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PREFACE

The most fundamental concepts in the theory of stochastic

processes are the Markov property and the martingale property.

This book is written for those who are familiar .with both of

these ideas in the discrete-time setting, and who now wish to

explore stochastic processes in the continuous-time context. It

has been our goal to write a systematic and thorough exposition

of this subject, leading in many instances to the frontiers of-

knowledge. At the same time, we have endeavored to keep the

mathematical prerequisites as low as possible, namely, knowledge

of measure-theoretic probability and some acquaintance with

discrete-time processes. The vehiqle we have chosen for this

task is Brownian motion, which we present as the canonical

example. of both a Markov process and a martingale in continuous

time. We support this point of view by showing how, by means

of stochastic integration and random time change, all continuous

martingales and a multitude of continuous Markov processes can

be represented in terms of Brownian motion. This approach

forces us to leave aside those processes which do not have

continuous paths. Thus; the Poisson process is not a primary

object of study, although it is developed in Chapter 1 to be

used as a tool when we later study passage times of Brownian motion.

At this time, only the first three chapters of this book are

complete. We provide, however, a table of contents for the

entire work. The material in Chapters 6 and 7 on Brownian

The complete book will be published'by Springer-Verlag.



local time and its applications to stochastic control will be

appearing in a form suitable as a text for the first time.' It

is our desire to give an account of these topics which motivates

the entire book.

We are greatly indebted to Sanjoy Mitter and Dimitri Bertsekas

for generously extending to us the invitation to work this past

year at M.I.T., for their support and encouragement during the

writing of this book, and for providing the intellectual environ-

ment which made this task more agreeable than it might otherwise

have been. We also wish to acknowledge the allowances made by

our respective home departments and institutions, which made

this year of close collaboration possible. Parts of the book

grew out of notes on lectures given by one of us at Columbia

University over several years, and we owe much to the audiences

in those courses.

Typing of this manuscript was done with remarkable care

and efficiency by Doodmatie Kalicharan, Stella DeVito,

Katherine Tougher, and Muriel Knowles. We wish to thank

them all.

We were able to devote the necessary time and energy to

this project because of financial support provided by the

National Science Foundation under grant DMS-84-16736, the

Air Force Office of Scientific Research under grant AFOSR 82-0259,

and the Army Research Office under grant DAAG-29-84-K-0005.
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1.1: STOCHASTIC PROCESSES AND a-FIELDS

A stochastic process is a mathematical model for the occurrence,

at each moment after the initial time, of a random phenomenon. The

randomness is captured by the introduction of a measurable space

(n,3), called the sample space, on which probability measures can be

placed. Thus, a stochastic process is a collection of random variables

X = [Xt; O0t<=} on (0,J), which take values in a second measurable

space (S,,), called the state space. For our purposes, the state

space (S,.;), will be the d-dimensional Euclidean space equipped with

d dthe a-field of Borel sets, i.e., S = , = ( ), where ()

will always be used to denote the smallest a-field containing all

open sets of a topological space U. The index te[O,w) of the

random variables X t admits a convenient interpretation as time.

For a fixed sample point oenQ, the function t- Xt(cM),

tO0, is the sample path (realization, trajectory) of the process

X associated with a. It provides the mathematical model for a

random experiment, whose outcome can be observed continuously in

time (e.g., the number of customers in a queue observed and recorded

over a period of time, the trajectory of a molecule subjected to the

random disturbances of its neighbours, the output of a communications

channel operating in noise, etc).

Let us consider two stochastic processes X and Y defined

on the same probability space (Q,j,P). When regarded as functions

of t and w, we would say X and Y were the same if.and only

if Xt(o) = Yt(w) for all tO0 and all Gwi. However, in the
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presence of the probability measure P, we could weaken this

requirement in at least three different ways to obtain three

related concepts of "sameness" between two processes. We list

them here.

1.1. Definition: Y is a modification of X if, for every t20,

we have P[Xt = Yt] = 1.

1.2. Definition: X and Y have the same finite-dimensional dis-

tributions if, for any integer nzl, real numbers

and Ac~(Rndd0 tl t2 <tn, and Ace( nd , we have:
1 2 n

P[(X t ... X )A] = P[[Yt , .Yt )eA].
n 1 n

1.3. Definition: X and Y are called indistinguishable if almost

all their sample paths agree:

P[Xt(W) = Yt()' v O0t<0] = 1.

The third property is the strongest; it implies trivially the

first one, which in turn yields the second. On the other hand, two

processes can be modifications of one another and yet have completely

different sample paths. Here is a standard example:

1.4. Example: Consider a positive random variable T with a con-

tinuous distribution, put Xt O, and let CO; t T

Yt= 1; t= T.
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Y is a modification of X, since for every tzO we have

P[Yt=Xt] = prTt] 1, but on the other hand: P[Yt=Xt; Y tO] = 0.

A positive result in this direction is the following.

1.5. Problem: Let Y be a modification of X, and suppose that

both processes have a.s. right-continuous sample paths. Then

X and Y are indistinguishable. 0

It does not make sense to ask if Y is a modification of X, or

if Y and X are indistinguishable,unless X and Y are defined

on the same probability space and have the same state space. However,

if X and Y have the same state space but are defined on different

probability spaces, we can ask if they have the same finite dimensional

distributions.

1.2: Definition: Let X and Y be stochastic processes defined on

probability spaces (Q,3,P) and (,~,~P) respectively, and having

the same state space (Rd,i(Rd)). X and Y have the same finite-

dimensional distributions if, for any integer nzl, real numbers

Ostl(t2<...(tn<, and Aep(Rnd), we have

P[(Xt ,. -Xt )A] [(Ytl ...Ytn )EA]

Many processes, including d-dimensional Brownian motion, are

defined in terms of their finite-dimensional distributions irrespec-.

tive of their probability space. Indeed, in Chapter 2 we will

construct a standard d-dimensional Brownian motion B on a canoci-

cal probability space and then state that any process,on any prob-



1.1.4

ability space,which has state space (Rd, R(Rd )) and which has

the same finite-dimensional distributions as B ,is a standard d-

dimensional Brownian motion.

For technical reasons in the theory of Lebesgue integration,

probability measures are defined on a-fields and random variables

are assumed to be measurable with respect to these a-fields. Thus,

implicit in the statement that a random process X = [Xt; Ozt<w3 is

a collection of (RdP, (R ))- valued random variables on (Q,5), is

the assumption that each X t is a/B(Rd ) - measurable. However,

X is really a function of the pair of variables (t,a), and so

for technical reasons, it is often convenient to have some joint

measurability properties.

1.6. Definition: The stochastic process X is called measurable
d'

if, for every AcE(R ),the set [(t,c); Xt(w)eAA belongs to

the product a-field R([O,=)) 2 3; in other words, if the

mapping

(to) - Xt(j): ([O,o) x Q, 0 ([O,~)) 2 ~) - (Rd, (Rd))

is measurable.

It is an immediate consequence of Fubini's Theorem that the

trajectories of such a process are Borel-measurable functions of

tc[O,m), and provided that the components of X have defined

expectations, then the same is true for the function m(t) = EXt,

where E denotes expectation with respect to a probability measure

P on (Q,3) that integrates X t for all taO. Moreover, if Xt
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takes values in R and I is an inteval of [0,-) such that

f EIXtldt<, then

I IXtldt < c a.s.P, and: EXtdt = E Xt dt.

I

There is a very important, nontechnical reason to include

a-fields in the study of stochastic processes, and that is to keep

track of information. The temporal feature of a stochastic process

suggests a flow of time, in which, at every moment taO, we can

talk about a past, present and future and can ask how much an

observer of the process knows about it at present as compared to how

much he knew at some point in the past or will know at some point

in the future. We equip our sample space (Q,U) with a filtration,

i.e., a nondecreasing family [(t; t20O of sub-a-fields of

aF As C At c a for Os-It<o. We set a = a( U tt)'

Given a stochastic process, the simplest choice of a filtration

is that generated by the process itself, i.e.,

X
t A a(Xs; O0sct).

X
We interpret AEct to mean that by time t, an observer of X

knows whether or not A has occurred. The next two problems

illustrate this point.

1.7. Problem: Let X be a process with every sample path right-

continuous. Let A be the event that X is continuous on

[O,t O). Show AeCt
.
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1.8. Problem: Let X be a process whose sample paths are right-

continuous a.s., and let A be the event that X is continuous

on [, to). Show that A can fail to be in aX but if

[3t; txO] is a filtration satisfying Xt c t' t2O, and at
[St; tt0]

is complete under P, then Ae3t
t0

Let (3.t; taO] be a filtration. We define At- A a( U As )

s<t

to be the a-field of events strictly prior to t>O and

at+ n at+, to be the a-field of events immediately after taO.E>O

We decree 3 A O and say that the filtration ta3t is right

(left) continuous if t = t (resp., t=t) holds for every twO.

The concept of measurability for a stochastic process, intro-

duced in Definition 1.6, is a rather weak one. The introduction of

a filtration Et3t opens up the possibility for more interesting

and useful concepts.

1.9. Definition: The stochastic process X is adapted to the filtra-

tion (3t] if, for each taO, X t is an St-measurable random

variable.
0

Obviously, every process X is adapted to [a3X. Moreover, if

X is adapted to Cat} and Y is a modification of X, then Y is

also adapted to [3t] provided that a o contains all the P-negligible

sets in a. Note that this requirement is not the same as saying that

o0 is complete, since some of the P-negligible sets in a may

not be in the completion of Uo .
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1.10 Problem: Let X be a process with every sample path left-

continuous, and let A be the event that X is continuous on

[O,to]. Let X be adapted to a right-continuous filtration

it]}. Show that A t .

1.11 Definition: The stochastic process X is called progressively

measurable with respect to the filtration {[t3 if, for each

t20 and AE(Rd), the set r(s,w); O0sit, Fcn, Xs(o)EA]

belongs to the product a-field f([O,t]) 2 at; in other words,

if the mapping (s,) t-. Xs(o): ([O,t] x Q, e([O,t]) 2 at) -

(Rd, R(Rd)) is measurable, for each taO.

The terminology here comes from Chung & Doob [ 3], which is

a basic reference for this section and the next. Evidently, any

progressively measurable process is measurable and adapted; the

following theorem of Chung & Doob [ 3] provides the extent to which

the converse is true.

1.12 Proposition: If the stochastic process X is measurable and

adapted to the filtration fat3, then it has a progressively

measurable modification.

The reader is referred to the book of Meyer [16; p. 68] for the

(lengthy, and rather demanding) proof of this result. It will be

used only once in the sequel, and then again in a tangential fashion.

Nearly all processes of interest are either right or left continuous, and

for them the proof of a stronger result is easier and will now be

given.



1.13 Proposition: If the stochastic process X is right (left)

continuous and adapted to the filtration [at], then it is

also progressively measurable with respect to [Ct3.

Proof: With t>O, nzl, k = 0,1,...,2n-1 and Oisst, we define:

(n)(O) =X (w) for k t < s k+l t, as well as XO(n)() = XO()
t 2 2

2n 

The so-constructed map (s,w) f Xjn)(X) from [O,t] x Q into Rd

is demonstrably R([O,t]) 2 At - measurable. Besides, by right-

continuity we have: lim x(n)(X) = X (X), ' (s,u) E [O,t] x Q.
n. is

Therefore, the (limit) map (so)4 Xs(w) is also R([,t]) 2 at -

measurable.

1.14 Remark: If the stochastic process X is right (or left)

continuous, but not necessarily adapted to rat), then the

same argument shows that X is measurable.

A random time T is an a - measurable random variable, with

values in [0,o].

1.15 Definition: If -X is a stochastic process and T is a

random time, we define the function XT on the event [T<o]

by

XT(X) A XT(O)(W).

If X (o) is defined for all wecn, then XT can also be

defined on n, by setting XT(cX) A X=(o), on IT=)3.
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1.26 Problem: If the process X is measurable and the random time

T is finite, then the function X T defined above is a random

variable.

We shall devote our next section to a very special and

extremely useful class of random times, called stopping times.

These are of fundamental importance in the study of stochastic

processes, since they constitute our most effective tool in the

effort to "tame the continuum of time", as Chung [2 ] puts it.
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1.2: STOPPING TIMES

Let us keep in mind the interpretation of the parameter t

as time, and of the a-field At as the accumulated information up

to t. Let us also imagine that we are interested in the occurrence

of a certain phenomenon: an earthquake with intensity above a

certain level, a number of customers exceeding the safety require-

ments of our facility, and so on. We are thus forced to pay particu-

lar attention to the instant T(a), at which the phenomenon mani-

fests itself for the first time. It is quite intuitive then that

the event f[; T(o)sIt3, which occurs if and only if the phenomenon

has appeared prior to (or at) time t, should be part of the

information accumulated by that time.

We can now formulate these heuristic considerations as follows:

2.1 Definition: Let us consider a measurable space (R,a) equipped

with a filtration [t]3. A random time T is a stopping

time of the filtration, if the event (Tst] belongs to the

a-field Ut' for every t2O. A random time T is an optional

time of the filtration, if [T<t3tet, for every tzO.

X
2.2 Problem: Let X be a stochastic process and T be an [at]

stopping time. Choose a, E'¢Q and suppose Xt(w)=Xt(W ')

for all tE[O,T(w)] n [o,w). Show that T(o) = T(c').

2.3 Proposition: Every random time equal to a positive constant

is a stopping time. Every stopping time is optional, and
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the two concepts coincide if the filtration is right-continuous.

Proof: The first statement is trivial; the second is based on the

observation: fT(t3= U fTst - 3ct, because if T is a stopping
n=l

time, then [TTt - ]E3t 1 c at for nal. For the third claim,
n

suppose that T is an optional time of the right-continuous filtration

{[at} Since CTst3 n T<t+e3, we have [Tt3ct+e for every

tzO and every E>O; whence Tst}Est + = t.

Corollary: T is an optional time of the filtration [t3,

if and only if it is a stopping time of the (right-continuous!)

filtration [~t+·

2.4 Example: Consider a stochastic process X with right-continuous

paths, which is adapted to a filtration {at}. Consider a subset

r E( ) of the state space of the process, and define the hitting

time

H(m ) = {inf[ttO; Xt(m)ET]; if this set is nonempty

+ X ; otherwise.

2.5 Problem: If the set r in Example 2.4 is open, show that H F

is an optional time.

2.6 Problem: If the set r in Example 2.4 is closed and the sample

paths of the process X are contirnuous, then HF is a stopping '

time.
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Let us establish some simple properties of stopping times.

2.7 Lemma: If T is optional and 9 is a positive constant, then

T+8 is a stopping time.

Proof: If Ogt<e, then [T+e0t3 = e Ft .

If ta 8, then

[T+Ot] = [Tgt-Tte;(t_()+ c at 

2.8 Lemma: If T,S are stopping times, then so are T^S, TvS,

T+S.

Proof: The first two assertions are trivial. For the third, start

with the decomposition, valid for t>O:

[T+S>t} = [T=O; S>t} U O<T(<t, T+S>t3 U

U (T>t, S=O} U [Tat, S>O3.

The first, third and fourth events in this decomposition are in At,

either trivially or by virtue of Proposition 2.3. As for the second

event, we rewrite it as:

