w)] s 1+e,
510 h(B8) Ogs<tsl

t-s=0

and because h 1is increasing, we may replace the condition t-s=5

by t-s<8 in the above expression. It remains only to let @190

(and hence simultaneously ¢€i0)

along the rationals, to conclude
that

————

- 1
lim ] max W, (w) - W_(w < 1; a.s.pP.
5,0 B(0) Oss<t51J £ () s (@] ’
_t—ssa

The proof is complete.
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3%+ = 3% = 3g+-, the integrand PY[X

Since 3X

T+ =

s4tT1F, ] 1e

3g+-measurable. This Justifies the first equality in (S.4). A
similar justification can be given for the last equality. The
second and fourth equalities are consequences of the fact that
random variables which agree a.s. have the same conditional

expectations. The remaining equality is (7.2), where we take

account of the fact that {IK«} A {S<w}€n“.

7.13 Solution:

(i) Let Fn = {weC[0,»); o 1is constant on [O, %]]. Since

o
F o< fa Bl/n(w) = 0}, we have P (Fn) = 0, ¥ nzl. But then

-]
o
F= y F also has P -measure zero.
' n=1 o

‘ . ,
(ii) We have F = U Fn for each positive integer m, so
: n=1

B , N
Fegl/m’ Y mal. It follows.that Fe o
(111) If Fe§,, then Fc G for some GeFy with P(G) = O.
“"Such a G has the form G = {w(0)er'} for some TeR(R),

. o . .
and P (G) = O implies O £ T'. But then the identically
zero function, which is a member of F, 1s not in G.

This contradiction shows that F £ SO.

This example provides another solution to Problem 7..4.
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now

c§“) 3

IhDe

\Y

l{w€Q; Iwé—_‘*'_\’_(w) - wi+\)—l(w) I.\/I’?‘ E—JH('%]#LY'}
n n

has probability bounded above by [23’(\)4-1)Y n'(Y'%)]L , and

everything works as before provided <4(Y-%) > 1. When vy > %,

9.20

we can —hoose 4 to satisfy this inequality.

Solution: An integration by parts gives

9.23

2 2 2
o -2 - = . A
2 du = %-e 2 _ f l-é-e du,

X X u

O I

'so > 2 2

X .
- = © -
2

= f;(1+ ig)e'

e

u
1 - 1 ® 7
z e du € (1+ ;5) fx e du.

The upper bound has. already been observed in (3.1)°, and it
is also implicit in the equality in the

relation just above.

Solution: Certainly it suffices to show that for every

(s.5)

m>nzNe(w), we have

- m=1 s
(@)-W, ()]s (1+e) [2 h(2™) + n(t-s)]

W
J=n+1

t

-n(l-e). For

valid for every s,teDm satisfying O<t-s<2
m = n+l, (8.5) follows from (9.29). Let us assume that (S.5)

holds for m=n+l,...,M-1. With s,teD  and o<t-s<2‘n(l‘9),

we consider, as in the proof of Theorem 2.8, the numbers




£ - max{ueDy, 1 ugt} and st =

observe the-felations t-tlsE'M,
ot stgt-s<2(178) " e have

M-2
JW 1 (w)-W {(w)]=(1+e)[2 T
t S

minf{ueD, ,; uzs} and

sl-ss2—M and

h(2™9) + n(tt-st)]

Jj=n+l

2.5.39

by the induction assumption, and |W, (@)-W ;(0)]s(1+e)n(2™)
t

as well as ]ws(w)-w l(w)]s (l+e)h(2'M) because of (9.29).
s

Since h(tl—sl)gh(t—s), we conclude that (S.5) holds with

m=M.
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2.11: NOTES-

Section 2.1¢ The first quantitative work on Brownian motion is

due to Bachelier (1900), who was'interested in stock price
fluctuations. Einstein (1905) derived the transition density
for Brownian motion from the molecular-kinetic theory of
heat. .A rigorous mathematical treatment of Brownian motion
began with N. Wiener (1923, 1924), who provided the first
existence proof. The moét profound work in this early period
is that of P. Lévy (1939, 1948); he introduced the construc-
tion by interpolation expounded in Section 2.3, studied in
detail the paésage times and other related functionals
(Section 2.8), described in detail the so-called "fine
strﬁcture" of the typical sample path (Section 2.9), and
discovered the notion and properties of the "mesﬁre du
voisinage" or "local time" (Section 3.6 and Chapter 6).

Most amazingly, he carried out this program without the
formal concepts and tools of filtrations, stopping times, or

the strong Markov property.

Section 2.2: The construction of a probability measure from a

consistent family of finite-dimensional distributions is
clearly explained in Kolmogorov (1933); Daniell (1918-19)
had constructed earlier an integral on a space of sequences.
The existence of a continuous modification under the con-

" ditions of Theorem 2.8 was established by Kolmogorov
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(published in Slutsky (1937)); Logve ((1960), p. 519) noticed

that the same argument also provides local HSlder continuity
B

a .
also Centsov (1956.a). The extension to random fields as in

with exponent vy for any 0O<¥< For related results, see

Problem 2.9 was carried out by Centsov (1956.b).

Section 2.3: The Haar function construction of Brownian motion

was originally carried out by P. Lévy (1948) and later
simplified by Ciesielski (1961).

Section 2.4 is adapted from Billingsley (1968). The original

proof of Theorem 4.17 is in Donsker (1951), but the one

offered here is essentially due to Prohorov (1956).

Sections 2.5, 2.6: The "Markov property" derives its name from

A.A._Mafxov,.whose own work (1906) was in discrete time

and state space; in that context, of course, the "usual"

and the "strong" Markov properties coincide. It was not
immediately realized that the latter is actually stronger

than the former; Ray ((1956), pp. 463-U6L) provides an
exaﬁple,of a continuous Markov process which 1s not strongly
Markov. It is rather amazing that a complete and rigorous
statement about the strongly Markovian character of Brownian
motion (Theorem 6.15) was proved only in 1956; see Hunt (1956).

A Markov family for which the function x k.EXf(Xt) is

continuous for any bounded, continuous [ Rd - R and
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te[0O,») 1is sald to have the Feller property, and a right-

continuous Markov family with the Feller property is strongly
Markovian. Very readable introductions to Markov process
theory can be found in Dynkin & fushkevich (1969), Wentzell
((1982), Chapters 8-13%) and Chung (1982), whilst more cbmpre;
hensive treatments are those by Dynkin (1965) and Blumenthal
& Getoor (1968). Markov processes with continuous sam?le
paths receive very detailed treatments in the monographs by
Ito & McKean (1974), Strqock & Varadhan (1979) and Knight
(1981).

Sections 2.8, 2.9: The material here comes mostly from P. Lévy

(1939, 1948). Section 1.4 in D. Freedman (1971) can be
consulted for further information on the subject matter of
Theorems 9.6, 9.9 and 9.12. Our diécussion of the law of the
iterated logarithm follows McKean (1969) and Williams (1979).
Theorem 9.18 was strengthened by Dvoretzky (1963), who showed

that there exists’a universal constant ¢>0 such that

’ W -W
PlweQ; 1im } t+h(w) t(w)l ac, VYV te[0,0)] = 1.

hio Jr

| — W (@) =W (@)]
For every weQ, sw A {te[0,=); TIim t+h t { o

hi0 Jh

has been called by Kahane (1976) the set of slow points from

the right for the path W.(w). Fubini's theorem applied

to (9.25) shows that meas(gw)= O for P - a.e..we  hut,

for a typical path,' gw_ is far from being empty; in fact,
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we have

W () -W, ()]
Plweq; inf Tim — - % - 1] = 1.
Ogtlw hiO Jh

This is proved in B.Davis (1983), where we refer the interested

reader for more information and references on this subject.
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3.1.1

3.1 INTRODUCTION

A tremendous range of problems in the natural, social and
biological}sciences came under the dominion of the theory of
functions of a real variable when Newton and Leibnitz invented
‘ the'calculus. The primary components of this invention were the

use of differentation to describe rates of change, the use of
integration to pass to the limit in approximating sums, and the
fundamental theorem of calculus, which relates the two concepts
and thereby makes the latter amenable to computation. All of this
. gave rise to the concept of ordinary differential equations, and
it 1s the application of these equations to the modelling of real-

world phenomena which reveals much of the power of calculus.

Stochastic calculus grew out of the need to assign meaning
to ordinary differential equations involving continuoﬁs stochastic
proceéses. Since the most important continuous process, Brownian
motion, cannot be differentiated, stochastic calculus takes the
track opposite to that of classical calculus: the stochastic inte-
gral isdefined first, and then the stochastic differential is given
meaning through the fundamental "theorem" of calculus. This
"theorem" is really a definition in stochastic calculus, because
'the differential has no meahing apart from that assigned to it
when it enters an integral. For this theory to achieve its full
potential, it muét have some simple rules for computation. These
are contained in the change of Qariable formula (It;‘s rule),

which is the counterpart of the chain rule from classical calculus.



3.1.2

Stochastic calculus has an important additional feature not
found in its classical countérpart, a feature based on the change
of measure theorem of Girsanov. This result provides a device
for solving stochastic differential equations driven by Brownian
motion by changing the underlying probability measure, so that
‘the”process which was the driving Rrownian motion becomes, under the
new probability measure, the solution to the differential equation.
This profound-idea is first présented in Section 5, but it does
not reach its culmination_until the discussion of weak solutions
\of stocﬁastié differential eqdétions in Chapter L., 1In some
‘cases, this device is merely a convenient way of finding out‘the
distfibufion-of an already existent soiution of a stochastic
differential equétioh; in otﬁeT»céses it provides us with é
proof of the existence of a solution when the more standard
existenée proofs fail. Aifhough "optional" in the sense that

stochastic calculus can (and did for 25 years) exist and be

useful without it, the Girsanovvfheorem today plays such a central
rGle in further developments of the subject that the reéder would

bé remiss not to come to acqulire a thorough understanding of this

‘admittedly difficult concept. We make extensive use of it in

Chapter 5.

We take up'applications of the stochastic integral to problems

of optimal stopping, optimal conﬁrol, and filtering in Chapter 7.
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%.2: CONSTRUCTION OF THE STOCHASTIC INTEGRAL

Let us consider a continuous, square-integrable martingale
M= {M,3 ; Ost<e} ona probability space (Q,%,P) equipped with
the filtration {3t}, which will be assumed throughout this chapter
to satisfy the usual conditions of Definition 1.3.10. We have
shown in Section 2.7 how to obtain such a filtration for standard
Brownian motion. We assume Mg =9 a.s. P. Such a process Memg
1s of unbounded variation on any finite interval [O,T] (ec.f.

- Problems 1.5.9, 1.5.10 and.thédiscussion following them), and

- consequently integrals of the form

T - _
(23) 1) = [ x(e) (o)

cannot be defined "pathwise" (i.e., for each weQ separately)

as ofdinary Lebesgue-Stieltjes integrals. Nevertheless, the
martingale M has a finite second (or quadratic) variation, given
_by the continuous, increasing process <M>; c¢.f. Theorem 1.5.6.
It is precisely this fact that allows one to proceed, in a highly
nontrivial yet straightforward manner, with the construction of the
stochastic integral (2.1) with respect to the continuous, square-
‘integrable martingale M, for an appropriate class of integrands
X. The construction is due to Ito [1942) for the special case

M = W = Brownian motion, and to Kunita & Watanabe [1967] for general
'Memg. We shall first confine ourselves to Memg, gnd denote by

<M> the unique (up to indistinguishability) adapted, continuous
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and increasing process, such that {M% - <M>t’ st; Ogt<e} 1is a
martingale (c.f. Definition-1.5.3 and Theorem 1.5.11). The con-
struction will then be eXtended to general continuous, local

martingales M.

We now consider what kinds of integrands are appropriate for
(2.1). We first define a measure by on ([0,=) x 0, 8[0,=) 2 &)

by setting

(2.1)*  p,(a) = E f; 1,(t,0) &<M> ().

We will say that two measurable, adapted processes

X =.{Xt’3t5 Ogt<w} and Y = {Yt,st; Ogt{=} are equivalent if
Xt(w) = Yt(w); uM— a.e. (t,w).

This defines an equivalence relation. 'For a measurable, {3.1 -

adapted process X, we define
T
2 2
[X]z & E[O X &>,

provided that the right-hand side is finite. Then [X]T is the
Lg-norm for X, regarded as a function of (t,w) restricted to

the space [0,T] x Q, wunder the measure We have [X-Y]T =0

“'M‘
for all T>0 1if and only if X and Y are equivalent. The
stochastic integral will be defined in such a manner that I(X)

and - I(Y) will be indistinguishable:



P{IT(X) = In(Y)s ¥ T20] = 1,

whierever X and Y are equivalent.

2.1 Definition: et § denote the set of equivalence classes

of all measurable, {3t} - adapted processes X, for which
[X]T { » for all T>0O. We define a metric on ¢ by

[X-Y], where

[X14 = 27(1a[x],).
T n=1
Let g* denote the set of equivalence classes of progressively
measurable processes satisfying [X]T < » for all T>0, and

define a metric of &% 1in the same way.

‘We shall follow the usual custom of not being too careful
about the distinction between equivalence classes and the processes
which are members of those equivalence classes. For example, we
Awill have no qualms about saying "£* consists of those processes

in £ which are progressively measurable".

Note that & (respectively, ¢¥) contains all measurable,
-[3t} -.adapted (respectiveiy, progressively measurable) processes.
Both & and £* depend on the martingale M = {M,3.; t20].
When we wish to indicate this dependence explicitly, we write

£(M) and gx(M).
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When <M, (w) is an absolutely continuous function of t

t for all

for P - a.e. w, one is able to construct IT Xt aM
Xeg and all Ta0. 1In the absence of this congition on <M>,

we shall construct the stochastic integral for X 1in the slightly
smaller class £*. In order to define the stochastic integral with
respect to general martingales in mg (possibly discontinuous,

such as the compensated Poisson process), one has to select an even

narrower class of integrands among the so-called predictable pro-

cesses. This notion is a slight extension of left-continuity of

the sample paths of the pfocess; since we do not develop stochastic
integration with respect to discontinuous martingales, we shall
forego further discussion and send the interested reader to the
literature (Kunita & Watanabe [796¥], Liptser & Shiryayev [»13;‘7}
Ikeda & Watanabe [7981 ], Elliott [1982Z], Chung & Williams [1983 ]).

Later in this section, we weaken the conditions that Memg

¢, loc

and [X]§'< », ¥ T20, replacing them'by Men and

T 2
P{fo X; &M>, < ®] =1, ¥ TaO.

This is accomplished by localization.

We pause in our development of the stochastic integral to
prove a lemma we will need in Section 4. For OKTKw, let £
denote the class of processes X in g* for which X, (w) = 0; ¥
tOT, weQ., For T=e, £¥ is defined as the class of processes

, - T
Xeg* for which E I X% d<M>, < = (a condition we already have
0

for T<e, by virtue -of membership in £$*¥). A process Xe&% can
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be identified with one defined only for te[O,T], WeEQ,

and so we can regard £$ as a subspace of the Hilbert space
(2.1)°°  Hp A £2([O,T] x Q, B[0,T] 2 Fqp, wy)-
Here and below we replace [0,T] by [0,=) when T=e.

2.1 Lemma: For OKTgw, s% is a closed subspace of ¥ In

T.
particular; £§ is complete under the norm

T 1/2
[X]q = [E Io xi a<m>, ]

‘Proof':

| (n)q= % s -

Let (X }n=l be a coqvergent sequence in £T with limit
XenT. We may extract a subsequence, also called {X(n)}:;l, for
which

gl (£,0)€[0,T] x 05 Lim X{®) (@) = X, ()] = 1.
Naow
By virtue of its membership in Urps X is g8[0,T] 2 Fqp- - measurable,
but it may not be progressively measurable. However, with

Ab{(t,w) € [0,T] x 05 lim Xin)(w) exits in R},

N

the process

1im szn)(w); (tyo)eh
Yt(w) 2 n-.c.bA

0 ;3 (t,w) £ A
'is progressively measurable, belongs to £¥ and lim[X(n)—Y]T =. 0.
N
. a
2.2 Definition: A process ‘X 1is called simple if there exists

a strictly increasing sequerice of real numbers {tn};_o with
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to=O and lim t = a; as well as a sequence of random vari-
jotey -
ables {5}:;1 ‘with i:g\gn(w)] € <=, for every wef, such
that §, is 3, - measurable for every na0 and
o |

= w)l t) + c(w)l t);s Ogt<L WEN.
X (@) = g (@)L0p (8) + T 85 (@)lr b ()5 Ostcem wen

The class of all simple processes will be denoted by £o'
Note that, because members of xo are progressively measurable

and bounded, we have £  c £*(M) c £(M). o

Qur program for the construction of the stochastic integral

(2.1) can now be outlined as follows: the integral is defined in

the obvious way for Xeso as a martingale transform:

I, (X)

>

T e (M, -M_ ) + & (M-M_ )
S0 FiVtg Ty nMt T

(2.2)
Ogtl o,

H

© . ( :
r E.(M
i tAti+

-M ),
1=0 tAL T

1
where n20 1is the unique integef for which tn‘t<tn+l’ and its

properties are studied. The definition is then extended to
integrands Xeg* and Xef ,thanks to the crucial results which
show that elements of &* and ¢ can be approximated, in a

suitable sense, by simple processes (Propositions 2.5 and 2.7).

2.5 Lemma: Let X be a bounded, measurable, {3t} - adapted
of

process. Then there exists a sequence {x(m)}m—l

simple processes such that

, T '
(2.3) sup 1im B[ x{™ - x.|? at = o.
™0 M-sco 0 .
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Proof':

sequence {X(m)}

Thus, for éach.positive integer m, there is another integer n

We shall show how to construct, for each fixed T>0, a

@

of bounded, simple processes so that

dt = O.

III
1im Ejo|xgn,T) - X,

N

such that

and the sequence {X

(ngpm) 2 1
Ejm X, ™ "-X_|° at £ =,
% : "

(nem)

}m=l has the desired properties.

Henceforth, T 1is a fixed, positive number.

(2)

(b)

We proceed in three steps.

.Suppose that X 1is continuous; then the sequence of simple

processes

(n) (@) 2
XM ) 8 K@My (8 + B X (@1 (8)3 nads

. T .
satisfies 1lim EJ ]Xén)—thzdt = 0 by the bounded convergence
0 .

N

theoremn.

Now suppose that X 1is progressively measurable; we consider

the continuous, progressively measurable processes




(2.4)
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' A o (m)ds‘ i(m) A m[F,_(w)-F (w)]; mal,
Ft(d)) 2 ‘[Q XS | s t a £ ¢ 1 .

- —

m

for t=20, weq (c.f. Problem 1.2.18). By virtue of step
(a) above, there exists, for each m2l, a sequence of
simple processes (i(m,n)};=l such that

T
lim Ej ]Xém’n) - iém)]g = 0. Let us consider the

2

N

8{0,T] 8 Fp - measurable product set

A S {(tw) €[0,T] x 03 lim XY (w) = X, (@)}.

- m-..oo
For each weQ, the cross-section

A4 {te[0,T]; (t,w) € A}

is ®8[0,T] - measurable and, accofding to the fundamental

theorem of calculus, has Lebesgue measure zero. The bounded

. . T ~(m) 2
.convergence theorem now gives 1lim Ef ]Xt -Xt[ dt = 0, and
m-e 0
(msnm) :
so a sequence ({X } of bounded, simple processes can

be chosen for which

T (myn )
lim B[ |¥ Tmx,1°
o

M
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(c) Finally, let X be measurable and adapted. We cannot

guarantee immediately that the continuous process

F = {F.; Ost{=} 1in (2.4) is progressively measurable, because
we do not know whether it is adapted. We do know, however,

that the process X has a progressively measurable modification
Y (Proposition 1.1.12), andhwe now show that the progressively
measurable process {Gt A jz ? sts, F.3 OktgT} 1s a modifica-

tion of F.

Let A denote Lebesgue measure. For the measurable

process .nt(w) = l{Xt(w) Y, Yt(w); OgteT, weQ, we have from

T T
. Fubini: Ef n, (@)dt = j P[X, (@) # Y (w)]dt = 0. Therefore,

0 o

T - o .

[ m (w)dt =0 for P -a.e. wen. Now {F # G is con-

Y0

t

. T
tained in the event - {w; j nt(w)dt > 0}, G, 1s & _ - measur-
N O ) )

‘able, and, by assumption, 3t contains all subsets of P -

null events. Therefore, Ft is also 3t - measurable.
Adaptivity and continuity imply progressive measurability,

and we may now repeat verbatim the argument in (b).

2.4 Problem: This problem outlines a method by which the use

of Proposition 1.1.12; a result not proved in this text, can
be avoided in part (c¢) of the proof of Lemma 2.3. Let X

be a bounded, measurable, {St} - adapted process. Let O<(T<=
be fixed. We wish to construct a sequence {X(k)};;l of

simple processes so that
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(2.5) lim Ejolxék) - X |" dat = 0.

To simplify notation; we set Xt =0 for t«0. Let

ot R = {je-n- J =+1,#2,...} be given by
n S
y = d-1 J-1 J
cpn(t)—- en, for 2n<t$;7)--

(a) PFix s20. Show that t - in £ ¢ (t-s) + s<t, and that
2 n

(nys) _
Xt - th(t-s)+s’

is a simple, adapted process.

T 2
(b) Show that 1im Ef |x nl°oat = o.

hiO

(c) Use (a) and (b) to show that

lim E" [ (X(n’ - x, |°

ds dt = O.
Noo U t

(d) Show that for some choice of s20 and some increasing

. - (n,,s)
sequence {nk}k=l of integers, (2.5) holds with X(k) -x K .

This argument is adapted from Liptser & Shiryayev [197F.

2.5 Proposition: If the function t H-<M>t(m) is absolutely con-

~tinuous for P - a.e. weQ, then £o is dense in .£ with

respect to the metric of Definition 2.1.
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Proof':
If Xe& 1is bounded, then Lemma 2.3 guarantees the existence
of a bounded sequence [X(m)} of simple processes satisfying (2.3).

m
From these we extract a subsequence {X K } , such that the set

(m, )
{(t,w) € [0,=) x Q3 éim Xtmk (w) # Xt(m)}

has AXP - measure zero. The absolute continuity of t ~,<M>t(w)

(m, )

and the bounded convergence theorem now imply [X - X] - 0 as

Keow,

If Xef is not necessarily bounded, we define

xén)(m) A Xt(w)lflxt(wff‘n}s Dgtlw, weq,

and thereby obtain a sequence of bounded'processes in &. The

dominated convergence theorem implies

d<M>t - 0

N

2 T 2
[X(n)‘X]T = Ejo X lilxtl>n}

for every T>0, whence 1lim [X(n) - X] = 0. Each X(n) can be

N-w
approximated by bounded, simple processes, so X can be as well.
' ' O

When t p.<M>t is not an absolutely continuous function
of the time variable t, 'we simply choose a more convenient
clock. We show how to do this in slightly greater generality than

‘needed for the present application.
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2.6 Lemma: Let {A; 0st{»} be a continuous, increasing
(Definition 1.4.4) process adapted to the filtration of the
martingale M = {Xt,st; Ogtlw} ., If X = {Xt,gt; Ogtlw}
is a progressively measurable process satisfying

T 5
E[] xS dA, < o
yy t t

for each T>0, then there exists a sequence {X(n)}zzl of

simple processes such that

2

!

gl da, = 0.

T
sup lim E ]xé“) - X ¢

™0 n-e 0

Proof:

We may assume without loss of generality that X 1is bounded

(c.f. second paragraph in the proof of Proposition 2;5), i.e.,

(2.6) % (@)] & C< o5 t20, weq.

As iﬂ the proof of Lemma 2.3, it suffices to show how to construct,
for each fixed T>0, a sequence ‘{X(n)}:=l of simple processes
for which

1im EIZ 1x{™) - x |?

Noew

t

Henceforth, T>0 is fixed, and we assume without loss of generality

that
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(2.7) Xt(w) = 0; ¥ LI, weQ.

We now describe the time change. Since A (w) + t 1is
strictly increasing in t20 for P - -a.e. w, there is a con-
tinuous, strictly increasing inverse function Ts(w), defined

.er s20, such that

A (@) + T (o) = s3 Y sa0.

T, (@)

In particulaf, Tscs “and {Tskt} = {At +t e s}e3t. Thus, for
.each s=20, TS " is a bounded stopping time for {3t}. Taking s as

our new time variable, we define a new filtration {&S} by

and the time-changed process

Y (o) =X (w); s20, weQn

Tg (@)

which 1s adapted to {&S}, because of the progressive measurability
of X (Proposition 1.2.17). Lemma 2.3 implies that, given any
€>0 and R>0, there is a simple process {Y:,JS; Ogs<=} for which

€ 2 | P ‘
(2.8) E"r’:) 1Ys - Y |7 ds < e/2.

But from (2.6), (2.7) it develops that
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® 2

® 2 O - 4 . o]
Ejo Yo do = RIO 1{Ts‘T3 XTS ds
A +T
n T 2 2 P
= R! X, do s C7(EAL+T) <
JO ls T

so by choosing R in (2.8) sufficiently large and setting Yfzo

for s>R, we can obtain
® € 2
B[ Y-t | ds < e.
N s 's

' e : . .
Now YS is simple, and because it vaniches for ¢>R, there is a

finite partition O = so<sl<...<snsR with

. n

YE() = gy(@)lgy(e) + B g ()]

S Dgs<
3T Boga sy asy1 () Oese

" where each g is meésurable with respect to JS = Jp and
J . o J sj
bounded in absolute value by a constant, say K. Reverting to the

original clock, we observe that

a Y

n
€
X, A = 8y 1.aq(t) + T ¢
t 2 "t+a, ~ f0 (0} 5551,

t), Ogt=
. l(TS. ’T ]( ) <td=,
J-1 J-1" %83

is measurable and adapted, because & restricted to {Ts.‘t}

551 3
is 3 -measurable (Lemma 1.2.14). We have

m | T
i€ 2 € 2
EJOIXt—th dA, & Efo|xt-xt\ (da, + dt)

< EJO]Y:-YS12 ds < €.
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. €
The proof is not yet complete because X is not a simple

process. To finish it off, we must show how to approximate

'ﬂt(m) é E.;TS (m) 1(TS (w)’TS (w)](t)s Ogtde, WEQ,
J-1 J-1 J
by simple processes. Recall that Ts | € Ts € sj and simplify
, o T3-1 J
notation by taking Sj-l =1, sJ = 2.
Set 2m+l
m k
™) = T 51, (7)), 1=,
k=1 27 [— =)
2
and define
(m) () & 1 t)-
1! ((D).: g ((D) m ) -
t 1™ @)™ )
m+1l
2
=2 ng(w)l{ k-1 T }(w>l(K_l Kk ](t)°
_ T, < s —_— ==
k=1 1 2m 2 o 2m
Because {T. < 21 ¢ T j ¢ 3 and restricted t
1 < i 5 k-1 Ep stricted to
T 1
2

{Tl < 5%—} is e measurable, n(m) is simple.

oM

-Furthermore,

(m)—ATl)] ~ O.

1

T
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2.7 Proposition: The set £5 of simple processes is dense

in £*¥ with respect to the metric of Definition 2.1.

Proof:

Take A, = <M>, in Lemma 2.6.
t t a

We have already defined the stochastic integral of a simple
process Xef, by the recipe (2.2). Let us list certain properties

and Ogs<{t{w, we have

of this integral: for X,Y€£O

(2.9) | I (X) =0, a.s. P

(2.10)  E[I_(X)|3] = I_(X), a.s. P
> Ft' 2

(2.11) E(It(X)) - Bf X s,

(2.12) NN = [x]

| t
(2.13)  E[(T,(X) - 1, (x))%|5,] = B[ X2

. d<M>ul38], a.s. P

(2.14) I(aX + BY) = aI(X) + BI(Y); a,B € R.

Properties (2.9) and (2.14) are obvious. Property (2.10) follows
from the fact that.for any Ogs{t{e and any integer iz2l, we

have, in the notation of (2.2),
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E[e. (M

BE

- Mt'\t.)lzs] = g‘(M
1

i - MSAti>’ 84S P;

thtin Shtin

this can be verified separately for each of the three cases

o < + <s "' - PP
ugti, i\ss $41 and ti+1\ by using the Sti measurability of

g, Thus, we see that I(X) = {It(X),gt; Ost{»} 1is a continuous

martingale. With Ogs{t{e and m and n chosen so that

< | t<t ‘ f. i i '
tm_lss\tm and tns <toppe ve have (c.f. the discussion preceding

Lermma 1.5.9)

(2.15)  E[(T,(X) - T_(%))?[5,]

n-1
| - 2
= E“gm-l (th"MS) + 1511’1 gi(Mti-{-l-Mti) + gn(Mt—Mtn)} ,Es]
2 o2 n-l 5 : 2, 2
= Bley (M -M)m + 2ogg(My M) e (MM )T ]
m i=m i+l 1 n S

E[£2 (D>, - <> ) + i g% (<> - <> )
-1t SR e t

I

2
* (A - Dy ) (3]

= E[{t xi

I d\M>u[38].

This proves (2.13), and establishes the fact that the continuous

‘martingale I(X) is square-integrable: I(X) € m;, with

quadratic variation
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. o2
(2.16) \L(x)>t =.f Xo A<M .

Setting s=0 and taking expectations in (2.13), we obtain (2.11),

and (2.12) follows immediately, upon recalling Definition 1.5.18.

For Xe&*; Proposition 2.7 implies the existence of a sequence
{x(n)}:=l c g, such that x(®) _x] .0 as noe. It follows

from (2.12) and (2.14) that

iz )z ™y = ™™y = kg L

as n,m-e. In otheér words, [I(X(n))};=l is a Cauchy sequence

in 'mg. By Proposition 1.5.19, there exists a process |
I(X) = {I (X); Ostl=} 1in mg, defined modulo indistinguishability,
such that HI(X(n)) - I(X)]]| - O as n-w. Because it-belongs to

| mg, I(X) enjoys properties (2.9) and (2.10). For Oss<t<e,

(r, (x()yy

) ‘ (n) ® ' .
Yoy and [It(X )},-1 converge in mean-square to I (X)

and I, (X), respectively; so for AT _, (2.13) applied to

X(n)} =1 gives

(2.17) " E[1,(T,(0) - 1,(0)°) = 1w 513, (1, (<) -1 (x (M)

N

t
= 1im E[IAI (x(n))2 aas ] = B[1,[ xT a1,
S

Noe

where the last equality follows from 1im[X(n) - X]t = 0. This
Noso

provés_that I(X) also satisfies (2.3) and, consequently, (2.11)

and (2.12). Because X and M are progressively measurable,
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.
r Xi dM>, i F -measurable for fixed Og5{t{e, and so (2.13)

*s
gives us (2.10). The validity of (2.14) for X,Yef&* also follows

from its validity for processes in £O upon passage to the limit.