U tt>T>r, S>t-r3,
rEQ

where Q is the set of rational numbers in [O,x). Membership in

a t is now trivial.
~~~~~~t D~~~[3
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2.9 Problem: Let T,S be optional times; then T+S is optional.

It is a stopping time, if one of the following conditions holds:

(i) T>0, S>O.

(ii) T>0, T is a stopping time.

2.10 Lemma: Let [Tn n=l be a sequence of optional times; then

the random times

sup T , inf T , lim T , lim T
n n - n n

n2l n2l nnl

are all optional. Furthermore, if the Tn's are stopping

times, then so is sup T
nrl n

Proof: Obvious, from Corollary to Proposition 2.3 and from the

identities

(sup T t] = nl Tn st] and [inf T <t) = U [T <t3 .
n=l nnl n n=l

How' can we measure the information accumulated up to a stopping

time T? In order to broach this question, let us suppose that an

event A is part of this information, i.e., that the occurrence

or nonoccurrence of A has been decided by time T. Now if by

time t one observes the value of T, which can happen only if

Tst, then one must also be able to tell whether A has occurred.

In other words, A n [Tst] and Ac n [Tct3 must both be

at-measurable, and this must be the case for any tzO. Since

Ac fN [Tmt] - [Tst] n (A n [Tst]) ,
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it is enough to check only that A nITstEt3t, tzO.

2.11 Definition: Let T be a stopping time of the filtration

[at3. The 7-field aT of events determined prior to the

the stopping time T consists of those events Ae3 for

which A n [ETt3]Et for every tzO.

2.12 Problem: Verify that 3T is actually a a-field and T is

AT-measurable.

2.13 Problem: Let T be a stopping time and S a random time

such that SzT on Q. If S is T-measurable, then it is

also a stopping time.

2.14 Lemma: For any two stopping times T and S, and for any

AejS, we have: A n[SsTe3T.-

In particular, if SsT on Q, we have AS c 

Proof: It is not hard to verify that, for every stopping time T

and positive constant t, Tt is an At-measurable random vari-

able. With this in mind, the claim follows from the decomposition:

AnE[ST3 n ([Tt] = [An[Sst3]] n [Tst3 n rS^t i T^t],

which shows readily that the left-hand side is an event in At.

2.15 Lemma: Let T and S be stopping times. Then each of the

events
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(T<S3, (S<T3, CTS3, S S)T), fT = S3

belongs to aT n AS' Besides, 3 T^S = jT n a3.

Proof: For the last claim, we notice first that T^SIT, so, by

Lemma 2.14, aT^S C T n aS In order to establish the opposite

inclusion, let us take AE S n AT and observe that

AnCS^TTt] = An[[St] U [Tgt3]

= [Ansrt3] U [Anl(Tst]] eat, and

therefore ACEST'

From Lemma 2.14 we have tSsT3e3T, and thus fS>T3E3T. On

the other hand, consider the stopping time R = S^T which, again

by virtue of Lemma 2.14, is measurable with respect to T.' There-

fore, (S<T] = (R<T3EaT. Interchanging the roles of S,T we see

that (T>S3, IT<S] belong to AS} and thus we have shown that

both these events belong to AT n ;S' But then the same is true

for their complements, and consequently also for fS=T].

2.16 Problem: Let T,S be stopping times and Z an integrable

random variable. We have

(i) E[ZI3T] = E[Z3as^T], P.-a.s. on fTS]

(ii) E[E(ZI3T) IFS] = E[ZI S^T]' P a.s.

Now we can start to appreciate the usefulness of the concept

of stopping time in the study of stochastic processes.
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2.17 Proposition: Let X = tX.; Ost<=] be a progressively

measurable process with respect to [3t], and let T be a

stopping time of the filtration C[t]. Then the random

variable X T of Definition 1.14 is AT-measurable and the

"stopped process" {XT t; 0 Ot<=3 is progressively measurable.

Proof: For the first claim, one has to show that, for any

BER(Rd ) and any taO, the event (XTEB2 n [Tst] is in At;

but this event can also be written in the form tXT tEB) n fTst.),

and so it is sufficient to prove the progressive measurability

of the stopped process.

To this end, one observes that the mapping (s,co) (T(w)^s,w)

of [O,t] x Q into itself is 8([O,t]) 2 At-measurable. Besides,

by the assumption of progressive measurability, the mapping

(s, ), X(c): ([o,t] x Q, ([,t]) 2 at) ( ' ( )

is measurable, and therefore the same is true for the composite

mapping

(S, O) XT( )^s(w) ([O,t]x2, ([Ot]) at) - (R d, (Rd))

2.18 Problem: Under the same assumptions as in Proposition 2.17,

and with f(t,x): [0,SC) x d P a bounded, 8([0 ,~)) 2 ( ) -

measurable function, show that the process Yt = f(s,X )ds;

t2O is progressively measurable with respect to [at), and

that YT is an AT-measurable random variable.
~~T T ~ ~ ~ ~ ~
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2.19 Definition: Let T be an optional time of the

filtration [{t ]. The a-field aT+ of events determined

immediately after the optional time T consists of those events

AEJ for which AnltTat3et+ for every t0O.

2.20 Problem: Verify that the class DT+ is indeed a a-field

with respect to which T is measurable, that it coincides

with (AEa; An[T<tEEtt, V tzO3, and that if T is a stopping

time (so that both TV' ET+ are defined), then AT c- -T%.'

2.21 Problem: Verify that analogues of Lemmas 2.14 and 2.15 hold

if T and S are assumed to be optional and aT· AS and

TAS are replaced by T+' US+ and 3(T^S)+' respectively.

Prove that if S is an optional time and T is a stopping

time with SsT, and S<T on CS<Q3 n IT>03, then AS+ c YT'

2.22 Problem: Show that if T 2.22 Problem: Show that if tTn n=1 is a sequence of optional

times and T = inf T , then T+= n AT + Besides, if
nl n n=l n

each Tn is a stopping time and T<T on ,T(<3 n fT >03,
nco n 

then we have T nn=l n
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2.23 Problem: Given an optional time T for the family of

a-fields {at}, consider the sequence CTnn= 1 of random

times given by

Tn(u) = T(w); on co; T(ow) = +m]

k k-k= 2n ; on [c; n , T(o) < -
- o 2 2

for nal, kal. Obviously T aTn+l T, for every. nl. Show that

each T is a stopping time, that limr T. T, and that for
n n

every AEUT+, nl, kal we have: AnfTn = k]E3k

2n
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1.3: CONTINUOUS - TIME MARTINGALES

We assume in this section that the reader is familiar with

the concept and basic properties of martingales in discrete time.

An excellent presentation of this material can be found in Chung

[1 , §9.3 and 9.4, pp. 319-341] and we shall cite from this

source frequently. The purpose of this section is to extend the

discrete-time results to continuous-time martingales.

The standard example of a continuous-time martingale is one-

dimensional Brownian motion. This process can be regarded as the

continuous-time version of the one-dimensional symmetric random

walk, as we shall see in Chapter 2. Since we have not yet introduced

Brownian motion, we shall take instead the compensated Poisson process

as a continuing example developed in the problems throughout this

section. The compensated Poisson process is a martingale which will

serve us later in the construction of Poisson random measures, a

tool necessary for the treatment of excursions of Brownian motion.

In this section we shall consider exclusively real-valued

processes X = EXt; 0gt(a4 on a probability space ( , ,P), adapted

to a given filtration [St3 and such that EIXt1(< holds for every

3.1. Definition: Xt,3 t; Ost<co .as above is said to be a

submartingale (respectively, a supermartingale) if, for every

Os(t(<= we have, a.s. P: E(XtaSs) 2 X s (respectively,

E(Xtl S ) , XS).

We shall say that [Xt,St; Ogt<c( is a martingale if it
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(ii) Show that for Os<t, Nt-Ns is independent of UN.

(Hint: It suffices to show that for arbitrary positive

integer m,

P[Ns - s>t l' TN + 2 > t 2 .. , TN +m > t Il N ]

is constant. Indeed, it equals P[Tl>tl, T2>t2 ,...,

T >tm]).

(iii) Prove that for Ocs<t, Nt-Ns is a Poisson random

variable with mean X(t-s).

3.3. Definition: A Poisson process with intensity k>O INt, t203

is an integer-valued, right-continuous process such that

N=O a.s., and for Os(It, Nt-Ns is independent of as

and is Poisson distributed with mean X(t-s).

We have demonstrated in Problem 3.2 that Poisson processes

exist. Given a Poisson process Nt with intensity X, we define

the compensated Poisson process

Mt = Nt-Xt, to0.

Note that the filtrations { and [UN] agree.

3.4. Problem: Prove that a compensated Poisson process

£Mte t.; ta0] is a martingale.

~~ - - -~ - - ------' t
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The following theorem extends to the continuous-time case

certain well-known results of discrete martingales.

3.6. Theorem: Let [Xtat; Oct<"o be a right-continuous sub-

martingale, [Ca, ] an interval of [O, c) and a<B, X>O

given real numbers. We have the following results:

(i) First submartingale inequality:

*.P[ sup Xt+ A] s E(X ).
astsT T

(ii) Second submartingale inequality:

X.P[ inf Xtr -] ] E(X) - E(X ).

(iii) Upcrossings inequality:

E(X+)+lal
Ev ( [,) [ (;

.(iv) Doob's maximal inequality:

E( sup )xt ) P E(X), p>l,

provided Xt2O a.s. P for every tzO, an:d E(XP)<m.

(v) Regularity of the paths: Almost every sample path

{Xt (); Ost<]3 is bounded on compact intervals, and is

free of discontinuities of the second kind, i.e., admits

left-hand limits everywhere on (0, ).
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3.7. Problem: Let .Nt be a Poisson process with intensity X.

(a) For any c>O,

lim P[ sup (Ns-Xs) 2 c ,-] C2"
t-_ Ocsit C2n

(b) For any c>O,

lir P[ inf (N s- ks) - c./T] ' 1 
to.* Osst s

(c) For O < C < T, we have

Nt 4 T'kE[ sup (t x)2]s--z'

3.7'Remark : From Problem 3.7 (a) and (b), we see that for each c>0,

there exists T >0 such that
C

P[cNt X i c 3 V t:TT

From this we can conclude the "weak law of large number" for Poisson
N

processes.' t _ X ,in probability as t-.=. In fact, by choosing

a = and - 2 in Problem 3.7 (c) and using Chebyshev's

inequality, one can show

P[ sup t x-aP2 n t 2n+ll: cE] E 2

for every nal, c>0. *Then by a Borel-Cantelli argument (see Chung

[ 1 ], Theorems 4.2.1, 4,2.2), we obtain the "strong law of large
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all the P-negligible events in 3.

3.11. Theorem: Let (Xt ,t; Ost<=] be a submartingale, and

assume the filtration {$t] satisfies the usual conditions.

Then the process X = £Xt; Ot<=3 has a right-continuous

modification if and only if the function t . EXt from [0,c)

to R is right-continuous. If this right-continous modifica-

tion exists, it can be chosen so as to be adapted to ({t],
hence a submartingale with respect to (at).

The proof of Theorem 3.11 requires the following proposition,

which we prove first.

3.12 Proposition: Let [Xt,at; Oct<=) be a submartingale.

We have the following:

(i) The limits Xt+(w) lim Xs (x), Xt- (C) A lim Xs(a)
sit stt

sEQ seQ

exist almost surely,for every tzO (respectively,

t>O).

(ii) The limits in (i) satisfy

E(Xt+Iat) m Xt a.s. P, V tQO.

E(Xtt_) Xt_ a.s. P, V t>O.

(iii) {Xt+,%t+; Ot<=( is a submartingale.

Proof: (i) We wish to imitate the proof of (v), Theorem 3.6, but

because we have not assumed right-continuity of sample paths, we
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as well as the P. Levy Theorem 9.4.8 in Chung [ 1], help us identify

this limit as Xt - E(Xtlt_), which is thus shown to be non-

positive.

(iii) Now we take two monotone decreasing sequences Snn=l and

[tn 1n=l of rational numbers, with Oss~sn<t<tn holding for every

nl and limn = s, lim t = t. For fixed nal and arbitrary e
1/ n

in (O,sn-s), the submartingale property yields r X dP c jXt dP,
nAn A n

for every event A in as+3 , and therefore for every A in

as+ = n as+ . By the uniform integrability of both sequences

Xs n}n=l, Xtnl we conclude that X s+d dP, t+ vA+.

Proof of Theorem 3.11:

Let Xt+ be as in Proposition 3.12. Since [St] is a

right-continuous filtration and F0 contains all P-negligible

events of 5, Xt+ is St-measurable. Proposition 3.12 (ii)

implies Xt+ 2 X t a.s. P,for every tiO. Thus, the (right-con-

tinuousi) process [Xt+;0Ot<co3 is a modification of the process

[Xt; Oat(<4 if and only if EXt+ = EXt for every t2O. But the

uniform integrability of [Xtn n=l with arbitrary sequence tn lt,

not necessarily through Q (Problem 3.8),yields E(Xt+) = lim E(Xt ),
n

and the stated condition amounts to right-continuity of the function

t - E(Xt).

Conversely, if Ott; t2O3 is a right-continuous modification

of [Xt; t-O), then E(Yt) = E(Xt) holds for every tzO; besides,

------- ~-- ""~"I~~~"~"~"""-"~-`----



EXtl = 2E(X) - E(Xt) 2C - EX

shows that the assumption sup E(Xt) < X is equivalent to the
t~0

apparently stronger one sup EjXtl < x, which in turn forces the
tzO

integrability of X, by Fatou's Lemma.

3.14 Problem: Let [Xt,lt; Ost<]3 be a right-continuous non-

negative supermartingale; then X (X) = lim Xt(w) exists
t-oc

for P-a.e. cen, and [Xt,at, 0sts0 } is a supermartingale.

3.15 Definition: A right -continuous nonnegative supermartingale

[Zt,3t; Ost<,) with lim E(Zt) = 0 is called a potential.

Problem 3.14 guarantees that a potential rZt.;t; Ost<C] has

a last element Z , and Z = 0 a.s. P.
a X X

3.16 Problem: Suppose that the filtration (at) satisfies the

usual conditions. Then every right-continuous, uniformly

integrable supermartingale [XtAt; Ot<"3 admits the Riesz

decomposition X t = M t + Z t, a.s. P, as the sum of a right-

continuous, uniformly integrable martingale Mt' ,at; Ot<W)4

and a potential fZt';t; Ost<-].

3.17 Problem: The following three conditions are equivalent for a

right-continuous submartingale fXt,;t; O0t<.3 :

(a) it is a uniformly integrable family of random'variables;
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What can happen if one samples a martingale at random, instead

of fixed, times? For instance, if X t represents the fortune,

at time t, of an indefatiguable gambler (who plays continuously!)

engaged in a "fair" game, can he hope to improve his expected fortune

by judicious choice of the time-to-quit? If no clairvoyance into the

future is allowed (in other words, if our gambler is restricted to

quit at stopping times), and if there is any justice in the world,

the answer should be "no". Doob's Optional Sampling Theorem tells

us under what conditions we can expect this to be true.

3.20 Theorem: Optional Sampling

Let [Xt, t; Oti]o) be a right-continuous submartingale

with a last element X , and let ScT be two optional times

of the filtration [Ft]. We have

E(XT;YS+) x XS' as. P.

If S is a stopping time, then YS can replace S+ above.

In particular, EXT a EXo, and for a martingale with a last

element, we have EXT = EX o.

Proof: .Consider the sequence of random times

s (~C) if S(S) = + <

Sn(~) = | k if , c s(j) < k
2 2 2

and the similarly defined sequences LTn3. These were shown in

Problem 2.24 to be stopping times. For every fixed integer n21,

both S and T take on a countable number of values and we
n n
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3.22 Problem: Suppose that [Xt, t; Ot<=z is a right-continuous

submartingale and SsT are stopping times of [~t. Then

(i) CXT t'3t; Oct<r3 is a submartingale;

(ii) E[XTltl3S] - XS.t a.s. P, for every tO.

3.23 Problem: A submartingale of constant expectation, i.e., with

E(Xt) = E(XO ) for every t0O, is a martingale.

3.24 Problem: A process X = [Xt,at; Oct<X} with EIXtI<K, Ost<o,
is a submartingale, if and only if for every pair SaT of

bounded stopping times of the filtration (Ut) we have:

E(XT) - E(Xs), a.s. P.

3.25 Problem: Let Z = [Zt3t; Oct<t.] be a continuous, nonnegative

martingale with Z A lim Z t = 0, a.s. P. Then for every

sxO, b>O:

(i) P[sup ZtmbI s] b= z, on [Zs<b3.
t>s

(ii) P[sup Ztb] p[Zb+ E[Z 11trs t PIS ~b] +b E[Zs [Z <b)]'tas 
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1.4 THE DOOB-MEYER DECOMPOSITION

4.1 Definition: Consider a probability space (0,3,P) and a

random sequence (Ann=0 adapted to the discrete filtration

[npn= 0. The sequence is called increasing, if for P - a.e.

ocn we have 0 = A0(c) s A1(w) i ..., and E(An ) < X holds

for every nal.

An increasing sequence is called integrable if E(A ) 

where A = lim An. An arbitrary random sequence is called predict-
n

able for the filtration [3n=0, if for every n!l the random

variable A is 3 n - measurable. Note that if A = (An, 3n;

n=O,l,...] is predictable with EJAnl < K for every n, and if

M n,3n; n=0,1,...3 is a bounded martingale, then the martingale
n n

transform of *A by M defined by

YO = 0,

(4.1)
n

Yn = Ak(MknMk1) zl,

is itself a martingale. This martingale transform is the discrete-

time version of the stochastic integral with respect to a martingale,

defined in Chapter 3. A fundamental property of such integrals is

that they are martingales when parameterized by their upper limit

of integration.
E[

Let us recall from Chung [ 1], Theorem 9.3.2 and Exercise 9.3.9,

that any submartingale (XnJn; n=0,1,...3 admits the Doob decomposi-
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tion X = Mn + A n as the summation of a martingale {M ,M3nn n n n

and an increasing sequence [An,an3. It suffices for this to take
n

A =0 and An+ - An-Xn+E(Xn 1 n) = [E(Xk+ll k) - Xk for
o n+l n n n+! k=

nzO. This increasing sequence is actually predictable, and with

this proviso the Doob decomposition of a submartingale is unique.

We shall try in this section to extend the Doob decomposition

to suitable continuous-time submartingales. In order to motivate

the developments, let us discuss the concept of predictability for

stochastic sequences in some further detail.

4.2 Definition: An increasing sequence ({A ,3; n=O, 1,...3 is

called natural if for every bounded martingale Mn,3n; n=O,l,...

we have

n
(4.2) E(M A n) =E M (Ak AKl)' nl.

k=l

A simple rewrite of (4.1) shows that an increasing sequence

A is natural if and only if the martingale transform Y = {Yn3n=

of A. by every bounded martingale M satisfies EYn = 0, nzO.

It is clear then from our discussion of martingale transforms that

every predictable increasing sequence is natural. We now prove

the equivalence of these two concepts.

4.3 Proposition: An increasing random sequence A is predictable

if and only if it is natural.
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Proof: It remains only to show that a natural increasing sequence

is predictable. Suppose that A is natural and M is a bounded

martingale. With LYn n 0 defined by (4.1), we have

E[An (Mn-Mn l) = EYn-EYn_1 = , n

It follows that

(4.3) E[Mn[An-E(An 1 3nl) =

E[(Mn-Mn_1 )A n] + E[Mn_ [An-E(Anlan-))]

E[(Mn-Mnl) E(Anl1n_1) = 0

for every nal. Let us take anarbitrarybut fixed integer n2l,

and show that .the random variable A n is An-1 - measurable.

Consider (4.3) for this fixed integer, and let the martingale M

be given by

{sgn[A E(A1 l)]J k = n,

M k Mn , k > n,

E(Mn 3 ), k = O,l,...,n.

We obtain EIAn-E(Anln_) l = 0, whence the desired conclusion.

From now on we shall revert to our filtration [at} parametrized

by te[O,=) on the probability space (O,J,P). Let us consider

a process A = rAt; Ozt<0 ) adapted to {[t]. By analogy with

Definitions 4.1 and 4.2, we have the following:
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4.4 Definition: A process A as above is called increasing if

for P - a.e. wen we have Ao(w) = 0, and t s At(Oc) is

a nondecreasing, right-continuous function, and E(A.) <( 

holds for 0it<~.

An increasing process is called integrable if E(A ) ( a,

where A = lim At; an arbitrary process A adapted to the filtra-

tion [at] is called predictable with respect to [at) if At is

at - measurable for every Ost<o.

4.5 Definition: An increasing process A is called natural if

for every bounded, right-continuous martingale CMt, t; 0t<=]3

we have

(4.4) EJ M dA E M dA
s s , s s

(Ot] (, t]

Clearly, any increasing and continuous process is both pre-

dictable and natural. It can be shown that every natural increas-

ing process is predictable (Theorem 3.10 in Liptser & Shiryaev

[13]). Rather than dealing with this thorny issue, we will not

use the concept of predictability for continuous-time processes,

although our proof of the existence of a "Doob decomposition" for

continuous-time processes does rely on the equivalence proved

in Proposition 4.3 for discrete-time processes.

4.6 Remark on notation: If A is an increasing and X. a measurable

process, then wi.th weD fixed the sample path tXt( o); Ost(=]
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is a measurable function from [O, ) into R. It follors

that the Lebesgue-Stieltjes integral

I,-(~ ) A X (O)dA (co)
- (O,t] S S

is well-defined; in particular, if X is progressively

measurable (e.g.,right-continuous and adapted), then the right-

continuous process fIt; Ost=3) with Io = 0 is also progres-

sively measurable.

4.7 Lemma: In Definition 4.5, condition (4.4) is equivalent to

(4.4)' E(MtAt) = EJ M dA
"(,t] s- s

Proof: Consider a partition n = [tO tl1 ... ,t of [O,t]. with

1n

M = tstl = t, and define().

k=l tk tk-l'k

The martingale property of M yields

n n n-l
Ef MdA -E Mt(At At )=-A E[ M A M A 

(O,t] S k=l k k k-l k=l k k k=l k+l k

n

= EMtAt + E Zi t (M -Mt ) = E(Mt At).
k=i k t t

k+1

Now let Itll _ max (tk-tkl) - 0 so MS - M s , and use the

Bounded Convergence Theorem for Lebesgue-Stieltjes integration to

obtain



(4.5) E(Mt At) = MdA .j s s t(O,t]

The following concept is a strengthening of the notion of

uniform integrability for submartingales.

4.8 Definition: Let us consider the class 8(: ) of all stopping

times T of the filtration A[t3 which satisfy P(T<m) = 1

(respectively, P(Tsa) = 1 for a given finite number a>O).

The right-continuous submartingale [Xt,3t; OSt<cm is said to

be of class D, if the family CXT]TG$ is uniformly integrable;

of class DL, if the family [XT)TES is uniformly integrable,
TaS

for every Oa<o.

4.9 Problem: Suppose X = EXt,9t; Ost<c3 is a submartingale.

Show that under any one of the following, conditions, X is of

class DL.

(a) X t a 0 a.s. for every tz0.

(b) X has the special form

(4.6) X t = Mt + At, Oet<W

suggested by the Doob decomposition, where [Mt,3t; Ot<em] is

a martingale and [At,,t; Ot<(]3 is an increasing process.

(c) X is a martingale.

Show also that if X is a uniformly integrable martingale,

then it is of class D.
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The celebrated theorem which follows asserts that membership

in DL is also a sufficient condition for the decomposition of the

semimartingale X in the form (4.6).

4.10 Theorem: Doob-Meyer decomposition.

Let St33 satisfy the usual conditions (Definition 3.10).

If the right-continuous submartingale X = [Xt,at; 0 st<~c3 is

of class DL, then it admits the decomposition (4.6) as the

summation of a right-continuous martingale M = [Mt,at; 0st<~]

and an increasing process A = [At,a t; Ost<o].

The latter can be taken to be natural; under this further

condition the decomposition (4.6) is unique (up to indistinguish-

ability). Further, if X is of class D, then M is a uniformly

integrable martingale, and A is integrable.
D

Proof: For uniqueness, let us assume that X admits both decom-Po-

sitions X = Mt + A= M + At, where M' and M" are martingales

and A,'A " are natural increasing processes. Then Bt A A -A-t'=

M t -M, at; 0 st<w3 is a martingale (of bounded variation), and for

every bounded and right-continuous martingale [Ct,at] we have

mn
n

E[t(A-A )] E dB lim E Z [B n B - B(n )]
(0,t] j=l - t j-1n) t

where n = t ) nzl is a sequence of partitions of
n

[0,t] with 'an= max It(n) t(n) converging to zero as n-.
lSI~~-Js1T~----n
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But now

E[t (n)(B (n) B t( n ))l] = and thus E[t(A - A)] = t i tj
j-1 1

For an arbitrary bounded random variable ~, we can select Ct,~t]

to be a right-continuous modification of fE[Egt ], t,] (Theorem

3.11); we obtain E[g(Af - A"')] = 0 and therefore P(At A"') = 1,

for every tO. The right-continuity of A' and A" now gives

us their indistinguishability.

For the existence of the decomposition (4.6) on [0,.), with

X of class DL, it suffices to establish it on every finite interval

[O,a]; by uniqueness, we can then extend the construction to the

entire of [0,=). Thus, for fixed O<a<co, let us select a right-

continuous modification of the nonpositive submartingale

Yt _ X - E[X a l t] , Octsa.
t =at

Let us consider the partitions = t n),t(n),...,t (n) of then 1 2
interval [O,a] of the form t(n). a, j=O,1,..,2 . For

0 2n

every nzl, we have the Doob decomposition

Y (n) = M( ) + A (n), j=O,1,... 2nn M(n) + tn'

where the predictable increasing sequence A(n) is given by

A(n) A(n) 
A(n ) A(n) EY (n) - Y (n)t(n)]

j j-l j j-l j-l
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j-1
C Y Is

k=- z [ t(n) t(n) lat(n)] j=,,2 n

kt+1 k k

We also notice that

(4.7) Y = A (n ) - E[A(n) j=0,1,, )2 n
t (n ) t!= ) a..,

We now show that the sequence [A(n)]- is uniformly
a n=l is uniformly

integrable. With X>0, we define the random times

Tin)tj ; A > X for some j, lsjc 2n 3,

~ a, if the above set is empty.

We th(na> TA j1) > x3 £ (n) for j =,.,2 and
We have CT(n) n ) > X} e.. and

x j-1 t ~tn) t
~j ij-1

CT(n ) < a) = CA(n) > ]. Therefore, T Es On each set
X a a

Tn) = t(n)3, we have E[Aa 3t(n)] E[A T(n))], so (7)
Ct a T

implies

(4.8) . A(n? n)] - E[Aan)la (n) )

((n)
on T( n ) < a. Thus

(4.9) i A(n)dP s XP[T (n)<a] - j

(An)>] T(n>) 
(A a >XI .[-TX Na3
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Replacing x by -\ in (4.8) and integrating the equality over

the a (n)- measurable set [T(n) < a), we obtain
-Te .Tx
)'12^~ 2

x $(n) dP =(A(n) -A(n))dP
T(n)<a3 X/2 T(n)<a n)
(T a n)a) X/2 X/2

t n)<a - (n))dP 2 -PT a],

and thus (4.9) leads to

(4.10) r A(n)dp - 2 a YT(n dP - Y dP.

(A(n)>) (T)<a (n)C<aT X
a /a IT ] 2

The family [XTTg a is uniformly integrable by assumption, and

thus so is (YTT * But
a

PIT (n)a
P[T1()<a] - P[A(n)>X] E(A n)) E(YO)

a X X

so

sup P[T(n)<a] _, 0 as . -. = 
nal X

Since the sequence [Y (n is uniformly integrable for every
T nn=lC

c>O, it follows from (4.10) that the sequence (An )n=3 is also

uniformly integrable.
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By the Dunford-Pettis compactness criterion (Meyer [16], p. 20

or Dunford & Schwartz [6 ], p. 294), uniform integrability of the

sequence [A(n) 1n=l guarantees the existence of an integrable

random variable Aa, as well as of a subsequence [A k which

converges to A weakly in L!:
a

(nk)
im.(A ) = E(Aa)

ken

for every bounded random variable g. To simplify typography we

shall assume henceforth that the above subsequence has been

relabelled, and we shall denote it henceforth by A n)3 n=1. By

analogy with (4.7), we define the process [At,9t3 as a right-

continuous modification of

(4.11) At =Yt + E(Aalt); O0tca.

4.11 Problem: Show that if A(n)is a sequence of integrable-- 3n=l

random variables on a probability space (Q,3,P) which converges

weakly in L to an integrable random variable A, then.for

each a-field I c a, the sequence E[A(n)Ih] converges to E[A!~]

weakly in L-.

Let n = U Hn . For ten, we have from Problem 4.11 and a
n=l n

comparison of (4.7) and (4.11) that lim E(~ A n)) = E(~ At) for

every bounded random variable .. For s, teN with Os(t`a, and

any bounded and nonnegative random variable i, we have

E[g(At-A s)] = lim E[~(A n)_A(n) )] 0, and by selecting

E = 1As>At ] we get AsA t, a.s. P. Because n is countable, for
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for a.e. cen the function tt-sAt(a) is nondecreasing on A,

and right-continuity shows that it is nondecreasing on [O,a] as

well. It is trivially seen that A 0 = 0, a.s. P. Further, for

any bounded and right-continuous martingale {gt,tj, we have from

(4.2) and Proposition 4.3:

2 n
A(n)) =E 2 [A() - A (n )

j=l t(n) t (n) t(n) 
j-l n j-1j-1

2 n
E Z j Y
j=B l t(n) [t(n) t(n) 

where we are making use of the fact that both sequences

fAt t and tA(n) - Yts. for tE, remrtingales.

Letting nab one obtains by virtue of (4.5):2 n S-~~tn(boaj·lt (O, a

as well as: E making dAuse of the dAfact tboth sequeif one
(t] (S-,t]s

(0,t] (O,t]

remembers that astt' ; Ogssia}3 is also a (bounded) martingale

(cf. Problem 3.22). Therefore, the process A defined in (4.11)

is natural increasing, and (4.6) follows with Mt = E[Xa-Aal|t]'

Ostza.

Finally, if the submartingale X is of class D it is uniformly

integrable, hence it possesses a last element X to which it
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converges both in L and almost surely as t-= (Problem 3.17).

The reader will have no difficulty repeating the above argument,

with a = =, and observing that E(A ) < = .
D

Much of this book is devoted to the presentation of Brownian

motion as the typical continuous martingale. To develop this theme,

we must specialize the Doob-Meyer result just proved to continuous

submartingales, where we discover that continuity and a bit more

implies that both processes in the decomposition turn out to also

be continuous. This fact allows us to conclude that the quadratic

variation process for a continuous martingale (Section 1.5) is

itself continuous.

4.12 Definition: A submartingale [Xt,3t; Ost<Km is called

regular if for every a>O and every nondecreasing sequence

of stopping times -Tnnl= c ga with T = lim Tn, we have

lim E(X E) E(XT).
n- c n a 3

4.13 Remark: It can be verified easily that a continuous, nonnegative

submartingale is regular.

4.14 Theorem: Suppose that X = {Xt; Ost<e. is a submartingale of

class DL with respect to the filtration [at), which satisfies

the usual conditions, and let A = EAt; Ozt(<] be the natural

increasing process in the Doob-Meyer decomposition (4.6). The

process A is continuous if and only if X is regular.
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Proof: Continuity of A yields the regularity of X quite

easily by appealing to the Optional Sampling Theorem for bounded

stopping times (Problem 3.21 (i)).

Conversely, let us suppose that X is regular; then for any

sequence fT 3n= as in Definition 4.12, we have by Optional

Sampling: lim E(AT ) = lim E(XT ) - E(MT) = E(AT), and therefore
n,- n n-.n n

AT tAT a.s. P as no.. Now let us consider the same sequence
n

[{n3n 1 of partitions of the interval [O,a] as in the proof of

Theorem 4.10, and select a number X>O. For each interval

(tn ),t () j=O,1,n 2n
(t~n),t(n)), j=0 , 1,..., 2n-1 we consider a right-continuous modifica-
3 j+l

tion of the martingale

n) = E[X_ AtI+) l t ], tj<tst(n)

++1

This is possible by virtue of Theorem 3.11. The resulting process

g(n).; Ortta3 is right-continuous on (0,a) except possibly at the

points of the partition, and dominates the increasing process

fx^At; 0sta]3; in particular, the two processes agree a.s. at the

points t n) t(n) Because A is a natural increasing process,
2'

we have from (4.4)

(n)dA ; J=O'!''''n-
E - sE JO n)~ nsdA; = E ; 0,1,*., 2n- 1

(t(n) tn (n) t(n)

and by summing over j, we obtain

(4.12) BE r (n) dA = E t (n)dA,
t] (Ot] 

(Ot] (Ot]
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for any Oitsa. Now the process

(n) T in (X^At), Ost<a,

t , t a,

is right-continuous and adapted to £U32; therefore, for any e>O

the random time

inf[Oastsa; (n)>}= inf{Oat:!:a; X ,A > a

T (E) = 
a , if [...} = f,

is an optional time of the right-continuous filtration It}

hence a stopping time in 8a (cf. Problem 2.5 and Proposition 2.3).

Further, defining for each n.l the function cn(.): [O,a] Nn

by cp(t) = t(n). t(n)<t . t(n) we have
by n(t) = t j+l' j j+l

qpn(Tn(E)) gae

Because (n) is increasing in n, the limit T= lim Tn(E)
n-con

exists a.s., is a stopping time in 8 and we also have

TE = lim n(Tn(E)) a.s. P.
n-o

By Optional Sampling we obtain now

2 n
E[_(n) ] = E[E(X^A A()) 1n)tn)

Tn£ E $~ T t (Tn( ) jn(n)]

=B[XAACOn(Tn(E)) 1'



1.4.16

and therefore

(n)
nE[(%A (T(E) ()T ( E[T (e) ^ATn(
Cnknk Tn(E) nn (E)

E[lCTn(E)a (Tni) - (VT- ())] - EP[Tn(E) < a].
n (^Tn (e)

'We employ now the regularity of A to conclude that for every E>O,

P[Qn>e] = P[Tn(e)<a] a 1 E[(^A (() - ( Tn(e)) 

as ne-o, where Qn _ sup |(n) - (X^At)1. Therefore, this last

sequence of random variables converges to zero in probability , and

hence also almost surely along a (relabelled) subsequence. We

apply this observation to (4.12), along with the Monotone Convergence

Theorem for Lebesgue-Stieltjes integration, to obtain

E [ (XIAs)dA E r (X= A )dAE, t,

(Ot] (Ot]

which yields the continuity of the path t - X^At(u) for every

X>O, and hence the continuity of t _ At(cX) for P - a.e. weo.
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1.5 CONTINUOUS, SQUARE- INTEGRABLE MARTINGALES

In order to properly appreciate Brownian motion, one must

understand the role it plays as the canonical example of various

classes of processes. One such class is that of continuous,

square-integrable martingales. Throughout this section, we have

a fixed filtration [at] on a probability space (Q,3,P), which

satisfies the usual conditions (Definition 3.10).

5.1 Definition: Let X = [Xt,Xt; OCstfo be a right-continuous

martingale. We say that X is square-integrable if EX2 <

for every ta0. If, in addition, X 0 = 0 a.s., we write

X C 2 ( or XcM2, if X is also continuous).

5.2 Remark: Although we have defined 7 so that its members have

every sample path continuous, the results which follow are also

true if we assume only that P-almost every sample path is

continuous.

2 2
For any Xe7 2, we have that X = 2 Xtt; Oct<=3 is a nonnega-

tive submartingale (Proposition 3.5), hence of class DL, and so X 2

has a (uniique) Doob-Meyer decomposition (Theorem 4.9):

2
X t = Mt + At; Ost(<

where M = rMt, t; Ost<(3 is a martingale and A = [At,at; 01t(<)

is a natural increasing process. We normalize these processes, so

that MO = A0 = 0, a.s. P. If Xc7, then A and M are con-

tinous (Theorem 4.14 and Remark 4.13); recall Definitions 4.4 and 4.5

for the terms "increasing." and "natural".
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5.3 Definition: For XcE 2, we define the quadratic variation of

X to be the process <X>t A At, where A is the natural

increasing process in the Doob-Meyer decomposition of X

In other words, <X> is that unique (up to indistinguish-

ability) adapted, natural increasing process, for which

(X> = 0 a.s. and X2 - (X> is a martingale.

5.4 Example: Let[Nt,,t; Oit<c-] be a Poisson process (Definition

3.3) with associated martingale Mt = Nt - Xt (Problem 3.4;
N tH), ·

we take t = t) It is easy to verify that Me52,

and (M>t = Xt.

If we take two elements X,Y of 2', then both processes

(X+Y)2 -<X+Y> and (X-Y) 2 - <X-Y> are martingales, and therefore

so is their difference 4XY - [<X+Y> - <X-Y>].

5.5 Definition: For any two martingales X,Y in ~2, we define

their cross-variation process <X,Y> by

Xyt X+Y>t - <X-Y>t]; Ost<(,

and observe that XY -< X,Y> is a martingale. Two elements

X,Y of 72 are called orthogonal, if <X,Y>t = O, a.s. P,

holds for every 0st<=.
03
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5.6 Remark: In view of the identities

E[(Xt-Xs)(Yt-Ys)3as] = E[XtYt - XsYsls]

= E[<X,Y>, - XY>sl

valid P - a.s. for every O0s<t<x=, orthogonality of X,Y

in ~2 is equivalent to the statements "XY is a martingale"

or "the increments of X and Y over [s,t] are conditionally

uncorrelated, given as"

5.7 Problem: Show that <.,.> is a bilinear form on 72' i.e.,

for any members X,Y,Z of ~2 and real numbers a, P, we

have

(i) (<aX + BY, Z> = a<X, Z> + D<Y, Z>,

(ii) <X,Y> = <Y,X>.

The use of the term "quadratic variation" in Definition 5.3

may appear to be unfounded. Indeed, a more conventional use of

this term is the following. Let X = £Xt; Ost(=3 be a process,

fix t>O, and let R = [tO, tl,...,tm], with 0 = t 0 tlt .....t m =t,

be a partition of [O,t]. Define the p-th variation (p>O) of X

over the partition r to be

m
V(P)(n) =- Ix - IP

t t tk-k=1 k k-1
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Now define the mesh of partition H as lnll = max itk-tk-1l, and
lsksm

choose a sequence of partitions tnon= 1 of [O,t] for which

lim 01 n.l = 0. If Vt2 ) (nn) converges in some sense as n-u, the
n-4

limit is entitled to be called the quadratic variation of X on

[O,t]. Our justification of Definition 5.3 for continuous martin-

gales (on which we shall concentrate from now on) is the the

following result:

5.8 Theorem: Let X be in -92 and let f7n - 1 be a sequence

of partitions of [O,t] with lim llnnI = 0. Then V(2)(7n)
n-nto

converges in probability to <X>t.

The proof of Theorem 5.8 proceeds through two lemmas. The

key fact employed here is that, when squaring sums of martingale

increments and taking the expectation, one can neglect the cross-

product terms. More precisely, if XE5 and Oss<tCu-v, then

E[(Xv-Xu)(Xt-Xs)] = EE[Xv-Xu lSu ] (Xt-Xt) = XS.)

We shall apply this fact to both martingales Xec2 and X 2 - (X>.

In the latter case, we note that because

[(Xv-XV u 2t] E[XV -2X E[XVI u] + X21t]

E[X 2 - Xut] = E[<X> - <X>uSt 

the increment 2 <X>- (X2 _ <X>u) may be replaced by

(XvXu) -_ (Xv> - X>u), and the expectation of products of such

terms over different intervals is still zero.
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5.9 Lemma: Let Xe72 satisfy |Xsl c K<= for all se[O,t].

Let H = [tO,t 1,...t 3 with O = totl ... tm = t, be a

partition of [O,t]. Then E[V(2)(n)]2 48 K4 .

Proof: Using the martingale property, we have for Okscm-l,

m 2m

E[ Z (X t - Xt ) 21~t ] E[r Z (Xt -Xt )3I t 
j=k+l j=k+ j

E[(Xt - Xt )2lat 4K2
r k k

so

m-l m
(5.1) E[ t t (Xt -X t) (XtXt )2]

k=l j=k+l j j-1 k k-l

m-l m
= E[ E (Xt -Xt ) Xt 
k=l k k-l j=k+l j j-1

m-l
4K2 E[ E (Xt -X t )2]

k=l k k-1

c 16K4 .

We also have

m t t LCI r 4K2 E~m (Xtk-Xt4 2k
(5.2) E[ E ( -Xt ) ] 4K2 E2 (Xt Xt 

k= k k-l k=l k-

s 16 K4.

Inequalities (5.1) and (5.2) imply
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E[V2)() ]2 = m[ 4
k=l k k-l

m-1 m
+ 2E[ E . (Xt-Xt )2(Xt X 2

k=l j=k+l j j-1 k tk-l

c 48K4 .

a

Lemma 5.10: Let XE2 satisfy XslJ K(< a.s.P for all

se[0,t]. Let In ], be a sequence of partitions of
n=l

[O,t] with limlltnll = 0. Then
n

n-on

Proof: For any partition n as before, H51der's inequality

implies

Vt '( I ) V2) (I) max ( t -X t )
lgkim k k-i

and

EV(4)(n) s (E[V(2)(n)]2) (E[ max (Xtk tk )
1-kkm k k-i

As the mesh approaches zero, the first factor on the right-hand

side remains bounded and the second term approaches zero by the

bounded convergence theorem.
3
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Proof of Theorem 5.8:

We consider first the case that tXst s KI ( for all se[O,t].

For any partition n = [tO,ti,...,tm] as above we may

write (see the discussion preceding Lemma 5.9):

E(v(2)(n) - <X>t) = E[ Z (Xt -Xk l) (X> -<X>t )3

m =4z E[(XI -Xt ) _ > 2X>t )]
2 E[(Xt-Xt ) + (<x> -< )X> ) i
k=l k k-1 k k-1

Ik k-t

2k l m=l k k-l1As the mesh of n approaches zero, the first term on the right-hand side of this inequality converges to zero because of Lemma5.10; so does the second term as well, by the bounded convergencetheorem. Convergence in L2 implies convergence in probability,
so this proves the theorem for martingales which are uniformly

bounded..

Now suppose XcM2 is not necessarily bounded. We

use the technique of localization to reduce this case to the one

already studied. Let us define a sequence of stopping times (Problem

2.6) for n=1,2,... by

inf[t0O; IXtl n or <X>t - n

n = , if ..3 = Z.



Now X An) Xt is a bounded martingale relative to the filtrationt o ,Tn

[at] (Problem 3.22), and likewise, XtT X>tT t; O2t<M)

is a martingale. From the uniqueness of the Doob-Meyer decomposi-

tion, we see that

'X()> t = X>t^T n

Therefore, for partitions n of [O,t], we have

m
lim E[ (Xt T-Xt ^T 2 X>t T ] = 

1lull k=l k1 n k^l n n

Since TntX a.s., we have for any fixed t that lim P[Tn<t] = O.

These facts can be used to prove the desired convergence of

to <>t in probability.

5.11 Problem: Let [Xt,at; Ost<=] be a continuous process with the

property that for each fixed t>O and for some p>O,

lim vtP)(n) = Lt (in probability),

where Lt is a random variable taking values in [0, ) a.s.

Show that for q>p, lim V(aq)(H) = 0 (in probability), and
-Inll- o

for OI<qp, lim V (H) X (in probability) on the set
II Ill -o

t pl ~ ----- ~
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5.12 Problem: Let X be in 2'. Show that if for some t>O, we

have <X> = 0 a.s., then X = , Oss t, a.s.
t s 13

The conclusion to be drawn from Theorem 5.8 and Problems 5.11

and 5.12is that for continuous, square-integrable martingales,

quadratic variation is the "right" variation to study. All varia-

tions of higher order are zero, and, except in trivial cases where

the martingale is a.s. constant on an initial interval, all varia-

tions of lower order are infinite with positive probability. Thus,

the sample paths of continuous, square-integrable martingales are

quite different from "ordinary" continuous functions. Being of

unbounded first variation, they cannot be differentiable, nor is

it possible to define integrals of the form Jo Ys(x)dXs(m) with

respect to XE72 in a pathwise (i.e., for every or P-almost

every aen), Lebesgue-Stieltjes sense. We shall return to this

problem of the definition of stochastic integrals in Chapter 3,

where we shall give Ito's construction and change-of-variable formula;

the latter is the counterpart of the chain rule from classical

calculus, adapted to account for the unbounded first, but bounded

second variation of such processes.

It is also worth noting that for XEc2, the process (X>,

being monotone, is its own first Variation process and has quadratic

variation zero. Thus, an integral of the form lY d(X> is defined

in a pathwise, Lebesgue-Stieltjes sense.

We discuss now the cross-variation between two continuous,

square-integrable martingales.
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5.13 Theorem: Let X = [Xt,Yt; OCt(<]3 and Y = [Yt,7t; O3t(c3 be

members of 72. There is a unique (up to indistinguishability)

rat]-adapted, continuous. process of bounded variation

FAt ,t; 03t<}3 satisfying A 0= 0 a.s. P, such that

tXt Yt - At,'t; O t<=3 is a martingale. This process is given

by the cross-variation <X,Y> of Definition 3.4.

Proof: Clearly, A = <X,Y> enjoys the stated properties (con-

tinuity is a consequence of Theorem 4.14 and Remark 4.13). This

shows existence of A. To prove uniqueness, suppose there exists

another process B satisfying the conditions imposed on A. Then

M A (XY-A) - (XY-B) = B-A

is a continuous martingale with finite first variation. If we define

T = infftzO: IMtl = n3,
n

then [M(n) A MtT , t; Oit<cz is a continuous, bounded (hence

square-integrable) martingale, with finite first variation on every

interval [0O,t]. It follows from Theorem 5.8 and Problem 5,11 that

(cf. proof of Theorem 5.8):

<M>t^T M(n)>t = 0 a.s., t 0.
n t

Problem 5.12 shows that M(n) 0 a.s., and since Tn tc as na,,

we conclude that M Q- a.s. P.
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5.14 Problem: Show that for X,Ye¢C and n = itOtl,. .. ,tim

a partition of [O,t],

n
lim Z (Xt Xt ) (YtYt ) = <X,Y>t (in probability).

J�IF11-O k=l k-l k k-l

Twice in this section we have used the technique of localiza-

tion, once in the proof of Theorem 5.8 to extend a result about

bounded martingales to square-integrable ones, and again in the

proof of Theorem 5.11to apply a result about square-integrable

martingales to a continuous martingale which was not necessarily

square-integrable. The next definitions and problem develop this

idea formally.

5.15 Definition: Let X = [Xt, ,t; Otst<] be a (continuous) process

with X =0 a.s. If there exists a sequence [Thn= 1 such

that X(n) a tXn) t XtT At; Ogt<=] is a martingale for

each n, and if Tnto a.s., then we say that X is a (continuous)

local martingale and write X ° c (respectively, XcCloc

if X is continuous).

Remark: Every martingale is a local martingale (cf. Problem 3.22),

but the converse is not true. We shall encounter in Problem 3.4.12

a continuous process X with EiXtI < = for every tO, which

is a local martingale but not a martingale. However, every bounded

local martingale is a martingale.
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The reader will verify easily that a nonnegative local martingale

is a supermartingale, and that

t2 c c, loc

5.16 Problem: Let X,Y be in c, Then there is a unique

(up to indistinguishability) adapted, continuous process of

bounded variation <X,Y> satisfying <X,Y> = 0 a.s. P,

such that XY - (X,Y>eC' loc If X = Y, we write

(X> = <X,X>, and this process is nondecreasing.

5.17 Definition: We call the process <X,Y> of Problem 5.14 the

cross-variation of X and y, in accordance with Definition

5.5. We call .(X> the quadratic variation of X.

We shall show in Theorem 3.2.6 that .one-dimensional Brownian

motion [Bt,,t; 0gt<=] is the unique member of cloc whose quadratic

variation at time t is t, i.e., Bt - t is a martingale. We

shall also show that d-dimensional Brownian motion

[(Bt ) Bt ))Bt; OtSt<]. is characterized by the condition

<B(i), B(i)>t ijt, t2O,

where 5.. is the Kronecker delta.10
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5.18 Problem: Suppose Xe72 has stationary, independent

increments. Then <X> = t(EX) , t

5.19 Remark: The reader can employ the localization technique

used in the solution of Problem 5.16 to establish the following

extension of Problem 5.12: If Xe C 'loc, and for some t>O

we have (X>t = 0 a.s. P, then P[Xs = 0, V Osat] = 1.

We close this section by imposing a metric structure on 72'

and discussing the nature of both 2 and its subspace /"2 under

this metric.

5.20 Definition: For any Xe 2? and Ot<0 =, we define

11x A (X. t

l lxll t1· IXIIn1
We also set: -XI A E n

n=l 2

.Let us observe that the function t - IlXlt on [0,=) is

nondecreasing, because X2 is a submartingale. Further, JJX-Yj I

is a pseudo-metric on ?2' which becomes a metric if we identify

indistinguishable processes. Indeed, suppose that for X,Ye2? 2 we

have IIX-YII = 0; this implies X = Yn a.s. P, for every nal, andn n

thus Xt = E(Xnlat) = E(Ynl3t) = Yt a.s. P, for every O0tan.

Since X and Y are right-continuous, they are indistinguishable

(Problem 1.5).
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5.21 Proposition: Under the above metric, ~2 is a complete

metric space, and 12 a closed subspace of 2'

(n)
Proof: Let us consider a Cauchy sequence {X ¾n=1 c~ 2:

lim J1X(n) - X(m) 1 = O. For any c>0, T>O we have by the first
n, m-e,

submartingale inequality (Theorem 3.6 ):

[ sup \Xt(n) - t~"'r 2 c] x(m ElX(n) _ X(m)1P[ sup - x-m)j m ¢ ] n) -E El J
0~tcT E

= i-JX(n) - X(m)lIT 0

as n,m - . We deduce that there exists a process X = [Xt; 0st<=]

such that: sup IX( n)-Xt - 0 as n = in probability,
0stmT

as well as almost surely along an appropriate subsequence Ink].

It follows that this process is adapted. to [at], and we have

E(Xt) t m, as well as lim EIX(n) Xt 0, for every Ost<o.

Furthernore, the sequences (n)]n 1 sn) with 0gs<t<w

are uniformly integrable, because sup E(Xn ))2< K . Therefore,
nol

EElA X(n)] = El!A X (n )] implies E[lA Xt] = El1A Xs] for every

Aecs, and X is seen to be a martingale; we can choose a right-

continuous modification so that Xe? 2. If IX(n)]n =l is a sequence

in V2? then X is continuous, as the (a.s.) uniform limit of

continuous processes.

5.22 Problem: Let M = [Mt,3t; 0st<cx3 be a martingale in T2'

and assume that its quadratic variation process <M>
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is integrable: E<MDZ < a. Then:

(i) the martingale M and the submartingale M 2 are both

uniformly integrable; in particular, M lim M t exists
~2 ~ ~ t-

a.s. P, and EM = E(M>

(ii) Ze = E(M 13) - M+; t2O is a potential.



1.6: SOLUTIONS TO PROBLEMS

1.5 Solution: If Q is the set of rational numbers in [O,a),

then the event A = U {u; Xs(w )) Ys(O)] has zero proability.
sEQ

Besides,

[w; Xt(w) ~ Yt(w), for some taO) c A,

by right-continuity of the processes. The result follows.

1.7 Solution: Let An be the event that X has a jump of size
1 a

greater than on [O,to). Then A U An, so it suffices
n=l 

X
to prove AnEat. Letting Q be the set of rational numbers

in [0, a), we have

An = tV m a 1, 3q1 q 2 eQn[Oto) with Iql-q21< m and

-n U. (tx -X I > n3
m=l qlq 2eQ n[O to ) qlXq > n t·

ql-q 2 (1< m

1.8 Solution: We first construct an example with A/FX . The

collection of sets of the form ((X t , ...)EB] where

BER(Rd) 2 8(Rd ) X ... and 0Ctl(t2<...tt0 forms a a-field

and each such set is in A . Choose R = [0,2), =

and for FE3, let

P(F) = x(F n[o,l1),
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where X is Lebesgue measure. For we[0,1], define

Xt(w) = 0 , tz0; and for wE(1,2), define Xt(Ow ) = 0

if t/w, X (w) = 1. Choose to=2. If AE3 X then for

some BE Rd(RP) 2 S(R) 2 ... and some O0tl<t2<...c2, we

have A=[(Xt X t2,...)eB3. Choose E (1,2), 2 t, 1,t 2,. ..
1 2

Since w = t is not in A and Xt (t) = 0, k=l1,2,...,

we see that (O0, ... )/B. Since Xtk (W) = 0, k=l, 2,...,

for all wE[0,1], we conclude that [0,1] n A = ~, which

contradicts the definition of A and the construction of X.

We next show that if at c 3 and ' is complete, then
*0 0 0

Ac3E . Let N c Q be the set on which X is not right-continuous,
tO

and let

N= {weN; X is continuous on [0, to)].

Then

A = [( U A n) n N ] \ N,,
n=l

where

A n U { -X I > 
n m=l q. q 2 EQn[O,t] q1 q

*Iq q21<1 2 1
1.10 Solution:

Set A n U X XqI >3
k n m=l q 1 q 2eQn [ O[ to+ 2) 2

ql- q 2 1 < m

so.
, X c

A l n A A E 
n=l n k
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is the event that X is continuous on [O,t 0+ 1 ). Since

A = n Ak for any positive integer K, we have
k=K

A e n 3 N1a
k=l to+ 0

1.16 Solution: XT(X) is the composition of the two measurable

mappings

a,-4 (T(),): (,) ([) ,) x Q, B([0,c)) 2 ) and

(taIg) X Xt(W): (I3,) X Q, ([a)) 2 3) (id (Rd))

2.2 Solution: Let t0 = T(o), and let A = [Tot 0 ]. Since oEA,

AEX t , and Xt(Co) = Xt(.o), tE[O,tc] n o[0,), we have 3' A.
u0

(See the characterization of t in Solution 1.8.) Therefore
A 

T(w') i T(o). Reversing the roles of o and Wo, we can now

argue that since Xt( o) = Xt(u') for all te[0,T(cz')] n [0, ),

we have T(wo) s T(w').

2.5 Solution: Try to argue the validity of the identity:

CH<t) = U (Xs er, for any t>O. The inclusion v is
sEQ

Oss<t

obvious, even for sets which are not open. Use right-continuity,

and the fact that r is open, to go the other way.

2.6 Solution: (Wentzell [19]): For xeR d, let p(x,r)=inf[j[x-ylI; ye]r,

and consider the nested sequence of open neighborhoods of r

given by n = xERd ; (x,r) < n]. By virtue of Problem 2.5,
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the times T A H ; nal, are optional. They form a non-
n =

decreasing sequence, dominated by H = H, with limit

T A lim T _ H, and we have the following dichotomy:
n- n

On CH = 03: Tn =0, Y nal.

On £H>01: there exists an integer k = k(m)zl such that

T = 0; Y lcn<k, and O(T <T +IH; V nJk.
n n n+l!H ¥ nK.

We shall show that T = H, and for this it suffices to

establish: TaH on [H>O, T<(e).

On the indicated event we have, by continuity of the sample

paths of X: XT =lim Xn and XTm G c n ; ¥ m>nk. Now
T T T M-n

we can let mom, to obtain XTErn; Y nzk, and thus

XT E n n = r. We conclude with the desired result HsT.
T n= n

The conclusion follows now from CH t3 = n fTn<t3, valid for
n=ln=l n=

t>O, and [H=O3 = (Xo Er 

2.9 Solution: Optionality of T+S follows from Corollary to Proposition 2,

and Lemma 2.8, or directly from: [T+S(t3 = U IT<r, S<t-rf.
reQ

0-sr!st

For the rest, use again the decomposition in the proof of Lemma

2.8, just a little bit more subtlyl

2.16 Solution: For any event Ac£T, and any tzO, we have

AnfTsS] n (T^Sst3 = An(TiS3 n fTct3Eat, because the event
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(TsS) is in aT (Lemma 2.15). Therefore, An(TsS)EcT S and

lrT1s. E(ZljTJs)dP = TS ZdP = EaTss (ZlT )dP =

JA rTrS3 E(ZIJT)dP, so (i) follows.

For claim (ii) we conclude from (i) that

1iT S ] E[E(ZlIT) S] = E[lTS ] E(Zl T ) 1( S]

E[l[TS ] E(Z'5s^T)I S ]

[TS ] E[E(Z\ S^T) IS]

i1 TS E[Z1 T]

which proves the desired result on the set [TsS3. Interchanging

the roles of S and T and replacing Z by E(ZI3T), we can also

conclude from (i) that

1 ([S<T E[E(ZI T) I S]= lrSf<T E[E(ZIdT)I S^ T]

= Is<T ] E[ZIS^T]'

2.18 Solution: By assumption, the mappings

(s,) (S,Xs(O)): ([O,t] x Q, ([O,t]) 2 Vt) - ([O,t] x Rd,

([O,t]) (Rd))
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and (s,x) f(s,x): ([O,t] x Pd, R([O,t]) 2 g(Rd)) d (,(r ))

are measurable, and then so is the composite mapping

(s,0) -. f(s,Xs(QO)): ([O0t] x X, R([O,t]) 2 at) () , @(R)).

The Fubini theorem yields 3t-measurability of the random

variable Yt, and so the process Y is seen to be progressively

measurable with respect to Cat,3 since it is adapted and

has continuous paths (Proposition 1.13). The 7T-measurability

of YT now follows from Proposition 2.17.

2.21 Solution: We only discuss the second claim, following Chung

[ 2]. For any Aca3s, we have

A = ( U [An[S(r<T3)u [An[S = a3] U [AnrT = 03].
reQ

Now An[S<r<TI = AnrS<rr ]l n T>r3 is an event in FT' as is

easily verified, because AN[S<r3eFr. On the other hand,

An(S = "] = [AntS = n}]] n (T = a3 is seen to be in 3T' since

An[S = Blew . Finally, An[T = 03 = [AnfS = 03] n [T = 0° EaT'

because An[S = O3]a+. It follows that AEcT.

2.22 Solution: T is an optional time, by Lemma 2.10 and so FT+

is defined and contained in AT+ for every nal. Therefore,
co n

AT+ C n AT + To go .the other way, consider an event A
n=l n

such that AnCTn<t]3E t , for every nzl and tZ0. Obviously
co co

then, AntT<t] = An( U [Tn<t3) = U (A{Tnt, and thus
n=l n=l

A, E .The second claim is justified similarly, using Problem 2.21.
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k _ k k -1
2.23 Solution: Because (Tn = n = T< n\ T( n is an event

2 2 2

in 5k ' we have

2n

CTn5t] = U 1T n =2n 3 e'at Y tO.
k, nl 2
krt2n

On the other hand, for AEFT+ we have

k k k-i
^A[Tn2 ] = (AniT - n3)\(An{T < n )~k *

n2 2n 22 n

2
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3.2 Solution

(i) Fix saO and a nonnegative integer n. Consider the

"trace" a-field & of all sets obtained by intersecting the

members of AN with the set [Ns=n]. Consider also the

similar trace a-field X of a(T1,...,Tn) on [Ns=n]. A

generating family for S is the collection of sets of the

form (Nt nln...t N nkNs=n], where Ostls... tkgs, and

each such set is a member of i. A generating family for X

is the collection of all sets of the form [Slgtl,...,

Sltnlt Nt=n3 , where OgtlS...stk s, and each such set is

a member of S. It follows that = H.

For AeN and A A, n{Ns=n3, we have AcE c a(T1, .. ., Tn)

so Tn+l is indeed independent of (Sn,lA). It follows that

the pair of random variables (Tn+lSn), when restricted to

A, induces on (R , (R )) the measure

P[Tn+1 edT] . P[Sneda; A],

where

P[Tn+ edT] = Xe dT, T.TO,

and P[Sneda; A] is the measure defined by

F P[Sn ed; A] = P[SneB; A], V BEc(R).
B

We may now compute

P[Tn+ + S >t, S ns, A]

Jn I J P[Tn+1 ndd] P[SnEda; A]
0 Tt t-a
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s

=e C e P[Sn dv; A],
C=0

-Xs rs e
P[Tn+ + Ss S SnS A] = e jP[Sneda; A],

C=y

and if P(A) > 0, then

P[S+ 1 > t, N =n, ]
P[Sn+>tINs = n, A] S

P[Sn+ 1 > s, N s = n, ]

P[Tn+I +Sn> t, S ns, A] -(t-)
= n n~ = e

P[T +Sn> s, S ss, A]
n+1 n n

From this, we may conclude that whenever Ac3 N and
s

P(X) > 0, then

Z P[Sn+ > t, N = n, ]
n=0

P[SN +1> t|A] =

S P[N = n,]

e-X(t-s)

Therefore, for any Ac3 N, whether or not P(A) > O, we have

P[f n SNs+l > t}] = e - (t -s ) P(A),

and (i) is proved.
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(ii) For 0s<'t, Nt s is a Borel function CD of the inter-

arrival times T1,T 2,.... With the same function CD, we have

Nt = c(SN +1 - , TN +2, TNs+ ... ).

N
Thus, to prove that Nt-Ns is independent of as' it suffices

to prove that for arbitrary positive integer m, and for

tlt 2 ,...,tm in [0,c),

5+1N

is constant. We shall in fact show that this expression

equals P 1[T >tl T2>t2, T., T>tm], so the distribution of

Nt-N is the same as that of N
t s t-s

We compute as follows:

P 1 P[S -s>t, TN + 2 > t2 ,TN +m> ts > N

n=O Ns =n) NN

:n 1 P[S nl> tl+ s T > t2,...,T >t laN].
n=O [Ns 1 n+2 2 n+mlm s

On the set Ns = n3, the a-fields AN and g(T +2,..,Tn+m)

are independent (i.e., the trace a-fields are independent).

The random variable S is not independent of aN on
n+l s

[IN = n3, but its conditional distribution was computed in

(i). It follows that
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E 1 N P[S n+1> tl+s, Tn+2> t 2 , n+m tm I Ns
n=O [Ns

-k(t2+ + tm) N
= e P[S tl+S ]

-(t +t2 +... + t)
:e

P[T 1 > t1, T 2 > t2,..., Tm> tm] .

(iii) In light of (ii), it suffices to prove that Nt is Poisson

with mean Xt. A standard computation reveals that S has

a gamma distribution with parameters (n,X), i.e.,

nsn- i

P[S eds] = - eXS ds' 
(n-1)!

It is then easy to see that since P[Ntsn] = P[Sn t], we

must have

P[Nt = n]= (t)n e-t

3.7 Solution

Let CMt; tzO] be the martingale (Nt - xt; t2O].

We have

nk

n -n n -n
-= (Z) e (k-n) (k-1) e

k= n+l k= n+2

n+l
n -n
n e
nt
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According to Stirling's approximation, this implies

EM
im n/X _ 1

Now Mt, t20] is a submartingale (Proposition 3.5), so for

~~n-l t~n ~+ + +
we have EMn1 s Mt EMn and thus

+t
EM EM EM n/

,/-Y nsn- 1 s _ J 1

Upon letting n-=, we conclude that

EM
t 1

lim =

From Theorem 3.6 (i), we have

EMt
P[ sup (N - Xs) 2 c X] s/ -
O0sIt s

and (a) is proved. Part (b) follows in the same way from Theorem

3.6 '(ii). We obtain (c) by applying Theorem 3.6 (iv) to the sub-

martingale (IMtl; tZO3.

Indeed,

Er sup (-t x)2] t-½ E[ sup M]
C9ts T a Ostyt 

-2 E[ sup IMtl ]2
-2 Ot T

2 EM 2
T C
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3.8 Solution:

Thanks to the Jensen inequality (as in Proposition 3.5) we

have that IX+ , n; nsl3 is also a backwards submartingale, and son n

with X>O: X.P[IXnl>X] > EIXlI = -E(Xn) +2E(X + ) -t + 2E(X+) < 

It follows that sup P[IXnl > X] converges to zero as X, and
nal

by the submartingale property:

r n + r +

(Xn> n} {X) k} lXnI > X)

Therefore, (Xn 1 is a uniformly integrable sequence. On the other

hand,

O Xn dP E(X) XdP E(X) - XdP

* Xn < -x[ EXn2 - x} (Xn2z -

E(X) - E(X) + r X dP, for n>m.
n m {Xn < x3 m

Given e>O, we can certainly choose m so large that

OE(X) - E(X) P holds for every n>m, and for that m we

select X>O in such a way that

sup IXI dP E
n>m XXn ) -Xm

Consequently, for these choices of m and X we have:

sup X ndP < e, and thus fXnn 1 is also
Xn>m .

=x E(xn)-EX)+JI n k 
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uniformly integrable.

3.14 Solution:

The existence and integrability of the limit follow from

Theorem 3.13 applied to the nonpositive submartingale [-Xt,at; Ost<c3.

It remains to show

X dP s I XsdP, V AEa
A 0A s

for an..arbitrary OBs(<. But we have E[lAXt] m E[lAXs] for every

t>s, and now the result follows from Fatou's Lemma.

3.16 Solution:

Uniform integrability implies that sup EIXtl <( , so Theorem
tto

3.7 gives the existence and integrability of X = lim Xt, and
tCo

Theorem 3.11 guarantees the existence of.a right-continuous modifica-

tion Mt of the uniformly integrable martingale E(X1 at). Finally,

observe that Zt A Xt-Mt; tzO is a right-continuous, nonnegative

.(by Problem 3.14) supermartingale, with lim E(Zt) = lim E(Xt)-E(X )=O
taD tot

(by uniform integrability).

3.17 Solution:

Exactly as in Theorem 9.4.5, Chung [ 1].

3.18 Solution:

Exactly as in Theorem 9.4.6, Chung [1].
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3.19 Solution

(i) Choose Oss<t. Recall from Problem 3.2 (b) that Nt-Ns

is independent of At. Therefore,

~~N N
E[Xt N] = E[X exp Nt-N s-X(t-s)(e-1)lj Us]

= exp[-X(t-s)(e-1)3 E[exp(Nt-Ns) ] = X

(ii) No. Since Xt20, Problem 3.14 implies X t converges to

a limit X a.s. From Problem 3.7 (a), we have that for

each c>O, there exists Tc>0 such that

P[Nt-Xt 2 co-] c 2 ¥ t TC 

It follows that

P[Xt 2 exp(cjT- Xt(e-2))] s 2 , V trT
c,/2T 

so X 0 in probability and X = a.s. But
t 1 = .

EXt = 1, Ot<o, and EX = O, so NXt, 1t Ost5])

is not a martingale (cf. Problem 3.18 (d)).

3.21 Solution

(i) Repeat verbatim the proof of Theorem 3.13, except that

now you can refer to the "discrete" optional sampling

Theorem 9.3.4 in Chung [ 1] for bounded stopping times.

(ii) The submartingale has a last element X = E[YJ| ].

Theorem 3.20 thus applies.



1.6.16

3.22 Solution

(i) We have to establish, for every Ojs<t<=.

(*) E[XT tls] Z XT^s ; a.s. P.

From the optional sampling theorem applied to the bounded stopping

times T^s 5 T^t, we have (Problem 3.21 (i)): E(XT ttIT s] ~ XTAs

a.s. P. But from Problem 2.16(i):E[XTt 3T^s] = E[XTT^tts], a.s. P

on [TTs3, and so (*) is seen to hold on this event.

On the other hand, we have trivially E[XT t I s] = X T As ,a.s. P

on [T<s3.

(ii) The proof is similar.

3.23 Solution:

With OQs<t<w, suppose that the event A = [E(Xtl 5s) > Xs

has positive probability. We have

E(Xt) = E[E(Xt!I3)] = E[1AE(Xtlas) + 1AcE(Xtl3s)],

as well as E(Xtl s) x X s a.s. on Q. The assumption P(A) > 0

thus leads to E(Xt) > E(Xs), which contradicts the premise of

the proposition.

3.24 Solution: Necessity of the above condition follows from the

version of the ontional sampling theorem for bounded stomping times

(Problem 3.21 (i)). For sufficiency, consider 0ss<t(f, A£Es and

define the stopping time S(n) A slA(() + tl c(X). The condition

E(Xt) a E(XS) a.s. P is tantamount to the submartingale property

E[XtlA] tE[XslA].
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3.25 Solution: (Robbins & Siegmund (1970)): With the stopping time

rinfrtts; Zt=b3T =
+ , if ... = 

the process [ZT t'At; Oct<)] is a martingale (Problem 3.22(i)).

It follows that for every Acas, tas:

F Z dP = f ZT^tdP = b.P[An[Zs<b, Tct]] +
'AnZ K<b] S An[Z s<b Tt 

Z t 1T>t] dP
An[ <zs b T>t3

The integrand Z t 1[T>t ] is dominated by b, and converges

to zero as t-. by assumption; it develops then from the-

dominated-convergence theorem that

f Z dP b.P[An[Zs<b,T<] = b F P[T<.J3s]dP,
!An(Zs<b S An[zs<b3

establishing the first conclusion. The second follows readily.



4.9 Solution: According to the Optional Sampling Theorem 3.20 as

extended in Problem 3.21 (i), we have

? XT dP X dP v Tg

ExT>X3 }XT>X3

and from Theorem 3.6 (i), PfXT>X] approaches zero uniformly

in T as XO. This proves (a). Applying this same argument

to the nonnegative submartingale M and observing that

AT g Aa for Te8,a we obtain (b). Part (c) is a special

case of (b) with A - O0. If X is uniformly integrable, the

optional sampling theorem and Problem 3.18 imply

XT dP X dP v ¥ Teg..3 T oj
[XT>x] (XT>x]

4.11 Solution: Let .g be a bounded, 5-measurable, random variable.

We have

E[f E[A( n)1]3 = E(E[g!.] E[A( n)1] 3

= E[E[E[ISL] A(n)1]]

= EE[EIS] A(n) ,

which converges to E(E[JS] A3 = E[tE[A!,A]3.
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5.7 Solution: (i) It is easily verified that

(aX + 5Y) Z - a <X,Z> - (<Y,Z>

is a martingale.

5.1 Solution: Le ~t f= tto,...,tm3 , with 0 = tOstls...atm, be

a partition of [O,t]. For q>p, we have

V(q)(() % V4P)(n). max IXt -X Iq-p
t t ~lskgm tk t k-l

The first term on the right-hand side has a finite limit in

probability, and the second term converges to zero in probability.

Therefore, the product converges to zero in probability. For

O<q<p and a sequence of partitions n=l with 11 1l - 0,

the sequence £v{T)(n)3n=l must be unbounded on the set

tLt>03, for otherwise the argument just given (but with the

roles of p and q interchanged) would show that

V(P )(nn ) - 0 in probability on this set. Since every such

sequence Vqt )(n )n=1 is unbounded, we have lim Vq(n) =X

(in probability) on Lt>O. I1~11-40(in probability) on [Lt>0O.

5. 12 Solution: Since <X> is nondecreasing, <X> t O implies

<X>s = 0 for Ossst. For each se[O,t],

o = E[X - (X> ] = E(X) 

which implies that X = 0 a.s. Since X is continuous,

we must have that P-almost every sample path is identically

zero on [O,t].
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5.14 Solution: Write

(tX -X ) (Yt t )

tk +tk k k-l

tk tk tk-l tk-1

1 2
- ~ [(XtYtk) (Xtk -l Ytk

k k k- tk-1

and use Theorem 5.8 and the properties of A = (X,Y> in

Theorem 5.13.

5.16 Solution: There are sequences [Sn3, (Tn) of stopping times

such that S to, T t~ and X (n) X t S
n n tSn

Y(n) a Yt T are [~t] - martingales. Define
t t ,T j

Rn A S ^T ninf(tzO: IXtl = n or IYtl = n3,
n- n n n

and set (n) - Xt R n) Yt . Note that R tw a.s.t tA n tn n

'Since (n) = (n) , and likewise for (n), these processes
t t 'n

are also jt3 ] - martingales (Problem 3.22), and are in 2

-(n) ~m) and sobecause they are bounded. For m>n, X) ) and so
t tARR

n

((n))2 - <(m> = ((m) )2 - <(m)

(n n n

is a martingale. This implies "X(n)>t = <Y(m)>tR . We can

thus define <X>t = (n)> t whenever tR n and be assured

that <X>t is well-defined. The process <X> is adapted,
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continuous, nondecreasing, and satisfies (X> = 0 a.s.

Furthermore,

2 _) <X>t R= (n))2 - <X(n)>
n n

2 c'loc
is a martingale for each n, so X - X>. As in

Theorem 5.13, we may now take

1
X,Y> =[<X+ - <X-Y> .

As for the question of uniqueness, suppose both A and B

satisfy the conditions required of <X,Y>. Then M A XY-A and

c, ioc
N A XY - B are in , so just as before we can construct

a sequence CR 3 Of stopping times with R tw such that
n n

M( )_ MtR and N(n) D Ntn are in b2. Consequently
t t,= R I tAR 2

Mt(n) - N(n) = B(n) - Atn) , and being of bounded variation

this process must be identically zero (see the proof of Theorem

5.13). It follows that A = B.

5.18 Solution: Let X = EX2 . The martingale property implies1

n n
E 2 1 2 EXl/n = E(Xk k-1 n [ (Xk -Xl )] n
/n n k=l - k=l n

n n n n

Similarly, we can show EX2/n -k for all positive integers

k and n. Since both EX and <X> are nondecreasing

functions of t, we have EXt = Xt, t0z. We now show that

X t - Xt is a martingale. For 0gs<t,xt
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E[Xt -2 tij =E[((Xt-Xs)+Xs)2 XtI 

2 2 2 2 2
E[(Xt-Xs) -Xt3s] + Xs EXt - t + X X s.

5..22 Solution: From E(M ) = E<M>t s E<M> < ~ we obtain

sup E(M ) < 2 , which implies the uniform integrability of
tzO

M (Chung [1 ], Exercise 4.5.8). From Problem 1.3.18 we have

that M = lim M t exists a.s. P, and that E(M lat) = Mt
t-.c

holds a.s. P, for every trO. Fatou's lemma now yields

E(M2 ) = E(im M lim E(M lim E(M>= E<
tt t cot-*4 t-.CO t4 .

and Jensen's inequality: _t ! E(M 21t), a.s. P, for every

tzO. It follows that the submartingale M2 has a last

2
element, i.e., that [Mt , Ut; Ost<a] is a submartingale;

besides, we have E(M E(Mt ) whence E<M> s E(M2).

Therefore, lim E(M2) = E<M>) and so, by Problem
t c

1.3.17, the submartingale M2 is uniformly integrable.

Finally, Z t = E(M 3t) - Mt2 is now seen to be a (right-con-

tinuous, by appropriate choice of modification) nonnegative

supermartingale, with E(Zt) = E(MI) - E(Mt) converging to

zero as t-.
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1.7 : NOTES

Sections 1.1, 1.2: These two sections could have been lumped

together under the rubric "Fields, Qptionality and Measurability"

after the manner of article [3] by Chung & Doob. Although slightly

dated, this article still makes excellent reading. Good accounts

of this material in book form have been written by Meyer [16;

Chapter IV], Dellacherie [4; Chapter III and to a lesser extent

Chapter IV], and Chung [2; Chapter 1]. These sources provide

material on the classification of stopping times as "predictable",

"accessible" and "totally inaccessible", as well as corresponding

notions of measurability for stochastic processes, which we need

not broach here.

A new notion of "sameness" between two stochastic processes,

called "synonimity", has been introduced by Aldous. It was

expounded in a recent paper by Hoover [10] and was found to be

useful in the study of martingales.

Section 1.3: The term "martingale" was introduced in Probability

Theory by J. Ville in his 1939 book "ttude critique de la notion

du collectif". The concept had been created by P. Levy back in

1934, in an attempt to extend the Kolmogorov inequality and the

law of large numbers beyond the case of independence. 'Levy's 0-1

law (Theorem 9.4.8 and Corollary in Chung [1]) is the first

martingale convergence theorem. The general theory, as we know

it today, sprang fully armed from the forehead of-J.L. Doob3[5].

For the foundationsof, the discrete-parameter case there is 

perhaps no better source than the relevant
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sections in Chapter 9 of Chung [1] that we have already mentioned;

fuller accounts are Neveu [17] and Hall & Heyde [9]. Other books,

which contain material on the continuous-parameter case, include

Meyer [16; Chapter V, VI], Liptser & Shiryaev [13; Chapter 2, 3]

and Elliott [7; Chapters 3, 4].

Section 1.4: Theorem 4.10 is due to P.A. Meyer [14, 15]; its proof

was later simplified by K.M. Rao [18]. Our account of this theorem,

as well as that of Theorem 4.14, follows closely Ikeda & Watanabe

[11].

Section 1.5: The study of square-integrable martingales began

with Fisk [8] and continued with the seminal article [12] by

Kunita & Watanabe. Theorem 5.4 is due to Fisk [8].
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2.1 INTRODUCTION.

"Brownian movement" was the name given to the irregular move-

ment of pollen, suspended in water, observed by the botanist Robert

Brown in 1828. This random movement, now attributed to the buffeting

of the pollen by water molecules, results in a dispersal or "diffu-

siont" of the pollen in the water. The range of application of

Brownian motion as defined here goes far beyond a study of micro-

scopic particles in suspension and includes modelling of stock

prices, modelling of thermal noise in electrical circuits, modelling

of certain limiting behaviour in queueing and inventory systems, and

modelling of random perturbations in a variety of other physical,

economic, biological, and management systems. In addition,

integration with respect to Brownian motion gives us a unifying

representation for a large class of martingales and diffusion

processes. Diffusion processes represented this way exhibit a

rich connection with the theory of partial differential equations.

In particular, to each such process there corresponds a second

order parabolic equation which governs the transition probabilities

of the process. The history of Brownian motion is discussed more

extensively in Section 10.

Definition 1.1: A (standard, one-dimensional) Brownian motion

is a continuous, adapted process B = tBt,Ut; Ost<w3 defined

on some probability space (Q,5,P) with the properties that

B0 0 a.s. and for 0ss<t, the increment Bt - B s is

independent of A s and is normally distributed with mean
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zero and variance t-s. We shall speak sometimes of a

Brownian motion B = {Bt,gt; O0tsTT on [O,T], for some

T > 0, and the meaning of this terminology is apparent.

If B is a Brownian motion and 0 = t<tl(...tn, then the

increments B B 3 are independent and the distribution
j tj-1

of Bt -B t depends on tj and tj only through the difference

tj-tj 1; to wit, it is normal with mean zero and variance tj-tj 1.

We say that the process B has stationary, independent increments.

It is easily verified that B is a square integrable martingale and

<B>t = t, tm0.

The filtration [St] is a part of the definition of Brownian

motion. However, if we are given £Bt; 0st<o] but no filtration,

and if we know that B has stationary, independent increments and

that Bt=Bt-B 0 is normal with mean zero and variance t, then

EBtlAt; Ot(<]3 is easily seen to be a Brownian motion. Moreover,

if [{t] is a "larger" filtration in the sense that At c At for

taO, and if Bt-B is independent of As whenever 0s(<t, then

(Bt,3t; O0t<~] is also a Brownian motion.

The first problem one encounters with Brownian motion is its

existence. One approach to this question is to write down what the

finite-dimensional distributions of this process must be (based,

on the stationarity, independence, and normality of its increments),

and then construct a probability measure and a process on an

appropriate measurable space in such a way that we obtain the pre-

scribed finite-dimensional distributions. This direct approach is

the one most often used to construct-a Markov process, but is rather

lengthy and technical; we spell it out in section 2. A more elegant
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approach for Brownian motion, based on Hilbert space theory, is

provided in Section 3; it is close in spirit to Wiener's [ ]

original construction, which was modified by Levy [ ] and later

further simplified by Ciesielski [ ]. Sections 2 and 3 are

independent of one another, and with the exception of Problem 2.9

and Remark 2.12, which are used in Chapter 5, the only result we

need from these sections is the fact that Brownian motion exists.

Section 4 provides yet another proof of the existence of this pro-

cess, this time based on the idea of Brownian motion as the weak

limit of a sequence of random walks. The properties of the space

C[O, ) developed in this section will be used extensively through-

out the book.

Section 5 defines the Markov property, which is enjoyed by

Brownian motion. Section 6 presents the strong Markov property,

and, using a proof based on the optional sampling theorem for

martingales, shows that Brownian motion is a strong Markov process. In

Section 7 we discuss various choices of the filtration for Brownian

motion. The central idea here is augmentation of the filtration

generated by the process, in order to obtain a right-continuous

filtration. Developing this material in the context of strong

Markov processes requires no additional effort, and so we adopt

this level of generality.

Sections 8 and 9 are devoted to properties of Brownian motion.

In Section we compute distributions of a number of elementary

Brownian functionals; among these are first passage times, last

exit times, and time and level of the maximum over a fixed time-

interval. Section 9 deals with almost sure properties of the
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Brownian sample path. Here we discuss its growth as ta, its

oscillations near t = 0 (law of the iterated logarithm), its

nowhere differentiability and nowhere monotonicity, and the

topological perfectness of the set of times when the sample path

is at the origin.
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2.2 FIRST CONSTRUCTION OF BROWNIAN MOTION

Let R[ 0 ' ) denote the set of all real-valued functions on

[O,c). An n-dimensional cylinder set in R [O ' ) is a set of the

form

(2.1) (()' ' tn)

where tiE[Ow,), i=l,...,n, and AcA(Rn). Let C denote the

field of all cylinder sets (of all finite dimensions) in R[0 ' )

and let ( [, '.)) denote the smallest a-field containing C.

2.1 Definition: Let T be the set of finite sequences

t = (t 1,...,t) of distinct, nonnegative numbers, where the

length n of these sequences ranges over the set of positive

integers. Suppose that for each. t of length n, we have

a probability measure Qt on (Rn, (Rn) ). Then the collection

[Qt3tcT is called a family of finite-dimensional distributions.

.This family is said to be consistent provided that the follow-

ing two conditions are satisfied:

(a) if s = (ti ,ti ,...,ti ) is a permutation of

t = (tl,t 2 ,...,t), then for any Ai¢E(R), i=l,...,n,

we have

Qt (AlXA2 x xA) s(Ai xA2 x . xAi );N 1 2 i
2 n
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(b) if t = (tl, t2 ,...,t) with nzl, s= (t, t t ),
~i n 2' ' ' '' n-1

n-l
and AEs(R ), then

Qt(A x R) = Qs(A).
t _ s

If we have a probability measure P on ( 0 [0,) ))

then we can define a family of finite-dimensional distributions

by

(2.2) Q (A) P[oE[ ); ((tl), w(tn))a]

where AER(Rn) and t = (tl,...,tn)ETT. This family is easily

seen to be consistent. We are interested in the converse of this

fact,because it will enable us to construct a probability measure

P from the finite-dimensional distributions of Brownian motion.

2.2 Theorem: Daniell (1918), Kolmogorov (1933).

Let [Qt be a consistent family of finite-dimensional dis-
t

tributions. Then there is a probability measure P on

(R [ ), (Rp')), such that (2.2) holds for every tET.

Proof: We begin by defining a set function Q on the field of

cylinders C. If C is given by (2.1) and A = (tlt 2,...,tn)eT,

we set

(2.3) Q(C) = Qt(A), CEC.
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Such a definition is indeed possible because of the consistency of

the family of finite-dimensional distributions.

2.3 Problem: The set function Q is well-defined and finitely

additive on (R )), with Q(R [ ) 1.

We now prove the countable additivity of Q on C, and we

can then draw on the Carath6odory Extension Theorem to assert the

existence of the desired extension P of Q to e(R[O')). Thus,

suppose {BkRk=1 is a sequence of disjoint sets in C with

m
B A U Bk also in C. Let C =B\ U B k, so

k=l m k=l k

m

Q(B) = Q(C) + z Q(B)
k=l

Countable additivity will follow from

(2.4) lim Q(C) = 0.
m-~co

Now Q(Cm) = Q(Cm+1) + Q(Bm+1 ) Z Q(Cm+l), so the above limit exists.

Assume that this limit is equal to E>O, and note that n C = C .
m=l m

From [Cmm 1 we may construct another sequence CDm3m=1

which has the properties: D iD2 ..., n D = 0, and
1-- m- = m

lim Q(Dm) = e>o. -Furthermore, each D has the form
m_10 m m
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D = RO,[oR[ '
.) (o0(tl) (tm ) )A

for some Am e(Rm), and the finite sequence t A (tl,...,tm)T
m m

is an extension of the finite sequence tm 1 A (tl,.. .,tm 1 )cT m22.

This may be accomplished as follows. Each Ck has a form

Ck c(eR ; ([ ((t),.D(t )EA Am (R )
kmkk

where tmk (t1,., t m )ET. Since Ck+l c Ck, we can choose these
k k

representations so that tm is an extension of t , and
* m m k+l k

A c A x R + l Define
mk+l - mk

D 1 [; c)(tl) EP..., Dml , 1 W: (m(tl),..., * (tml ) R

and Dm CI , as well as

Dml+l = [(c; (cO(tl), -,u(tml),c(tml+l))EAml x R]3...,

m2-ml-1

Dm 2 -1 (; (W(t l), , o(t 0( +-1 ) ,,())E .AmlX R
2 1 1 2

and Dm = C . Continue this process, and note that by construction
2:2

n D = 
m=l m m=l m

2.4 Problem: Let Q be a probability measure on (Rn,8(Rn)).

We say that AeS(Rn) is regular if for every e>0, there

is a closed set F and an open set G such that FgAQG

and Q(G\F)<e. Show that every set in 8(Rn) is regular.

(Hint: Show that the collection of regular sets is a a-field

containing all closed sets.)



2.2.5

According to Problem 2.4, there exists for each m a closed
E

set F c A such that (A\Fm) < -m By intersecting F with
r-r i m 2 

a sufficiently large closed sphere centered at the origin, we obtain

a compact set K such that, with

Mm mBE c r[ 0 ,) (co(t 1),o(t() )tK m },

we have E c D and
mi- m

Q(D\Em) = t (Am\Km) <

The sequence BEm] may fail to be nonincreasing, so we define

m
E n E

k=l k

and we have

Em = B CR[ ' x) ' ( o( tl) ' ,o(tm)I)m)

where
e.j M-Rl m-2
Km = (K 1 X R )n(K 2 x P )n...n(Km- 1 x R)nKm,

which is. compact. We can bound t (Km) away from zero, sincet mn

-m

Qt (Km) = Q(Dm) =- Q(Dm mB)

= Q(D m) - Q( U (Dm\EK))
k=l

0 Q(D) - Q( U (DK\Ek))
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m

k=l 2

Therefore, m is nonempty for each m, and we can choose
m

(xm),...,x (m))¢K . Being contained in the compact set K1, the

sequence x m) m=l must have a convergent subsequence Exl x k=1

(mk) (mk) ,
with limit xl. But x2 k is contained in K2, so

it has a convergent subsequence with limit (xl,x2). Continuing

this process, we can construct (xl,x 2 ,..)ER X R X..., such that

(X 1 ,. . . ,xm)EKm for each m . Consequently, the set

S (W= CDERW'm ; E (ti) = xi, i=1,2,...3

is contained in each EmY and hence in each Dm. This contradicts

the fact that n D = ~. We conclude that (2.4) holds.
m=l m [

Our aim is to construct a probability measure P on (Q,;)

A (R[0 ' ), (r[O0,))) so that the process B = [Bt., at; 0t<c3

defined by Bt(w) _A (t), the so-called coordinate mapping process,

is almost a standard, one-dimensional Brownian motion under P.

We say "almost" because we leave aside the requirement of sample

path continuity for the moment, and concentrate on the finite-dimen-

sional distributions. Recalling the discussion following Definition

1.1, we see that whenever O = s<sl<s2<...<sn, the cumulative,

distribution function for (B ,...,B s must be
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(2.5) F(,...,s)(Xl, ··,Xn) 

x x2 X

= ? ... r P(sl; , Y1 ) P(s2-S1; Y1'Y2)..-

... O (s -sd dn

n n-1 n-l' )dYn' dY2dYl

for (x 1,..., Xn)e R , where p is the Gaussian kernel

(_ x-y)2

(2.6) p(t; x,y) A e 2t t, x,ycR.

The reader can verify (and should, if he has never done so!) that

(2.5) is equivalent to the statement that the increments

CB s Bs j_=1 are independent,and B -Bs is normally dis-

tributed with mean zero and variance sj-sj_ 1

Now let t = (t1, t 2 ... t n) , where the tj are not

necessarily ordered but are distinct. Let the random vector

(Bt.i,Bt, .. Bt ) have the distribution determined by (2.5)
1 2 n

(where the tj must be ordered from smallest to largest

to obtain (sl,.' . ,sn) appearing in (2.5')). For AEe(Rn), let

Q (A) be the probability under this distribution that

(Bt ,Bt , .Bt ) is in A. This defines a family of finite-
1 2 n

dimensional distributions [QQ .t

2.5 Problem: Show that the family [Q 3 defined above is
ct eneT

consistent.
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2.6 Corollary to Theorem 2.2: There is a probability measure

P on (R[3'),(R[O' ))), under which the coordinate mapping

process

Bt(a) = W(t), WER [O ), to,

has stationary, independent increments. An increment Bt-B s

where O0s<t, is normally distributed with mean zero and

variance t-s.

Our construction of Brownian motion would now be complete,

were it not for the fact that we have built the process on the

sample space [ ° 0' ) of all real-valued functions on [O,*) rather

than on the space C[O, ) of continuous functions on this half-

line. One might hope to overcome this difficulty by showing that

the probability measure P in Corollary 2.6 assigns measure one to

C[IO,). However, as the next problem shows, C[O,~), is not in the

a-field C(R[OJ=)), so P(C[O,c)) is not defined. This failure

is a manifestation of the fact that the a-field B(R[ 'O)) is,

quite uncomfortably, "too small" for a space as big as R[ '=); no

set in (R [ 0') ) can have restrictions on uncountably many

coordinates. In contrast to the space C[O,o), it is not possible

to determine a function in R[ 0' ~) by specifying its values at only

countably many coordinates. Consequently, the next theorem takes

a different approach, which is to construct a continuous modification

af the coordinate mapping process in Corollary 2.6.
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2.7 Problem: Show that the only (R[O )-measurable set contained

in C[O,=) is the empty set. (Hint: a typical set in

CR([O')) has the form

E = EaeR[ ' )'(t) (t 2),...)EA],

where Ae(R x R x ...).

2.8 Theorem: Kolmogorov , Centsov (1956).

Suppose that a process X = [Xt; OstsT3 on a probability

space (Q, y,P) satisfies the condition

(2.6) EIXt-X .,s a Cit-sl , Ocs,taT,

for some positive constants al, and C. Then there exists

a continuous modification = f[Xt; OtsT] of X, which is

locally Holder continuous with exponent y for every

Y¥(O,,i), i.e.,

(2.7) P W; sup() )- xs( = 1,
Ot-s<h(a) y
s,tE[O,T] t ts 

where h(w) is an a.s. positive random variable and 5>0

is an appropriate constant.

Proof: For notational simplicity, we take T=l. Much of what

follows is a consequence of the Cebysev inequality. First, for

any >0O, we have
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EJXt-X11 t .X
p[IXt_-XsE 5 t C C E -t-sl

and so X -Xt in probability as s.t. Secondly, setting

t S = and e= 2 (where 0 < y ) in the above
2n 2 n a=22 2

inequality, we obtain

P[I~x n n - 2-yn]y C 2 -n(l+5 -ay)

k/2n (k-1)/2n

and consequently,

P[ max nIX I a 2-yFn]1,k, 2 k/2n (k-1)/2n

k=l k/2n (k-l)/2n

The last expression is the general term of a convergent series;

by the Borel-Cantelli Lemma, there is a set N* E a with P(Q*) = 1

such that for each ceQ*,

(2.8) max X n() X (t) j < 2 Y¥n V nn*(
skc2k = k/2 k(k-l)/2 n

where n*(cu) is a positive, integer-valued random variable.

For each integer nal, let us consider the partition

D k k=0,1,..,2n of [0,1], and let D = U Dn be the
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set of dyadic rationals in [0,1]. We shall fix coe*, nan*(c),

and show that for every m>n, we have

m n
(2.9) 2Xt(C)-Xs(co)l s 2 Z 2 t, sD, t-s<2 n

j=n+l

k k-l
For m=n+l, we can only have t = - = and (2.9) follows

2 2

from (2.8). Suppose (2.9) is valid for m = n+l,...,M-l. Take

s < t, s,teDM, consider the numbers tl = maxue1DM_l; ust3 and

1 1 r,s = mintueDM_1; us3}, and notice the relationships sgs -lst,

lXt(c) - X 1()l s 2 , and from (2.9) with m = M-l,

M-1
Ix 1(t ) - X l(c)-X (o) 2 2 ¥M
t s j=n+l

We obtain (2.9) for m = M.

We can show now that tXt(cE); teD3 is uniformly continuous

in t for every weo*. For any numbers s, teD with O<t-s<h(co)

A 2 n ()>, we select nzn*(o) such that 2 -(n+l) t-s<2-n We

have from (2.9)

(2.10) JXt(o)-Xs(w)l 2 0 2 tC 5-t-sIY, O<t-s h(c),
j=n+l

where 5 2 This proves the desired uniform continuity.
1-2-¥

We define X as follows. For oDO*, set Xt(c) = 0,

Ots'l. For )eQ* and teD, set Xt(o) = Xt(co). For 'Ueo* and

te[O,l]nDC, choose a sequence Isn cD with s n .t. Tniformnnwith s n
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continuity and the Cauchy criterion imply that Xsn (W)n=i has a

limit which depends on t but not on the particular sequence

[shn=rl 1 cD chosen to converge to t. We set Xt(W) = lim X (w).
S --t nN~~~~~~~ n

The resulting process X is thereby continuous; indeed, X

satisfies (2.10), so (2.7) is established.

To see that X is a modification of X, observe that

Xt = Xt a.s. for teD; for tE[O,l]nDc and [Sn _cD with
t t

s -t, we have X -X t in probability and X s - Xt a.s., so Xt=X t a.s.
s nn n

O

2.9 Problem:. A random field is a collection of random variables

[Xt3, where t is chosen from a partially ordered set.

Suppose [Xt; te[O,T]d , d22, is a random field satisfying

(2.11) EIXt - Xsl Clt-sl

for some positive constants a,x and C. Show that the

conclusion of Theorem 2.8 holds with (2.7) replaced by

(2.12) P[u; sup t()-s = 1.
O<JJllt-sh() t-sh() JJt-sllY

d
s,te[O,T]

2.10 Problem: Show that if Bt-B s, Oss<t, is normally distributed

with mean zero and variance t-s, then for each positive

integer n, there is a positive constant C for which

B-B = Cnts

EIBt-Bs j2n = Cnlt sln



2.2.13

2.11 Corollary to Theorem 2. 8

There is a probability measure P on (R[0 ' ), R(R[0')),

Wand a stochastic process W = [W, Ut; tZO3 on the same space,

such that under P, W is a Brownian motion.

Proof: According to Theorem 2.8 and Problem 2.10, there is for

each T>O a modification WT of the process B in Corollary

2.5 such that WT is continuous on [0,T]. Let

QT = X[ : WT(C) = Bt(w) for every rational te[O,T]],

so P(QT) =1. On n we have for positive integers T1
T=i

and T2,

T T
W tl ( 0) = Wt2() , for every rational te[O,TI^T2].

Since both processes are continuous on [O,TlAT 2], we must have
T T 2

Wt 1() = Wt() for every tE[O,T1 ^T2], cTe?. Define Wt(w) to

be this common value. For o0Q, set Wt(o) = 0 for all tzO.

2.12 Remark: Actually, for P-a.e. ceR[O ' ), the Brownian

sample path IWt(u); O0t(<3 is locally HMlder continuous

with exponent y, for every ye(0,1/2). This is a consequence

of Theorem 2.8 and Problem 2.10.
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2.3 SECOND CONSTRUCTION OF BROWNIAN MOTION

If rBt,at; t203 is a Brownian motion and Oas<t, then

conditioned on B s = x and B = x the random variable B+ tS t S-t

x +X 2
1 3X+X 2 t-sis normal with mean p A 2 and variance a A To

2 2
verify this, observe that the known distribution and independence

of the increments B s, B+ t B s, and. B t - B+ t results in a

2 2
joint density

P[Bsddxl, Bs+tedx 2, BtEdx3]

2
2 ( 2x-l 2

x1 ( 2 -x) (x3-x 2)
1 1 1 e 2-ts e t- se e e dx~ldXodx 3

j22£ J~"(t's) 2~(t -s) 

x (x(x-x ))

2= [ B1 e 2s e2t1s e 2(t-s) 22 dx dx dx .2 .2z n a
The simple form of this conditional distribution of B suggestsxl (x3xl)2

we obtain

(x2- )2

P[Bt+Sx d2 Bs ~xlBt= x3] 3 1 e 2~ 2 dx2.

The simple form of this conditional distribution of Bt s suggests

2
that w e can construct Brownian motion on some finite time-interval,

say [O,1], by interpolation. Once we have completed the construction
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on [0,1], a simple "patching together" of a sequence of such

Brownian motions will result in a Brownian motion defined for all

ta0.

To carry out this program, we begin with a countable collection

{(n); keI(n), n=0,1,...3 of independent, standard (zero mean and

unit variance), normal random variables on a probability space

(0,, P). Here I(n) is the set of odd integers between 0 and

2n , i.e., I(0) = [13, I(1) = (13, I(2) = [1,3], etc. For each

na0, we define a process B(n) = EB (n); 03tgl by interpolating

linearly between these points. For nal, (n) will agree with

2n-1

B(n-l), k=0,1,...,2 n -1 Thus, for each value of n, we need only
k
n-l

specify n) for keI(n). We set

2n2

B() =0, B(o) = o(0)o 1 1

If the values of Bn-1 k=0,1,... ,2n- have been specified (so

2

B(n -1) is defined for Ostcl by piecewise-linear interpolation)

k-l k+l 1 (n-1) _ (n-l)
and keI(n), we denote s = t n= 2(B t )+n n S t

2 t-s 1
and g t - and set

Bn) B(n) + a n)
t+s =(

n 22

We shall show that, almost surely, B(n) converges uniformly in t

to a continuous function Bt, and B t, ; O l] is a Brownan
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motion.

Our first step is to give a more convenient representation

for the processes B(n), n=0,1,... We define the Haar functions

by H(0)(t) = 1, O0tl, and for nil, keI(n),

n-l
k-1 k

2 n n

(n)(t) = 22 k k+l

2n

O , otherwise.

We define the Schauder functions by

S(n)(t) = , H (n)(u)du, Octl, naO, keI(n).k o k

Note that S( )(t) = t, and for nzl the graphs of S(n) are
* __(n )

litt~le tents of height 2 centered at k and nonoverlapping

for different values of keI(n). It is clear that

B(O) (°) S(O)(t),
t 1 1

and by induction on n, it is easily verified that

(3.1) B(n)(a) = Z I(m) (D) S(m) (t), Ostrl, naO.
t m=O keI(m) k'

Lemma 3.1 As n-a, the sequence of processes (B(n)(00); O0tli,

nil, given by (3.1) converges uniformly in t to a con-

tinuous proc-eSs [Bt(w); Octal], for a.e. weQ.
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Proof: Define b = max i(n). For x>O
keI(n)

2U

PI (n)>x]f e 2 du

2

( e 2 du
x

22n 2 e....-

(n)

_ _n2 
n

n

2 e so the Borel-Cantelli lemma implies that

n=l nn

there is a set n with P(Q) = 1 such that for each ceQ there

is an integer n(c1) satisfying bn(a) s n for all nan(cD).

But .then n

n+lB u(n) S2(n s n

n=n(w) keI(n) n=n(c)

so for seQ, Bnj(o) converges uniformly in t to a limit

Btis an() Continuity of Bt(isfyi); st b follows from the uniformity
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of the convergence.

~J~O ~a

a Hilbert space,and the Haar functions CH1(n); keI(n), n0]3 form

a complete, orthonormal system (see, e.g., Kaczmarz-Steinhaus (1951)).

The Parseval equality

'fg> = E <f,( H(n)> <gH(n)>,
n=O kcI(n) k

applied to f = 1 [o,t] and g = l[o,s] Yields

(3.2) S (n)(t S (s) = min(s,t); Ogs, tl.
n=l kEI(n)

Theorem 3.2: With CB n)]n 1 defined by (3.1) and Bt = lim B n)

the process {Bt, (; OstIl3 is a Brownian motion on [0,1].

Proof: It suffices to prove that, for 0 = to<tl<...<t sl, the
01 n

increments [Bt -Bt 3 j are independent, normally distributed,

with mean zero and variance t.-t. We prove this by showing
3 3-1 e

that for XjeR, j=l,...,n,

n n
(3.3) E[exp(i (B -B )] = exp[- . (tj-tj_ 1 )3.
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Set 0n+l = 0. Using the independence and standard normality of

(n)
the random variables k(n), we have from (3.1)

E[exp[-i Z (k 3j+l-'j ) t.]
Mn

E=E[expxp-i ( ( M)j+l-X j) t 1

m (m) n
= E[exp[-i gmk Z (X - )S(m)(tj)}]

~m=m kkI(m) j= l 

M n

- n B1exp[- C ,(m) n
m=O kei(m) e = 2), w k i

n n

E[expi ~(m (+-B) Sm)(t ]
m=0 kEI(m) k

Letting Mand using (3.2), we obtain

E[exp[i X.(B -B )t3]
j=l J t tj-l

n
= E[exp[-i z (XZ )t]

j=l i=j+l - ) 2J=1j+1- ) t

n-l 1 n 2
= expt- (X+l-j)(-xj+l)tj xl tj 

3j= j=j 
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n-11 e2 2 1 2
= jexp l J +l -j)tj 2 n tn

n 1 2
= n expf- . (t -t )}.

j=l j-

3.3 Problem: Prove Theorem 3.2 without resort to the Parseval

identity (3.2),by completing the following steps.

(a) The increments (n) B(n) 2(a) The increments k= Bl are independent, normal

2 n 2

2nrandom variables with mean zero and variance on

(b) If 0 = to<tl<...<tn l and each t. is a dyadic rational,
n

then the increments (Bt.-Bt 3 jl are independent,
tJ J- 

normal random variables with mean zero and variance

(tj-tjl) 

n
(c) The assertion in (b) holds even if {tj.j= 1 is not

contained in the set of dyadic rationals.

3.4 Corollary: There is a probability space (Q,F,P) and a stochas-
B

tic process B = {Bt$,t; Ost<=4 on it, such that B is a

standard, one-dimensional Brownian motion.

Proof: According to Theorem 3.2, there is a sequence (Qn, n, Pn),

n=1,2,... of probability spaces together with a Brownian motion

[xtn); Ostsl] on each space. Let 1 = x 2 x , 31 Z 2 2..
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and P = P1 x P2 x .... Define B on 0 recursively by

B t = X(l ), Otl,

Bt = B + Xtn +l) nstsn+l.
= n t-n

This process is clearly continuous, and the increments are easily

seen to be independent and normal with zero mean and the proper

variances.
a
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2.4: THE SPACE C [0,), WEAK CONVERGENCE, AND WIENER MEASURE

The sample spaces for the Brownian motions we built in Sections

2 and 3 were, respectively, the space R [0,' ) of all real-valued

function on [0,=) and a space Q rich enough to carry a count-

able collection of independent, standard normal random variables.

The "canonical" space for Brownian motion, the one most convenient

for many future developments, is C[O,=), the space of all con-

tinuous, real-valued functions on [0,=) with metric

1
(4.1) P(0 ,2) 2n max (A l(t)-12(t) J ^ 1).n=l 2 Otcn

In this section, we show how to-construct a measure, called Wiener

measure, on this space so that the coordinate mapping process is

Brownian motion. This construction is given as the proof of

Theorem 4.16 (Donsker's Theorem), and involves the notion of weak

convergence of random walks to Brownian motion.

4.1 Problem: Show that p defined by (4.1) is a metric on

C[O, ) and,under p , C[O,*) is a complete, separable,

metric space.
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4.2 Problem: Let C(Ct) be the collection of finite-dimensional

cylinder sets of the form

(2.1)' C = t[eC[O,.); (a(tl),...,c(tn))eA3; nal, AeB(Rn),

where,for all i=l,...,n, tiCe[O, ) (respectively, tic[O, t]).

Denote by Q(qt) the smallest a-field containing C(Ct).

Show that Q = a(C[O,.)), the Borel a-field generated

by the open sets in C[O,=), and that t t ((C[

A t(C[O,0)), where cDt: C[O,-) , C[O,-) is the mapping

(Ptw)(s) = .(t"s); O-ss<.
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4.3 Definition: Let (S,p) be a metric space with Borel a-field

S(S). Let nP 3 be a sequence of probability measures
n=l

(S, (S)), and let P be another measure on this space. We

say that [P nn=l converges weakly to P and write P P,

if and only if

lim F f(s) dP(s) = F f(s) dP(s)
n-c =S JS

for every bounded, continuous, real-valued function f on S.

It follows, in particular, that the weak limit P is a

probability measure, and that it is unique.

Whenever X is a random variable on a probability space

(Q,0,P) with values in (S,e(S)),i.e., the function X: Q - S is

3/8(S) - measurable, then X induces a probability measure PX on

(S,a(s)) by

PX (B) = P EQn; X(w)EB3, Be:R(S).

4.4 Definition: Let ((Qn,,,P)n=l be a sequence of probability

spaces, and on each of them consider a random variable X

with values in the metric space (S,p). Let (Q,Y,P) be

another probability space, on which a random variable X

with values in (S, P) is given. We say that [Xnn=l con-

verges to X in distribution, and write Xn ---> X, if

and only if the sequence of measures induced on (S,0(S))

by Xn}n converges weakly to the measure induced by X.nX n=1
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Equivalently, Xn > X if and only if

lim En f(Xn) = E f(X)
n-4=

for every bounded, continuous, real-valued function f on

S, where En and E denote expectations with respect to Pn

and P, respectively.

Recall that if S in Definition 4.4 is d , then X

if and only if the sequence of characteristic functions

·_n(u) A En exp[i (-u,X n) converges to f(u) A E exp[i (u,X)), for

d
every uER . This is the so-called Cramer-Wold device (Theorem

7.7 in Billingsley [168]).

The most important example of convergence in distribution

is that provided by .the Central Limit Theorem. In the Lindeberg-

Levy form used here, the theorem asserts that if - tgn=l is

a sequence of independent, identically distributed random variables

with mean zero and variance a 2, then CSnI defined by

l n
S C1
n AJ/nf k=l

converges in distribution to a standard normal random variable.

It is this fact which dictates that, properly normalized, a

sequence of random walks will converge in distribution to Brownian

motion.
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4.5-Problem: Suppose EXn l is a sequence of random variables4.5 Problem: Suppose [n ]n=l

taking values in (S P1) and converging in distribution to

X. Suppose (S2,P 2) is another metric space, and c: Si-S 2

is continuous. Show that Y A c(Xn) converges in distribu-n -

tion to Y A c(X).

4.6 Definition: Let (S,p) be a metric space and let R be a

family of probability measures on (S,f(S)). We say that

E is relatively compact if every sequence of elements of

n contains a weakly convergent subsequence. We say that H

is tight if for every E>O, there exists a compact set

K c S such that P(K) a 1 - ,for every Pen. If [X ami eA

is a family of random variables taking values in S, we say that

this family is relatively compact or tight if the family of

induced measures (PXa 3 eA has the appropriate property.

The following theorem is stated without proof; its special

case S = R is used to prove the central limit theorem. In the

form provided here, a proof can be found in several sources, for

instance Billingsley [1968g, pp. 35-40, or Parthasarathy [196¢, pp.

47-49.

4.7 Theorem: Prohorov (1956)

Let n be a family of probability

measures on a complete, separable metric space S. This

family is relatively compact if and only if it is tight.
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We are interested in the case S C[0,c). For this case,

we shall provide a characterization of tightness (Theorem 4.10).

To do so, we define for each cueC[O, o), T>0, and 5>0 the modulus

of continuity on [0,T]:

mT (,5) A max I1(s)-a(t)I.
Is-tls5

0zs, tsT

4.8 Problem: Show that mT(w,5) is continuous in aoeC[O,=)

under the p metric, is nondecreasing in 5, and

T
lim m (X,5) c0 for each oeC[O,C).

We shall need the following version of the Arzela-Ascoli

Theorem.

4.9 Theorem: A set A c C[O,c) has compact closure if and only

if

(4.2) suplw(0)1 < a,
weA

and for each T>O,

(4.)) lim sup mT(,5) = 0.
510 weA
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Proof

Assume that the closure of A, denoted by A, is compact.

Since A is contained in the union of the open sets

Gn = [wEC[O,.); JD(O)l < nh, n=1,2,...

it must be contained in some particular Gn, and (4.2) follows.
T

For c>O, let K = c[LEA; m (o,5) a e]. Each K 5 is closed

(Problem 4.8) and is contained in A, so each K 5 is compact.

Problem 4.8 implies n K 0 = 0, so for some 5(e) > 0, we
'5>0

have K ( ¢) = A. This proves (4.3).

We now assume (4.2), (4.3) and prove compactness of A.

Since C[0,w) is a metric space, it suffices to prove that every

sequence _nE n 1c A has a convergent subsequence. We fix T>0 and

note that for some 51>0, we have mT(wo,l1) g 1 for each cEA; so for

fixed integer mal and (m-l)51 < t s m51ST, we have from (4.3):

m-l

o(t)l '' Io(0)l +- Z Iw(k%) - o((k-1)5)! + lw(t)-o((m-1)51)i
k=l

s 1a(0)1 + m.

It follows that for each reQ, the set of nonnegative rationals,

wn(r)3n=l is bounded. Let [ro,rl,r2,...3 be an enumeration

of Q. Then choose [(w O)n=l1 a subsequence of ann=nl1 with

W(0) (ro) converging to a limit denoted wd(ro). From n(O)cn=l',

choose a further subsequence )n=l such that o)(rl)n l3n'l n) (l
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converges to a limit a(rl). Continue this process, and then let

= n= 1 be the "diagonal sequence". We have

On(r) - w(r) for each reQ.

Let us note from (4.3) that for each e>O, there

exists 5(e) > 0 such that en (s) - o(t)| s e whenever

Oss,tsT and Is-tl 5 5(e). The same inequality therefore holds

for w when we impose the additional condition s, teQ. It follows

that w is uniformly continuous on [O,T] n Q and so has an

extension to a continuous function, also called a, on [O,T]; further-

more, eu(s) - c(t)ls e whenever 0Os,tsT and is-tl s 5(E).

For n sufficiently large, we have that whenever te[O,T], there

is some rkcQ with ken and lt-rkl s 5(e). For sufficiently

large Man, we have I(r) - w(r j)l e for all

j=O,l,...,n and m2M. Consequently,

um(t)- (t~l c omn(t)-o@m(rk)l + | (rk)-_(rk)

+ IcD(rk)-w(t)I

a 3E, V maM, OrtsT.

We can make this argument for any T>O, so nn= 1 converges

uniformly on bounded intervals to the function weC[O,=).

4.10 Theorem: A sequence [Pn n_1 of probability measures on

(C[O, ), a(C[O, a))) is tight if and only if

(4.4) lim sup Pn .[; Ic(O)l > X] = 0,
Xtn n!n
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and for each positive T and Ec,

('4.5) lim sup Pn[W; mT (b,) > c] = .
5$0 nal

Proof:

Suppose first that rPnn= 1 is tight. Given >o0, there

is a compact set K with P (K) 1l-r, for every nal. According

to Theorem 4.9, for sufficiently large X>0, we have 1|u(0)1 | X

for all wcK; this proves (4.4). According to the same theorem,

if T and e are also given, then there exists 50 such that

m (,,5) s e for 0< 0 / and 03eK. This gives us (4.5).

Let us now assume (4.4) and (4.5). Given a positive integer

T and M>0, we choose X>O so that

sup Pn [o; I(0 ) I > X] _ rn/2T+l

We choose 6Ok>O, k=l,2,... such that

sup Pn [c; mT(' , 5k) > k] +/2
nal

Define

AT = [03; I1(3)1| X, mT (, k) =l, 2,

A = n AT,
T=l

so Pn(AT) a 1 - / 2 T+k+l = 1-r/2 and P (A) 2 1-n, for every
k=B

nl. By Theorem 4.9, A is compact, so [P n= is tight.
O3
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4.10' Problem: Let {X( m ) be a sequence of continuous

stochastic processes X(m) = [x(m); Ot<w} on (Q,,P),

satisfying the following conditions:

(i) sup E'Xom)lv A M < 0,
mZl

(ii) sup EIX(m ) -(m)a ; V T>0 and COs,tsT
mml

for some positive constants a,8,v (universal) and CT

(depending on T>O).

Show that the probability measures Pm E P(X(m))-l; mal

induced by these processes on (C[o,0 ), a(C[O,a))) form a

tight sequence.

V
(Hint: Follow the technique of proof in the Kolmogorov-Centsov

Theorem 2.8, to verify the conditions (4.4), (4.5) of Theorem

4.10).
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Suppose X is a continuous process on some (Q, y, P). For

each c, the function t , Xt(w) is a member of C[O,,*), which

we denote X () . Since B(C[O,-)) is generated by the one-dimen-

sional cylinder sets and Xt(.) is 3-measurable for each fixed t,

the random object X: Q - C[O,w) is 3/R(C[O,-)) - measurable.

Thus, if {X(n)3n=l is a sequence of continuous processes (with

each X(n) defined on a perhaps distinct probability space

(n')n'Pn))' we can ask if x(n) L X in the sense of Defini-

tion 4.4. We can also ask if the finite-dimensional distributions

of [X(n ) n converge to those of X, i.e., if

X (n (n) X ) (n) ) (Xt X * Xt 
1 t 1 2 td

The latter question is considerably easier to answer than the former,

since the convergence in distribution of finite-dimensional

random vectors can be resolved by studying characteristic functions.

For any finite subset [tl, .,*td] of [o0, ), let us define

the projection mapping t l t: C[O,m) -R d as
"tr... 2

t.. t (0) ) (W,(tl) *... (td))-

If the function f: Rd p is bounded and continuous, then the

composite mapping font t : C[O, =) . R enjoys the same
1po e' d-

properties; thus, X(n) > X implies
n-*=
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lrn Ef(x.n),..,Xn )) lir E(fort ) (X("))lim Enf(X t ... Xt =im E n(fOTt .Y-n) . )
n d n d

1 1 d- E(fotl .. td)(X) = E f(Xt ,...,Xtd).

In other words, if the sequence of processes X(n)n=1 converges

in distribution to the process X, then all finite-dimensional

distributions converge as well. The converse holds in the presence

of tightness (Theorem 4.12), but not in general; this failure-is

illustrated by the following example.

4.11 Problem: With probability one, let

1[nt. , O.-t C -dn 7
X(n) 1 '1
Xt = 1-nt , t S 

l O2--Tn v

0 ,

and let Xt = 0, taO. Show that all finite-dimensional dis-

.tributions of X(n) converge weakly to the corresponding

finite-dimensional distributions of X, but the sequence of

processes [X(n)n=l does not converge in distribution to the

process X.

4.12 Theorem: Let X(n)3n=l be a tight sequence of continuous

processes with the property that, whenever O0tl...

then the sequence of random vectors (X(n), , Xt)) 1
1 d
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converges in distribution. Let P be the measure induced

on (C[O,-), B(C[O,=))) by X( ). Then [Pnrn=l converges

weakly to a measure P, under which the coordinate mapping

process Wt(c) t cw(t) on C[O,=) satisfies

(Xt ),...X )) (W '""W ), t<...<td 
1 d d

Proof:

Every subsequence X(n) of (n ) is tight, and so has

a further subsequence [X(n)] such that the measures induced on

C[O,-) by {X(n)3 converge weakly to a probability measure P

by the Prohorov Theorem 4.7. If a different subsequence IX(n )X

induces measures on C[O,w) converging to a probability measure

Q, then P and Q must have the same finite-dimensional distri-

butions, i.e.,

P[@C[,E ); (o(tl),...,()td))A]

Q[meC[0,=); (m(tl),..., o(td)),A]

Ostl<t2< .t d , AE(Rt del.

This means P = Q.

Suppose the sequence of measures P induced by X(

did not converge weakly to P. Then there must be a bounded, continuous

function f : C[O,=) - R such that lim f f(o) Pn(dw) does not,
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exist, or else this limit exists but is different from ff(o) P(dw).

In either case, we can choose a subsequence Pn 3n=l for which

lim f f(0) P (dw) exists but is different from S f(w) P(dc).
naon

This subsequence can have no further subsequence [Pnln= 1 with
^ W

Pn > P, and this violates the conclusion of the previous

paragraph.

We shall need the following result.

4.13 Problem: Let [X(n)3n _1, Y(n)]n 1 and X be randomn= n=l

variables with values in the metric space (S,p); we assume

that for each nal, X(n) and y(n) are defined on the same

probability space. If X(n) -- > X and IX(n) - Y(n)1 _ 0

in probability, as now, then y(n) - > X as n-.o.

Let us consider now a sequence [j]=l of independent,

identically distributed random variables with mean zero and variance

2 2
, 0(a 2, as well as the sequence of partial sums So=O,

k
S k Z= j kal. A continuous-time process Y = CYt; taO3 can

be obtained from the sequence [Sk3 k=0 by linear interpolation,

i.e.,

(4.6) Yt = S[t] + (t - [t])[t]+l, tO

where [t] denotes the greatest integer less than or equal to

t. Scaling appropriately both time and space, we obtain from Y

a sequence of processes rx(n)]:
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Y

t
_ 23 \ 3 4 5

(4.7) x(n) 1 t2.-/t ,FY nt'

k k+l
Note that with s = k and t = -n, the increment

X(n) _ x(n) = 1ns) - =n) - k+l is independent of =

Furthermore, X t(n) - (n) has zero mean and variance t-s. Thist s

suggests than IXt(n); tO] is approximately a Brownian motion.

We now show that, even though the random variables gj are not

necessarily normal, the Central Limit Theorem dictates that the

limiting distributions of the increments of X (n ) are normal.

4.14 Theorem: With X(n) defined by (4.7) and Otl<..t d,

we have

(X )n , .., , ) as n-t,
1 d t1 d
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w·here tBtB t aO3 is a standard, one-dimensional Brownian

motion.

Proof:

We take the case d=2; the other cases differ from this one

only by being notationally more cumbersome. Set s=t l, t=t 2.

We wish to show

(xj"),x!")) s > (B5,Bt).

Since

IX an) 1- S c,7n[tn]l [tn]+ll'1

we have by the Cebysev inequality,

P[JX(n) 1 1
p[tn) S[tn] 1 > ] 0

as n-. It is clear then that

(Xn) X(n)) i (Ssn]Stn])l . 0 in probability ,

so, by Problem 4.13, it suffices to show:

l1 (S [sn]' S[tn]) -- > (BsBt).

From Problem 4.5 we see that this is equivalent to proving

1 I('sn] [tn]



2.4.15

The independence of the random variables [(jJ=l implies

iu [Sn] iv [tn](4.8) lim E[expiu [n 1 + i [sn]+ j ]
n6j=l J _ 3

iu [sn] iv [tn]= !im E[exp mr E[exp] lm E[exp- j],
n-ro j=! n-.' j=[sn]+l

provided both limits on the right-hand side exist. We deal with

iu [sn]
lim E[exp{ E gj3]; the other can be treated similarly. Since

j=l

I [s] [sn]
a [sl] Z j -l 0 in probability,

j=f l ' 77 j=l J

J__ [sn]
and, by the Central Limit Theorem, ,! § converges in

cJr[Tn] j=l 

distribution to a normal random variable with mean zero and

variahce s, we have

iu [sn] 2 2
lim E[exp[u [sn e
n ~o3 a~Jn~ j=l

Similarly,
1 2

epiv [tn] v (t-s)
lir E[exp( --7 Z enn[Ptay .z j]] = e- (.

j=[sn]+i

Substitution of these last two equations into (4.8) completes the

proof.
[
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The following two lemmas will enable us to prove tightness in

Donsker's Theorem.

k
4.15 Lemma: Set Sk = where [7j j=l is a sequence

of independent, identically distributed random variables,

2 2with mean zero and variance C , 2 <~ <X. Then, for any E>O,

lim lirm P[ max ISjl > E /~] 0.
5s0 n- lgjs[n5]+l J

Proof:

By the Central Limit Theorem, we have for each 5>0 that

1Go~ S in5]+l converges in distribution to a standard

normal random variable Z. But | S[n]+±l J[n1]+i [n5]+1

in probability, so S [nS]+l Z. Fix X>O and let

Privi=1 be a sequence of bounded, continuous functions on R

with i 1(-=,-X] U[,) We have for each i,

n.- P[IS[n +11a X cJ,/5]z lim Epi( m S[n5]+ l
n-wco

= Eyi(Z).

Let ins to conclude

(4.9) a P[IS[n5]+11 J] P[IZI ]

5 7 E3 >o
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We now define T min[jal; JSjl > E cji3 . With 0<b<e2/2,

we have

(4.10) P[ max JSjI > c aJS]

0gjg[n5]+l

S P[JS[n6]+l j( -()]

[nS]
+ j P[IS i < a,/(e - J2/)1 m=J] P[T=j].

j=l n+1

But if T=j, then 1 S[n]+l j < /n(e -N ) implies

ijs-s[n6]+I > aH. By the Cebysev inequality, the probability

of this event is bounded above by

~12~ ~ ~ 1 ~[n6]+l 2 1
12n E[(s.-S )2 T=j] = E( Z ni)sl, lsjB[n('
2nc67 6 2nnc2 i=j+l

Returning to (4.10), we may now write

P[ max |S. > e c-]
P[osjs[n5]+l J

c P[IS[n5]+lI , aJn(e'- )] + - P[4[n5]]

P[S[nb]+l j 2: c;(e-/25)]

1
+ ~-P[ max IS . > e Odf],

Ocisrn5+lal J
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from which follows

P[ max IS.J>EaJi/ ] s 2P[IS [n5]+lll/B( e -, /25)
Osjj[n5]+l 1

Setting X = (E - ^2/5)/' in (4.9), we see that

lim 1 P[ max IS.Ij>e /] EIZ13
n-_ Ojsj[n5]+l (]e-^/25)3

and letting 50O we obtain the desired result.

4.16 Lemma: Under the assumptions of Lemma 4.15, we have for

any T>O,

l l lim P[ max ISj+k-Sk E a¥e i] = O.
510 n- ljn]+l1I jg[n5]+l

O0ksCnT]+l

Proof:

For O<5sT, let m = m(5) a 2 be the unique integer satisfy-

T T
ing m < 5 m- Since

lim [nT]+l T

n-.c [n5]+l

we have [nT]+l < ([n5] +l)m for sufficiently large n. For such

a large n, suppose ISj+k-SkI > e ~a for some k,

Osks[nT]+l and some j, lsjs[n5]+l. There is a unique integer
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P , DsPsm-l, such that

([ns]+l)p- k < ([n5]+l)(p+l).

There are two possibilities for k+j. One possibility is that

([n5]+l) p s k+j s ([n5]+l) (p+l),

in which case either 1Sk-S([n5]+l)pl > 3 e aJn or else

ISk+j - S([^n]+lpl > 1 e c,. The other possibility is that

([n5]+l)(p+l) < k+j < ([n53+l)(p+2),

in which case either iSk-S([n]+p > 1 E af/,

IS([nS]+l)p - S([n]+l)(p+l) > 3 e aT , or

I S([n]+l) (p+l) Sk+jl > 3 E aj~. In conclusion,

we see that

max IS j-Sk> E ~/'n
lsjs [n5]+l

Ogks[nT]+l

m-l

c U[ max lJSp([n l> s .
p=O ljz[nS]+l j+P([nb]+l) P([n5]+l) 3
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But

ljmax[n]+l j+P([n5]+l) S P([n5]+l) > 1

= P[ max Is.} > l E a ]
lsjs[n5]+l 3

so

P[ max S. SkI > e owE]
lsjz[n5]+l J+

OPsk [nT]+l

5 m P[ max SI.j > -E C j]
lcjr.[n5]+l a 3

T
Since m + i, we obtain the desired conclusion from Lemma

4.15.

We are now in a position to establish the main result of

this section, namely-the convergence in distribution of the

sequence of normalized random walks in (.4.7) to Brownian motion.

4.17' Theorem: Donsker (1951).

Let (Q,3,P) be a probability space on w.chich is.given

a sequence (j=l of independent, identically distributed

2 2random variables with mean zero and variance a , 0<a <2.

Define X(n) [X{(n); ta3O by (4.7), and let Pn be the

measure induced by X( on [ Thenon (C[O,.), fi(C[O,-))). Then

[P n3 n= converges weakly to a measure P, under which the

coordinate mapping process Wt(w) A_ a(t) on C[O,-) is a

standard, one-dimensional Brownian motion.
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Proof:

This result is a special case of Theorem 4.12, and, in light

of Theorem 4.14, it remains only to prove that {X(n)n 1 is tight.

For this we use Theorem 4.10, and, since X(n) = 0 a.s. for every

n, we need only show that for each positive T and E,

lim sup P[ max IX(n) X( > ] = .
510 n1 s-tl5 s t

We may replace sup in this expression by lTm , since for a
nzl nco

finite number of integers n- we can make P[ max JX(n)-X(n El]

Is-tl, 8 s
0ss, tsT

as small as we choose, by reducing 5. Now

P[ x n) ] = P[ max Xsn)-n) ] = P[ max Is-Yt > ]
Is-t IS-5 Is-tlsn5
O0s, tsT Oc is-tisnT

qnd

max. IY -Ytl I max IY -Ytl
Is-t'n Is-tls[nS]+l s

Os,tenT Os, t[nT]+l

maxI ISj+k-Sk I,lsjc[n 8 ]+ 1

Orks [nT]+l

where the last inequality follows from the fact that Y is

piecewise linear and changes slope only at integer values of t.

Tightness follows from Lemma 4.16.
03
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4.18 Definition: The probability measure P on (C[O,x),

s(C[O, ))), under which the coordinate mapping process

Wt (X) A wu(t), Ost(C, is a standard, one-dimensional Brownian

motion, is called Wiener measure.

4.19 Remark:

A standard, one-dimensional, Brownian motion defined on any

probability space can be thought of as a random variable with values

in C[O,=); regarded this way, Brownian motion induces the Wiener

measure on (C[O,C), i(C[O, ))). For this reason, we call

(C[Oo), (C[O,,)), P), where P is Wiener measure, the canonical

probability space for Brownian motion.
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2.5: THE MARKOV PROPERTY

In this section we define the notion of a d-dimensional

Markov process and cite d-dimensional Brownian motion as an example.

There are a number of equivalent statements of the Markov property,

and we spend some time developing them.

5.1 Definition: Let d be a positive integer and p a probability

measure on (R d,( )d ). Let B = tBt,at; t2O3 be an adapted,

d-dimensional process on some (Q,3,P), with components

1) .. Bt d) Define Bt (Bt ... B)) = Bt-BO. The

with initial distribution A, if and only if

(i) P[BOcr] = i(r), V red(Ad);

(ii) For each i=l,....,d, the process B (i) t; to0o is

a standard, one-dimensional Brownian motion; and

(iii) The processes B(i), i=l,...,d are independent of one

another and are also independent of a0; i.e. the

a-fields AB ..., and aO are independent.

If p assigns measure one to some singleton x3}, we

say that B is a d-dimensional Brownian motion starting at x.
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Here is one way to construct a d-dimensional Brownian motion

with initial distribution A. Let X(wO) = w0 be the identity

random variable on (Rd , A(Rd), p), and for i=l,...,d, let

B(i) - , ; tzO] be a standard, one-dimensional, Brownian

motion on some (r(i), (i) p(i)). On the product space

(Rdx Q(l)x. x (d!) (Rd) e(1) O 3(d) Ixp(1) .. xp(d)

define

Bt() = X(o) + -Bt ((w (d))'

and set At = At. Then B = {Bt,3t; taO} is the desired object.

There is a second construction of d-dimensional Brownian

motion with initial distribution A, a construction which motivates

the concept of Markov family to be introduced in this section.

Let i, il, ,d be d copies of Wiener measure on

(C[O, ), a(C[O0,))) . Then p p(l) x... xp() is a measure,

called d-dimensional Wiener measure, on (C[O,-), d (c[o,I) )).

Under P , the coordinate mapping process Bt(w) A o(t) together

with the filtration is a d-dimensional Brownian motion

dstarting' at the origin. For xEjp, we define the probability

measure x d measure P on (C[O,,) , 6(C[O,co) )) by

(5.1) PX(F) = pO(F-x), FER(C[O, )d),

where F-x = weC[ [O., ; U(.) + xeF3. Under P ,B A Bt,B; taO3

is a d-dimensional Brownian motion starting at x. Finally, for
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4 a probability measure on (Rd,(Rd)), we define P~ on

d d
(C[O, ) , 3(C[Ol,) )) by

(5.2) P4(F) = J px(F) f(dx), Fei(C[O,) d).

Problem 5.1" shows that such a definition is possible. The solution

of this problem, as well as the proof of several other results in

this and the next section, can be conveniently based on the Dynkin

System Theorem (cf. Ash [1972], p. 169), which we now state for future

reference.

5.1 Definition: Let 9 be a collection of subsets of a set a.

Then $ is a Dynkin System if and only if the following con-

ditions hold:

(i) QEi;

(ii) If A,Be6 and B c A, then A\BE&;

co co
(iii) If [Ann=l C and A A 2 c ... , then U A nC.

-n 1 ~2 -n=l

5.1' Dynkin System Theorem: Let C be a collection of subsets of

0 which is closed under pairwise intersection. If 6 is

a Dynkin system containing C, then $ also contains the

a-field generated by C.

I/ d
5.1 Problem: Show that for each Fe(C[O,~)d), the mapping

x~Px(F) is q(d)/f([O,1]) - measurable.
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5.2 Proposition: The coordinate mapping process

B = Bt,ta; t,3 on (C[O, (C[0, O) ), P) is a d-dimen-

sional Brownian motion with initial distribution j.

Proof:

We verify (i) - (iii) of Definition 5.1. With

F = fe: o3(O)er3, we have

pX(F) = PO(F-x) = lt(x)

and (i) follows directly from (5.2). Let Bt = Bt-Bo. For

FeR(C[O,)d), (5.1) implies

P [B.eF] = px[B.eF+x] = PO[B.eF],

so under any PX, B. induces d-dimensional Wiener measure on

(C[O,-) d, (C[O,c) )). It thus must also induce this measure under

P4, and (ii) is proved. Finally, for red(Rd), Fe.(C[O,)d),

we have

PC[BoeE, B.eF] = f pX[BoEr, B.eF] R(dx)

= I 1 (x) PO[B.eF] 4(dx) = A(r) P [B.EF] = P4[BOer] P[B. eF],

so a0 is independent of 3 under P. The independence of
0 03

~(1) 'B(d) is a consequence of the product form of d-dimen-

C3; OO vC, * * * v a

sional Wiener measure. This proves (iii). []
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5.3 Definition: Given a metric space (S,o), we denote by

3-(S)4 the completion of the Borel a-field 8(S) (generated

by the open sets) with respect to the finite measure ± on

(S,2(S)). The universal a-field is U(S) _ n -7S)$ , where

the intersection is over all finite measures (or, equivalently,

all probability measures) I. A U(S)/fi(R) - measurable, real-

valued function is said to be universally measurable.

5.3< Problem: Let (S,p) be a metric space and let f be a

real-valued function defined on S. Show that f is

universally measurable if and only if for every finite

measure .t on (S, s(S)), there is a Borel-measurable

function g : S _ R such that fxecS; f(x) f g (x)] = 0.

5.4 Definition: A d-dimensional Brownian family is an adapted,

d-dimensional process B = [Btat; taO on a measurable

space (Q,Y), and a family of probability measures tP x d
xcR
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such that:

(i) For each Fec, the mapping x - P (F) is universally

measurable;.

(ii) For each xc PX[B=] = 1;

(iii) Under any P , the process B is a d-dimensional

Brownian motion starting at x.

We have already seen how to construct a family of probability

measures [P X on the canonical space (C[0,)d , (C[O,))d ) so

that the coordinate mapping process, relative to the filtration

it generates, is a Brownian motion starting at x under any pX.

With 5 = 8(C[o,=)d), Problem 5.1 shows that the universal

measurability requirement (i) of Definition 5.4 is satisfied.

Indeed, for this canonical example of a d-dimensional Brownian

family, the mapping x - ip (F) is actually Borel-measurable for

each FEJ. The reason we formulate Definition 5.4 with the

weaker measurability condition is to allow expansion of a to a

larger a-field. See Remark 7.14.
0

Suppose Ossft, and we observe a Brownian motion with initial

distribution i up to time s. In particular, we see the value of

B , which we call y. Conditioned on these observations, what is
S

the probability that B t is in some set rPe(Rd)? Now

Bt = (Bt-Bs) + Bs, and the increment Bt-Bs is independent of

the observations up to time s and is distributed just. like

. n.the other hand, doe depend on the0Bt~ s under P. On.the other hand, B s does depend on the
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observations; indeed, we are conditioning on Bs = y. It follows

that the sum (Bt-Bs) + Bs is distributed like Bt s under PY.

Two things then become clear. First, knowledge of the whole past

up to time s provides no more useful information about B t than

knowing the value of Bs; in other words,

(5.3) P [Bt s]
= P [BterIBs], OCs<t, re(d).

Secondly, conditioned on B y, B is distributed like B
s t t-s

under PY; i.e.,

(5.4) P4[Bt rEBS = y] = PY[Bts Er], OsIt, rE(Rd).

5.5 Problem:, Make the above discussion rigorous by proving the

following. If X and Y are d-dimensional random vectors

on (Q, ,P), S is a sub-a-field of 3, X is independent of

S and Y is S-measurable, then for every r'e( ):

(5.5) P[X +YErJ] = P[X +YElrY], a.s. P;

~-1 y~d
Here, Py 1 is the probability measure induced on R by Y.
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5.6 Definition: Let d be a positive integer and p a probability

measure on (R, (Rd )). An adapted, d-dimensional process

X = CXt,at; tzO] on some probability space (Q,5,P~) is said

to be a Markov process with initial distribution u if and

only if

(i) PI [XOE TTerl = (r), t re(ad

(ii) For s,taO and rpe(d ),

P [Xt+sErl3s] = P?[Xt+s r s] P; - a.s.

Our experience with Brownian motion indicates that it is

notationally and conceptually helpful to have a whole family of

probability measures rather than just one. Toward this end, we

define the concept of a Markov family.

5.7 Definition: Let d be a positive integer. A d-dimensional

Markov family is an adapted process X = [Xt,3t; t2O] on

some (Q,F), together with a family of probability neasures

1p 3 - d on (D, ), such that:
xE]R

(a) For each Fec, the mapping x - PX(F) is universally

measurable;

(b) PX[XO = x] = 1, y xeRd;

d (,Rd),
(c) For xeR , s, tO and rER(R ),

P xt+serlas] = PXXt+srj] Px a.s ;
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(d) For xER , s,ta3 and rE(R ),

[Xt+ serXs=Y] = PY[XtE , pX sl[XtEP YJ = P[Xt EI] P X s - a.e. y,

where PX Xs1 is the measure induced on R d by X s under

PxPX.

The following statement is a consequence of Problem 5.5 and the

discussion preceding it.

5.8 Theorem: A d-dimensional Brownian motion is a Markov process.

A d-dimensional Brownian family is a Markov family.

The Markov property, encapsulated by conditions (c) and (d)

of Definition 5.7, can be reformulated in several equivalent ways.

Some of these formulations amount to incorporating (c) and (d)

into a single condition; others replace the evaluation of X at

the single time s+t by its evaluation at multiple times after

s. The bulk of the remainder of this section presents those

formulations of the Markov property which we shall find most

convenient in the sequel.

Given an adapted process X = {Xt,Ft; tz03 on (Q,F) and

given a family of probability measures [PX] d such that con-
xeR

dition (a) of Definition 5.7 is satisfied, we can define a

collection of operators {Ut taO which map bounded, Borel

measurable, real-valued functions on R d into bounded, universally

measurable, real-valued functions on the same space. These are
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defined by

(5.7) (Utf)(x) _ Exf(Xt).

In the case where f is the indicator of £Eo(Rd), we have

Exf(Xt) = PX[XtEP ], and universal measurability of Utf follows

directly from Definition 5.7 (a); for an arbitrary, Borel

measurable function f, the universal measurability of Utf is

then a consequence of the Bounded Convergence Theorem.

.5.9 Proposition: Conditions (c) and (d) of Definition 5.7 can

be replaced by:

d d
(e) For xeRd , s,tzO and ren(Rd),

Px[Xs+tCrl3s] = (Utlr)(Xs), P - a.s.

Proof:

First, let us assume that (c), (d) hold. We have from the

latter:

[Xt+s X =y] = (Utl)(y), for PXsl - a y

If the function a(y) A (Utl1 )(y): Rd [0,1] were 8(Rd ) -

measurable, as is the case for Brownian motion, we would then be

able to conclude that, for all xeR , sa0:

PX[Xt+serlXs] = a(Xs), a.s. P,
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and from condition (c): P [Xt+sr ] a(Xs) a.s. P , which

would then establish (e).

However, we only know that Utl (.) is universally measurable.

This means (from Problem 5.3') that, for given s,taO, xeRd

there exists a Borel-measurable function g: R [0,1] such that

(5.7)' (Utl&)(y) = g(y), for pXxsl - a.e.

or

(5.7) (Utl r )(X s ) = g(Xs), a.s. pX

One can then repeat the preceding argument with g replacing

the function a.

Secondly, let us assume that (e) holds; then for any given

s,taO and xeR d, (5.7)" gives

(5.7)'~ P [Xt+s er s ] = g(Xs), a.s. px.

It follows that P [Xt+scrJs] has a (Xs) - measurable version,

and this establishes (c). From the latter and (5.7)"' we conclude

PX[xt+sers=Y] = g(y); for PXl - a.e. yd

and this in turn yields (d) thanks to (5.7)'.
0*
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For given weQ, sz0, we denote by Xs+ (U) the function

t - X+t ( ) . Thus, Xs+ is a measurable mapping from (Q,a)

into ((Rd)[OQ,) ((pd) [0,))), the space of all Rd - valued

functions on [0, c) equipped with the smallest A-field containing

all finite-dimensional cylinder sets.

5.10 Proposition: For a Markov family X, (Q,3), [PX3 d we have:
XEP

(c') For xeRd sz0 and F¢e((Rd) [0 ' , ))

P s [X EFs+ =P X s[X ] P - a.s;

(d') For XeR, sz0 and FER(( d )[0' )),

P XXs+.EFIX s = y = PY[X.eF], Px X a.e.y.

Note: If rEa( d) and F [= c(Rd)[O' ) W (t)r3, for

fixed t_0, then (c') and (d') reduce to (c) and (d),

respectively, of Definition 5.7.

Proof of Proposition 5.10:

The collection of all sets FeO((Rd )[O' ))) for which (c')

and (d') hold forms a Dynkin system; so by Theorem 5.1', it suffices

to prove (c') and (d') for finite-dimensional cylinder sets of the

form

F = CwR[O''); a(t0)Er 0*...,S(tn tl)Enl,(tn)En,

where 0 = t0Ktl <...t n , riE(R ),. i=0,1,...,n, and nO.

For such an F, condition (c') becomes
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(5.8) P [XsEC 0 ... X E, Xs+t En 
(5.Xs st *n-l s+t -n_\s

= s U 0 , ,X s+n-n nXsXs - a

We prove this statement by induction on n. For n=O, it is

obvious. Assume it true for n-l. A consequence of this assump-

tion is that for any bounded, Borel measurable p: Pdn ,

(5.9) EX[C(Xs' X 'Xs+t ) [(xs,... Xs+tn )IX] P -a.s.
n-l n-

Now (c) implies that

PX[x Es',. .. X Er X Er ]
P s[ S +tn **n-l ·* s+t nlAs]

-E[lPXsOE '., Xs+tn ElCnl P[X s+t nnS+t

{ [Xs EO 'Xs. t .. l [Xs+ tn P n Xs+t ]I s ]'

n-n

As in the proof of Proposition 5.9, we see that the universal measur-

ability assumption (a) of Definition 5.7 yields the existence of a

Borel-measurable function *g: R d [0,1], such that

P [Xs+tEriXs+t i = g(X+tn), a.s. PX. Setting
n n-i n-i

(xO'.'..Xn-1) =A lr (xo)...1 r (Xnl) g(xn_), we can use (5.9)'0 n-i

to replace 3s by c(Xs) in this last expression, and then,

reversing the previous steps, we obtain (5.8). The proof of (d')

is similar, although notationally more complex.
O
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It happens sometimes, for a given process X = [Xt,Ut; taO]

on a measurable space (Q,3), that one can construct a family

of so-called shift-operators a : -. n, sO0, such that each 0
s s

is j/3 measurable and

(5.10) XS+x (w ) = Xt(sw); V Cen, s, ta0.

The most obvious examples occur when Q is (Rd)[0' ) the space of

all R - valued functions on [0,w), or Q is C[O,-) , the

space of all continuous, d - valued functions, a is the

smallest a-field containing all finite-dimensional cylinder sets,

and X is the coordinate mapping process Xt(o) = cu(t). We can

then define s 0 = d(s+.), i.e.,

(5.11) (0es)(t) = w(s+t), taO.

Rd d

s+t

5 6 4>
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When the shift operators exist, then the function Xs+ (X)

appearing in (c') and (d') is none other than X.(Os ), so

Xs+ EF = s (X.eF3. As F ranges over s((Rd)[O=)), X.eF]

ranges over X. Thus, (c') and (d') can be reformulated as:

(c 1") For Fe X and saO,

PX[-slFIs] = x[lFXs] Px a.s.

(d") For Fej and saO,

PX [iFIXs y] = PY[F], pX X a.e. y.

In a manner analogous to what was achieved in Proposition 5.9,

we can capture both (c") and (d") in the condition

(e") For F4E and smO,

P [es lFjs] = P S(F), P - a.s.

Since (e") is often given as the primary defining property for

a Markov family, we state a result about its equivalence to our

definition.

5.11 Theorem: Let X = tXt,3t; t2O) be an adapted process on a

measurable space (Q,3), let (Px x d be a family of
x d

probability measures on (Q,u), and let [assmO be a family

of $/ - measurable shift operators satisfying (5.10). Then
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X, (Q,a), (Px3 d is a Markov family if and only if (a),
x£R

(b) and (e") hold.

5.12 Problem: Suppose that X, ( d is a Markov family
x dxER

with shift operators E9ss 0. Use (c") to show that:

(c"') For xR d , s2O, GE3 s and FedX ,

PX[G n 9slFIXs] = PX[GIXs] P [e FXs], s

We may interpret this equation as saying the "past" G and

the "future" Es F are conditionally independent, given

the "present" Xs

Conversely, show that (c"') implies (c"). C

We close this s.ection with two additional examples of a

Markov family.

5.13 Problem: Suppose X = {Xt,t; tO]3, (Q,ua), P X d is
x£R

d I om Ldd
a Markov family and c: [0,-) -, R and ': [0,) . L(R , ),

d d
the space of linear transformations from R to Rd, are

given (nonrandom) functions with po = 0 and Et nonsingular

for every t. Set = t + tXt. Then Y = [Yt, t; taO],

(',~)' [PX3 d is also a Markov family.
xclR

5.14 Definition: Let B = [Bt, At; tao], (n,a), ) P X d be a

d-dimensional Brownian family. If ERd and acL(R )I

are constant and a is nonsingular, then with Yt _ Lt+ Bt,
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we say Y = [Ytat; tZO3, ([,3), (PX3 d is a d-dimensional
xER

Brownian family with drift i and diffusion coefficient a.

This family is Markov. We may weaken the assumptions on

the drift and diffusion coefficients considerably, allowing them

to depend on both time and the location of the transformed process,

and still obtain a Markov family. This is the subject of Chapter 5

on Stochastic Differential Equations.

5.15 Definition: A Poisson family with intensity X>O is a process

N = fNt1,t; tzO3 on a measurable space (Q,u) and a family

of probability measures (P 3 , such that

(i) For each Eca, the mapping x - PX(E) is universally

measurable;

(ii) For each xeR, PX[No = x] = 1;

(iii) Under any P , the process ['t = Nt-No, t: taO] is

a Poisson process with intensity X and is independent

of 30, i.e., aN and 30 are independent.

5.16 Problem: Show that a Poisson family with intensity %>O is

a Markov family.

Standard, one-dimensional Brownian motion is both a martingale

and a Markov process. There are many examples of Markov processes,

such as Brownian motion with nonzero drift and the Poisson processes,
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which are not martingales. There are also martingales which do

not enjoy the Markov property. We leave the construction of such

an example as a problem.

5.17 Problem: Construct a martingale which is not a Markov process.
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2.6: THE STRONG MARKOV PROPERTY AND THE REFLECTION PRINCIPLE

Part of the appeal of Brownian motion lies in the fact that

the distribution of certain of its functionals can be obtained

in closed form. Perhaps the most fundamental of these functionals

is the passage time Tb to a level beR, defined by

inf[ t O; Bt(o) = b]

(6.1) Tb(o.) =
M, if E... = 

We recall that a passage time for a continuous process is a stopping

time (Problem 1.2.6).

We shall first obtain the probability density function of Tb

by a heuristic argument, based on the so-called reflection principle

of Desir6 Andre (Levy [154$], p. 293). A rigorous presentation of

this argument requires use of the strong Markov property for

Brownian motion. Accordingly, after some motivational discussion,

we define the concept of a strong Markov family, and prove that

any Brownian family is strongly Markovian. This will allow us to

place the heuristic argument on firm mathematical ground.

Here is the argument of D6sir6 Andr6. Let [Bt,at; Oat<.3

be a standard, one-dimensional Brownian motion on (,3, PO). For

b>O, we have

P [Tb<t] = P [Tb<t, Bt>b] + P [Tbt,Bt<b].

Now PO[Tb<t,Bt>b] = P [Bt>b ]. On the other hand, if Tb<t

and Bt<b, then sometime before time t the Brownian path reached
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level b, and then in the remaining time it travelled from b

to a point c less than b. Because of the symmetry with respect

to b of a Brownian motion starting at b, the "probability" of

doing this is the same as the "probability" of travelling from b

to the point 2b-c. The heuristic rationale here is that, for

every path which crosses level b and is found at time t at a

point below b, there is a "shadow path" (see figure) obtained

from reflection about the level b which exceeds this level at

time t, and these two paths have the same "probability". Of

course, the actual probability for the occurrence of any particular

path is zero, so this argument is only heuristic. Nevertheless,

it leads us to the equation

0 0 0
P [Tbt, Btb] = P [Tb<t,Bt>b] P [Bt>b],

Shadow path
2b-c 

cl,* T. t

b
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which then yields

2x

(6.2) P0 [Tb(t] 2P [Bt>b]= .i e 2dx.

bt-i

Differentiating with respect to t, we obtain the density of the

passage time

b2

P _ = e dt; t>0.
(6.3) P [Tbedt] e dt; t>O.

The above reasoning is based on the assumption that Brownian

motion "starts afresh" (in the terminology of Ito & McKean [19+])

at the stopping time Tb, i.e., that the process tBt+T -BT

Ost<=3 is Brownian motion, independent of the a-field T
Tb

If Tb were replaced by a nonnegative constant, it would not be

hard to show this; if Tb were replaced by an arbitrary random

time, the statement would be false (cf. Problem 6.1 below). The

fact, that this "starting afresh" actually takes place at stopping

times like Tb, is a consequence of the strong Markov property

for Brownian motion.

6.1 Problem: Let [Bt,5t; tO]3 be a standard, one-dimensional

Brownian motion. Give an example of a random time S with

P[OsS<'] = 1 ,such that with Wt _ BS+t - B S, the process

WW = [Wt,t; t3O] is not a Brownian motion.
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6.2 Definition: Let d be a positive integer and t a probability

measure on (Rd, S(Rd)). A progressively measurable, d-dimen-

sional process X = [Xt,at; t0O3 on some (n,3,P4) is said

to be a strong Markov process with initial distribution X if

and only if

(i) PIL[Xo 0] = ] (r), = rA(Rd);

(ii) For any optional time S of Eat3' t0O and rEs(Rd),

P4[XS+tCrlS+] = P4[Xs+teIXs ] , P - a.s. on [S<o=.

6.3 Definition: Let d be a positive integer. A d-dimensional,

strong Markov family is a progressively measurable process

X = [Xt.,t; t03] on some (Q,g), together with a family

of probability measure [PXB d on (Q,~), such that:
XER

(a) For each Fe3, the mapping x - PX(F) is universally

measurable;

(b) PX [X = x] = 1 Y XERd
(b) d d

(c) For xER , tO, re(Rd ) and any optional time S of

pX [[Xs+tc s+] = ?[X s+tErPXs], P - a.s. on (SKco;

(d) For xERd tiO, e(R )d) and any optional time S of

[rt},

pX[XscrlX - y] = pY[Xtcr] px x _ a.e. y.
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6.4 RemarK: On the set IS = a}, XS+t is undefined. Thus, the

event [Xs+tir ] appearing in Definitions 6.2 and 6.3 is

[Xs+tE, Sr<,3.

6.5 Remark: An optional time of [a t is a stopping time of

[~t+] (Corollary to Proposition 1.2.3). Because of the

assumption of progressive measurability, the random variable

X S appearing in Definitions 6.2 and 6.3 is S+ - measurable

(Proposition 1.2.17). Moreover, if S is a stopping time

of (at), then X S is S - measurable. In this case, we

can take conditional expectations with respect to AS on

both sides of (c) in Definition 6.3, to obtain:

px[XS+t r S
] = PX[Xs+tErXX S] ] i - a.s. on S<.,3.

Setting S equal to a constant sOt, we obtain condition

(c) of Definition 5.7. Thus, every strong Markov family is a

Markov family. Likewise, every strong Markov process is a

Markov process. However, not every Markov family enjoys the

strong Markov property; a counterexample to this effect,

involving a progressively measurable process X, appears in

Wentzell [1981], p. 161.

Whenever S is an optional time of fit] and u>O, then

S+u is a stopping time of C(t3 (Problem 1.2.9). This fact can

be used to replace the constant s in the proof of Proposition

5.10 by the optional time S, thereby obtaining the following

result.
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6.6 Proposition: For a strong Markov family X = Xt,ajt; tO]3,

(,[3)P, pX} d' we have:
xeR

(c') For xeRd , FE3((Rd )i[ O ')) and any optional time S

of {fdt}

PX[Xs+.eFIS+] = P[Xs+eFIXs], P -a.s. on S

(d') For xeRd, FeB(( Rd)[O' ) ) and any optional time S

of [ta,

x y s s a.e. yP [Xs+EFIXs = y] = PY[X.~F], iXs -a.e. y .

Using the operators [Ut3t 0o in (5-7), conditions (c) and

(d) of Definition 6.3 can be combined.

6.7 Proposition: Let X = (Xt,At; t}O3 be a progressively

measurable process on (Q,g), and let [PX] d be a family
xeR

of probability measures satisfying (a) and (b) of Definition

6.3. Then X, (,3), (PXx d is strong Markov if and only
xeR

if for any {at ] - optional time S and taO, one of the

following holds:

(e) For any re(Rd)e ,

pX [xs+tErl + ] (Ut 1)(X s ), PX - a.s. on {S< ];
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(e') For any bounded, continuous f: R - ,

BE [f(XS+t )s+] = (Utf)(Xs), P - a.s. on (S<c3.

Proof:

The proof that (e) is equivalent to (c) and (d) is the same

as the proof of the analogous equivalence for Markov families

given in Proposition 5.9. Since any bounded, continuous, real-

valued function on R is the pointwise limit of a bounded

sequence of linear combinations of indicators of Borel sets,

(e') follows from (e) and the Bounded Convergence Theorem. On the

other hand, if (e') holds and F c R d is closed, then 1 is
r

the pointwise limit of [f n= where

f (X) = [1-n p(x,r)) v O,

p(x,r) = inf[llx-yll; yenr.

Each fn is bounded and continuous, so (e) holds for closed sets r.

The collection of sets rEfi(R ) for which (e) holds forms a Dynkin

system, so, by Theorem 5.1', (e) holds for all rag(Rd).

07
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6.7' Remark:

If X = tXt,at;. t03, (a,3), pX d is a strong Markov
XER

family and p is a probability measure on (Rd ,(R )) we can

define a probability measure P4 by P4(F) A j PX(F) 4(dx);

FE¢, and then X on (Q,3, Pp) is a strong Markov process with

initial distribution p. Condition (ii) of Definition 6.2 can be

verified upon writing condition (e) in integrated form:

F (Utlr) (Xs)dPx = PX[XS+tepF]; FE '

and then integrating both sides with respect to p. Similarly,

if X, (Q, ), }PX 3 d is a Markov family, then X on (,, P4)
xcR

is a Markov process with initial distribution p.

It is often convenient to work with bounded optional times

only. The following problem shows that stating the strong Markov

property in terms of such optional times entails no loss of

generality. We shall use this fact in our proof that Brownian

families are strongly Markovian.
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6.8 Problem: Let S be an optional time of the filtration

[Ft] on some (Q,,p).

(i) Show that if Z1 and Z 2 are integrable random vari-

ables, s is a positive constant, and Zi=Z2 on S<s], then

E[Zl I S+] = E[Z21 S+], a.s. on [S<s].

(ii) Show under the conditions of (i) that

E[Z 1 S+] = E[Z213(SAs)+] , a.s. on tS<s3.

(Hint: Use Problem 1.2.16 (i) )

(iii) Show that if (e) (or (e')) in -Proposition 6.6 holds for

every bounded, optional time S of [5t}] then it

holds for every optional time.

0

Conditions (e) and (e') are statements about the conditional

distribution of X at a single time S+t after the optional

time S. If there are shift operators [Asps 0 satisfying (5.10),

then for any random time S we can define the random shift

es . [S< - Q by

(eS ~)(t) = (8s @)(t) on (S=s3.

In other words, 8S is defined so that whenever S(o)<=, then

Xs ((),+t(W) = Xt (S(o)).
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-,

In particular, we have [EXS+.E] = OS [X.EE], and (c') and (d')

are respectively equivalent to the statements:

(c"l) For xEd , FEX and any optional time S of [It ]'

pX[9 'F- a ] _ PXre-lFlXl PX - a.s. on [S<]3;

(d") For xeR , FeX and any optional time S of ,t3'

P [S-FX = y] = PY(F), P XS - a.e. y.

Both (c") and (d") can be captured by the single condition:

(e") For xeRd , FE:X and any optional time S of {t},

PX[ l FI P= - a.s. on [S<=}.

Since (e") is often given as the primary defining property

for a strong Markov family, we summarize this discussion with a

theorem.

6.9 Theorem: Let X ( {Xtat; tzOl be a progressively measurable-

process on (o,$), let [PX] d be a family of probability
XER

measures on (QF), and let. {( sso be a family of

/$ - measurable shift operators satisfying (5.10). Then

X, (,U), PX} d is a strong Markov family if and only if
xEp

(a), (b) and (e") hold.
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6.10 Problem: Show that (e") is equivalent to the following

condition:

(e"') For any xER d, any bounded, X _ measurable random

variable Y, and any optional time S of at}3 , we

have

EX [Yoes +] = E(Y), P - a.s. on tS<=].

Note: If we write this equation with the arguments filled in,

it becomes

x[¥Yoes1as+] (o) = Y(Ou) PXS (.)() (d)

P - a.e. X in [S<~],

where (Yoes)(" ) - Y(OS() ) (" )). 0

We now begin the discussion onthe strong Markov property of

Brownian motion.

6.11 Definition: Let X be a random variable on a probability

space (R, ,P) taking values in a complete, separable metric

space (S,R(S)). Let J be a sub-a-field of a. A regular

conditional probability of X given J is a function

Q: n x B(S) . [0,1] such that

(i) for each oeo, Q(co; .) is a probability measure on

(S,. (S),

(ii) for each Ece(S), the mapping w - Q(wo;E) is -

measurable, and
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(iii) for each. EeR(S), P[XcEBIA]](o) = Q(o; E), P - a.e. o.

Under the conditions of Definition 6.11 on X,

(0,1jP), (S, R(S)) and I, a regular conditional probability

for X given I exists (Ash [l062 , pp. 264-265] or

Parthasarathy [116g, pp. 146-150]). One consequence of this

fact is that the conditional characteristic function of a

random vector can be used to determine its conditional dis-

tribution, in the manner outlined by the next lemnima.

6.12 Lemma: Let X be a d-dimensional random vector on (0,3, P).

Suppose h is a sub-a-field of a and suppose that for each

c.E, there is a function cp(co; .): R -_ C such that for

each ueRd,

p(@; u) = E[ei(u' X)S] ( o), P - a.e. o.

If, for each ac, cp(c; .) is the characteristic function of

.some probability measure PO on (R , P (R )) i.e.,

Cp(n; u) = Sd ei(u,x) PO(dx),

then for each re(pd ), we have

P[XErl.],](o) = P(r), P - a.e. wc.
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Proof:

Let Q be a regular conditional probability for X given

~, so for each fixed ueR we can build up from indicators to show

that

(6.3)' (j u)= E[ei('X)l() ei(ux)

The set of c for which (6.3)' fails may depend on u, but

we can choose a countable, dense subset D of R d and an event

QEJ with P(Q) = 1, so that (6.3)' holds for every o¢z and uED.

Continuity in u of both sides of (6.3)' allows us to conclude its

d
validity for every ·a&e and- uR . Since a measure is uniquely

determined by its characteristic function, we must have PO = Q(o; .)

for P - a.e. cu, and the result follows.

Recall that a d-dimensional random vector N has a d-variate

d
normal distribution with mean 4ERd and covariance matrix

d d
ZERdx d , if and only if it has characteristic function

(6.4) E ei(uN)= ei(u, ) - (u," Zu) 

Suppose B = [Btjt; tzO], (Q,a), (P X d3 is a d-dimensional

Brownian family. Choose uER and define the complex-valued

process

Mt A exp[i(u,Bt) + -lIull 2 ], tzo.

We denote the real and imaginary parts of this process by Rt

and It, respectively.
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6.13 Lemma: For each xe d, the processes [Rt,Tt; taO] and

It,3St; t3O3 are martingales on (0,;,P ).

Proof:

For Ocs<t, we have

t-s 2Ex[MtI s] = Ex[Ms exp(i(u ,Bt-Bs) +2 l-uJI s ]

= M Ex[exp(i(u,Bt-B ) + t-s li 2

Ms

where we have used the independence of Bt-B s and ,s' as well

as (6.4). Taking real and imaginary parts, we obtain the

martingale property for [Rt,7t; taO3 and rItt,t; tO0O.

6.14 Theorem: A d-dimensional Brownian family is a strong Markov

family. A d-dimensional Brownian motion is a strong Markov

process.

Proof:

We verify that a Brownian family B = [Bt,~t; t2z3, (R,a),

PX] d satisfies condition (e) of Proposition 6.7. Thus, let
XEF

S be an optional time of [3t3. In light of Problem 6.8, we may

assume that S is bounded. Fix xeR . The Optional Sampling

Theorem (Theorem 3.20 and Problem 3.21 (i)) applied to 'the

martingales of Lemma'6.13 yields
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EX exp(i(u,BS+t) )B s+] (M)

exp[- i(S(u)+t) Hull ] . E ]MS(+tl)S+(1 )

S- S()(@) . exp[- 4(S(o)+t) llull2]

exP[i(u, BS( )(u)) ll], P- a.e. a.

Comparing this to (6.4), we see that the conditional distribution

of BS+ t' given AS is normal with mean Bs(0( ) and covariance

matrix t Id . This proves (e).

We can carry this line of argument a bit farther, to obtain

a related result.

6.15 Theorem: If S is an a.s. finite optional time of [it]

for a d-dimensional Brownian motion B = [Bt,%t; tO]3, then

with Wt A BS+t-Bs, the process W = [Wt,3t; tzO3 is a

standard, d-dimensional,. Brownian motion, independent of S+'

Proof:

We show that for Oatos...st n and ul,...,unE R ,

n
(6.5) E[exp(i E (u ,k t -Wt )),+]

k-l k tk tk-1

n
= r exp[- (tk-tkl)lluk2 P - a.s.;
k=l

thus, according to Lemma 6.12 and (6.4), not only are the increments
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tWt -Wt. }n independent normal random vectors with mean zero
[Wt -Wt k=l

and covariance matrices (tk-tkl) Id' but they are also independent

of the a-field a S+ This substantiates the claim of the theorem.

We prove (6.5) for bounded, optional times S of (at); the

argument given in Solution 6.8 can be used to extend this result

to a.s. finite S. Assume (6.5) holds for some n, and choose

OstOs... ttnStn++l Applying the Optional Sampling Theorem to the

martingales in Lemma 6.13 with u = un_l and the optional time

S+t , we have

(6.6) Elexp[i(un+l, Wtn+l Wtn)]l (S+tn) +

2
= exp[- (S+tnil) IlUn+ll - i(Un+BS+t ) EMS+t l(St )]

= exp[- E(tn+l-t n) lu+ll ], P - a.s.

Therefore,

n+l
E[exp(i Z ( UkWt Wt ) )+]

k=l k k-1

n
= E[exp(i (uk,W -Wt ) )

k=l k k-1

Etexp~i~u WEexp(i (Un+l' Wtn+1 -Wtn (S+tn)+ IS+

2 n
= exp- .(t n+l-tn) lun+l 2 ] E[exp(i Z (uk Wt -W

n+l 2
= n exp[- .(tk-tkl) Ilukil 2, p - a.s.,
k=l
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which completes the induction step. The proof that (6.5) holds

for n=l is obtained by setting t =0 in (6.6).
n [

To make rigorous the derivation of the passage time density

with which we began this section, a 'slight extension of the strong

Markov property for right-continuous families will be needed.

6.16 Proposition: Let X = tXt,At; tO]J, ([,P), [PX] d be
xcR

a strong Markov family, and the process X be right-continuous.

Let S be an optional time of [at3 and T an S+ 

measurable random time satisfying T(o) a S(c) for all .eQn

d d
Then, for any xeR and any bounded, continuous f: R R,

(6.7) EX[f(XT)!S+]( () = (UTf)(X ())),

for pX - a.e. cerT<c].

Proof:

For nal, let

S+ 2n([ 2n(T-S) ]+1), if T<-,
n

, if T=w,

k k-l k
so that T S + when - T-S . We have T T on

n n n T n n~2 2 2

[T<oX3. From (e') we have for kaO,

EX[f(X k)lS+] = (Uk f)(XS)' P a.s. on £S<c4,

2n 2n
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and Problem 6.8 (i) then implies

EX[f(XT )3S+](a) (n()S()( )()) P - a.e. LUEtT] cz).

The Bounded Convergence Theorem for conditional expectations and

the right-continuity of X imply that the left-hand side con-

verges to Ex[f(XT) !3S+] (w) as n.=. Since (Utf)(y) = EYf(Xt)

is right-continuous in t for every yeR , the right-hand side

converges to (UT() _S(t0)f)(Xs( )(X)).

6.17 Corollary: Under the conditons of Proposition 6.16, (6.7)

holds for every bounded, S(Rd)/~(R) - measurable function f.

d
In particular, for any rFe(p ) we have

PX[XTErl 3S+] () = (UT(_)-S() ) lr)(XS(W)(@))'

pX - a.e. PcET(A3.

Proof:

Approximate the indicator-:of a closed set r by bounded,

continuous functions as in the proof of Proposition 6.7. Then

prove the result for any FeJ(R ), and extend to bounded, Borel-

measurable functions.

6.18 Proposition: Let [Bt,%t; taO3 be a standard, one-dimensional

Brownian motion, and for bO, let Tb be the first passage

time to b given by (6.1). Then Tb has density (6.3).b
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Proof:

Because C-Bt,at; tO]3 is also a standard, one-dimensional

Brownian motion, it suffices to consider the case b>O. In

Corollary 6.17 set S = Tb,

t if S<t,
T = t

if Sat,t

and r = (-',b). On the set IT<c ] = [S<t], we have BS(a)(~) = b

and (UT()_S(w) lF)(BS(W) ())) =.

Therefore 

pO[Tb<t Bt<b] = PO[BTErI 3S+]dPo = PO[Tb<t]

[Tb<t]

Thus,

0 ' 0
P [Tb t] = P[[Tb<t, Bt>b] + P [Tb<t, Bt<b]

= P°[Bt>b] + i P°[Tb<t],

and (6.2) is proved.
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2.7 BROWNIAN FILTRATIONS

The inquisitive reader may well have wondered why we have

made a point of defining Brownian motion B = [Bt,,t; t3t0 with

a filtration [~t] which is not necessarily the same as [~B},

the one generated by the process itself. One reason has to do

with the fact that, although the filtration (at3 is left-con-

tinuous, it fails to be right-continuous (Problem 7.1). Some of

the developments in later chaptersrequire either right or two-

sided continuity of the filtration [at3, and so in this section

we construct filtrations with these properties.

Let us recall the basic definitions from section 1.1. For a

filtration [{t; tkO} on the measurable space (Q,a), we set

= N for taO, t = a( U as) for t>O,
t+ > t+E ' -

E>O st st

0 = a0 and j = a (U t t). We say that f[t} is

right (respectively, left) - continuous if at+ = At (respectively,

t- = Ft) holds for every O0t<=. When X = [Xt, t; tO] is a

process on (Q,a), then left-continuity of { t] at some fixed

t>O can be interpreted to mean that X t can be discovered by

observing X s, Oss<t. Right-continuity means intuitively that if

X has been observed for Ossst, then nothing more can be learned

by peeking infinitesimally far into the future. We recall here

that t = a(X s; O0st).

7.1 Problem: Let [Xt,&t; Ost<o- be a d-dimensional process.

(i) Show that the filtration <+] is right-continuous.

(ii) Show that if X is left-continuous, then the filtration
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[t ] is left-continuous.

(iii) Show by example that, even if X is continuous, [ t]

can fail to be right-continuous and { +3 can fail

to be left-continuous.

We shall need to develop the important notions of "completion"

and "augmentation" of a-fields, in the context of a strong Markov

process X = tXt, t; 0gt<03 with initial distribution f on the

space (Q, , P). We start by setting, for Ostzw,

7 _A_ IF c Q; 3GEF t with F c G, P(G) = 0 .

r7j will be called "the collection of P4-null sets", and denoted

simply by 7t.

7.2 Definition: For any Ozt(<, we define the completion

A a 0(< U t)J and the augmentation

-t __ c(3t U- t)

t = t

of the a-field t under P4. For t== the two concepts

agree, and we set simply

a 3 (al U S;).

The augmented filtration [$3] possesses certain desirable

properties, which will be used frequently in the sequel and are

developed in the ensuing problems and propositions.
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7.3 Problem: For any sub-a-field Q of X, define

Q -a(= U 7u ) and

= IF c Q; 3GEq such that FAGE74j3.

Show that Q4=g. We now extend P1 by defining P4(F) A P4(G)

whenever FEq, and Gcq is chosen to satisfy FAGE£7. Show

that the probability space (~2,q,',P4) is complete:

FEcQ, P4(F) = 0, D c F = DeQ.

7.4 Problem: From Definition 7.2 we have 3It c at for every

OCt<c=. Show by example that the inclusion can be strict:

O o

7.5 Problem: Show that the a-field ' of Definition 7.2 agrees

with

o tO t'

7.6 Problem: If the process X has left-continuous paths, then

the filtration 13} is left-continuous.
t a

We are ready now for the key result of this section.

7.7 Proposition: For a d-dimensional, strong Markov process

X = {Xt,t<; tO]3 with initial distribution [, the augmented

filtration {[it] is right-continuous.
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Proof':

Let (Q, AX, P4) be the probability space on which X is

defined. Fix s2O and consider the degenerate, ~t ] - optional

time S=s. The strong Markov property implies for t>O and

P [Xte ITs+] - P4[X tEIXs], P - a.s.

For t>s, we see then that P4[Xte| rs +] has an <s-measurable

version. For tzs, X t is 3X-measurable, so again P~[Xt ElPX s+]

has an <-measurable version. The collection of all sets

Fe X for which P4[Fl 5s+] has an <-measurable version is a

:-field, and since 3X is generated by sets of the form IXter),

we see that P4[FlJs+] has an OX-measurable version for every

FE X . But suppose FeIs c I. -

Then

PEL[FI s + ] = 1F' P - a.s.,

so 1F has an (-measurable version, which;we call Y. Let

G = [Y = 1] e s. Since FAG c [1F F Y) E C7, we have

Fe3~. Therefore,

+ c t s O.

Suppose now that FEc . Then for each positive integer n,

Fe3 l/n so there exists Gn s+l/n such that FAG E7C. Set
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G A n u G , and since G = n U G for any positive integer
m=l n=m m=M n=m

M, we have GceD+ c 34s To prove that Fei_, it suffices to prove

that F A Ge7Z. Now

00 co

G\F c ( U Gn)\F = U (Gn\F)7? ·
n=l n=l

On the other hand

F\G =F n( n U Gn) = F n( U n )
m=l n=m m=l n=m

co "O n co
= U [F n( n GC)1 c U (F n Gc)

m=l n=m m=l

= (F\Gm) e 7.
m=l

It follows that Fe.ws' so c WW and right-continuity is
5S 5

proved.
0

7.8 Corollary: For a d-dimensional,left-continuous, strongly

Markov process X = [Xt, t; ta0] with initial distribution

.±, the augmented filtration [3 t is continuous.

7.9 Theorem: Let B = [BttB; tzO] be a d-dimensional Brownian

motion with initial distribution . on (Q,Z, P4). Relative

to the right-continuous filtration [3$3, tBt, tZO] is still

a d-dimensional Brownian motion.
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Proof:

Augmentation of a-fields does not disturb any of the

independence assumptions of Definition 5.1.

Since any d-dimensional Brownian motion is strongly Markov

(Theorem 6.14), the augmentation of the filtration in Theorem 7.9

does not affect the strong Markov property. This raises the

following general question. Suppose [Xt,,t; t}O3 is a d-dimen-

sional, strong Markov process with initial distribution j on

(Q. ,X P T). Is the process (Xt,t;) trO0 also strongly Markov?

In other words, is it true, for every optional time S of [~t

taO and rE(Rd ), that

(7.1) P4[XS+tErlaS+] P [Xs+tErIXs], P- a.s. on (S<~]?

Although the answer to this question is affirmative, phrased in

this generality, the question is not as important as it might