The process TI(X) for Xef* 1is well-defined; if we have two
n)

sequences {X( };;l and {Y(n)}:=1 in £O with the property

lim [X(n)~x] =90, 1lim [Y(n)-x] = 0, we can construct a third
N . Now
sequence {Z(n)]gzl with this property, by setting Z(Qn-l) = X(n)

. 2 n
and Z( n) = Y( ), for nzl. The limit TI(X) of the sequence
(I(Z(n))lzzl, in M, has to agree with the limits of both

“sequences, namely {I(X(n)];;l and [I(Y(n))};_l .

2.8 Definition: . For Xe&£¥*, - the stochastic integral of X with

respect to the martingale Memg is the unique, square-inte-

grable martingale I(X) = [It(X),Jt; Ogt<{w} which satisfies
‘1lim HI(X(n)) - I(X)|| = 0, for every seguence [X(n)}g_l c £

N 0
with 1im [X(n) - X] = 0. We write
Neoo
"
I, (X) = jo X, aM, t20.
- 2.9 Proposition: For Mehg and Xef*, the stochastic integral

I(X) = {It(x)’3t5 O;t(m} of X with respect to M satisfies
(2.9) - (2.13), as well as (2.14) for every Yef£*, and has
quadratic variation process given by (2.16). Purthermore,

for any two stopping times SgT of the filtration {3t] and

any nuoiber t>0, we have
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(2.18) E[ItAT(X)ISS] = I.,5(X), a.s. P.
With X,Ye<f*, we have, a.s.P:

(2'19) E[(It/\'l’(x) - It/\S(X))‘(ItAT(Y) - ItAS(Y))’JS] =

tAT
- e
E[ftAS X, Y, a3 ],

and in particular, for any number s in [O,t],

. t
(2.20)  E[(I.(X) - T (X)) (I (Y) - I(¥))]3,] = E[jsquu <> 3]

‘Finally,

(2.21) I, o(X) = I.X) a.s.,
where ii(w).é X, (w) l{tsT(w)}'

Proof:

We have already proved (2.9) - (2.14) and (2.16). From (2.190)
and the dptional Sampling Theorem (Problem 1.3.22(ii)), we obtain
(2.18). The same result applied to the martingale

1°(X) - " %2 aap L3
{ t IO u oy’

¢ t=0] provides the identities

B[ (T, ,p(0)-T, g ()% 5g] = E[T5,1(X)-T¢ g (X) | %]

£ AT ‘
=E[[ 7 x° am> | 8. ], valid P-a.s.
‘gpg M u'”s
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Replacing X 1in this equation, first by X + Y and then by

X - Y and subtracting the resulting equations, we obtain (2.19).

It remains to prove (2.21). We write

NG

I, (%) -1, X)) = 1., . (XX) - [1.,X) - 1. (X)].

tAT( t( tAT( t( tAT(
‘Both (I, ,p(X-X), 35 t20}  and (I, (X) - 1.,.(X), 35 ta0)

are in mg; we chow that they both have quadratic variation zero,
and then appeal to Problem 1.5.12. Now relation (2.19) gives,

for the first process,v \

) AT 5 7
B[ (Tgpp(X-X) - T p(X-X))"181 = B[]  (X,-X)° a<m> |31 = 0
) . s

AT
a.s. P, aﬁd for -the second:

t
(T, (X) - T,,p(¥)°] = E[ftAT % 4 ] = 0.

Since this is the expectation of the quadratic variation of

this process, we have the desired result.
0

2.10 Remark: If the sample paths t - <M>t(w) of the quadratic

variation process <M> are absolutely continuous functions
of t for P-a.e. w, then Proposition 2.5 can be used in
place of Propositioh 2.7 to define I(X) for every Xe&.
We have I(X)em, and all the properties of Proposition 2.9

in this case. The only sticking point in the above arguments
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under these conditions is the proof that the measurable process
t A

F. A | Xi d<M>s is {st}-adapted. To see that it is, we can
= :

0

choose Y, a progressively measurable modification of X

(Proposition 1.1.12), and define the progressively measurable
t

process G A f Y; d<M>S. Following the proof of Lemma 2.3(c),
L= dn

~ we can then show that P[F,C = Gt] = 1 holds for every ta0.

Because GL is St t

neclicible events in §  (the usual conditions!), F is easily

-measurable, and X contains all P-
seen to be adapted to {st} and continuous, hence progressively

measurable.

In the important case that M 1is standard Brownian motion
with <M>t = t, the use of the unproved Proposition 1.1.12 can
again be avoided. Problem 2.4 shows how to construct a sequence
{X(K)};_l .of bounded,‘simple processes so that (2.5) holds; in
particular, for ) -almost every te[0O,T],
t t
F, A { X2 ds = lim f (Xék))2 ds, a.s. P.
=Jo S Koo ©0
Since the right-hand side is 3t-measurab1e and 3t contains all null
events in- %, the left-hand side 1s also xt-measurable for »j)-a.e.t.

The céntinuity of the sample paths of {Ft; t20} 1leads to the con-

clusion that this process is adapted to {8t}.

We shall not continue to deal explicitly with the case of
absolutely continuous <M>t and Xe&, but all results obtained
for Xegf* can be modified in the obvious way to account for this

case. In later appliéatiqns involving stochastic integrals with




3.2.22

respect to martingalesc whose quadratic variations are absolutely

continuous, we shall require only measurability and adaptivity

rather than progressive measurability of integrands.

2.11 Problem: Let W = {wt,gt; Ost{«} be a standard, one-

(2.22) %im E(W,,p) = EWp, 1lim E(W
- GO t - GO

2.12

dimensional Brownian motion, and let T be a stopping time

of {¥,] with ET { =. Prove the "Wald identities”

J

E (W

2
T) = O, E(WT) = ET.

Warning: The Optional Sampling Theorem cannot be applied

“directly because W does not have a last element and T

may not be bounded. Thévstopping time tAT 1is bounded for

2

Cap) = E(£aT), but it

fixed Ostlw, soO E(WtAT) = 0, E(W

is not a priori evidént that

2

2ap) = E(W5).

Problem: Let W be as in Problem 2.11, let b be a real

in m, and take Xeg¥(M), Yeg*(N). Then (x) 2 |

number, and let Tb be the first passage time to b (Defini-

tion 2.6.1). Use Problém 2.11 to show that for b # 0, we

have ETb = o, o

Suppose M = [Mt,s >

.3 Ost<=} end N = (N3

3 Ogtl=} are

o X, dM.,
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N t . | .
It(Y) A jo Y, dM_  dre also in m, and, according to (2.16),
< St e a<ms , <1 = [ ¥«
T (X)>, = jo Xy G0, <T(Y)>, = [ vs &
We now derive the cross variation formula

t
M N )

(2.23)  <I(X), T (Y)>, = fo X Y, &M, N> 5 t20, P-a.s.

If X and Y are simple, then it is straightforward to show
by a computation similar to (2.15) that for Ogs< t< =,

M M N N

(2.28)  E[(I{(X) - I(X))(TL(Y) - I (Y))]5,]

| ot

E[[ XY, KM [F 3 P-a.s.
“s

li

This is equi?alent to (2.23). It remains to extend this result
from simple processes to the case of Xef*(M), Yeg*(N). We carry

out this extension in several stages.

2.13 Lemma: If M,Nemg, Xeg*(M) and {X(n)};;l c zo is sueh

that for some T>O0,
. T (n) 2 .
lim f X2/ =X, |© akm>, =" 03 a.s. P,
t t t
N 0
then

lim <I(X(n)),N>t = <I(X)’N>t 5 OgtlT, a.s. P.

n—mo .
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Proof:

Problem 1.5.7 (1ii) implies for Ogt<T,

<r ™)y 100,12 2 <z s an

2 ¢

ll‘ (n\
/) -
< fogxu X 17 aa . T 5

2.14 Lemma: If M,Nem; and Xef*(M), then

(2.25)  <TV(X), W, = [ X &MN> 5 t20, a.s. P.
0

Proof:

We consider first the case of bounded X. Let Vt be the

total variation of <M,N> on [O,t]. Adcording to Lemma 2.6,

there exists a bounded sequence [X(n)}°° of simple processes

n=1

such that with A

. |
g & <y * Ve

t
sup lim Ej ]Xén) - Xu’g

T>0 Nnaw 0 u

Consequently, for each T>0, 'a subsequence ff(n)};_l can be

extracted, for which

From (2.23) with Y =1, we have
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M (), . * o(n)
<XV, = [T am w5 tad, a.s. P,
| 0

and letting n-eo we obtain (2.25) from Lemma 2.13 and the bounded

convergence theorem.

If X is unbounded but nohnegative, we let

Yén)(w) = X, (o) A n; Ogt<m, wen.

We have just proved (2.25) when X 1is replaced by the bounded
procesé' Y(n), and we caﬁ now let n-o, using Lemma 2.13 and the
monotone convergence theorem to obtain (2.25) for X. Finally,
for general Xes*(M), we consider separately X:(w) A X (o) vO

and Xt(co) = (-Xt(w)‘) v O. -

2.15 Proposition: If M,Nemﬁ, Xeg*(M) and Yeg*(N), then

the equivalent formulae (2.23) and (2.24) hold.

Proofﬁ
Lemma 2.14 states that d<M,‘IN(Y)>u = Yﬁd<M,N>u.

Replacing N in (2.25) by I'(Y), we have

t
<(x), (), = J'O X, <M, TV (Y)>

t
= < . -
I‘O X, Y &<KM, N> 5 t20, P - a.s. c:x
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2.16 Problem:

Show that if M,Ne”{ , Xeg*(M) and Yeg*(N),
then

£ £ t
2
\joXuYﬁd<M,N>u] < JOX§d<M>u : joyﬁd<N>u, Ogt<w; P-a.s.

2.16° Problem: Let M= {M,&.; Ogtle}

and Nt = {Nt,st; Ogtl =}
be in 75 and suppose XefX(M), Y 'e g(N). Then the martin-
gales IM(X), IN(Y) are uniformly integrable and so have last
. M N
elements Iﬂ(X), IE(Y), ‘the cross variation <I"(X), I (¥)>,

converges almost surely as tow, and

B[ (X) I.(Y)] et (x), TV(Y)>_

= EIO,Xt¥t <M, N>, .

In particular,

5[ x, am, )2 = E{m X2 4>, .
(JO t t I t t

2.17 Proposition:

Consider a martingale Memg and a process
Xeg*(M). The stochastic integral IM(X) is the unique
martingale @ € mg which satisfies
t .
(2.26) <&, W, = [ X dMD ; Ost<s,

a.s. P,
*0

for every Nemg.
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Proof:

We already know from (2.25) that & = IM(X) satisfies (2.26).
For uniqueness, suppose ¢ satisfies (2.26) for every Nemg.
Subtracting (2.25) from (2.26), we have
<s - IN(X), M, = 0; Oct< e, ~ a.s. P
M . M
Setting N = ¢ - T (X), we see that the martingale & - I (X)

has quadratic variation zero, so & = IM(X).

Proposition 2.17 characterizes the stochastic integral
1 M (X) 1in terms of the more familiar Lebesgue-Stieltjes integral
appearing on the right-hand side of (2.26). Such a characterization

is extremely useful, as the féllowing corollaries illustrate.
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M

2.18 Corollary:  Suppose Memg, Xeg*(M) and N A I (X).

Suppose further that Yeg£*(N). Then XYe&*(M) and

™N(y) = T(xY).

Proof:

o,
Because <>, = j Xf d<M> _, we have
O 54 [
2
t

T T
oo o
i Q> = Ef Y° dN>. € w
Lfo X Y t J'o g N>y

for all T>0, so XYeg*(M). For any ﬁcmgc, (2.23) gives

so

According to Propocition 2.17, IM(XY) = IN(Y).

d<N, N> = X d<M,‘N>s,

<Mxy), ™

. |
yd
. Io X Y, a<M, T

]

t ~ N ~
foysd<N,N>s = <I(Y), ©.

2.19 Corollary: Suppose M,Mgmc, Xef*¥(M) and Yes*(ﬁ),

and there exists a stopping time T of the ccmmron filtration

for these processes, such that.for P - almost every w,

X,ﬁ“’) = ')‘(’,g‘”), Mf(f") = ﬁé“); OgtgT(w).
Then

If(X)(w) = Ig(x)(w); Ost‘T(w), for .P - a.e. .
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Proof:

For any Nemg, we have

<M - N, N>, = 0; OsgtsT,

and so (2.25) implies

<(x) - 1VX), W, = 0;  OsteT.

M~ '
Setting N = IM(X) - I (X) and using Problem 1.5.12, we obtain

the desired result. -

Corollary 2.19 shows that stochastic integrals are determined
locally by the local values of the integrator and integrand. This
fact allows us td brbaden the classes of both integrators and
integrands, a project which we now undertake.

Let M = {M,3; Ogt<=} be a continuous, local martingale
on a probability space (q,3,P) with M =0 a.s., i.e., Men®?loC
(Definition 1.5.13). Recall the standing assumption that (3.}
satisfies the usual conditions. We define an equivalence relation
6n the set of measurable, {st} - adapted processes just as we

did in the paragraph preceding Definition 2.1.

2.20 Definition: We denote by p - the collection of equivalence

classes of all measurable, {St} - adapted processes

Ost<=} satisfying

X‘ = {Xt: 3t;

L T
(2.27) - P[j Xf d<M>t < =] =1, for every Te[0, w).
g |
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We denote by P* the collection of equivalence classes of
all progressively measurable prccesses satisfying this

condition.

Again, we shall abuse terminology by speaking of £ and p*
"as if they were classes of processes. As an example of such an
abuse, we write p* c P, and if M belongs to m;, in which

case both £ and ¢* are defined, we write £ c P and &* ¢ pP*.

We shall continue our-defelopment only for integrands in p*.
If a.e. path t— <M>t(m) of the quadratic variation process
KM is an abéolutely continuous function, we can choose integrands
fromlthe wider clasé P. The reader will see how to accomplish |
this with the aid of Remark 2.10 5nce we finish the development
for P*,-

s . c,loc . .
Because M is in 7o’ 5 there is a nondecreasing sequence

-} . . .
{Sn}nzl of stopping times of {3t}, such that iiﬁ Sn = ® a.S. P,
and [MtAS ,3t; Ogt<»} 1is in mg. For xeP¥, one constructs
n .
another sequence of stopping times by setting

t o
inf{Osten; j' X5 (@) &> (0) = n)
Rn(w) A ‘ o)

n’ if {ooo}zg.
This is also a nondecreasing sequence and, because of (2.27),

lim R = «, a.s. P. Set
N

Tn(w) = Rn(w) A Sn(w),
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Mt(:n) (a)) Q Mt/\Tn- ((D)’ X£n> ((D) = Xt ((1'))1{Tn(w>=t}; ost<m_, WeEQ,N2l.
" . An
then m(M) ¢ m.  and X(n) e's*(M(n)), nzl, so IM( %X(n)) is

defined. Corollary 2.19 implies that for 1lsngm,

) L ),

so we may define the stochastic integral as
. - M n
2.28) I.(X) & I¢ (x( )) on. {OstsT ].

This defirition is consistent and determines a continuous

process, which is also a local martingale.

5,01 Definition: Tor MemC?10€

- and XcP¥, the stochastic

integral of X wilth respect to M 1is the process

I(X) = (I, (X),3; Ost<=} 1in nt 10C  defined by (2.28).
t

As before, we often write f X_dM_  instead of I, (X).
~dg T8 8 t

c, loc

When Me7 and XeP¥*, the integral TI(X) will not in

general  satisfy conditions (2.10) - (2.13), (2.18) - (2.20), or

(2.2h), which involve expectations at fixed times or unrestricted

stopping times. However, the sample path properties (2.9), (2.14),

(2.16), (2.21) and (2.23) are still valid and can be easily proved

by 1ocalization. We have the following version of Proposition 2.17.
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¢, loc
’ and

2.22 Proposition: Consider a local martingale Men

a process XeP*(M). The stochastic integral IM(X) is the

s loC

unigue martingale %€7 which satisfies (2.26) for

every Nemg (or equivalently, for every Nen

c, loc

D.?23 Problem: Suppoce M, Nem and XeP* (M) n P*¥(N).

Show that for all a,BeR  we have

TOMBN ey o oarMixy + eV (x).

5.24 Problem: Let M be standard, one-dimensional Brownian motion
and choose XeP. . Show that there exists a sequence of simple

processes {X(n)];;l such that for évery ™90,

T .
vn [ ox® ox Pat =0
Neax O
and
lim sup }It(X(n)) - I, (X)] =0
hold a.s. P. ot

2.25 Problem: Let M = W be standard Brownian motion and XeP.
We define for 0Oss<t<w
S t 1 rt 2 0
(2.29)  ¢f(X) a _{qudwu -3 ] K (0 4 ().

The process {exp ct(X),ﬁt;VOst<m} is a supermartingale; it

is a martingale 1if Xeso.

et e e e e i <

LW,
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Can one characterize the class of processes XeP*, for
which the "exponential supermartingale" ({exp gt(X),st; st}
of the above Problem is in fact a martingale? This question is

at the heart of the important result known as Girsanov's theorem

(Theorem 5.1); we shall try to provide an answer in section 5.

2.26 Problem: Based on "first principles", i.e., on the definition

only, compute the stochastic integral [ WSdWs when W is a
“0
standard Brownian motion. The reader should consult the solu-

tion to this problem for discussion of alternate definitions of

integration with respect to Brownian motion.

'_We know all too well that it is one thing to develop a theory
of integration in some reasonable generality, and a completely
different task to compute the integral in any specific case of
interest.r Ihdeed, one cannot be-expecfed,to repeat the (some—
times arduous) précess which fortunately led to an anser in the
preceding problem. Just as we develop a calculus for the Riemann
integfal, which provides us with tools necessary for more or less

mechanical computations, we need a stochastic calculus for the Itg

integral and its extensions. We take up this task in the next

section.
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3.3: THE CHANGE-OF-VARIABLE FORMULA

One of the most important tools in the study of stochastic
processes of the martingale type is the change-of-variable

formula, or “Itg's rule", as it is better known. It provides us

~with an integral-differential calculus for the sample paths of

such processes.
Let us consider again a basic probability space ({,&,P)
with an associated filtration {&_} which we always assume to

satisfy the usual conditions.

3.1. Definition: A continuous'semimartingale X =‘{Xt,3t; 05}:(003

is an adapted procéss which has the decomposition, P -a.s.,

(3.1) | : xt = Xo

+M,_ +B

where M = {M_,&; 0<t<=} € m°'1°° (pefinition 1.5.15)
qnd B = {Bt,at; 05}:(03} is the difference of continuous,
. : ‘ +
nondecreasing, adapted processes {AE,&t; 0<t<eey:
(3.2) . By =A{-A 0t oo,
+
with Aa = 0, P-a.s. We shall always assume that (3.2)
is the minimal decomposition of B; in other words, A: is
the positive variation of B on [0,t] and AE is the

negative variation. The total variation of B on'jo,t]

+
t

. A ’ -
1sAthe§ gt 2 A tAL.
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The following problem discusses the question of uniqueness

for the decomposition (3.1) of a continuous semimartingale.

3.2. Problem: Let X = {Xt,3t; 0<{t<x<} be a continuous
- semimartingale with decomposition (3.1). Suppose that

X has: another decomposition

X, =X.+M +8

£ = KoM+ B 0Lt <>,

where # € mSrloc

and B is a continuous, adapted
process which has finite total variation on each bounded

- interval [0,t]. Prove that P-a.s.,

B, =B, ; 0 <t< oo,

M, =M t £

t t"
A ' .
Ito's formula states that a "smooth" function of a continuous
semimartingale is a continuous semimartingale, and provides us

with its deéomposition.,

'3.3. Theorem: Itd (1951), Kunita & Watanabe (1967)

Let f: R + R be a function of class C2

(cbntinuous, with contihuous first and second derivatives)
and let X = {Xt, J.; 0Kt <} be a semimartingale with

decomposition (3.1). Then, P-a.s.,

. . ¢ | c
(3.3) £(x,) = £(Xy) + jof' (X )dM + -J;f' (X )dB

t
+ fof"(x_s)d<M>s, 0 < t< o,

=
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3.4. Remark: For fixed w and t > 0, the function X (w) is
bounded for 0 < s < t, so £'(X_(s)) is bounded on this
interval. It follows that f:f'(XshiMs is defined as in
the last section and this stézhastic'integral is a

- continuous, local martingale. The other two integrals
in (3.3) are to be understood in the Lebesgue-Stieltjes
sense, and so, as functions of the upper limit of

integration, are of bounded variation. Thus,

{£(x), 3.; 0<t<ec] 'is a continuous semimartingale.

3.5. Remark: Equaﬁion (3.3) is often written in differential

" notation:

' 1y
£ (XM, + £'(X)ABL + 5" (XA A0

&)

(3.3)° Qf(X £

. S R,
£1(X )X + 5 £ (X )a <

5 0<t< @,

t'

This is the "chain-rule" for stochastic calculus.

Proof of Theorem 3.3:

The proof will be accomplished in several steps.

Step 1l: Localization. In the notation of Definition 3.1 we

introduce, for each n > 1, the stopping time
0; if IXOI > n,
7, = {inf{e>0; M I >n or E >n or > >n}; if Ix,l < n,

© - 1 i if [Xgl < n ang {.--}= 0.
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The resulting sequence is nondecreasing with 1lim T, = %,
n-+co
P-a.s Thus, if we can establish (3.3) for the stopped

procesg Xén) B Xipp i t >0, then we obtain the desired
result upon letting nn-ﬂ ., We may assume, therefore,

"that Xy(w) and the random functions M, (uw), gt(w) and
<M>t(w) on‘[o,cs)x Q are all bouhded by a common
constant K; in particular, M. is then a bounded
martingale. Under this assumption, we have IXtI $‘3K;,
0 < t< o, weqQ sothe values of f outside [-3K, 3K]
are irrelevant. We assume without loss Sf generality

“that f has compact support, and so £, £' and f£"

are bounded.

Step 2: ~Taylor expansion. ' Let us fix t > 0 and a partition
I = {to,tl,..., tm3 of_[O,t],Awith 0=ty <ty <<t =t

A Taylor expansion yields

| .
£(X,) - £(X,) = = {£(x,_ ) -£(X ) 3
t R R Ex-1
m . 1 m 2
= I f'(X X, -X )+ 5 T (X, -X )
=1 L S T R S

where 1, (w) = X (w) + 8, (W) (X, (w) -X (w)) for some
13 teo1 2T e teq
appropriate Bk(u))‘ satisfying 0X Gk(w) £1l,w € Q. We

conclude that

. _ 1 .
(3.4)' f(Xt)—f(Xo) -—s_Jl(II)+J2(I1)+§J3(H),
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where
A m o
J. () &2 Z £'(X )(B, -B )
1 k=1 k-1 Tk  tk-1
o, m N
g & T oEvx, )M, -M )
2 k=1 L R
.m 2
Jo() &2 Z £"(n,) (X X ).
3 k=1 K Tt Tt

It is easily seen that Jl(H) converges to the Lebesgue-

N t
Stieltjes integral f f'(Xs)st, a.s. P, as the mesh
. 0 |
ol = max ltk-tk_ll of the partition decreases to zero.

1<k<m
On the other hand, the process

Y o(w) &£ (X_(w); 0<s<t, weaq,

is in‘ L* (adaptea, cbntinuous and bounded)}; we intend

to approximate it by the simple process

m
z

'" '
YLD B £ (K@) 1ggp(s) + 3

f‘(Xt (w))1

(s).
1 -1 (tpqrty]

t
2,7 _ . m 2
Indeed, we have EI®(Y-Y,) = Efo lyg -y l"acm>_ » 0 as [0 = o,

by the bounded convergence theorem, and so

t t
Jg (M) =fy¥lam, — [ y_am
2 0 S S lin“"O 0 S =]

in quadratic mean.
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Step 3: The quadratic variation term. J3(H) can be written

as
 where
m _ 2
J,() & T £"(n,.)(B_ -B )
A m
J-(I) 22 Z £"(q,) (B B, ) (M, =M ),
> k=1 Xt Ttk ot
- 2
J.(O) & T £"(m )M, -M ).
6 k=1 k tk tk-l

Because B - has total variatijion bounded by K, we have

|3, (n)l +|J (n)l < 3K[,f“ll (maxIBt-Bt | + max I, -m. D),
‘ 1<k<m "k k-1 1<k<m "k k-1

and, thanks to the continuity of the processes B and M,

this last term converges to zero almost surely as [|I » 0

{as well és in Ll(Q;E,P),‘because of the bounded

convergence theorem). As for JG(H)' we define

. m
JE(M & L EM(x. )M -M )2
: k—l k—l k k-1

and observe

lag@m -3gm 1 < viZ - max £ -z, Ol
1<k<m k-l
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(2)
t

to Lemma 1.5.9 and the HOlder inequality,

where V (1) is as defined in Section 1.5. According

E[Jg(n) -J6(II)I < \/48K4 \/E( max If"(_nk)-f"(xt , )Al)2 ’
' 1<k<m k-1
and this is seen to converge to zero as HHH =+ 0 Dbecause
of the continuity of the process X and the bounded
convergence theorem. Thus, in order to establish the
convergence of the quadratic variation term JB(H) to
the integral sz" (xs)a<M>s in le,a,p) as [[O]j =+ o,

it suffices to compare Jg(ﬂ) to the approximating sum

=

k

£ (X ) (KM>, = <MD ).

1 g1 t t

J_(m A
7 k k-1

™

We have

. 2 ;o . 2 N
E|J%(0) -J,()° = E|] = £"(X y{M_ -M )<= (<M>, = <M> )31
6 7 k=1 k-1 Tk k-1 Y -1
m . ' >
2 2 2
=E I [f"(X )1 {(M, -M; )T = (KM>,_ - <MD )3]
[k=1 tk-1 St B B k-1

4

k_

m m 2

T (M, -M ): 4+ T (KM>, -<M> )]
ty t ty 4

I~

k-1 k=1 X

2
2]l ]2 - z[
oo k=1

j~

2fig |2 - E[Vé4)(ﬂ)f-<M>t° max (<M>_ - <M> )].
: 1<k<m k k-1
From Lemma 1.5.10 and the bounded convergence theorém,
we conclude that the last term above goes to zero as
il » 0. Since convergence in 12(0,3,P) implies convergence

in Ll(Q,g,P), We,cohclude that

2
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t
J,(0) —> £ (X_)a<M>
s T 57 K

in 1l(q,3,p).

Step 4: 1If {n(n)fi;l is a sequence of partitions of [0,t]
- - (ny)
with o(™ ] —3, 0, then for some subsequence {II k ?i;l

we have, P - a.s.,

(n,) t
lim Jl(ﬂ ) = [ £rxas,
K+co 0 s
(n ) t
lim Jz(ﬂ = J Y dm
k-+co 0
: (n,) t
lim J (n Y = [ enxpaan
k=co 0

Thus, passing to thé limit in (3.4), we see that (3.3)
holds P-a.s. for each 0 £t < ©. 1In other ﬁords,
the processes on the two sides of equality (3.3) are .
modifications of one another. Since both of them are

continuous, they are indistinguishable (Problem 1.1.5).

We have the following, multi-dimensional version of Ité's

rule.

FAC I Y

. , A (1) (4)
3.6. Theorem: Let {M? L (Mg M), 3

gi 0Lt<®} be a

~vector of local martingales ‘in m°'1°°,

{B¢ A (Bél),..._, Béd)),' F.; 0<t <} a vector of

O
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adapted processes of bounded variation with By = 0,
and ;et X, = X0+Mt'+Bt; 0 £ t <, where X 1is an
so—measurable random vector in IRd.

d 1,2

Let £(t,x) :[0,©) x R-.+ R be of class C

(continuous, with continuous partial derivatives

Sf, 2 2% £; 1<i, j<a) Then, a.s. P

at ! aX. ' ax.ax. ' — " -— . r «De I3
: i i*%5

t a' d t 3 (1)
(3.5)  £(£,X,) = £(0,Xg) + [ 5= £(s,X)ds + I [ 5= f(s,X )dB

: . 0 i=1l 0 "7i.

d t
+ = [ 2 f(s,xanlt
i=1 "0 %%y

5 J:c-i £lexan® y3s ok oo
- oaxiaxj Si8g ! s’ - °

O

3.7. Problem: Prove Theorem 3.6.

3.8. Example: With M = W = Brownian motion, XO = 0, Bt =0
and f(x) = xz, we deduce from (3.3):
v ) . .
Wy = zjé)wsdws + t.

Compare this with Problem 2.26.
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3.9 Example: Again with M = W = Brownian motion, let us
consider X € P and recall the exponential supermartingale
of Problem 2.25:
Z, = exp(gt); 0 <t <<
where
-t lt2'
¢, = [ x aw_ - 5] xZlds; 0 <t <co,
0 0
We now check by application of Itg's rule that this process
satisfies the stochastic integral eguation
. t
(3.6) 2, =1+ jozsxsdws; 0 <t <co,

Indeed, {gﬁ; . 0Lt (o} is a semimartingale, with

t :
local martingale part My = I X AW, "and bounded variation
t B & - lItxzds With £(x) = eX, we have
par t o 29,TsT ’

t
z, = £(C) = £(Ly) + J‘of' (Cg)amg

t 1.t
+ fof (C)aB + Efof (C )am>

t 1.8, 2
1+ j‘ozsxsdws - Efozsxsds

t
1 2

t
=1+ jozsxédws.
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The replacement of dMs :by XSdWS in this equation is
justified by Corollary 2.18 (actually, the extension of
Corollary 2.18 to Xjé ©).. It is usually more convenient

to perform computations like this using differential

notation. We write

- - L2
d¢, = X, dW_ - 3XZat,

and, to reflect the fact that the martingale part of ¢(

has quadratic variation with differential xidt, we let

(dgt)z = xidt. One may obtain this from the formal com-

pution
A (dg..t)2 = (xtéwt-%xidt)z
=:X§(th)2 - Xi&ﬂ?t-—dt*i%xi(dt)%
= Xidt, 

using the conventional "multiplication table"

dt aw, | aW,
at 0 0 0
(3.7) )
- aw, 0 dt 0
aW, 0 o ‘| at

where W, W aré independent Brownian motions. With these

A .
formalisms, Ito's rule can be written as
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Af(C,) = £'(¢,0A0, + FE(C) (dC) 2,

and with f(x) = ex,.we obtain
az, = z.x.aw, - 3z.x2at + 1z x2at
= thtdwt'
Taking into account the initial condition 2Z, = 1, we

0
can then recover (3.6).