appear. In each particular case, some technique must be used to

-prove that [Xt, t; taO3 is strongly Markov in the first place,

and this technique can usually be employed to establish the strong

Markov property for [Xt,a; taO3 as well. Theorems 7.9 and 6.14

exemplify this kind of argument for d-dimensional Brownian motion.

The interested reader can work though the following series of

problems, to verify that (7.1) is valid in the generality claimed.

We shall make no subsequent use of them.
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In Problems 7.10 - 7.13, X = Xt,it; Ost<=} is a strong

Markov process with initial distribution pi on (Q, X,p).

7.10 Problem: Show that any optional time S of [ is also

a stopping time of this filtration, and for each such S there

exists an optional time T of [{t} with ([ST]e7. Conclude

that A+ = - , where U4 is defined to be the collec-S+ S T' T

tion of sets Aesi satisfying A n{Tst]EJt , Y Ost<'.

,r
7.11 Problem: Suppose that T is an optional time of t].

For fixed positive integer n, define

T on IT==]

n n on n T 

2n ' 2 2

Show that Tn is a stopping time of f , and

T c a(Z U 7*). Conclude that A c a(4X+ U Wp). (Hint:

Use Problems 1.2.22 and 1.2.23).

7.12 Problem: Establish the following proposition: if for each

ta0, rES(Rd) and optional time T of { t], we have the

strong Markov property

(7.2) P=[XT+tT+] = [pXT+ t ElXT - a.s. on ET<=3,

then (7.1) holds for every optional time S of { t].

------ --------- ·--------- ---
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This completes our discussion of the augmentation of the

filtration generated by a strongly Markov process. At first glance,

augmentation appears to be a rather artifical device, but in retro-

spect, it can be seen to be more useful and natural than merely

completing each a-field t with respect to P~. It is more

natural because it involves only one collection of P4-null sets,

the collection we called...7?, rather than a separate collection for.

each taO. .It is more useful because completing each a-field AX

does not result in a right-continuous filtration, as the next-problem

demonstrates.

7.13 Problem: Let [Bt, taO) be the coordinate mapping process

on (C[O, ), 8(C[O, ))), and let PO be Wiener measure..

B oLet At denote the completion of a3 under P . Consider

the set

F = {ceC[0O,); o is constant on [O, c] for some E>O3.

Show that: (i) P°(F) = O, (ii) FeB +, and (iii) F$ 0o.

The difficulty with the filtration {t3], obtained for a

strong Markov process with initial distribution ., is its

dependence on A. In particular, such a filtration is inappropriate

for a strong Markov family, where there is a continuum of initial

conditions. We now construct a filtration which is well suited

for this case.

Let [Xt, t; t2O], (QuX), [pX d be a d-dimensional,
XER

strong Markov family. For each probability measure p on

(Rd, d(id)), we define P, as in (5.2):
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P"(F) = PX (F) (dx), V Fe 3 ,
R

and we construct the augmented filtration lat' as before. We

define

(7.3) n
7..t n ,

where the intersection is over all probability measures

I on (R , I (R)). Note that J X c- -At c 3 Ost<c for any

probability measure t on (Rd, ~(Rd )); therefore, if [Xt, i; taO3

and [Xtt, ; t2O3 are both strongly Markovian under PI, then so

is IXt, t; taO3. Because the order of intersection is interchange-

able and Ca]3 is right-continuous, we have

n' n Ds n n Nt
t+ s>t 4 s s>t s t

Thus [ft3 is also right-continuous.

7.14 Theorem: Let B = [Bt,Bt; t>OB, ( B, ), [PX} d be a
xeR

-d-dimensional Brownian family. Then [Bt,'t; tzO3, (Q,3),

[PX d is also a Brownian family.
XER

Proof:

It is easily verified that [Bt,'t; t2O] is a d-dimensional

Brownian motion starting at x. It remains only to establish the

universal measurability of condition (i) of Definition 5.4. Fix

Fe¢' . For each probability measure 1 on (E d, )(Rd)), we have

cFo i B w F Ge. et N B satisfy
so there is some GE3 with F A Ge7Z. Let NeB satisfy
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F A G c N and P4(N) = O. The functions g(x) A PX(G) and

n(x) A PX(N) are universally measurable by assumption. Furthermore,

j n(x) 4(dx) = P4(N) = 0,
Rd

so n=0, p - a.e. The nonnegative functions hl(x) P X(F\G)

and h2(x) A PX(G\F) are dominated by n, so h I and h 2 are

zero p. - a.e., and hence h 1 and h 2 are measurable with respect

to d(R di, the completion of (RAd) under p. Set f(x) A PX(F).

We have

f(x) = g(x) + hl(x) - h2(x),

so f is also 8(Rd) ~ - measurable. This is true for every i;

thus, f is universally measurable.

7.15 Remark: In Theorem 7.14, even if the mapping x PX(F)

B
is Borel-measurable for each Fe B (c.f. Problem 5.1),

we can conclude only its universal measurability for each

Fea . This explains why Definition 5.4 was designed with

a condition of universal rather than Borel measurability.

We close this section witha useful consequence of the results

concerning augmentation.
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7.16 Theorem: Blumenthal(1957) Zero-One Law

Let [Bt,"Bt; t.3], ( a) (P 3 d be a d-dimensional
XER d

Brownian family, where At is given by (7.3). If Feo ,

then for each xER we have either P(F) = 0 or P(F) = 1.

Proof:

d BFor FcEO and each xER , there exists Ge3o such that

P (F A G) = 0. But G must have the form G = [Boer) for some

so

pX(F) = pX(G)= pX[Boer = l(x),

which is either zero or one.
0

7.17 Problem: Show -that a standard, one-dimensional Brownian

motion changes sign infinitely many times in any time-interval

[O,E], c>O, with probability one.

7.18 Problem: Let [Wt,3t; O0t<~] be a standard, one-dimensional

Brownian motion on (Q,3,P), and define

Sb = inf[t20; Wt>b3; b0O.

(i) Show that for each baO, P[Tb / Sb] = O.

(ii) Show that if L is a finite, nonnegative random vari-

able on (g,F,P) which is independent of FW, then

[CO3E; TL(o ) ( s )W SL( w)(o)3¢a and P[TL f S L] = 0.

--------- ~----L L (w) L LI,= -
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2.8: COMPUTATIONS BASED ON PASSAGE TIMES

In order to motivate the strong Markov property in §2.6, we

derived the density for the first passage time of a one-dimensional

Brownian motion from the origin to b / O. In this section we

obtain a number of distributions related to this one, including

the distribution of reflected Brownian motion, Brownian motion on

[O,a] absorbed at the endpoints, the time and value of the maximum

of Brownian motion on a fixed time interval, and the time of the

last exit of Brownian motion from the origin before a fixed time.

While derivations of all of these distributions can be based on

the strong Markov property and the reflection principle, we shall

occasionally provide arguments based on the optional sampling theorem

for martingales. The former method yields densities, whereas

the latter yields Laplace transforms of densities. The reader

should be acquainted with both methods.

Throughout this section, [Wt,at; 09t<]3, (, 3), [Px]x R

will be a one-dimensioal Brownian family. We recall from (6.1)

the passage times

Tb = infttmO; Wt=b]; beR,

and define the running maximum (or maximum-to-date)

(8.1) Mt = max W .
Oacsst



2.8.2

8.1 Proposition: We have for t>O:

= 2(2b-a) (2b-a)2
(8.2) PO[WEda, Mtcdb] = exp- (2b) 3 da db; asb, bo0.

Proof:

For asb, bO0, the symmetry of Brownian motion implies that

(Ut s l(_,,a]) (b)= pb [Wtsca] = Pb[Wts2b-a ]

(Ut-s 1[2b-a,o) (b); 0gsit.

Corollary 6.17 then yields

P [Wtsal Tb+]= (UtTb l(_,a]) )(b)

= (UtTb [2 b-a,))(b)
0 0

= P [Wtj2b-a' Tb+], a.s. P on (Tbct].

Integrating both sides of this equation over ITb(t] and noting

that [Tb<t ] = [Mt>b], a.s. P we obtain

PO[Wtsa, Mt>b] = PO [Wt2b-a, Mt>b]
2

=P [wta2b-a] = S e 2t dt.
t 2b-a

Differentiation leads to (8.2). .

8.2 Problem: Show that for t>O,

(8.3) P [Mtedb] = P [Wt]Edb] = P [Mt-WtEdb ]
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b 2

e db; b>O.

8.3 Remark: From (8.3) we see that

x X2

(8.4) PO[Tbt]= 2 e 2 dx; b>.

By differentiation, we recover the passage time density (6.3):

b2

0 b 2t(8.5) P [T b dt] = 2t3 e dt; b>O, t>O.

For future reference, we note that this density has Laplace

transform

-oTb -b 2j~ -

By letting tto in (8.4) or a0O in (8.6), we see that

P[Tb<=] = 1. It is clear from (8.5), however, that EOTb =

8.4 Exercise: Derive (8.6) (and consequently (8.5)) by applying

the optional sampling theorem to the [£t]-martingale

(8.7) Mt = expXkWt - 2 t d ;0t >,

with X = > 0.

8.5 Problem: Derive the the transition density for Brownian motion

absorbed at the origin [Wt^T o at; Ot<e}3, by verifying

that
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(8.8) PX[WtEdy, To>t] = p(t; x,y)dy

A [p(t; x,y) - p(t; x,-y)]dy; t>0, x,y>O.

8.6 Problem: Show that under P , reflected Brownian motion

W)J A {[Wtl,;t; O0t<=3 is a Markov process with transition

density

(8.9) PO[lWt+sledylWtlI = x] = p+(s: x,y)dy

A [p(s; x,y) + p(s; x,-y)]dy; s>0,t20 and x, y20.

8.7 Problem: Define Yt A Mt-Wt; O-t<. Show that under PO,

the process Y = [Yt,at; Ost(<= is Markov and has transition

density

(8.10) PO[Yt+sEdYlYt=x] = p+(s; x,y)dy; s>O,tm0 and x, y20.

Conclude that under P the processes IW1 and Y have

the same finite-dimensional distributions.

The surprising equivalence in law of the processes Y and

|WJ was observed by P. Levy (1948), who employed it in his deep

study of Brownian local time (c f. Chapter 6). The third process

M appearing in (8.3) cannot be equivalent in law to Y and jWI

since the paths of M are nondecreasing, whereas those of Y and

IWI are not. Nonetheless, M will turn out to be an object of

considerable interest because it is the local time at the origin

of the reflected Brownian motion Y.
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The following simple proposition will also be extremely help-

ful in our study of local time.

8.8 Proposition:

The process of Passage times T = [T ,+; O0a<-3
a

has the property that, under P and for Osa(b, the

increment Tb-Ta is independent of AT + and has the density
a

0 TbT b-a)-
P [Tb-T dt] : --- e dt; Ot<to.

In particular,

- (Tb-T) (b-a).
(8.11) E [e T + ; >.

a

Proof:

This is a direct consequence of Theorem 6.15 and the fact

that Tb-Ta = inf[tkO; WT +t - WTa b-a3. 
a a

In Problem 8.5 we computed the transition density for

Brownian motion absorbed at the origin. We now undertake the

study of Brownian motion on [O,a] absorbed at 0 and a; to

wit, Wt ̂To^T 't; Ot<3.
Oa a

8.9 Proposition: Choose O<x<a. Then

(8.12) X[WtEdy, TTa > t] = Z P_(t; x,y+2na); O<y<a,t>O.
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Proof:

We follow Dynkin and Yushkevich (1969). Set AO A 0,

T A TO, and define recursively an inftt2Tnl1 Wt = a3,

Tn = infttacn; Wt=0O; n=1,2,.... We know that pX[.<T] = 1,

and using Theorem 6.15 we can show by induction on n that

an - 1 is the passage time of the standard Brownian motion

W - W to a, T -a is the passage time of the standard
n-l n-l nn

Brownian motion W - W to -a, and the sequence of dif-
' +On Cn

ferences °,-T0 , T,-l 1,, 2 -T1, T2-a2, ... consists of independent

and identically distributed random variables with Laplace trans-

form e-a 2' (cf. (8.11)). It follows that Tn-T . being the

sum of 2n such differences, has Laplace transform e-2n

and so

X[Tin- TOP [T 2 t].

We have then

(8.13) lim PX[rnst] = 0; Ot<o.
n-ag

For any ye(O, ), we have from Corollary 6.17 and the symme-

try of Brownian motion that

PX[Wt2yl3T +] = P [Wt-yaT i+] on [Tnst ],

and so

(8.14) P t[Wtzy, Tnst] = P [Wt-y, Tnat] = P [Wts-y,cnt]; nzO.

Similarly, for yE(-M,a), we have

pX[WtSyla +] = pX [Wt2a-ylY ] on [anst,
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and

(8.15) PX[Wt~Y, ans t ] = px[Wt~2a-y, anSt]

= Px[Wt2a-y, Tn_lst]; nxl.

We may apply (8.14) and (8.15) alternately and repeatedly to con-

clude that

PX[wtaY,. Tnt] = PX [wt -y-2na]; X<y<a, n20,

PX[WtIY, anSt] = Px [Wt y-2na]; 0(<ya, nxO.

Differentiation with respect to y results in the formulas

(8.16) PX[Wtcdy, Tn t] = p(t; x,-y-2na); C<y<a, nxO,

(8.17) PX[Wtedy, ant] = p(t; x,y-2na) ; I<y<a, n2xO.

Now set To = 0, Po = T a and define recursively

rr = inf[t2Pn 1 ; Wt=0'3, n = inf [ttn; Wt=a]; n=1, 2,..

We may proceed as above to obtain the formulas

(8.18) lim PX[pn t] = 0; Oct<o,
n- o

(8.19) PX[Wtedy, Pn t] = p(t; x,.-y+(2n+l)a); Oy-a, na0,

(8.20) p [Wtedy, Tn t] = p(t; x,y+2na); 0<y-a, na0.
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It is easily verified by considering the cases To(Ta and

T >Ta that Tn-lVPn-l = anO^n and anvnn = n ̂ Pn; nal. Con-

sequently,

(8.21) PX[Wtdy, Tn-lPn-lt] = P [WtEdy, T n-lt]

+ Px [wedy, PPst] - Px[Wt Edy, anl TTt],

and

(8.22) pX[wtEdy, an^TnSt] = PX[Wtcdy, an t] + PX[WtEdy, rnnt]

=px [WEtdy, Tn Pn t].

Successive application of (8.21) and (8.22) yields for every

integer kal:

(8.23) Px[W tdy, ToPCt] = E [P [Wtedy, Tnltt]
n=l

+ PX[WtcdY, Pn_lct] - P [Wtdy, ot] - [Wtdy, rrnt]n ]

+ pX[Wtedy, Tkapkst].

Now we let k tend to infinity in (8.23); because of (8.13),

(8.18) the last term converges to zero, whereas using (8.16),

(8.17) and (8.19), (8.20) the remaining terms give

Px[Wtcdy, To^Ta > t] =.P [Wtedy] - P [Wtcdy, TO^Poct]

= E p (t; x,y+2na)dy; O<y<a, t>0. 
n= -co
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8.10 Exercise: Show that

(8na 2
(8.24) ? [TQ^Ta dt] 2 t3 Z [(2na+x) expt- (2na+x)

n=-c 2t

+ (2na+a-x) exp- (2na+a-xi2j]dt; t>0, <x<a.
2t

It is now tempting to guess the decomposition of (8.24):

X= T T (ina+x)exp- ( 2a+x)2 idt;(8.25) P [Toedt, ToT] (2na+x)exp- (2
J2rrt n=-c

t>O, O<xpa,

(8.26) PX [Tadt, Ta<T o] = 1 Z (2na+a-x)expt- (2na+a'x)2 3dt;
-a Jiw2t n=-= 2t

t>O, 01(xa.

Indeed, one can use the identity (8.6) to compute the Laplace

transforms of the right-hand sides; then.(8.25), (8.26) are seen

to be equivalent to

(8.27)e _ sinh((a-x) ) 
(8.27) E e l(To<Ta) sinh(a/2a)

(8.28) Exe 1Ta sinh(xT2-T ; O<xa, a>O.
If(To 3 sinh(a /2 )

We leave the verification of these identities as a problem. Note

that by adding (8.27) and (8.28) we obtain the transform of (8.24):

-a(T^Ta ) cosh((x- 2-) a
(8.29) EXe =T _ (xa, a>0.

cosh(R %a)

This provides an independent verification of (8.24).
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8.11 Problem: · Derive the formulas (8.27), (8.28) by applying the

optional sampling theorem to the martingale of (8.7).

8.12 Problem: Show that

PX[T<Ta] = a-x pX [TaT ] = Oxa, a>O.

8.13 Problem: Show that EX(TOrTa) = x(a-x); 0cx3a.

Proposition 8.1 coupled with the Markov property enables one

to compute distributions for a wide variety of Brownian functionals.

We illustrate the method by computing the joint distribution of

(WtMt) and the last time at which- W achieves its maximum over

[O,t].

8.14 Proposition: Define

(8.30) e t A supc{o0sIt; Ws=Mt3.

Then

(8.31) p [Wteda, MtEdb, tceds]

- lbs(--a_) 3,exp {_ b2 ( X ] da db ds;
- ns 3 (s 3 " 2s 2 't-s)

aePR;ba, b0O, 0)s<t.

Proof:

For baO, c>5>0, x20, acb and O's<t, we have
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(8.32) P [b<M cb+5, W sb-dx, max Wu b, W tda]

i P [b<Mt b+5, 8t s, Wseb-dx, WtEda]

PO P[b<M sb+5, WsEb-dx, max W Ub+E, WtEda].

Divide by 5 and let 5§0, Oe0 (in that order). The upper and

lower bounds in the above inequalities converge to the same limit,

which is

(8.33) P O[Mtedb, tCs, Wseb-dx, Wteda]

0P [M sdb, W eb-dx, max Wucb, Wtcdal

= P [Msedb, Ws Eb-dx]. pb- [Mt bb, Wt_ sda]

= ib- x r exp[- 3
'rjs3(t-s)3 22 2t

-- (x+_)2 a2
- exp{- 2 - 2t~dx da db,

2

where we have used (8.3) and

t+ ' b(t-s)(a-bs 2 s(t-s)

In terms of ~(z) __~ e 2 dx we may now evaluate the integrals
2

2 - 2

e 2 ]ddx = c +
a 'n O 2inertn ou x i (85)aduigte

and so integrating out x in (8.33) and using the equality
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2 22t 2 2
,,,4) (b(b-a)) +b (b-a +-2a 2 2s 2(t-s)

we arrive at the formula

PO [Mtdb, etas, WtEda]

_= 2=[4(- [+_~)(2b-a) exp- (2b-a)

ITTt-i 2

- ( ) a exp{- A ] da db.

-L 1 ( b-a
Note that (. ) = ( and so

P t[Mtdb, etas, WtEda]

b2 2
=b_ (ba) >exp -b _ (b2a) }da db ds..

s I (t-s) 2s 2(t-s)

8.15 Remark: If we define et A inf[Osgt; Ws=Mt] to be the

first time W attains its maximum over [O,t], then (8.32)

is still valid when et is replaced by e t. Thus, t

and . t have the same distribution, and since etSet, we
OA 

see that P [et=6t] = 1. In other words, the time at which

the maximum over [O,t] is attained is almost surely unique.

8.16 Problem: Show that
b 2

'0 b 2s0 b db, 2s~ds] = db ds; b20, 0xs(t,P[Mtc t/ ~3(t)s )

PO[ ed] ds o<s <t,
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b 2

P [MtEdb j t=s ] e 2 db; bmO, 0<(st.

In particular, the conditional density of Mt given e t

does not depend on t. We say that 6 t obeys the arc-sine

law, since

0 2P[ etss] = arcsin s Ossst, t>0.

8.17 Problem: Define the time of last exit from the origin before

t by

(8.355) Yt _ sup[Ossist; Ws=03.

Show that Yt obeys the arc-sine law, i.e.,

P= [ytEds] ; O<s<t.
TTAS (t-s

(Hint: Use Problem 8.7).

8.18 Exercise: With Yt defined as in (8.35), derive the

quadrivariate density

0 [Wtcda' MtEdb, ytEds, 9tEdu]

-2ab2 ub2 2

exp[- 2u(s-u) - 2 (ts)' da db ds du;

0'<us(t, a<Ob.
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2.9 THE BROWNIAN SAMPLE PATHS

We present in this section a detailed discussion of the basic

"absolute" properties of Brownian motion, i.e., those properties

which hold with probability one (also called "sample path" properties).

These include characterizations of "bad" behaviour (nondifferenti-

ability and lack of points of increase) as well as "good" behaviour

(law of the iterated logarithm and Levy modulus of continuity) cf

the Brownian paths. We also study the local maxima and the zero

sets of these paths. We shall see in Section 3.4 that the sample

paths of any continuous martingale can be obtained by running those

of a Brownian motion according to a different, path-dependent clock.

Thus, this study of Brownian motion has much to say about the

sample path properties of much more general classes of processes,

including continuous martingales and diffusions.

We start by collecting together, in Lemma 9.4, the fundamental

"equivalence transformations" of Brownian motion. These will prove

handy, both in this section and throughout the book; indeed, we

made frequent use of symmetry in the previous section.

9.1 Definition: A real-valued stochastic process X = [Xt; 0st<*3

is called Gaussian if, for any integer kal and real numbers

OStl<t2 <...<tk<<, the random vector (Xtl,Xt ,...,Xt ) has

a k-variate normal distribution.

If X is a Gaussian process, then its finite-dimensional

distributions are determined by its expectation function
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m(t) A EXt; taO, and its covariance function

p(s,t) A E[(Xs-m(s))(Xt-m(t))]; s,trO.

If m(t) - O; txO, we say that X is a zero-mean Gaussian

process.

9.2 Remark: Brownian motion is a zero-mean Gaussian process with

covariance function

(9.1) p(s,t) = s.t; s,tm0.

Conversely, any zero-mean Gaussian process X = [Xt,tX; Ost<03

with a.s. continuous paths and covariance function given by

(9.1) is a Brownian motion. See Definition 1.1.

Throughout this section, W = [Wt,at; Oct<K] is a

standard, one-dimensional Brownain motion on (O,U,P). In

particular Wo = 0, a.s.P. For fixed cen, we denote

by W.(w) the sample path t.Wt(W).

9.3 Problem (Strong law of large numbers):

Show that

W
(9.2) lim - = , a.s.

t- t

(Hint: Recall the analogous property for the Poisson process,

Remark 1.3.7').
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9.4 Lemma: When W = {Wt.At; Ogt<() is a standard Brownian

motion, so are the processes obtained from the followirg "equiva-

lence transformations":

(i) Scaling: X = tX t , Act; 09t<() defined by

(9.3) X t = Wct Ot

where c>0;

Y
(ii) Time -inversion: Y = jyttO; Ot,') defined by

t W1; O<t(

(9.4) Yt = t0 ; t=O;

(iii) Time-reversal: Z = [Zt; 5t; OtsT) defined by

(9.5) Zt = WT - WTt; OistT, for every fixed T>O;

(iv) Symmetry: - W = [-Wt,St; 3Ot<-].

Proof:

We shall discuss only part (ii), the others being either

similar or completely evident. The process Y of (9.4) is easily

seen to have a.s. continuous .paths; continuity at the origin is

a corollary of Problem 9.3. On the-other hand, Y is a zero-

mean, Gaussian process with covariance function

E(YsYt) = st(s V t) = s t; s,t>O

and the conclusion follows from Remark 9.2. O
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9.5 Problem: Show that the probability that Brownian motion

returns to the origin infinitely often is one.

We take up now the study of the zero set of the Brownian path.

Define

(9.6) z = {(t, )E[O,-) x Q; Wt(w) = 0),

and for fixed. fOn, define the zero set of W.(w):

(9.7) Z;w EOst<0; Wt(w) = 03.

9.6 Theorem: For P -a.e. ¢eQ, the zero set Z

(i) has Lebesgue measure zero,

(ii) is closed and unbounded,

(iii) has an accumulation point at t=O,

(iv) has no isolated point in (0,f), and therefore

(v) is dense in itself.

Proof:

We start by observing that the set Z of (9.6) is in

f[0,) ® a , because W is a (progressively) measurable process.

By Fubini's theorem,

E [meas(Z)] = (meas x P )(Z) = f P [Wt=O]dt = 0,

and therefore meas(Z ) = 0 for P -a.e. cEn, proving (i);

here and in the sequel, "meas" means "Lebesgue measure": On the

other hand, for P -a.e. wEc the mapping t-Wt(o) is continuous,

and Z~ is the inverse-image under this mapping of the closed
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set o[0. Thus, for every such w, the set Zw is closed,

unbounded (Problem 9.5), and has an accumulation point at the

origin t=O, (Problem 7.17).

For (iv), let us observe that [EnQ; Z, has an isolated point

in (0,)3 can be written as

(9.8) U tcEn; there is exactly one se(a,b) with Ws(c)=03
a,beQ-

Osa<b<

where Q is the set of rationals. Let us consider the family of

almost surely finite optional times (Problem 1.2.5)

Pt _ inffs>t; Ws=03; taO.

According to (iii) we have P=0, a.s. P; moreover,

P ( )(") = inf{s>Pt(w); W s( w) = 0

= Bt(w) + infts>O; Ws+t () (~)- WPt () ) = 03

for P-a.e. EQ, because [Ws+5 -W t; Os<.] is a standard

Brownian motion (Theorem 6.15). Therefore, for Osa<b<.,

fwc; there is exactly one se(a,b) with W s( m) = 03

c E:EQ; «a(W) < b and ad (. )(W) > b]

has probability zero, and the same is then true for the union
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9.7 Remark: From Theorem 9.6 and the strong Markov property

in the form of Theorem 6.5, we see that for every fixed

bER and P-a.e. coED, the level set

Z (b) _ tOt<a; Wt(w) = b3

is closed, unbounded, of Lebesgue measure zero and dense in

itself. C

The following Problem strengthens the result of Theorem

1.5.8 *in the special case of Brownian motion.

9.8 Problem: Let CH nn= be a sequence of partitions of the

interval [O,t] with lim 1 nll = 0. Then the quadratic varia-
n-= n

tions

m

V(2)(n) n) - WL( n) 1
2

- k=l k t

of the Brownian motion W- over these partitions converge

to t in L , as n-.. If, furthermore, the partitiorn

become so fine that

HE Inll < X
n=l

holds, the above convergence takes place also with probability

one. °

As discussed in section 1.5, one can easily show using

Problem 9.8 that for almost every WeQ, the sample path W.(u)
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is of unbounded variation on every finite interval [O,t]. In

the remainder of this section we describe just how oscillatory

the Brownian path is.

9.9 Theorem: For almost every weQ, the sample path W. (X) is

monotone in no interval.

Proof:

If we denote by F the set of weQ with the property that

W. (X) is monotone in some interval, we have

F = U [Ewe; W.(@) is monotone on [s,t]],
s, teQ

'0cs<t<~

since every nonempty interval includes one with rational end-

points. Therefore, it suffices to show that on any such interval,

say on [0,1], the path W. () is monotone for almost no c.

By virtue of the symmetry property (iv) of Lemma 9.4, it suffices

then to show that the event

A _A wEO; W.(u) is nondecreasing on [0,1]3

is in a. and has probability zero. But A = n An , where
n=l

n-l
An A [(n; Wi+l (@) - Wi(w) 2 03e3

n n
n-l

has probability P(An) = P[Wi+ - Wi O] = 2 . Thus,
i=l n n

P(A) = lim P(An) = O.n-*an
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In order to proceed with our study of the Brownian sample

paths, we need a few elementary notions and results concerning

real-valued functions of one variable.

9.10 Definition: Let f: [0,R) R a be a given function. A number

taO is called

(i) a point of increase of size 5, if for given 5>0

we have

max f(s) = f(t) = min f(s);

(t-5)+4szt tisst+6

(ii) a point of increase, if it is a point of increase of

size 5 for some 5>0;

(iii) a point of local maximum, if there exists a number

5>0 with f(s) a f(t) valid for every se[(t-5)+ ,

t+5]; and

(iv) a point of strict local maximum, if there exists a

number 5>0 with f(s) < f(t) valid for every

sE[(t-5)+ , t+5]\[t)

9.11 Problem: Let f: [0,e) - R be continuous.

(i) Show that the set of points of strict local maximum

for f is countable.

(ii) If f is monotone on no interval, then the set of

points of local maximum for f is dense in [0,=).
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9.12 Theorem: For almost every cen, the set of points of local

maximum for the Brownian path W. () is countable and dense

in [0, ), and all local maxima are strict.

Proof:

Thanks to Theorem 9.9 and Problem 9.11, it suffices to show

that the set

A = wc~Q; every local maximum of W. () is strict)

includes an event of probability one. Indeed, A includes the

(countable) intersection of events of the type

(9-9) At tA [ Eo; max Wt(w) - max W t(w) $ 03,
1' ', - t3stct t1stst2

taken over all quadruples (tl,t 2 , t3,t 4 ) of rational numbers

satisfying Ot!<t2Kt3<t 4< . Therefore, it remains to prove that

for every such quadruple, the event in (9.9) has probability one.

But the difference of the two random variables in (9.9) can be

written as

(WtW t2) + min [Wt (w)-Wt(w)] + max [Wt(o)- ()],
3 t2 t Stlt2 2 ttit Wt3

and the three terms appearing in this sum are independent.

Consequently,

P[At - t[- = Pt W x+y] P[ min (Wt Wt)dx]
1' 't4 0 f- t2 3 tltgt2 t2-

P[ max (Wt-Wt )Edy] = 1

3t 4 3
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because P[Wt -Wt2 f x+y] = 1.

Let us now discuss the question of occurrence of points of

increase on the Brownian path. We start by observing that the

set

A = t(t,w) e [0, ) x Q; t is a point of increase of W. ()

is product measurable: A E B[0,,) ® 3. Indeed, A can be

written as the countable union A = U A(m), with
m=l

A(m) L ((t,w)E[0,-) x 0: max Ws(~)
1 +

(t- m)+!sst

=Wt(o) = min 1 Ws( ) },

tsast+S
m

and each A(m) is in B[0, ) ® F. We denote the sections of A

by

At A tCwen; (t,)EA3, A tE[O0, c); (t,cw)]3,

and At(m) , Alo(m) have a similar meaning. For Ost<,,

P[At(m)] _ P[Ws+t-Wt 2 0; V sC[0, i]] = 0

because [Ws+t-Wt; saO) is a standard Brownian motion (Problem

7.17); now At = U At(m) gives also
m=l

(9.10) P(At) = O; Ost<m

as well as
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I meas(A.)dP (meas x P)(A) = j P(At)dt = o

from Fubini's theorem. It follows that P[wEn; meas(A.) = 0] = 1.

The question is whether this assertion can be strengthened to

.P[ccr; AW = ~] = 1, or equivalently

(9.11) P[cEQ; the path W.(w) has no point of increase] = 1.

That the answer to this question turns out to be affirmative is

perhaps one of the most surprising aspects of Brownian sample

path behaviour. We state this result here but defer the proof

to Chapter 6.

9.13 Theorem: Dvoretzky, ErdZs and Kakutani (1961)

Almost every Brownian sample path has no point of increase

(or decrease); that is, (9.11) holds.

9.14 Remark: We have already seen that almost every Brownian

path has a dense set of local maxima. If T(w) is a local

maximum for W. (), then one might imagine that by reflection

(replacing Wt(w)-WT(a)(D) by - (Wt(w)-WT(w)(w)) for

taT(w)), one could turn the point T(w) into a point of

increase for a new Brownian motion. Such an approach was

used successfully at the beginning of Section 2.6 to derive

the passage time distribution. Here, however, it fails

completely. Of course, the results of Section 2.6. are

inappropriate in this context because T(w) is not a

stopping time. Even if the filtration t3t7 is right-
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continuous, so that [wEc; W. (c) has a local maximum at t)

is in At for each t.O, it is not possible to define a

stopping time T for [Ut) such that W. (o) has local

maximum at T(wo) for all wo in some event of positive

probability. In other words, one cannot specify in a"proper

way" which of the numerous times of local maximum is to be

selected. Indeed, if it were possible to do this, Theorem

9.13 would be violated.

9.15 Remark: It is quite possible that, for each fixed taO,

a certain property holds almost surely, but then it fails to

hold for all taO simultaneously on an event whose probability

is one (or even positivel). 'As an extreme and rather trivial

example, consider that P[coen; Wt(co)l]=l holds for every Ogt<., whill

P[rER: Wt(w) ' 1 , for every tE[O,0)] = 0. The point here

is that in order to pass from the consideration of fixed but

arbitrary t to the consideration of all t simultaneously,

it is usually necessary to reduce the latter consideration

to that of a countable number of coordinates. This is

precisely the problem which must be overcome in the passage

from (9.10) to (9.11), and the proof of Theorem 9.13 in

Dvoretzky, Erdas and Kakutani (1961) is demanding because of

the difficulty of reducing the property of "being a point of

increase" for all t20 to a description involving-only

countably many coordinates. We choose to give a completely

different proof of Theorem 9.13 in Chapter 6 based on
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the concept of local time. We do, however, illustrate the

abovementioned technique by taking up a less demanding

question, the nondifferentiability of the Brownian path.

9.16 Definition: For a continuous function f: [0,=) X R, we

denote by

(9.12) Dlim f(tf+h) - f(t)

h.O±

the upper (right and left) Dini derivates at t, and by

(9.13) DA f(t) = lim f(t+h) - f(t)

the lower (right and left) Dini derivates at t. The func-

tion f is said to be differentiable at t from the right

(respectively, the left), if D+f(t) and D f(t) (respectively,

D-f(t) and D f(t)) are finite numbers and equal. The func-

tion f is said to be differentiable at t>O if it is

differentiable from both the right and the left and the four

Dini derivates agree. At t=O, differentiability is defined

as differentiability from the right.

9.17 Problem: Show that

(9..14) P[weQ; D+Wt() = and D+Wt() = -] = ; Ost<~.

9.18 Theorem: Paley, Wiener and Zygmund (1932)

For almost every wEQ, the Brownian sample path W.(O) is

nowhere differentiable. More precisely, the set
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(9.15) twEn:; for- each te[O,-), either D+Wt(w)=m or D+Wt(c0)=m3

contains an event FeD with P(F) = 1.

Remark: At every point t of local maximum for W. (w) we have D+WtSO,

and at every point s of local minimum, D +Ws0. Thus, the "or"
..

in (9.15) cannot be replaced by "and".

Remark: We do not know whether the set in (9.15) belongs to $W

Proof:

It is enough to consider the interval [0,1]. For fixed

integers jal, kzl, we define the set

(9.16) Ajk = [Dcn; IWt+h(w)-Wt(w)sCjh for some te[O,l]

and all hE[O,]).

Certainly we have

IQ;, -a ( D+Wt(a) sD Wt(w) K , for some tE[0,1]] = u U A
j=l t=1 jk

and the proof of the theorem will be complete if we find, for each

fixed j,k, an event CE¢ with P(C) = 0 and A c C.
jk

Let us fix a sample path wcAjk, i.e., suppose there exists

a number te[0,l] with IWt+h(O)-Wt()lJhjh for every Och k .

Take an integer na4k. Then there exists an integer i, llisn,

such that n L a t s n, and it is easily verified that we also

have i+ - t C + 1C (v=1,2,3). It follows that

I W()) Wi+1()l(W )-wt(w) + jWi(w)_Wt+w( ) j + = J _
n n n n

The crucial observation here is that the assumption wcAjk provides

information about the size of the Brownian increment, not only over
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the interval n i] but also over the neighbouring intervals

i+l i+2 i+2 i+3i- , -n] and [ i. Indeed,n n n n

Wi+ (a) - Wi+l (@)lWi+2 - Wtl-Wi+ tl n n n
n n n n

IW+3.() - Wi+2(m):I W. tW Wi+2 _ WI j + 3j 7j
n n n n

Therefore, with

C(n) _A 3 [we; jWi+(W) W+ 2v+l 
v=1 n n

n
we have observed that Ak c U C (n) holds for every n24k.

But now

(Wi+v- W i+_-l) - z v v=l,2,3

n n

are independent, standard normal random variables, and one can

easily verify the bound P[IZ a ce] s c. It develops that

105 j3
(9.17) P(Cn)) ; i=l,2,...,n.

We have Ajkc C upon taking

03 n (n)
(9.18). c A n U n) c

n=-4k i=l

and (9.17) shows us that P(C) s inf P( U C(n)) = O.
na4k i=1 i

9.19 Problem: By modifying the above proof, establish the

following stronger result: for almost every eQ, the

Brownian path W. () is nowhere Holder continuous with
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exponent Y > .1 (Hint: By analogy with (9.16), consider

the sets

(9.19) Ajk = A (3e; IWt+h(E)-Wt(w)l s jhY for some tc[O,l]

and all hE[0,-]3

and show that each Ajk is included in a P-null event). a

Our next result is the celebrated "law of the iterated

logarithm", which describes tne oscillations of Brownian motion

near t=O and as te-. In preparation for the theorem, we

recall the following upper and lower bounds on the tail of the

normal distribution.

9.20 Problem: For every x>O, we have
2 2 2

(9.20) 2 e 2 s e 2 du xe 2
l+x x

9.21 Theorem: Law of the iterated logarithm (A. Hin6in (1933)).

For almost every cnO, we have

Wt(W) wt(X)
(i) l 2m , (ii) lim 1

to 2t log log t t 2o 2t log log t

(iii) lim = t(M) 1, (iv) lim Wt(W)
t -.c J2 log log t' to -/ 2t log log t=

Remark: By symmetry, property (ii) follows from (i), and by

time inversion, properties (iii) and (iv) follow from

(i) and (ii), respectively (cf. Lemma 9.4). Thus if suffices

to establish (i).
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Proof:

The submartingale inequality (Theorem 1.3.6 (i)) applied to

the exponential martingale [Mt,;t; O0t(oi of (8.7) gives

(9.21) P[ max (Ws 2 s) a] = P[ max M 2 e k e- k ' > >
O0ssst Ossst

With the notation h(t) A 2t log log ~ and fixed numbers 8,5

in (0,1), we choose x = (1+)e- n h(Gn), f = 2 h( ), and

t=8n in (9.21), which becomes:

P[ max n(W s - % s) A] ; na 1

(n log1 +

The last expression is the general term of a convergent series;

by the Borel-Cantelli lemma, there exists an event e a of

probability one and an integer-valued random variable Nes, so

that for every meQ we have

msax n[W s( 1) --n 8h(ns h(n)max -h 2 ( M h(s ) 2 ' n2N()'

Thus, for every tE(en + l en ]:

Wt(w) i max n W . (1 + 52)h(n) (1 + -) i h(t).

Therefore,

W t (o)
sup h(t ) s (1 + ) i 

n+l nt t 

holds for every weees , and letting ntm we obtain
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lim t (1 + )a.s. P. By letting 5X0, etl through
t4o h(t)

the rationals, we deduce

Wt
(9.22) lim s 1 ; a.s.P.

t$0 h(t)

In order to obtain an inequality in the opposite direction,

we have to employ the second half of the Borel-Cantelli lemma,

which relies on independence. We introduce the independent events

n en

again for fixed 0<e,(1. Inequality (9.20) with
. 1·

x = 2 log n + 2 log log 1 provides lower bounds on the prob-

abilities of these events:

-w ] e const.nW n a t ; nn2.
nen 9n+1 / 2rr (x+ 1) n logn

Now the last expression is the general term of a divergent series,

and the second half. of the Borel-Cantelli lemma (Chung (1974),

p. 76 or Ash (1972), p. 272) guarantees the existence of an event

D E9 with P(') = 1 such that, for every uew and kl, there

exists an integer m = m(k,w) a k with

(9.23) W m(X) - W m+l l() a l- h().).

On the other hand, (9.22) applied to the Brownian motion -W

shows that there exist an event ~Q*E of probability one and
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an integer-valued random variable N*, so that for every aoO*

(9.24) - W n+ ( ) f 2h(n +1) 48 h(en); naN*(w).

From (9.23) and (9.24) we conclude that, for every CeQ 9 n Q* and

every integer kal, there exists an integer m = m(k,w) a k v N*(c)

such that

W m(@)

h(em)

By letting m-., we conclude that lim t 2 - 4 holds
trO h(t)

a.s.P, and letting 90O through the rationals we obtain

W,
lim _ t 2 1: a.s.P. '
t4O h(t)

We observed in Remark 2.12 that almost every Brownian sample

path is locally H3lder continuous with exponent y for every

yE(O,2), and we also saw in Problem 9.19 that Brownian paths are

1
nowhere locally Hodlder continuous for any exponent > . The

Law of the Iterated Logarithm applied to [Wt+h-Wh; 0Oh<o] for

fixed tO0 gives

(Wt+hWtI 
(9·5). lih = , P - almost surely.

hO h

Thus a typical Brownian path cannot be "locally H3lder continuous

with exponent y, = tI everywhere on [0, ); however, one may not

conclude from this that such a path has the abovementioned property

nowhere on [0,~); see Remark 9.15 and the Notes, section 11.
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Another way to measure the oscillations of the Brownian path

is to seek a modulus of continuity. A function h(.) is called

a modulus of continuity for the function f: [0,T] . R if

Os<tcT and It-sI | s imply If(t)-f(s)l c h(5), for all

sufficiently small positive 6. Because of the Law of the Iterated

Logarithm, any modulus of continuity for Brownian motion on a

bounded interval, say [0,1], should be at least as large as

025 log log , but because of the established local H6lder

continuity it need not be any larger than a constant multiple of

*-Y, for any ye(0,1/2). A remarkable result by P. Levy (1937)

asserts that with

(9.26) h(5) A 25 log E,; 5>0o

ch(b) is a modulus of continuity for almost every Brownian path

on [0,1] if c>l, but is a modulus for almost no Brownian path

on [0,1] if O<c(1. We say that h in (9.26) is the exact

modulus of continuity of almost every Brownian path. The assertion

Just made is a straightforward consequence of the following theorem.

9.22 Theorem: L6vy modulus (1937)

With h: (0,1] . (0,D) -given by (9.26), we have

(9.27) P[lim h max IWt-Wsl = 1] = 1.
S40 00 Oss<tal

t-ss5

Proof:

With nil, 0(<l1, we have by the independence of increments

and (9.20):
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P[ max JW - W (!-) h(2- n ] = (1_-) ,exp(-g2n)
!Gj 2 n j

2n 2n

2
x

n/2 n/2 -n 2 e2
where g A 2P[2 W > (l-) 2n/2 h(2-n)] 1 

=ne~err 1/2ni;~,(l~1/2 i2T x + x

and x = 4(1-0) 2n log 2. It develops easily that for nzl

sufficiently large, we have ag (const.) . 2-n( - ), and thus

P[ max. JW. - W I s (1-e) h(2 -n)] s (const.) . exp(-2ne).
1l.j~2 n j j-1

2n 2n

By the Borel-Cantelli lemma, there exists an event Q Ec with

P() = 1 and an integer-valued-random variables Ne such that,

for every we2 , we have

mx1 mx IW- J()-Wj (0)I > /I n:N 8(W).

h(2-n) lijg2 W n 2n

Consequently, we obtain

lim h-) max Jwt-Ws5 /J
5 ~ 0 aOs(trl

t-s45

and by letting ejO along the rationals, we have

lim max Jwt-W sl a 1, a.s. P.
550 h(5) Ozs(t.1
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For the proof of the opposite inequality, which is much

more demanding, we select 68(0,1) and e > - 1, and observe
1-8

the inequalities

(9.28) P[ max W.- W, a l+E]
lcigjc2 h(k2 - n) n

2n 2n

k=j-ic2

2ne

k Pi iix w Wi a2 (1+E) h(k )
k=l 2a iel' i" t2 n n 

The probability in the last summand of (9.28) is bounded above;

thanks to (9.20), by a constant multiple of n-~(k2 - )( ) n26 2n 22

2and 2 (1E)2 Jn (+1 (1+e)2 (l(l+e) )kk=l 0 . 1(1+X)
and . k (' Cl ica ) 2 x(2

k=with .p = () - (1+) a positive constant by choice of+(+)

Therefore,

)w - w l
P[ max J/2n i/2 const. -pn

variable N such thate
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,w (~) - w
iW n(.)- Wi/ n(i ) n

(9.29) max 1+e; naN () .

:zisjr2n2 h() e

k=j -is52no 2n

9.23 Problem: Consider the set D = U D of dyadic rationals
n=l n

in [0,1], with D n = [k2 -n k=0,1,...,2n 3. For every

ae$e and every n2Ne(w), the inequality

(9.30) Jwt(w)-Ws(w)l s (1+e) [2 z h(2-j) +h(t-s)]
j=n+l

is valid for every pair (s,t) of dyadic rationals satisfying

O<t-s<2n(1-)

(Hint: Proceed as in the proof of Theorem 2.8 and use the

fact that h(.) is strictly increasing on (O,1]). E

Returning to the proof of Theorem 9.22, let us observe that

if the dyadic rationals s,t in (9.30) are chosen to satisfy

the stronger condition

(9.31) 2-(n+l)(
1-8) s 5 a t-s < 2-n(l-

0)

then because

Z h(2 J) S ch(2 l c 2-il) h

j=n+l

holds for an appropriate constant c>O, we may conclude from

(9.30) and the continuity of W. (w) that for every ceQ and

nzN (cu),
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max IWt(o) -Ws()l (1+c)[1+ 2c 2-ie(n+l)]
h (0) O s5tC l

t-s=5

holds for all 5E[ 2
- (n+l')( 1- G), 2-n(1-e)) Letting no-, we obtain

lim 1 max IWt(0) - Ws() 1+ E
510 h(b) Ossitsl

t-s=5

and because h is increasing, we may replace the condition t-s=5

by t-ss5 in the above expression. It remains only to let TeO

(and hence simultaneously. cO) along the rationals, to conclude

that

im 1 max Jwt(w) - Ws(W)J s 1; as.P.
Oss<tsl
t-ss5

The proof is complete.
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Since C = + , the integrand P4[Xs +t El1+] isT+ T+ T S' T+

S+-measurable. This justifies the first equality in (S.4). A

similar justification can be given for the last equality. The

second and fourth equalities are consequences of the fact that

random variables which agree a.s. have the same conditional

expectations. The remaining equality is (7.2), where we take

account of the fact that T(-<, A [S<-]E7?.

7.13 Solution:

(i) Let F (= aCC[O,); C is constant on [0, 1]}. Sincen n
F c {CL: B/ (o) = 03, we have P°(Fn) = O, V nl. But then

~n -- B1/n n
0

F = U F also has P -measure zero.
n=l

(ii) We have F = U F for each positive integer m, so
n=l n

BFE3l/m, Y mal. It follows that Fe Bo+.

(iii) If FE3o, then F c G for some GE3B with P (G) = O.

Such a G has the form G -= eD(O)er] for some FR8(R),

and P (G) = 0 implies 0 f p. But then the identically

zero function, which is a member of F, is not in G.

This contradiction shows that F X 50.

This example provides another solution to Problem 7.4.
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now

iC n) n Ewot ; lWi+ (W) - W i+vl(w)fi 2j (v+Y
-v=1 ....n n

has probability bounded above by [2j(v+l) n -(¥-(Y) , and

everything works as before provided t(Y-j) > 1. When y >,

we can choose t to satisfy this inequality.

9.20 Solution: An integration by parts gives

2 2 2
U X Ux*2 2

e du = 2 e du,x 2
x xu

so 2 U2 2x U u
2 (1+1 2 d 1 

e (1+ 2)e du j (1+ e du.
u x x

The upper bound has already been observed in (3.1)', and it

is also implicit in the equality in the

relation just above.

9.23 Solution: Certainly it suffices to show that for every

m>naN9 (w), we have

n-1l
(S.5) JWt(w)-Ws()lI,(l+c)[2 z h(2-j) + h(t-s)]

j=n+l

valid for every s,teDm satisfying 0 <t-s< 2
- n(1 8) For

m = n+l, (S.5) follows-from (9.29). Let us assume that (S.5)

holds for m=n+l,...,M-l. With s,teD and O<t-s<2- n(l - 8)

we consider, as in the proof of Theorem 2.8, the numbers
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t = maxtucDMl; ust3 and s = min(ueDMl; us37 and
1 -M 1 -M

observe the relations t-tl 2 , s -sg2 and

Otl- sl t-s<2 - n(1- ) . We have

M-2
1w l (C)-W l(c)Jl(l+c) [2 z h(2-j ) + h(t -sl) 
t s j=n+l

by the induction assumption, and IWt(c)-W 1 (w) (l+e)h(2-M)

as well as |Ws (O)-W 1 (e)Js (1+E)h(2- M) because of (9.29).

Since h(tl-s )eh(t-s), we conclude that (S.5) holds with

m=M.
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-2.11: NOTES

Section 2.1: The first quantitative work on Brownian motion is

due to Bachelier (1900), who was interested in stock price

fluctuations. Einstein (1905) derived the transition density

for Brownian motion from the molecular-kinetic theory of

heat. A rigorous mathematical treatment of Brownian motion

began with N. Wiener (1923, 1924), who provided the first

existence proof. The most profound work in this early period

is that of P. Levy (1939, 1948); he introduced the construc-

tion by interpolation expounded in Section 2.3, studied in

detail the passage times and other related functionals

(Section 2.8), described in detail the so-called "fine

structure" of the typical sample path (Section 2.9), and

discovered the notion and properties of the "mesure du

voisinage" or "local time" (Section 3.6 and Chapter 6).

Most amazingly, he carried out this program without the

formal concepts and tools of filtrations, stopping times, or

the strong Markov property.

Section 2.2: The construction of a probability measure from a

consistent family of finite-dimensional distributions is

clearly explained in Kolmogorov (1933); Daniell (1918-19)

had constructed earlier an integral on a space of sequences.

The existence of a continuous modification under the con-

ditions of Theorem 2.8 was established by Kolmogorov
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(published in Slutsky (1937)); Loive ((1960), p. 519) noticed

that the same argument also provides local IF6lder continuity

with exponent y for any o<Y< . For related results, see

also Centsov (1956.a). The extension to random fields as in

Problem 2.9 was carried out by Centsov (1956.b).

Section 2.3: The Haar function construction of Brownian motion

was originally carried out by P. Levy (1948) and later

simplified by Ciesielski (1961).

Section 2.4 is adapted from Billingsley (1968). The original

proof of Theorem 4.17 is in Donsker (1951), but the one

offered here is essentially due to Prohorov (1956).

Sections 2.5, 2.6: The "Markov property" derives its name from

A.A. Markov, whose own work (1906) was in discrete time

and state space; in that context, of course, the "usual"

and the "strong" Markov properties coincide. It was not

immediately realized that the latter is actually stronger

than the former; Ray ((1956), pp. 463-464) provides an

example of a continuous Markov process which is not strongly

Markov. It is rather amazing that a complete and rigorous

statement about the strongly Markovian character of Brownian

motion (Theorem 6.15) was proved only in 1956; see Hunt (1956).

A Markov family for which the function x Ef(Xt) is

continuous for any bounded, continuous f: RdP R and
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te[O,w) is said to have the Feller property, and a right-

continuous Markov family with the Feller property is strongly

Markovian. Very readable introductions to Markov process

theory can be found in Dynkin & Yushkevich (1969), Wentzell

((1982), Chapters 8-13) and Chung (1982), whilst more compre-

hensive treatments are those by Dynkin (1965) and Blumenthal

& Getoor (1968). Markov processes with continuous sample

paths receive very detailed treatments in the monographs by

Ito & McKean (1974), Stroock & Varadhan (1979) and Knight

(1981).

Sections 2.8, 2.9: The material here comes mostly from P. Levy

(1939, 1948). Section 1.4 in D. Freedman (1971) can be

consulted for further information on the subject matter of

Theorems 9.6, 9.9 and 9.12. Our discussion of the law of the

iterated logarithm follows McKean (1969) and Williams (1979).

Theorem 9.18 was strengthened by Dvoretzky (1963), who showed

that there exists a universal constant c>0 such that

I Wt+h (to) -Wt (W))
P[CDEc;-lim a c, V tE[O, )] = 1.

For every wER, 8 A ftE[O,Cc); 1i-- ( c]

has been called by Kahane (1976) the set of slow points from

the right for the path W.(c). Fubini's theorem applied

to (9.25) shows that meas(g C)= 0 for P - a.e..we but,

for a typical path, 8 is far from being empty; in fact,
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we have

! i't+h(w) Wt(w)I
P[EcQ; inf lim = 1] = 1.

Ost<e hO h-

This is proved in B.Davis (1983), where we refer the interested

reader for more information and references on this subject.
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3.1 INTRODUCTION

A tremendous range of problems in the natural, social and

biological sciences came under the dominion of the theory of

functions of a real variable when Newton and Leibnitz invented

the calculus. The primary components of this invention were the

use of differentation to describe rates of change, the use of

integration to pass to the limit in approximating sums, and the

fundamental theorem of calculus, which relates the two concepts

and thereby makes the latter amenable to computation. All of this

gave rise to the concept of ordinary differential equations, and

it is the application of these equations to the modelling of real-

world phenomena which reveals much of the power of calculus.

Stochastic calculus grew out of the need to assign meaning

to ordinary differential equations involving continuous stochastic

processes. Since the most important continuous process, Brownian

motion, cannot be differentiated, stochastic calculus takes the

track opposite to that of classical calculus: the stochastic inte-

gral is defined first, and then the stochastic differential is given

meaning through the fundamental "theorem" of calculus. This

"theorem" is really a definition in stochastic calculus, because

the differential has no meaning apart from that assigned to it

when it enters an integral. For this theory to achieve its full

potential, it must have some simple rules for computation. These

are contained in the change of variable formula (Ito's rule),

which is the counterpart of the chain rule from classical calculus.
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Stochastic calculus has an important additional feature not

found in its classical counterpart, a feature based on the change

of measure theorem of Girsanov. This result provides a device

for solving stochastic differential equations driven by Brownian

motion by changing the underlying probability measure, so that

the process which was the driving Rrownian motion becomes, under the

new probability measure, the solution to the differential equation.

This profound idea is first presented in Section 5, but it does

not reach its culmination until the discussion of weak solutions

of stochastic differential equations in Chapter 4. In some

cases, this device is merely a convenient way of finding out the

distribution of an already existent solution of a stochastic

differential equation; in other cases it provides us with a

proof of the existence of a solution when the more standard

existence proofs fail. Although "optional" in the sense that

stochastic calculus can (and did for 25 years) exist and be

useful without it, the Girsanov theorem today plays such a central

role in further developments of the subject that the reader would

be remiss not to come to acquire a thorough understanding of this

admittedly difficult concept. We make extensive use of it in

Chapter 5.

We take up applications of the stochastic integral to problems

of optimal stopping, optimal control, and filtering in Chapter 7.



3.2.1

3.2: CONSTRUCTION OF THE STOCHASTIC INTEGRAL

Let us consider a continuous, square-integrable martingale

M = fMt,vt; Ost(o3] on a probability space (Q,, P) equipped with

the filtration fat], which will be assumed throughout this chapter

to satisfy the usual conditions of Definition 1.3.10. We have

shown in Section 2.7 how to obtain such a filtration for standard

Brownian motion. We assume M o = 0 a.s. P. Such a process ME¢2

is of unbounded variation on any finite interval [0,T] (c.f.

Problems 1.5.9, 1.5.10 and thediscussion following them), and

consequently integrals of the form

T
(2.1) IT(X) = [ Xt(c) dMt(w)

cannot be defined "pathwise" (i.e., for each wEC separately)

as ordinary Lebesgue-Stieltjes integrals. Nevertheless, the

martingale M has a finite second (or quadratic) variation, given

by the continuous, increasing process <M>; c.f. Theorem 1.5.6.

It is precisely this fact that allows one to proceed, in a highly

nontrivial yet straightforward manner, with the construction of the

stochastic integral (2.1) with respect to the continuous, square-

integrable martingale M, for an appropriate class of integrands

X. The construction is due to Ito [1942] for the special case

M = W = Brownian motion, and to Kunita & Watanabe [116g] for general

Mce2. We shall first confine ourselves to McM2, and denote by

<M> the unique (up to indistinguishability) adapted, continuous
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and increasing process, such that { - <M>t', t; Oct<-) is a

martingale (c.f. Definition 1.5.3 and Theorem 1.5.11). The con-

struction will then be extended to general continuous, local

martingales M.

We now consider what kinds of integrands are appropriate for

(2.1). We first define a measure aM on ([O,-) x , a[0,m) a )

by setting

(2.1)' ~LM (A) = E r 1A(t, ) d<Mt>Q().
t: 0

We will say that two measurable, adapted processes

X = {Xt,at; Ost<w3 and Y = {Yt,at,; Ot<x] are equivalent if

Xt(w ) = Yt(w); a M- a.e. (t,m).

This defines an equivalence relation. For a measurable, [(t] -

adapted process X, we define

T
[X]2 A Er X t d<Mht,

provided that the right-hand side is finite. Then [X]T is the

L2-norm for X, regarded as a function of (t,ax) restricted to

the space [0,T] x Q, under the measure WM. We have [X-Y]T = 0

for all T>O if and only if X and Y are equivalent. The

stochastic integral will be defined in such a manner that I(X)

and -I(Y) will be indistinguishable:
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P[IT(X) = IT(Y), Y TaO] = 1,

wherever X and Y are equivalent.

2.1 Definition: Let S denote the set of equivalence classes

of all measurable, DOt] - adapted processes X, for which

[X]T < X for all T>O. We define a metric on £ by

[X-Y], where

[X] Z 2-n(l [X3n).
n=l

Let £* denote the set of equivalence classes of progressively

measurable processes satisfying [X]T < X for all T>O, and

define a metric of £* in the same way.

We shall follow the usual custom of not being too careful

about the distinction between equivalence classes and the processes

which are members of those equivalence classes. For example, we

will have no qualms about saying "Z* consists of those processes

in £ which are progressively measurable".

Note that £ (respectively, £*) contains all measurable,

[Et3 - adapted (respectively, progressively measurable) processes.

Both £ and £* depend on the martingale M = [Mt,3t; tO]).

When we wish to indicate this dependence explicitly, we write

S(M) and £*(M).
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When <(Mt(o) is an absolutely continuous function of t

for P - a.e. o, one is able to construct Xt dMt for all

XcE and all TaO. In the absence of this condition on <M> ,

we shall construct the stochastic integral for X in the slightly

smaller class £*. In order to define the stochastic integral with

respect to general martingales in V12 (possibly discontinuous,

such as the compensated Poisson process), one has to select an even

narrower class of integrands among the so-called predictable pro-

cesses. This notion is a slight extension of left-continuity of

the sample paths of the process; since we do not develop stochastic

integration with respect to discontinuous martingales, we shall

forego further discussion and send the interested reader to the

literature (Kunita & Watanabe [1967], Liptser & Shiryayev [197*]

Ikeda & Watanabe [1 81 ], Elliott [ SZ ], Chung & Williams [183 ]).

Later in this section, we weaken the conditions that Me7c7

and [X] T < , V TmO, replacing them by M c ' c and

P[ X2 d<M>t < a] = 1, V TO.

This is accomplished by localization.

We pause in our development of the stochastic integral to

prove a lemma we will need in Section 4. For fO<T<, let 

denote the class of processes X in £* for which Xt(o) = 0; ¥

t>T, wen. For T= , £T is defined as the class of processes

XE£* for which E f Xt d<M>t ( (a condition we already have

for T<c, by virtue of membership in £*). A process Xe£Z can
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be identified with one defined only for tE[, T], wen,

and so we can regard £T as a subspace of the Hilbert space

(2.1)" XT - 2 ([O,T] x Q, [O,T] 2 aT' 4M).

Here and below we replace [O,T] by [O,.) when T=w.

2.1' Lemma: For O(Taw, S is a closed subspace of T. In

particular, S£ is complete under the norm

T 12 /2
[X]T [EIf Xt d(M>t]

0

Proof:

Let (n) 3n 1 be a convergent sequence in St with limit

XE)T. We may extract a subsequence, also called [X (n)n=, for

which

uM[ ( t , ) cE[ O , T ] x n; lim x4n) () = Xt(w) = 1.
n-o

By virtue of its membership in XT' X is 8[O0,T] 2 3 T - measurable,

but it may not be progressively measurable. However, with

(n)
A A ((t,w) e [O,T] x i; lim X t (w) exits in R3,

n.=

the process

/im X t (); (t)A

0 ; (t,() P A

is progressively measurable, belongs to £T and lim[X(n)-Y]T =
n-To

2.2 Definition: A process X is called simple if there exists

a strictly increasing sequence of real numbers {ft 3 0 with
n n=O
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to=0 and lim t = a, as well as a sequence of random vari-
n

ables (S n=l with supln(c)l ) C<-, for every wcE, such
nzO

that -n is Atn- measurable for every naO and

XtW() = go(D)lo } (t) + E Y g(w)i (t); O(6t(ol, WE.
i=O ( i'tit+l]

The class of all simple processes will be denoted by £o

Note that, because members of So are progressively measurable

and bounded, we have o c *(M) c (M).

Our program for the construction of the stochastic integral

(2.1) can now be outlined as follows: the integral is defined in

the obvious way for Xc£S as a martingale transform:
o

n-l
It(X) A E gi(Mt Mt ) + n(Mt-Mt )

=i=O i+l ti n t

(2.2)
=E i (MtAt -Mt At O.t(K,
i=O i+l ti

where n0a is the unique integer for which tnct<tn+l' and its

properties are studied. The definition is then extended to

integrands Xc£* and Xc! ,thanks to the crucial results which

show that elements of £* and £ can be approximated, in a

suitable sense, by simple processes (Propositions 2.5 and 2.7).

2.3 Lemma: Let X be a bounded, measurable, [at] - adapted

process. Then there exists a sequence [X(m)m 1 Of

simple processes such that

T'
(2.3) sup lim E m) X dt .

T>O m-a 0O
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Proof:

We shall show how to construct, for each fixed T>O, a

sequence x( )m=l of bounded, simple processes so that

lim ES Ix Xt dt = .
n-4~ 0

Thus, for each positive integer m, there is another integer nm

such that

(nm'm) 2 1

(n, ,m)
and the sequence {X ]m l has the desired properties.

Henceforth, T is a fixed, positive number.

We proceed in three steps.

(a) Suppose that X is continuous; then the sequence of simple

processes

Xt n ) (C) I X (o)l 03 (t) + E Xk (M)l k k+l (t); nal,
k=O -T - n T, T]

2 2 2

T (n) 
satisfies lim E Ix t n)-Xti2dt = 0 by the bounded convergence

n.c 0
theorem.

(b) Now suppose that X is progressively measurable; we consider

the continuous, progressively measurable processes
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(2 .4 ) Ft(a) Xs ((D)ds; m) A m[Ft (w)-F 1 ((D)]; mal,
(2~.4) Ft() Jf-o s( (t- 

for tzO, oeQ (c.f. Problem 1.2.18). By virtue of step

(a) above, there exist.s-, for each m2l, a sequence of

simple processes [x(m'n)=1 such that

lim E (Im n) - m) 1 2 = O. Let us consider the

['0, T] i AT - measurable product set

A ( (t,,w) c[O,T] x Q; lim ruJ = Xt(co)3

For each wcof, the cross-section

A f te[O,T]; (t,w) E A]

is B[[O,T] - measurable and, according to the fundamental

theorem of calculus, has Lebesgue measure zero. The bounded

-convergence theorem now gives lim Ej IX. )-Xtl dt = O, and

(m,n )
so a sequence 3X m ) of bounded, simple processes can

be chosen for which

T (m,n)
lim E0 I m) Xt1 dt :.
man 0
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(c) Finally, let X be measurable and adapted. We cannot

guarantee immediately that the continuous process

F = FFt; Ot<x-) in (2.4) is progressively measurable, because

we do not know whether it is adapted. We do know, however,

that the process X has a progressively measurable modification

Y (Proposition 1.1.12), and we now show that the progressively
tAT

measurable process [Gt d f Ysds, 3t; OtgT] is a modifica-

tion of F.

Let X denote Lebesgue measure. For the measurable

process qnt(i) = 1{Xt () f Yt(w); OCteT, men, we have from

Fubini: EJ rt(w)dt = I P[Xt( ) /i Yt( w)]dt = 0. Therefore,

rT
t nt(w)dt= 0 for P - a.e. we3. Now [Ft / Gt) is con-

O~ T ~T

tained in the event {co; f t(w)dt > O], Gt is At - measur-

able, and, by assumption, 3A contains all subsets of P-

null events. Therefore, Ft is also At - measurable.

Adaptivity and continuity imply progressive measurability,

and we may now repeat verbatim the argument in (b).

2.4 Problem: This problem outlines a method by which the use

of Proposition 1.1.12, a result not proved in this text, can

be avoided in part (c) of the proof of Lemma 2.3. Let X

be a bounded,measurable, ([t) - adapted process. Let 0(T(o

be fixed. We wish to construct a sequence [X(k)3 k=l of

simple processes so that
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(2.5) lim Es ! ) - Xt dt_ 0.
k-.d 0 O.

To simplify notation, we set X t = 0 for tsO. Let

:P R _ {j2 ; j = ±1,±2,...) be given by

cpn(t) - n * for < n t Jn
2 2 2_

(a-) Fix s;O. S)how that t 1n cp n(t-s) + s(t, and that

X(n, s) = X (t-s)+s' t 
tX(t-s)+s' jt t~-

is a simple, adapted process.

T
(b) Show that lim EXt - Xh dt = 0.

hsO 0

(c) Use (a) and (b) to show that

lim EJ Xns') - Xtl2 ds dt =0.
n--o 00

(d) Show that for some choice of s20 and some increasing

sequence {nk]k= 1 of integers, (2.5) holds with X( ) = X( s)

This argument i s adcapted from Liptser & S,hiryayev [197T.

2.5 Proposition: If the function t <(Mt(w) is absolutely con-

tinuous for P - a.e. oeQ, then £ is dense in .£ with
r

respect to the metric of Definition 2.1.
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Proof:

If Xc£ is bounded, then Lemma 2.3 guarantees the existence

of a bounded sequence (X(m)] of simple processes satisfying (2.3).

From these we extract a subsequence (mX k , such that the set

(to,) ~C [0,c) x Q; lim X t (a)) Xt(a))3

has XxP - measure zero. The absolute continuity of t -, (M>t(W)

and the bounded convergence theorem now imply [X - X] - 0 as

k-. o.

If XeC is not necessarily bounded, we define

X )(O) _ X t ()i X t ()-n <, <,

and thereby obtain a sequence of bounded processes in £. The

dominated convergence theorem implies

[X(n)_X,2 T 2 d X2M M 0T Ef X t (IXtJ>n t

for every T>0, whence lim [X(n) - X] = 0. Each X(n) can be

approximated by bounded, simple processes, so X can be as well.
0

When t <M> is not an absolutely continuous function

of the time variable t, *we simply choose a more convenient

clock. We show how to do this in slightly greater generality than

needed for the present application.
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2.6 Lemma: Let [At; Ost<=3 be a continuous, increasing

(Definition 1.1I.4I) process adapted to the filtration of the

martingale M = [X t, t; Oat<o}]. If X = Xt, At; O3t(<o'

is a progressively measurable process satisfying

T2
Er X dAjo t dAt

for each T>O, then there exists a sequence [X(n)n of

simple processes such that

sup lim Ej IXtn) - Xt]2 dAt = 0.
T>O n-o 0

Proof:

We may assume without loss of generality that X is bounded

(c.f. second paragraph in the proof of Proposition 2.5), i.e.,

(2.6) c Xt(W)I C < ; t2O, wCQ.

As in the proof of Lemma 2.3, it suffices to show how to construct,

for each fixed T>0, a sequence x(n)n=l of simple processes

for which

lim E X(n) _ X t
2 dAt = 0.

n-4co f

Henceforth, T>O is fixed, and we assume without loss of generality

that
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(2.) Xt(W) = ; V t>'i', wQ.

We now describe the time change. Since At(Oc) + t is

strictly increasing in tzO for P - a.e. wu, there is a con-

tinuous, strictly increasing inverse function Ts(O ), defined

for sao, such that

A (w) + T ()5) = s; V s.e

In particular, Ts s and [T st] = [At + t a s}E¢t . Thus, for

each saO, T is a bounded stopping time for 3t}. Taking s as

our new time variable, we define a new filtration { s3 by

='s . T ; SaO,

and the time-changed process

Y (W) = XT ())); Sao, (-En

which is adapted to [&s3, because of the progressive measurability

of X (Proposition 1.2.17). Lemma 2.3 implies that, given any

E>0 and R>O, there is a simple process CYs,$s; Oss<-( for which

(2.8) E IYe - Y 12 ds < e/2.

But from (2.6), (2.7) it develops that
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EJ s Ydm E 1 [T r3 Xrp di
0 s 0 T ] X s

A T+T

EJ' A X+T ds g C (EAT-T)( ',

so by choosing R in (2.8) sufficiently large and setting Y=O0

for s>R, we can obtain

EBJ IY¢-YslJ ds < C.

Now Y- is simple, and because it vanishes for s>R, there is a
S

finite partition 0 = s sl< .. Ks n R with

YE)=S + t' 0ss(
{} O]J=l j-l ( Si-, ,s i]

where each s is measurable with respect to sj = FT and
'j Sj

bounded in absolute value by a constant, say K. Reverting to the

original clock, we observe that

t t+A =O [ 0 3 (t) + j= Ts 1(Ts T j
j-j=l -sl s

is measurable and adapted, because CT restricted to (Ts. t)

j-1l

is ;t-measurable (Lemma 1.2.14). We have

ESIXt-Xt dAt ESIX t-X (dAt + dt)

c EJ IYs--Y $ 2 ds < c.
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The proof is not yet complete because X is not a simple

process. To finish it off, we must show how to approximate

nt(T~ ) A IT (tl~) l(Ts (c) T (~)] ( t) ; °Ct<, EN,
,j-1 - sj

by simple processes. Recall that Ts c Ts s. and simplify
j-1 3

notation by taking sj1 = 1, s = 2.

Set 

T()() = 1- (T i ( ) )' i=l,271 m k-l k
k=1 2 M) m 

2[ 2

and define

(m) () A tT(1) ( (m) (),T2m) (t W)l 

m+1
2
E (M)l k- () k-1 k (t).

k=l 1 [T1 < m T2} (k-, k ]
2 2 2

Because k-l
Because [T 1 m T2] k-1 and 3T restricted to

~~2m 12

k-l (i)
IT1 < ] is k-l - measurable, (m) is simple

2m

Furthermore,

EI0 m)-lt12 dAt K [E(A )AT( ) AT2 (T(m) T1) m-.oG
2 2T 1
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2.7 Proposition: The set So of simple processes is dense

in £* with respect to the metric of Definition 2.1.

Proof:

Take At = <M>t in Lemma 2.6.

We have already defined the stochastic integral of a simple

process Xe£ o by the recipe (2.2). Let us list certain properties

of this integral: for X, YeO and )ss(t(<, we have

(2.9) I =(X) = O, a.s. P

(2.10) E[It(X) 1 s ] = I s ( X ), a.s. P

(2.11) E(It(X))2 = E X d<M>
It u u0

(2.12) III(X)Il = [X]

(2 .13 ) E[(It(X) - Is(X)) 215] =E[ t XU d(M>1UIs] a.s. P
"S

(2.14) I(aX + PY) = aI(X) + PI(Y); a, E RP.

Properties (2.9) and (2.14) are obvious. Property (2.10) follows

from the fact that for any Oss(t<= and any integer i1l, we

have, in the notation of (2.2),
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E Fi (tt Mt t)l ] - i(Ms^t M S ) a.s. P;
i-+1 i i+ 1 i

this can be verified separately for each of the three cases

scti. t isst. and t <s by using the Jt -measurability of

gi.' Thus, we see that I(X) = [It(X),Ft; Ost(<= is a continuous

martingale. With Oass't< and m and n chosen so that

tm ls<t and t ctt we have (c.f. the discussion precedingr-i m n n+'

Lemma 1.5.9)

(2.15) E[(It(X) - Is(X))2 a]

n-i

= E[[{ml(Mtm- MS) + i -i(Mt t)+ n(Mt Mt )3 s ]

=E[iM-1(Mt -MS + )i(Mt Mt) + tn (Mt Mt ) 2 IA]m i=m i+1 i n
2 n-l 2

m j m i+( i i+ 1

_Ms< + i(Mit i-M>ti +n )Is]

-E[m Xu d<(Mt> 3 

quadra t ic variation
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(2.16) <T(X)>t = Xu d<M

Setting s=O and taking expectations in (2.13), we obtain (2.11),

and (2.12) follows immediately, upon recalling Definition 1.5.18.

For XeC*, Proposition 2.7 implies the existence of a sequence

(X(n) 1n= c £ such that [X(n) - X] - 0 as n-o. It follows

from (2.12) and (2.14)) that

I(X(n))-I(X(m))il - II(X(n)-X(m))t1 = [x(n)-x(m) ] _ 

as n,m -. In other words, EI(X(n))n=1 is a Cauchy sequence

in '4. By Proposition 1.5.19, there exists a process

I(X) = It (X); Ost-ow in V7,c defined modulo indistinguishability,

such that III(X(n)) -I(X)II -0 as n-o. Because it belongs to

,2' I(X) enjoys properties (2.9) and (2.10). For Oss(t<m,

(n) n) (X
{Is(X( )n1 and [It(X( )]n=t converge in mean-square to I (X)

and It(X), respectively; so for Ae 5s, (2.13) applied to

Ex(n) ' g)n=l gives

(e 7) ~'[1A(lt (X) - (X))]2 (n)
(2.17) ]E[lA(It(X) -Is(X)) ]=im E[1A(It(x )-(X( )))2]

n-~

= lim E[lAJ (X(n))2 dM>] = E[1 X d<M>],
n-. A s s

where the last equality follows from lim[X(n) - X]t = O. This

proves that I(X) also satisfies (2.3) and, consequently, (2.11)

and (2.12). Because X and M are progressively measurable,
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t 2
X2 d(M`> :i it-mreasurable for fixed Oss(t=', and so (2.13)

S
gives us (2.16). The validity of (2.14) for X,YE£* also follows

from its validity for processes in Z upon passage to the limit.
0

The process I(X) for Xc£* is'well-defined; if we have two

sequences {X(n )n 1 and Y(n)n=l 1 in £ with the property

lim [(n)-] =, lim [Y(n)-X] = 0, we can construct a third
n-_= n_-=Q

sequence [Z( )3n=l with this property, by setting Z(2n-l) = X(n)

ad Z (2n ) =y(n)
and z(21) = y( ), for nal. The limit I(X) of the sequence

I(z1in ck, has to agree with the limits of both

(;equences, namely [I(X( )]n=l arid [I(Y(n))n= 1

2.8 Definition: For Xe£*, the stochastic integral of X with

respect to the martingale ME7' is the unique, square-inte-

grable martingale I(X) = {It(X), At; Ost<o] which satisfies

lim III(X(n)) - I(X)II = 0, for every sequence {X(n)]0l C
n--co

with lim [X(n) - X] = 0. We write

nIt (X ) X5 dM s, t0.

0

2.9 Proposition: For MeMC and XE£*, the stochastic integral

I(X) = [It(X),at; Ot<o(] of X with respect to M satisfies

(2.9) - (2.13), as well as (2.14) for every YE£*, and has

quadratic variation process given by (2.16). Furthermore,

for any two stopping times SeT of the filtration [0t3 and

any nuvlber t>O, we have
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(2.18) E[ItAT(X)tS] = IttS(X)' a.s. P.

With X, Yc£*, we have, a.s.P:

(2.19) E[( L^T(X) - ItAS(X))(It^T(Y) - ItAS(Y))Is S] =

tAT
E[ AS X uY d<( M>u ]

and in particular, for any number s in [0, t],

(2.20) E[(It(X) - s(X ) ) (It (Y) - Is(Y))] = E[S XuY d<I>Dlas].

Finally,

(2.21) ItAT(X ) = It (X ) a.s .,

where Xt(wL) _ X t (j) 1 }tsT(w)].

Proof:

We have already proved (2.9) - (2.14) and (2.16). From (2.10)

and the Optional Sampling Theorem (Problem 1.3.22(ii)), we obtain

(2.18). The same result applied to the martingale
t

I (X) - J XU d<M>u, t; taO3 provides the identities

E[(I (X)-ItriS (X)),I..y 2 MX) 2E(IT(X)tA(X) ] = E[ItT(X it s(X)SS]

t^T 2
=E[rt XU d<M> US] , valid P-a.s.

'tAS u
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Replacing X in this equation, first by X + Y and then by

X - Y and subtracting the resulting equations, we obtain (2.19).

It remains to prove (2.21). We write

ItAT(X) - I t () = ItAT(X) - [It() - tAT()]

Both [ItAT(X -5), %t; taO] and rIt() - It^T(X)' t; taO]

are in 72; we show that they both have quadratic variation zero,

and then appeal to Problem 1.5.12. Now relation (2.19) gives,

for the first process,

~E[(ltAnT(X.-8~~) -] ,tAT 2 p
E[(ItAT(X-~ ) - I~^T(X-~))21asT = E[J (X-)2 d<M>us] = 

sAT

a.s. P, and for the second:

t
E[(t() - ItAT())] = E[jF 2 d<M>] 0.= O

Since this is the expectation of the quadratic variation of

this process, we have the desired result.

2.10 Remark: If the sample paths t - (M>t(w) of the quadratic

variation process <M> are absolutely continuous functions

of t for P-a.e. w, then Proposition 2.5 can be used in

place of Proposition 2.7 to define I(X) for every Xe£.

We have I(X)c2C and all the properties of Proposition 2.9

in this case. The only sticking point in the above arguments
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under these conditions is the proof that the measurable process

Ft 2 X dM> is t-adapted. To see that it is, we can
t __ 0 S s s

choose Y, a progressively measurable modification of X

(Proposition 1.1.12), and define the progressively measurable
t t 2

process Gt A [ Ys d<M> . Following the proof of Lemma 2.3(c),
.S S

we can then show that P[Ft = Gt] = 1 holds for every t:O.

Because G is 3t-measurable, and at contains all P-

ncligible events in a (the usual conditionsl), F is easily

seen to be adapted to [$t] and continuous, hence progressively

measurable.

In the important case that M is standard Brownian motion

with (M>t = t, the use of the unproved Proposition 1.1.12 can

again be avoided. Problem 2.4 shows how to construct a sequence

[X(k)]Ok=l of bounded, simple processes so that (2.5) holds; in

particular, for k -almost every te[O,T],

t t.
Ft r s m (s X ds, a.s. P.

t , S ke O 

Since the right-hand side is At-measurable and At contains all null

events in 3, the left-hand side is also .t-measurable for X-a.e.t.

The continuity of the sample paths of tFt; taO] leads to the con-

clusion that this process is adapted to [Ot } .

We shall not continue to deal explicitly with the case of

absolutely continuous <M>t and Xc£, but all results obtained

for Xc£* can be modified in the obvious way to account for this

case. In later applications involving stochastic integrals with
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respect to martingales whose quadratic variations are absolutely

continuous, we shall require only measurability and adaptivity

rather than progressive measurability of integrands.

2.11 Problem: Let W = £Wt, t; Ostl(c] be a standard, one-

dimensional Brownian motion, and let T be a stopping time

of [at ] with ET ( C. Prove the "Wald identities"

E(WT) = 0, E(W) - = ET.

Warning: The Optional Sampling Theorem cannot be applied

directly because W does not have a last element and T

may not be bounded. The stopping time tAT is bounded for

fixed Ost<c, so E(Wt^T) = E(Wt^T) = E(tAT), but it

is not a priori evident that

(2.22) lim E(Wt^T) = EWT, lim E(Wt^T) = E(W).
t_0 to

2.12 Problem: Let W be as in Problem 2.11, let b be a real

number, and let Tb be the first passage time to b (Defini-

tion 2.6.1). Use Problem 2.11 to show that for b ¢ 0, we

have ETb = .

Suppose M = [MtAt; 0It(w and N = [Nt,at; 0ct<] are

c Then Irin 7o and take XcE*(M), YEZ*(N). Then It(X) A = X dMs,
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t
TN(Y) A f Y dM are also in ?z? and, according to (2.16),

t tIM 2 ,iN 2t
(IM(X)>t = f Xu d<MD, <(Y)>t= ' Yu d<N>.

0 0 u

We now derive the cr')o'.;: variation formula

(2.23) < (X), I (Y)>t= r XuYu d<M,N>u; t20, P-a.s.

If X and Y are simple, then it is straightforward to show

by a computation similar to (2.15) that for Oss<t<w,

(2.24) E[(It(X) - IN(X))(IN(Y) - IN

E[f XuYu d<M,N> u ]; P-a.s.

This is equivalent to (2.23). It remains to extend this result

from simple processes to the case of XEC*(M), Ye£*(N). We carry

out this extension in several stages.

2.13 Lemma: If M,NEc2, Xc£*(M) and X( n)nl C So is such

that for some T>O,

T
lim I -Xtn)X 2 d<M>t =O; a.s. P,

then

lim <I(X(n )), = I(X),N>t ; Ot<T, a.s. P.n ._
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Proof:

Problem 1.5.7 (iii) implies for O0t<T,

|II(X ( n ) ) -I(X) N> t l 2 . I(X(n) X)t t

X(n) X 12 dM> . <N> .

u u T O

2.14 Lemma: Tf M, Nc,2 and Xc..*(M), then

IM(2.25) <I (X), N>t = J XUd<M, N>U tO, a.s. P.

Proof:

We consider first the case of bounded X. Let V t be the

total variation of (M,N> on [O, t]. According to Lemma 2.6,

there exists a bounded sequence [X(n)n=l of simple processes

such that with At < t + V t

sup lim EJ - X dA 0.
T>O n-fw 0 u X d

Consequently, for each T>O, a subsequence [~(n)]nl can be

extracted, for which

Mln o n I) - xu I U O, a.s. P.

From (2.23) with Y 1, we have
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t
<IM (X= (n) X d<M, N>u; ta0, a.s. P,N>t

and letting n-w we obtain (2.25) from Lemma 2.13 and the bounded

convergence theorem.

If X is unbounded but nonnegative, we let

) = Xt() A n; 0Ct(o, ctoeQ.

We have just proved (2.25) when X is replaced by the bounded

process y(n), and we can now let n-*e, using Lemma 2.13 and the

monotone convergence theorem to obtain (2.25) for X. Finally,

for general Xe£*(M), we consider separately Xt+() A Xt(X) v 0

and X t (C) - (-Xt ()) V 0.

2.15 Proposition: If M,Ne7Y7, XeC*(M) and Ye£*(N), then

the equivalent formulae (2.23) and (2.24) hold.

Proof:

Lemma 2.14 states that d<M, IN(Y)> = Yd<M,> u .

Replacing N in (2.25) by IN(Y), we have

(IM(X), IN(Y)>t '= XUd<M,IN(Y)>U

M, N>, - a.
0 uu 
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2.16 Problem: Show that if M,NE¢ , XeN*(M) and YEZ*(N),

then

t t 2o Yx u d<M, ul t I X2d<M>u r Yud<N>u, Ost<(; P-a.s.

2.16' Problem: Let M = [Mt, t; Ot(=<]3 and Nt = [Nt,%t; Ost<Q(

be in 2c and suppose XE£*(M), Y E £*(N). Then the martin-

gales IM(X), IN (Y) are uniformly integrable and so have last

elements IM(X), IN(Y), the cross variation (IM(X), IN(Y)>t

converges almost surely as t-*o, and

E[IM(X) IN(Y)] = E<IM(X), IN (Y)>

= E r X tY t dfM,N>t

In particular,

E(F Xt dMt) EP X2 d<M>t.
O~~[0 0

,2.17 Proposition: Consider a martingale ME2N and a process

Xe.*(M). The stochastic integral IM(X) is the unique

martingale E 6 2 which satisfies

t

(2.26) <(,N>t= f X d<MN> ; Ot<o, a.s. P,

for every Ne¢2.
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Proof:

We already know from (2.25) that m = I (X) satisfies (2.26).

For uniqueness, suppose $ satisfies (2.26) for every NEc2.

Subtracting (2.25) from (2.26), we have

< - IM(x), N>t = O; Oct<-, a.s. P.

Setting N = $ - IM(X), we see that the martingale - IM (X)

has quadratic variation zero, so f = I M(X).

Proposition 2.17 characterizes the stochastic integral

I M (X) in terms of the more familiar Lebesgue-Stieltjes integral

appearing on the right-hand side of (2.26). Such a characterization

is extremely useful, as the following corollaries illustrate.
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2.18 Corollary: Suppose Me~?2, Xc£*(M) and N A I (X).

Suppose further that Ye£*(N). Then XYEC*(M) and

TN(y) = TM(XY).

Proof:

Because N>t = d<M>, we have

ET Xt Y dMt = Ef y d
0 0

for all T>0, so XY¢c*(M). For any NcE7 2 (2.23) gives

d<N, N>s = X d<M, I>s,

so

<IM(XY) >= f XsYs d<M, >
0

t
-= Y d<N, N> <I (), >

M IN>tAccording to Proposition 2.17, IM(xy) = IN(Y).
0

2.19 Corollary: Suppose M,Ac72, Xc£*(M) and 'c*(M)

and there exists a stopping time T of the ccmm.on filtration

for these processes, such that for P - almost every (n,

X () = g(W) M(co) ) =() t
t t t t OctcT(w)-

Then

IM(X) (o) = I (Z)(w); OstcT(cw), for P - a.e. u.

~~~It o P- -I- ~`- a e co.--
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Proof:

For any Nc, we have-

<M - M, N>t = O; OstsT,

and so (2.25) implies

T (X) - I (X), N>t 0 ; OstcT.

S-etting N IM(X) - I (X) and using Problem 1.5.12, we obtain

the desired result.

Corollary 2.19 shows that stochastic integrals are determined

locally by the local values of the integrator and integrand. This

fact allows us to broaden the classes of both integrators and

integrands, a project which we now undertake.

Let M = Mt,t; Ogt<w3 be a continuous, local martingale

on a probability space (Q,a,P) with Mo = 0 a.s., i.e., Metc 'loc

(Definition 1.5.13). Recall the standing assumption that [EtJ

satisfies the usual conditions. We define an equivalence relation

on the set of measurable, [at] - adapted processes just as we

did in the paragraph preceding Definition 2.1.

2.20 Definition: We denote by P the collection of equivalence

classes of all measurable, (3t] - adapted processes

X = [Xt,,t; Ot<}] satisfying

(2.27) .P[O X.t d<>t X a] = 1, for every TE [,).IT 2 dM
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We denote by p* the collection of equivalence classes of

all progressively measurable processes satisfying this

condition.

Again, we shall abuse terminology by speaking of P and p*

as if they were classes of processes. As an example of such an

abuse, we write P* c P, and if M belongs to 72' in which

case both £ and £* are defined, we write £ c p and c* eP*.

We shall continue our development only for integrands in P*.

If a.e. path t - <M>t (c o) of the quadratic variation process

<M> is an absolutely continuous function, we can choose integrands

from the wider class p. The reader will see how to accomplish

this with the aid of Remark 2.10 once we finish the development

for p*.

Because M is in ?cloc, there is a nondecreasing sequence

CSnnl=1 of stopping times of 3t3 such that lim Sn = a.s. P,
n-*o

and CMtAS lt; Ot<=] is in 2'. For xcP*, one constructs

another sequence of stopping times by setting

inf[:tcn; I X s (X ) d(M>s ( a ) a n]

n, if [...] = 0

This is also a nondecreasing sequence and, because of (2.27),

lim R = a, a.s. P. Set
nR

T,()= Rn() A Sn( )
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M(n)(a) A M () = X t(l')lT tnml
t ATn (n)' ) T t

T(n) (n)
Then M(n) E "I and X(n) C £ *(M(n)) n2, so I (X (n) is

defined. Corollary 2.19 implies that for lsnsfm,

M(n) (n)(X (x) ), OtTn,

so we may define the stochastic integral as

(2.28) It(X) IM(n)(x( n) on [OstITn .

This defirition is consistent and determines a continuous

process, which is also a local martingale.

2.?1 Definition: For M¢?C, loc and XcP-*, the stochastic

integral of X with respect to M is the process

I(X) = jIt(X),at; Oct<}co in cloc defined by (2.28).
t

As before, we often write S XsdMs instead of It(X).

Wnac, eneanctn0

When ME7C loc and XeP*, the integral I(X) will not in

general satisfy conditions (2.10) - (2.13), (2.18) - (2.20), or

(2.24), which involve expectations at fixed times or unrestricted

stopping times. However, the sample path properties (2.9), (2.14),

(2.16), (2.21) and (2.23) are still valid and can be easily proved

by localization. We have the following version of Proposition 2.17.
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C, loc
2.22 Proposition: Consider a local martingale Mec', and

a process XcP*(M). The stochastic integral IM(X) is the

unique martingale WiCloc which satisfies (2.26) for

every NE72 (or equivalently, for every N 5 o c )

P.23 Problem: Supporse M1,Nc7l oc and XcP*(M) Pn P*(N).

Show that for all a, Rc we have

i aMtN(X) = aIM (X) + IN (X).

2.24 Problem: Let M be standard, one-dimensional Brownian motion

and choose XEP. Show that there exists a sequence of simple

processes [X(n)=l suchthat.for every T>O,

T

r (n) - Xt dt= lim i x t d dt t

n-.~"0

and

linr sup IIt(X(n)) - It(X)I = 0
n-.a OgtcT

hold a.s. P.

2.25 Problem: Let M = W be standard Brownian motion and XeP.

We define for 0 ss(t< 

(2.29) tt(X) A XudW 2 du
· IL;~ 2 u; U t(X) Ct(X).

S , u S t

The process {exp rt(X),3t;. OitXo) is a supermartingale; it

is a martingale if X-e* o .
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Can one characterize the class of processes XeP*, for

which the "exponential supermartingale" [exp Ct(X),,t; Ost<a3

of the above Problem is in fact a martingale? This question is

at the heart of the important result known as Girsanov's theorem

(Theorem 5.1); we shall try to provide an answer in section 5.

2.26 Problem: Based on "first principles", i.e., on the definition

only, compute the stochastic integral f WsdWs when W is a

standard Brownian motion. The reader should consult the solu-

tion to this problem for discussion of alternate definitions of

integration with respect to Brownian motion.

We know all too well that it is one thing to develop a theory

of integration in some reasonable generality, and a completely

different task to compute the integral in any specific case of

interest. Indeed, one cannot be expected to repeat the (some-

times arduous) process which fortunately led to an anser in the

preceding problem. Just as we develop a calculus for the Riemann

integral, which provides us with tools necessary for more or less

mechanical computations, we need a stochastic calculus for the Ito

integral and its extensions. We take up this task in the next

section.
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3.3: THE CHANGE-OF-VARIABLE FORMULA

One of the most important tools in the study of stochastic

processes of the martingale type is the change-of-variable

formula, or "Ito's rule", as it is better known. It provides us

with an integral-differential calculus for the sample paths of

such processes.

Let us consider again a basic probability space (Q,a,P)

with an associated filtration [at ] which we always assume to

satisfy the usual conditions.

3.1. Definition: A continuous semimartingale X = {Xt, t; 0(t <co3

is an adapted process which has the decomposition, P- a.s.,

(3.1) X t X0 +Mt+Bt; 0 t < cc,

where M = (Mt,t; 0 < t <o E ,cloc (Definition 1.5.15)

and B = B t,t; 0 < t <co3 is the difference of continuous,

nondecreasing, adapted processes At, at; 0 < t <c3:

(3.2) B t =A t - A t; O < t (< 

with Ao = 0, P-a.s. We shall always assume that (3.2)

is the minimal decomposition of B; in other words, At is

the positive variation of B on [0,t) and A t is the

negative variation. The total variation of B on [0,t]

is then t ++A
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The following problem discusses the question of uniqueness

for the decomposition (3.1) of a continuous semimartingale.

3.2. Problem: Let X = CXt,at; O <t <ca3 be a continuous

semimartingale with decomposition (3.1). Suppose that

X has, another decomposition

X t = X+ Mt+Bt; O < t < oC,

where MR E ,Cloc and B is a continuous, adapted

process which has finite total variation on each bounded

interval [O,t]. Prove that P- a.s.,

Mt= Mt ., t = Bt; 0 < t < o.

Ito's formula states that a "smooth" function of a continuous

semimartingale is a continuous semimartingale, and provides us

with its decomposition.

3.3. Theorem: Ito (1951), Kunita & Watanabe (1967)

Let f : R - 3R be a function of class C

(continuous, with continuous first and second derivatives)

and let X = Xt, at; O(< t <3 be a semimartingale with

decomposition (3.1). Then, P- a.s.,

t t
(3.3) f(xt) = f(X°) + 0 f'(Xs)dMs + S f (Xs)dBs

t < < 

+ ½0f o Xc 5M, < t < 
2~ ~~ ~ -- '
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3.4. Remark: For fixed w and t > 0, the function X (w) is

bounded for 0 < s < t, so f'(X5(w)) is bounded on this

interval. It follows that S f'(Xs)dMs is defined as in
0

the last section and this stochastic integral is a

continuous, local martingale. The other two integrals

in (3.3) are to be understood in the Lebesgue-Stieltjes

sense, and so, as functions of the upper limit of

integration, are of bounded variation. Thus,

[f(Xt)' t; 0<t <co} is a continuous semimartingale.

3.5. Remark: Equation (3.3) is often written in differential

notation:

(3.3)' df(Xt) = f' (Xt)dMt + f'(Xt)dBt + f t)<

= f' (Xt)dX + f (Xt)d <M>t, 0 < t < o' .

This is the "chain-rule" for stochastic calculus.

Proof of Theorem 3.3:

The proof will be accomplished in several steps.

Step 1: Localization. In the notation of Definition 3.1 we

introduce, for each n > 1, the stopping time

0; if Ixol > n,

T n= inftt>0; IMtI > n or t > n or <M>t > n; if IXOI < n,

co° ; if IX0o < n and --. 3= 0.
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The resulting sequence is nondecreasing with lim T n = con

P- a.s Thus, if we can establish (3.3) for the stopped

process X(n) Xt^T ; t > 0, then we obtain the desired

result upon letting n-4 o. We may assume, therefore,

that X (w) and the random functions Mt(w), Wt(W) and

<M> t(w) on [0,co) x n are all bounded by a common

constant K; in particular, M is then a bounded

martingale. Under this assumption, we have IXtl < 3K;

0 < t < co, w E Q, so the values of f outside [-3K,3K]

are irrelevant. We assume without loss of generality

*that f has compact support, and so f, f' and f"

are bounded.

Step 2: Taylor expansion. Let us fix t > 0 and a partition

i t0,tl0 ,t..., tm ] of [0,t], with O = t0 < t1 < ... < t m = t.

A Taylor expansion yields

f(Xt) - f(X0) = k f(Xtk) f(Xtk 1)}
k=i k k-i

m m
= f' (Xt )(Xt -X )+ (r)tX -X 2

k-i k k-i

wheropriate (w )(w) + tisfyink(w) Xtk for someWe

appropriate 8k( w) satisfying O0< k( w) <l,w E n. We

conclude that

(3.4) f(Xt) - f(X0) = J 1() +J 2() + 1J 3(nl),
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where

m
J (i) _ X f'(Xt )(Btk -Btl )

k=l k-l k k-l

m

J2(h) _ Z f (Xt )(Mt Mt )

k=l k k-l

It is easily seen that Ji(n) converges to the Lebesgue-
t

Stieltjes integral f f'(Xs)dB s, a.s. P, as the mesh
0

ln|li = max Itk - tklI of the partition decreases to zero.
l<k<m

On the other hand, the process

Y (w) A f'(Xs(w)); 0 < s < t, w E Q,

is in £* (adapted, continuous and bounded); we intend

to approximate it by the simple process

m
YW(W) A f'(X0(w))l 1 0 ](s) + kl f (Xtk (w))l(tk,tk](s )

Indeed, we have E I2(Yt-Yt) = E IY-Y d<M> 0 as 0
E ;-Yt) EE$/Y: I'(Y t Yt Y 0

by the bounded convergence theorem, and so

t t

J 2(n) = S Yd dM - Y dMs
0s 1q rintl-o 0 S

in quadratic mean.
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Step 3: The quadratic variation term. J3(n) can be written

as

J 3(f) = J4(f) +J 5( Ei) + J 6(n),

where

m
J (n) _-_ Z f" (nk)(Btk -Btk ,

k=lk tk

J (G) A 2 f"(nk) (B - ) (M -M
k=l k k-l k k-l

J6 ( ~ )_ Z f" (n k) (Stk Mtk_l)2
k=l k k t

Because B -has total variat'ion bounded by K, we have

IJ4 (4) I + IJ 5 (I) < 3KIlf"l1co( maxB -I + max I -Mt )
l<k<m tk tk-l l<k<m k k-l

and, thanks to the continuity of the processes B and M,

this last term converges to zero almost surely as 11|11 | 0

(as well as in L1( ,3,P), because of the bounded

convergence theorem). As for J6 (I ), we define

m
J*(i) A f"(X )(M -M 

k=l tk-1 tk k-_

and observe

IJ*(n) -J6 (2) ()I V ()I "lm k -f"( Xt) I6 6ii) - J, (n) v t 1n·<k<mk
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where Vt2)() is as defined in Section 1.5. According

to Lemma 1.5.9 and the Holder irequality,

EJ(n) - J6(l _< 8K4 V( max If"('k)-f"( )1)2
1<k<m k-i

and this is seen to converge to zero as 11inj 0 because

of the continuity of the process X and the bounded

convergence theorem. Thus, in order to establish the

convergence of the quadratic variation term J3(fi) to
t 1

the integral S f"(X s)d <M > s in L (0,3,P) as 1111l e 0,
0

it suffices to compare J*(fl) to the approximating sum

m

J7(Ii) A Zf"(X )(<M>t -(M>t ).
k=1 tk1 k k-1

We have

EIJ*6(f) -J 7(n)l2 = El Z f"(X )f(M -M )2 - (<M> -<M> )312
k=l tk-1 tk tk-l tk tk-1

2= f"( ) tkl]

< 211f'lk E[l (Mt-M + (<M>t <M>tk)]
xkl tkl k=1 k

[ t t1<k(m k 1k-

From Lemma 1.5.10 and the bounded convergence theorem,

we conclude that the last term above goes to zero as

ifnli .0 Since convergence in L 2 (,3,P) implies convergence

in L 1 (q,5,P), we conclude that
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t
J(3)G -4 S f" (X )d<M>
in |(n ||)11-o o

in L1 (, ~,P).