Problem: With {Zt; 0 < t <cc} as in Example 3.9, set

Y, = éL; 0 < t <o, which is well-defined because

t t

P[ inf zt>01'= P[ inf
0CELT © - 0< LT

¢>-©1 = 1. show that 'Y

satisfies the stochastic differential equation

. i R L
ay, = Y. Xidt - Y, X dW , ¥, = 1.

Problem: Suppose we have two continuous semimartingales

X, =X.+ M + B Y. =Y. +N +C

t 0 t £’ Tt 0 t £ 0 <t <oo,

c,loc and B and C are

where M and N are in N
adapted, continuous processes of bounded variation with

B, = Co = 0 a.s. Prove the integration by parts formula

t t
foxsdys = X Y - XY, - [ Y AX - MN> .

t't 0 0
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3.12. Example: If a(t), b(t) are nonrandom functions satisfying:

T T ,-
J lat)ylat + [ b (t)dt <, 0 < T <o,
0 0 '

and if W is a Brownian motion, then the process
t t s
8¢ = expl[ a(s)ds] '{§O + | b(s)expl-] a(u)dulaw_}; 0 < t < oo,
0 0 0 S i
is well-defined, because - - 0 < T 0

T 5 s
[ b“(s)exp[-2 a(u)dulds
0 . 0

T i N
< expl2f la(u)ldu]l [ b“(s)ds < o,
.0 0

-According to ItSTS rule (Theorem 3.6) with f(xl,xz) = XX,
(1) t (2) t s
X = exp[[ a(s)ds] and X =g, + [ b(s)exp[-[ a(u)dulaw_,
t - 0 . ‘ t 0 0 0 s
we have
| t . t
e =50 * Ioa(s)ésds + J‘ob(s)dws. 0

In the hands of Kunita and Watanabe DBG?], the change-of-
variable formula (3.5) was shown to be the right tool for pro-

viding a simple proof of P. Lévy's celebrated martingale

characterization of Brownian motion in :Rd. Let us recall here

(1) (d) -
= (Bt ,...,Bt )’

that if {B, F.i 0<t<®] is a a-
dimensional Brownian motion on ({,3,P) with P[BO=0] = 1, then
<B(i)'B(_'j)%: = b 4t 1 i,j £ 4, 0 <t <o (Remark 1.5.6). It

turns 6ut-that this property characterizes Brownian motion among

continuous local martingales. The compensated Poisson process

with intensity A = 1 proviae: 3 an example of a discontinuous,
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square-integrable martinga!. with quadratic variati: n <M>t = t

(c.f. Example 1.5.4), so the assumption of continuity in the
following theorem is essential.

3.13. Theorem: P. Lévy (19 )

Let X = {Xt = (X(l),.;.,X(d), e

N N ¢t 0 <t <o) be

- a continuous, adapted proc. s in Efi such th.: ., for
every component 1 < i < d, the process

w(i) A (i)

(i)
N N Xy 0 <t<c,

is a continuous local martingale relative to {St}, and
the cross-variations are given by

(3.7)' <M(i),M(j)> = §..t

£ i3 ; 1<i, j<ad.

Theh {xt,Et; 0 <t <‘0?} is a d-dimensional Brownian

motion.

Proof:
We must show that for 0 ( s < t, the random vector
Xt'- Xs is independent qf 35 and has the d-variate normal
distribution with mean zero and covariance matrix egqual to the
da x d idéntity. In light of Lemma 2.6.12, it suffices to prove

that for each u € ]Rd,

iu,X -X.) —%uuuz(t~s)
(3.8) Ele 131 = e , a.s. P.
For fixed u = (uy,e..ruy) €ZRd, the function f£(x) = et (Urx)
o ® . 22
satisfies .Sigf(X) = il%jf(x), g;;g;;f(x) = —ujukf(x). Applying

Theorem 3.6 to the'realbaﬂd»imaginary parts of £, we obtain
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i(u,%.) i(u,X_) ' 4 t i(u,xv) ()
(3.9) e vt e S 4 iz ujf e dMVJ
j=1 s
d 4 t i(u,x )
- i z u%f e vV av.
2 .13 .
j=1 s

Now [£(x)] <1 for all x € ré and, because AL t,

M 0 t B
we have M(J) € mg. Thus, the real and imaginary parts of

e v dMéJ); F.i 0<t< o] are not only in m°'1°°, but
0
also in mg. Consequently, .
| S i(u,X) s :
Elf e Vamliz 1 =0, p- a.s.
g A
h : ) -i<u,XS>
For A € 35' we may multiply (3.9) by e lA and take
expectations tvobtain ’
i(u,X -X_) L t  i(u,X.-X) -
Ele %1 =p@) - Zlul? Ele VS 1av.
. " s

This integral equation for the deterministic function

t P E[e’ lA] is readily solved:
i(u,X-X) . -%ﬂuﬂz(t—s)
Ele lA] = P(A)e , YA € F_,
- s
and (3.8) follows. - | O

3.13', Problem: Let W

= (wél),w(z),wé3)) be a three-dimensional

t t
Brownian motion starting at the orgin, and define
T, . |
X = 3 sgn(W{l)).' Define Mél) = Wél), Méz) =.Wé2),
i=1 . . .

Mé3) ='xwé3). show that each of the pairs (M(l),M(Z)),
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(M(l),M(3)) and (M(z),M(B))'is a two-dimensional

Brownian motion, but (M(l),M(z),M(3)) is not a three-

dimensional Brownian métion, Why doesn't this provide a

counterexample to Theorem 3.13, i.e., a three-dimensional

process which is not a Brownian motion, but each component

process is in mCr10€  ana (3.7)' is satisfied.

3.14. Problem: Let W = {W, = (wél),...,w(d)'), 3

be a d- dlmen51onal Brownlan motion startlng at the orlgln,

0 < t <}

and let Q be a d x d orthogonal matrix (Q =Q ).
Show that Wt = QW is also a d-dlmen51onal Brownian
motlon. We express this property by saying that

Jd—dimens;onal Brownian motlon starting at the origin

is rotationally invariant".

Another use of the P. Levy Theorem 3.13 is to obtain an

integral representation for the so-called Bessel Process. For

an integer 4 > 2, let W= {Wt = (W(l),...,Wéd)), Foi
{le a be a d-dimensional Brownian family on some measurable
X€R

0 < t <c2},

‘space (Q,3). Define

(l) 2 (d),2 °

(3.10) R, UWtH—J(w oo+ (W5 0 <t <o,

so PX[RO=UXU] =1. If x,y € RY ang A=l = llyli, then there

X

is an orthogonal matrix Q such that y = Qx. Under P7,

W= {Wt A th, 3t; 0 < t_SCD} is a d-dimensional quwnian motion

startingat y, but [V | = lw ll, so for any F € 8(c[0,o)), we have

(3.11) _ pX[R.€F] = PX[|7.|leF] = PY[R.€F].
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‘ b
In other words, the distributiocn of the process R under P

depends on x only through Ui

3.15. Definition: Fix an integer 4 > 2, and let

w={w_,3; 0<t<], {p*}] be a d-dimensional
t' 7t X€Rd

Brownian family on (Q,%). The process
R = {Rt = thu, Foi 0 < t <®©] together with the
family of measures {P(r,o,...,0)3r>0' on (Q,F) is called

a Bessel family with index d. For fixed r 2 0, we say
(r,0

that R on (Q,3,p ""'O)) is a Bessel process with

index d starﬁing at r.

3.16. Problem: Show that for each d > 2, the Bessel family with

index d is a strong Markov family (where we modify

Definition 2.6.3 to account for the state space r* 4 [0,c0)).

(3.12) R =r+ftil1-ds+'s
(3. | t o 2R, .

3.17. Proposition: Let d > 2 be an integer and choose r > 0.
The Bessel process R with index d starting at «r

satisfies the integral equatioh

£ 0 <t <co,

where B = {Bt, Jpi 0 <t <} is a standard, one-

dimensional, Brownian motion.

Proof:

We use the notation of Definition 3.15, except we write P

in place of P(r,O,...,O) can be

. Note first of all that Rt
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(1)

zero only when W is zero, an. so the Lebesgue measure of
the set {0 < s < t; R, = 0} is zern, P-a.s. (Theorem 2. . ).

d-1

Consequently, the integrand SR in (3.12) is defined for
: s

Lebesgue almost every s, P-a.s.

d .
The process B 1is given by Bt £ ¢ Bél), where
i=1
. t
(1) & 1w (1) g (1)
By & = jo R, W o aw "', Note that
€ ()
EJ (R )2ds < t; 0 <t (oo,

0."'s

so each B(l) € mg. For t > 0, we have

1 (1)

— W

R2 s .
s

<B(l),B‘J)>t = [

t
O s

wiia @@ g,
J- LoDy,

and so

B> = n <Py = ¢,

-~ We conclude from Theorem~3.i3 that B is a standard, one-
dimensiohal'Brownian motion.
It remains to prove (3.12). A heuristic derivation is to

apply Itg's rule (Theorem 3.6) to the function

£(x) 2 =l = in + ..+ xg : RY = [0,o0), for which
X a2 ﬁiﬁ X, x .
f(x) = ' f(x) = 1<i,j<aq,
aX | x|l axia?(j [[xll uxu3

hold on ]Rd\{o}. "Then Rt.sz(wt) and (3.12) follows from (3.5).




The difficulty here is that £ is not differentiable at the
origin, and so Theorem 3.6 Cannot be applied directly to £.
This problem is related to our‘uneasiness about whether the
integral in (3.12) is finite. Here is a resolution of this

problem. Define:

v, 2w l? = &,

and use Itg's rule to show that
2 d t

Y, =x“+22] W(l)dw(l) + td.
i=1 0

Let - g(y) = [y, and for € > 0, define

dree 2y -t vk yce
. - 4]€ 86[" :

9 (y) =

| Iy's 1 y 2 €
so ge ‘is of class C® and é%? ge(y) = gly) for all y > 0.
Now apply I?é's rule to obtain
d

(3.13) ge(¥,) = ge(rz) + T I

(1)
Z T (€) + Jt(E) + Kt(é),

t

where

. . t Y Y
(1) A : 1 1 s (1) o, (1)
I (€) = (1, = + 1 — (3=-==)1W aw ’

t IO {Ys_>_€}RS {YS<E} ZJ—e-'\ € S S‘.

A a1
T (€) =l l{Ys_ZEJZRS ds,
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Y
: 1 , S
Kt(G) J l{Y <€3 [3d-(d+2)7;]ds.

We now show that, as € { 0, (3.13) yields (3.12). From the

monotone convergence theorem, we see that

lim J, (€) f 1 $l4s, a.s.
eso {Y >o} f 2R '
We also have 0 < EK, (€) < —}:1j p[y (<€lds. The probability in the
~ 4J€ 0

integrand is bounded above by

2
P

A 21 J€ :
pralt) 2wy 2 = I 2= e “Spapas,

and so the integral becomes, upon using Fubini's theorem and the
] _ v

change of variablé £ = —:
- Js’
t : € ¢t 2 ,
fop[ys<e]ds < Io p(fd ZeP /2545) 4p
€ o, ;2
= 2f0 p(f %e 5" /2ag) ap.

2
It

But now it is easy to see that this expression is o([€) as
€ 4 0, using the rule of de t'ulpital. Therefore,

lim EK, (€) = 0. Finally
€0

' Y

1 1 Sy 12,.,(1),2
= - — (3- =A)]1"(w )~a
Rs 2[€ € s s

(1)
W
s 2 2
= Ej 1{Y ce3l1-3 J = (3~-—¢ )] =—) “ds

S

. i t
(1) _ (1) Y g2
E[B (€)1" =E)] 1 [
Io {Ys<el
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-

Lk
< Ef P[Y_<€]as,
0. °

and we have already shown that this expression converges to zero

as € | 0. This establishes (3.12). : O

c 0 < t <©} be a Bessel process with index

a > 2 sﬁarting at r > 0. Then, for each fixed t > 0, it is

—

vLet {Rt,3 ;
clear from (3.10) that P[Rt>0]= 1. A more interesting question
is whether the origin is nonattainable:

P[Rt>O,VO<t<CO] = 1.

The next proposition shows that this is indeed the case. Of
course the situation is drasticaily different for the Bessel

process with index 1, since P[lwél) [>0,70<t<©] = 0 (Remark 2.8.3).

3.18. Proposition: Nonattainability of the origin by the Brownian

path in dimension 4 > 2.

-

Let 4 > 2 be an integer and r > 0. The Bessel

process R with index 4 ‘starting at r satisfies

PIR, > 0,V0<t(®] = 1.

Proof:
It is sufficient to treat the case 4 = 2, since, for larger

a, {2 4

(d), 2

£ ) can reach zero only if

eee + (W

J(Wél))z + (Wéz))zj reaches zero.
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We consider first the case r > 0. For each positive

integer k satisfying (%)k <r <.k, define stopping times

inf {t > 0; R_ = @& ¥};  if {...}] # 8,
- t k

Tk =

(o - ; - otherwise

inf {t > 0; R = k}; if {...} # 9,
Sk = :

Rt i  otherwise
Tk = 'I'k A Sk A n.

Because P-almost every,B:ownian path is unbounded (Theorem 2.9.21),
we have

_ : co
- (3.14) P[ N

{s, <} n {lim s
'k

=} ] = 1.
1 k=+CO .

k
Usihg (3.12), apply 1t8's rule to in(R,) to obtain

in .RT = 4{nr '-i-j‘ —dB .
k : 0 s

This step is permissible because 4n is of class C2 on an

opén interval containing [(%fk,k] and'so can be modified outside

this interval to obtain a c? function on 1R. For

0 <'s < Ty lé%l is bounded, and since T, 1s also bounded, we
_ T s

have E[ <X dB_ = 0. Therefore
o Rs S




"

(3.15) » inr = E[logR ]
T Tk

-k (ogK) P [T, <5, An]

+ (logk) P[5, <T, An]

+ E[QogR) 1 1.
Ry {n¢s AT, )

For every n > 1, 4nR_ on {n<s A Tkl is bounded between
-k (logk) and log k. According to (3.14), as n.+ c©, we have

P[n<SkATk] + 0, Thus, letting n -+ in (3.15), we obtain

inr = -k(logk) P[T <S,]

+ (ogk P [SkiTk] .

If we divide by k(Qogk) and let k =+ @, we see that

3.15 ‘ 1im P[T,<S,] = 0.

( ) - oo kUK

- Now set ~
' { inf {t > 0; Ry =0}; if {...} # @,

T =

co; otherwise,

3.3.23

so that T, < T for every k > 1. From (3.14) and (3.15), we have

P[T<co] = 1lim P{TgSk}
- k=00

< 1im P[T,<S, ] = 0.
T kA k="k

It follows that P[Rt>O,VO<t<03] = 1.

Finally, we consider the case r = 0. Recalling the

indexing of probability measures in Definition 3.15, we have -

from Problem 3.16
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p(0,0,....,0) 50, €< C0]

(R.,0,...0) '
=E(0,0,..-,0)'{P € '_ [Rt>0,0(t<co]3

[R,

=1

for any € > 0, by what was just proved and the fact that

p{0:0r---+0 g 50 = 1. Letting € 4 0, we obtain the desired

result. ' ' O

3.19. Problem:

Let R = {R F.; 0 <t <©} be a Bessel process with

Ttf
index d > 2 starting at r > C, and define

m = inf 'Rto
' 0<t<oo

(i) Show that if d! 2, then. m =0 a.s.P.

(ii) Show that if & > 3, then m has the beta
distribution
P [m<c] é‘(g)d‘z; 0 <c(r.
(Hint: Adapt the proof of Proposition 3.18.
For (ii), an appropriate substitute for the

function f(r) = 4nr must be used.)

Proposition 3.18 says that, with probability one, a two-
dimensional Brownian motion never reaches the origin. Problem
3.19(i) shows, however, that it comes arbitrarily close. By
‘ 2

translation, we can conclude that for any fixed point 2z € R,
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a two-dimensional Brownian path, regardless of its starting
position, never reaches the point 2z, but does reach every
disc of positive radius centered at 2z. In the parlance of

Markov chains, one says that "every singleton is nonrecurrent",

but that "every disc of positive radius is recurrent." For a
Brownian motion of dimension 3 or greater, Problem 3.19(ii)
shows that, ohce it gets away from the origin, almost every
éath of the process remains bounded away from the origin; this
lower boupd depends, of course, on the particular path. Thus,
d-dimensional épheres are nonreéurrent for d-dimensional

Brownian motion'when. a > 3.

3.20. Problem: Let R be a Bessel process with index a > 3

starting at r > 0. show that

P[lim R_=c0] = 1.

t-+CO t

As a final application in this section of Ité's rule, we
derive some useful bounds on the moments of stochastic integrals.

. The following problem illustrates the technique.

'3.21. Problem: With W = {W_,3; 0 <t <©] a standard,

one-dimensional, Brownian motion and X a measurable,

adapted process satisfying

. | | : T
(3.17). ef lthzmdt ¢
0




for some real numbers T > 0 and m 2> 1, show that

T 2m , .. m-1_ o0 2m
(3.18) EIf X aW 177 ¢ (m(2m-1))"r" g Ix | “Mat.
0 0 »

t
(Hint: Consider the martingale {M_ = [ X_aw_,5_;
0 <t < T}, and apply 1t8's rule to the submartingale

Actually, with‘a bit of extra effort, we can obtain

much stronger results.

3.22. Proposition: Martingale moment inequalities (Millar

(1968) , Novikov (1971))

Sﬁppose M€ mc,loc, and

o (3.19) S B <@

for some'realfnumbers T >0 and m > 0. Then
, | 2m m
(3.20) , ElyTl < CLEM>,

where Cm is a universal constant depending only on m.
Furthermore, if m > %, there exists another constant

B > 0, depending only on m, such that

. m : 2m:
(3.21) ' B E<M>p, < ElMi [

Remark:
ot

M, = f.deWS, then the HOlder inequality implies that
N 4 ,

If, in the notation of Problem 3.21, we take

3.3.26
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T . T
_ 2 m m-1 2m
My = (foxtdt). < T folxt! dat.

Thus, condition (3.19) is weaker than (3.17).

Proof: We assume for the moment that both M and <M> are

bounded on [0,T]:

(3.22) M (W) | <N, <M () < N; 0<t<T, weRQn,

for some positive integer N. We consider the process

. t
N 2 _
Y S8 4+ DL+ M{ o= 6+ (LA + 2[0Msdms, 0o<tgT,

o>

where 6 > 0 and € Z.Oj are constants to be chosen later.
Applying the change-of-variable formula Eovlf(x) = xm, we
obtain

| . e
LM om m-1 _ m-2_ 2
(3.23) ¥, = + m(1+6)foys d<M>g + 2m(m D vo M a<M>

0

‘Because M, Y are bounded and Y is bounded away from zero,
the integrand in the last integral is bounded, so this martingale
integral has expectation zero. Taking expectations in (3.23),

we obtain our basic identity
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(3.24) EY$ = o™ + m(1+e)Ej Ym ld<M> + 2m(m-1)Bf Ym 2M2d<M>

I

Case 1: 0 < m < 1, upper bound. The last term on the

right-hand side of (3.24) is nonpositive; so, letting

6 ¢ 0, we obtain

t
(3.25) E[e<M>t t]ﬁ < m(1+6)EJ (E<M> +M ) d<M>
' 0
< m(1+€) € g <M>m taans
: 0
= (1+€f€m'lE<M>2.

The second inequality uses the fact "0 < m < 1. But for

such m, the function £(x) = x; x 2 0 is concave so

~e

(3.26) 2L g™ < (x4)™ x>0, y>o0,

and (3.25) yields: "E<m>™ + EIMtlzm < (1+€) (£ )m lecus™

t t’

whence

(3.27)  EIM1®™ < [(1+€) (2 )l m-em]E<M>$, 0

I~
ot
A
-

Case 2: m > 1, lower bound. Now the last term in (3.24)

is nonegative, and the direction of all inequalities

(3.25) - (3.27) is reversed:




EIMtlzm > [(l+€)(§)m-l—€m].E<M>$, 0 <t<T.

Here, € has to be chosen in (0,(2m_l~

1) 7).

Case 3: % <{m < 1, lower bound. Let us evaluate (3.24)

with € = 0 and then let & ¢ 0. We obtain

t
2m _ 1 2 (m-1)
(3.28) EIM " = 2m(m .Z)EIOIMSI d<M> .

On the other hand, we:have from (3.26), (3.24):
m-1 mE m 2. m R 2, -m
2 [€ §M>t+E(6+Mt) 1 £ E[€<M>t+(6+Mt)]

o £
<"+ @ Ef (e ™ taaws .
0

Letting 8 4 0, we see that

(3.29) 2™ EanMEIN 12 < m(1+€)Ef g 12D gy
- 0

Rélations (3.28) and (3.29) provide us with the lower

bound

(1+€) 21 ™™
2m~-1

-1 g™, 0<t<T,

, T 2m m

valid for all € > 0.

Case 4: m > 1, upper bound. 1In this case, the inequality

(3.29) is reversed, and we obtain
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l1-m
2m m,(l+€)2 _ 1 m
ElMtl ¢ € (-1 EXM> 0<t«T,
where n&w € has to satisfy .€ > (2m—l)2m“l -1,

This analysis establishes (3.20) and (3.21) under the
condition (3.22). For an arbitrary M € mc,loc' we consider

the sequence of stopping times

inf{o0 < £t < T; IM_ | >N or <M>_ >N} if {...}] # ¢,

T, otherwise,

which is increasing and converges almost surely to T. With

(N) 4 M , the éequences
t tA N

ey

© Ny _
IMTMN!}N=l and {<M777>5 = <M>

are also increasing and converge almost surely to IMTI and

<M> respectively. We have proved (3.20) and (3.21) for

Tl
each M(N), and letting N.- o0, we obtain these relations for

M from the monotone convergence theorem. .|

3;23. Problem: Prove the foilowing 'd—dimensional version of

Proposition 3.22. Suppose

_ _ (1) -, (2)
M= {M_= (M peee e Mg ), &

£ £ 0 <t <x©} is an

adapted, d-dimensional process with M(l) € mc,loc;
(1)

1<i<d. Let A= & >pr

i=1

and assume
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EA, < ©©

m
T
for some real numbers T > 0 and m > 0. Then

12 < ¢ 1EAT

EUMT

TI

where Cé is a constant depending only on d and m.
Furthermore, if m > %, there exists another such constant

Bﬁ > 0 such that

Problem: Prove the following vector stochastic integral

version of Prbpoéition 3.22. Suppose

= {w, = (wél’,..'.,w,‘ff)), Fi 0<t <o) is an

r-dimensional Brownian motion starting at the origin,

and suppose X = {x, = (X(l'j)); 1<i<d4,1<3j<r,
0 <t <o} is a matrlx of processes adapted to {5 }

: d
Let Uxtﬂz z Z (x(l j))z and assume

i=1 j=1

T
E[IOUXtUZdt]m

for some real numbers T > 0 and m > 0. Define

- (1) (d)
Mt = (M ...,Mt ) by
w5 I x(l J)dw(j)
t 521%0

Then




.25.
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EHM %™ < o E[I Ix I at)™

where CA is a constant depending only on d and

m. Furthermore, if m > %, there exists another such

'constant BA > 0 such that

Bptl Ix l%ae™ < sl

Problem: Prove the following bound on the maximum of a
stochastic integral. Suppose W = {Wt,gt; 0 <t<T}
is a standard Brownian motion. If X 1is adapted to

{3£} and satisfies

T
E[foxf_dt]m ¢ o

for some real numbers T > 0 and m > %, then there is a

constant Cm depending only on m such that

E[ max If x aw_|*™ < c B{f x2at)™
0<t<T " 0
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3.4: REPRESENTATIONS OF CONTINUOUS

MARTINGALES IN TERMS OF BROWNIAN MOTION

In this section we expound ou the theme that Brownian motion
is the fundamental continuous martingale, by showing how to represent
other.continuous martingales in terms of it. We give conditions under
which a vector of d continuous, local martingales can be represented
as stochastic.integrals with respect an r-dimensional Brownian
'ﬁotion on a possibly extended probability space. Here we have
r < d. We aiso discuss how a continuous, local martingale can be
transformed into a Brownian motion by a random time change. 1In
contrast to these representation results, in which one begins with
a continuous local martingale, we will also prove a result in which
gr Fi 0 <t c©} and
shows that every contlnuous local. martlngale with respect to the

one beglns with a Brownian motion W = {wW

Brownian filtration {3t} is a .stochastic 1ntegra1 with respect
to W. A related result is that for fixed 0 { T £, every
3T—measurable random variable can be represented as a stochastic
integral with respect to T.

We recall our standing assumption that every filtration

satisfies the usual conditions, i.e., is right-continuous and

contains all null sets

4.1 Remark: Our first representation theorem involves the

notion of the extension of a probability space. Let

X = {Xt, F,; 0 < t <©)} be an adapted process on some

£
(Q,3,P). We may need an r-dimensional Brownian motion

independent of X, but because (Q,3,P) may not be rich
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enough to support this Brownian motion, we must extend the
probability space to construct this. Let (5,%,5) be another
probability space, on which we consider an r-dimensional
Brownian motion B = {Bt, gt; 0 <t <}, set

3L ax Q, TL230% F2p x P, and define a new filtration
by’ ﬁ; 4 3t'® &t. The latter may not satisfy the usual
conditions, so we augment it and make it right-continuous

by defining

| B, £ g oG, U,
: s>t

where N is the collection of P-null set§ in §G. we

also complete 6 be defining g = 0(6 Unh). We may extend
X and B .to.{gg}-adapted process on ({,%,B) be .defining
for (w0 €f, =

>
3

R

E
"

xt(w)
B, (w,8) =B, ().

[ d

Then B = {gé, F.i 0t cc} is an . r-dimensional Brownian
motion, independent of ﬁ; =.{§£, 3;; 0 <t <w}. 1Indeed,

B is independent of the éxtension to O of any dJ-measurable
random variable on . To simplify notation, we henceforth
write X an@ B insfead of X énd B in the context

—

of extensions. b
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Let us recall (Definition 2.21 and the discussion preceding
it) that if W = {Wt, 3.;.0 < t,< o} is a standard Brownian motion

and X 1is a measurable, adapted Process with P[f xzds { @©] =
0

t
for every 0 < t <o, then the stochastic integral It(x) = f xsdw
4 s
is a continuous, local martingale with quadratic variation process
'<I(X)>t = f Xids which is an absolutely continuous function of ¢,
. 0 ‘

P-a.s. Our first representation result provides the converse to

this statement; its one-dimensional version is due to Doob [1953].

4.2 Theorem: Suppose M={M = (M(l),;..,M(d)), 3t; 0 < tX« co}

t
is defined on (Q, 3 ,P) and each M(l) € 0 loc' 1 £i<ad.
Suppose also that for 1 < i, j £ 4, the cross-variation
<M(l),M(3)> (w) is an absolutely cont;nuous functlon of
t for P—almost every W. Then therelis an extension

(8,5,5) of (2,%,P) which is rich enough to support a

d-dimensional Brownian motion

X = {(X(l k))l k—l; 3;; 0 < t« o} of measurable,

adapted processes with

(4.1 prf x{*)2as coo1=1; 1<, ka0 <,
0

such that we have,'ﬁla.s., the representations

o]

(4.2) Mél) =z [ xél'k)dwék); 1<i<d 0<t<co,
- - k=1 0 -
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N et . '
(4.3 P w0l =z poxER 0 MG 1 5, 5 a0 ¢ e <o,
k=1 "0 .

Proof:

We prove this theorem by a random, time-dependent, rotation of
coordinates which reduces it to d separate, one-dimensional cases.

We begin by defining

i3 _ ,j.i_ 4 (1) (3
(4.4) 2 ~zt’ IE <M M .>t
= lim n[<M(l),M(J)>t - <M(i),M(j)> 1 +},
n=+o ' o (t=-2)
4 A n
‘ol ' - - i,j,d .
so that the matrix vqlued process 2 {Zt (zt )i,3=lf 3t’ 0 < t <o}

is symmetric and progressively measurable.' Fof o = (al;...,ad) e:mﬁ,

we have
a da .
T T a.zr'da. =

d (1)
i < T a.M > > 0,
i=1 §=1 =

so Z, -is positive-semidefinite for Lebesgue-almost every t, P-a.s.

Any symmetric, positive-semidefinite matrix 2Z can be
diagonalized by an orthogonal matrix Q, i.e., Q—1 = gtranspose,
AQ_lZQ = A, and A 1is diagonal with the (n&nnegative) eigenvalues

of 2Z as its diagonal elements. ‘There are several algorithms
which compute such a Q@ and A from 2, and one can easily verify
that these algorithms typically obtaih‘ Q and A as Borel-

measurable functions of Z. 1In our case, we have a progressively

measurable, symmetric, positive-semidefinite matrix process Z,
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and so there exist progressively measurable, matrix-valued

processes {Q (W) = (qt'J(w)) i,9=17 Fgi 0 £ £ <} and

{h o) = (o hpn§ 3

i,9=1 Spr 08 €< OO} such that for Lebesgue-

‘almost every t, we have

d d
k, 1 k,j . ik 3,k ‘
(4.5) Z q Y q ! —3 z q q = L. 1 < i j ( d'
k=1 ¢ °t k=1 t °t ij '
a 4 i '
k,i k,4 4,3 _ i .
(4.6) kzl Lfl t ‘¢ 9t 61,j>‘t 20 1<4i,3j<La4,

a.s. P. From (4.5) with i = j, we see that (q}é’l)z <1, so
ft ( k'i)2d<M(k);' < ks (@
0 9 s = I !

and we can define continuous, local martingales by the prescription

Q

(e.n  nP L j o ta{® ;1 ¢ i< a0 ¢ <o,
k=1 "0

Frbm (4.4) and (4.6), we have, a.s. P, .

-4 d

(4.8) @ xO -z 3 j righy 3<3<M(k) BYRRLIN
k=1 4=1 0 s
d klk&&
= Z Zj' q'Jd
k=1 4=1 ‘0 ‘

]

t
6.. J A> ds.
i3 Y5 s

We see, in particular, that
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t . .
(4.9) J alas =« <o 1cica 0t <o,
0 .

We now represent the vector of local martingales

N = {(Nél),...,Néd)), F.; 0t ]} as a vector of stochastic

o~ N
v

&,P), which supports

integrals on an extended probability space (5,

a d-dimensional Brownian motion B = {Bt = (Bél),...,Bédh, gt; 0 < t<K |
independent of N (c.f. Remark 4.1.). Since
t . "t
. 1 (1) .
J 1 . = aw'Vy. = 1 . das<t
"o (a0l al S %o by T

we can define continuous, local martingales

t

. . t .
4.100  wit 2y L oanid 42 a1 i ¢a.

1., = .
i [ 1_ S -
0 {x$>o}./ki 0 {ag=0] | :

From (4.8) we have

= (wél’,...,wéd)), g,

sc, according to Theorem 3.13, W = {W e

: 0 < t<co}

is a d-dimensional Brownian motion. Moreover,

i) _ f L) ()
(4.11) J agaw ™ =] 1 . a7 =N 1<i<d; 0<t <o,
o S o {rj>0}

t
1

i dNél), having gquadratic variation
o {ag=0l

because the martingale [
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t (1) t
J v . aa'y =] 1

ds =0,
0o {A*=03 s %o {x‘l’—o] s

is itself idehtiéally»zero.
Having thus obtained the stochastic integral representation
(4.11) for N in terms of the d-dimensional Brownian motion W,
we invert the rotation.of coordinates (4.7) to Sbtain a representation
for M. Let us first observe that for 1 < i, k £ 4,
t

J etk asc j Mas < ®; 0¢t <o,
0 0

by (4.9), so with Xél’k) é qt’kVLt , condition (4.1) holds.

Furthermore, (4.11), (4.7), and (4.5) imply

a a
(4.12) > f xél k)dw(k) = = f q’ de(k)
k=1 O k=1
a a
j=1 k=1 S
a t

= % 6, . [ auld) =y
=1 i,3%, s t !
which establishes (4.2); Equation (4.3) is an immediate consequence

of (4.2). - | | G

4.3 Remark: If the matrix-values process Zt(w) = (zl j( ))l j=1

has constant rank r, 1 { r < 4, for Lebesgue-almost every ¢,
a.s. P, then the Brownian motion W used in the representation}

(4.2) can be chosen to be r-dimensional, and there is no need
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Lo d

to introduce the extended probability space (Q,g,g). Indeed,

we may take kt,...,ki to be the r strictly positive

eigenvalues of - Zt’ and replace (4.10) by

. t ..
(4.10) * wid =1 ity 1 cicr

' r t .
. (i,k) (k)
(4.12) s [ x aw

ot OJ)E - -

since N{! =0; r+1¢ig<da 0<t<o (vitness (4.9)),
(4.12) becomes

t

iykao (k) _ (1) :
ljoqs an Y o= MY, 1 <i<oa.

Q.

k=1 0 S k

' Because (4.10)"defines W(l),...,w(r) without reference ﬁo'

the Brownian motion B, there is no need to extend the original

probability space;.

Problem: This problem shows that any vector of continuous,

local martingales can be transformed by a random time-chanée

into a vector of continuoﬁs( local martingales satisfying

the hypotheses of Theorem 4.2. Let M = (Mél),...,Méd)), &

t;
0 < t < cc} be a vector of continuous, local martingales on

some (Q,%,P), and define

a3 o L) ,M(j)>, AL (W) 2

» i

LU R
il ™M

¥ (13)
2t (o),

1 5=1

. v . ‘
where Bt denotes total variation of B on [0,t]. Let

Ts(w) be the inverse of the function At(w) + t, i.e.,




3.4.9
AT (w)(w) + Ts(w) =s; 0« s <o,
s

(i) Show that for each s,st is a stopping time of {3t}.~

>

(ii) Define QS Fn 7 0 ¢ s <™. show that if {Et}
s

satisfies the usual conditions, then {Qs} does also.

(iii) Define

] A °
w2 ui 1cica 0¢s <o,
S

Show that for each 1 < i < d :»N(l)'e mp,loc;
and the cross variation <N(l),N(j)>S is an

absolutely continuous function of s, a.s. P.

The ﬁime change in Problem.4t4 is straightforward because the
function A  + t is strictiy.increasing and continuous im t,
~and so has a strictly increaéing,'continuous inverse Ts' Our
~ next representation result reqﬁires us to consider the inverse of
the quadratic.variation of a continuous, local martingale, and
because such a gquadratic variation may not be strictly imcreasing,

‘we begin with a problem describing this situation in some detail.

4.5 Problem: Let A = {A(t); 0 £ £t <] be a continuous,

nondecreasing function with A(0) = 0, A(©) =, and

define for 0 { s < co:

T(s) = inf{t > 0; A(t) > sl.
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The function T = {T(s); 0 < s < o°} has the following
properties:
(i) T is nondecreasing and right-continuous;
(ii) A(T(s)) = s; 0 { s <©,
(iii) For 0 < t, s <®©; s < A(t) & T(s) < t and
' T(s)gt=> s < A(t).
(iv) If G is a bounded, measurable, real-valued function

defined on [a,b] < [0,<c), then

' , b ' . A(b)
(4.13) [ cyaa(e) = J G(T(s))ds.
' a A(a) '

4.6 Theorem: Time-change for martingales

Let M = M, 35 0 << w3} € mcrioc satisfy

£

lim <M>t =c, a.s. P. Define, for each 0 < s < <o, “the
g0 | |

optional time

(4.14) T(s) = inf{t > 0; M>_ > s]. .
Then the "time-changed process"
B=is_#¢ G_ 23, _,:0<s <o}
s MT(s)’ s T(s)' -

is a standard one-dimensional Brownian motion. In particular,

the filtration {QS} satisfies the usual conditions and we

have, a.s. P:

(4.15) M, = B<M>t; 0t <@,
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Proof:
Each T(s) is optional because, by Problem 4.5(iii),

{T(s) < t} = {<M>_ > s} € J_. Just as in Problem 4.4(ii), the standing

t
assumption that {Et} satisfies the usual conditions implies that {Qs}
does also. Furthermore, for each t, <M>t is a stopping time for the

filtration {qs} because, again by Problem 4.5(iii),

fa, <sd=1{T(s) 2 £} €35, =G5 0< s <o,

Let us choose 0 < Sy < s, and consider the martingale

e = Mear(s,) Bt 0 Lt ¢ o} for which we have

B> = <> < <M>

= s
t tAT(sz) -

2 0..<.t,<°°

by Problem 4.5(ii) .- It follows from Problem 1.5.22 that both
M and ﬁz - <HM> are uniformly integrablé.' The Optional Sampling

Theorem 1.3.20 implies

E(B_ -B_ IG_1 = E[M - _q.
[ 52' Sq Qsl] : [MT(sz) MT(Sl)'gT(sl)l 0; a.s. P,

o~ ~ 2
G .] = E[(MT(SZ).—MT(Sl)) IsT(sl)]

ElMa (s, = Mr(s)) 1¥r(s))!

= s2 - sl; a.s. p.

Conséquently, B = {Bs, QS: 0 < s¢K ]} is a square-integrable

martindgale with quadratic variation <B>s = s. We shall know that
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B is a standard Browhian motion as soon as Qe establish its
continuity (Theorem 3.13).

For fixed w §.Q, s B;Bs(w) is the composition of the
right-continuous function ‘s H>Ts(w) and the continuous function

t P M (w). The jumps in T_(W) correspond to flat stretches in
A A - | >
<M>t(w), i.e., ty —.Ts_(Q) < Ts(w) =t if and only if

M> (w) = <M>t"(w)' We must show that for all @ in some
1 2

%
Q" ©Q with P(Q) =1, we have:
(4.16) <M>tl(w) = <M>t(w) for s?me 0Lt <t Mtl(w) = Mt(w).
If implication (4.16) is valid under the additional assumption that

tl is rational, then, because of the continuity of <M> and M,

it is valid even without this assumption. For t1 > 0, tl rational,

define
o = inf{t > ty: <MD <M>tl}, .
= - : O s .
Ng = Mg 4s)ng = Mg 7 0 & s <y
1 1
so {N_, & ; 0 s <c©} is in ncr1loC  .ng
S tl+S -

It follows that there is a set Q(tl) € Q with P(Q(tl)),= 1
such that for all w»é,Q(tl),
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<M>tl(w) = <M>_(w), for some t > t; B Mtl(w) = M ().

The union of all such sets Q(tl) as t; ranges over the nonnegative
* .
rationals will serve as QQ , so that implication (4.16) is valid

*
for each w_€ Q .,

It remains to prove (4.15) for all 0 ¢ t <<, 1f, for

* .
w €Q, we have t in the range of T.(w), then there is some

s > 0 for which ¢t = Ts(w) and (4.15) is a consequence of the

7

definition Bs_= MT(s), and Proplem 4,5(ii). Now iigo Ts(w)‘=<n

so if t is not in the range of T.(w), then there must be some

s > 0 such that ¢t, & T, (W) <t < Ts(w)'é t, where we define

<M>t (w), and

T  (w) = 0., This means that s = <M>_(w)
0- : ‘ N ,

implication (4.16) yields

Mt(w) = Mtz(w) = MTs(w) (UJ) = Bs(w) = B<M>t(w) (UJ).

0

4.7 Problem: We cannot expect to be able to define the stochastic

1 :
integral [ xdes with respect to Brownian motion W for

measurable adapted processes X which do not satisfy f des {0 a.s.
' 0

Indeed, show that if

t 2
f X%ds ¢ © a.s., 0< t <1,
c S -

but
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2
J] xfds = a.s.,
S
0
then
t t
P(Tim [ xdW_ = - lim [ X_aW_ = +®] = 1.

£11 0 tiL o S S

Let us state and discuss the multivariate extension of

Theorem 4.6. The proof will be given later in this section.

4.8 Theorem: F. Knight (1971)

Let M = {Mt_-‘—' (Mél),....,Méd)), F.; 0<t <} be a

tl

. continuous, adapted process with u{3) ¢ pesloc

lim <M(l)'>t =co; a.s. P, and
oo ~ '

(4.17) P w35 =0; 1ci#jca, 0¢ o,
Define

T, (s) = dnflt > 0; <Py 5> s} 0<¢s <o, 1¢iga,

so that for each i and s, the random time Ti(s) is

optional for {Et}. Then the processes

g (1) 4 (d)

are independent, standard, one-dimensional Brownian motions.




- &
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Discussion of Theorem 4.8: The only assertion in Theorem 4.8 which

is not already contained in Theorem 4.6 is the independence of the
- Brownian motions B(l); 1l i< d. Theorem 4.6 states, in fact,

that B(l) is a Brownian motion relative to the filtration

(1) & - . .
{gs = dTi(S)}s>0' but, of course, these filtrations are not
independent for different values of i Dbecause Q‘l) = EOO;
1 <i<d. The independence claim is that the o-fields

(1) (2) (@) (1)
%c ,&g, ,...;3%0 are independent, where {32 } is the

filtration generated by B(l). ‘This claim would follow easily
if assumption (4.17) were sufficient to guarantee the independence
of M(i),M(j) for i # j; 'in general, however, this is not the

case. Indeed, if W= {W_, & ; 0 < t <} is a standard

&
Brownian motion, then, with

t ' t
(1) A (2) _ . .
EhatE J‘O'l{Ws_?_O}dWS_' M7 = J”o 1{WS<0}dws, 0<t <o,

we have M and

' t
(1) (2, _ . .
et M s = jo 1{Wsi°3 I{WS<03ds' =0; 0<t<co,

Bﬁt M(l) and M(2) .are not independent, f?r if they were,

<M(l)> and <M(2)> would also be independent. On the contrary,

we have

(1) (2) v e ' g
Ty = J‘O 1{w520}ds+ Io l{ws<o}ds =t; 0< t <o,
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F. Knight's remarkable theorem states that when we apply the
proper time-changes to these two intricately connected margingales,

and then forget the time-changes, independent martingales are

obtained. Forgetting the time changes is accomplished by passing
from the filtrations {Qél)} to the less informative filtrations

g (1)

[ }'

{3
We shall use this example in Section 5. to prove the

independence of the positive and negative excursion processes

associated with a one-dimensional Brownian motion. ]

In preparation for the proof of Theorem 4.8, we consider a
different class of répresentation resulté, those for which we
begin with a Biownian motion rather than constructing it. We
take as given a Standafd, one~dimensional Brownian motion
W = {Wt, Fei 0 ¢ t <o} on a probability space (Q,3,P), and
we assume {Et} satisfies the usual conditions. For 0 < T < oo,
we recall from Lemma 2.1' that S; is a closed subspace of the'
Hilbert'space 'ﬁT. The mappiné

*
=2
o 2 &0 3 X P IL(X) € £,(9,3,P)

preserves inner products (see (2.20)):
T
E Jo X Y, dt = E[I(X)I,(¥)].

Since any convergent sequence in
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A *
(4.18) Ry = {IT(X); X € .sT}

. .
is also Cauchy, its preimage sequence in ST must have a limit .
. )
in £T. It follows that RT is closed in SZ(Q,3T,P), a fact
we shall need shortly. '
%

Let us denote by M, the subset of ‘mg which consists of

stochastic integrals

.
I.(x) = jo X AW 0 <t <o,

. %*
of processes X € £ :

' * ' Cox
(4.19) my A {1 xesfienSen,.
_ 2 -2 =72
 Recall from Definition 1.5.5 the concept of 6rthogonélity in mz.

_'We have the following fundamental decomposition result.

. 4.9 Proposition: For every M € mz, we have the decomposition

*
M =N+ %, where N € m2' Z € mz, and Z is orthogonal to

*
every element of mz.

Proof:
) : *
We have to show the existence of a process Y € £  such that

M= I(Y) + 2, where 2 € mé has the property
*
(4.20) <Z, I(X)> = 0y VX € £ .

Such‘a‘decomposition is unique (up to indistinguishability);

indeed, if we have M = I(Y') + 2' = I(Y") + 2" with Y', Y" € £
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and both 2 and 2" satisfy (4.20), then

&

Z z" - zl - I(YI_Y")

is in mg and <2> = <2z, I(Y'-Y")> = 0. It follows that

P[z_ =0 for every 0 ( t <] =1.

t
It suffices, therefore, to establish the decomposition for
évery finite time iﬁterval [0,T]; by uniqueness, we can then
extend it to the entire half-line [0,<°0). Let us fix T > 0,
let RT be the closed subspace,of. £2(Q,3T,P) defined by (4.18j,
and let R; denote its orthogonal complement. The random
variable MT is in .£2(Q,3T,P), so it admits the decomposition

(4.21) . S My = In(Y) + Zg,

*
where Y € ST _and Zn

€ SZ(Q,ET,P) s;tisfies

) 'v*
(4.22) E[Z,I(X)] = 0; VX €&

Let us denote by 2 = {zt, F.1.0 <t ] a right-continuous
version of the martingale E(Z,l/3.) (Theorem 1.3.11). Note
that 2z, = 2, for t > T. Obviously 2z € M, and, conditioning

(4.21) on 3t’ we obtain

0<C£<KT, a.s.P.

(4.23) M, = I (Y) + 2.5 £t

t

It remains to show that Z is orthogonal to every square-

* .
integrable martingale of the form I(X); X € £ , or equivalently,

that {ztit(xy, F.; 0t < ©} is a martingale. But we know
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from Problem 1.3.24 that this amounts to having E[ZSIS(X)] = 0
for every bounded stopping time S of the filtration {Et}.

For such an §&, we have

2 Ig(X) = ZgpIlgpn(X), a.s. P

because Z_ = Zp, Xt‘= 0 for t > T. Thus, we need only consider

t

§ < T. From (2.21) we have Ig(X) = Ip(X), where X, (¥) =X (Wl g(w)]

*
is a process in ST. Therefore,

E[E(Zy] 3g) Ig(X)]

E[2 I (X)]
= E[zTIT(§)1 =0

by virtue of (4.22). | ' | G

It is useful to have'suﬁficient conditions under which the
classes m; and m; éctually_coincide; in other words, the

- component Z 'in the decomposition of Proposition 4.9 is actually
the trivial martingale Z = 0. One such condition is that the
filtration {Et} is' the augmentation under P of the filtration
l{sz} generated by the Brownian motion W. We recall from

P;oblem 2.7.6 and Proposition 2.7.7 that this -augmented filtration

is continuous. We state and prove this result in several dimensions.

4.10 Theorem: Representation of Brownian, square-integrable

martingales as stochastic integrals

| 1 a
La;w==mt=(wé)““4¢)),3g 0 <t <o} be a

d-dimensional Brownian motion on (Q,%,P), and let {3t} be
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the augmentation under P of the filtration {Sﬁ} generated
by W. Then, for any right-continuous, square-

integrable martingale M = {M_, & ; 0 < t <} relative to

the Brownian filtration {Et} with M, = 0 a.s., there exist

progressively ﬁeasurable processes Y(j) = {Yéj),.Et; 0 <t <™}
Such that '
T — '
(4.23) E[ (¥d)%at <e; 1<j<d, 0<TC<Cw™,
0 t , -~ J 2
and
d t . . :
(4.24) mo =z [ v Pl o<t
' J=1 0 ‘ 4

In particular, M is a.s. continuous.

Proof: We shall say that a progressively measurable process X

T %*

‘satisfying E f Xidt {e; 0T K©, is in £ . We first

: 0 .
prove by induction on d that there are processes Y(l),...,Y(d)
in"£* such that

' a t (3) o (4) _
(4.25) z, &M - = | ¥ awld; o0<t<cw
t t . S s -
j=1 0
: d t (3) = (3)
is orthogonal to every martingale of the form )Y f xsJ dWSJ ’
j=1 O

: *
where x'3) € ¢*; 1 <3 <a. 1If 4=1, this is a direct
consequence of Préposition 4.9. Suppose such processes exist

for 4 -1, i.e.,
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d-1

z, &M - = ft v Pawld, 0 ¢t
- a-1 t . . .
is orthogonal to z f’ X;J)dwéj) for all x(3) ¢ S*; 1 <j<d.
j=1 0 -

Apply Proposition 4.9 to write

T = (d) g4 (4) .
Z = J”o Yo AW 4 Ze; 0 <t <o,

* v
for some x4 ¢ ¢ , where Z is orthogonal to xéd)dwéd) for

*to ot

%*. ) - . s
a11 x(@ e¢ . For 1< j<d-1 and x(3) € £ , we have

L ()

. ~ 1(3)
<z,1I x3yy = <7,1"

) : (d) (3) .
(x3ys o (W (¢ @y W g3y g,

Thus, &ékhave the decomposition (4.25) for M. 1In particular
| (3) LNE) P
(4.26) W' > o= [ oy J)las; 0<tce, 1<3<a.
. . 0 . ; » ,
Following Liptser and Shiryayev [1977, pp; 162-163]), we now
sth that, P-a.s.,

= () OO
z, =0; 0<t <o,

First, we show by induction on n that if 0 = Sg £ 8y L...&s

n
and if the functions £, : R® 4+ €, 0<k<n are bounded and

<t

measurable, then »

(4.27) _ ElZ, -
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When n = 0, (4.27) can be verified by conditioning on 30 and

using the fact Z0 = 0 a.s. Suppose now that (4.27) holds for

some n and choose. Sn < t. For 8 = (61,...,86) € IRd fixed
and s < s { t, define
. n i(G,Ws)
w(s) =E[2_.- @1 £ (W_)e ]
t k=0 ¥ S
n i(G,WS)
=E[z_- @I £ (W_)e ].
- S x=0 ¥ Sg
Using Ito's rule to justify the ‘identity
i(9,w.) . 1(6,Wg.) d s i(6,w.) .
e . s e 4+ ozoie, I e u” qw (3
. j=1 J- Sn u
anl s i(e,w.)
- .u%u_‘r e u du'
. sn
we may write
| i(6,w.) i(e,w.) a s  i(8,W.) .
(4.28) E[z2.e  S|3 ]=z_e. 0 4+ I i6.E[z_[ e Wawld iz
s . ‘s s . 3 s u s
n n j=1 S n
2 s i(e,w.))
- leg® Elz_ [ e Yauld_ 1.
2 s “g s,
: n
But (4.25) and (4.26) imply
s i(é,w.) . S i(o,w.)) .
u' . (3) - 5 u’ .0 (3) =
Elz, [ e baw 2U1E, 1 = B[22 ) [ e aw; ' 13, 1=0.
v s , n n s n
' n n .
. ‘'n
Multiplying (4.28) by iU

-fk(wS ) and taking expectations, we obtain

k=0 k

I
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(4.29) ®(s)

2 s
P(s,) - H-S—ZL J Elz
S

n

n
I £ (W_)e 1du

s 1

2 s
: jILCH |
P(sy) - = Is p(u)du; s, < s <t
n
By our induction hypothesis, m(sn) = 0, and the only solution to
the integral equation (4.29) satisfying thié initial condition
is ®(s) =0; s < s <t. Thus

n 1(6,W) a
(4.30) E[Zt < 1 fk(W e . ] = 0; 8 € R,

X
With D

i

n
max{+ 2, 0 £.(W_ ), 0}, we define two measures on
k=0 ~- %k |

(®q, 8(rY) by
+ +
WD) = EID 1)1y T € B(wrY.
s - !
. Equation (4.30) implies

J" a ei(elx)“"'(dx) ___J‘ ei(elx)

W (dx); 6 € mY,
R R

d

and by the uniqueness theorem for Fourier transforms, we see that

pt = p-. Thus

E[DYE(W)] = EID £(W)]; s < s<t,

for any bounded, measurable £ :]Rd -+ €. This proves (4.27)

for n + 1 and completes the induction step.
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A standard argument using the Dynkin System Theorem 2.5.1°

now shows that

(4.31) | E[Ztg} =0

for every 3z-measurable indicator §, and thus, for every

#-measurable, bounded §. Since F_ differs from 3, only

by P-null sets, (4.31) also holds for every 3t-measurable,
bounded §. Setting ¢£& = sgn(Zt), we conclude that Zt =0 a.s. P.
Indistinguishability of Z £from the process which is identically

zero follows now by right-continuity of its paths (Problem 1.1.5). [

4.11 problem: Let W= {w = Wi, .. ,wl®), 7;0<t <ol bea
d-dimensional Brownian motion as in Theorem 4.10. Let
M= {Mt'~3t; 0 < t < GD}-be a right—cbntinuous local

martingale such that M, = 0 a.s. and P[lim M_ exists

, sit
and is finite for 0 < t <] = 1. Then there exists
progressively measurable processes Y(J) = {Yéj), 3t;

0 < t <} such that

T (5).2 | :
J (xhfat <oy 1 <¢j<a, 0T,
0 .

and

In particular, M- is ‘a.s. continuous.
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4.12 Problem: Under the hypotheses of Theorem 4.10 and with

0 KT <<, ‘let & be an ET-measurable random variable

with E§2 < e, Prove that there are progressively measurable

processes Y1), .., y(d) satisfying

T (3),2
B J (r,7)%t <o; 1< <aq,
0 .
such that
& T ) ) B
(4.32) E=E(§) + = [ YSJ aw V’; a.s. p.
: j=1 0 =

We e#tend Problem 4.12 to include the case T =, Recall
A * )
that for M € mg, we denote by £, (M) the set of processes X
'~ which are progressively measurable with respect to the filtration

i cc
of M and which satisfy E f Xid<M>t (&, According to
0




o)

: *
Problem 1.5.22, when X € £ (M), we have f xtht defined a.s.P.
0

*
If W is a d-dimensional Brownian motion, we denote by %x§W)
the set of processes X which are progressively measurable with

co
respect to the filtration of W and which satisfy E IO Xidt < e,

4.13 Corollary: Under the hypotheses of Theorem 4.10, assume that

€ is an & _-measurable random variable with E§2 { &, Then

there are processes Y(l),...,Y(d) in %;;W) such that
a o .. ..

g=x(5) + = [ v Pawld; as.p.
j=l 0 .

Proof:

Assume'withOut loss of generality that E(§) = 0, and let Mt

be a right-continuoué modification of E(%l&t). According to
Theorem 4.10, there ekist progressively measurable Y(l),...,Y(d)

‘satisfying (4.23) and (4.24). Jensen's ineéuality implies

2 2
My < E(§ l3t),‘so

™M

t :
(3)y25. = — 2 2 .
EIO (¥ 7)) %ds = B> = E(MY) < E(B%) <®; 0 <t <o,

j=1

(3) ¢ ¢* B 7 () g3 .
Hence, Y € £ (W) and M_ = IO Y’ aw ' is defined for

1 < 3j<d. Problem 1.3.18 shows that M, = E(8|3) = &. C




3.4.26

In one dimension, there is a representation result similar
to that of Corollary 4.13 in which Brownian motion is replaced

by a continuous, -local martingale M. This result is instrumental

in our proof of Theorem 4.8.

4,14 pProposition: Let M = {Mt, §_.; 0t <®©} be in werloc

and assume that 1lim <M>t =, a.s.P. Define T(s) by
t=+co

(4.14) and let B be the one-dimensicnal Brownian motion

. |
B =1{Bg =My 0<s <]

as in Theorem 4.6, except now we take the filtration {&s}
for B to be the augmentation with respect to P of the
filtration'{3§} generated by B. Then, for every
Eoo—measuraﬁle random variable § satisfying E§2 < oo,
there is a process  X € §;4My for which

(oo
(4.33) §=E(§) + ] X.aM.; a.s.P.
| . 0

"Proof:

Let Y = {Ys, €_; 0 ¢ s <} be the progressively measurable

s
process of Corollary 4.13 for which we have

co

(4.34) E [ v%ds <,
o S
' o
(4.35) £ =E(E) + ] Y dB_.
, g S S
Define § Y 0 K t <o,

tﬁ. <M}t -
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We show how to modify X so as to obtain a progressively

measurable process X. Note that because {QS é ET(s)} contains

{32} and satisfies the usual conditions (Theorem 4.6), we have
85 < Qs; 0 { s e, Conseguently, Y is progressively measurable
relativg to {Qs}f if. Y is a simple process, it is left-continuous
(c.f..Definition 2.2), and it is straightforward to show using

Problem 4.5 that {Y . ; 0 < t <o} is a left-continuous process
t

adapted to {3t}; and hence progressively measurable (Proposition 1.1.13).

In the general case, let {Y(n)fill be a sequence of progressively

measurable'(relative to {853) simple prqcésses for which

by (n) 2, _
lim B [ |¢ ™ -y_|“as = o.
n=+co 0 S ]

(Use Proposition 2.7 and (4.34)). A change of variables

(Problem 4.5(iv)) yields

' 2 (n) 2
(4.36) 1im E [ 1% -% e =0,
. n.’m 0 -
(n) & (n) . (m) &,
where Xt = Y<M>t. Ip particular, the sequence {Xt }n=l is

* .
Cauchy in & (M), and so, by Lemma 2.1', converges to a limit

X € &;JM). From (4.36), we must have

|2a<M>. = 0.

t

w o~
(4.37) E ] IX -x,
: 0

It remains to prove (4.33), which, in light of (4.35), will

follow from
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o cc
(4.38) o Io Y dB_ = jo X, dM, ; a.s.P.
We leave the proof of this equality as a problem. O

4.15 Problem: Prove (4.38). (Hint: Consider first the case

where Y 1is simple).

Proof of F. Knight's Theorem 4.8:

Our proof is based on that'of,Meyer{197lL'Under the hypotheses

of Theorem 4.8, 1ét {€{})] be the augmentation of the filtration

(1) .
{32 3} generated by B‘l)i 1 <i<d. All we need to show is

that Qéf),...,q;?)lzare independent.

Fof each i, let §(i)i be a bounded, q;f)-meaSurable random
- variable. According to.Eroposition 4.14,'there is; for each i,

a.progfessively measurable process x(i) = {Xéi),VEt; 0 < t ¢ oo}
which satisfies

oc

(1)) 25, (1)
E (X, 7)famt > <o 1
Io t t

[ZaY
e
A
&

and for which

P2
o)

‘ (0 o]
(1) _ (i) (1) 4, (1), .
g = E(§‘ ) + Io X aMT'; 1< i

~ Let us assume for the moment that

(4.39) gty =0; 1 ¢1i<a,
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and define {Et}-martingales
(1) A 5 L (4) g ()
g s [ xMamt; 0<t<coo, 1<i<a.
t 0 S S -

Ito's rule and (4.17) imply that

d . o d t . . .
(4.a0) 1 gl <z oo gxPanB 0 ¢ ¢ ¢,

i=1 i=1 0 j#i

In order to let t %< in (4.40), we must show that

e (1) . 2 .
(4.an) e[ (1 g% 2amPs (w; 1< ca.
0 J#i

Repeated application of Holder's inequality yields

t . Cya ,
(3) (1), 2 (i)
E (o g'dx‘Hycamtt’s
Io i S 8 S

<E{ 1 [ sup (g{I? . cgld)s ) -

j#i  0<s<t
' 4 172 1/4
< [E sup (§él))4] - [E sup (5;2))8] e, ces
0<s<t 0<s<t
-4 -d
,d+1f2 .o.dl2
. [E sup (§éd))2 ] '[E<§(l)>i} : 0L t <<,
0<s<t -

For m > 1, Doob's maximal inequality (Theorem 1.3.6(iv)) gives
- (3), 2m 2m \2® _ _(5),2m
E sup (§.7) £ zm1 E(5.°7)
0<s<t

2m . 2m
2m . (3)

A
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We have from Proposition 3.22:

1 . d+1
< E(g(l))Z

< =,

. .d -
B -E<§(?)>i < E(§él))2

for some positive constant B which does not depend on t. Thus,
(4.41) holds, and letting t =+ < in (4.40), we obtain the

representation

a . a -
(1) _ (3) (1) 5, (1)
o s = I 0 g X “lam .
= i=1 Io j#i 5 % %

The right-hand side, being a sum of martingale last elements

(Problem 2.16'), has expectation zero. Thus, under assumption
. d -

(4.39), we have E 1 §(l) = 0. Equivalently, we have shown that
i=1 , ’
‘ for any set of bounded random variables g(l),...,g(d);,where each
g(i)

is q;j)—measurable, the equality

d ) (1)
(4.42) E I [§ - E(§'77)] =0
: i=1 ’
~holds. Using (4.42), one can show by a simple argument of induction

on d .that

d . d .
g 1 g = 1 E§(l).
i=1 - i=1
. (1) _ . (i) .
Taking & =1, i A; €€&.,1<1i<d, we conclude that the
i

o-fields %é}’,...,q;?) are independent. . O
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What happens if the random variable € in Problem 4.12 is
not square-integrable, but merely a.s. finite? It is reasonable

to guess that there is still a representation of the form (4.32),

where now the integrands Y(l),...,Y(d) can only be expected
to satisfy
(4.43) J (¥ %at <o;  a.s. P

0

In fact, an even stronger result is true. For any fixed 3j, thére
is a progressively measurable process Y(J) such that (4.43)

holds and
T L ,
g=[ v Pawld; als. p.
0. .