Step 4: If in=l)} is a sequence of partitions of [O,t]

with j1n(fn) j t- 0, then for some subsequence (n k con-+Co k=l

we have, P- a.s.,

lim JL( (n(nk)) t
t

lim J 3 (nk)) = f"(X )d <M>
0

Thus, passing to the limit in (3.4), we see that (3.3)

holds P- a.s. for each 0 < t < co. In other words,

the processes on the two sides of equality (3.3) are

modifications of one another. Since both of them are

continuous, they are indistinguishable (Problem 1.1.5).

We have the following, multi-dimensional version of Ito's

rule.

3.6. Theorem: Let,.iMt (M( ), M(d)) it; 0 < t<co] be a

vector of local martingales in rc,loc,

fBt A (B (1) Bd) t; 0 < t < c] a vector oft f ) t
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adapted processes of bounded variation with Bo = 0,

and set Xt = X 0 +Mt+Bt; 0 < t < co, where X 0 is an

3 0 -measurable random vector in Rd .

Let f(t,x) : [O,ov) x IR I R be of class C 1' 2

(continuous, with continuous partial derivatives

f ' f axa f; 1 < i, j <d). Then, a.s. P,

t d t

(3.5) f(t,Xt) =+ f(,X) + f(sX )dB (i)
i-10 t oi=1 0 i s 

d t

i=l 0 xi s dm 

d d t 2
C r thix j f(sX )d<M(i) Pr(J) > 0 < t<co

i=1 j=l 0 i>s

3.7. Problem: Prove Theorem 3.6.

3.8. Example: With M = W = Brownian motion, X0 = 0, Bt 0

and f(x) = x2, we deduce from (3.3):

2= 2 W d W + t.
t s s

0

Compare this with Problem 2.26.
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3.9. Example: Again with M = W = Brownian motion, let us

consider X E P and recall the exponential supermartingale

of Problem 2.25:

Zt = exp(t); 0 < t < co

where
1 t

=t - lftx2 0 < t < o.
0 s 0s

We now check by application of Ito's rule that this process

satisfies the stochastic integral equation

t
(3.6) Zt 1 + 4 Z sX sdWs; < t <o.

0

Indeed, 1 t; t; 0 < t < C03 is a semimartingale, with

local martingale part Mt 0 Xs dWs and bounded variation

parZt f(Bt) f( ) s st 1
par1 X 2ds. With f(x) e, we have

t t
+ f ' ( 5s)dBS + ff (C )d<M>t

0 0 *SsS 2 s
0 0

t i t

+- 1 z x U f Xss s0

1 t
=1 +, Z XdW

0
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The replacement of dMs by XsdWs in this equation is

justified by Corollary 2.18 (actually, the extension of

Corollary 2.18 to X fE P). It is usually more convenient

to perform computations like this using differential

notation. We write

1X2
dot = XtdWt - 2Xtdt,

and, to reflect the fact that the martingale part of 5

has quadratic variation with differential Xtdt, we let

2 2
(dCt) = X dt. One may obtain this from the formal com-t. t

pution

(dCt) (XdWt- X2dt) 2t t t 2 t

2 2 X 3 dWdtdt 14 2= X t( dWt) X dtdt- dt + 4X (d t)

= X2dt,

using the conventional "multiplication table"

dt dWt d t

dt 0 0 0
(3.7)

dW t 0 dt 0

dW t 0 0 dt

where W, W are independent Brownian motions. With. these

formalisms, Ito's .rule can be written as
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1 2
df( t) = f' (t)dt + f"(t) (daCt) ,

and with f(x) = eX, we obtain

1 2 1 2dZt ZtXtdW -ZtXtdt + ZtXtdt
tt t 2 t t 2tt

= ZtXtdWt .

Taking into account the initial condition Z 0 = 1, we

can then recover (3.6).

3.10. Problem: With {Zt; 0 < t < cc] as in Example 3.9, sett

Yt ; < t < co, which is well-defined because
t

P[ inf Zt>0] = P[ inf >-co] = 1. Show that Y
O<t<T O<t<T

satisfies the stochastic differential equation

dYt =Y tXdt- YtXtdWt ' Y 1.

3.11. Problem: Suppose we have two continuous semimartingales

Xt = X + Mt + Bt Yt = Y + Nt + Ct; < t < co,

where M and N are in cloc and B and C are

adapted, continuous processes of bounded variation with

B 0= C O= 0 a.s. Prove the integration by parts formula

t t
fXsdY s = X 0 Y0 - YS dX <M,N t

0 0
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3.12. Example: If a(t), b(t)- are nonrandom functions satisfying:

T T 2
JIsa(t) Idt + b2(t) dt < oc, 0 < T < co
0 0

and if W is a Brownian motion, then the process

t t s

t = exp[f a(s)ds] · [ 0 + J b(s)exp[-I a(u)du]dWs3; 0 < t < co

is well-defined, because 0 < T < coc

T s
b b2(s)exp[-21 a(u)du]ds

O 0

T T
< exp[2f Ia(u)ldul I b 2 (s)ds < co.

0 0

According to Ito:'s rule (Theorem 3.6) with f(xl,x2) = XlX2,

t t s
X(1) exp[S a(s)ds] and X (2) = 0 + I b(s)exp[-f a(u) du]dW5

0 0 0

we have

t t
=t 
= 50 + S a(s)sds + i b(s)dWs. 

0 0

In the hands of Kunita and Watanabe [1967], the change-of-

variable formula (3.5) was shown to be the right tool for pro-

viding a simple proof of P. Levy's celebrated martingale

characterization of Brownian motion in Rd . Let us recall here

that if {Bt = (Br i )mtiBt ) t; 0 < t < Co3 is a d-

dimensional Brownian motion on (0,5,P) with P[BO=0] = 1, then

B(i),B(j)>t = 6ijt; 1 < i,j < d, 0 < t < co (Remark 1.5.6). It

turns out that this property characterizes Brownian motion among

continuous local martingales. The compensated Poisson process

with intensity X = 1 provic;. , an example of a discontinuous,
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square-integrable martinga2. with quadratic variat: n <M> = t

(c.f. Example 1.5.4), so the assumption of continuity in the

following theorem is essential.

3.13. Theorem: P. Levy (19 )

Let X = IXt (X( X( )) at 0 < < co beL X= , ' 0 . t ,c be

a continuous, adapted proc -s in E d such th:. , for

every component 1 < i < a, the process

M(i) A (i) (i)=)xt ) - X 6i; 0 < t < co,

is a continuous local martingale relative to [ft3, and

the cross-variations are given by

(3.7)' (<M ,M(i)>t = 6ijt; 1 < i, j < d.

Then {Xt,at; 0 < t < co3 is a d-dimensional Brownian

motion.

Proof:

We must show that for 0 < s < t, the random vector

X t - X s is independent of As and has the d-variate normal

distribution with mean zero and covariance matrix equal to the

d x d identity. In light of Lemma 2.6.12, it suffices to prove

that for each u E IRd,

i(uX -xs) -llull 2 (t-s)
(3.8) E[e I1 s] = e , a.s. P.

For fixed u = (ul,...,ud) E d, the function f(x) = ei (u' x)

satisfies xj f(x) =i uj f(x), b f(x) = -ujukf(x). Applying
Theorem 3.6 to the real and imaginary parts of f, we obtain

Theorem 3.6 to the real and-imaginary parts of f, we obtain
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i(u,Xt i(u,X s) d t i(u,X
(3.9) e = e + i u e dM

j=l s

1 u2f i(u'X v )u2 e v dv.
j=1 s

Now If(x) < 1 for all x E Rd and, because <M(J)> t = t,

we have M ~ E In0.2 Thus, the real and imaginary parts of

t i(u,XV )(j)
[ oe dM a < O(t< co are not only in tc,loc but

also in L 2. Consequently,

E[ e v dMejv )1 - O. P - a.s.

-i<u,Xs >
For A E $ , we may multiply (3.9) by e 1A and take

expectations to obtain

i(u,X -X st i(u,Xs )
E[e 1A] P (A) luu 2 Ete 1 dv.

s

This integral equation for the deterministic function

i(u,Xt-Xs)
t F E[e 1A] is readily solved:

i(u,Xt-X s) -lu11 2 (t-s)
E[e 1A ] = P(A)e , VA E FSr

and (3.8) follows.

3.13'. Problem: Let W t (W(1 ,Wt ),W )) be a three-dimensionalt t t t

Brownian motion starting at the orgin, and define

X = E sgn(W 1) Define M(1) - W 1) M 2 - .W

M(3) = X (3)a Show that each of the pairs (M (1 ) M(2 ))t t
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(M (1 ) ,M (3) and (M (2 ) ,M 3)) is a two-dimensional

Brownian motion, but (M(1),M(2 ),M(3 )) is not a three-

dimensional Brownian motion. Why doesn't this provide a

counterexample to Theorem 3.13, i.e., a three-dimensional

process which is not a Brownian motion, but each component

process is in hciloc and (3.7)' is satisfied.

3.14. Problem: Let W = W t = W 0 < t < )ot t t t -

be a d-dimensional Brownian motion starting at the origin,

and let Q be a d x d orthogonal matrix (QT = Q-l).

Show that Wt = QWt is also a d-dimensional Brownian

motion. We express this property by saying that

"d-dimensional Brownian motion starting at the origin

is rotationally invariant".

Another use of the P. Levy Theorem 3.13 is to obtain an

integral representation for the so-called Bessel Process. For

an integer d > 2, let W = {Wt = (W 1 ),...W(d)) t; 0 < t < CO

(pX. d be a d-dimensional Brownian family on some measurable
xE3Rd

space (0,3). Define

(3.10) Rt ; uW.4 =(W 1 )) + (W)); O < t < o,

so PX[RO=UxiJ] = 1. If x,y E Rd and [jxj = llyh, then there

is an orthogonal matrix Q such that y = Qx. Under pX

W = Wt =A QWt, %t; 0 < t < ol is a d-dimensional Brownian motion

starting at y, but tj = UWt , so for any F E 6 (C[O,co)), we have

(3.11) Px [R.EF] = PX[tIW.UEF] = PY[R.EF].
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In other words, the distribution of the process R under pX

depends on x only through jxij.

3.15. Definition: Fix an integer d > 2, and let

W = {Wt,3t; 0 < t < zo!, {pX 3 d be a d-dimensional
xEJR

Brownian family on (f,B). The process

R = [Rt = UWtll, at; 0 < t < co] together with the

family of measures [P(rr'0' ')r>0 on (R,3) is called

a Bessel family with index d. For fixed r > 0, we say

that R on (Q,J,P(r'',' '')) is a Bessel process with

index d starting at r.

3.16. Problem: Show that for each d > 2, the Bessel family with

index .d is a strong Markov family (where we modify

Definition 2.6.3 to account for the state space ]+= [O,co)).

3.17. Proposition: Let d > 2 be an integer and choose r > 0.

The Bessel process R with index d starting at r

satisfies the integral equation

(3.12) R t r + d-lds + B 0 < t < co,
2R +Bt; t<co,

0 s

where B = tBt, 3t; 0 < t < ox0 is a standard, one-

dimensional, Brownian motion.

Proof:

We use the notation of Definition 3.15, except we write P

in place of P(r .) Note first of all that Rt can be
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zero only when W 1 ) is zero, an. so the Lebesgue measure of

the set [0 < s < t; Rs 03 is zern, P-a.s. (Theorem 2. . ).

Consequently, the integrand 2R in (3.12) is defined for

Lebesgue almost every s, P-a.s.

The process B is given by Bt A B where
i=l

E1. (i) U)B(i) W dW Note that

Ef (R () ) 2 ds < t; 0 < t < co,
0. s _

:i) cso each B(i) E r,. For t > 0, we have

<B( ),B(j)>t = W )W()d <W( ),W(i)> 8

= 6ij~ 21 (i) (j)
0 R e

s

and so

d
<B> = Z <B(i)> = t.

t i=l t

We conclude from Theorem 3.13 that B is a standard, one-

dimensional Brownian motion.

It remains to prove (3.12). A heuristic derivation is to

apply Ito's rule (Theorem 3.6) to the function

f(x) A UxU = 1x2 + .+ x +Rd :o [O,cO), for which

x. 2 xi x j '

. f (x) = Hx af(x) = -1 1x3 1 < i,j < d,

hold on Rd \[0o. Then Rt' .f (Wt) and (3.12) follows from (3.5).
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The difficulty here is that f is not differentiable at the

origin, and so Theorem 3.6 cannot be applied directly to f.

This problem is related to our uneasiness about whether the

integral in (3.12) is finite. Here is a resolution of this

problem. Define:

=t ~ Ilt = Rt,

and use Ito's rule to show that

d t
= r2 +2 W(i)dW(i) + td.

i=l O

Let g(y) = F, and for E > 0, define

'E <+ 3~y i y2 ; y< E,
44E 8EJ-'

E(y ) =

y > E,

so gE is of class C and lim gE(y) = g(y) for all y > 0.
Ei0

Now apply Ito's rule to obtain

d
(3.13) g(Yt) = g(r 2 ) + I(i) (E) + Jt(i) + K t(E )

i=l t

where

It (i ) ( o t {0 s s1

-Jt() dJ Y 5 >32R s-lat(E) = J' l{Ys>E]l s ds,
0 S- S
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t y

t (E) j'0 Y < E1 = Jo [YSE3 4-FE [ (d) i]d

We now show that, as E 4 0, (3.13) yields (3.12). From the

monotone convergence theorem, we see that

t t
lim J (E) = I 1Y d- f ds, a
E40 0 s> s 0 s

We also have 0 < EKt() < 3d- P[Y <E]ds. The probability in the

integrand is bounded above by
2

.P[(W(1))2+(W(2))2<E] = 2s e pdpdO,
0 0

and so the integral becomes, upon using Fubini's theorem and the

change of variable § = '

'~P[Ys< E~] ds < P cS -P /2s
IP[Y <Eds< I ( <eP 2 2sds)dp
0 0 O0

= 2f p(i' .e - /2d,)dp.
O P

But now it is easy to see that this expression is o(Yf) as

E 4 0, using the rule of de V'Hopital. Therefore,

lim EKt(E) = 0. Finally
E40

t Y
EB(i) M 2E(i) 1 (E)12 EIlfy<E][- 2' s 2 (w2i)dsE[Bt (i ) (6) ]2 (W

El Y <E3[' 2 E (3 ] )2ds
0 so S
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t
< ES PY <(E]ds,

-0

and we have already shown that this expression converges to zero

as E 4 0. This establishes (3.12).

Let [Rt,at; 0 < t < co] be a Bessel process with index

d > 2 starting at r > 0. Then, for each fixed t > 0, it is

clear from (3.10) that P[Rt>0]= 1. A more interesting question

is whether the origin is nonattainable:

P[Rt>O,VO<t<co] = 1.

The next proposition shows that this is indeed the case. Of

course the situation is drastically different for the Bessel

process with index 1, since P[IW 1)I>0,VO t<°]j = 0 (Remark 2.8.3).

3.18. Proposition: Nonattainability of the origin by the Brownian

path in dimension d > 2.

Let d > 2 be an integer and r > 0. The Bessel

process R with index d starting at r satisfies

P[R t > 0,VO<t<o] = i.

Proof:

It is sufficient to treat the case d = 2, since, for larger

d, ))2 +.. + (Wtd))2 can reach zero only if

J(w 1 ) 2 + (W 2 ))2 reaches zero.t t
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We consider first the case r > 0. For each positive

integer k satisfying (k)k < r < k, define stopping times

Tk inf it > 0; Rt (1)k3; if {... # 0,

T =

c; otherwise

inf it > 0; Rt = k3; if O... f # 0,

Sk -

otherwise

k = Tk A Sk A n.

Because P-almost every Brownian path is unbounded (Theorem 2.9.21).,

we have

(3.14) P[ n [S < co] n lim s k =cx3 a = 1.
k=l k0co

A

Using (3.12), apply Ito's rule to tn(Rt) to obtain

Ln R7 = tntr + - dB s
k 0 s

This step is permissible because tn is of class C 2 on an

1kopen interval containing [(I)k,k] and so can be modified outside

this interval to obtain a C 2 function on /R. For

0 < s < Tk' I I is bounded, and since Tk is also bounded, we

Tk

have ES IR dB = 0. Therefore
R s
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(3.15) -nr = E[logRTk]

- -k 1 k) P [Tk<SkAn]

+ (logk P[Sk<TkkA n ]

+ E [ OgR n) {n<Sk ATk1

For every n > 1, LtnR n on In < Sk A TkI is bounded between

-k(logk) and logk. According to (3.14), as n co, we have

Ptn<SkATk] 4 0. Thus, letting n -co in (3.15), we obtain

An r = -k (logk) P [TkSk]

+ g1k) P[Sk<T k] .

If we divide by k(logk) and let k - oo, we see that

(3.15) lim P[Tk<Sk] = 0.
k4cO

Now set

finf It > 0; Rt 0 ; if I...1 # 0,
T

ct; otherwise,

so that Tk < T for every k > 1. From (3.14) and (3.15), we have

P[T<CX]K = lim PiLTSk]
k3~CO

( lim P [Tk<Sk] 0.

It follows that P[Rt>O,VO<t<CO] = 1.

Finally, we consider the case r = 0. Recalling the

indexing of probability measures in Definition 3.15, we have

from Problem 3.16
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p( 00., [Rt>O,E<t< c]

( 00·~ o (RE,0,..0)
= E(0,0,-'E,0) [p [Rt>0,0<t<o] <

= 1

for any E > 0, by what was just proved and the fact that

P >(0,0)RE] = 1. Letting E e 0, we obtain the desired

result. -.

3.19. Problem:

Let R = [Rt,t; 0 < t < col be a Bessel process with

index d > 2 starting at r > 0, and define

m = inf -R
O<t<(o

(i) Show that if d = 2, then<! m =:O a.s.P.

(ii) Show that if d > 3, then m has the beta

distribution

P[m<c] =.c() O < c < r.

(Hint: Adapt the proof of Proposition 3.18.

For (ii), an appropriate substitute for the

function f(r) = Anr must be used.)

Proposition 3.18 says that, with probability one, a two-

dimensional Brownian motion never reaches the origin. Problem

3.19(i) shows, however, that it comes arbitrarily close. By

translation, we can conclude that for any fixed point z E ~2,
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a two-dimensional Brownian path, regardless of its starting

position, never reaches the point z, but does reach every

disc of positive radius centered at z. In the parlance of

Markov chains, one says that "every singleton is nonrecurrent",

but that "every disc of positive radius is recurrent." For a

Brownian motion of dimension 3 or greater, Problem 3.19(ii)

shows that, once it gets away from the origin, almost every

path of the process remains bounded away from the origin; this

lower bound depends, of course, on the particular path. Thus,

d-dimensional spheres are nonrecurrent for d-dimensional

Brownian motion when d > 3.

3.20. Problem: Let R be a Bessel process with index d > 3

starting at r > 0. Show that

P[lim Rt=CO] = 1.
t°° -

As a final application in this section of Ito's rule, we

derive some useful bounds on the moments of stochastic integrals.

The following problem illustrates the technique.

3.21. Problem: With W = lW+,at; 0 < t < co a standard,

one-dimensional, Brownian motion and X a measurable,

adapted process satisfying

(3.17) ES IXtl 2mdt <co
0



3.3.26

for some real numbers T > 0 and m > 1, show that

T T
(3.18) Ell XtdWt 12m < (m(2m-1))TTm1Ef IxI 2mdt.

0

t
(Hint: Consider the martingale [Mt = I XsdWs',t;

0 < C t < T3, and apply Ito's rule to the submartingale

IMtl 2m.).

Actually, with a bit of extra effort, we can obtain

much stronger results.

3.22. Proposition: Martingale moment inequalities (Millar

(1968), Novikov (1971))

Suppose M E Mc,loc and

(3.19) E<M>T < cc

for some real numbers T > 0 and m > 0. Then

(3.20) EIlS12m < C E<M>,

where C m is a universal constant depending only on m.

1
Furthermore, if m > 1, there exists another constant

B m >i 0, depending only on m, such that

(3.21) BmE<M>T_< El 2m.

Remark: If, in the notation of Problem 3.21, we take

t
Mt = fXsdWs, then the HOlder inequality implies that
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for m > 1,

M T 2 m T 2
M>T = ( Xtdt)m < Tm I xt dt.

0 0

Thus, condition (3.19) is weaker than (3.17).

Proof: We assume for the moment that both M and <M> are

bounded on [0,T]:

(3.22) IMt(W) I < N, <M>t(w) < N; 0 < t < T, w E n,

for some positive integer N. We consider the process

Yt6 + E<M>t 6+ (i+E)<M>t + 2 M dM < t < T,t0 t t <S S

where 6 > 0 and E > 0: are constants to be chosen later.

Applying the change-of-variable formula to f(x) = xm we

obtain

t t
(3.23) Yt = + m(1+E) ym-d<M> + 2m(m-1) ym- 2M2d<M>t S O S s sOs

+ 2mf Y MdMs, O < t < T.
S 5 S

Because M, Y are bounded and Y is bounded away from zero,

the integrand in the last integral is bounded, so this martingale

integral has expectation zero. Taking expectations in (3.23),

we obtain our basic identity
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(3.24) EYt = m + m(l+E)Etym-l d<M> + 2m(m-l)Ef ym2Md<M>
O OS S 0 ss s'

0 < t < T.

Case 1: 0 < m < 1, upper bound. The last term on the

right-hand side of (3.24) is nonpositive; so, letting

6 J 0, we obtain

2 m t2 2m-l(3.25) E[E<M>t+Mt] m< m(l+E)E. (E(M>+M)dM

< m(l+E)Em- E <M>m d<M>
0 s

The second inequality uses the fact 0 < m < 1. But for

such m, the function f(x) = x ; x > 0 is concave so

(3.26) 2
m - (xm+ym) < (x+y)M x > 0, y > 0,

and (3.25) yields: Em E <M>t + EIMtI 2m < (l+E)(E)m- E<M>t,

whence

(3.27) EiMtl2m < [(i+E)(2)1-mEm]E<M>' 0 < t < T.

Case 2: m > 1, lower bound. Now the last term in (3.24)

is nonegative, and the direction of all inequalities

-(3.25) - (3.27) is reversed:
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EIM I 2m > [(l+E)(E)m--Em].E<M>m, 0 < t < T.

Here, E has to be chosen in (0,(2m-l 1)-1).

Case 3: 1 < m < 1, lower bound. Let us evaluate (3.24)

with E = 0 and then let 6 ; 0. We obtain

(3.28) EIMtl2m = 2m(m-1)E IM 12 (m-l)d<M>

On the other hand, we have from (3.26), (3.24):

2 [EmE<M>t+E(6+Mt)m] ( E[E(<M> +(6+M )t t t t

< 6 + m(l+E)E (6+M S) d<M>s
0 S S

Letting 6 4 0, we see that

(3.29) 2m-[EmE<M>m+EIM 12 m < m(l+E)E I Ms1 2 (m- l)d <M>.

Relations (3.28) and (3.29) provide us with the lower

bound

1-m
EMt2m > Em((+E) 2- 1)-1 E<M> 0 < t < TEltl 2m-1 -

valid for all E > 0.

Case 4: m > 1, upper bound. In this case, the inequality

(3.29) is reversed, and we obtain
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EM2m Em((l+E)2 -1 mEIM I2m < E( 1) .E<M> 0 < t < T,t = 2m-1 tT

where now E has to satisfy .E > (2m-1)2 m 1 -1

This analysis establishes (3.20) and (3.21) under the

condition (3.22). For an arbitrary M E M we consider

the sequence of stopping times

infO0 < t < T; IMt I > N or <M>t > N] if [...3 # 0,

=N =

T, otherwise,

which is increasing and converges almost surely to T. With

M(N) M , the sequencest tATN

{ _(N).I = 'NAN=1 and <M )>T = <M>TAT N l

are also increasing and converge almost surely to IMTI and

<M>T, respectively. We have proved (3.20) and (3.21) for

each M(N), and letting N co, we obtain these relations for

M from the monotone convergence theorem. ]

3.23. Problem: Prove the following d-dimensional version of

Proposition 3.22. Suppose

M [Mt = (M1 ) (2) ; 0 < t < co3 is anM = [Mt (Mt J..M''' )' at;

adapted, d-dimensional process with M(i) E Mcloc

d (i) and assume
1< i < d. Let At = <M )>t, and assume

i=l
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EAT < c

for some real numbers T > 0 and m > 0. Then

EU,2m <_ C'EAm,

where C m is a constant depending only on d and m.

Furthermore, if m > 1, there exists another such constant

B' > 0 such that
m

BIEAm < EIMiiJ 2m

3.24. Problem: Prove the following vector stochastic integral

version of Proposition 3.22. Suppose

W = = Wt (1) ( Wr)) 0 < t < co] is an
= t t; --

r-dimensional Brownian motion starting at the origin,

and suppose X = X t = (t )); 1 < i < d, 1 < j < r,

0 < t < co] is a matrix of processes adapted to t]3.
2 d r (ij) 2

Let UxU2= E (X t and assume
i=l j=1

T
E[ liXt 2dt]m < co

0

for some real numbers T > 0 and m > 0. Define

(1) (d)
Mt =(M( ) . Mt by

r t
(i) (ij) (j)
t s s

j=T 

Then
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EUMTUm < CXE[T UX 12dt]m,

where C' is a constant depending only on d andm

m. Furthermore, if m > 1, there exists another such

constant B' > 0 such that
m

T
BmE[ UXtU2dt] < EIIM 1j 2m.

0

3.25. Problem: Prove the following bound on the maximum of a

stochastic integral. Suppose W = [Wt,3t; 0 < t < TK

is a standard Brownian motion. If X is adapted to

t3 3 and satisfies

T
E[i X dt]m <co

for some real numbers T > 0 and m > 2, then there is a

constant Cm depending only on m such that

t T
E[ max If X dW i2m CmE[S X2dt]m .

0<t<T 0 s s 0
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3.4: REPRESENTATIONS OF CONTINUOUS

MARTINGALES IN TERMS OF BROWNIAN MOTION

In this section we expound on the theme that Brownian motion

is the fundamental continuous martingale, by showing how to represent

other continuous martingales in terms of it. We give conditions under

which a vector of d continuous, local martingales can be represented

as stochastic integrals with respect an r-dimensional Brownian

motion on a possibly extended probability space. Here we have

r < d. We also discuss how a continuous, local martingale can be

transformed into a Brownian motion by a random time change. In

contrast to these representation results, in which one begins with

a continuous local martingale, we will also prove a result in which

one begins with a Brownian motion W = IWt, at; 0 < t < co] and

shows that every continuous local martingale with respect to the

Brownian filtration [at] is a stochastic integral with respect

to W. A related result is that for fixed 0 < T < o, every

5T-measurable random variable can be represented as a stochastic

integral with respect to T.

We recall our-standing assumption that every filtration

satisfies the usual conditions, i.e., is right-continuous and

contains all null sets

4.1 Remark: Our first representation theorem involves the

notion of the extension of a probability space. Let

X = IXt , at; 0 < t < CO be an adapted process on some

(0,3,P). We may need an r-dimensional Brownian motion

independent of X, but because (Q,3,P) may not be rich
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enough to support this Brownian motion, we must extend the

probability space to construct this. Let (0,U,P) be another

probability space, on which we consider an r-dimensional

Brownian motion B = tBt, at; 0 < t < co3, set

_ n= x Q. = = 3 ® i, P A p x P, and define a new filtration

by t at 3 at The latter may not satisfy the usual

conditions, so we augment it and make it right-continuous

by defining

at =n a( u rn),
s>t

where h is the collection of P-null sets in Z. We

also complete G be defining a = G(Z U h). We may extend

X and B to [3t3-adapted process on (7,S3,P) be defining
t

for (w,w) E ,

gt(w,w) = Xt(w)

Bt(WW) = Bt(W).

Then B = Bt, at; 0 < t < cc3 is an r-dimensional Brownian

[ ~ < t < ~d,motion, independent of X t= t; 0 < t < ool. Indeed,

B is independent of the extension to C2 of any 3-measurable

random variable on n. To simplify notation, we henceforth

write X and B instead of X and B in the context

of extensions. .
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Let us recall (Definition 2.21 and the discussion preceding

it) that if W = {Wt, Ft; 0 <t (< co is a standard Brownian-motion

and X is a measurable, adapted process with P[I X2ds < co] = 1
0

t
for every 0 < t < co, then the stochastic integral It(X) = X dW

is a continuous, local martingale with quadratic variation process

t '

<I(X)>t = S X2ds which is an absolutely continuous function of t,

P-a.s. Our first representation result provides the converse to

this statement; its one-dimensional version is due to Doob [1953].

4.2 Theorem: Suppose M = Mt = (Md) t; 0 < t < CO]

(Mt ,..,M ), t 

is defined on (f,a,P) and each M(i ) eE c,loc 1 < i < d.

Suppose also that for -1 < i, j < d, the cross-variation

(M (i),M(j) >t (W) is an absolutely continuous function of

t for P-almost every w. Then there is an extension

(,AP) of (0,a,P) which is rich enough to support a

d-dimensional Brownian motion

W = {Wt = (Wt(1) t(d)w = [wIt= (Wt),...,Wtd)), St; 0 < t < cc)], a matrix
d

X = {(X(i 'k) ) i,k = l, St; 0 < t < cl] of measurable,

adapted processes with

(4.1) [ (Xik) 2ds < c] = 1; 1 < i, k < d; 0 < t < c°,
0 -

such that we have, P-a.s., the representations

a t
(4.2) M' - Z X (kdW(k); 1 < i < d; 0 ( t < cot s -k=l 0
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d t
(4.3) <M(i) ,()> = Z I X(i' k)X(J')ds; 1 < i, j < d; 0 < t < C,

k=l 0

Proof:

We prove this theorem by a random, time-dependent, rotation of

coordinates which reduces it to d separate, one-dimensional cases.

We begin by defining

i~j i d <M(i) (j)
(4.4) zt'J = z3 = <(i),M )>

t t dt t

= lim n[<M()M()>t - <M(i),M(j)> 1
neot - (t-

so that the matrix-valued process Z = [Zt = (zt') d jl0 (< t < co3

is symmetric and progressively measurable. For a = (al'' ,.ad) E d

we have

d di d
Z .= = d < d M(i)

i=l j=l i t i-l 

so Zt is positive-semidefinite for Lebesgue-almost every t, P-a.s.

Any symmetric, positive-semidefinite matrix Z can'be

diagonalize.d by an orthogonal matrix Q, i.e., Q-1 = Qtranspose,

.Q ZQ = A, and A is diagonal with the (nonnegative) eigenvalues

of Z as its diagonal elements. There are several algorithms

which compute such a Q and A from Z, and one can easily verify

that these algorithms typically obtain Q and A as Borel-

measurable functions of Z. In our case, we have a progressively

measurable, symmetric, positive-semidefinite matrix process Z,
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and so there exist progressively measurable, matrix-valued

processes [Qt(w) = (qt'j (w)) lc; ; ° dt < and

A t(w) = (6ij dij=l' t; 0 < t < co such that for Lebesgue-

almost every t, we have

d k,i k,j d ik j,k ; 1i 
(4.6) z q qt ; 1 < i, j d,k=l k=l 

d d
(4.6) d d k,izk,P 'C,j 6 >0; 1 <ij d,

l =l q t t 6i,jt 

a.s. P. From (4.5) with i = j, we see that so

t ki 2 (k) (k)
t(q 2 d <M > < <M )>t < co0 S t

and we can define continuous, local martingales by the prescription

d t
(4.7) NI) _ j qi dM(k); 1 < i < d; 0 < t < oo

t k=1 0 s -k=l 0

From (4.4) and (4.6), we have, a.s. P,.

(4.8) <N(i),N(j)> = £ S qk-iq j d<M(k) M(d)t>
d d t.i) cj, c c S k,i L,j d <Mk, M >

= Z Z qs s 'qs d

t
= 6.. i ds.

W1. 0 s

We see, in particular, that
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(4.9) i ds = <N(i)>t < O; 1 < i < d; 0 < t < co.
0 t

We now represent the vector of local martingales

N = (N (1 ) ,...,N d)) St; 0 < t < cO3 as a vector of stochastic
t ' f

integrals on an extended probability space (Q, ,P), which supports

a d-dimensional Brownian motion B = Bt =(B 1) B 0 t < Cot ,... t
independent of N (c.f. Remark 4.1.). Since

t t
1 d<N(i)> = 1 as < t,

o (£i>o3 i o (i>o3 -s s s

we can define continuous, local martingales

(4.10) w(i) = 1 1 dB (i) + 1)1 (

From (4.8) we have

<W( i) 'w(J)> = 6.t; 1 < i, j < d; 0 < t < co ,

so, according to Theorem 3.13, W = =Wt (W1) (d)) < t < co

is a d-dimensional Brownian motion. Moreover,

t t
(4.11) f k i dW (i) = 1N 1 < i < d; 0 < t <( ,

0 s s 0 <xi>o03 t

t
because the martingale 1 dN (i) having quadratic variation

0 Lk3-=o3 0s
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t t
t1 d<N(i)> = 1 Xids = 0,
0 o Ix. 3 S =0 X(i)=o3 S

s S

is itself identically zero.

Having thus obtained the stochastic integral representation

(4.11) for N in terms of the d-dimensional Brownian motion W,

we invert the rotation of coordinates (4.7) to obtain a representation

for M. Let us first observe that for 1 < i, k < d,

t t
S (qi,k 2Xk das < Xk ds O; 0 < O t < c,

s s. -0 0

by (49), with ik) qk , condition (4.1) holds.

Furthermore, (4.11), (4.7), and (4.5) imply

d t d t
(4.12) 7 It x(i,k)dw(k) = q,kdN(k)

k=l 0 sk=l s

d d tt i,k j,kdM(j)
- J q qs qs sdM
j=l k=l 0

d d 

- bitj .S dMs( = M(i)
j=l 0

which establishes (4.2). Equation (4.3) is an immediate consequence

of (4.2).

4.3 Remark: If the matrix-values process Zt(W) = (zt

has constant rank r, 1 < r < d, for Lebesgue-almost every t,

a.s. P, then the Brownian motion W used in the representation

(4.2) can be chosen to be r-dimensional, and there is no need
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to introduce the extended probability space (L2,a,P). Indeed,

we may take Xt,.,At to be the r strictly positive

eigenvalues of. Z t, and replace (4.10) by

(4.10)' W = 1 dNt ; 1 < i < r.

0 s

Since N) = 0; r + 1 < i < d; 0 < t < co (witness (4.9)),

(4.12) becomes

r t d t
(4.12)' 7 5 X(i,k)dW (k) 3k (k) (i) i d.

k=1 k=l 0 s 

Because (4.10)' defines W ,...,W( without reference to

the Brownian motion B, there is no need to extend the original

probability space..

4.4 Problem: This problem shows that any vector of continuous,

local martingales can be transformed by a random time-change

into a vector of continuous, local martingales satisfying

the hypotheses of Theorem 4.2. Let M = (Mtl), ,Md)) t;

O < t < oo3 be a vector of continuous., local martingales on

some (O,a,P), and define

<(i) (j), At( ) d)<M 'M >, t(W) = z A,) (W),
i=l j=l

where Bt denotes total variation of B on [O,t]. Let

Ts () be the inverse of the function At(w) + t, i.e.,S 
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AT (w)(w) + Ts(W) = s; 0 < s < Co.

(i) Show that for each s, T s is a stopping time of (fta.

ii Define s AT ; 0 < s < C. Show that if [t 3

satisfies the usual conditions, then [Qs ] does also.

(iii) Define

Nsi) i 1 < i < d; 0 < s < co.
S

Show that for each 1 < i < d : N(i)E ncloc

and the cross variation <N(i),N(j)> is an
s

absolutely continuous function of s, a.s. P.

The time change in Problem 4.4 is straightforward because the

function At + t is strictly increasing and continuous in t,

and so has a strictly increasing, continuous inverse T5. Our

next representation result requires us to consider the inverse of

the quadratic variation of a continuous, local martingale, and

because such a quadratic variation may not be strictly increasing,

we begin with a problem describing this situation in some detail.

4.5 Problem: Let A = lA(t); 0 < t < coJ be a continuous,

nondecreasing function with A(0) = 0, A(o°) = co, and

define for 0 < s < -°:

T(s) = inftt > 0; A(t) > s3.
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The function T = {T(s); 0 < s < oD3 has the following

properties:

(i) T is nondecreasing and right-continuous;

(ii) A(T(s)) = s; 0 < s < oo.

(iii) For 0 < t, s < c; s < A(t) <=- T(s) < t and

T(s) < t => s < A(t).

(iv) If G is a bounded, measurable, real-valued function

defined on [a,b] c [O,cc), then

b A(b)
(4.13) J G(t)dA(t) = G(T(s))ds.

a A(a)

4.6 Theorem: Time-change for martingales

Let M = jMt, at; 0 < t < c E cloc atisfy

lim <M>t =co, a.s. P. Define, for each 0 < s < co, 'the
t0co

optional time

(4.-14) T(s) = inf[t > 0; <M>t > s3.

Then the "time-changed process"

B = LB M , 9 aB = I (s) ST(s) ; 0 < s < co

is a standard one-dimensional Brownian motion. In particular,

the filtration {QsI satisfies the usual conditions and we

have, a.s. P:

(4.15) Mt = B<M>t; 0 < t < co.
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Proof:

Each T(s) is optional because, by Problem 4.5(iii),

[T(s) < t] = I<M>t > s3 E %t' Just as in Problem 4.4(ii), the standing

assumption that (at satisfies the usual conditions implies that [Qs ]

does also. Furthermore, for each t, <M>t is a stopping time for the

filtration [is3 because, again by Problem 4.5(iii),

{<M> < sJ = IT(s) > t3 E T() ; 0 < s < .

Let us choose 0 < sl < s2 and consider the martingale

Mt tAT(s2)' t 0 < t < co] for whnich we have

< M> < M>T = 2 0 < t < oo>t tAT (s2) -- Ts< (2 ;

by Problem 4.5(ii). It follows from Problem 1.5.22 that both

M and M2 <I> are uniformly integrable. The Optional Sampling

Theorem 1.3.20 implies

E[Bs2 BsllQSl] = E (s2) [ MT(s T(sl)] 0; a. s. P,

E[(Bs 2 -Bs) 2 I] = E[(M(s2) - l))21T(l)]

T= E[ <> TT (s) -<M> T() T(S)]

=2 Si; a.s. P.

Consequently, B = tB s, Qs; 0 ( s < co3 is a square-integrable

martingale with quadratic variation <B>s = s. We shall know that
5
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B is a standard Brownian motion as soon as we establish its

continuity (Theorem 3.13).

For fixed w E.O, s i B s (W) is the composition of the

right-continuous function s > T s () and the continuous function

t M t(W). The jumps in Ts(W) correspond to flat stretches in

<M>t (w ) i.e., t (W) < Ts (W ) t 2 if and only if

<M>t (W) = <M>t (w). We must show that for all w in some
1 2

a c n with P(O ) = 1, we have:

(4.16) <M>t (W) = <M>t(W) for some 0 < t1 < t 4 Mt (W) = Mt(w).

If implication (4.16) is valid under the additional assumption that

tl is rational, then, because of the continuity of <M> and M,

it is valid even without this assumption. For t ! > 0, t1 rational,

define

a = infit > tl: <M>t > <M>tl],

1 1Ns M(tl+s)A- Mtl, 0 < s < co

ic~loc andso Ns atl+s; 0 < S < C is in c'loc nd

<N> = <M> - <M> = 0, a.s. P.s (tl+s)A t1

It follows that there is a set 0(tl) _C n with P(O(tl)). = 1

such that for all w E .(t 1),
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(M>t (W) = <M>t(W), for some t > t Mt (W) = M t( w) .
. 1

The union of all such sets n(tl) as tl ranges over the nonnegative

rationals will serve as n , so that implication (4.16) is valid

for each w E .

It remains to prove (4.15) for all 0 < t < o°. If, for

w E Q , we have t in the range of T.(w), then there is some

s > 0 for which t = Ts(W) and (4.15) is a consequence of the

definition Bs = MT(s) and Problem 4.5(ii). Now lim T (w) =-ol,

so if t is not in the range of T.(w), then there must be some

AA
s > O such that tl = TS (W) t < Ts(w) t2 where we define

To_(w):= 0. This means that s = <M>t(W) = <M>t (W), and

implication (4.16) yields

Mt(W) Mt2 (W) M (W)(W) = B(W) = B<M> ( w).
2 S

4.7 Problem: We cannot expect to be able to define the stochastic

1
integral J XsdWs with respect to Brownian motion W for

0

1
measurable adapted processes X whichdo not satisfy j X2ds <( a.s.

0

Indeed, show that if

t
X2ds < o° a.s., 0 < t < 1,

but

but
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1
X 2ds = C a.s.,

0 s

then

t t
P[lim r X dw = - lim r XSdWS +co] = 1.

ttl 0 s s ttl 0

Let us state and discuss the multivariate extension of

Theorem 4.6. The proof will be given later in this section.

4.8 Theorem: F. Knight (1971)

Let M = Mt = (Mt '...,Mt ), t; 0 < t < t < be a

continuous, adapted process with M(i) E fcloc,

lim <M(i)>t = ; a.s. P, and

(4.17) <M(i) M (j ) > = 0; 1 < i # j < d, 0 < t < .

Define

Ti(s) = infit > 0; <M(i)> > si; O < s < ( , 1 < i < d,

so that for each i and s, the random time T i(s) is

optional for [3St . Then the processes

B s = MTi(s); < _ _

are independent, standard, one-dimensional Brownian motions.
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Discussion of Theorem 4.8: The only assertion in Theorem 4.8 which

is not already contained in Theorem 4.6 is the independence of the

Brownian motions. B(i); 1 < i < d. Theorem 4.6 states, in fact,

that B(i) is a Brownian motion relative to the filtration

i) 0but, of course, these filtrations are not
S Ti(s) s>Oi

independent for different values of i because ) = 

1 < i < d. The independence claim is that the a-fields

B(1) B(2) B (i)
1c ,ao ,...,Scc are independent, where [es l is the

filtration generated by B (i) This claim would follow easily

if assumption (4.17) were sufficient to guarantee the independence

of M'i),M (j) for i $ j; *in general, however, this is not the

case. Indeed, if W = {Wt, At; 0 < t < °o is a standard

Brownian motion, then, with

M (1 0 ) A = S lw < 0dW;s 0 < t < co,
~ 0t - 0W

we have M(1) ,M( 2) E irc'loc and

<M(1) (2) t > S lWso0 Ws<0o ds = 0; < t < o.

But M(1) and M (2) are not independent, for if they were,

<M(1)> and <M(2)> would also be independent. On the contrary,

we have

t t
<M(1)>t <M(2)>t +0t lw-3d+ alw(3ds =t; 0 < t < o.

CM0 S- W <0
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F. Knight's remarkable theorem states that when we apply the

proper time-changes to these two intricately connected margingales,

and then forget the time-changes, independent martingales are

obtained. Forgetting the time changes is accomplished by passing

from the filtrations {Q(i)] to the less informative filtrations
s

We shall use this example in Section 5. to prove the

independence of the positive and negative excursion processes

associated with a one-dimensional Brownian motion. G

In preparation for the proof of Theorem 4.8, we consider a

different class of representation results, those for which we

begin with a Brownian motion rather than constructing it. We

take as given a standard, one-dimensional Brownian motion

W = {Wt , 3t; 0 < t < °c] on a probability space (Q,3,P), and

we assume {5t3 satisfies the usual conditions. For 0 < T < co,

we recall from Lemma 2.1' that ZT is a closed subspace of the

Hilbert space XT' The mapping

T z £T 9 X H IT(X) E £2 (',5,P)

preserves inner products (see (2.20)):

T

E tYtdt = E[IT(X) IT(Y)].

Since any convergent sequence in
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(4.18) -T IT(X); X E T

is also Cauchy, its preimage sequence in ST must have a limit

*
in £T' It follows that RT is closed in £2(O,3T,P), a fact

we shall need shortly.

Let us denote by m 2 the subset of M 2 which consists of

stochastic integrals

t

It(X) = X5dWs; 0 t 0

of processes X E £ :

( ' * I(X); X c 2 C c (4.19) 2 _ _ 2

Recall from Definition 1.5.5 the concept of orthogonality in ,2.

*We have the following fundamental decomposition result.

4.9 Proposition: For every M E ,2' we have the decomposition

M = N + Z, where N E I2' Z E '2' and Z is orthogonal to

every element-of 2.'

Proof:

We have to show the existence of a process Y E £ such that

M = I(Y) + Z, where Z E il2 has the property

(4.20) <Z, I(X)> = 0; ¥X E £

Such a decomposition is unique (up to indistinguishability);

indeed, if we have M = I(Y') + Z' = I(Y") + Z" with Y', Y" E £



3.4.18

and both Z and Z" satisfy (4.20), then

Z = Z" - Z' = I(Y'-Y")

is in m2 and <Z> = <Z, I(Y'-Y")> = 0. It follows that

P[Z t = 0 for every 0 < t < o] = 1.

It suffices, therefore, to establish the decomposition for

every finite time interval [0,T]; by uniqueness, we can then

extend it to the entire half-line [O,co). Let us fix T > 0,

let RT be the closed subspace.of £ 2(,TAT,P) defined by (4.18),
T 2 T

and let XT denote its orthogonal complement. The random

variable MT is in .£2(Q,aT,P), so it admits the decomposition

(4.21) = IT(Y) + ZT,

where Y E £T and ZT E £2(0,nT,P) satisfies

(4.22) E[ZTIT(X)] = 0; YX E £T.

Let us denote by Z = {Zt, at;.0 < t < co] a right-continuous

version of the martingale E(ZT l t ) (Theorem 1.3.11). NoteT. t

that Zt = ZT for t > T. Obviously Z E m2 and, conditioning

(4.21) on at' we obtain

(4.23) Mt = It(Y) + Zt; 0 < t < T, a.s. P.

It remains to show that Z is orthogonal to every square-

integrable martingale of the form I(X); X E £ , or equivalently,

that {ZtIt(X), St; 0 < t < co] is a martingale. But we know
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from Problem 1.3.24 that this amounts to having E[ZSIs(X)] = 0

for every bounded stopping time S of the filtration {[t .3

For such an S, we have

ZsIs(X) = ZSATIS^T(X), a.s. P

because = Zt = ZT X t = 0 for t > T. Thus, we need only consider

S < T. From (2.21) we have IS(X) = IT(X), where Xt(W) = Xt(w) lt<S(W) 

is a process in £T. Therefore,

E[ZsIs(X) ] = E[E(ZT13S)Is(X)]

= E[ZTIT(X)] = 0

by virtue of (4.22).

It is useful to have sufficient conditions under which the

classes W&2 and I2 actually coincide; in other words, the

component Z in the decomposition of Proposition 4.9 is actually

the trivial martingale Z 0. One such condition is that the

filtration fat] is-the augmentation under P of the filtration

P{tb generated by the Brownian motion W. We recall from

Problem 2.7.6 and Proposition 2.7.7 that this -augmented filtration

is continuous. We state and prove this result in several dimensions.

4.10 Theorem: Representation of Brownian, square-integrable

martingales as stochastic integrals

Let W = Wt = (Wt(1). (d) a 0 < t < c be a
ddmninlBo a mtio on ,.,) , a; let < oo be 

d-dimensional Brownian motion on (0,5,P), and let (at bet
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the augmentation under P of the filtration [t~3 generated

by W. Then, for any right-continuous, square-

integrable martingale M = Mt, t; 0 < t < co I relative to

the Brownian filtration {t 3 with M = 0 a.s., there existt 0

progressively measurable processes Y(j) = <{Ytj) a 0; t < 0c3

such that

T
(4.23) E J (yj) dt < o°; 1 < j < d, 0 < T < co,

0

and

d t
(4.24) Mt = o Y(s dWs() 0 < t < cO.

-=1 0 s s

In particular, M is a.s. continuous.

Proof: We shall say that a progressively measurable process X

T 2 *
satisfying E J Xtdt < co; 0 < T < co, is in £ . We first

0

prove by induction on d that there are processes y() , y(d)

in £ such that

d t
(4.25) Z M - Z Y (j)dW(j); 0 < t < o

t t jl 0s s

d t
is orthogonal to every martingale of the form E I X (j)dW(j)

j=l 0 s s

where X ) ; 1 < j < d. If d = 1, this is a direct

consequence of Proposition 4.9. Suppose such processes exist

for d - 1, i.e.,
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d-l t

d-l t 
is orthogonal to Z X (j)dW ( j) for all X(j) ; 1 < j < d.

j=1 0

Apply Proposition 4.9 to write

t
Zt= y(d) w(d) + Zt; 0< t < oC

0 s

·a) * t
for some 'Y(d) E , where Z is orthogonal to X (d) dW(d) for

0s s

all X(d) E . For i < j < d- 1 and X ) , we have

() i( j) (d) (j)
W <Zj) () (d) W (j) i ( j

<Z,I (X = <Z, (X )> <W (Y ),I (x(J)> 0.

Thus, we have the decomposition (4.25) for M. In particular

-.' t
(4.26) <MWJ>t = Y)ds; 0 < t <, 1 < j < d.

Following Liptser and Shiryayev [1977, pp. 162-163], we now

show that, P-a.s.,

Zt = 0; 0 < t < co

First, we show by induction on n that if 0 = s <s 1 <...< s < t,

d
and if the functions fk : ~ C, 0 < k < n are bounded and

measurable, then

n
(4.27) E[Zt n fk(W )] 0.

k=O k
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When n = 0, (4.27) can be verified by conditioning on 50 and

using the fact ZO = 0 a.s. Suppose now that (4.27) holds for

some n and choose. sn < t. For e = (1',..',d) E R d fixed

and s < s < t, define

. n -i(,W )
c(s) = E[Zt n fk(W )e s

k=O k

n i(8,W s)
-s k- fk (Wsk )e ]

k=[ k

Using Ito's rule to justify the 'identity

e e =+ i.j S e dW
j=l Sn

- j S s i(8,Wu)

Sn

we may write

i(e,w ) i(,W ) d s i(,W) (j) 
(4.28) E[Zse sj; = Zs e n + iE[Z e udW ]

n j=l ~Sn u Sjn

lie 2 s i(,w u)

e2 du e ,duI .s n

s i(8,W ) s ieew
(4.e 828 3 E[(Z-Z ) e dW

Z u u s u sn2

Multiplying (4.28) by fk(Ws and taking expectations, we obtain
k=0 k
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1 nS fl
(4.29) E(s) (sn) n2 sE[Z fk (Ws ei( Wu)

s k=l kn

cp(s ) - )2 bCr = )- 2 Y(u)du; s <ss < t.
s n

By our induction hypothesis, cp(s n) = 0, and the only solution to

the integral equation (4.29) satisfying this initial condition

is c(s) = 0; sn < s < t. Thus

n i( ,W s) d
(4.30) E[Z t H fk(Ws )e = 0; 8 E R

k=0 k

+ n
With D- max± Z t n fk(Wsk) 03, we define two measures on

k=0 k

(IRd , (IRd )) by

i (r) = Z[D l(W s) ]; r E g(JRd).

Equation (4.30) implies

d ,eax)(dx)= ]d ei( 8' x) i (dx); 8 E /Rd

and by the uniqueness theorem for Fourier transforms, we see that

1= = . Thus

E[D+f(Ws) = E[D-f(W )J; sn < s ( t,

for any bounded, measurable f : IR - C, This proves (4.27)

for n + 1 and completes the induction step.
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A standard argument using the Dynkin System Theorem 2.5.1'

now shows that

(4.31) E[Ztg] = 0

for every 3t-measurable indicator i, and thus, for every

Jt-measurable, bounded [. Since at differs from t only

by P-null sets, (4.31) also holds for every 5t-measurable,

bounded . Setting 5 = sgn(Zt), we conclude that t = 0 a.s. P.

Indistinguishability of Z from the process which is identically

zero follows now by right-continuity of its paths (Problem 1.1.5).

4.11 Problem: Let W = {Wt = (Wt ,...,W d)), ; < t < o] be a

d-dimensional Brownian motion as in Theorem 4.10. Let

M = tMt, at; 0 < t < co3 be a right-continuous local

martingale such that M= 0 a.s. and P[lim M exists
stt

and is finite for 0 < t < 0o] = 1. Then there exists

progressively measurable processes Y(J) Y -t;

0 < t < oo3 such that

(Y(j))2dt < co; 1 < j < d, 0 < T < co
0

and

d t
Mt = d W

s ; 0 < t < o.
j=l 0

In particular, M is a.s. continuous.
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4.12 Problem: Under the hypotheses of Theorem 4.10 and with

0 < T < Coo let g be an T-measurable random variable

with E§ < co. Prove that there are progressively measurable

()processes l(d) satisfyingprocesses Y I · ··

T
E f (Yt( ))2dt < co; 1 < j < d,

0

such that

d T
(4.32) = E(g) + y(J)dW(J.; a.s. P.

j=l 0

We extend Problem 4.12 to include the case T = co. Recall

that for M E i 2, we denote by £0c(M) the set of processes X

which are progressively measurable with respect to the filtration

of M and which satisfy E J Xtd<M>t < co According to
0
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* co
Problem 1.5.22, when X E £co(M), we have S XtdMt defined a.s.P.0 

If W is a d-dimensional Brownian motion, we denote by £o(W)

the set of processes X which are progressively measurable with

respect to the filtration of W and which satisfy E I0 X2 dt < cc.

4.13 Corollary: Under the hypotheses of Theorem 4.10, assume that

2
g is an c-measurable random variable with E2 < co. Then

there are processes y(l) *y(d) in £c(W) such that

d co
= E() + Z f y(J)dW (j); as.P.

j=l 0

Proof:

Assume without loss of generality that E(g) = 0, and let Mt

be a right-continuous modification of E(I3 t). According to

Theorem 4.10, there exist progressively measurable Y() . (d)

satisfying (4.23) and (4.24). Jensen's inequality implies

Mt < E( 2t), so

d t
E (Y))2ds E<M>t = E(M2t) < E([2) < co; 0 < t < cc.

*s - - cj=l 0 s

co

Hence, Y(i) E c(W) and E jI Y )dW is defined for

1 < j < d. Problem 1.3.18 shows that Moo = E(jIo) = g. C
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In one dimension, there is a representation result similar

to that of Corollary 4.13 in which Brownian motion is replaced

by a continuous, local martingale M. This result is instrumental

in our proof of Theorem 4.8.

4.14 Proposition: Let M = {M t , t; 0 < t < °oJ be in rcloc

and assume that lim <M>t = co a.s.P. Define T(s) by
t4co

(4.14) and let B be the one-dimensional Brownian motion

S MT(s S s); -co

as in Theorem 4.6, except now we take the filtration [Is 

for B to be the augmentation with respect to P of the

filtration [3Bj generated by B. Then, for every

co-measurable random variable g satisfying Eg2 < co,

there is a process X E £oo(M) for which

(4.33) 5 = E(g) + I XtdMt; a.s.P.
0

Proof:

Let Y = [Ys, Es; 0 < s < col be the progressively measurable

process of Corollary 4.13 for which we have

co

(4.34) E I Y 2ds < o,
s

co

(4.35) Y = E(g) + J Y dB.

Define Xt Y>; 0 < t <co
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We show how to modify X so as to obtain a progressively

measurable process X. Note that because t s _ 3T(s) contains

B sj and satisfies the usual conditions (Theorem 4.6), we have

s C Qs; 0 < s < Co. Consequently, Y is progressively measurable

relative to {ts]. If Y is a simple process, it is left-continuous

(c.f. Definition 2.2), and it is straightforward to show using

Problem 4.5 that {Y<M> ; O < t < co° is a left-continuous process

adapted to {lta; and hence progressively measurable (Proposition 1.1.13).

In the general case, let [y(n) =l be a sequence of progressively

measurable (relative to {e 3) simple processes for which

Oc,

lim E JIY 1 (n) y 1 2ds = 0.
n+co 0 s 

(Use Proposition 2.7 and (4.34)). A change of variables

(Problem 4.5(iv)) yields

Co

(4.36) lim E I In) 2 d<M>t = 0,
fl ~ 0 t xt

n co O0

(n) (n)'cowhere X) = Y<M> In particular, the sequence (X )n=l) is
t <M> t' t n=l

Cauchy in £co(M), and so, by Lemma 2.1', converges to a limit

X E Zs(M). From (4.36), we must have

CO

(4.37) E IXt -Xtl d<M>t = 0.
0 O

It remains to prove (4.33), which, in light of (4.35), will

follow from
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~co~ cc

(4.38) Y dB = XdMt; a.s.P.
0 0

We leave the probf of this equality as a problem.

4.15 Problem: Prove (4.38). (Hint: Consider first the case

where Y is simple).

Proof of F. Knight's Theorem 4.8:

Our proof is based on that of Meyer [19711. Under the hypotheses

of Theorem 4.8, let e('i)] be the augmentation of the filtration

;ayB 3 generated by B( i); 1 < i < d. All we need to show is

that e(l) e,.d) are independent.