Thus, we only need the 6ne-aimensional‘B:ownian motion {Wéj), Et;
0 <t <] for the representation, even though {3t} is the
augmentation of the filtration geherated by the d-dimensional .
Brownian motion {(wél),...,wéd?);'o < t <o}, This is a special
case of the following theorem. The left-continuity of {Et}

follows from Problem 2.7.6.

4.16 Theorem: Dudley (1977). .

Let W={W_, 3.;0< ¢t ]} be a standard, one-dimensional
Brownian motion, where, in addition to satisfying the usual
conditions, {3t} is left-continuous. If 0 < T < ©- and
€ is an 3T—measurable, a.s. finite random variable, then
there exists a progrgésively measurable process

Y = {Yt, F

g 0Lt T 'satisfying
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T . |
(4.44) ‘ jo'Ytdt < c©;  P-a.s.,
such that
T -
(§.45)_ - g = J‘o Y. dw ; - P-a.s.

We present the beautiful proof of this result provided by
Dudley [1977), a proof which uses the representation of stochastic

integrals as time-changed Brownian motion.

4.17 Lemmaa.
' Consider numbers 0 < a < b < and a measurable,

nonrahdom, function @ : [a,b) = R for which

ae) & [ ¢%(s)ds is finite and positive on (a,b), with
a . :

lim A(f) =c. Let W= {W, J; 0 ¢t <©] bea
t1b

standard, one-dimensional, Brownian motion and X an

3a-measurab1e, a.s. finite random variable. We set

t
M= Ia p(s)dW_; a < t < b, and

inf{t € [a,b); M () = X(0)]; if {...] # 0,
T(w) 4 | ' ' )
b ; otherwise

Then T is a stopping time of {3t} with Pla < 7 < b] = 1.

Furthermore, the random variable G(w) & A(T(w)) obeys

P(G > ul3,] g—'—’i-'- Al; a.s. P, u > 0.

u
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Proof: The change of clock
T(s) & inf{t € [a,b); A(t) > s}; 0 < s <o,
is deterministic, and T () 4 1im T(s) = b. The continuous
SO

i 4 = A A .
local martingale B {Bs a MT(s))Qs = 3T(s)' Q < s < q:} has

guadratic variation <B>S A(T(s)) = s (c.f. Problem 4.5(ii)),
and so B 1is a Brownian motion.

Now X and {Bg; 0 < s <} are independent, so
B = X = {Bs-x, Ggi 0 < s < o} is a Brownian motion with
initial distribution u(dx) = P[-X € dx]. Define the passage

time

{1nf{o <s<®; B_-X=0} if {...} # 0,
g =

¢, otherwise.

We have from (2.6.3) and the Markov propérty:
, _

0]
L]

P[0 € dslGy] = X 25 45, 0¢ s <o,

42ﬁ$3'

In particular, P[0 0 <o0] =1. Now T =T(0), so Pla < T < b] =1.
Furthermore, G=A(T(0)) = 0 and Ea = Qo,‘so
PIG > ul&F ] <1 A [ X1 g ¢ XL A g, a.s.P, u > 0.
[ 3 T Yu -
u 2 s D

Proof of Theorem 4.16:

2

any -sequence of positive numbers {anjxl strictly increasing to T,
n=1

Let n = arc tan §, so that [n(w) | < Z for all w € Q. For
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the discrete-time martingale {nn 4 E[nl&a 1. g, i n2 1} converges
n n
cc

a.s. to E[nlo(uU g, )] (Chung [1974], Theorem 9.4.6] or Ash
n=1 n U ‘

n

because of the left-continuity of-{3t3. Consequently, §n 4 tan M,

{1972, Theorem 7.6.2]), and this limit is actually E[nl&T]

converges a.s. to &, and we can extract a subsequence, which we

also denote .{§ 1131, for which

n°n=
(4.46) prlg -8l > %1 <L; n>1
. n . 3 _7I. . hd
: n". ' n
1 1 4 A
Because ———x + 5 { ————5 for n > 2, we have from (4.46):

(n-1)°  n® = n(n-1)

——i—-2-1<x=[l§ -8 —tgerig -5l

(4.47) PllE -§‘ |
- 'n “n-l n(n-1)° (n-l)

el 2 o oaso
(n-1) n- ° (n-1)

Now we construct the progressively measurable process Y

satisfying (4.44) and (4.45). For n > 1, we let o _(t) = —%
: =~ n a -t
A : n+l
popt 2
35 L t<a ., andobserve that A _(t) = fa ¢,(s)ds is positive
n
and fini;e on (an, an+l)' and.lngreases to infinity as t Tan+l‘

According to Lemma 4.16, the stopping time

.
inf{t € [a_ ,an+l) J  wls)aw_ = ¢

a
n

it {--.1 # 8,

- g 137

n el

e

a otherwise

n+l’
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satisfies P[an < T < an+l] = 1 for every n > 1, where we take

€0 4 0. It follows that for P-a.e. ® € Q, the sequence

{Tn(w)fill is strictly increasing and converges to T as
n + 0, We define
o

Y, (w) = Z
t .on=

>

o (E) 1 y(8): 0< e,

This defines an adapted, right-continuous (and hence, progressively

measurable) process such that for every n > 1,

Ian+l n ij n
(4.48) Y. dw_ = Z Y. aw, = & (E.-E&. .) = E_,
0 tTt 5=1 aj' tT 't 3=1 3 j-1 n
and

T , . -n %5 o
(4.49) J yiat =1im = [ 7 ol(t)at = G.

0 © pece j=1 a; J | j=1
where Gj(w) = Aj(Tj(w)). Lemma 4.17 gives

Pl > 513, 1 < nlg -5 .| Al
n n
But, from (4.47),
4
Elnlg -8 ;1 A1) < J (nlg -5 I alap + ——
{nlg_-5__ 1 >—2=) (n-1)
' - (n-1) :
< 6 n> 2,

(n-1)2 "’
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and so

6

1
PG > %] ¢ —2 _.
n " op2 (n-1) 2

i

.n > 2.

‘ *
By the Borel-Cantelli lemma, there exists an event (  of probability

. . *
one, such that for every w € O , there exists an integer no(w) > 2

with:
G (W) < -3; n>n,(w
n - 2 =70 :
n
© . S
We conclude that X G_ (W) is a convergent series on Q , and
n=1 :

(4.49) gives us (4.44).

Because of (4.44), the stochastic integral {It(Y) = f stws;
: : 0
0< t ¥« T} is defined and almost surely continuous. Letting

n +c in (4.48), we obtain (4.45). B 3 C

4.18 Problem: Extend Theorem 4.16¢ to the case T =00,

4.19 Remark: It is instructive to compare the representations (4.32)
and (4.45) in the case where {3t} is the augmentation of the -
filtration {Eﬁ} generated by the one-dimensional Brownian
motion W. The expectation EE does not appear in (4.45)
‘(Theorem 4.15 does not assume the integrability of E). We
do not know if the proof of Tﬁeorem 4.16 can Se modified in
the case E§2 < GD,‘ EE = 0 to give the result of Problem 4.12,

T
i.e., the representation (4.45) with E f Yidt~< co.,
. ) 0 .




3.5 THE. GIRSANOV THEOREM

In order to motivate the results of this section, let us
consider independent normal random variables Zl""’zd on
(0,3,P) with Ez, = 0, EZ; = 1. Given a vector (Hy,...,uy) € R%,

we consider the new probability measure P on (Q,3) given by

~ . d 1 ¢ 2.
P(dw) = exp[ifl HiZ, (W) - 35 i-—2=1 Byl - P(Aw).
Then g[zl-é dzl,...,zd € dzd] is given by
d 1 4 2
exp[.E Hizo = 3 E “i]’°P[Zl € dzlf""zd € dzd]
=1 i=1
= (2m) Y2 eypr- 2 s (z,-1.) 214 d
o exRlm g o) (ETHy) ARy a2

o~

Therefore, under P the random variables Zl[...,zd are independent

and normal with Ezi = My and ﬁii = 1., In other words,
{E} = Zi = My 1 < i < d} are independent, standard normal

random variables on (Q,%,P). The Girsanov Theorem 5.1 below extends
this idea of "invariance of Gaussian finite-dimensional distribu-
“tions", under appropriate translations and changes of the underlying
pfobability measure, from the statiC'tovthe dynamic setting.
Rather than beginning with a d-dimensional vector (Zl,...,Zd)

of independent, standard normal random variables, we begin with

a d—diﬁensional Brownian motion under P, and then compuie a new

~ N : N . .
measure P under which a "translated" process is a d-dimensional

Brownian motion.




Throughout this section, we shall have a probability space
(2,%,P), and a q—dimensional Brownian motion
W= {wt = (wél),...,wéd)L F.i 0 <t c©} defined on it, with
P[W, = 0] = 1. We assume that the filtration {3t} satisfies the
uSualiconditions. Let X = {Xt =»(Xé1),...,xéd)n 3t; 0 <t <o}

be a vector of measurable, adapted processes satisfying

. T . . -
(5.1)  ptf x{M%at <o) =1; 1¢ica, 0T oo,
0

()

Then, for each i, the stochastic integral I (x(l)) is defined

ahd is a member of mp,loc. We set

d t . : t
, 1 2
(5.2)  2,.(X) 4 exp[ifl Io xél’dwél’.- 5 Io uxsu ds].

‘Just as in Example 3.9, we have

| a t
(5.3) z,(X) =1+ T [ z

(1) g0 (1)
AR JXIX Traw T,

~which shows thaf Z(X) 1is a continuous, local martingale with
Zo(X) = 1.

Under certain conditions‘on - X, to be discussed later, 2 (X)
willAin fact be a martingale, and so. EZt(X) =1; 0< t<co, 1In
this case we can define, for each 10 £ T <, a probability |
measure B, on & .by

T T

. A .
(5.4) PT(A) E E[lAZT(X)]' A € ?T'
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The martingale property shows. that the family of probability

measures {5&; 0 < TK oo} Satisfies the consistency condition

(5.5) Fo(a) =F (@a: A€3F, 0t

tl

5.1 Theorem: Girsanov (1960), Cameron & Martin (1944)

Assume that Z(X) defined by (5.2) is a martingale.

Define a process W = {W, = (i (1)

. WL w8 0 <t <o)

by

~l s A . t . o
(5.6) W S wd o xWas, 1¢i<ca, 0<¢t<o,
0o ° - T -

t t
For each fixed T € [0,c0), the process {ﬁ;, d; 0 <t < T}
is a d-dimensional Brownian motion on (Q,&T,g). _ O

The preparation for the proof of this result starts with
Lemma 5.3 below; the reader may proceed there directly, skipping

the ensuing discussion on first reading.

Discussion: Occasionally, one wants to consider W as a process defined

for all t GI[O,OO), and for this purpose the measures

{?&; 0 < T <o} are inadegate. We would like to have a
single measure §~ defined on &, so that ] festricted

to any ET agrees»with 5&; however, such a measure does not
ékist in general. We thus content ourselves with a measure

P defined only on %ﬁw the o-field generated by W,
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" such that P restricted to any 3¥ agrees with 3&, i.e.,

W

(5.7) B(a) = EtlAzT(X)l; A €3, 0LTC®,

4 If such a 5' exists, it is clearly unique. The existence of
P follows from the Daniell-Kolmogorov Extension Theorem 2.2.2.
We show.this when d = 1; only notational changes are requiied
for the multidimensional case.

Let ¢t = (tlf‘f"tn).>be a finite sequence of distinct,
nonnegative numbers, as in Definition 2.2.1, and let
t = max{tl;...,tn}. Define

_ = . | ‘ . n,
0 (8) = Byl €0; (M (W), .. W, () €Al; A € B(RY.

1 n

Then {Qt} is a consisfent’family of finite-dimensional

distributions, so there is a probability measure Q on

[0,)

(R , 8(R97®)))  such that

[0,0)

Q (a) = Qlw € R i (wlty),...,w(t)) €Al; A € B(RD).

But the typical set in &23 has the form {w € Q; W_(w) € B,

“where B»G.ﬁ(ni[o’co)). Consequently, Q induces a probability
measure P on 22; defined by

>

Plwen; w (v €8] 2om; Beam!®™),

~and this measure satisfies (5.7).




The process W in Theorem 5.1 is adapted to the filtration
{Et}, and so is the prbceés {fz Xéi)ds; 0< t <o©}; this can be
seen as in part (c) of the‘proof of Lemma 2.3, which uses the
completeness of St’. However, when working with the measure P
which is defined only on %23, we wish W to be adapted to {32}.
This filtration does not satisfy the usual conditions, and so we

must impose the stronger condition of progressive measurability

on X. We have the following corollary to Theorem 5.1.

5.2 Corollary: Let W = {Wt, Foi 0t o} be a d-dimensional

Brownian motion on’ (Q,3,P) with P[WO = 0] = 1. Assume that

the filtration {3t3 satisfies the usual conditions. Let

: W
X = {xt, 3.
measurable process satisfying (5.1). If 2(X) defined by

(5.2) is a martingale, then W = [¥_, 3}; 0 < t <]}

0 <t <©} be a d-dimensional, progressively

defined by (5;6) is a d-dimensional Brownian motion on

(0,30, 9.

Proof:

For 0 <] <...<t < t, we have

BT, £ t,

The result now follows from Theorem 5.1. ’ O
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Under the‘assumptions of Corollary 5.2, the probability measure

P and P are mutually absolutely continuous when restricted to

32; 0 T <Ko, However, considered as probability measures on

§z>, P and P .may not be mutually absolutely continuous. For
exXample, when d =1 and X_ = WU, a nonzero constant, then

t
Z,(X) = expluW, - = u2t]; 0 < £ < ©
t £t~ 3 P 0

is easily seen to be a martingale. Corollary 5.2 and the law

of large numbers 'imply

Bl1lim %wt: ul = B[ 1lim -}Eﬁt =0] =1,
- oo ) t2co , ,
L
P[ 1lim -Ewt—u]—o.

gaco B 1

In particular, the P-null set { lim % W, = pl is in F, for

t+cC
every 0 T <, so P and ?& cannot agree on J;. This is
the reason we require (5.7) to hold only for A € 3¥. G

We now proceed with the proof of Theorem 5.1. We denote by

E_ (E) the expectation operator with respect to 5&

T (P).

5.3 Lemma: Fix 0 { T < < and assume that 2Z(X) is a martingale.

If 0 s<t<T and Y is an J,-measurable random variable

[ad

- satisfying ETIY|'< co, then we have the Bayes' Rule:

o F] o= et g : &
ET{YlaS] = Zs(X) L[th(X)jss], a.s. P and Pg.




Proof:

~

Using the definition of ET, the definition of conditional

expectation, and the martingale property, we have for any A € 35‘

o~

1 1
ET{1A E;TET E[th(X)lzs]} = E{lAE{thlss]}

= E[1,v2.] = E&[lAY]. C

We denote by m;r1°° the set of continuous, local martingales

M = {Mt, st{'o <t < T} on (Q,ET,P) satisfying P[M, = 0]. We

" define mg,loc similarly, with P replaced by ?&.

5.4 Proposition: Fix 0 { T < ©© and assume that 2Z(X) 1is a

c,loc

martingale. If M € mT , then the process

e

' ¥ w B SES (1),
(5.8) HM={M =M - [ x Vamw >, F; 0<tgT]

i=1 ‘0 t

is in mg,loc;

1f N €nSrto% ang
§F AN, - % jt x B aw,ws ; o<t
= ’ r
Eo 0t 4170 B s

then

<HM,N>,. = <M,ND> 0<t<T, a.s. P and P

t tf 22 T’

where the cross variations are computed under the appropriate

measures.




Prbof: We consider only the case where M and N are bounded

martingales with bounded guadratic variations, and assume also that

d t .
Zt(X) and = f (Xéj))zds are bounded in t and w; the general
ij=1 0

case can be reduced to this one by localization. Since (Problem 3.2.16)

t . . t .
Ijo Xél)d<M,W(l)>s|2 < >y fo (xél))zds,

we see that ﬁ_ is also bounded. The integration-by-parts formula

(Prbblem 3.11) gives

Z, (X)M =fz(m&4+ %jﬁﬁxuh(mm”)
t t o Y Uiy Y9 wu Tu u

which is a martihgale under. P. Therefore, for 0 (s { t < T,

" we have from Lemma 5.3:

o~ "~ - 1 o~ —.N
ET[MtI3S] = E;TiT E[Zt(X)MtIES] = M

It'follows that M € mc,loc.

The change-of-variable formula also implies:

£ t

u

MN, - <, = jo M aN -+ Io N am,
a t : .
_ & (1) (1)
z [jo M_x tTadn,wi

o (D) oy (i)
2 + Io N X, asM, Wi g,

as well as
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Zt(X)(MtNt

t t
- M) jo 2 (X) M aN  + fo z2 (X)W am

~

v (1) (1)
+ z (MuNu <M,N> XU (X)aw .
This last procees is consequently a martingale under P, and so
Lemma 5.3 implies that for 0 < s < t < T

E[MtNt - <M,N>t!35] =MN_ - <M,N>_; a.s. P and P

g 0Lt LT, a.s. P, and P.

This proves that <ﬁ,ﬁ>t = <M,N>

‘Proof of Theorem 5. l~» We show that the contlnuous process W on

(9, T,P ) satisfies the hypotheses of P. Levy s Theorem 3.13.
Setting M = W(J) in Proposition 5.4 we obtain M =~W‘3) from

(5.8), so W(j) €-ﬁ§’l°c. Setting N'='W(k?, we obtain

2(3) m(k)y (3 (k) _
DLW = W Wy = 6, .t

Let {M

‘P (M € mc loc)

3t;,o < t < T!{ be a continuous, local martingale under

. With the hypotheses of Theorem 5.1, Proposition 5.4

shows that M is a continuous semimartingale under 5& * (Definition

3.1). The converse is also true; if {ﬁt, ;i 0<t<T)isa

continuous‘martingale under 5&, then Lemma 5.3 implies that for

0<s<t«T:
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E{Zt(X)Mtl3s] = ZS(X)ET{MtldS] = Z_(X)M_; a.s. P and Pr,

so z(X)M is a martingale under P. If ﬁré m;,loc, a localization

argument shows that Z(X)M € mc loc. But 2z(X) € mc, and so Itd's

rule implies that M = Z(X) [2(X)M] is a continuous semimartingale
under P (cf. Remark 3.4). Thus, given M € m;,loc, we have a

decomposition

M, =M +B 0<t<T,

‘c loc and B 1is the difference of two continuous,

where M €
nondecreasing, adapted processes with B0 = 0, P-a.s. According

to Proposition 5.4, the process

a

M, - (M - = f X(l)d<M wiils )
i=1 O
S T L) (1)
=B+ I [ x Mamuw T 0t

i=1 0
is in m;,loc' and being of bounded variation this process must

"be indistinguishable from the identically zero process (Problem 3.2).

We have proved the following result.

‘5.5 Proposition: Assume the hypotheses of Theorem 5.1. Then

s loc

every M€ U& has the representation (5.8) for some

c,loc
M € mT .
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We note now that integrals with respect to dﬁﬁl) have

two possible interpretations. On the one hand, we may interpret

them by replacing dﬁél) by dwél) - Xél)dt so as to obtain

the sum of an ItS integral (under P) and a Lebesgue-Stieltjes

integral. On the other hand, W(l) is a Brownian motion under P,

sO we may regard integrals with respect to dﬁﬁl) as Ité“integrals

under 5&. Fortunately, these two interpretations coincide, as

the next problem shows.

5.6 Problem: Assume the hypotheses of Theorem 5.1 and suppose

0 t-<©} is a measurable adapted process

AS
satisfying P[J Yidt <] =1; 0 < T <©. Under P we
0 : ,

: ot . :
may define the Ité‘integral IO stWél),'whereas,junder 5&,

t s
we may define the It8 integral [ stWél), 0t
0

Show that for 1 < i £ 4, we have

I~
3

t : t A :
(i) _ (1) _ (i) ,_.
Io Y aWg fo Y _dw_ fo YXx t'ds; 0<t

‘a.s. P and

" (Hint: Use Proposition 2.22.)

We now discuss a rather simple, but interesting, application

of the Girsanov theorem: the distribution of passage tiﬁés for

Brownian motion with drift. Let us consider a Brownian motion

W'=,{Wt, & 0 <t <®} .and recall from Remark 2.8.3.,

t;

o2



3.5.12

that the passage time to level b # 0,

ne

T

{fﬁf{t > o;'wt - bl; if {...1 # g,
b

+co; if {...} =9,
has density and moment generating function, respectiveiy:

| 2

|b expl[- %Eldt; t >0,

(5.9) P[T, € dt] =
3
2wt'

a > 0.

—ar :
(5.10) Ee P = -lblY2a,

For any real number K # 0, the process W = {Wt = Wt - Mt, 32;
0 £ tK c©} is a Brownian motion under the unique measure

P(“) which satisfies

P(“)(A) = E[lAexp{th - % Hzt}]; A'E.Ez

(u), W o

(Corollary 5.2). We say that, under P g = HEF Wt is a
Browniah motion with drift . On the set {T, < t} € N 3W = Ew ’
. : b - t Tb tth
we have 2 = Z,., , so the Optional Sampling Theorem 1.3.20 and
tAEb Tb- _ :

Problem 1.3.21(i) imply

!

5.1y pMr <ot

_ ; W
E[I{Tbgt3zt]'“ Ell{Tbgt}E{ZtlgtAmb}]

N E[I{Tbitlztﬁmb] = E[l{Tbitlsz]

¢ 12
IO exp{pb -3 H s}P[Tb € ds].
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-

Relation (5.11) has several consequences. First, together

with (5.9) it yields the density of Tb under P(“):

_ ‘ 2
(5.12) pH [T, € at] = 'b'3 exp|- ‘—ll;—*;il—]dt, £ > 0.
: ' 21t

Secondly, letting t =+ < in (5.11), we see that
() _ _MWb _1 2
P [Ty, < @] = e "Elexp( 5 BT 1,
and so we obtain from (5.10):
(5.13) P [T <o) = explub - |pbl].

In particular, a Brownian motion with drift H # 0 reaches the

- level b # 0 with probability one if and only if Y and b have

the same sign. If -# and b have opposite signs, the density in

(5.12) is "defective", in the sense that P(“)[Tb <] < 1.

5.7 Problem: Let T be a stopping time of the filtration {3¥}

with P[T < ©] = 1., A necessary and sufficient condition

for the validity of the Wald identity:

(5.14) E[exp{pWT - % HZT}] =1,

where pH is a given real number, is that

(5.15) P (7 ¢ 0] = 1.
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In particular, if g € R and udb < 0, then this condition
holds for the stopping time

inf{t > 0; W_ - ut

b}l; if {...1 # @,

ne>

(5.16) S |
o ; if {...} = ¢@.

5.8 Problem: Denote by

5 \ ey 2 |
h(t;b,u)'é lb|3 exp[- lEE%EL_], t>0, b#0, 4 E€R,

2tt

the'(possibly defective) density on the right-hand side of (5.12).

Show that

h(";bl+b2,p) =~h(°:bli“) * h(';bzl“); blbz >0, 4 €R,

where * denotes convolution,

5.9 Problem: With M > 0 and W, 2 inf W, under P the
£>0

random variable -W,  is exponentially distributed with

parameter 24, i.e.,

p(M_w, € ab] = 2ue”?*Pap, b > 0.

5.10 Problem: Show that

- -QT v . .
e P = exp(ub - Ibl Yu*420), o> 0.
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5.11 'Exercise:‘ (Robbins & Siegmund [1973]) Consider, for 1 > 0

and b > 1, the stopping time of {Eﬁ}:

. _{inf{t > 0; exp(Wi, - 3 u°t) =bl; if {...] #9,

O

;. if {...} = g..

Show thaf

é[Rb <] = %, gWp =240Db

In order to use Girsanovfs theorem effectively, we need some
fairly general conditions under which the process Z(X) defined
by (5.2) is a martingale. This process is a local martingale

"~ . because of (5.3). Indeed}-with

' : : t oy
ing{t > 0; max [ (z_0xY)%as =nl; if {...] # 0,
o & 0<i<d "0
n .
& ; if ic-o} =0,
A
the "stopped" processes: z(n) 2 {Zén) 4 Zoap (X)0 35 0 <& ¢ < o]
n

are martingales. ' Consequently, we have

|31 =2

E[Z 3
'K:/\Tn ~ 8 s/‘v.Tn

0<s<t, n>l,

and using Fatou's lemma as n = <, we obtain

E[zt(X)]ss] § Zgi, 0 < s <t
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In other words, Z(X) is always a supermartingale, and is a
martingale if and only if
(5.17) Ezt(x) = 1; 0 <t (oo

(Problem 1.3.23). We provide now sufficient conditions for (5.17).

5.12 Proposition: Let M = {Mt, F; 0< t <@} be in 1 s Loc

t;

and define

o -1 .
Zt = exp[Mt 5 <M>t], 0 < t< 93.

If

(.5.18) E[exp{% <M>t}] < co; 0 <t <o,

then EZ_=1; 0 <t <o,

Proof:

'We.must show that for an arbitrary, positive t we have
EZ, = 1. Once t is fixed, we may alter M, for u > t if
necessary ﬁo assure that

(5.19) P[ 1lim <M>u =] =1,
’ u-co0

We assume henceforth that (5.19) holds.

Let T(s) = inf{t 2 0; <M>t > s}, so the time-changed process

_tn A o A ;
B = {Bs - MT(s)’ Qs - 3T(s)( 0<s <o}
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is a Brownian motion (Theorem 4.6). For b < 0, we define the
stopping time for {G_J as in. (5.16):

inf{s > 0; B_ - s =b}; if {...]1 # p.

Sb=

o, if {...} = @.

Problem 5.7 yields the Wald identity E[exp{B. - % Sb}] 1,

5b
whence E{exp{% Sb}] = e—b. ansider the exponential martingale

é —_s. . = 3 'A- * .
{zs = exp(BS 2)', G.; 0<s <.} and define {Ijs = Zs/\s ’ QS, 0<__s<003.

b
According to Problem 1.3.22(i), N is a martingale, and because

]

P[Sb <'q:]'= l, we have’

= 13 = 1
N = lim Ns = exp(BS 5

S
e S4CO , b

b)o
. Fatou's lemma implies

N_ = 1lim E[N_IF ] > E[N_[3.] 0 < r co
r -s—_-’—é—o- ‘Sr-— Nwr'. - ’

so N={N_, G; 0<s <} is a supermartingale with a last

element. However, EN_.=1 = ENy, so N = {Ns, G ;

g 0 ¢ s <@}

has constant expectation; thus N is actually a martingale with
a last element (Problem 1.3.23). This allows us to use the
Optional Sampling Theorem 1.3.20 to conclude that for any

stopping time R of the filtration {QS}:

1 _
E[eXP{BRASb - 5(RAsb)3] = 1.
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But {<M>, > s} = {T(s) < t} € 3,5y = Ug (Problem 4.5(iii)),

t
so <M>t is a stopping time of {QS}. Therefore,

1
(5.20) E[I{Sbi<M>t}exp(b + 5 Sb)]

_ 1 . |
+ Ellroyy. < Sb}exp{Mt - 5 (M>t}] = 1;

t
0<t<x, b<o.

The first expectation in (5.20) is bounded above by
ebE[exp{%'<M>t}],‘which cohverges to-zero as b { -0, thanks
to assumption (5.18). As b l-OO,bthe second expectation in

(5.20) converges to Ezi because of the monotone convergece

theérem; Therefore, -EZt = 1; O'S,t < o, 0

'5.13 Corollary: Novikov (1972)

Let W = w, = (wél’,..f,wéd)),3t; 0 <t <®} bea
d-dimensional Brownian motion, and let X = {Xt = (Xél),...,xéd)),

'3;; 0 < tX« c©}] be a vector of measurable, adapted processes
satisfying (5.1). If

. . t . .
- (5.21) E[exp{% fo ”XSﬂzds}] <co; 0« t <o,

then 2Z(X) defined by (5.2) is a martingale.
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| _ : .t (i) o (1) L
Proof: LeF Mt = =1 Id Xs dws in Proposition 5.12
and recall the discussion preceding (5.17). | O

5.14 Corollary: Cbrollary 5.13 still holds if (5.21) is replaced by

the following assumption: there exists an increasing sequence

oo ' : _ .
{tnjn=0 of real numbers with 0 = typ <ty <.... and
lim t =0, such that
n-+co A '

R :
' 1 00 2
(5.22) Elexp{s I stﬂ ds}] <o; =n > 1.
tn—l
Proof:
~ (1) ()
Let X_(n) = (X 1 P ¢ 1l ), so
£ Te o Tlt_q<t<t ) t Tt <t<e )

Z(X(n})) is a martingale by Corollary 5.13. 1In particular,

(X(n)) | &
n tn--l

E[Z, ] =2 (X(n)) =1; n > 1.

n-1

But then,

Elz, (X)] = E[2, (XE{z, (x(n))|3. 31 = Elz, (X1,
tn tn--l tn tn—l tn-l

and by induction on n we can show that E[Zz, (X)] =1 holds for
n

all n > 1. Since E[Z,_(X)] is nondecreasing in t and

lim t =c, we obtain (5.17). O
n-co ,
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5.15 Definition: Let Cd[OFD) be the space of continuous functions

x : [0,00) = RS, For O £ t <, define @ 4 o{x(s); 0<s<t},

and set G = G_, (cf. Problems 2.4.1 and 2.4.2). A progressively

measurable functional on Cd[O,CO) is a mapping

K [0,0) x Cd[0,0D) -+ IR which has the property: for each
fixed 0 < t <, u restricted to [0,t] x c%[0,00) is

8[0,t] ® Qt/ﬁ(ﬂn -measurable.