For each i, let g(i) be a bounded, &)e -measurable random

variable. According to Proposition 4.14, there is, for each i,

a progressively measurable process X(i) {X(i), t; 0 < t < 

which satisfies

E (Xti))2d<M(i)>t < co 1 < i < d,
0

and for which

co
(i) E(g(i)) + xt M(i)dM .) 1 < i < d.

0 -

Let us assume for the moment that

(4.39) E([(i)) = 0; 1 ( i < d,
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and define St 3-martingales

(i) _ XSi)dM(i); O < t < ( ) 1< i < d.

Ito's rule and (4.17) imply that

d d t
(4.40) II = c I (aj.) X (i)dM(i) t < .

i=l i=l 0 ji 

In order to let t co° in (4.40), we must show that

co
(4.41) E f ( n (J) (i))2 d<M(i)> < CO; 1 < i < d.

(n S x s ' -- - '
0 j~i s s

Repeated application of Holder's inequality yields

t
E (n (j) X i) )2d <M(i) >

s S s0 jgi

(j) 2 (i) ]
< E[ l [ sup (s ))] (i)> 

joi O<s<t s

[E sup ((l1))41/2 ((2))8]1/4
< [E sup [E sup (

O0s<t 0<s<t

0<s<t sFE (g(d) j 2 d+ 2 12(i) 2 d

For m > 1, Doob's maximal inequality (Theorem 1.3.6(iv)) gives

E sup (§s )
0<s(t

* _ %,) 22m 
m 2m (j) .m
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We have from Proposition 3.22:

2d M 2 d + l 2d + l

B -< >tE()2 < E((i) 2 E(< tt

for some positive constant B which does not depend on t. Thus,

(4.41) holds, and letting t - co in (4.40), we obtain the

representation

d d
dn ) (i) = (j) (i)

i=l i=l 0 j9i s s s

The right-hand side, being a sum of martingale last elements

(Problem 2.16'), has expectation zero. Thus, under assumption
d

.(4.39), we have E g (i) = O. Equivalently, we have shown that
i=l

for any set of bounded random variables (l),..., (d), where each

is e( -measurable, the equality

d
(4.42) E f [[(i) - E(((i))] = 0

i=l

holds. Using (4.42), one can show by a simple argument of induction

on d .that

d d
E ; (i) = E;(i)
i=l i=l

Taking (i) 1A Ai E i, 1 < i < d, we conclude that the

filds (1) ,(d)a-fields &l) ed are independent. [qCO '~co
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What happens if the random variable g in Problem 4.12 is

not square-integrable, but merely a.s. finite? It is reasonable

to guess that there is still a representation of the form (4.32),

where now the integrands Y can only be expected

to satisfy

T
(4.43) f (Ytj))2dt < co; a.s. P.

0

In fact, an even stronger result is true. For any fixed j, there

is a progressively measurable process Y(J) such that (4.43)

holds and

g= y(J)dw(j) ; a.s. P.
0 s s

Thus, we only need the one-dimensional Brownian motion tW(j) , t;
t '

0 <t < < c for the representation, even though [at is the

augmentation of the filtration generated by the d-dimensional

Brownish motion [(Wt(1) (d )
Brownian motion t(Wt1 ,..., ) 0 < t < col. This is a special

case of the following theorem. The left-continuity of [{t 

follows from Problem 2.7.6.

4.16 Theorem: Dudley (1977).

Let W = [Wt, at; 0 < t < co] be a standard, one-dimensional

Brownian motion, where, in addition to satisfying the usual

conditions, [3t3 is left-continuous. If 0 < T < co and

g is an 5T-measurable, a.s. finite random variable, then

there exists a progressively measurable process

Y = [Yt' at; 0 < t < T3 satisfying
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T
(4.44) Y2tdt < c°; P-a.s.,

0

such that

T
YdWt; P-a.s.

(4.45).'t tO

We present the beautiful proof of this result provided by

Dudley [1977], a proof which uses the representation of stochastic

integrals as time-changed Brownian motion.

4.17 Lemma:

Consider numbers 0 < a < b < co and a measurable,

nonrandom, function p : [a,b) 3 JR for which

A(t) S cp2 (s)ds is finite and positive on (a,b), with
a

lim A(t) = oo. Let W = {Wt , at; 0 < t < o]° be a
t tb

standard, one-dimensional, Brownian motion and X an

Ya-measurable, a.s. finite random variable. We set

t
Mt = (s)dWs; a < t < b, and

a

( inf{t E [a,b); Mt(W) = X(W)3; if {...} # 0,
T(W) -

Ct~~~b ~; otherwise

Then T is a stopping time of lat3 with P[a < T < b] = 1.

Furthermore, the random variable G(w) _ A(T'(w)) obeys

P[G > uI a] < ( . 1; a.s. P, u > 0.
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Proof: The change of clock

T(s) A inf{t E [a,b); A(t) > sJ; 0 < s < c,

is deterministic, and T(OO) A lim T(s) = b. The continuous
S+CO

local martingale B = B s ())T(s); s < col has

quadratic variation <B> s = A(T(s)) = s (c.f. Problem 4.5(ii)),

and so B is a Brownian motion.

Now X and lBs; 0 < s < co] are independent, so

B X = Bs -X, Q ; 0 < s < co] is a Brownian motion with

initial distribution p(dx) = P[-X E dx]. Define the passage

time

infO <, s < cc; Bs X = 0; if {...] 0,

otherwise.

We have from (2.6.3) and the Markov property:

.2

P[o E dslqo] = Xl e ds; 0 < s < co.
2s3.

In particular, P[0 < a <(co] =1. Now T = T(a), so P[a < T < b] = 1.

Furthermore, G=A(T(G)) = a and 5a = Q0' so

P[G > ul3a] < 1 A c XI ds < IX1 A 1; a.s.P, u > 0.

Proof of Theorem 4.16:

Let r = arc tan g, so that I rI(w) < for all w E Q. For

any sequence of positive numbers lan 1 strictly increasing to T,
n=l
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the discrete-time martingale {rLn E[nlIan] , ; n > 1] converges
co~ n n

a.s. to E[rIo( U Ja )] (Chung [1974], Theorem 9.4.6] or Ash
n-l n

[1972, Theorem 7.6.2]), and this limit is actually E[rWT] = 

because of the left-continuity of [t]. Consequently, gn tan rn

converges a.s. to g, and we can extract a subsequence, which we

also denote n n=l, for which

(4.46) P[Ij§n_~ > < 1 n >
n n

1 1 4
Beca-use 1< + 3 3 < 2 for n > 2, we have from (4.46):

(n-l) n n(n-l)

(4.47) P[I§ >- '- > ]f[i- 4-1 > ' (4~.47) P[1 n-1) 2I < Pn-l- > 3 + P ['j n - I1 > 3]
n(n-i) (n-l)

1 1 2
-<-1 2 + < 2; n > 2.

(n-l) n (n-l)

Now we construct the progressively measurable process Y

satisfying (4.44) and (4.45). For n > 1, we let n (t) = a 1
an+1 -t

a < t < a and observe that An(t) )ds is p
an

and finite on (an, an+1), and increases to infinity as t tan+l.

According to Lemma 4.16, the stopping time

t.
inftt E [an,an+l); J cP(s)dW s =n - n-1

A an

tn C if t-. 0#,

an+l; otherwise
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satisfies P[an < Tn < an+l] = 1 for every n > 1, where we take

A 0. It follows that for P-a.e. w E Q, the sequence

{n(W) n=l is strictly increasing and converges to T as

n . co. We define

co

Yt(w) Z n(t)l a T n())(t) ; 0 < t < T.
n=l [ n n

This defines an adapted, right-continuous (and hence, progressively

measurable) process such that for every n > 1,

an+l n j n

(4.48) YtdWt = jZ Y-tdW t = ( - ) = §n
0 j=l a.

and

T 2 n co
(4.49) J Y2dt = lim r (t)dt G

0 nl cc j=l a

where Gj(W) = Aj(Tj(w)). Lemma 4.17 gives

P[G n > 15 < n1 n- 1.n 2 a n n-l
n n

But, from (4.47),

E[nijn- n 1 I Al] <) (ni n- nn-1 ! Al)dP +

4 (n-l)2

< 6 ; n > 2,
(n-l) 
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and so

1 6
P[Gn > 2] < 2 n> 2.

n (n-i)

By the Borel-Cantelli lemma, there exists an event n of probability

one, such that for every w Ef , there exists an integer n O(w) > 2

Gn(m) < 2; n > n o(w)-
n

co

We conclude that Z Gn (w) is a convergent series on £ , and
n=l

(4.49) gives us (4.44).
t

Because of (4.44), the stochastic integral {It(Y) = I Y dWs;
0

0 < t < TJ is defined and almost surely continuous. Letting

n co in (4.48), we obtain (4.45). -

4.18 Problem: Extend Theorem 4.16 to the case T = co.

4.19 Remark: It is instructive to compare the representations (4.32)

and (4.45) in the case where {at] is the augmentation of the

filtration [dt} generated by the one-dimensional Brownian

motion W. The expectation E§. does not appear in (4.45)

·(Theorem 4.15 does not assume the integrability of 5). We

do not know if the proof of Theorem 4.16 can be modified in

the case E 2 < co, E§ = 0 to give the result of Problem 4.12,
T 2

i.e., the representation (4.45) with E 0 Y2dt < co.
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3.5 THE GIRSANOV THEOREM

In order to motivate the results of this section, let us

consider independent normal random variables Z1, ... z d on

(0,3,P) with EZ = 0, EZ2 = 1. Given a vector (p1 ,d) ER d
1. 1. '

we consider the new probability measure P on (Q,3) given by

d d
1 2

P(dw) = exp[ Z iZi(W) -i ] (d).
i=l i=l

Then [Z E dz,...,Z d E dzd ] is given by

d d
exp[ zi 2 il p] · P[Z1 E dzl,...,Z d E dzd]

2i=l ild d

= -d/2 1 2
(2) d /2 exp[- 12 (zi i) dz dz

i=l

Therefore, under P the random variables Z, ..., Z d are independent

and normal with Ei = i and EZi = 1. In other words,

i. = Z. - i; 1 < i < dJ are independent, standard normal
1 1 

random variables on (,3%,P). The Girsanov Theorem 5.1 below extends

this idea of "invariance of Gaussian finite-dimensional distribu-

tions", under appropriate translations and changes of the underlying

probability measure, from the static to the dynamic setting.

Rather than beginning with a d-dimensional vector (Z1, ... d)

of independent, standard normal random variables, we begin with

a d-dimensional Brownian motion under P, and then compute a new

measure P under which a "translated" process is a d-dimensional

Brownian motion.
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Throughout this section, we shall have a probability space

(n,5,P), and a d-dimensional Brownian motion

= ( ...,Wt), at; 0 < t < co] defined on it, with

P[W 0 = 0] = 1. We assume that the filtration {at3 satisfies the

usual conditions. Let X - X t = (Xt1),...,X(d) , ; < t < 
t t ), 

be a vector of measurable, adapted processes satisfying

T
(5.1) P[i (X (i)) 2 dt < o] = 1; 1 < i < d, 0 < T _ < c.

0

(i)
Then, for each i, the stochastic integral IW ( ) is defined

f (x is defined

and is a member of cloc We set

d t t

(5.2) Zt(X) A exp[ 7Z I x(i)dW(i) 1 I Xll2ds].

*Just as in Example 3.9, we have

d t
(5.3) Zt(X) = 1 + Z I Zs(X)X(i)dW(i)

i=l 0

which shows that Z(X) is a continuous, local martingale with

Z0(X) = 1.

Under certain conditions on X, to be discussed later, Z(X)

will in fact be a martingale, and so EZ t (X) = 1; 0 < t < co. In

this case we can define, for each 0 < T < co, a probability

measure PT on 3T by

(5.4) · pT(A) _ E[lAZT(X) ]; A E AT'
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The martingale property shows that the family of probability

measures PT'; 0 < T < co] satisfies the consistency condition

(5.5) PT(A) Pt(A); A E it, 0 < t < T.

5.1 Theorem: Girsanov (1960), Cameron & Martin (1944)

Assume that Z(X) defined by (5.2) is a martingale.

Define a process I = =Wt (Wt ,() .. (d) 0t at; t < o

by

(5.6) W (i) (i) I x(i)ds; 1 < i < d, 0 < t < co,

For each fixed T E [0,co), the process {Wt', t; 0 < t < T3

is a d-dimensional Brownian motion on ( P,aT,P). C

The preparation for the proof of this result starts with

Lemma 5.3 below; the reader may proceed there directly, skipping

the ensuing discussion on first reading.

Discussion: Occasionally, one wants to consider W as a process defined

for all t E [0,co), and for this purpose the measures

PT; 0 < T < odJ are inadeqate. We would like to have a

single measure P defined on ao, so that P restricted

to any AT agrees with PT; however, such a measure does not

exist in general. We thus content ourselves with a measure

P defined only on 'W, the a-field generated by W,
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such that P restricted to any 5T agrees with PT,' i.e.,

(5.7) P(A) = E[lAZT(X)]; A E ,T' 0 <T < co.

If such a P exists, it is clearly unique. The existence of

P follows from the Daniell-Kolmogorov Extension Theorem 2.2.2.

We show this when d = 1; only notational changes are required

for the multidimensional case.

Let t = (tl,...Itn) be a finite sequence of distinct,

nonnegative numbers, as in Definition 2.2.1, and let

t = max{tl, ... ,tnj. Define

Qt(A) = E n; (Wt (w),...,W t (W)) E A]; A E B(]Rn).1 n

Then lQt ] is a consistent family of finite-dimensional

distributions, so there is a probability measure Q on

( Oco) 1 ( [0,o ))) such that

Qt(A) = Q[w E R 0,); (w(tl)...w(tn)) E A]; A E

W

But the typical set in 5W has the form iw E f; W. (w) E B,

where B E (R [0,co). Consequently, Q induces a probability

measure P on 3W defined by

p[w E n; W (w) E B] Q(B); B E B(R [,co)),

and this measure satisfies (5.7).
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The process W in Theorem 5.1 is adapted to the filtration

Kata, and so is the process t: X(i)ds; 0 < t < co°; this can be

seen as in part (c) of the proof of Lemma 2.3, which uses the

completeness of t'. However, when working with the measure P

which is defined only on 3Wc, we wish W to be adapted to "tW.

This filtration does not satisfy the usual conditions, and so we

must impose the stronger condition of progressive measurability

on X. We have the following corollary to Theorem 5.1.

5.2 Corollary: Let W = tWt , at; 0 < t < o]J be a d-dimensional

Brownian motion on' (O,a,P) with P[W 0 = 0] = 1. Assume that

the filtration {at ] satisfies the usual conditions. Let

W
X = {Xt, tW; 0 < t < co° be a d-dimensional, progressively

measurable process satisfying (5.1). If Z(X) defined by

~ W
(5.2) is a martingale, then W = [Wt, ; < t < o]}

defined by (5.6) is a d-dimensional Brownian motion on

W .

Proof:

For 0 < t1 <...< t < t, we have.n-

P[(Wtl W t E A] =Pt[(W t l W
t ) E A]; A E B(Rd)

The result now follows from Theorem 5.1.
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Under the assumptions of Corollary 5.2, the probability measure

P and P are mutually absolutely continuous when restricted to

0; o < T < cc. However, considered as probability measures on

, P and P may not be mutually absolutely continuous. For

example, when d = 1 and X t = i, a nonzero constant, then

2
Zt(X) = exp[pWt 2 1A t] ° < t < co

is easily seen to be a martingale. Corollary 5.2 and the law

of large numbers imply

P[lim Wt = = Plim W t 0 = 1,
t o t tco

P[ lim W t = A] = 0.
t-.cx

In particular, the P-null set { lim t W t = pI is in AT for
teco

every 0 < T < co, so P and PT cannot agree on T.' This isT T

the reason we require (5.7) to hold only for A E ST 

We now proceed with the proof of Theorem 5.1. We denote by

ET (E) the expectation operator with respect to PT (P).

5.3 Lemma: Fix 0 < T < co and assume that Z(X) is a martingale.

If 0 < s < t < T and Y is an a -measurable random variable

satisfying E IYI < co, then we have the Bayes' Rule:

E[Yjs] Z (X) B[YZt(X)I 5s], a.s. P and PT.
S
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Proof:

Using the definition of ET, the definition of conditional

expectation, and the martingale property, we have for any A E 3s:

~ 1
ET A Z (X) E[YZt(X) 13] ] = E[1AE[YZtlas]3

s

= E[1AYZt] = ET T[1AY].

We denote by i,' loc the set of continuous, local martingales

M = M t , t; 0 < t < TJ on (n,T,'P) satisfying P[MO = 0]. We

define '1cloc similarly, with P replaced by PT.

5.4 Proposition: Fix 0 < T < co and assume that Z(X) is a

mC loc
martingale. If M E TiII , then the process

d t
(5.) { Mt =M S X d<MW >s' t; 0 < t < T]

i=l 0 

is in , loc. If N E Tcloc and

d t
t t - x(S d <N ,w(i)> ; 0 < t < T,

i=l 0

then

<M,>= <M,N> t; 0 < t < T, a.s. P and PT,

where the cross variations are computed under the appropriate

measures.
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Proof: We consider only the case where M and N are bounded

martingales with bounded quadratic variations, and assume also that

d t
Zt(X) and Z f (Xs()) ds are bounded in t and w; the general

j=l 0

case can be reduced to this one by localization. Since (Problem 3.2.16)

t t
X(i)d<M,W(i)>s Mt < <> (Xi))ds,

0 S - 0 

we see that M is also bounded. The integration-by-parts formula

(Problem 3.11) gives

t d t

Zt(x)it= Zu(X) dM + Z f x(i) Z(X)dWt t u U i=l 0 uu u u

which is a martingale under P. Therefore, for 0 < s < t < T,

we have from Lemma 5.3:

1
ET[Mtis] = (X)Z Zt(X) IE[Zt(X = M a.s. P and P'

s

It follows that M E 1cloc

The change-of-variable formula also implies:

t t

MtNt- <MN>t = M dNu + Nu Mjt t 0 0 u u

d t ( t
- z I M X d<NW >u + f N X(id<Mw(i)>
i=as well as0 u u

as well as
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- t t
Zt(X) (Mtit - <MN>t) = S ZU (X)MdN + U (X) dMU

d t
+i_1 J (UNU - <M,N>U) X ( )Z (X) dW (i)
i=l UU U U U U

This last process is consequently a martingale under P, and so

Lemma 5.3 implies that for 0 < s < t < T

E[ N t <M,N> tl] = MSN <M,N> s; a.s. P and PT

t .· 

This proves that <M,N> = (M,N>t; < t < T, a.s. PT and P.tt _ T

Proof of Theorem 5.1: We show that the continuous process W on

(£,aTPT) satisfies the hypotheses of P. Levy's Theorem 3.13.

Setting M = W (j) in Proposition 5.4 we obtain M =-W(J) from

(5.8), so W(j) E T'1 loc Setting N - W(k, we obtain

Let Mt, at; 0 < t < TJ be a continuous, local martingale under

P (M E T, loc). With the hypotheses of Theorem 5.1, Proposition 5.4

shows that M is a continuous semimartingale under PT (Definition

3.1). The converse is also true; if lMt' 0t; 0 < t < T3 is a

continuous martingale under PT, then Lemma 5.3 implies that for

0 < s < t < T:
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E[Zt(X ts ] = Zs(X)ET[tls] = Z(X)Ms; a.s. P and PT'

so Z(X)M is a martingale under P. If M E TI c, a localization

·, a localization
argument shows that Z(X)M E IT 'lc But z(x) E i, and so It 's

1
rule implies that M = Z(X) [Z(X)M] is a continuous semimartingale

under P (cf. Remark 3.4). Thus, given M E T loc, we have a

decomposition

t = Mt + Bt; 0 < t < T,

where M E iT'loc and B is the difference of two continuous,

nondecreasing, adapted processes with B0 = 0, P-a.s. According

to Proposition 5.4, the process 

M (Mt - 0 Xs d<M,W ( i) > )
i=l 0

d t
Bt + Z I x(i)d<MW(i)>s; 0 < t < T,

i=l 0

is in ' 1bloc and being of bounded variation this process mustT

be indistinguishable from the identically zero process (Problem 3.2).

We have. proved the following result.

*5.5 Proposition: Assume the hypotheses of Theorem 5.1. Then

every M E T'1,loc has the representation (5.8) for some

M E coc
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We note now that integrals with respect to d(i) have

two possible interpretations. On the one hand, we may interpret

them by replacing dW(i) by dW X(i)dt so as to obtain~~~t t t

the sum of an Ito integral (under P) and a Lebesgue-Stieltjes

integral. On the other hand, W(i) is a Brownian motion under PT,

so we may regard integrals with respect to dWti) as It&6 integrals

under PT. Fortunately, these two interpretations coincide, as

the next problem shows.

5.6 Problem: Assume the hypotheses of Theorem 5.1 and suppose

Y = [Yt' 3t; 0 < t < co is a measurable adapted process

t 2

satisfying P[J Y dt < o] = 1; 0 < T < co. Under P we
0

may define the It6 integral YdW whereas,under P
YsdW ( whereas,under PT'

t
we may define the It6 integral Y d-W(i) 0 < t < T.

0

Show that for 1 < i < d, we have

t t tf YdWi) = I Ydw) -I Ys ds 0 < t < T,0 s s 0 s s0 0 0
a.s. P and PT.

(Hint: Use Proposition 2.22.)

We now discuss a rather simple, but interesting, application

of the Girsanov theorem: the distribution of passage times for

Brownian motion with drift. Let us consider a Brownian motion

W = Wt, t; 0 < t < 3 .and recall from Remark 2.8.3.,t't'
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that the passage time to level b # 0,

A inft > 0; W t = b; if [...] ¢ 0,
Tb 

+ Co; if [{... = 0,

has density and moment generating function, respectively:

(5.9) P[Tb E dt] = b exp[- b2tdt; t > 0,

(5.10) Ee - T =elb a > 0

A w
For any real number4 # 0, the process W = W W t - t;

O < t < coo is a Brownian motion under the unique measure

P(~) which satisfies

P() (A) = E[lAexp[pWWt 1 2 t3; A t

(Corollary 5.2). We say that, under P( , W t = Pt + W t is a

Brownian motion with drift P. On the set [Tb < t E ~W pn 3W
t Tb ATb

we have Zt^T = ZT , so the Optional Sampling Theorem 1.3.20 and
b b·

Problem 1.3.21(i) imply

(5.11) P [T b< t] = E[1lT btzt] E [l{Tb tE[ZtlAT 

12.ib - -1 T
= E[liTbtje

t b 2-1 2
exp[1b - 14 sJP[Tb E ds].

h 2 b
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Relation (5.11) has several consequences. First, together

with (5.9) it yields the density of Tb under P(~):

(5.12) P ( ) [Tb E dt] = Ibl exp[- (b-)at, t > O(5.12) 1 C~b E dt) 7- expl- 2t ]dt, t > 0.

/27t 3

Secondly, letting t - co in (5.11), we see that

P ( Tb < co] = eE[exp(1 2Tb)],

and so we obtain from (5.10):

(5.13) P ) [Tb < 0] = exp[ib - lpbl].

In particular, a Brownian motion with drift p # 0 reaches the

level b # 0 with probability one if and only if p and b have

the same sign. If p. and b have opposite signs, the density in

(5.12) is "defective", in the sense that P( [Tb < cc] < 1.

.5.7 Problem: Let T be a stopping time of the filtration [UW]

with P[T < ] = I. A necessary and sufficient condition

for the validity of the Wald identity:

(5.14) E[expjPWT - 12 T = 1,

where p is a given real number, is that

(5.15) P() [T < co] = 1.
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In particular, if p E JR and pb < 0, then this condition

holds for the stopping time

(5.16) Snf~t > 0; W t - Pt = bJ; if {.... # 0,
(5.16) Sb=

~c oo; if {...] = 0.

5.8 Problem: Denote by

h(t;b,P) Ib exp[- (bt) t > b , 
2t

the (possibly defective) density on the right-hand side of (5.12).

Show that

h(';bl+b2,p) =.h(';bl,p) * h(';b 2 ,); blb2 > 0, p E R,

where * denotes convolution.

5.9 Problem: With p > 0 and W, = inf Wt, under P(P) the
t>O

random variable -W* is exponentially distributed with

parameter 2P, i.e.,

(P)[_ Eb] =b b > 0.P ()[-W, E db] = 2e 2bdb, b> O

5.10 Problem: Show that

b - IbaT/27), a > 0.
E e ~e b = exp(PCb -b /P+2a) , a> 
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5.11 'Exercise: (Robbins & Siegmund [1973)) Consider, for m > 0

and b > 1, the stopping time of [SW]:

inf[t > 0; exp(4Wt - t) = bj; if -... # 0,

C)O; if {...3 = 0.

Show that

1 MR() 2 _n bP[Rb < CO = E Rb = 2nb

In order to use Girsanov's theorem effectively, we need some

fairly general conditions under which the process Z(X) defined

by (5.2) is a martingale. This process is a local martingale

because of (5.3). Indeed, with

nfit > 0; max J (Zs(X)X (i) ds = n]; if O...3 # 0,
0<i<d 0 s '

if O...3 = 0,

the "stopped" processes: z(n) (n ) (X) a 0 < t < cot nt

are martingales. Consequently, we have

E[ZtTn ] = ZSATn; < s < t, n > 1,

and using Fatou's lemma as n e co, we obtain

E[Zt(X) 5s] < Zs;. 0 < s < t.

~I~--~~--`-`~~~t S S.-
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In other words, Z(X) is always a supermartingale, and is a

martingale if and only if

(5.17) EZt(X) = 1; 0 < t < co

(Problem 1.3.23)'. We provide now sufficient conditions for (5.17).

5.12 Proposition: Let M = [Mt, at; 0 < t < co be in I c ' 1loc

and define

Z = exp[Mt 1 <M> ] ; 0 < t < o .

If

(5.18) E[exp <M> < cc; 0 < t < o,

then EZt = 1; 0 < t <(O.

Proof:

We must show that for an arbitrary, positive t we have

EZt = 1. Once t is fixed, we may alter M u for u > t if

necessary to assure that

(5.19) Pi lim <M>u = co] = 1.
U-4co

We assume henceforth that (5.19) holds.

Let T(s) = inftt > 0; <M>t > sI, so the time-changed process

B[B s (s)' s AT(s) 0 < s < co]
S S
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is a Brownian motion (Theorem 4.6). For b < 0, we define the

stopping time for [Csj as in (5.16):

Sinfs > 0; B s- s = b]; if {...] I 0.
Sb =

if O[... = 0.

Problem 5.7 yields the Wald identity E[exp[B - 1=

whence E[exp[.2 Sb2 ] = e b. Consider the exponential martingale

s A
s exp(Bs ) s; 0 < s <.cX and define {N = Z ; O < s <ol.s S 2 _ S sAcb 

According to Problem 1.3.22(i), N is a martingale, and because

P[S b < co] = 1, we have

No = lim N = exp(BSb 1
= S.4~ CO 5b- 2 Sb)'

Fatou's lemma implies

Nr = lim E[N I r] > E[Nooir] 0 < r < co,
r sCOr 

so N = [Ns, Qs; 0 < s < co] is a supermartingale with a last

element. However, ENco = 1 = EN0, so N = Ns, Qs; 0 < s < co3

has constant expectation; thus N is actually a martingale with

a last element (Problem 1.3.23). This allows us to use the

Optional Sampling Theorem 1.3.20 to conclude that for any

stopping time R of the filtration {s3:

E[exp[BRSb 1 (RASb) ] = 1.
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But {<M> t > sI = LT(s) < t E aT(s) = Qs (Problem 4.5(iii)),

so <M>t is a stopping time of {s J' Therefore,

(5.20) E[lSb <_M>tjexp(b + 1 Sb)]

i sb]M = 12+ E[l<M>>t < Sbtexp[Mt 2 <M>t] 1;

0 < t <co, b < 0.

The first expectation in (5.20) is bounded above by

ebE[exp 1. <M>t ], which converges to-zero as b 4-co, thanks

to assumption (5.18). As b 4-co, the second expectation in

(5.20) converges to EZt because of the monotone convergece

theorem. Therefore, EZt = 1; 0 < t < Co. a

5.13 Corollary: Novikov (1972)

Let W =W t =(t(1 ) w(d) ttet WI= {Wt = (W(1),..., ) ; 0 < t < co} be

d-dimensional Brownian motion, and let X = Xt = (X (1) ... (d)

Jt; 0 < t < co be a vector of measurable, adapted processes

satisfying (5.1). If

(5.21) E[expl iX 11Xs2ds]] < C; 0 < t < Co,
0 

then Z(X) defined by (5.2) is a martingale.
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d t

Proof: Let Mt- = l I X(i)dW(i) in Proposition 5.12

and recall the discussion preceding (5.17).. j

5.14 Corollary: Corollary 5.13 still holds if (5.21) is replaced by

the following assumption: there exists an increasing sequence

Itnn 0 of real numbers with O = to < t < ... and

lim tn = co, such that
n~oC

t

(5.22) 1expl 1X112 ds2 cc); n >1

n-l

Proof:

Let X (n ) X) 
Let nt [tnl<t<tn) t [t 1 <t<tn) ) 

Z(X(n)) is a martingale by Corollary 5.13. In particular,

E[Zt (X(n))t ] = Zt (X(n)) = 1; n > 1.
n n-l n-l

But then,

E[Zt (X)] = E[Zt (X)E[Zt (X(n)) !t }] = E[Z (X)],
n n-l n n-l n-l

and by induction on n we can show that E[Zt (X)] = 1 holds for
n

all n > 1. Since E[Zt(X)] is nondecreasing in t and

lim tn = o, we obtain (5.17). 
n3o n

n-+ co"4-"-"-""" I-"`"^ "`-~-1
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5.15 Definition: Let C [O0,o) be the space of continuous functions

d A
x : [,occ) - JR. For 0 < t < (c, define = a{x(s); 0 < s < t,

and set Q = Qo (cf. Problems 2.4.1 and 2.4.2). A progressively

measurable functional on C d[0,co) is a mapping

. : [0,oo) x Cd[0,oo) - 3R which has the property: for each

fixed 0 < t < Co, p restricted to [O,t] x C d[0,o) is

B[0,t] ® t/B(JR) -measurable.

If p = (p(l) ,...,(d) is a vector of progressively measurable

functionals on C dO[,)o) and W = Wt = (W ( ) ... d), t;

0 < t < c0J is a d-dimensional Brownian motion on some (,a,,P),

then the processes

(5.23) X(iW) A (t, t()) 0 < t < co, 1 < i <-d,

are progressively measurable relative to {t.a

5.16 Corollary: Beneg (1971)

If the vector p = ( (l),..., (d) of progressively

measurable functionals on C d[0,o) satisfies, for each

0 < T < oo and some KT > 0 depending on T, the condition

(5.24) Ilp(t,x) || < KT(1 + x (t)); < t < T,

where x (t) = max 11x(s)11, then with X (X 1 ) x(d)
O<s<t

defined by (5.23), Z(X) is a martingale.
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Proof: If, for arbitrary T > 0, we can find to0,... tn(T)n

such that 0 = t < tl <...< tn(T) = T and (5.22) holds for

1 < n < n(T), then we can construct a sequence Itn n_0 satisfying

the hypotheses of Corollary 5.14. Thus, fix T > 0. We have from

(5.23) ,(5.24) that whenever 0 < t < t n < T, then

t
n 112 2 2
n ijX sl2ds < (tn-tnl)KT (l+WT) 

tn-l

where W T max 11Wt . According to (2. ),
O<t<T

2
* 2 2T

P[W* E dm] e2T dm; m > 0,
T/21

so (5.22) holds provided tn t < This allows us to
TK 

construct t0, .. tnT as described above. G

5.17 Remark: Lipster and Shiryaev (1977), p. 222, show that when

d = 1 and if 0 < £ < 1, then there is a process X satisfying

the hypotheses of Corollary 5.13 but with (5.21) replaced by

the weaker condition

E[exp[((- f) I Xtdt]] < O; 0 < T < °c,
0

such that Z(X) is not a martingale.
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The next exercise, taken from Lipster and Shiryaev (1977),

p. 224, provides a simple example in which Z(X) is not a

martingale. In particular, it shows that a local martingale

(cf. (5.3)) need not be a martingale.

5.18 Exercise:. With W = {Wt, at; 0 < t < 13 a Brownian motion,

we define

T = inf[O < t < 1; t + Wt = ,

t 2 Wtlt<Tj; < t < 1,
(l-t)

Xt 

t0; t= 1.

(i) Prove that P[T<l] = 1, and therefore f X dt < c- a.s.
0

(ii) Apply It8 's rule to the process 0(-t_ ; o < t < 13

to conclude that

11 T 1 2
XdWt Xt -1 - 2 [ ]Wtdt < -10 t t 0 t 0 (1-)4 [_O O O (l-t) (l-t) 3 t

(iii) The exponential supermartingale [Zt(X), St; 0 < t < 1]

is not a martingale; however, for each n > 1 and

n Z tA(X), at; 0 < t < 1 is a

martingale.
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5.19 Exercise: Let W = {Wt, at; 0 < t < oo] be a Brownian motion

on (0,U,P) with P[W 0 = 0] = 1, and assume {t3 satisfies

the usual conditions. Suppose that, for each 0 < T < co,

there is a probability measure PT on 3T which is mutually

absolutely continuous with respect to P, and that the family

of probability measures 0PT; 0 < T < cr] satisfies the

consistency condition (5.5). Show that there exists a

measurable, adapted process X = [Xt, at; 0 < t < 0o)

satisfying (5.1), such that Z(X) defined by (5.2) is a

martingale and (5.4) holds for 0 < T < co.
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3.6 LOCAL TIME AND A GENERALIZED ITO RULE

In this section we devise a method for measuring the amount of

time spent by the Brownian path in the vicinity of a point x E IR.

We saw in Section 2.9 that the Lebesgue measure of the level set

Zw(x) = O0 < t < Co; Wt(W) = xJ turns out to be zero, i.e.,

(6.1) meas Zw(x) = 0, for P-a.e. w E Q,

yielding no information whatsoever about the amount of time spent

in the vicinity of the point x (Theorem 2.9.6 and Remark 2.9.7).

In search of a nontrivial measure for this amount of time, P. Levy

introduced the two-parameter random field

1(6.2) 0t(x) = lim o meas < s < t; 1W -xl < EC; t E [0,cO ) x E ]R

and showed that this limit exists and is finite, as well as positive

(e.g. for x = 0, t > 0). We shall show how Lt(x) can be chosen

to be jointly continuous in (t,x) and, for fixed x, nondecreasing

in t and constant on each interval in the complement of the closed

set ZW(x). Therefore, dt t(x) exists and is zero for Lebesgue

almost every t; i.e., the function t e -t(x) is singularly

continuous. P. Levy called Lt(x) the mesure du voisinage, or

"measure of the time spent by the Brownian path in the vicinity

of the point x." We shall refer to Lt(x) as local time.

This new concept provides a very powerful tool for the study

of Brownian sample paths. In this section, we show how it allows us

to generalize Ito's change-of-variable rule to convex but.not

necessarily differentiable functions, and we use it to study certain
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additive functionals of the Brownian path. These functionals will be

employed in Chapter 5 to provide solutions of stochastic differen-

tial equations by the method of random time change. Local time

will be further developed in Chapter 6, where we shall use it to

prove that the Brownian path has no point of increase (Theorem 2.9.13).

In this section, the reader can appreciate the application of local

time to the study of sample paths by providing a simple proof of

the nondifferentiability of Brownian paths (Problem 6.6). This

problem shows that jointly continuous local time cannot exist

for processes whose sample paths are of bounded variation on

bounded intervals.

Throughout this section, {Wt, it; 0 < t < col, (Q,a), {PZJZER

denotes the one-dimensional Brownian family on the canonical space

= C[O,cc). This assumption entails no loss of generality, because

every standard Brownian motion induces Wiener measure on C[O,co)

(Remark 2.4.19), and results proved for the latter can be carried

back to the original probability space. We take the filtration

{ to be {t defined by (2.7.3), and we set a = aoO. This

filtration satisfies the usual conditions, and for each z E IR

and F E 5 there is a set GZ E 9(C[O,co)) such that

PZ(F AGZ) = 0. In this situation, PZ is just a translate of

P , i.e.,

(6.3) pZ(F) = p(F-_z); F E 3,

(cf. (2.5.1)). We also have at our disposal the shift operators

[os s>0 defined by (2.5.11).
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6.1 Definition: A measurable, adapted, real-valued process

A = [At, at; < t < oO} is called an additive functional

if, for every z E IR and PZ-a.e. w E i, we have

(6.4) At+s (w) = A s (W) + At(sW); 0 < s, t < co.

6.2 Example:. For every fixed Borel set B E B(IR), we define the

occupation time of B by the Brownian path up to time t as

t
(6.5) St(B) I I lB(Ws)ds = meas[0 < s < t; Ws E Bj; O < t < oL,

0

where "meas" denotes Lebesgue measure. The resulting process

3-(B) = [Pt(B), t; 0 < t < co] is adapted and continuous,

thus progressively measurable (Problem 1.2.18), and is easily

seen to be an additive functional.

Equation (6.2) indicates that local time At(x) should

serve as a density with respect to Lebesgue measure for

occupation time. In other words, we should have

(6.6) rt(B,W) = S Lt(x,w)dx; 0 < t < co, B E )R) .
B

We take this property as part of the definition of local time.

6.3 Definition: Let

= Lt/t(x,w); (t,x) E [O,co) x IR, w E 2]

be a random field with values in [O,co), such that for each

fixed value of the parameter pair (t,x) the random variable
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Lt(x) is 3t-measurable. Suppose that there is a set
* z *
Q E a with P (Q ) = 1 for every z E IR and such that,

for each w E 2 , the function (t,x) >Lt (x,w) is continuous

and (6.6) holds. Then we call L Brownian local time.

6.4 Remark: There is no universal agreement as to whether L in

Definition 6.3 or L is to be called local time. We shall

sometimes use the symbol L = L 4, and somewhat loosely refer

to both L and L as local time.

6.5 Remark: With L as in Definition 6.3 and w E Q , one can

immediately derive (6.2) from (6.6) and the continuity of

x > Lt(x,w). Further, '(a) = {Lt(a), t; 0 < t < co° is

easily seen to inherit the additive functional property (6.4)

from its progenitor, the occupation time r (Example 6.2).

6.6 Exercise: Assume that Brownian local time exists and show

that for each w E Q of Definition 6.3, the sample path

t Bt(W) can have no point of differentiability.

(Hint: If t FBt(W) is differentiable at t, then for

some sufficiently large C and sufficiently small 6 > 0

we must have IBt+h(W) - Bt(W) I < Ch; 0 < h < 6).
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(i) Show that the validity of (6.6) is equivalent to

t oo
(6.7) f f(W (w))ds = f(x) Lt(x,w)dx; 0 < t < co,

for every Borel function f : i R [0,oo).

(ii) Let 9 be the set of continuous functions h : IR ' [0,1]

of the form

0; `x < q I

qx-ql ;
i2-ql

h(x) = 1; < x < q

q4-x
q4 x q,3 < x < q4

l q4-q3
0O; x > q4,

where ql < q 2 < q3 < q4 are rational numbers.

* /1 3 4xh
ql q2 q3 q4

Show that if (6.7) holds for all h E f, then it holds

for every Borel function f : ]R [O,co), O
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We have not yet established the existence of Brownian local

time. One could take the representation (6.2) as a starting point

for the existence analysis, but it turns out that there is a more

convenient representation for this purpose, the Tanaka formula,

which we now develop. Let us fix a number a E IR, and take

f(x) in (6.7) to be the Dirac delta evaluated at x-a, thus

deriving formally the representation

t
(6.9) tt(aw) = o 6(Ws-a) ds.

0

But the integral on the -right-hand side is only formal, so to

give it meaning we consider the nondecreasing, convex function

u(x) = (x-a)+, which is continuously differentiable on IR\{aj

and whose second derivative in the distributional sense is

u"(x) = 6(x-a). Bravely assuming that ItS's rule can be applied

in this highly irregular situation we write

t t(6.10) + - t 1
(6.10) f(Wt-a) + - (z-a)+ = I 1 (W(Ws-a)ds;

[a, co)(2s)dW (Ws-a)ds;' 0

0 < t < co,

and in conjunction with-(6.9) and Remark (6.4) we have

t
(6.11) Lt(a) = (Wt-a)+ - (z-a)+ - l[a o) (Ws)dWs; < t < °c

0 [a

PZ-a.s. for every z E JR. Despite the heuristic nature of both

(6.9) and (6.10), the representation (6.11) for local time is valid

and will be established rigorously.
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6.8 Proposition: Let us assume that Brownian local time exists,.

and fix a number a E IR. Then the process L(a) = , t(a), at'

0 < t < co} is a nonnegative, continuous additive functional

which satisfies P Z-a.s. for every z E iR, the formula (6.11)

and the companion representations

t
(6.12) Lt(a) = (Wt-a) - (z-a) + (1 O WdW 0 < t < o,

t
(6.13) Lt(a) = iWt-al - Iz-aI - £ sgn(Ws-a)dWs; 0 < t < oo.

6.9 Remark: Any of the formulas (6.11), (6.12) or (6.13) is

referred to as the Tanaka formula for Brownian local time.

We need establish only (6.11); then (6.12) follows by symmetry

and (6.13) by addition, since

pZ[ l {aj(Ws)dWs = 0; 0 < t < co] = 1; z E IR.
0

In particular, it does not matter how we define sgn(0) in

(6.13); we shall define sgn so as to make it right-continuous,

i.e.,

1; x > O0
(6.14) sgn(x) = x 0

1; x < 0.
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6.10 Remark: The process (W t-a)+, t 0 <( t ( °C is a continuous,

nonnegative submartingale (Proposition 1.3.5); it admits,

therefore, a unique Doob-Mayer decomposition (under PZ,

for any z E IR):

(6.15) (Wt-a) = (z-a) + Mt(a) + At(a); 0 t < t < o,

where A(a) is a continuous, increasing process (Definition 1.4.4)

and M(a) is a martingale (Problem 1.4.9(a), Theorem 1.4.10,

Remark 1.4.13, and Theorem 1.4.14). The Tanaka formula (6.11)

identifies both parts of this decomposition, as At(a) = Lt(a)

and

t
(6.16) Mt(a) = 1 ,o) (Ws)dWs; 0 < t < co.

0 [a

Similar remarks apply to the representations (6.12) and (6.13).

Proof of Proposition 6.8:

If local time exists, then it satisfies (6.2) as well as the

additive functional property (Remark 6.5). In order to make rigorous

the heuristic discussion which led to (6.11), we must approximate the

Dirac delta 6(x) by a sequence of probability densities with

increasing concentration at the origin. More specifically, let

us start with the C function

exp[ 12 ; 0 < x < 2,
(x-l) -1

(6.17) p(x) A

0; otherwise
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which satisfies £ p(x)dx = 1 by appropriate choice of the
--OO

constant c, and use it to define the probability density functions

(called mollifiers)

(6.18) Pn(x) - np(nx)

as well as

un (x) A x Sy pn(z-a)dz dy; x E /R, n > 1.

x
We observe that u'(x) = I pn(z-a)dz, and so we have the limiting

--c
relations

lim u' (X) = l(a co)(x), lim u n(x)= (x-a), x +R.n (a, co)
n-fco n-* co

We now choose an arbitrary z E IR. According to Ito's rule,

t it
(6.19) un (Wt) - ) un(Wz) = u P(W-a)ds; 0 < t < cc,

0 n s0

a.s. P .

But now from (6.7) and the continuity of local time,

t co
p (Wsads p(-a)ds = > pn(-a) a.s. t(a);

On the-c nother hand,

On the other hand,
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t t
EZIS u' (Ws) dWs S 1 (a,c) (Ws)dW 12

EZ fS u'(W ) - 1 (W, ) ) 2ds

0<I PZ[IWs-at < ]ds,

which converges to zero as n e o. Therefore, for each fixed t,

the stochastic integral in (6.19) converges in quadratic mean to the

one in (6.16), and (6.11) for each fixed t follows by letting

n ,- o in (6.19). Because of the continuity of the processes in

(6.11), we obtain that, except on a PZ-null event, (6.11) holds

for 0 < t < co. G

We are now ready to use the Tanaka representation (6.11) to

settle the question of existence of Brownian local time.

6.11 Theorem: Trotter (1958)

Brownian local time exists.

Proof:

We start by showing that the two-parameter random field, obtained

by setting z = 0 on the right-hand side of (6.11), admits a con-

0 (wt-a)+ - (-a++
tinuous modification under P0 The term (Wt-a) - (-a) is

obviously jointly continuous in the pair (t,a). For the random

field tMt(a); 0 < t < co, a C R I in (6.16) we have, with a < b,

0 < s < t < T and any even integer n > 2:
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E0 Mt(a)-M (b) 2 n < 4n{E 0 1 l)[a,co)(Wu)dWu 2n

+ E 0 1f 1 (W )dW 22n0 [a,b) u u

t s

- 0s '4nC[EO( 1' a ' )(Wu)du) + E0 ( 1 (Wu)du) ],
- n sJ ~[a~co) ~ [a,b)

thanks to (3.3.20). The first expectation is bounded above by

(t-s)n , whereas the second is dominated by

T T T
E0 [f 1 [ab)(Wt)t] = .. E [W l[a, (Wtn )dtn dtl

0 0 0

T T T

0 tn tnS 1 2 n

With 0 = t < tl < t2 <...< tn < T, we have for every y E [a,b):

0 0 - a+b
P [a < W Wt < = Y] < P [a < Wt < bIW t a+b

j j-1 j

b-a

2Vtj-t - 1 2
-2 z b-a

e dz< b 1 < j < n,

02 /tj tj-1

and so

I0 [a,b) t ]

T T T_1

< n!(b-) £ S ... [tl ( t 2t l ) (t ntnl)]tn 
2 dtn...dt2 dt1

< C nn-T
<C (b-a)n,T
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A
where C is a constant depending on n and T but not on

n,T

a and b. Therefore, with a < b and 0 < s < t < T, we have

(6.20) E0IMt(a)-Ms(b) 2n < Cn,T[(t-s)n + (b-a)n ]

< CnT 1(t,a) - (s,b) in

for some constant Cn T. By the version of the Kolmogorov-Centsov

theorem for random fields (Problem 2.2.9), there exists a two

parameter random field {It(a); (t,a) E [O,co) x R J such that

the mapping (t,a) >It(a,w) is locally Holder continuous with

any exponent y E (0,1), for P -a.e. W E Q, and for each fixed

pair (t,a) we have

(6.21) P [It(a) = Mt(a)] = 1.

Now we define

Lt (a) (Wt-a) (-a) - It (a); 0 < t < co, a R.

For fixed (t,a), Lt(a) is an 5t-measurable random variable, and

the random field L is P 0 -a.s. continuous in the pair (t,a).

Indeed, because Wt and It(a) are both locally Holder continuous

1
with any exponent Y E (0,-), the local time L also has this

property: for every y E (0,-) and positive T,K, there exists

a P0 -a.s. positive random variable h(w) and a constant

6 > 0 such that



3.6.13

0 |w f n -K~a~ (K pIL t (a ,w)-L (b ,w) 
(6.22) P w t Q; sup s < 6 3 1.

0< l(t,a) -(s,b) l<h(w) l(t,a)-(s,b) Y
0<s,t<T

L_ -K<a,b<K

A
Our next task is to show that the random field Lt(a) = 2Lt(a)

satisfies the identity (6.6), or equivalently (6.7), for every

function h in the collection 4 defined in Problem 6.7. For

h E 9, define

co x y
H(x) A £ h(u)(x-u) = d h(u)du dy; x E IR,

-oo -_co -cO

and observe the identities

cc, x
H'(x) = h(u)lu oo)(x) du = h(u)du, H"(x) = h(x).

By virtue of Ito's rule and Problem 6.12 below, we have P -a.s.

for fixed t > 0:

t t
1 f h(W )ds = H(Wt) - H(0) - S H' (Ws)dW

0 s0 s

+0 t co
h(a)t(W -a)+ - (-a)+:3da - (f h(a)l[ao) (W )du)dWt. 0a, - Zx[ac)oo 0 t ,s

co t
-£ h(a)(Wt-a)+ - (-a) + - la,o)(Ws)dWsda

co- cco

= ~ h(a)Lt(a)da + £ h(a){It(a)-Mt(a)]da.
CXD -- Cc
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-: 2 0 2But E0 (It(a)-Mt(a)) da = c E (It(a)-Mt(a)) da = 0 by
-cI --c

(6.21). Thus., for each fixed t > 0, we have for P0 -a.e. w

t co
(6.23) J h(Ws(W))ds = I h(x) t(x,w)dx.

0 -co

Since both sides of (6.23) are continuous in t and a is countable,

it is possible to find a set £0 E a with P0(Q 0) = 1 such that

for every w E Q0, (6.23) holds for every h E a and every t > 0.

Problem 6.7 now implies that for every w E no, (6.7) holds for

every Borel function f : IR , [0,co).

Recall finally that £ = C[0,co) and that PZ assigns

probability one to the set z2 _w [E £; w(O) = zJ. We may assume
*

that 20 0 Oi' and we may redefine Lt(x,W) for w Lo0 by

setting

Lt(x,w) - t(X-w(0 ) , w-w(0)) .

We set £ = w E £; w-w(0) E 0O3, so that PZ(Q ) = 1 for every

z E IR (cf. (6.3)). It is easily verified that t and £ have

all the properties set forth in Definition 6.3.

6.12 Problem: For a continuous function h : JR e [O,coo) with

compact support, the following interchange of Lebesgue and

Ito integrals is permissible:

co t t co

(6.24) -os h(a)(S0 1 [a,c)(W)dWs)da = I (I h(a)l[a o3) (Ws)da)dWs

a.s. PO. -a.s. p0 .
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6.13 Problem: We may cast (6.13) in the form

(6.25) IWt-al = Iz-al - Bt(a) + Lt(a); 0 < t < co,

t
where Bt(a) = -. sgn(Ws-a)dW , for fixed a E IR.

(i) Show that for any z E IR, the process B(a) = {Bt(a), Jt;

O < t < co3 is a Brownian motion under PZ, with

P [B0 (a) = 0] = 1.

(ii) Using (6.25) and the representation (6.2), show that

-(a) = I-C (a), 3 t; < t < < o is a continuous, increasing

process (Definition 1.4.4) which satisfies

co

(6.26) f0 l\i{a](Wt)dLt(a) = 0; a.s. pZ

In other words, the path t Lt(a,w) is "flat" off

the level set Z,(a) = to < t < co; Wt(W) = a} of the

Brownian path.

(iii) Show that for P0 -a.e. w, we have Lt(0,w) > 0 for all

t > 0.

(iv) Show that for every z E IR and PZ-a.e. w, every point

of Zw(a) is a point of increase of t > t(a,w).

W t~~~~~~~~~~~~~~1



3.6.16

Our next goal in this section is to provide a new proof of the

celebrated result of P. Levy (1948) already discussed in Problem 2.8.7,

according to which the processes

(6.27) M Wt max W- Wt; 0 < t < o and tiWtI; 0 < t < co°t sOs t0<s<t

have the same finite-dimensional distributions under P0. In particular,

we shall present the ingenious method of A. V. Skorohod (1961), which

provides as a by-product the fact that the processes

(6.28) max 0 < < and t(); < t < co
O<s<t

also have the same finite-dimensional distributions under P 0.

6.14 Lemma: The Skorohod (1961) equation.

Let z > 0 be a given number and y(-) = {y(t); 0 < t < co]

a continuous function with y(0) = 0. There exists a unique continuous

function k(-) = tk(t);-0 < t < co°, such that

A(i) x(t) = z + y(t) + k(t) > 0; 0 < t < cc,

(ii) k(0) = 0, k(-) is nondecreasing, and

(iii) k(-) is flat off It > 0; x(t) = 01, i.e., I l{x(s)>ojdk(s) =0.
0

This function is given by

(6.29) k(t) = max[0, max {-(z+y(s)) ]], 0 < t < co.
O<s<t
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Proof:

To prove uniqueness, let k(-) and k(-) be continuous functions with

properties (i) and (ii), where x(.) and x(-) correspond to k(-) and

k('),respectively. Suppose there exists a number T> O with x(T) >x(T),

and let T - max0t < t < T; x(t) - x(t) = 0O so that x(t) > x(t) > 0,

V t E (T,T]. But k(-) is flat on [u > 0; x(u) > 0], so

k(T) = k(T). Therefore,

0 < x(T) - x(T) k(T) - k(T) < k(T) - k(T) = x(T) - x() ,

a contradiction. It follows that x(T) < x(T) for all T > 0, so

k < k. Similarly, k > k.

We now take k(-) to be defined by (6.29). Conditions (i) and (ii)

are obviously satisfied. In order to verify (iii), it suffices to show

that J ltx(s)>cjdk(s) = 0 for every s > 0. Let (tl,t 2) be a
0

component of the open set is : x(s) > es and note that

-(z+y(s)) = k(s) - x(s) < k(t2) -; t < s < t2.

But then

k(t2) = max[k(tl), max [-(z+y(s)) ] < max[k(tl),k(t2)-El,
tl<s<t2

which shows that k(t2) = k(t1) and thus 2 dk(s) = 0.
t1

6.15 Remark: For every z > 0 and y(.) E C[0,co) with y(O) = 0,

we denote by X the class of functions k E C[O,oc) which

satisfy conditions (i) and (ii). of Lemma 6.14, and introduce

the mappings
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(6.30) Tt(z;y) = max[O, max {-(z+y(s)J]; 0 < t < co
O<s<t

(6.31) Rt(z;y) = z + y(t) + Tt(z;y); 0 < t < c2o.

In terms of these, the solution to the Skorohod equation is

given by

(6.32) k(t) = Tt.(z;y), x(t) = Rt(z;y)

and T(z;y) is the minimal element of' , as can be seen in
the first part of the proof of Lemma 6.14. 0

6.16 Proposition: Let z > 0 be a given number, and B = {Bt, Qt;

0 < t < co3 a Brownian motion on some probability space

(®,4,Q) with Q[B 0= 0] = 1. We suppose there exists a

continuous process k = {kt, Qt; 0 < t < col such that,

for Q-a.e. 8 E ®, we have

(i) Xt(0) - Bt() + kt(0) > 0; 0 < t < oo,

(ii) k0(6) = 0, t H kt(6) is nondecreasing, and

CoC)

(iii) 1X (0))dk ( 0) = 0

Then X = {Xt; 0 < t < co} under Q has the same finite-

dimensional distributions as Iwj = {Iwtl; 0 < t < coJ under

PzP.
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Proof: The finite-dimensional distributions of the pair (k,X) are

uniquely determined, since by Lema 5.14 kt (0) = Tt(z; -B(0)),

Xt(B) = Rt(z;-B(O)); 0 < t < oo, for Q-a.e. 8 E -. It suffices,

therefore, on our given measurable space (g,3) equipped with the

Brownian family JWt, at; 0 < t < c°J, [P XxEIR ' to exhibit a standard

Brownian motion B = [Bt, it' 0 < t < oc3 and a continuous

nondecreasing process k = {kt, at; 0 < t < co° such that,

for PZ-a.e. w E 0:

IWt(W) ) = z - Bt(W) + kt(w); 0 < t < Co,

(6.33) ko() = 0, t-* kt(w) is nondecreasing, and

J*' 1 R \ o0 (Ws( (w))dk (w) = 0.
0

But this has already been accomplished in Problem 6.13 (relations

(6.25),(6.26) with a = 0), if we make the identifications

t

Bt =-4 sgn WsdWs, k t - t (0).

6.17 Theorem: P. Levy (1948)

The pairs of processes {(MW-Wt, MW), t; 0 < t < co° and

{(IWtl,tt(0)), at; 0 < t < coi as in (6.27),(6.28) have the

same finite-dimensional distributions under P0.

Proof:

Because of uniqueness in the Skorohod equation, we have

from (6.33)
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(6.34) -t(0,®) =M(W), IWt(w)l - t(w) - Bt(w); < t < o

for P 0 -a.e. w E Q, upon observing that

(6.35) Mt(W) = max Bs(W) = Tt(O;-B(W))
0<s<t

(Remark 6.15). The assertion follows, since both W and B are

Brownian motions starting at the origin under P0. We also notice

the useful identity, valid for every fixed t E [0,co):

(6.36) Mt = lim 1 meas{'0 < s < t; MB B < sJ, a.s.P 0

t 2E S s-

6.18 Problem: Show that for every real numbers a,z we have

pZ[w E Q; lim It(a,w) = o] = 1.
t- co G

The function fl(x) = (x-a) + f2 (x) = (x-a) and

f3(x) = Ix-al in the Tanaka formulas (6.11)-(6.13) share an

important property, namely convexity:

(6.37) f(Xx + (l-X)z) < Xf(x) + (l-X)f(z); x < z, 0 < X < 1,

which can be put in the equivalent form

(6.38) f(y) < Z-Y f(x) + y-x f(z); x < y < z,z- -x z-x

upon substituting y = Xx + (l-X)z. Our success in representing

f(Wt) explicitly as a.semimartingale, for the particular choices
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f(x) = (x-a) and f(x) = Ix-al, makes us wonder whether it might

be possible to obtain a generalized Ito formula for convex functions

which are not necessarily twice differentiable. This possibility

was explored by Meyer (1976) and Wang (1977). We derive the

pertinent Ito formula in Theorem 6.22, after a brief digression

on the fundamental properties of convex functions.