If MW= (p(l),...,u(d)) is a vector of progressively measurable

functionals on Cd[QﬂD) and W = {Wt = (Wél),...,wéd)), 3.

0 < tX« c©}§ is a d-dimensional Brownian motion on some (Q,&,p),

then the processesb

(5.23) xP ) & W, w0t 1< <q,

‘are progressively measurable relative to {3tj.

5.16 Corollary: Bened (1971)

(1)

If the vector K = (M ,...,u(d)) of progressively

measurable functionals on Cé[O,CO) satisfies, for each

"0 T <O and some KT > 0 depending on T, the condition
* .
(5.24) (e, ] <KL+ x(8)); 0t
- where x*(t) 8 max lx(s) ||, then with X, = (X(l),...,x(d))
. 0<s<t t £ T e T

defined by (5.23), Z(X) is a martingale.
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Proof: If, for arbitrary T > 0, we can find {to,...,t

n(T)}
such that 0 = t0 < tl <"‘<'tn(T) =T and (5.22) holds for

1 <{n < n(T), then we can construct a seguence {tnfilo satisfying

the hypotheses of Corollary 5.14. Thus, fix T > 0. We have from

(5.23) ,(5.24) that whenever 0 < t _,; < t, < T, then

t _ A
n *
Jo Ik lPas < (et K21 2,
n-1
%

where Wn é.,max-.“WtH; According to (2. ),
: 0<t<T |

v

p[w;edm]= 2_e °T gm; m> o0,

JZnT - ';

so (5.22) holds provided tn - tn—l <

|-

. This allows us to
TK

L=l

construct {to""’tp(T)} as described above. O

5.17 Remark: Lipster and Shiryaev (1977), p. 222, show that when

d=1 and if 0 < € < %, then there is a process X satisfying

the hypotheses of Corollary 5.13 but with (5.21) replaced by

the weaker condition

T : .
Elexp{ (3 - €) [ x2at}] <oo; 0 < T <o,
| 0

such that 2Z(X) 1is not a martingale.
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‘The next exercise, taken from Lipster and Shiryaev (1977),

p. 224, provides a simple example in which 2Z(X) is not a

martingale. In particular, it shows that a local martingale

(cf. (5.3)) need not be a martingale.

5.18 Exercise: With W = {wW

er ¥ 0 <t <1} a Brownian motion,
we define

_ i R
(i) Prove that P{T<1] =1, and therefore [ Xidt < ®© a.s.
_ ' . 0 ,

W 2
(ii) Apply It8's rule to the process { T§?> ; 0 <t <1}
to conclude that
1l 1
1 : 1 1
J xaw_-~35][ xfat=-1-2] [ -
o Tt 27 | 0 (1-6)%  (1-t)

2
zlWat < -1.

(iii) The exponential supermartingale {Zt(X), .5 0<tg 1]

is not a martingale; however, for each n > 1 and

o =1--+
" vn

martingale.

v 2 X, 3 0< €< 1) isoa
n
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3.5.23

- there is a probability measure P

Exercise: Let W = {W_, J_; 0 < t <®} be a Brownian motion
on (0,8,P) with P[Wy = 0) =1, and assume {J_} satisfies

the usual conditions. Suppose that, for each 0 < T < ©,

~

p ©n Jp which is mutually

absolutely continuoﬁs with respect to P, and that the family
of probability measures {5&; 0 < T <} satisfies the
consistency condition (5.5). Show that there exists a

measurable, adapted process X = {Xt, F; 0< t <o)

£f
satisfying (5.1),,such that 2(X) defined by (5.2) is a -

martingale and (5.4) holds for O LT <o,
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at

3.6 LOCAL l'I‘IME AND A GENERALIZED ITO RULE

In this section we devise a method for measuring the amount of
time spent by the Brownian path in the vicinity of a point x € IR.
We saw in Section 2.9 that the Lebesgue measure of the level set

Zy(x) = {0 < t ¢ ™; W (W) =x} turns out to be zero, i.e.,

(6.1) meas Z,(x) = 0, for P-a.e. w € Q,

yielding no information whatsoever about the amount of time spent
in the vicinity of the point x (Theorem 2.9.6 and Remark 2.9.7).
In search of a nontrivial measure for this amount of time, P. Lévy
introduced the two-parameter random field
(6.2)‘. Lt(x) = i%g-f% meas{0 < s < t; lWS—xl el t€ [0,CO$, x € R
and showed that this limit exists and is finite, as well as positive
(e.g. for x =0, t > Oi. We shall showihow Lt(x) can be chosen
to be jointly continuous in (t,x) and, for fixed x, nondecreasing
in t and constant on each interval in the complement of the closed
set Zw(x). Therefore, %E Lt(x) exists and is zero for Lebesgue
almost every t; i.e., the function t - &t(x) is singularly

continuous. P. LéVy called &t(x) the mesure du voisinage, or

"measure of the time spent by the Brownian path in the vicinity

of the point x." We shall refer tb Lt(x) as local time.

This new concept provides a very powerful tool for the study
of Brownian sample paths. In this section, we show how it allows us
to generalize 1td's éhange-of-variable rule to convex but .not

necessarily differentiable functions, and we use it to study certain



additive functionals of the Brownian path. These functionals will be
employed in Chapter 5 to provide solutions of stochastic differen-
tial equations by the method of random time change. Local time

will be further developed in Chapter 6) where we shall use it to
prove that the Brownian path has no point of increase (Theorem 2.9.13).
In this section, the reader can appreciate the application of local
time to the étudy of sample paths by providing a simple proof of

the nondifferentiability of Brownian paths (Problem 6.6). This
problem shows that jointly conﬁinuous local time cannot exist

for processes whose sample path; are of bounded variation on

bounded intervais.

Throughout this section, {Ww,, 3. 0 <t < ©}, (0,3, {p%}

tf z€R
denotes the one-dimensional Brownian family on the canonical space

{1 = C[0,¢). This assumption entails no loss of generality, because
every standard Brownian motion induces Wiener measure on C[0, <o)
(Remark 2.4.19), and results proved for the latter can be carried
back to the original pfobability space. We take the filtration

{3t} to be {ﬁt} defined by (2.7.3), and we set J = goo' This
filtration satisfies the usual conditions, andbfor each z € R

and F»G & there is a'set GZ_G' B(C[0,o0)) such that

P?(E‘AGZ) = 0. In this situation, P% is just a translate of

Po, i.e.,

(6.3) p%(r) = '(F-2); F € 3,

(cf. (2.5.1)). We also have at our disposal the shift operators

ies}s>0 defined by (2.5.11).
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6.1 Definition: A measurable, adapted, real-valued process

A = {At, Et; 0 < tX o} is called an additiVe functional

if, for every z € R and p%-a.e. w»G 2, we have

(6.4) A, (@ =A_(W) +A (8 W; 0<s, t< o

6.2 Example: For every fixed Borel set B € 8(R), we define the

occupation time of B by the Brownian path up to time t as

lic>

t ' .
(6.5) I (B) &8 f 1,(W.)ds =meas{0 < s < t; W_ €B}; 0< t< <,
t 0 B s - - s —
where "meas" denotes Lebesgue measure. The resulting process
') ={T (B, & 0 < t< c©} is adapted and continuous,
thus progressively measurable (Problem 1.2.18), and is easily

seen to be an additive functional.
Equation (6.2) indicates that local time &t(x) should
serve as a density with respect to Lebesgue measure for

occupation time. In other words, we should have
(6.6) T, (B,w) =J 4 (x,w)dx; 0<t< ®©, BEBR).
B

We take this property as part of the definition of local time.

6.3 Definition: Let

4 = {'Lt(xrw)7 (t,x) e [0,®) x IR, w‘€ Q}

be a random field with values in [0,<0), such that for each

fixed value of the parameter pair (t,x) the random variable
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%t(x) is Et—measurable. Suppose that there is a set

* *

0 € & with PZ(Q ) =1 for every z € R and such that,
) *

for each w € Q , the function (t,x) B‘&t(x,w) is continuous

and (6.6) holds. Then we call {4 Brownian local time.

Remark: There is no universal agreement as to whether 4 in

Definition 6.3 or %wt is to be called local time. We shall

sometimes use the symbol L = % 4, and somewhat loosely refer

to both {4 and 1L as loqal time.

) *
Remark: With 4 as in Definition 6.3 and wré 2 , one can

6.6

immediately derive (6.2) from (6.6) and the continuity of
X H>&t(x,W). Further, 4(a) = {&t(a), F.i 0t w©} is
easily seen to inherit the additive functional property (6.4)

from its progenitor, the occupation time I' (Example 6.2).

Exercise: Assume that Brownian local time exists and show

*
that for each w € Q@ of Definition 6.3, the sample path

t H’Bt(w) can have no point of differentiability.

(Hint: If t H>Bt(w) is differentiable at t, then for
some sufficiently large 'C and sufficiently small & > 0

we must have |B Bt(W)l'g Ch; 0 < h< 8.

t+h(w) -
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6.7 Problem:

(i) Show that the wvalidity of (6.6) is equivalent to

(oe)

t
(6.7) J fm_(wyds = [ £(x)4,_(x,w)dx; 0 < t < oo,
0 s PN t -

for every Borel function £ : R =+ [0, o).

(ii) Let ¥ be the set of continuous functions h : R = [0,1]
of the form
0; X i ql'
" ! < x < g
qz—ql 1l - - 27
h(x) = 1; qz £xX d3-
M < <
; X
q4_,q3 3 - - q4'
0; X 2 dy,
where q; < d, < d3 < q, are rational numbers.
h
1 + - : v % X

Show that if (6.7) holds for all h € H, then it holds

for every Borel function £ : IR =+ [0,c0). CJ




We have not yet established the existence of Brownian local
time. One could take the representation (6.2) as a starting point

for the existence analysis, but it turns out that there is a more

convenient representation for this purpose, the Tanaka formula,
which we now develop. Let us fix a number a € R, and take
£f(x) in (6.7) to be the Dirac delta evaluated at x-a, thus

deriving formally the representation
t B
(6.9) L (a,w) = J 6(W_-a)ds.
t 0 s 2

But the integral on the right-hand side is only formal, so to
give it meaning we consider the nondecreasing, convex function
u(x) = (x-a)¥, which is continuousiy differentiable on IR \{a}
and whose second deriVatiQe_in the distributional sense is

u" (x) = 6(x-a). Bra&ely assuming that It3's rule can be applied

in this highly irregular situation we write

t

6.10 wo-a)t - (z-a)T = [ 1 (W)aw_ + ft & (W_- )a ;
(6.10) ( g2 z-a - 0 [a,®) ‘s s 2 0 g~arasi

0 <t < <o,

and in conjunction with (6.9) and Remark (6.4) we have

| . .
+ +
(6.11) Lo(a) = (W-a)" ~ (z-a)" - Io lia coy (WgldW s 0 < £ <

p?-a.s. for every z € R. Despite the heuristic nature of both
(6.9) and (6.10), the representation (6.11) for local time is valid

and will be established rigorously.




6.8 Proposition: Let us assume that Brownian local time exists,
and fix a number a € IR. Then the process 4(a) = {&t(a), St,
0 < t < @} is a nonnegative, continuous additive functional
which satisfies P?-a.s. for every z € IR, the formula (6.11)
and the companion representations
. _ _ t
(6.12) L (a) = (W,-a) - (z-a)  + Io Liico,a)s@gi 0 <t <,
, t
(6.13) &t(;) = |w -al - lz-al - Io sgn (W -a) dw_; 0 < t< oo,
6.9 Remark: Any of the formulas (6.11), (6.12) or (6.13) is

referred to as the Tanaka formula for Brownian local time.
We need establish bnly (6.11); then (6.12) follows by symmetry
and (6.13) by addition, since

t
z = . = .
P [fo ligjWgdaw, = 0; 0 <t < © =1; 2z €R.

In particular, ‘it does not matter how we define sgn(0) in

(6.13); we shall define sgn so as to make it right-continuous,

i.e.,

| | 1; x>0
(6.14)  sgn(x) =




6.10 Remark: The process i(Wt—a)f, & 0 < t< w1} is a continuous,

t;

nonnegatiVe submartingale (Proposition 1.3.5); it admits,

thereforé, a unique Doob-Mayer decomposition (under PZ,

for any z € TR):
: + _ vt .
(6.15) (Wt—a) = (z-a) + Mt(a) + At(a), 0 < t < oo,

where A(a) 1is a continuous, increasing process (Definition 1.4.4)
and M(a) is a martingale (Problem 1.4.9(a), Theorem 1.4.10,
Remark 1.4.13, and Theorem\l.4.l4). The Tanaka formula (6.11)
identifies both parts of this decomposition, as At(a) = Lt(a)

and

t .
(6.16) M, (a) = jo lia, coy W)W ;0 < £ < oo,

Similar remarks apply to the represeﬂtations (6.12) and (6.13).

Proof of Proposition 6.8:

If local time exists, then it satisfies (6.2) as well as the
additive functional property (Remark 6.5). In order to make rigorous
the heuristic discussion which led to (6.11), we must approximate the
Dirac delta &(x) by a sequence of probability densities with
increasing concentration at the origin. More specifically, let

us start with the C function

1

———'-'2——];0(}((2,
(x-1)°-1

c expl

A
(6.17) p(x) =
0; - otherwise




(0@

which satisfies f p(x)dx = 1 by appropriate choice of the
-co

constant ¢, and use it to define the probability density functions

(called mollifiers)

(6.18) Ph(x) = np(nx)
as well as
A X
u_(x) = f f p.(z-a)dz dy; x € R, n > 1.
n o Yoo D ) =
% _
We observe that uﬁ(x) = f pn(z—a)dz, and so we have the limiting
e ®) .
relations
. . +
lim u'(x) =1 (x) lim u_(x) = (x-a) x € IR.
ptoo O (a, ) ' n+co 1 '

We now choose an arbitrary z € IR. According to 1td's rule,

t t
- 1 ,
(6.19) u (W) - u (z) = J‘O ul (W )aw, + > J’O p,(W,-a)ds; 0 < t <,
a.s. P .

" But now from (6.7) and the continuity of local time,

t oo -
= - . z
'fo p, (W -a)ds = I_OO P, (x-a) ¢, (x)dx n_.OQ> 1.(a); a.s. P°,

"On the other hand,
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z t t 2
E tjo ul (W) aw_ - fo 1ia, ) (Ws)dwsl
SB[ w1 W) 1%
h 0 Un'fs (a,©) s S

<jtpz W _-al < 2]a
24, [IW,-al < {lds,

which converges to zero as n -+ O, Therefore, for each fixed t,
the stochastic integral in (6.19) converges in quadratic mean to the
one in (6.16), and (6.11l) for each fixed t follows by letting

n = o in (6.19). Because of the continuity of the processes in
(6.11) , we obtain that, except on a P%-null event, (6.11l) holds

for 0 < t < oo, C

We are now ready to use the Tanaka representation (6.11l) to

settle the question of existence of Brownian local time.

6.11 Theorem: Trotter (1958)

Brownian local time exists.

Proof:

We start by showing that the two-parameter random field, obtained
by setting z = 0 on the right-hand side of (6.11), admits a con-
tinuous modification under PO. The term (Wt—a)+ - (--a)+ is
obviously jointly continuous in the pair (t,a). For the random

field {Mt(a); 0<t< o, a €R}in (6.16) we have, with a < b,

0 s <t<T and any even integer n > 2:
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%M p) | 2™ ¢ 4n{E0lft 1 (W) aw | %"
t(a)—Ms( = g la,o) u My

2n
[a,b) W)W, 177

S
+ Eolf 1

0

< 4% [Eo(jt 1 oy an ™ + 80 1 (W) du) ™)
- n s [a,o0) *Tu 0 [a,b) 'Tu !

thanks to (3.3.20). The first expectation is bounded above by

(t—s)n, whereas the second is dominated by

OT- nT\TO . .
E [IO 11, p) (W)dtl” = jo...jo E-[1, by (e )...l[a’b)(th)]dtn“.dtl

1
T T T
=t [ [ r 8011 W, )1 (W, )...1 (W, )1dt_...dt.dt
: Pecd [a,b) 't [a,b) "t """ [a,b) 't n*°°"o2 1L
0 t t 1 2 n
1 n-1 :
With 0 = ty <ty < t, AR < T, we have for every y € [a,b):

p%la < W, < blw =yl < P%la < W, < blw, = &tk
- t. t. - = T, t 2
j j-1 J
b-a
2/t.-t. . 1 2
3 J 371 -3 2 b-a
=47 f : e dz < ; 1 <3 <n,
0 2/c.-t.
j "j-1
and so
of T "
E [fo 1[a’b)(wt)d%
b-a, N T T T -%
<ni G o [ty (Eyty) ... (E ~t )] 2 dt_...dt,dt,
0 &  t,

I~
(@]
o

{
2
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A

where Cn T is a constant depending on n and T Dbut not on
4

a and b. Therefore, with a < b and 0 < s < t T, we have

(6.20)  E%IM_(a)-m_(b) |?" < c, plt=9)™ + (b-2)™)
< Cn’TH(t,a) - (s,b) |I®

4 . - v
for some constant Cn T By the version of the Kolmogorov-Centsov
14

theorem for random fields (Problem 2.2.9), there exists a two
parameter random field {It(a);’(t,a) € [0,©) x IR} such that
the mapping (t,a) B’It(a,w) is locally Holder continuous with

0

any exponent Y € (0,%), for P -a.e. W € Q, and for each fixed

pair (t,a) we have
0 — —
(6.21) P [It(a) = Mt(a)] = 1.
Now we define
L(a)'A‘(W—a)-(—a)+—I(a)' 0 < t < o a € R
t - t t g > P .

For fixed (t,a), Lt(a) is an Xt-measurable random variable, and

the random field L is Po—a.s. continuous in the pair (t,a).

- Indeed, because Wt and It(a) are both locally Holder continuous

with any exponent Yy € (0,%),‘the local time L also has this
propertyi for every y € (O,%) and positive T,K, there exists
a Po—a.s. positive random variable h(w) and a constant

8 > 0 such that
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0 L (a,w)-L_(b,w) | -
(6.22) Plw € Q; sup < 6] = 1.
0<|l(t,a) - (s,b) [Kh(w) |(t,a)-(s,b) ||Y
0<s,t<T
L -K<a,b<K i

Our next task is to show that the random field &t(a) i 2Lt(a)
éatisfies the identity (6.6), or equivalently (6.7), for every
function h in the collection ¥ defined in Problem 6.7. For
h € H, define

[o®) X

- y
Hx) 80 nwx-wiau=J [ h(wdudy; x € R,
- Q0 - CO -0 )

and observe the identities

oo ’ X
H'(x) =  hwl  ,(x)au=J h(uwdu, H"(x) =h(x).
: - Co ! - CO

By virtue of It8's rule and Problem 6.12 below, ‘we have Po—a.s.

for fixed t > 0:

2 IZ h(W )ds = H(W,) - H(0) - fz H' (W_) W,
(o] + + t o
- I_co h(a) { (W, -a)" - (-a) "}da - jd‘(j—oo h(a)lp, o, (W,)du)dw
oo + + t
= j_oo h(a){(W,-a)" ~ (-a)" - Io l[aloo)(ws)dws}da
oon O

j_co h(a)L (a)da + f_co h(a) {1, (a) -M, (a) }da.




3.6.14

0o 0 2 <0 2
But E - J (I, (a)-M (a))“da = [ E" (I, (a)-M (a))“da = 0 by
- CO - O

(6.21) . Thus, for each fixed t > 0, we have for Po—a.e. w

t oo
(6.23) J nhw_(w)das = § h(x) 4, _(x,w)dx.
. ' 0 S -CO t

Since both sides of (6.23) are continuous in t and ¥ is countable,
* *

0 o)
(6.23) holds for every h € ¥ and every t > 0.

it is possible to find a set Q. € & with PO(Q = 1 such that

*
for every w € QO,

. < *
Problem 6.7 now implies that for every w € Q

0’ (6.7) holds for

every Borel function £ : IR = [0,c0).

Recall finally that Q = C[0,%) and that PZ assigns
probability one to the set 0 & {w € Q} w(0) = z}. We may assume
that Q; =3 Q,, and we may redefine Lt(x,w)' for w € QO by

setting

L o(x,w) 2 L (x-0(0), w-u(0)).

* ' * g
We set Q = {w € Q; w-w(0) € QO}, so that P“(Q) =1 for every
*
z € IR (cf. (6.3)). It is easily verified that 4 and Q have

all the properties set forth in Definition 6.3.

6.12 Problem: For a continuous function h : IR .+ [0,c0) with

compact support, the following interchange of Lebesgue and

I1t6 integrals is permissible:

co t t ©O )
(6.24) f_oo h(a) (j’o lia, coy (Wg)dW ) da = J‘O(j_oo h(a) 1, oo (Wg)da)aw,,

a.s. PO. O
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6.13 Problem: We may cast (6.13) in the form

(6.25)

thfaI = |z-al - Bt(a) + Lt(a); 0 <t < oo,

A

t ‘ :
where Bt(a)-= —f sgn(W_-a)dw_, for fixed a € R.
0 s s .

(i)

(i1)

(6.26)

(iidi)’

(iv)

Show that for any 2z € R, the process B(a) = {Bt(a), F i
O.S t < o} is a Brownian motion under P?, with

PZ[BO.(a) = 0] = 1.

Using (6.25) and the representation (6.2), show that
t(a) = {Lt(a), Foi 0t o} is a continuous, increasing
process (Definition 1.4.4) which satisfies |

* ' z
Io 13\{a}(wt)d4t(a) = 0; a.s. P“,
In other words,vthe'path t 94L£(a,w) is "flat" off
the level set Z (a) = {0 <t < o Wt(w) = a} of the

Brownian path.

Show that for Po-a.e. w, we have Lt(o,w) > 0 for all

t > 0.

Show that for'every z € R and p%-a.e. W, every point

of Zw(a)r is a point of increase of t H’&t(a,w).
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Our next goal in this section is to provide a new proof of the
celebrated result of P. Lévy (1948) already discussed in Problem 2.8.7,

according to which the processes

(6.27)  [M§ -W_2 max W, -W; 0<t<co) and {IW.l; 0 <t <o}
0<{s<t

0

have the same finite-dimensional distributions under P~ . 1In particular,

we shall present the ingenious method of A. V. Skorohod (1961), which

provides as a by-product the'faét that the processes

(M2 nmax W; 0<t< oo} and {2,(00; 0 < t < ]
t ocs<t S - = t -

(6.28)

also have the same finite-dimensional distributions under PO.

6.14 Lemma: The Skorohod (1961) equation.

Let z > 0 be a given number and y(-) = {y(t); 0 < t < oo}
a continuous function with y(0) = 0. There exists a unique continuous

{k(t); 0 < £t < o}, such that

function k()

>

(i) =x(t) z + y(t) + k(t) > 0; 0 <t < oo,

(ii)v k(0)

0, k() is nondecreasing, and

’ (=]
(iii) k(-) is flat off {t > 0; x(t) = 0}, i.e., J 1g ) ,3dk(s) =0.
0

This function is given by

(6.29) k(t) = max[0, max {-(z+y(s))}l, 0 < t < oo,
0<s<t
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Proof:
To prove unigueness, let k(-) and X(+) be continuous functions with
properties (i) and (ii), where x(-) and §(.) correspond to k(<) and

E('),respectively. Suppose there exists a number T > 0 with x(T)Z>§(T),

and let T 4 max{O‘i t < T; x(t) - g(t) = 0} so that x(t) > X(t) >0,
Y £ € (1,7]. But k(-) is flat on {u > 0; x(u) > 0}, so

k(t) = k(). Therefore,
L0 ¢ x(T) - X(T) = k(T) - K(T) < k(7) - K(7) = x(7) - X(7),

a contradiction. It follows that x(T) < X(T) for all T > 0, so
k < XK. similarly, k > k.
We now take k{(-) +to be defined by (6.29). Conditions (i) and (ii)

are obviously satisfied. In order to verify (iii), it suffices to show
o

that Io Liy(s)>e 0K (8) = o‘ for every e > 0. Let (t;,t,) be a

component of the open set {s : x(s) > e} and note that
—(z+y(s)) = k(s) - x(s) < k(t,) - ¢; t, <s <t

But then

k(t,) = max[k(t;), - max  {-(z+y(s))}] < max [k(t;) ,k(t,)-¢€l,

t8sLt,

t

1) and thus f.z dk(s) = 0.

which shows that k(tz) = k(t
t
1

6.15 Remark: For every z > 0 and y(-) € C[0,) with v(0) = 0,

we denote by ¥ the class of functions k € C[0, ) which

satisfy conditions (i) and (ii). of Lemma 6.14, and introduce

the mappings
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(6.30) T (z;y) 2 max[0, max {-(z+y(s)}]; 0<t< o
0<s<t
(6.31) R (z;y) & z + y(t) + T, (2:y) ; 0<t< .

In terms of these, the solution to the Skorohod equation is

given by

(6.32)  k(t) = T, (z:y),  x(t) = R _(z;)

and T(z;y) is the minimal element of {, as can be seen in
the first part of the proof of Lemma 6.14. . U]

6.16 Proposition: Let z > 0 be a given number, and B = {Bt, Gys
0 < £t < ©} a Brownian motion on some probability space
(@,G,Q) with Q[B0 = 0] = 1. We suppose there exists a

continuous process k = {kt, G.; 0 < t < o} such that,

£
for Q-a.e. 0 € e, we have

. A > 05
(1) Xt(e) =z - Bt(e) + kt(e) £ 03 0 < t < oo
(ii) ko(e) = 0, t H’kt(e) is nondecreasing, and
o
(iii) fo 1o, co) X (8))ak_(8) = 0.

Then X = {Xt; C < tK c©} under Q has the same finite-

~~

dimensional distributions as |W| = {lwtl; 0 < t < ©} under

pZ.
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Proof: The finite-dimensional distributions of the pair (k,X) are
uniquely determined, since byALemma 5.14 kt(e) = Tt(z;—B(e)),

xt(e) = Rt(z;~B(9)); 0 £t < o, for Q-a.e. 8 € 8. It suffices,

Land

therefore, on our given measurable space ({i,&) equipped with the

Brownian family {Wt, F; 0 <t < ™}, {p*}

e < €R’ tp exhibit a standard

Brownian motion B = {Bt, F., 0t < cc} and a continuous

nondecreasing process Kk = {kt, & ; 0 <t < ©} such that,

&7
for P%-a.e. w € Q:

W (@] =z =B (W) +k (®); 0<t< o,
(6.33) kO(w) =0, t - kt(w) is non@ecreasing, and
.w ’ ‘
J o lm\fo3(s(@dkg(w) = 0.

But this has already been accomplished in Problem 6.13 (relations

(6.25),(6.26) with a = 0), if we make the identifications

t .
.Bt = -jo sgn W dW_, k. =4,(0).

6.17 Theorem: P. Lévy (1948)

The pairs of processes {(Mz—wt, M?), Foi 0< < co} and

{w it (0D, 3.; 0 < t < ©} as in (6.27),(6.28) have the

same finite-dimensional distributions under PO.

Proof:
Because of uniqueness in the Skorohod equation, we have

from (6.33)
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(6.34) 1, (0,w) = M (W), W@ | = M (W) - B(W); 0<t< oo
for Po—a.e. w € Q, upon observing that

(6.35)  M2(w) = max B_(w) =T, (0;-B())
0<s<t :

(Remark 6.15). The assertion follows, since both W and B are
Brownian motions starting at the origin under PO. We also notice

the useful identity, valid for every fixed t € [0,0):

B _ .. 1 | ‘ _ 0
(6.36) M{ = lim 5= meas{0 < s < t; Mi By < e}, a.s.P. |
‘ L
6.18 - Problem: Show that for every real numbers  a,z we have
PPlw € Q; lim 4, (a,w) = o] = 1.
' £ CcO O
The function £,(x) = (x-a) ¥, £,(x) = (x-a)~ and
£4(x) = |x-al] in the Tanaka formulas (6.11)-(6.13) share an
important property, namely convexity:
(6.37) f(ax + (1-A)z) < AM(x) + (1-AM)£(z); x<'z, 0< AL,

which can be put in the equivalent form
¢ 2=Y y-X .
(6.38) f(y) £ pryers ﬁ(x) + o5 f(z); x <y« z,

upon substituting y,= Ax + (1-A)z. Our success in representing

f(Wt) explicitly as a.semimartingale, for the particular choices
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+ .
f(x) = (x-a) and f(x) = |x-al|, makes us wonder whether it might

be possible to obtain a generélized Itd formula for convex functions

which are not necessarily twice differentiable. This possibility
was explored by Meyer (1976) and Wang (1977). We derive the
pertinent 1td formula in Theorem 6.22, after a brief digression

on the fundamental properties of convex functions.

6.19 Problem: Every convex function f : IR #+ IR is continuous.

For fixed x € IR, the difference gquotient

>

(6.39) A (x;h) f(x+h; il .9 IR S

is a nondecreasing function of h‘€ IR \{0}, and therefore

the right- and left-derivatives

t AL 1.
(6.40) D E(x) £ lim Z[f(x+h) - £(x)]
h+04

exist and are finite for every x € IR. Furthermore,

(6.41) DTE(x) < D"f(y) < D'f(y); x <y,

and D+f(°) (respectively, D £(+)) is right- (respectively,
left-) continuous and nondecreasing on IR.

. . co co

Finally, there exist sequences {an}n=l and {Bn}n=l

of real numbers, such that
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(6.42) f(x) = sup(anx+8n); x € IR.
n>l _
(Hint: Use (6.38) extensively). =

6.20 Problem: Let the function ¢ : IR #*+ IR be nondecreasing,

‘and define.

X

®,(x) = lim @(y), &(y) =J e(u)du.
yxE , 0

(i) © The functions. m+‘ and ¢_ are right- and left-continuous,

respectively, with
(5-43) P (x) < @(x) < @+(X); x € R.

(ii) The functions %, have the same set of continuity points,

and equality holds in (6.43) on this set; in particular,

except for X in a countable set N, we have
¢, (x) = @(x).
(iii) The function ¢ is convex, with
DTe(x) = 9_(x) < ®(x) < @ (x) =D &(x); x €R.
(iv) If £ : R + R is any other convex function for which
(6.44) DTE(x) < @(x) < DTE(x);  x € R,

then we have

£f(x)

£(0) + &(x); x € R.
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6.21 Problem: For any convex function f : IR .+ IR, there is a

countable set N € IR sﬁch that f 1is differentiable on

R \N, and

(6.45) £1(x) =DVE(x) = D E(x); x € IR \N.

Moreover

X X X
(6.46) £(x) - £(0) = f'(wdau=J D'f(wdu=[ D f(udu; x € R.
0 0 0 O

The preceding problems show that convex functions are
"essentially" differentiable, but Itd's rule requires the
existence of a second derivative. For a convex function £,

we use in place of the second derivative the measure K on

(R ,8B8(IR)) defined by
(6.47) u((a,b]) =DTE(b) - DTf(a); = < a < b < co.

Of course, if £ exists, then p(dx) = £"(x)dx. Even without
the existence of £f", we may integrate Riemann-Stieltijes
integrals by parts to obtain the formula

O [0@)

(6.48) I gxu(ax) = -f  g'(x)DT£(x)ax
-0 - CO

for every function g : IR - R which is of class Cl and

has compact support.
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6.22 Theorem: A geﬁeralized 1t8 rule for convex functions

Let £ : R + IR be a convex function and pJ the "second
derivative measure" introduced in (6.47). Then, for every
z € IR, we have
- t o4 1 &
(6.49) £W,) = £(z) + J D Ew )aw, + 3 [ L (X)uldx); 0 < t < oo,

0 2%

a.s. p7.

It éuffices to prove (6.49) with t réplaced by t A T_, N Tn’
and by such a localization we may assume without loss of generality
that D'f is uniformly bounded on IR . We employ the mollifiers

Ppi B > 1, of (6.18) to obtain convex, infinitely differentiable

approximation to £ by convolution:

(6.50) £ (x) 8 [ o (y-x£f(y)dy; n > L.
- QO
(ee;
It is not hard to verify that f (x) = J p(z)£(x+2)dz and
-0
(6.51) lim f_(x) = £(x), lim £'(x) = D'£(x)
n-cc n n-tOO n

hold for every x € R. In particular, the nondecreasing functions pYf ang

co

{fﬁ}n=l are uniformly bounded on compact subsets of IR. If

g: R » IR is of class Cl and has compact support, then

because of (6.48),
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o (oo}
lim J g(x)£"(x)dx =-1im [ g'(x) £ (x)dx
n+co  -Co n n+cc =00 n
co + e}
=-f  g'xpTE(x)ax = [  g(x)u(dx).

- QO - CO

The general continuous g with compact support can be uniformly

approximated by functions of class Cl, so for such a g we have

o

(@)
(6.52) lim J g(x)£1(x)dx = g(x) K (dx) .
n-co - O - O

In other words, the measures f;(x)dx converge weakly ‘to the

measure H(dx) .
We can now apply the change-of-variable formula (Theorem 3.3)

to fn(WS), and obtain, for fixed -t € (0,):
' t ] 1 t 2
- = ' = . " .
£ (W) - £ (2) J”O £1(W ) dW, + 5 'fo £1 (W )ds, a.s. P%.

When n =+ <, the left-hand side converges almost surely to

f(Wt) - f£(z), and the stochastic integral converges in L2 to
t

J D+f(ws)dWS because of (6.51) and the uniform boundedness of
0 .

the functions involved. . We also have from (6.7) and (6.52):

' + cC cO
lim [ £"(W_)ds = 1lim £ (x) 4, (x)dx = J L (x)p(ax),
n+co 0 nos n+co  -Co -n -0

because, for P%-a.e. w € {1, the continuous function x B-ﬁt(x,w)

has support on the compact set [ min Ws(w), max W (w)]. This
0<s<t 0<s<t

a.s.

P

Z
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proves (6.49) for each fixed +t, and because of continuity it is

also seen to hold simultaneously for all t € [0,o0), a.s. pZ

6.23 Corollary: If £ : R + IR is the difference of convex

functions, then (6.49) holds again for every z'€ IR ; now,
p defined by (6.47) is a signed measure, finite on each

bounded subinterval of IR.

6.24 Problem: Let- a; < a, <...< a, be real numbers, and

denote D = {al,...,an}. Suppose f : R - IR is continuous
and f' and f" exist and are continuous on IR \D. Suppose
further that the limits’

f'—(aki-)-é lim f£'(x), f"(aki) = lim £"(x)

X=a, + 3. +
k* e

exist and are finite. Show that £ 'is the difference of

convex functions and, for every z € IR,

t t
_ ' 1 "
(6.53) £(W,) = £(z) + Io £' (W )aw_ + > Io £" (W) s
1 B :
+ 5 kzl‘&t(ak)[f (ak+)-—f (ak~)]; 0 £t { <o,

. z
a.s. P,

6.25 Exercise: Obtain the Tanaka formulas (6.11)-(6.13) as

corollaries of the generalized Itd rule (6.49). L
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Our next application of local time concerns the study of the

continuous, nondecreasing, additive functional
t
A (W) = [ £W_(w)ds; 0 <t < ™,
0 S -

where f : IR - [0,©) 1is a given Borel measurable function. We
shall be interested in questions of finiteness and asymptotics,

but first we need an auxiliary result.

6.26 Lemma: TLet f : R .-+ [0,<C) be Borel measurable; fix

x € IR, and suppose there exists a random time T with

.
POlo < T <o) =1, POf f(x+w)ds < =] > 0.
: 0

Then, for some ¢ > 0, we have

. €
(6.54) J  f(x+y)dy < co.
—c A

Proof:
From (6.7) and Problem 6.13(iii), we know there exists an

event Q* with PO(Q*).= 1, such that for every’ w € Q*:
T (W) _ (e's)
, £(x+W_ (W) ds = I_oo £(x+y) gy (v, @) Ay

*
and %T(w)(o,w) > 0. By assumption, we may choose w € Q such
T (w) , _
that f f(x+Ws(w))ds < c© as well. With this choice of w
. 0 | _

14
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we may appeal to the continuity of LT(w)(',w) to choose positive

numbers e and ¢ such that &T(w)(y,w) > ¢ whenever |yl < €.

Therefore,

€ T (W)
c J  f(x+y)dy < Io £(x+W_(w))ds < oo,
-e

which yields (6.54). | ' o

6.27 Proposition: Engelbert—Schmidt (198l) Zero-One Law

Let' f : R.» [0,x) "be Borel measurable. The following

three assertions are equivalent.

| t
(1) POtf £M)ds < e; 0 <t < o >0,
0 _

|~

.
(i) POt £ ))ds < ; 0 <t < ®] =1,
0 | .

(iii) £ is locally integrable, i.e., for every compact set

K < 1R, we have I f(y)dy < <o,
' K

Proof:

For the implication (i) = (iii) we fix b € IR and consider

the first passage time Ty, - Because PO[Tb < <] = 1, (i) gives
Ty _
pOrf £(W)ds < @; 0 < t< ] > 0. But then
0
t+'1‘b (w) t+Tb (w) £
I £(W (w)ds > [ £EW_(w))ds = [ £(b+B_(w)as,
0 Ty (W) 0 S
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A . - - -

where Bs(w) = Ws+Tb(w)(w) - b; 0 { s < ®© is a new Brownian motion
t

unger . It follows that for each t > 0, P’(f £(b+B_(w))ds < o]
0

and Lemma 6.26 guarantees the existence of an open neighborhood

U(b) of b such that f f(y)dy < c©. If K € R is compact,

U(b)

the family {U(b)}beK , being an open cover of K, has a finite

subcover. It follows that [ f£(y)dy < cc.
K

For the implication (iii) = (ii) we have again from (6.7):

. oo - Mt(w)
J £(W_(w))ds = I} £(y) 4, (y,w)dy = J £(y) 4, (y,w) dy
_ -co mt(w)
M, (W) |
[ ‘max L (y,0)] - f(y)dy; 0 <t < =,

m, (W) <y<M, (W) T m, (W)

I~

where mt(w) = min W_(w), Mt(W) = max W_(w). The last integral
0<s<t 0<s<t

is Poha.s. finite by assumption, because the set K = [mt(w),Mt(w)]

is Po—a.s. compact.

o

6.28 Corollary: For 0 < a < <o, we have the following dichotomy:

o s ' 1; if 0<a< 1
PPl —=-< @; 0< t< @ = .
0; if a> 1

6.29 Problem: The conditions of Proposition 6.27 are also equivalent

to the following assertions:
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O t
(iv) P[] £(W_)ds < oo]
0 S

l, for some 0 < t < <C;

t ,
(v) Px[f f(Ws)ds  ©; 0<t< @ =1 for every x € IR;
0
(vi) for every x € IR, there exists a Brownian motion
{Bt, Gei 0 <t < <} and a random time S on a
suitable probability space (@8,G,Q), such that

Q[B, =0, 0 < S <©] =1 and
0

S .
orf £(x+B)ds < =] > 0.
0

(Hint: It suffices to justify the implications
(ii) = (iv) = (vi) = (iii) = (v) = (vi), the

first and last of which are obvious).

6.30 Problem: Suppose that the Borel measurable function

f : R = [0,x) satisfies measi{y € R; f(y) >'0} > 0. Show

that

O
(6.55) P lw € 0; [ £(W_ (w))ds = =]
v 0

I
-

holds for every x € IR. Assume further that f has compact
support and consider the sequence of continuous processes
nt

x(® 4 ¢l g

£(W )ds; 0 < t < ©}, n > 1; establish then,
Yo 0 s

under PO, the convergence
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xm T, x4 {£4,(0); 0 < t < =]

n-+Cco

(6.56)

, . _ o
in the sense of Definition 2.4.4, where £ = f f(y)dy > 0.
: -0
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5.5 SOLUTIONS TO PROBLEMS

——

2.4 Solution:

1
(a) Since t-s - éh < @n(t-s) £ t-s, we have t - ;ﬁ £ ¢n(t_s)+s<t,
Consequently, Xgn,s) is 3t-measurable, and since ®n takes

only discrete values, X(n,s) is simple.

(b) The procedure (2.4) results in measurable (but perhaps not
adapted) processes {f(m)};;l , such that
T e
lum E[ |X{ - X

J1ET - )

t‘g dt < 62.

-0

By the Minkowski inequality we have

T L
(EJO}Xt - x, 1% an)¥

c, 2

T T
s(Efoyxt - xg|” at)® +'(Ef01Xé - X #

€ I2 at)?

t-h

T
+ (Efglxi_h - Xt-h!Q dt)%

T

€ 2¢ + (Efo{xi - x¢

t_h]? at)® .

We can now let hiy0 and conclude, from the continuity of

€

X and the bounded convergence theorem, that

T 2 2
Iim E| (X, - X, |~ dt = 4e".
hi0 0
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(c) Let 1 Vbe any nonnegative integer. As s ranges over
1 i+l , 1
Eﬁ? EH— s @n(t-s)+s ranges over [t - = > t). Therefore,
-n
T 1 T2
(n,s) 2 _ SN _ 2
Efo [Oixt X, |“ds dt=2 Ejo jo X =X, _,| < an dt

27 g
n 2 T 2
=2 [E{ |X,-X, . |“dt]dh €« max _E["[|X,-X dt

which converges to zero as n-e because of (b).

(d) From (c) we have that there is a sequence {nk};—l of
~integers, increasing to infinity as k-e, such that for
A x A x P -a.e. triple: (s,t,w) in [0,1] x [0,T] x qQ

we have

(s.2) iim fxink’s)(w) - xt(w)l2 - 0.

Therefore, we can select s€[0,1] such that for ) x P -a.e.

pair (t,w) in [0,T] x Q, we have (S.2). Setting
n S
g(€) 5 x ")

we obtain (2.5) from the bounded convergence

theorem.

2.11 Solution:

We may write W = IY(X), where Xt(w) =

tAT 1{tsT(m)}; Setle

Because

W t o
KTV (X)>, = jo X_ds = tiT,



3.5.3

we have <I"(X)> =T and EKI"(X)> < = It follows from Problem
1.5.19 that both [W_ .5 Ost<=] and {wihT; Ogt<w} are uniformly

integrable, so (2.22) is justified.

2.12 Solution:

It ETb .were finite, then we would have WT =_b, a.s.P, as

b
well as E(W, ) = 0 from Problem 2.11. But this is absurd.
b .

2.16 Solution:

. .
2 M N 2
!fo X Y, OKMID |7 = [<T(X), T (Y)>, |
<Mx)>, <tNy)>, = ftxg d<M> 2
‘ N .t .t - O u u . fOYu <N>uo
2.16° Solution: By assumption, we have

E<TH(x)>_ = Efo X2 4> < o

Uniform integrability and the existence of a last element for
IM(X) follow from Problem 1.5.22, as does uniform integrability
of (IM(X))2. The same is true for IN(Y).

Applying Problem 2.16 with X ., Y, replaced by Xul{u;T}’

Yul{uzT} respectively, we obtain
T+t ' T+t T+t
2 2 1/2
|[ XY, d<M,I> | e ([ XS aM> . [T Yo A< ) /2
] -T QT L]
whence.

© '/ ' © o 2
\fT X Y a<M,N> | (fT XS aM> . fT Y, &<

)1/2
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a.s. P. As Tom, the right-hand side of this inequality

converges to zero; therefore,

M N t
KTHUX), T(Y)>, = jé X Y a<M, N>

converges as taw, and is bounded by the Integrable random

variable

® 2 1 ® 1
([ %2 aan )2 L ([ ¥2 a7,
. O = b O w )
a.s. P. The dominated convergence theorem gives then

lim E[T}{(X)I} (¥)] = lim KTV (X), I(Y)>, =

-t OO t-.eo

ECT (X)), IN(Y)>w = EIO.XSYS <M, >

We also héve

pr ) INy) = B0 - TH0) (TN - T(D))
+ B[TL(X) (Th(Y) - I(D)]
+ B[N (Y) (Th(X) - TE(X))]
+ B[IY(X) TH(V)1.
We have just shown that the fourth term on the right-hand
side converges to E(IM(X),'IN(Y»°° as tos. The other

three terms converge to zero because of H¥lder'!s inequality

. 2 N 2
and the uniform integrability of k(IM(X)) and (I (Y)) .
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2.23% Solution: For any 'Nemg,

~J

<aIM(X)-+BIN(X),N>£ = M (x), Bt + B<IN(X),ﬁ>t
t N t
= <
= afo X 4<M, >+ efo X &N, W

t
/ ~J
fo X, d<aM + BN, T,

I

and the result follows from Proposition 2.21.

2.24 Solution:

With X a measurable, adapted process satisfying
P[fT X%(w)dt < «] =1 for evefy XKTK =, we construct the sequences
0 4
of stopping times
t

X2 (w)ds = N,
IO S

Sy(@) = 5 |
1_ N, if (...} =%,

S N . .
and processes xé )(w) = Xt(w)l{SN(w)zt}’ Ogt{w, 1indexed by Nal.

[‘inf(O‘t‘N;'[

@
We have Er (XéN)(w))gdt € N< o 8o for each Nal the process
X(N) is in & , and therefore can be approximated by a sequence

of simple processes {X(n’N)}w c £ in the sense
n=1

T
lim Ejo \xﬁn’N) - xéN)ig dt = 0,

N

V Ke
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(Proposition 2.5). Let us fix a positive number T<e,

and consider
2 T 2
M>T; we have P[[O XS dt>0] = P[jo X: l{SN<t} dt>0} € P[SKT] =

P[J xi dt>N], and the last quantity convefges to zero as Neo,
O .

by assumption. Now, given any >0, "we have

e T (n,N)
P[foixén,N)_ the dt>e] = P[fozxt - XEN)IQ at > £1 +

2

T .
P[IOIX§N) - Xt\

+ P[SKT]

T
at>0] « £ Ef (P M) x ()2 g
€

by the Ceby¥ev inequality, as well as

ol sup |1 (xS (x)] = el =
OgtgT

P[{f sup |I, (X(n’“5 - It(X(N))l 2 €} n {8y 2T}] + P[S\KT] =
OgteT . ¢ . :

l2 EQIT(x(n’N)) - IT(X(N))|2 + P[SKT] =

€

T
= Efoix§n’N) - x{M® 4 prsrl.

We have employed Corollary 2.19, the first submartingale
inequality (Theorem 1.3.6), and (2.11). For any given G&>0 we can
select N6>T so that P[SN<T] < % for every NzNa, and for each

“such value of N we can find an integer nNzl so that

, 6 2,1 -1
E[ lX(n N) _ XéN)‘Q at < = (E+ ;2)
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holds for every nan. It follows that for every €>0, 5>0 there

exists an integer N6 such that, for every NaN., we have with
(N) (nN, N) : 5
Y 4 X :

T, (N 2 o
| P[IO]YE )_-Xtt dt>e] + P[OiléiTlIt(Y(N)) - It(x)] > €] < b.

In other words, we can construct a sequence of simple processes

N).ew
{Y( )}N=1 such that both sequences of random variables
T
(W) 2 . (V)
ly,”” = X 17 at, sup |I.(Y\V/ - 1 (X)]
| J.o t t " ogtgT ¢ t

éonverge to zero in probability, as Ndé. There exists then a
subsequence for which the convergence takes place almost surely,
Having done this construction for T fixed, we now appeal to the
first paragraph of thg proof of Lemma 2.3 to obtain a sequence

¢

which works for all T.

2.25 Solution:

Consider first a simple process X. Using the notation of
Definition 2.2, we have

0 __Q '~ --]__-2
Ce®) = Eley (Mg, Wepe) — 7 S (08T,

i+l

where the sum is really a finite one, and in this case the martingale

property: E[exp gi(x)]ss] =1 a.s. P, for Ogs<t{e, amounts to

showing



"

. - 1,2
Elexpley (Wepg  Wepe,) - 5 8 (tAty 5-tat)}]5,] =
i+1 T
= exp{e. (W .—W- ) - X gz(s/\t -sht, )} a.s. P
P33 Went,  Tlsnt, 7 T2 SN R TR R 5.

for any 120. The reader will have no difficulty verifying this

(reminder: g, 1s a bounded, . -measurable random variable).
' i

For generai XeP, there exists a sequence {X(n)}; 1 € £
=1 = %o

such that, for P - a.e. weQ, we have

.o 7 ‘ ' ' -t t
. (n) 2 .
iir:folxtr,’ (@) - X, (@)[%at = o, iir:. Oizz‘aleoxén)(m)dws -‘Jfoxs(w)dwsho

for every T<§; by Theorem 4;5.1 in Chung [ ], we also have
T (n : T ‘
. n) 2 2 , -
.iiI:J.O(Xt (w))“dt = J‘oxt(w)dt, a.s. P..

Therefore, with Tat2s20 one sees that 1lim exp gi(X(n))==eXp Q:(x),
' N
a.s. and by Fatou's lemma: B

E[exp QE(X)ISS] € lim E[exp gi(X(n))IES] =1, a.s. P.

Nese

2.26 Solution:

Let us take a partition I = [to,tl,...,tm} of [O,t]
with O = tQ<tl<...<tm = t and consider the corresponding simple
process |

m-1 ' ‘
T W, (w) 1,
oo t, (ti,t

I
Xs(w) = (s); Oss<t.

i+l]



Now

. t
gl (x] - wsieds -z E |W, = W/|" dt
g S 1=0 "ty i
M ot} . E( W, -, |2
€ ¥ (t.,.-t.) . E( sup W, -W .
i=o( i+l i t.<stet. ty ot )
i i+l

But {]Wt.-Wt],3¥; tist<m} is a submartingale, and so, by Doob's
i _

maximal inequality (Theorem 1.3.6 (iv)),

' 12
E( sup lwti-Wt] ) & 4E ‘Wt -W }2

'ti‘t‘ti+l i ti+l

= u(tli'i'i-ti) s ]-HHI“,

t,). It follows that

where . |[Tll 4 max (ti+1- i

Ogigm-1

t - |
1im  E[ [x] - W, ds s lim  htin) = o.
-+ 0 70 ol - 9

By definition, Iﬁ(W) is the I?.1imit of

-1
Wood, O
I.(X"Y= ¢ W_ (W -W, )
R e R A T S

pm-1 -, 2 2
T N A R
2 ‘o Bie1 Y tsi Y
1.2 1m-l 2

=—W - — Z(W -W )
2t 2400 tia by ]

~which convefges in 'L to ~%'W
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o

In fact, if we have a sequence of partitions {Hn}° with
: ' n=1

© .

z UHnH < =, then this last convergence takes place almost surely
n=1 : ,
as well; c.f. Problem 2.9.8 .

This example provides a nice illustration of the sensitivity
of the stochastic integral to the selection of the point where the

integrand is evaluated. On the interval (ti,ti+1], the process

x1  gefined above takes the value of W at the left end-point,
and is thereby adapted to the filtration of W. If, in place

W, 1 : . A A
_Qf It(X ), we were to consider for g, 2 ti_+ e(ti+1-ti),

Ogegl, the approximating sum

m;l o
R 25 Wei(wtnl-Wt‘i)
m-1 m-1 5
- ifo(wti"wei)(wti*»l-wei) * i-z-O(wei-wti)

. m-1
+ T W

i=0

(W W, ):
b1t Y

‘we would get a substantially different answer. Indeed, as || - O,

we have

' m-1 ,
1,2 1.2
R(1) - iZ‘O(ei-‘ci) + Z(Wg-t) = 5 T + (e - .;:.)t

in L2. (Work this out carefully; Problem 1.2.10 is helpful here.)
Different choices of € thus lead to different values of the

integfalg the choice € = 0 .is the only one which preserves the
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martingale property, and this is the Ito definition with the

increments of the integrating martingale "sticking out into the

" * 4 ) s °
future”. With € = 5 we obtain the Fisk-Stratonovich integral
which obeys the rules of standard calculus such as ftw aw ==l-W2.
. .:OSSQt

This integral exists only under assumptions more restrictive than
thosé necessary for the construction of thé ité integral, andg,
“when it exists, it is related to thg corresponding 1té integrai
by a simple "correction formula'. Chéosing € =1 leads uéfto‘

the so-called backward Ité integral.

~
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3.2 Solution: We have
Xy = Xg+M +B, = Xp+ M _+8B,

so

M -M, =B _-B.; 0<t<™,
We may localize by setting

T, = inf{0 <t <™; lMthtl >n},
so that
(n) B+ 4
Ne o 2 Moar "M

is a continuous martingale of bounded variation. It

follows that N(® = 0; 0<t<oo,

t
as n = <, we have

M = He,

and since Tn'tCD‘a.s.

0 <t< co,
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3.7 Solution: The proof is much like that of Theorem 3.3.

The Taylor expansion in Step 2 of that proof is replaced by:

f(tk,xt

)-f(t_lx )"=
'k k-1’7t

k-1

% k k-1
d d a (i) o (4)
= == £(7,X, )(t ) + ¥ =—£(t, . ,X y(x!1t - x
ot k' k Tk-1 o1 O3 k-1"%¢, o (tk tho
a 4 a2 (1) _ y(4) (3) _ o (3)
+ X 0 =2 —f(t. .,n) x!J! -x!d
i=1 3=1 bxi\axj k-1""% ( ,k tk-l) ( £ tk-l) .'.

where t, . < -Tp < &y and T, 1is as before.
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 3.10 Solution: Let £f(z) = %, so f£'(z) = -i% and f"(z) = i%,
z 2
We have
dy, = £'(2,)d2, + L£"(z,)(d2.)°
t t t 2 t t
X¢ x2
= -'Z—dwt + T dt
t t
= -Y X. . dW,_ + Y X2 dt
t7t t £t *
3.11 Solution: Let £(x,y) = xy and apply Theorem 3.6 to
compute
£(X,,Y,) = £(Xg,¥q) + {)&— £(X Y )AX_ + fo?’? £(Xg,Y )AY

o+ 'z'J; =5y f(xs.?s) + ayox (X Yg)|am, Ny .

3.13' Solution:

"Note that X is independent of each pair (W(l),w(z)),
W, w3y ana W, wl3). 1t is clear that 1), n(2))
is a two-dimensional Brownian motion. For I € B(C[O,ocﬁ),

we have

=prw, w®)y erix=11p1x=1]

e, w3y erix=-11px = -1

Terw P w3y e+ Jerw®, w3 e

i

=D, w3y €.
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The same argument also.applies to w2, M3y The
triple (M(l),M(z),M(B)).is not a three-dimensional

Brownian motion because

P[M{I)M(Z)M(3) > 0] = 1.

1 1
'3.14 Solutioh: Let Q = {qg.,3 , SO Fli) - Zd q w k)
. k%144 ,kea t k=1 Kt
is in m2 and
@, 3, o g R (k)
» ' t T oy tik¥ik ’ t
= 6i.t,

J

by the orthogonality of Q. -Now appeal to Theorem 3.13.

3.16 Solﬁtion; We check condition (e) of Proposition 2.6.7.

‘ f‘or r € 1R+, t >0, T € B(IR"') and any optional time S
of {3t3, we have from the strong Markov property for W

and equation (3.11):

w
(r,0,...,0) _ S+
P’ re ’ [Rs+terlss+] =P [Rtel‘]
(Rq,r0s..0, 0)
# P S+ . [Rte r]' P(r,o,-o.' 0) —a.s.
' on {S < cc}.
1 . | = 1 = = 1

3.19 Solution: Let' fd(x) Inx if d=2 and fd(x) xd-z

if 4 > 3. For 0< c<r, let

inf{t>0; R =c}; if {---} # g,
TC = . | ‘
-

.
’

otherwise.
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For k > r, k an integer, let

inf{t>0; R_=k}; if {---1# 4,
Sy = :
cC; otherwise.

 Set

T = Tc A Sy A . Applying Ité\'s rule, we have
(
2
= dB d = 2
. 0 Rs sl 4
fd(RTk) - £4(x) =,$ |
1 7
_J'ik G-2 dB" . d > 3
d-1 s’ L Tt
0 R i
\ s
. SO
fd(r)>= Efd(RTk)

il

fd(c)P;['I"cf_sk An] + £4(KIPIS) < T, An)

+ E[f.(R)1 1.
d‘"n {n<sk/vrc3
Let n #+ ¢ to obtain

. (8.1) fd(r) = fd(c)P[TciSk] +fd(k)P[Sk$Tc].

If d=2, we divide (S.1) by f4(k) = Ink and let k =+ ©

to obtain 1lim P[Skf(T ] = 0, which means T_ < oo, P-a.é.
k~+co - C ' v C
Thus, m < ¢ a.s. for every 0 < c<r, so m=20 a.s.

If d> 3, let k » & in (S.1) to obtain

1 1 '
— = — P[T_, <®].
rd 2 cd.2 c

But. {-Tc( cw}l= {m<cl.
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3.20 Solution: 'We denote the starting point of the Bessel process

by a superscript oni:he,probability. Let 0 {r<a<b<(cw

be given and define sequences of stopping times by To = 0,

and for k=0,1,..., _
inf{e>T,; R =b}; if { 1} # 6,

k+1 ~
co; otherwise,

inf{t_>_Sk+1; Rt=a}; if { 3} # 6,

k+1
cU; otherwise.

It is clear from Theorem 2.2? that PY[ Tim R =cc] =1,
. t-cc

 so on the event {T, < ®}, we have S, _, < ®© a.s. On the

k+1

event {Sk +1 < o0}, the strong Markov property asserts
Pr[T1;+1 <ocld, ] = PP[ min R, <a]
k+1 - 0Kt
d-2
a
= \R ’
= (b)
and since Tk is 3’3 -measurable, we have
k+1
PY[T, ., < ] = PY[T, <, T .. < o]
- Tk+1 k " “k+1
r . r
= E {lrn (o3P [Ty < ®l3, 13
{Tk<oo} k+1 Skl
d-2
a r
(‘S) P [Tk < e},
. . ok (8-2) :
"Induction on k -yields P [Tk-< @] = (B) , k=0,1,...,

and so' PY[T, <@ V k>0] = 0.° This shows that
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P[ lim Rt_>_a] =1, and since a can be as large as we please,
t=cC

we must have P| limRt = ] =1.
: t~co

3.21 Solution: For m > 1, f£(x) & |x1%™ is of class c2. 1td's

rule implies

) -t ’ t 2m-2
‘ 2m _ . 2m-1 - } 2
“(s.2) M 7T = 2mfotMSl (sgn M )X dW_ + m(2m 1)IOIMSI Xgds; 0T,

For N > 0, let:

inf{0<t< T: |Mtl =N}; if {---3#0,

T _ : , ; otherwise
T

' N . ,
so E[ (lMslzm_1 Xs)2 ds.< . We may replace t by 17y
. 0 . . .

in (S.2) and take expectations to obtain

T
N
ElM. P® = m(2m-1) E[] M M=2 %2 gs
TN 0 = s

P2

7
m(2m-1) E [ IM_P™"2x2 as.
0

Letting N,» © and using Holder's inequality and the

submartingale inequality ElXS S EIXlem

; 0{s<T,

we may write

. - T .
ElMlem < m(2m-1) Efo lMslzm"2 Xids

T m-l o 1
2m , \ m 2m
m(2n-1)E [ 1P as) T @ [ 1% " as)"

m-1 m-1 1

fuind ml g
mzm-1)T ™ EIn PN ™ @[ 1x PP as)".
- 0

I~

I~
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Raising both sides to the mth power and then dividing

by (EIMtFm)m-l; we obtain the desired result.

3.23 Solution: For x., > 0, i=1,..., d, we have

(s.3)

(5.4)

1

xT-k...-kxg < d(x1-+...-+xd)m dm+l(xm ..;4-x2).
Therefore
» “MTHZm = [ g (MTJ.))z]m < & .gllMéi) I2m
=1 i=1'
V,and
d%M(i5>,I; <d -‘ ('__SQM(“;T)m = d - ap.

i=1

Taking éxpectations in (S.3), (S.4) and applying (3.20) to
(1)

each M , we obtain

E i 2™ < a™ e _Eal.