6.19 Problem: Every convex function f : JR -e JR is continuous.

For fixed x E IR, the difference quotient

(6.39) Af(x;h) a f(x+h) - f(x)
=6.39) ; h # 0

is a nondecreasing function of h R \t{03, and therefore

the right- and left-derivatives

± A 1
(6.40) D f(x) = lim 1 [f(x+h) - f(x)]

h-O±

exist and are finite for every x E JR. Furthermore,

(6.41) D+f(x) < D-f(y) < D+f(y); x < y,

and D +f(') (respectively, D-f(-)) is right- (respectively,

left-) continuous and nondecreasing on JR .

Finally, there exist sequences { an d [bn 1
nofn=l numbers, suchn=

of real numbers, such that
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(6.42) f(x) = sup(anx+ n); x E R.
n>l

(Hint: Use (6.38) extensively). G

6.20 Problem: Let the function cp : R - IR be nondecreasing,

and define

x

cP(x) = lim cp(y), (y) = cp(u)du.

(i) The functions. + and c_ are right- and left-continuous,

respectively, with

(6.43) _ (x) < x) < +(x); x E R.

(ii) The functions ~+ have the same set of continuity points,

and equality holds in (6.43) on this set; in particular,

except for *x in a countable set N, we have

cp+(x) = p(x).

(iii) The function } is convex, with

D -(x) = y_(x) < 9(x) < cp+(x)= D +(x); x E R.

(iv) If f : IR IR is any other convex function for which

(6.44) D-f(x) < y(x) < D+f(x); x ]E R,

then we have

f(x) = f(0) + §(x); x E ]R.
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6.21 Problem: For any convex function f : R - IR, there is a

countable set N c /R such that f is differentiable on

R \N, and

(6.45) f'(x) = D+f(x) = D-f(x); x IR \N.

Moreover

x x x
(6.46) f(x) - f(O) = I f'(u)du = f D+f(u)du = D-f(u)du; x E R.

The preceding problems show that convex functions are

"essentially" differentiable, but Ito's rule requires the

existence of a second derivative. For a convex function f,

we use in place of the second derivative the measure A on

(RR,8(IR)) defined by

(6.47) i((a,b]) = D+f(b) - D+f(a); -oz < a < b < co.

Of course, if f" exists, then L(dx) = f"(x)dx. Even without

the existence of f", we may integrate Riemann-Stieltjes

integrals by parts to obtain the formula

co Gci

(6.48) I g(x)i(dx) = -S g'(x)D+f(x)dx
-co -co)

for every function g : IR e JR which is of class C and

has compact support.
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6.22 Theorem: A generalized Ito rule for convex functions

Let f :R . IR be a convex function and p the "second

derivative measure" introduced in (6.47). Then, for every

z E IR , we have

t co
(6.49) f(Wt) = f(z) + D f(W)dW + - (x)p(dx); o < t < c,

0 coc
a.s. PZ.

Proof:

It suffices to prove (6.49) with t replaced by t A Tn A Tn'

and by such a localization we may assume without loss of generality

that D f is uniformly bounded on IR. We employ the mollifiers

n; n > 1, of (6.18) to obtain convex, infinitely differentiable

approximation to f by convolution:

oo

(6.50) fn(x) I pn (y-x)f(y)dy; n > 1.
-co

co

It is not hard to verify that fn(x) P(z)f(x + )dz and

(6.51) lim fn(x) = f(x), lim f' (x) = D+f(x)
n- c n n- co

hold for every x E R. In particular, the nondecreasing functions D+ f and

lfnjn=l are uniformly bounded on compact subsets of IR. If

g : IR - JR is of class C 1 and has compact support, then

because of (6.48),
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lim g(x) f (x)fdx = -lim £ g,(x) f(x)dxn nnco -°o n-,eoo -co

= - g'(x)D+f(x)dx = I g(x)h(dx).
--C --C 

The general continuous g with compact support can be uniformly

approximated by functions of class C1, so for such a g we have

(6.52) lim £ g(x)f"(x)dx= I g(x)i(dx).
n-co -c c -co

In other words, the measures fh(x)dx converge weakly -to then

measure (dx).·

We can now apply the change-of-variable formula (Theorem 3.3)

to fn(Ws), and obtain, for fixed -t E (0,co):

t t
fn(Wt) - (z) -(Z) = I f' (W s)Ws, a.s. 

0 0

When n x co, the left-hand side converges almost surely to

f(Wt) - f(z), and the stochastic integral converges in L 2 to
t

f D+f(Ws)dW because of (6.51) and the uniform boundedness of
0 O

the functions involved. We also have from (6.7) and (6.52):

t c: co
lim I f"(Ws)ds = lim I f"(x)sLt(x)dx= I Lt(x)P(dx), a.s. pZ

n n ' - -
n-co O n4 co o - co

because, for PZ-a.e. w E Q, the continuous function x > Lt(x, w)

has support on the compact set [ min W (W), max W (w)]. This
O<s<t s O<s<t s
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proves (6.49) for each fixed t, and because of continuity it is

also seen to hold simultaneously for all t E [0,co), a.s. PZ.

6.23 Corollary: If f : IR -e JR is the difference of convex

functions, then (6.49) holds again for every z E IR; now,

A defined by (6.47) is a signed measure, finite on each

bounded subinterval of JR.

6.24 Problem: Let a < a2 <.< a .< a be real numbers, and1 2 n

denote D = ,al ,...,anJ. Suppose f : IR - IR is continuous

and f' and f" exist and are continuous on R \D. Suppose

further that the limits

f'(ak+) lim f'(x), f"(ak+) = lim f"(x)

Xk+ Xak+

exist and are finite. Show that f is the difference of

convex functions and, for every z E ]R,

t t

(6.53) f(Wt) = f(z) + f'(W )dWs + (Ws)ds

n

+2 kl t(ak)[f'(ak+) -f'(ak-)]; 0 < t < co,
k=la

a.s. PZ.

6.25 Exercise: Obtain the Tanaka formulas (6.11)-(6.13) as

corollaries of the generalized Ito rule (6.49). L
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Our next application of local time concerns the study of the

continuous, nondecreasing, additive functional

t
At(W) = f(Ws(W))da s; 0 < t < co,

0

where f : IR . [O,co) is a given Borel measurable function. We

shall be interested in questions of finiteness and asymptotics,

but first we need an auxiliary result.

6.26 Lemma: Let f : JR e [0,co) be Borel measurable; fix

x E IR, and suppose there exists a random time T with

T
P 10 < T < ] = 1, P0[ f(x+Ws)ds < co] > 0.

Then, for some c > 0, we have

(6.54) I f(x+y)dy < co.
-E

Proof:

From (6.7) and Problem 6.13(iii), we know there exists an

~~* *~ 
event &2 with P ( ) = 1, such that for every w E Q :

T(W) co
I f(x+w s (w))ds = f(x+y)L T( W )

( y , )d y

0 -co

and LT (0,w) > 0. By assumption, we may choose w E f such
T(W)

that £ f(x+W s())ds < co as well. With this choice of w,
0 s
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we may appeal to the continuity of T(W) ( ,) to choose positive

numbers £ and c such that %T(W)(y,w) > c whenever Iy[ < E.

Therefore,

£c ~ T(W)
c S f(x+y)dy < £ f(x+W (wL))ds < ooD,

-E 00

which yields (6.54). l

6.27 Proposition: Engelbert-Schmidt (1981) Zero-One Law

Let f : R R-, [O,co) be Borel measurable. The following

three assertions are equivalent.

(i) p0 [ f(Ws)ds < co; 0 < t < cJ] > 0,
0

.(ii) P 0 [ f(Ws)ds < co; 0 < t < OX] = 1,
0

(iii) f is locally integrable, i.e., for every compact set

K _c JR, we have f f(y)dy < co.
K

Proof:

For the implication (i) ~ (iii) we fix b E JR and consider

the first passage time Tb. Because P 0 [Tb < c] = 1, (i) gives

t+T b

PO[S f(Ws) ds < cx; 0 < t < co] > 0. But then
0

t+Tb(W) t+Tb(w) t

Sf(w ))ds > f(W (w))ds = f f(b +B ())ds,
0 Tb (W) 0b~~ 
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where B (W) W+T () - b; 0 < s < co is a new Brownian motion
0 _t

under P. It follows that for each t > 0, P0[I f(b+B (W))ds< co] > 0,
0

and Lemma 6.26 guarantees the existence of an open neighborhood

U(b) of b such that I f(y)dy < co. If K c IR is compact,
U(b)

the family tU(b) 3bEK' being an open cover of K, has a finite

subcover. It follows that I f(y)dy < cc.
K

For the implication (iii) = (ii) we have again from (6.7):

t c M t (w)
0f(Ws (w))d s= I f(y) t(y,w) dy = t f(y) t(y,w)dy
0 s - co mt (W)

M ( LW)

< [ max Lt( y ,w )] · f(y)dy; 0 < t < co,
m t(w) _<y<M t(w) m t (w)

where mt(w) = min W s( w), Mt(w) = max W s(w ). The last integral
O<s<t O<s<t

is P -a.s. finite by assumption, because the set K = [mt(w),Mt(w)]

is P -a.s. compact.

6.28 Corollary: For 0 < a < co, we have the following dichotomy:

p0[t ds < 0c; 0 < t < 3o] = 
0 Ws la 0; if > 1

6.29 Problem: The conditions of Proposition 6.27 are also equivalent

to the following assertions:
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t
(iv) P 0 [qi f(Ws)ds < oo] = 1, for some 0 < t < co;

0

t
(v) PX[f f(W )ds < oC; 0 < t < co] = 1 for every x E IR;

0

(vi) for every x E /R, there exists a Brownian motion

(Bt,' t; 0 < t < cc and a random time S on a

suitable probability space (®,Q,Q), such that

Q[B 0= 0, 0 < S < co] = 1 and

S
Q[J f(X+B s )ds < co] > 0.

0

(Hint: It suffices to justify the implications

(ii) = (iv) = (vi) = (iii) = (v) = (vi), the

first and last of which are obvious).

6.30 Problem: Suppose that the Borel measurable function

f : IR [O,co) satisfies measly E R ; f(y) > 0} > 0. Show

that

co

(6.55) pX w E C; I f(Ws ())ds = cc] = 1
0

holds for every x E ]R. Assume further that f has compact

support and consider the sequence of continuous processes

nt
x(n) 1 I f(Ws)ds; 0 < t < co, n > 1; establish then,

Jn- O

under P0, the convergence

f ~ ------------ ~^`- ~I-~~ ---
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(6. 56) (n) -> X< 

in the sense of Definition 2.4.4, where f = J f(yd > 
in the sense of Definition 2.4.4, where f = S f(y)dy > 0.
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3.S: SOLUTIONS TO PROBLEMS

2.4 Solution:

1 1
(a) Since t-s - n DPn(t-s) ( t-s, we have t n n(t-s)+s<t.

Consequently, X(n, ) is "t-measurable, and since cn takes

only discrete values, X(n'S) is simple.

(b) The procedure (2.4) results in measurable (but perhaps not

adapted) processes CX(m) n=l such that

lim El - Xt - 2 dt cE.

By the Minkowski inequality we have

(EJ IXt - Xt hl dt)~

..T
( [Xt- X tL dt)i + (EJ Xt t-hX d-)

+ (Efo Xt-h - Xth2 dt)

T e
s 2e + (Ef|x+ - Xt h!. dt)1 .

T
iT Ef I+Xt Xthl dt } 4 2.

h $O 0
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(c) Let i be any nonnegative integer. As s ranges over

i i+l 
[-i - ), pn(t-s)+s ranges over [t - t). Therefo re,
2 2 2

T T 2 -n
E' f IX( 'Xt 2ds dt= 2 E Ixt-xth dh dt
0 'XO 0 J

-n T

2n.o [EJ X t-Xt h12 dt]dh s maxn E IXtXt-hdt,

which converges to zero as n-o because of (b).

(d) From (c) we have that there is a sequence [nk]k= 1 of

integers, increasing to infinity as k-_, such that for

X x X x P - a.e. triple (s,t,c) in [0,1] x [O,T] x Q,

we have

(n, s)
(S.2) lim xtxk () - t() = 0.

Therefore, we can select sE[0,1] such that for x x P -a.e.

pair (t,w) in [O,T] x n, we have (S.2). Setting

X(k) X(k') we obtain (2.5) from the bounded convergence

theorem.

2.11 Solution:

We may write Wt^T = It(X), where Xt(c) = l{t' T(o)]; ct<(.

Because
t

<IW(x)>t o tT
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we have <IW (X)> = T and E(IW(X)> < a. It follows from Problem

1.5.19 that both EWtAT; Ogt<] and (W 2T; Oct<c) are uniformly

integrable, so (2.22) is justified.

2.12 Solution:

If ETb were finite, then we would have WTb = b, a.s.P, as

well as E(WTb) = 0 from Problem 2.11. But thes is absurd.
b

2.16 Solution:

J 0 XuY d<M,N>u12 = I<(M(X), IN(Y)>tl

t t

c <IM(x)>t <IN(Y)>t = S Xu d<U f d< N> 

2.16' Solution: By assumption, we have

E<IM(X)> = E X2 d<M>s < 

Uniform integrability and the existence of a last element for

IM(X.) follow from Problem 1.5.22, as does uniform integrability

of (IM(X))2. The same is true for IN(y).

Applying Problem 2.16 with Xu, Yu replaced by XulEu1T ],

Yul uT] respectively, we obtain

| t XYs d<M,N> X dF Y2 d<N> )1/2S 1 ( S S S S

whence

XYs d<M,> s )( X d<M> Y d 1/2T1. SS T s 'T
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a.s. P. As T-,a, the right-hand side of this inequality

converges to zero; therefore,

t
<I(x), IN(Y)>t = XsYs d<M,N>S

converges as t.o, and is bounded by the integrable random

variable

([ 2 d<M) 2 2 1/2

a.s. P. The dominated convergence theorem gives then

lim E[IM(X)I N()] = lim E<IM(X), IN(Y)>t
to~ to4

E<IM (X), IN (Y)> ' Ef XsY s d<M,N> 

We also have

M N M N N N
E[IM(X) I (Y) E[(I (X) - I(X)) (I (Y) (Y)]

+ E[IM(X) (N(Y) - It(Y) )

+ E[I (Y) (IM(X) - IM(X))

+ E[IM(X) IN(Y)].

We have just shown that the fourth term on the right-hand

side converges to E<IM(X), IN(Y)> as t-.. The other

three terms converge to zero because of HMlder!'s inequality

and the uniform integrability of (IM(X))2 and (IN(Y))2
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2.23 Solution: For any ¢'2'

i M (X) +~ H= a<I M(X),N>t + <IN()>t,-'aI (x) + i(NxX),) N

t t= m~

f x d<M,N + Jo X <dN,>
0 0

t

-= X5 daM + N,N>s,

and the result follows from Proposition 2.21.

2.24 Solution:

With X a measurable, adapted process satisfying

p0[T Xt(o)dt < .] 1 for every O<T<m, we construct the sequences

of stopping times

t
inf(Oct6N;,f X2s(c)ds a N,

SN(w) =

N, if {...| = 0,

and processes X(N)(o) = Xt(0)lES (o)mt]; 0t(<, indexed by Nal.

We have E[r (X(N)(O)) 2 dt c N < a, so for each N1l the process

X(N) is in £ , and therefore can be approximated by a sequence

of simple processes tX(n'N)} c £o in the sense
n=l -

lim E tnN) - XN)i2 dt= 0, V T<K
n- CO 0
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(Proposition 2.5). Let us fix a positive number T<, and consider
fT1 T

NI>T; we have P[f Xt dt>O] P x2 1 dt>O} , P[SN<T ] =

T
xt dt>N], and the last quantity converges to zero as N_,

P[ Xot

by assumption. Now, given any e>O, we have

T ~ T (n, N)
X (nN) X 12 dXt _ X N)2 dt > 2] +

P[ TIy(t) dt>O] l P[ Ixd> 

P LJ ( ) - dt>O] 2 E Efi(nN) - X(N)12 + P[SN"T]

by the Cebysev inequality, as well as

P[ sup lIt(X(n'N)) - It(X)1 E] 5
OrtcT

P[r sup IIt(X("iN)) - It(X(N))I e] n SN T]] + P[SNTT] 
0ctcT

E2 EITT(X(nN)) - IT(X ( N) ) 2 + P[SN<T]

21 EJ !x(n,N) - X(N) 12 + P[SN<T].
0

We have employed Corollary 2.19, the first submartingale

inequality (Theorem 1.3.6), and (2.11). For any given 5>0 we can

select N 5>T so that P[SN<T] < for every NaN§, and for each

such value of N we can find an integer nNl so that

T l(n,N) X(N)12 dt2 + 1

EfTIx t t dt - (- 2
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holds for every nanN. It follows that for every e>0, §>0 there

exists an integer N O such that, for every NaNo, we have with

y(N) X(nN.N)

P[ JT 1y(N) _Xt,2 dt>e] + P[ sup IIt(Y(N)) - It(X)I > ] 5.
0 OctsT

In other words, we can construct a sequence of simple processes

Y (N)N=i such that both sequences of random variables

IJ Y-(N Xt1 dt, sup IIt(Y(N) - It(X)
' OictaT

converge to zero in probability, as N-w. There exists then a

subsequence for which the convergence takes place almost surely.

Having done this construction for T fixed, we now appeal to the

first paragraph of the proof of Lemma 2.3 to obtain a sequence

which works for all T.

2.25 Solution:

Consider first a simple process X. Using the notation of

Definition 2.2, we have

(X) E [i(wt t i2(tAt ttt )]1
St(X) = E5 [i(Wt^ At - ~ §i Si(ltiti=O tti+l tAti 2 i i+

where the sum is really a finite one, and in this case the martingale

property: E[exp Ct(X)s] = 1 a.s. P, for Ocs<t<w(, amounts to

showing
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1 C

E[exp[ti(WtAti+l ^ Wt i- 2 i(tAti+l-tAt i ) }s ] =i+l t2 i+l

I 2
=exp (Wti(t WsAtiti) 2 i( ti+l-s Ati)], a.s. Pi+l iil

for any iO0. The reader will have no difficulty verifying this

(reminder: gi is a bounded, at -measurable random variable).

For general XEP, there exists a sequence ZX(n)n1 C

such that, for P - a.e. wecn, we have

]im~T ' t
limIXt (n)() X (w) 2dt= O, lim sup tx(n) (c)dW -s J sct dW=O

n-4co 0 t ()-t (l 0n-c Oct0T O s s

for every T<.; by Theorem 4.5.1 in Chung [ ], we also have

(n-) 2t limf (X.)(W))2dt = fX()dt, a.s.P.
n-.c" 0

Therefore, with TmtmsaO one sees that lim exp C(X(n))= exp Ct(X),

a.s. and by Fatou's lemma:

E[exp Ct(X)Jls] c lim E[exp Ct n) = 1, a.s. P
n-co

2.26 Solution:

Let us take a partition N = [to,tl,...,tm] of [O,t]

with 0 = t <t l...<t = t and consider the corresponding simple
01 m

process

m-l
X (C) i= Wt (W) 1 tit ](); 0cs<t.S t (tpt. 1
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Now t
t ri 2 m--1 i+l 2

Eft IX - W K2ds = If E JWti - Wt dt

m-1
F (t 1-t) . E( sup IWti-Wt2).

i=O i+l i t St ti
i i+l

But j Wt -Wt ,at ; tiSt<o] is a submartingale, and so, by Doob's
1'

maximal inequality (Theorem 1.3.6 (iv)),

E( sup 1Wt t2) - 4E 2Wt2 t
t t i - W t
t i+li+l

= 4(ti+l-t i ) 411 II..

where 11i11i A max (t il-ti). It follows that
=O!r i San - '

lim EJ I X Ws 5s ds s lim 4tllnll = 0.

By definition, I (W) is the L2 -limit of

m-1
W(Xn) W (W -wt t ti=O Wti (Wti+l Wti

M-)

i=O 

.1 2 1 m-1=1 - -(W t-W -W
i=l i+l

2 t 1 W2 - t. 

which converges in to 12 _t t (Problem 2. 9. 8 )
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In fact, if we have a sequence of partitions I[nn with
n=l

E I11nll < C, then this last convergence takes place almost surely
n=l
as well; c.f. Problem 2.9.8

This example provides a nice illustration of the sensitivity

of the stochastic integral to the selection of the point where the

integrand is evaluated. On the interval (ti,ti+l], the process

X g defined above takes the value of W at the left end-point,

and is thereby adapted to the filtration of W. If, in place

of IW(Xt), we were to consider for i ti + C(ti+l ti),
t -r

O0csl, the approximating sum

m-l
R(n) wei (wti+l-w t)

m-1 m-l
=- £ (Wt -W )(Wt+-w )+ z (W -wt )

i= it =O i e ei = i

m-l
+ Z W (W t ),

i=Ol i

we would get a substantially different answer. Indeed, as 11.In - 0,

we have

m-l
R(n) E Z (ei-ti) + 1 t) 2 2 Wt + -t

i=O

in L2. (Work this out carefully; Problem 1.2.10 is helpful here.)

Different choices of e thus lead to different values of the

integral; the choice E = -is the only one which preserves the
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martingale property, and this is the Ito definition with the

increments of the integrating martingale "sticking out into the

1
future". With e = , we obtain the Fisk-Stratonovich integral

which obeys the rules of standard calculus such as rtW dW = 2
Ao s s= Wt'

This integral exists only under assumptions more restrictive than

'those necessary for the construction of the Ito integral, and,

when it exists, it is related to the corresponding It6 integral

by a simple "correction formula". Choosing E = 1 leads us to

the so-called backward Ito integral.
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3.2 Solution: We have

X t = X+Mt+Bt = X +Mt +Bt'

so

Mt - M t =B t- B t O<t <CO.

We may localize by setting

Tn = infO < t(cO; IMt-mt~ >_n3,

so that

(n) M -M
t tAT t AT

is a continuous martingale of bounded variation. It

follows that N(n) 0; O t< t <co, and since T n t co a.s.

as n c- o, we have

Mt = Mt, Bt = Bt; 0 < t < co.
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3.7 Solution: The proof is much like that of Theorem 3.3.

The Taylor expansion in Step 2 of that proof is replaced by:

f(tkXt ) -f(tk-1Xt ) =
k k-1

= [f(tkXt ) f(tk_ 'Xtk)] + [f(tk-1Xtk) -f(tk_l )]
' Xtk Xk ki Xtk 1

at 'f(TXk k-tk-1) + axi k (-t k tk-x

d d 2 (i) X (j) (j)

+ j axi- f(tk-,l' k) ( tk Xtk-l ) tk tk- '

where tk_1 <: k < tk and rk is as before.
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3 1 43.10 Solution: Let f(z) = so f' (z) = 2 and f"(z) 2z 2 ) 3'
z z

We have

dY t = f'(Zt)dZt + l. f (Zt)(dZt)2

Xt X
= - dW + dtTt t zt

YtXt dW t + YtX 2 d t.

3.11 Solution: Let f(x,y) = xy and apply Theorem 3.6 to

compute

f( Y) = (Xf(XYt) = f(X f(XsYs)dX + ay0 f(X5 ,Ys)dY5+ 0 aX ~sys s b y y S S0 . 0

o2 0 (ax 5) + byax [ dsMsN>ss

3.13' Solution:

Note that X is independent of each pair (W 1), W(2)

( (1) W(3)) and (W( 2) W (3)). It is clear that (M(1) M(2 ))

is a two-dimensional Brownian motion. For r E B(C[0,oc)2),

we have

P[($M , M ( 3) E r]

= P[(W (1) W (3)) E rix =l]P[X=l]

+ (W (1) -W( 3 )) E rx = -1]P[X = -1

= P[ (W (,W ) E r] + P[ (W ( 1) W(3) E r]

= P[(W 1 3( 1) ( 3 )
,HW )E r].
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The same argument also. applies to (M( 2) M(3) The

triple (M ) M(3)) is not a three-dimensional

Brownian motion because

P[M(I ) 2)M3 ( ) > 0] = 1.

3.14 Solution: Let = sqik so (i) qikw

l<i,k<d k=l
is in ~ and

d
<(i) (j)> gikqjk<W (k ) W (k )

k=l

= 6..t,
13

by the orthogonality of Q. -Now appeal to Theorem 3.13.

3.16 Solution: We check condition (e) of Proposition 2.6.7.

For r E IR, t > 0, r E 13(R+ ) and any optional time S

of (Staj we have from the strong Markov property for W

and equation (3.11):

(r,O,...,0 ) [Rs+t E rl S+ ] = pS+[Rt E r]P [R ~t E ] =P [RtE ri 

= p [Rt E r], P(r0'.' 0) - a.s.

on (s < cc3

3.19 Solution: Let fd(x) = ln x if d =2 and fd(x) d-2

if d > 3. For 0 < c < r, let

inf t >0; Rt =c3; if I 0 - .

T =

cc Z otherwise.
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For k > r, k an integer, let

inf~t>0; Rt =k i; if t.--3 0,

Sk 
cC; otherwise.

Set Tk = T c A S k A n. Applying Ito's rule, we have

, k
11 dBs; d = 2,' R S

fd(RT ) - fd(r)R Tk 
d-2 dB 
dd-l2 dBs; d > 3,

0 R

·SOso

fd(r) - Efd (RT)

fd (C)P[Tc Sk n] + fd(k)P[Sk < TcAn]

+ E[fd(Rn) 1n<SkATc]].

Let n - co to obtain

(S.1) fd (r) = fd(c)P[Tc<Sk] + fd(k)P[Sk <Tc] 

If d=2, we divide (S.1) by fd(k) ln k and let k - co

to obtain lim P[Sk<Tc] = 0,.which means Tc < Co, p- a.s.
k-+co

Thus, m < c a.s. for. every 0 < c < r, so m = 0 a.s.

If d > 3, let k T c. in (S.1) to obtain

1 1
d-2 d-2 PITc <c ]'

r C

But CTO < =3 tm c<3.
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3.20 Solution: We denote the: starting point of the Bessel process

by a superscript on the probability. Let 0 < r < a < b < oc

be given and define sequences of stopping times by T o = 0,

and for k= 0,1,...,

Sinft >Tk; Rt = b 3; if { 3 # 6,

Sk+l =

'co; otherwise,

{inft >Sk+l; Rt=a3; if { 3 O 6,
T=
k+l

co°; otherwise.

It is clear from Theorem 2.?? that pt[ lim Rt = co] = 1,
tocc

so on the event iTk < ou, we have Sk+l < CO a.s. On the

event {Sk+ < O3, the strong Markov property asserts

P[k+1< Sk+l] min R < a]
k+l 0<t< co

d-2

and since Tk is 3S -measurable, we have
k+l

Pr[Tk+l < CX_)] P [Tk < , Tk+l < ]S1

=E l T k<.copr [Tk+l < - 'S k+ ]3

d-2
= (ab) pr[T k < oc].

k(d-2)

Induction on k -yields Pr[Tk < c] = ()

and so pr[Tk < oj V k > 0] = 0. This shows that
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P[ limRt> a] = 1, and since a can be as large as we please,
t c~

we must have P[ limRt = oo] =1.
toCG

3.21 Solution: For m > 1, f(x) _ x2m is of class C 2 Ito's

rule implies

t t 2m-2
(S.2) IMtl2m = 2m M I2m-l (sgnMs )X dws +m(2m-1) M IM X 2ds; 0< t < T

0 0

For N > 0, let

infCO < t< T: IMtl =N3; if f.-3 $ 0,

N
; otherwise

so EJ, (IMs2m I 1 X ) ds < oo. We may replace t by TN
0 

in (S.2) and take expectations to obtain

EMN I2m m(2m-1) E IM 2m-2 2 d

T
< m(2m-1) E M I dsO x s

Letting N-, cO and using lolder's inequality and the

submartingale inequality EIXS 2m < EIXTI2m; 0 < s < T,

we may write

T
EIMTI2m < m(2m-1) E ,I Ms 12m-2 X2 ds

0
m-1 1

m(fT 2m 1s 
< m(2m-1)(EJb I 2m ds) m E Xs ds0 

m-1 m-1 1

i m(2m-1)T m (EIMT12m)m (E s IX s2m ds)m
0
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Raising both sides to the mth power and then dividing

by (EI tl2m m -1, we obtain the desired result.

3.23 Solution: For x. > 0, i =1,..., d, we have

m d m M +l m1
x 1 +... +xd < d(x +... +d) < (x+ + x d)

Therefore

(S. 3) ljj2m= [ < dm z ) i
i= i=l

and

(S.4) < i < M W < d- E M(i)> d Am
i=l T (i=l

Taking expectations in (S.3), (S.4) and applying (3.20) to

each M(i), we obtain

E IMT i2m < dm+lC E A.

A similar proof can be given for the lower bound on E j MT/i2m

3.24 Solution: We have

d d r T 2 T
E <M(i) >T = z (i ) dt = liXtLtl2dt.

i=1 i=l j=1 0 0

Now apply Problem 3.23.
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t
3.25 Solution: If Mt = X s dW s is a martingale (rather than

0
merely a local martingale), the desired inequality follows

from Doob's maximal inequality (Theorem 1.3.6(iv)) applied

to IMtI and relation (3.20). When M E scaloc

localization argument now gives the result.
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4.4 Solution:

(i) We have {Ts < t} = [At + t > sI E 3t, so T s is a stopping

time of {[t .

(ii) Since a t contains every P-null set in a, it is clear from

the definition of 3T that Qs also contains every P-null

set in 3. We now prove right-continuity of £is2. Let Isn =1

be a sequence with sn Jr s, so [{TSnn=1 is a sequence of

optional times with T.s T s. According to Problem 1.2.22,

cc CO

QS+ = N = NT T '
nn-l n nl sn s

where T + agrees with 3T = under the assumption
T+ T s

of right-continuity of {3t (Definition 1.2.19).

(iii) Because T is a continuous function of s, N ( i) is
S S

continuous. For fixed s, Ts is a bounded stopping time,

so the optional sampling theorem can be used to prove that
(i)

N~i) is a local martingale. Furthermore, the same
S

theorem shows that for '0 < sl < s2,

<N(i ),N (j )> - <N(i) ,N(j)

s 2 S1

S 2 S 1

s2. s 1 (Ts Ts 1

< s2'- s1

so <N ( i ) ' ,N(j)>C is an absolutely continuous function of s.
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4.5 Solution:

(i) The nondecreasing character of T is obvious. Thus, for

right-continuity, we need only show that lim T(8) < T(s)-.
84s

Set t = T(s). The definition of T(s) implies that for

each £ > 0, we have A(t+c) > s, and for s < 6 < A(t+E),

we have T(e) < t + c. Therefore, lim T(e) > t.
8_s

(ii) Set t = T(s) and choose C > 0. We have A(t+c) > s,

and letting e O0, we see from the continuity of A that

A(T(s)) > s. If t = T(s) = 0, we are done. If t > 0,

then for 0 < e < t, the definition of T(s) implies

A(t-E) < s. Letting Cs O0, we obtain A(T(s)) < s.

(iii) Thls is a direct consequence of the definition of T and

the continuity of A.

(iv) For a < t 1 < t2 < b, let G(t) = [tt2 (t). According

to (iii), t1 < T(s) < t2 if and only if A(t1) s s < A(t2)

so

b A(b)
I G(t)dA(t) = A(t2) - A(t1) G(T(s))ds.
a A{ a)

Linearity of the integral and the monotone convergence

theorem imply that the collection of sets C E B[a,b]

for which

b A(b)
(S.4) S 1C(t)dA(t) = - 1c(T(s))ds

a A(a)
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forms a Dynkin System. Since it contains all intervals

of the form [tl,t2) C [a,b], and these are closed under

finite intersection and generate 8[a,b], we have (S.4)

for every C E S[a,b] (Dynkin System Theorem 2.5.1').

The proof of (iv) is now straightforward.

4.7 Solution: Let cp be a deterministic, strictly increasing

function mapping [O,cc) onto [0,1), and define M E kiiFloc

by

cp(t)
Mt = XsdWs; 0 < t < o0,

0

so

cp(t) 2
<M> t = I Xds; 0 < t < co

S0

and <M> t 00 a.s. as t o°. According to Theorem 4.6,

there is a Brownian motion B such that

t
S X dW =B -
0 s s <M>(c (t))

As t I 1, <M>(cpl(t)) e co, so, by the law of the iterated

logarithm for Brownian motion,

P[lim B = - lim B = +o] = 1.
ttl <M>(c (t).) ttl <M>(cp (t))
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4.11 Solution: For simplicity of notation, we take d to be 1.

For each positive integer n, define

inf[0 < t < co; IMt > n3; if [...}3 0,
T=
n oc; if {...3 = 0,

and set T o = 0. Because M is right-continuous with left

limits, we have Tn tor a.s. According to Problem 1.2.5

and Proposition 1.2.3, each Tn is a stopping time for [t.J

The martingale (Problem 1.3.22)

M(n) { t(n ) T t; 0 < t < co}= = MtAT ,

is bounded, as is M(n) M (n-l), and so Theorem 4.10 guarantees

the existence of a progressively measurable y(n) -= y(n)

T
0 < t < co3 satisfying E J (Y () 2dt < oc; 0 < t < Co, and

_ O

t

Because

<M>tAT - <M>tAT <(n) (nl)> (Y(n)) 2 ds,
.n n-l)0

M'(n) (n)
we must have Yn (W) Y (W)l (s) for

Lebesgue a.e. s, P a.e. uw. Setting Y L Yt(), we
n=l

have the desired representation:

tMt Y .dW - < t <
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4.12 Solution: Let Mt in Theorem 4.10 be a right-continuous

modification of the martingale E(IJa t ) - E(g).

4.15 Solution: Suppose

m
(S.5) ys 03(s)

~S 0~i =0 (si'tsi+l]

where each gi is &s -measurable. Then (4.38) reduces to
1 OS

(BS -B ) ( sits (<M>t) 0 < i < m,
Si+l si 0 (SSi+dMt;-

which., because of the definition of B and Problem 4.5(iii),

is equivalent to

Yi(MT(s MT (s) (T(si ),T(s i+l)(t)dMt; 0 < i < m .
i+l i 0 1 i+l

We show that whenever T 1 < T2 are stopping times for I3 t ]

such that E<M> < cc and [ is an AT -measurable, bounded,
random variable, then

random variable, then

co

(S.6) 2(MT MT S . (TlT2 (t)dMt- a.s.P.
2 1 0 1'T 2

Replacing Mt by MT 2ft' we may assume that E<M>,o < o

and T2 = c (Corollary 2.19 and Definition 2.21). Now let
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(n) (k+l 

k=O 2n k2-n(k+l) 

(n) A
so that t>T (n) 1 is a simple process. For this

[t>_T(n ) ]

process, we have

co

g( - M ) = ( dMt,(n ) 0

and letting n 4 co, we obtain (S.6).

If Y is not simple, there is a sequence {y(n) fn
n=l

of simple processes of the form (S.5) such that

lim E f (Y Y(n))2 ds = 0. With ) (n) we haveS s t <M>n-c 0 t 

from Problem 2.16':

co co () co

Y dB = liim Y(n) dB = lim M t(n) tdM t
0s s cx0 s s n-co 0 0

4.18 Solution: The proof already given for Theorem 4.16 applies
co 2

to the case T = co once we show that £ Ysds < oz, a.s.P,

t 0
implies the existence of lim S Y dW5 . Let

tew 0 s
t~ t4 Q

T n = inf[t > 0; Y2ds = nJso Y(n) Yt t;

o < t < cs} is in co and lim J YSn)dw exists.
t-Cc 0 S S

t t
On the set Tn = cc , we have Y (n)dW = Y dW for

n 0s s 0 s s

all 0 < t < co. But lim P[Tn = C] = 1, so we have
nthe desired resu

the desired result.
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t
5.6 Solution: We define M t = Y so M by (5.8)

0 ss, so M given by (5.8)

is

t t
1S

M t = Y dW (i) - S YsX(i)ds; 0 < t < T.

We shall identify Mt as the Ito integral (under PT

t
5 YsdW(i), by appealing to Proposition 2.22. Now, according
0

to Proposition 5.5, every element N of c,-Tloc admits a

representation of the form

d t
N = N - I ()d<NW()> ; 0 < t < T,t ~l t S

for some N E c'loc Proposition 5.4 implies

< >t = <M,N>t = S YSd<N,W(i)>

t
= Y d<N ,(i)> ; O< t < T,

a.s. P and PT.

5.7 Solution: As in (5.11), we have with Z = exp[PW - 2tt t 1 2

P ) [T < t] = E[liT<t]ZT].

Let t - cO and use the monotone convergence theorem to conclude

*P() [T < cO] = EZT.
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Under P ( ), the process L[Wt-t, t; 0 < t < c( is a standard

Brownian motion, so P [Sb < co] = 1. We also have

P[Sb < cc] = 1, since pb < 0.

5.8 Solution: We have P[Tb < co] = 1 and

nf{t > 0; WT +t WT = b 2 ; if {...] # 0,

T T b b
bl+b2 bl 

oo; if {...} = 0.

Theorem 2.6.15 states that, under P, the process

{WT - WT 0 < t < co) is a standard Brownian motion
Tb1 +t T
b. bl

independent of T It follows that, under P, Tb - Tb

is independent of Tb and P[Tb+b -Tb E dt] = h(t;b 2,0)dt.

Using the same justifications as in (5.11), we have

PGO T (sT T < t][Tb < s, Tb +b Tb 
1 2 1

E[iTb1 s, Tbl+b2- Tbl <tZb+b

E[l < se T(+b2) (< tZT3h b01 h;b 2 d dl+b2

t s
I expip(bl+b2 1 P2

= S ~ h(a;blJ)h(T;b2, )da dT.
0 0
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Therefore

h(t; bl+b2, L)dt = ) [Tb E dt]

= 0 P(p) [T E ds, Tb +b T E dt - s]

= f h(s;bi,)h(t-s;b 2,pL)ds dt
s=O

= [h(';bl,1 ) *h(';bl,] (t)dt.

5.11 Solution: The process W - Pt is a Brownian motion under
- -t t

P(P), so the law of large numbers implies

;~W) t-~t
P lim t = 0] = 1.

t-,co

1 1 2 1 2, ()
Therefore, lirm (PWt - t) = P a.s., so

t-t oz:

1 2
with Zt = exp(PWt - 2 P t), we have lim Zt = '

P() - a.s., and so P ( ) [Rb < co] = 1. Now

1= 1 Cp2t)
z = exp(-LVt - 2 t)

so { t 0 < t < co3 is a martingale under P

Using the same justifications as in (5.11), we have
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b =P [Rb < t].

Letting t e co, we obtain the desired result P[Rb < co] = 

For the second claim, note that for every finite t > 0,

we have

E(VtR = E()WtR - E()(t ̂  R).

But

so

(p.) 1t/b I 2logb
E( ) (t ^ Rb) 2E[WtAR 2 t A Rb)] - p

Letting t e co, we obtain

E(~)R < 2 logb < o.

From Problem 2.11, we have

0 -E (= EM()W - pE( P )R

Welso hav b b

We also have
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E (WRb 2 1E Rb P(log ZRb = g b

Solving these two equations for E( )Rb yields the desired

result E ( ) R
b= 

dP
5.19 Solution: Let ZT = dP i.e.,

PT(A) = E[lAZT]; AE T' 0 < T < co.

The consistency condition (5.5) implies that Z = [Zt, St;

o < t < o3 is a martingale, -and because of Theorem 1.3.11,

we may assume that for P-a.e. w, t F Zt(W) is a right-

continuous function with left limits. By the construction

of 30, every set in this o-field has P-probability zero

or one, so Z O = 1, a.s. P. Problem 4.11 implies that Z

has the representation

d t
= 1+ y(i)dwi); < t < oo,

i=1 5

where each y(i) is progressively measurable and

P[I (Y(i))2d s < co] = 1, for every 0 < t < co, 1 < i < d.
0Let

Let
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infCO < t < CO; Zt 03; if ... 3 0

S =
S o; if {...3 = 0.

For each 0 < T < o°, the Optional Sampling Theorem implies

(cf. (5.11))

PT[S < T] = E[liS<T 3Z S] = 0,

and by the absolute continuity of P with respect to PT
T

on 3T we conclude:

P[S < T] = 0; 0 < T < c.

It follows that P[S < c0] = 0, so log(Z,) is defined for

0 < t < o, a.s. P., and X = X t (X1) , t(d) t

O < t < (cO defined by

Xt = Z t ; 1 < i < d, 0 < t < CO

satisfies (5.1). Ito's rule gives

d t t
log(zt) i= l x (i)dW( - 0 I lxj 2ds,

i=s a martingale and (5.4 holds

so Z(X) = Z is a martingale and (5.4) holds.
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6.6
6.6 Solution: If Bt+h(w) - Bt() I < Ch; 0 < h < 6, then by (6.6)

and the additive functional property of ' we have

1 = S li Bth()Bt(W) I<C6d h

J(w)I+C ()0 t+h 1 ~Bt(w)+Cb
=. S [& t h(X'W) - Lt(X'w)]dx
Bt(W)C6 t+h

= 2C max [&t+h(X,W) - %t(x,w)].
Ix-Bt( W)<C6

O h< 6 0

The last term converges to zero as 6 0, because of the joint

continuity of A.t(x,w) in (t,x). This contradiction establishes

the nondifferentiability of B. (w).

6.7 Solution: (i) It is clear that (6.7) implies (6.6). If (6.6)

holds, then (6.7) holds for every linear combination of Borel

measurable indicator functions, and it is possible to find a

sequence of these which converges everywhere from below to a

given Borel measurable f : IR e [O,o). Equation (6.7)

follows then from the monotone convergence theorem.

(ii) For any a < b,. the indicator 1(ab ] can be

written as the limit (everywhere) of a sequence of functions

in U. By the bounded convergence theorem, (6.6) holds for

every B of the form (a,b]. The collection of all Borel sets

B for which (6.6) holds forms a Dynkin system and so, by the

Dynkin System Theorem 2.5.1', (6.6) holds for every B E 6B(R).
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We saw in part (i) that this implies (6.7) for every Borel

function f : IR e [O,o).

6.12 Solution: Let h have support in [O,b], consider the sequence

of partitions

Dn L(n) = kb; k = 0,1,...,2n; n > 1
Dn [Dck n

of this interval, and set D = U D n. The Lebesgue integral
n=l

on the left-hand side of (6.24) is approximated, as n, co,

by the sum

z b h(b n)) ( 1 (Ws)dWs) = F(Ws)dWs
k=0 2 0 [bk I,0C) 0

where the function

2n-1 L b k (n )
Fn(x) = n h(b )) (x)n In) n k (n)

k=l 2 [b )

converges uniformly, as n 4 co, to the function

co

F(x) I h(a)l a c)(x)Wda.
-co

t
Therefore, the sequence of stochastic integrals [I F (Ws)dWs n =

2 0 n s s n-l
converges in L 2 to the stochastic integral F(W )dW which

0
is the right-hand side of (6.24).
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z
6.13 Solution: (i) Under any PZ, B(a) is a continuous, square-

integrable martingale with quadratic variation process

t 2 z
<B(a)>t = I [sgn(W -a)] ds = t; 0 < t < co, a.s. P

0 

According to Theorem 3..3.13, B(a) is a Brownian motion.

(ii) For w in the set . of Definition 6.3, we have

(6.2) (Remark 6.5), and from this we see immediately that

C0 (a,w) = o and -t (a',w) is nondecreasing in t. For each

z E JR, there is a set E i with PZ(() = 1 such that

Zw(a) is closed for all w E I. For wE i n a , the

complement of Zw(a) is the countable union of open intervals

U I . To prove (6.26), it suffices to show that

I dCt(W): = 0 for each a E I. Fix an index a and let

Ia = (u,v). Since W. (W) - a has no zero in (a,b), we know

that IW.(w)-al is bounded away from the origin on

[u + n' v -], where n > u Thus, for all sufficiently

small £ > 0

meas[0 < s < + 1< 

= measto < s < v - 1; al < -,

and thus t 1 (a,w) = l(a,w). It follows that
u_ v--n n

I 1 1 dtt(a,w) = 0, and letting n c° we obtain the
[u , vn n

desired result.
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(iii) Set z = a = 0 in (6.25) to obtain

Iw = -Bt(0) + t(); < t < t < P-a.s.

The left-hand side of this relation is nonnegative, while

Bt(O) changes sign infinitely often in any interval [0,i],

e > 0 (Problem 2.7.17). It follows that dt(0) cannot

remain zero in any such interval.

(iv) It suffices to show that for any two rational numbers

< q < r < -co., if Wt(w) a for some t E (q,r) then

(aw) < , (aW), P -a.e. w. Let T(W) - inf[t > q; Wt(W) = a].

Applying (iii) to the Brownian motion [Ws+T - a; 0 < s < co)

we conclude that 

(aW) < CTW)+~s(a,w) for all s > 0, PZ-a.e. w
T(W) T(w)a+s

by the additive functional property of local time (Definition 6.1

and Remark 6.5). For every w f IT < ri we may take

s = r - T(W) above, and this yields Lq(a,w) < Lr(a,W).

6.18 Solution: It is certainly sufficient to take z = 0. From

(6'.34) and the fact that B is Brownian motion under P0,

we have

lim t (0,w) = lim ( max B (W)) -co
t-*oC) t fo-0 O<s<t

for P -a.e. w E C2. By the additive functional property of

local time, we have for every a # 0:
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t+Ta (W ) (a,w) = w t(a,T W); 0 < t < co, for P -a.e. w f ,

and by the strong Markov property of Brownian motion:

P [W E n; lim t (a,w) =co] = p 0 [ E 0; lim Ltt(a,ST w) c o]
t°co t co a

= pa[wE ; lim Lt(a,w)= o] = p0 [w E Q; lim Lt(0,co)=co] = 1.
te°o tco

6.19 Solution: From (6.38) we obtain lim f(y) < f(x),
ytx

lim f(y) < f(z) and f(y) < lim f(x), f(y) < lim f(z).
ytz xty z y

This establishes the continuity of f on JR.

For E iR fixed and 0 < h I < h 2, we have from (6.38),

with x = , y = g + hi, z = g + h2:

(S.7) Af(§;hl) < Afi(;h2)-

On the other hand, applying (6.38) with x = - h 2, y = - h

and& z = yields

(S.8) Af([;-h 2) < Af(§;-hl)o

Finally, with x = g - , y = g, z = § + 6, we have

(S.9) Af(l;-C) < Af(§;6); ,6 > 0.

Relations (S.7)-(S.9) establish the requisite monotonicity

in..· h of the difference quotient (6.39), and hence the existence

and finiteness of tEhe limits in (6.40).
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In particular, (S.9) gives D-f(x) < D f(x) upon letting

£ 4 0, 6 4 0, which establishes the second inequality in (6.41).

On the other hand, we obtain easily from (S.7) and (S.8) the

bounds

(S.10) (y-x)D f(x) < f(y) - f(x) < (y-x)D-f(y); x y,

which establish (6.41).

For the right-continuity of the function D+f(-), we

begin by observing the inequality

D f(x) < lim D f(y); x E 2R,
y~x

which is a consequence of (6.41). In the opposite direction,

we employ the continuity of f, as well as (S.10), to obtain

for x < z:

f(z) - f(x) = lim f(z) - f(y) lim D+f(y).
z x y zx z -y y~ x

Upon letting z 4x, we obtain D f(x) > lim D+f(y). Left-
yIx

continuity of D f(-) is proved similarly.

From (S.10) we observe that, for any function p : R e R

satisfying

(s.11) Df(x) < 9(x) < D+f(x); x E 3R
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we have for fixed y E )R,

(S.12) f(x) > G (x) = f(y) + (x-y)9P(y); x E R.
y

The function Gy(') is called a line of support for the convex

function f(-). It is immediate from (S.12) that f(x) = sup G (x),
yE3R Y

but the point is that f(-) can be expressed as the supremum of

countably many lines of support. Indeed, let E be a countable,

dense subset of IR. For any x E JR, take a sequence

{Yn3n=1 of numbers in E, converging to x. Because this

+
sequence is bounded, so are the sequences {D f( n) n=l (by

monotonicity and finiteness of the functions D f( )) and

cp(Yn) n3 (by (S.11)). Therefore, lim G (x) = f(x), which
n cn 

implies that f(x) = sup G (x).
yEE Y

6.20 Solution:, (iii) For any x < y < z:, we have

(S.13) cp(x) < (y) - (x)= 1 Y (u)du < ()- =(u) du<_(y)

z
1 I (u) du (z) - () < c(z)

-z- yy z-y

This gives

§(y) < Z - Y §(x) + y - x }(z),-z -X z -x

which verifies convexity in the form (6.38). Now let x ty,

z Jy in (S.13), to obtain
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(S.14) 9c(y) < D- (y) < cp(y) < D +(y) < 9+(y); y E R.

At every.continuity point x of 9, we have 9P(x) = P(x) = D W(x).

The left- (respectively, right-) continuity of cp_ and D-9

(respectively, 9+ and D+§) implies p_(y) = D- (y) (respectively,

+(y) = D+§(y)) for all y E 3R.

(iv) Letting. x ly (respectively, x ty) in (6.44), we

obtain

D f(y) < 9 (y) < 9c(y)-< p+(y) < D+f(y); y E IR.

But now from (6.41) one gets

9+(x) < D f(x) < D f(y) C< _(y) < p(y); x < y,

and letting y 4x we conclude: c+(x) = D+f(x); x iE R.

Similarly, we conclude cp_(x) = D-f(x); x E JR. Now consider

the function G = f - f, and simply notice the consequences

D G(x) = D f(x) - D b(x) = 0; x E 3R,

of the above discussion; in other words, G is differentiable

on IR with derivative which is identically zero. It follows

that G is identically constant.

6.21 Solution: Just take p = D f or C = D-f in the preceding

problem.
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6.24 Solution: Let dk = f'(ak+) - f'(ak-), and for x E JR, set

gl(x) = f"(x+) V 0, g 2(x) = (-f"(x+)) V 0. Choose aO < al.

We have then

n Y

f' (y+) = f' (a0 ) + dkl (x) + (gl(z) -g 2(z))dz;

Y E R,

and upon further integration, with q = (±f'(a0)) V 0:

n 
f[(x) = [f(a 0) + q+(x-a 0) + Z dk(X-ak) + gl(z)dz]

k=l a a0

n x y

- [q_(x-a 0) + d (x-a + g2 (z)dz; xE R..~=1- a 0 a

This provides us with the desired decomposition of. f into the

difference of convex functions. Equation (6.49) takes the form

(6.53) in this special case of Corollary 6.23.

6.29 Solution: (iv) ' (vi): Let t E (0,oo) be such that

t
p0O[ f(Ws)ds < Co] = 1. For x = 0, just take S = t. For

0

x # 0, consider the first passage time Tx and notice that

0 0
P [0 x< o]x < = 1, P [2TX < t] > 0, and that

s Ws+T - x, 0 < s < co] is a Brownian motion under PBs s+T 

Now, for every w E [2Tx < t}:

Tx (W) 2T (w) t

O . f(x + BS())ds = ( f(W (W))du < £ f(W (W))du < o,
0 Tx(W) 0x
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Tx
whence [2Tx < tJ C tI f(x+Bs) ds < o), a.s.p 0 We conclude

0
that this latter event has positive probability under P0

and (vi) follows upon taking S = Tx.

(vi) ~ (iii): Lemma 6.26 gives, for each x E K, the

existence of an open neighbourhood U(x) of x with

I f(y)dy < eo. Now (iii) follows from the compactness
U(x)

of K.

(iii) = (v): For fixed x E IR, define gx( y) = f(x+y)

and apply the known implication (iii) = (ii) to the function gx.

6.30 Solution: Relation (6.55) follows from (6.7) and Problem (6.18):

co t co
I f(W s )ds = lim f{ws)ds = I f(y) -lim Lt (y)dy = co;
0 S O 0 - o v

a.s. P

by the monotone convergence theorem.

(n)
For (6.56), we observe first that. x t can be written as

co

1 I f (y) Lnt(Y) dy, thanks to (6.7). Now the crucial observation

is that, by the scaling property of Brownian motion (Lemma 2.9.4(i))

and the definition of local time, the random fields

1 tnt(Y); 0 < t < co, y E J]R} and tct( ); 0 < t < o, y E ]R 3

induce the same distribution on C([O,0) x IR) for each

n>l. Thus, the processes x(n) and z(n) = {; fAy)At() dy;
--Co on

O < t < 0co have the same finite-dimensional distributions.
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Now it is easily seen that

max IZ( n ) -X t > O, a.s. pO
_ - n 4

O<t<T . neco

holds for every finite T > 0, and (6.56) follows.
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3.8: Notes

Section 3.2: The concept of the stochastic integral with respect to

Brownian motion was introduced by K. Ito (1942,1944) in order to

achieve a rigorous treatment of the stochastic differential equation

which governs the diffusion processes of A. N. Kolmogorov (1931).

Doob (1953) was the first to study the stochastic integral as a

martingale, and to suggest a unified treatment of stochastic integra-

tion as a chapter of martingale theory. This task was accomplished

by Courrege (1962/63), Fisk (1963), Kunita & Watanabe (1967),

Meyer (1967), Millar (1968), Doleans-Dade & Meyer (1970). Much

of this theory has become standard, and has received monograph

treatment; we mention in this respect the books by McKean (1969),

Gihman & Skorohod (1972), Arnold (1973), Friedman (1975), Lipster &

Shiryaev (1977), Stroock & Varadhan (1979), Ikeda & Watanabe (1981),

Elliott (1982), Kopp (1984), the monographs by Skorohod (1965),

Kussmaul (1977) and Chung & Williams (1983), and the detailed

accounts of the contributions of the "French school" in Meyer (1976),

Dellacherie & Meyer (1975/1980). Our presentation draws on most of

these sources, but is closer in spirit to Ikeda & Watanabe (1981) and

Lipster & Shiryaev (1977). The approach suggested by Lemma 2.3 and

Problem 2.4 is due to Doob (1953).

Section 3.3: Theorem 3.13 was discovered by P. Levy (1948; p. 78);

a different proof appears on p. 384 of Doob (1953).
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Section 3.4: The idea of extending the probability space in order

to accommodate the Brownian motion W in the representation

Theorem 4.2 is due to Doob (1953; pp. 449-451) for the case d = 1.

Problem 4.7 is essentially from McKean (1969; p. 31). Chapters II

of Ikeda & Watanabe (1981) and 12 of Elliott (1982) are good sources

for further reading on the subject matter of sections 3.3 and 3.4.

Section 3.5: The celebrated Theorem 5.1 was proved by Cameron &

Martin (1944) for nonrandom integrands X, and by Girsanov (1960)

in the present generality. Our treatment of it was inspired by

the lecture notes of S. Orey (1974).

Section 3.6: Brownian local time is the creation of P. Levy (1948),

although the first rigorous proof of its existence was given by

Trotter (1958). Our approach to Theorem 6.11 follows that of

Ikeda & Watanabe (1981), McKean (1969). One can study the local

time of a nonrandom function divorced from probability theory,

and the general pattern that develops is that regular local times

correspond to irregular functions; for instance, for the highly

irregular Brownian paths we obtained Holder continuous local times

(relation (6.22)). See Geman & Horowitz (1980) for more information

on this topic. Local time for semimartingales is discussed in the

volume edited by Aze'ma & Yor (1978); see in particular the articles

by Azema & Yor (pp. 3-16) and Yor (pp. 23-35). Local time for Markov

processes is treated by Blumenthal & Getoor (1968).
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The generalized Ito rule (Theorem 6.22) is due to Meyer (1976)

and Wang (1977). There is a converse to Corollary 6.22: if f(Wt)

is a continuous semimartingale, then f is the difference of convex

functions (Wang (1977), Cinlar, Jacod, Protter & Sharpe (1980)).

A multidimensional version of Theorem 6.22, in which convex functions

are replaced by potentials, has been proved by Brosamler (1970).

Tanaka's formula (6.11) provides a representation of the form
t

f(W ) -+ g(Ws)dWs for the continuous additive functional

Lt(a), with a E IR fixed. In fact, any continuous additive func-

tional has such a representation, where f may be chosen to be

continuous; see Ventcel (1962), Tanaka (1963).

We follow Ikeda & Watanabe (1981) in our exposition of

Theorem 6.17 and in the proof of .(6.56), Problem 6.30. For more

information on the subject matter of this problem, the reader is

referred to Papanicolaou, Stroock & Varadhan (1977).
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