A similar proof can be given for the lower bound on E:HMThzm

.

3.24 Solution: We have

d . _ r
E<M(l) >p = T (x(l'j)) dt = l,x

I
1 | 1131 t

i

Jqu apply Problem 3.23.
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3.25 Solution: If M, = J XsciWs " is a martingale (rather than
0

merely a local martingale), the desired inequality follows

from Doob's maximal inequality (Theorem 1.3.6(iv)) applied

mc,loc'

to M | and relation (3.20). When M € a

localization argument how gives the result.
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4.4 Solution:

(1) We have {T_ < t} = {At_+ t>s} €3, so T

is a stopping
time of {Et}.

(ii) Since Jt contains every P-null set in &, it is clear from
the definition of 3T that Qs also contains every P-null
s .
set in &. We now prove right-continuity of {Qs}. Let {snfiil
be a sequence with S, +s, so {Tsnszl is a sequence of
n= :
optional times with Ts &TS. According to Problem 1.2.22,
. n
A co ‘
St p=1 °n  n=1 Tsn T+
where: 3T + agrees with | GT = G under the assumption
_ s . s _

of right-continuity of {3t} (Definition 1.2.19).

(iii) Because Ts is'a continuous function of s, Nél) is

continuous. For fixed s, Ts is a bounded stopping time,
so the optional sampling theorem can be used to prove that
Nél) is a local martingale. Furthermore, the same :

theorem shows that for ‘Ovi s

2 S1
S, : S1
Lhp_ T Ap
2 51
= s, - 8. = (T -T )
2 1 s2 sl
< Sp"~ .81
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4,5 Solution:

(1)

(i)

(iii)

(iv)

(s.4)

The nondecreasing character of T is obvious. Thus, for

right-continuity, we need 6nly show that 1lim T(6) S'T(s).
Bis

Set t = T(s). The definition of T(s) implies that for

~each € > 0, we have A(t+e) > s, and for s < 0 < A(t+e),

we have T(6) < t + €. Therefore, lim T(6) > t.
_ . Bis

Set t = T(s) and choose € > 0. We have A(t+e) > s,
and letting €40, we see from the continuity of A that
A(T(s)) > s. If t =T(s) =0, we are done. If t > O,

then for 0 < e < t, the definition of T(s) implies

A(t-g) < s. Letting €40, we obtain A(T(s)) < s.

This is a direct consequencé of the definition of T and
the continuity of A.
For a < t; <ty i‘b, let G(t) = l[tl,tz)(t)' According

to (iii), t; < T(s) < t, if and only if A(t;) < s < A(t,),

1
SO
b | A(b)
J c(rlaa(t) = a(t) - A = G(T(s))ds.
a Afa)

'Linearity of the integral and the monotone convergence

theorem imply that the collection of sets C € 8[a,b]
for which
b : A(b)

1.(t)aa(t) = [  1.(T(s))ds
J“a c A(a) ¢
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forms a Dynkin'System.‘ Since it contéins all intervals
of the form [tl'tz).c {a,b], and these are closed under
finite intersection and generate 8[a,b], we have (S5.4)
for every C € 8[a,b] (Dynkin System Theorem 2.5.1').

The proof of (iv) is now straightforward.

4.7 Solution: Let ¢ be a deterministic, strictly increasing

function mapping [0,<c) onto [0,1), and define M € iC r Loc

by
P (t) | |
M, = Io X dW_; 0 <t < o,
SO
>, = [ ‘X%ds; 0 < t < oo,
t 0 sl =

and -<M>£-*CO a.s. as t =+ ©, According to Theorem 4.6,
there is a Brownian motion B such that .
t .
J x_aw_ =B R
0 <M> (e “(t))

As t 11, <M>(¢-1(t)) + OO, so, by the law of the iterated

logarithm for Brownian motion,

P[lim B = - lim B = +c0] = 1.

-1 i -1
£l <M> (¢ T (t)) BIL <MY (9 (t))

 d
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4.11 Solution: For simplicity of notation, we take d  to be 1.

For each positive integer n, define

T =

{lnf{o < t < oo, 'lMtl >nl; if {...}# @,
n

co; if {...}1=198,

and set TO = 0. Because M is right-continuous with left
limits, we have T, tcc a.s. According to Problem 1.2.5
and Proposition 1.2.3, each Tn is a stopping time for {Et}.

The martingale (Problem 1.3.22)

(n) 5 ¢u(n) _ . ’
M A {M = Mt/\'I‘n’ Foi 0Lt oo}

is bounded, as is M(n) - M(nfl), ahd so Theorem 4.10 guarantees
the éxisteﬁde bf.a piogressively meésurable Y(n) = {Yén), Et;
| ' T (n),2 '
0 < t <} satisfying E [ (¥, ) gt <; 0 < t <o and
. ' 0 "

| _ . _
(n) _ ,(n-1) _ (n) .
M M, -IOYS dWw_; 0 < t<®, nl.

Because

t
- ' = em(n) _ o (n-1)y  _ (n),2
<M>t/\Tn <M>tATn-1--- <M M >p = '[o (¥,") “as,

we must have ¥ (w) = Yén)‘@’1[Tn_1(w),Tn(w))(S). For

(<]
z Y(n) w

Lebesgue a.e. s, P a.e. Ww., Setting Yt = £+ ve
' n=1

have the desired representation:

t. .
Mt=f0 Y AW ; 0 <t <o,
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4.12 Sclution: Let ‘Mt' in Theorem 4.10 be a right-continuous

modification of the martingale E(§I3t) - E(§).

4,15 Solution: Suppose

m

(s.5) Yo = §01t0}(s) + iEO §i1(si,si+l](s),

where each §i is 88 -measurable. Then (4.38) reduces to
i

§; (B -B_) =] gil(S,

(<M>.)dM,; 0 < i < m,

i+l i 0

which, because of the definition of B and Problem 4.5(iii),

is eguivalent to

(oo

) “Mr(sp) T Io Sit(T(sy) T (s,

(£)AM.; 0 < i < m.
1+l)] t -7

i+l

gi(M‘I‘(s

We show that whenever T; < T, are stopping times for {3t}
such that E<M>T <¢ecc and & is an 3T -measurable, bounded,
: , 2 . 1

random variable, then

o

(s.6) E(M, -M,) =) E&L (t)aMm_, a.s.P.
T, "', 0 -(Tl,T t

5]
Replacing Mt by MTzAt’ we may assume that E<M>_ < @

and T, = (Corollary 2.19 and Definition 2.21). Now let
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. o
A (T
k=0 2 [k2 7, (k+1)2 )
. e(n) A . . .
so that §t = €1 (n) is a simple process. For this
{e>7'™ ]
process, we have
5, - ) —J‘ g™ an,_,
(n)

and letting n =<, we obtain (S.6).
If Y is not simple, there is a sequence {y{» =1
of simple processes of the form (S.5) such that

> v () 2
1im £ [ (v -v{™)Zas = 0. With x{™ 8 v ve have
n=co 0 . _ t ’ ‘

from Problem 2.16"':

= (n) = (n)
Y dB_ = llm Y dB lim X dM X, daM, .

4.18 Solution: The proof already given for Theorem 4.16 applies
. o
to the case’ T = once we show that f des { o, a.s.p,
"o .

t
.1mp11es the existence of lim J x L Let
‘ tocc 0 g

T = inf{t > 0; [ v%ds = n}, so y (™) A {y
n Z 0 S

&
14 7
tth t

t
*
0 < £t <} is in %x> and 1lim J Y(n)dw exists.
S ; s
t+cc 0

t t
= (n) =
on the set {T_ =cc}, we have [ ‘YS. aw_ = IO Y aw_  for

'all 0 <t <o. But lim P[T  =c<] =1, so we have
.nco

the desired result.
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LG

t .
5.6 Solution: We define M = J stWél), so M given by (5.8)
, 0

is
t . t .
~ (i) _ (i) 5.
M, = jo Y QW fo Y X “'ds; 0<t<T.

~

We shall identify M_ as the 1t integral (under 5&)

t . v
f stwél), by appealing to Proposition 2.22. Now, according
0 .

to Proposition 5.5, every element N of m;,loc admits a

- representation of the form

~ LN E) (3)
N, =N_ - _.Z X' Van,w'd> ; o0<t<r,
t t i 'S s - -
j=1 0
for some N € m;,loc. Proposition 5.4 implies
M,N>_ = <M,N>_ = [ Y_daN wldly
A - i s ! S

+ o e

~~i
1) st<N,W( )>s; 0<t«grT,

o

~a.s. P and 3

. 5.7 Solution: As in (5.11), we’have with Zt £ exp{uwt - % uzt}:

pM it < t] = Ell{pce)Zpl -
Let t =+ < and use the monotone convergence theorem to conclude

SP(“)[T < ©] = Ezp.
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Under P(“), the process {Wt-pt, & 0 < tXK cc}l is a standard

t;
Brownian motion, so P(“)'[Sb ] =1. We also have

P[sb ] =1, since b < 0.

Solution: We have P[Tb <] =1 and

1

inf{t > 0; W, =Wy =Dbyl; if {...1 # 9,

Thecrem 2.6.15 states that, under P, the process

{WT. e = Wp o 0 < t <©} is a standard Brownian motion
5 b I

1 1 .
independent of 3T . 4It follows that, under P, Tb b, - Tp
bl . 172 1
is independent.of Tb1 and P[Tbl+b2-—Tb1 € dt] = h(t;bz,O)dt.

Using the same justifications as in (5.11), we have

() '
P [T, <s, T - T < t]

by * “by+b, by

= E[1{ : 22 ]
T, <s, T -7, <t}%+t
bl - ’~ bl+b2 bl-—
T, <s, T T, < tl°r
by ; b, +b,, 'by b,+b,

t s 1 2
J’O Io exp{u(by+b,) - 5 u°(1+0) Jn(0;b,,0)

. h(T;bz,O)dc ar

t s
I f h(C;bl,u)h(T;bz,p)dc dr.
00
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‘Therefore

o . o (1)
h(t; bl+b2, 1)ydt = P {Tb € dt]

i

1
= ft pM) (p  €as, T - €at - s]
! 14
' =0 bl bl+b2 bl
t
= f h(s;by, M) h(t-s;b,,H)ds dt
s=0
= [h(';bl,HJ *hi°;bl,H](t)dt.
5.11 Solution: The process ﬁt 4 Wt - gt 1is a Brownian motion under
P(“), so the law of large numbers implies
W _-ut
p(M [ 1im E— =01 = 1.
tco ) c
Therefbre,' lim %(pwt - % pzt) = % HZ, P(“) - a.s., SO
t-+c0 :
A 2

with Zt exp(pwt - % H°t), we have 1lim Zt = CO,
7 . t+c0

P(“) - aQs., and so P(“)[Rb <.cc] = 1. Now
1

_ 12,
Zt - exp("‘“vt 2 4 t) ’

so {éL., F; 0<t< e} is a martingale under p (¥
t

Using the same justifications as in (5.11), we have



"
td4
L
[

PIR, < £]

Letting t = <@, we obtain the desired result P[R < ®] =

o gl

For the second claim, note that for every finite t > 0,

we have

- w(H) e m(M) o - (1) \
0 ="V = E Wt"Rb ME (tAgb).

But
'- 1 | 1

so
() .. -'
E (t A R_b)

Letting t =, we obtain

¢ 21logb
b—- K :

From Problem 2.11, we have

We ralso have

' logb
loglenr < Ty

’

_1 1 . 2logb
3 Bt AR] ¢ S22 <o,



5.19 Solution: Let
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b P oK Bp W

Solving these two equations for E(“)Rb yields the desired

. ;esult E(“)Rb = Z}ﬁ%LE.
M

; T . .
ZT =g3p + i-e.,

PT(A) = E{lAZT]; A.€,3T; 0 i,T < o,

Ihe'consistency.condition (5.5) implies that 2 = {Zt, 3t;,
| 0 <t S_OO} . is a martingale}<and because of Theorem 1.3.11,
Qe may assume-;hat for P-a.e.' w, t P2z (W) is a right-
continuous function with left limits. By the conétruction
of 30, every set in this o-field has P-probability zero
or one, SO Z0 =1, a.s. P. Problem 4.11 implies that 2
has the representation

d

t . :
=1+ =z [ Yél)dWél); 0<t<oo,

Z
t i=1 0

(1)

‘where each Y is progressively measurable and

&

. |
e (Y;l))zds <] =1, for every 0< t <o, 1< i<
0 | |

Let -
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inf{0 ¢ t <@; z_=0}; if {...}#¢

0 ; it {...} =9.

For each 0 < T < ©, the Optional Sampling Theorem implies

(cf. (5.11))
Ppls <71 = Ellrgpi2Zg) = O,

~

and by the absolute continuity of P with respect to PT

6n 3T we_conclude:

P[S<T] =0; - 0 < T<co,

It follows that ©P[S < ] 0, so log(zt) is defined for'

' 3 - = (v (1) (d) .
0 t<™, a.s. P, and X = {xt = (X7 X, 3.

0 < t <o} defined by

x{ - Ly, 1 ¢i¢a, o0<t<co,
£ Z, 't £iX £

satisfies (5.1). 1Ito's rule gives

d t . . t
(i) < (i) _ 1 2
log(z,) = = x Vaw Y -5 [ lIx_{“as,

so 2(X) =2 1is a martingale'and (5.4) holds. .
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6.6 Solution: If |B_,,(w) - B_(®| ¢ Ch; 0 <h 3§, then by (6.6)

and the additive functioﬁal property of 4 we have

)
1
1=xf 1 dh

8§ % "B (W-B (W) [<C8]

. -'Bt(w),‘*'Cf* o . :
=< .er) - (Xlw) dX
.0 B, (¥) -Cb t+h t
= 2C max . [4 (x,w) - 4, (x,w)],.

0<h<s .

The last term converges to zero as & 0, because of the joint
continuity of Lt(x,w) in (t,x). This contradiction establishes

the nondifferentiabiiity of B.(w).

6;7 Solﬁtion:"(i) It.is'ciéar that (6.7) implies (6.65. If (6.6)
/hélds,'ihenf(6.7) holds for every linear combination of Borel
measurable indicator functions, and it is possible to find a

‘ sedﬁence 6f these which converges everywhere from below to a
given Borel measurable £ : IR =+ [0,0). Equation (6.7)
follows then from tpe monotone convergence theorem.

| (ii) For any a < b,‘thé indicator l(a,b] can be
wriften as the limit (everywhefé) of a sequence of functions
in #. By the bounded convergence theorem, (6.6) holds for
every B of the form (a,b]. The collection of all Borel sets
B"for which (6;6) holds forms a Dynkin system and sg, by the

Dynkin System Theorem 2.5.1', (6.6) holds for every B € B(R).
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We saw in part (i) that this implies (6.7) for every Borel

function £ : R -+ [0,00),.

Solution: Let h have support in [0,b], consider the segquence

qf partitions

of this interval, and set . D = U D,- The Lebesgue'integral
. n=1

on the left-hand side of (%.24) is approximated, as n.+ CD,

by the sum
2P .‘ t £
, b (n) : '
z — h(b ) ( 1 (W_)aw ) = F_(W_ )aw_,
k=0 2’,1 k IO [bén)'m) s s IO n( s) s’ -

'whefe the function

2R3 .
s % h(b{™y1 (x)

k=1 2 k [bén) , o)

A
Fn(X) =

converges uniformly, as n + <, to the function

: A .o: , ) X
.'AF(x) = j_coh(a)l[a-’do) (x)dg.

- . t
Therefore, the sequence of stochastic integrals {J Fn(ws)dws}gfl

converges in L2 to the stochastic integral I F(Ws)dws, which
0 v

"is the right-hand side of (6.24).




3.5.35

Solution: (i) Under any Pz, B(a) is a continuous, square-

6.13

integrable martingale_wiéh guadratic variation process
t 2 z
<B(a)>, =[] I[sgn(W-a)]®ds = t; 0 < t <, a.s. P%,
-0 ’

According to Theorem 3.3.13, B(a) is a Brownian motion.

’ *
(ii) For w in the set Q of Definition 6.3, we have
(6.2) (Remark 6.5), and from this we see immediately that
£o(g,w) = 0 and Lt(a)w) is nondecreasing in t. For each

z € R, there is a set ‘5_6_31 with ' Pz(ﬁ)‘% 1 such that

z,(a) is closed for all w €l For weln Qf, the

- complement of Z,(a) 1is the countable union of open intervals

u I,. To prove (6.26), it suffices to show that
€I : :
J d&t(w)l= 0 for each o € W. Fix an index a and let
I . . o :

. Q ‘ _
I, = (u,v). Since W.(w) - a has no zero in (a,b), we know

that |wW.(w)-a| 4is bounded éway from the origin on

[u + %'-V,; %], where n > ;%E’ Thus, for all sufficiently

small ¢ > 0

meas{0 < s < u + l; lw ~al < e}
= meas{0 < s <'v - i, Iw_-al < e}
- - n’ s - =
and thus 4 1 (a,w) = 4 l(a,w). It follows that
' ut+s v-= )
n - n
f' . di,(a,w) = 0, and letting n =+ o we obtain the
1 1 t'. _ :
u+s,v-17]

' desired result.
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(iii) Set z =a =0 in (6.25) to obtain
Wl = -B_(0) + 2,(0); 0<t<™, plas.

The left-hand side of this relation is nonnegative, while
Bt(O) changes sign infinitély often in any interval [0,e],
'€ >0 (Problem 2.7.17). It follows that 4 (0) cannot

remain zero in any such interval.

(iv) It suffices to show that for any two rational numbers
0 <. g« r ¢<co, if Wt(w) = a for some t € (g,r) then

Lq(a,w) < %r(a,w),‘Pz-a.e. w, Let T(w) 4 inf{t > q; Wt(w) = a}l.
Applying (iii) to the Brownimn motion {W_,. - a; 0°<¢ s <]
we conclude that.

(a,u) < 4

' 2z
: i % e, W
T(wl+s(a'w) for all s > 0, P -a.e

Yo (w)

4

by the additive functional p:operty‘of local time (Definition 6.1
and Remark 6.5). For every w € {T < r} we may take
s =r - T(w above, and this yields 4 (a,® < 4 (a,9).

6.18 Solution: It is certainly sufficient to take z = 0. From

(6.34) and the fact that B is Brownian motion under PO,

wé have
lim th(O,w) = lim ( max B_{(w)) =co
£t~ o t+c0  0<{s<t

for Po-a.e. w é 2. By the additive functional property of

‘local time, we have for every a # 0:
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) = . 0
‘Lt+Ta(‘”) (alw) - ‘Lt(a,eTaw), 0 _<_ t < OO, for P -a.e. we Q,

and by the strong Markov property of Brownian motion:

p(w € 0; lim 4 (a,0) =] = 2%[w € O; 1im ¢ (a,8, W) = o]
R o Jo o) t=+Cc0 Ta

= Pa[w € Q; lim Lt(a,w) = 0] = Po[w €0Q; lim 4_(0,c0) =] = 1.
) oy Jo o t+co t

6.19 Solution: From (6.38) we obtain Iim f(y) £ £(x).,
: X ) yix

yiz x1

Tim £(y) < £(z) and f(y) £ lim £(x), £(y) < lim £(z).
' z4

L]
(%2

This establishes the continuity of £ on IR.

For £ € R fixed and 0 < h; < h,, we have from (6.38),
with x = £, y=2E8+h;, z=5§+hy: '
(S.7) A£(§;hy) < A£{E;h,).

On the other hand, applying (6.38) with x = § - hyr ¥ = §-hy
and z = § yields ‘ .
(S.8) A£(§;-h,) < A£(E;-h,).

Fin'alliz, with x =8 -¢, y=¢§, z =£§ + &, we have

‘(8-9) Af(E;-€) < A£(E;8); €,6 > O.

Relations (S.7)-(S.9) establish the requisite monotonicity
in. h of the difference gquotient (6.39), and hence the existence

and finiteness of the limits in (6.40).
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In pérticular, (S.9) gives D £(x) < D+f(x) upon letting

€ +0, 6 {0, which establishes the second ineguality in (6.41).

On the other hand, we obtain easily from (S.7) and (S.8) the

bounds

which establish (6.41).

(y-x)DVE(x) < £(y) - £(x) < (y-x)D E£(y); =x < y,

For the right-continuity of the function D+f(-), we

begin by observing the inequality

DTE(x) < 1lim DYE(y); x € R,
. y,{x .

which is a consequence of (6.41). In the opposite

we employ the contingity of £, as well as (s.10),

for x < z: |

f(z) = £(%) _ 4, £(2)
= % = lim

z ~-yf(Y)'; lim DY£(y).
yéx ‘ yix

Upon letting 2z {x, we obtain D+f(x) 2 lim D+f(y).

| yx
continuity of D £(+) is proved similarly.

'?rom (S.10) we observe that, for any function

satisfying

DTE(x) < @(x) < D E(x); x € R,

direction,

to obtain

Left-

¢ : R + IR
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we have for fixed y € R,

(5.12) £x) 2 G (x) & £(y) + VIO(¥);  x € R.

The function G () 4is called a line of support for the convex,

functlon f( ) It is immediate from (S.12) that £(x) = sup Gy(x),
) YE€R

but the point is that £(<) can be expressed as the supremum of

countably many lines of support. Indeed; let E be a countable,

dense subset of IR. For any x € IR, take a seguence

{y}

n=1 of numbers in E, converging to x. Because this

: i. *
sequence is bounded, so are the sequences {D f(yn)}:Zl (by

. . ' ) o
.'mOnotonicity and finiteness of the functions D £(-)) and -

{o(y))} 27 (by (S.11)). Therefore, lim G, (x) = £(x), which
o . n-+co n
implies that £(x) = sup G_(x).
. B yeE y

6.20 solution: (iii) For any x <y < z, we have

R - B(x) y
(5.13) (%) < Q‘Y; =) - 22 T ewau < oty
! X

S

_ &(z) - &(y)
—= y jy %(u) du ey L @)

This gives

B(y) < 22X #(x) + L% #(2),
whlch verlfles convex1ty in the form (6. 38) Now let x ty,

z4y 1n.(S.l3), to obtain
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(s.14) o_(y) <D e(y) < w(y) <DE(y) < . (y); y € R.

At every -continuity point x of ¢, we have ¢¥(x) = @Q(x) = D*é(x).
The left- (respectively, right-) continuity of ¢_ and D ¢
(respectively, P, and D+§) implies @_(y) = D &(y) (respectively,
¢ (y) =D'e(y)) for all y € R.

(iv'.) Letting x +y (respectively, x ty) in (6.44)', we
obtain
D"fkﬁr) <P (y) < cP(y)gﬁ_ ?. (y) .<_:D+f(y-.)‘: y € R.
But now frbm (6.41) one gets
MK b*E(n) < D'f‘(y)-: <oy Loy x <y,

andrietting. y &x‘ we conclude: ¢+(x) = D+f(x);i,x € R.

Siﬁilarly, we concluaer ¥_(x) = D f(x); x € R. Now consider

the function G 4 £ -8, and,simply notice the consequences
Dic(x = Dif(x) -{Dié(x) =0; x €I,

of the above_discuésion; in other words, G is differentiable

on. IR with derivative which is identically zero. It follows

that G is identically constant.

6.21 Solution: Just take @ =D'f or @ =D £ in the preceding

problem.
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st

6.24 Solution: Let .dk = f'(ak+) - f'(ay—), and for x € R, set

gl(x) = £f"(x+) V O, gz(x) = (-£f"(x+)) V 0. Choose a, < al.
We have then ' A
n h Yy
Byt = £1(ag) + E Qlp, o) (X) ¥ Ia (g)(2) - g,(2))dz;
0 Yy € R,

and upon further integraticn, with q, = (if'(ao)) V 0:

- ; n . + X vy
CE(x) = [f(ag) + g (x-ag) + I di(x-a)” + [ g (2)az]
' - k=1 : ay 2,
: n - X :
- la_(x-aj) + kzl dy (X-ak)+ + fy g,(2)dz]; x € R.
=]1- a, a : :

0 0

This provides us with tE? desired decomposition of. £ into the
difference of con§éx,functions. Equation (6.49) takes the form

(6.53) in this special case of Corollary 6.23.

6.29 solution: (iv) = (vi): Let t € (0,) be such that

t
p(f £(W)ds <] =1. For x =0, just take § = t. For
0

x # 0, consider the first passage time Ty and notice that

p’lo < T <o) =1, 2P[2r, < t] > 0, and that

>

< Ws+T -x, 0<sK o} is a Brownian motion under PO.
b4

{B
Now, for every w € {2’1‘x < tl:
T, (W) 2T, (W)

J E(x+B_(w)ds
0 = )

. -
£W (w))du ¢ J £(W_ (w))du < o,
T (¥) o Y
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T
. : X .
whence {2Tx <t} E»{f f(x-&Bs)ds'<CO}, a.s.pl. We conclude
0o

that this latter event has positive probability under PO,

and (vi)'follows upon taking S = T,

(vi) = (iii): Lemma 6.26 gives, for each x € K, the

existence of an open neighbourhood U(x) of x with

I f(y)dy < cec. Now (iii) follows»from the compactnéss
U (x) .

of K.

~.(iiif = (v): 'Eor'fixéd> x € IR, define gx(y) = f(x+y)

and apply the known implication (iii) = (ii) to the function 9y

6.30 Solution: Relation (6.55) follows from (6.7) and Problem (6.18):

J fmds = lim [ £(w))ds = [ £(y) -lim 4 (y)dy = oo;
0 S t+co 0 > - t+co
: ' a.s. Px,

by the monotcne convergence theorem.

For (6.56), we observe first that. Xén) can be written as
1 ‘ |
- f(y)4_,(y)dy, thanks to (6.7). Now the crucial observation
Yito e .
n - : ‘
is that, by the scaling property of Brownian motion (Lemma 2.9.4(i))
and the definition of ldcal time, the random £fields

Lt (y)i 0<t<cow y€R}and {4 (5); 0L t<o y €R]

induce the same distribution on C([0,°) X IR) for each

>

n>l. Thus, the processes x(n) and z (R) {f f(y) 4 (%é)dy;
- ' -0 t'vn
0 < t <} have the same finite-dimensional distributions.
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Now it is easily seen that

max Izén) 'th —>0, a.s. P

0<tLT . n-+co

holds for every finite T > 0, and (6.56) follows.




3.8: Notes

Section 3.2: The concept of the stochastic integral with respect to

Brownian motion was introduced by K. Itd (1942,1944) in order to
achieve a rigorous ﬁreatment of the stochastic differential equation
Which‘governs the diffusion processes of A. N. Kolmogorov (1931).
Doob (1953) was the first to study the stochastic integral as a
martingale, and to suggest a unified treatment of stochastic integra-
tion as a chapter of martingale theory. This task was accomplished
by Courrége (1962/63), Fisk (1963), Kunita & Watanabe (1967),

Meyer (1967), Millar (1968), Doléans-Dade & Meyér (1970) . Much

of this theory has become standard, andrhas received monograph
treatment; we mention in this respect the books by McKean (1969),
Gihman & Skorohqd (1972), Arnold (1973), Eriedman (1975), Lipster &
Shiryaev (1977), Stroock & Varadhan (1979)., Ikeda & Watanabe (1981),
Elliott (1982), Kopp (1984), the monographs by Skorohod (1965), |
Kussmaul (1977) and Chung & Williams (1983); and the detailed
accounts of the contributions of the "French school" in Meyer (1976),
Dellacherie & Meyer (1975/1980). Our presentation draws on most of

- these sources, but is closer in spirit to Ikeda & Watanabe (1981) and
Lipster & Shiryaev (1977) . The approach suggested by Lemma 2.3 and

Problem 2.4 is due to Doob (1953).

Section 3.3: Theorem 3.13 was discovered by P. Lévy (1948; p. 78);

a different proof appears on p. 384 of Doob (1953).
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Section 3.4: The idea of extending the probability space in order

to accommodate the Brownian motion W in the representation
Theorem 4.2 is due tleoob (1953; pp. 449-451) for the case d = 1.
Problem 4.7 is essentially from McKean (1969; p. 31). Chapters II
of Ikeda & Watanabe (1981) and 12 of Elliott (1982) are good sources

for further reading on the subject matter of sections 3.3 and 3.4.

Section 3.5: The celebrated Theorem 5.1 was proved by Cameron &
Martin (1944) for nonrandom integrands X, and by Girsanov (1960)

in the present generality. Our treatment of it was inspired by

the lecture notés of S. Orey (1974).

Section 3.6: Brownian local time is the creation of P. Lévy (1948) ,

although the first rigorous‘proof of its existence was given by
Trotter (1958). Our approach to Theorem 6.11 follows that of

Ikeda & Watanabe (1981), McKean (1969). One can study the local
time of a nonrandom function divorced from probability theory,

and the general pattern that develops is that regular local times
correspond to irregular'functions; for instance, for the highly

| irregular Brownian paths we obtained Holder continuous local times
(relation (6.22)). See Geman & Horowitz (1980) for more information
oh this ﬁopic. Local time for semimartingales is discussed in the
volume edited by Azéma & Yor (1978); see in parficular the articles
by Azéma & Yor (pp. 3-16) and Yor (pp. 23-35). Local time for Markov

processes is treated by Blumenthal & Getoor (1968).
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The generalized It8 rule (Theorem 6.22) is due to Meyer (1976)
and Wang (1977). There is a conVerse to Corollary 6.22: if f(Wt)
is a continuous semimartingale, then f is the difference of convex
functions (Wang (1977), Cinlar, Jacod, Protter & Sharpe (1980)).

A multidimensional version of Theorem 6.22, in which convex functions
ére replaced by potentials, has been proved by Brosamler (1970).
Tanaka's formula (6.11) provides a representation of the form

t
f(wt)w— f(WO) + f g(Ws)dWS for the continuous additive functional
, 0

Lt(a), with a.€ R fixed. Iq_fact,.any continuous additive func-
tional has such a representation, where £ may be chosen to be
continuous; see Ventcel (1962), Tanaka (1963).

We follow Ikeda & Watanabe (1981) in our exposition of
Theorem 6.17 and in the proof of (é.ss), Problém 6.30. For more
information on the subject matter of this‘problem, the reader is

referred tolPapanicolaou, Stroock & Varadhan (1977).
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