
April, i998 LIDS- P 2413

Research Supported By:

AFOSR grant F49620-97-C-0013

Rollout Algorithms for Stochastic Scheduling Problems

Bertsekas, D.P.

Castanon, D.A.

April 1998 LIDS-P-2413

ROLLOUT ALGORITHMS FOR

STOCHASTIC SCHEDULING PROBLEMS'

by

Dimitri P. Bertsekas2 and David A. Castafion3

Abstract

Stochastic scheduling problems are difficult stochastic control problems with combinatorial

decision spaces. In this paper we focus on a class of stochastic scheduling problems, the quiz prob-

lem and its variations. We discuss the use of heuristics for their solution, and we propose rollout

algorithms based on these heuristics, which approximate the stochastic dynamic programming

algorithm. We show how the rollout algorithms can be implemented efficiently, and we delin-

eate circumstances under which they are guaranteed to perform better than the heuristics on

which they are based. We also show computational results which suggest that the performance

of the rollout policies is near-optimal, and is substantially better than the performance of their

underlying heuristics.

1 This work was supported in part by the Air Force Office of Scientific Research under grant

no. F49620-97-C-0013
2 Department of Electrical Engineering and Computer Science, M. I. T., Cambridge, Mass.,

02139.
3 Department of Electrical Engineering, Boston University, and ALPHATECH, Inc., Burling-

ton, Mass., 01803.

1. Introduction

1. INTRODUCTION

Consider the following variation of a planning problem: There is a finite set of locations which

contain tasks of interest, of differing value. There is a single processor on which the tasks are to

be scheduled. Associated with each task is a task-dependent risk that, while executing that task,

the processor will be damaged and no further tasks will be processed. The objective is to find

the optimal task schedule in order to maximize the expected value of the completed tasks.

The above is an example of a class of stochastic scheduling problems known in the literature

as quiz problems (see Bertsekas [1995], Ross [1983], or Whittle [1982]). The simplest form of this

problem involves a quiz contest where a person is given a list of N questions and can answer these

questions in any order he or she chooses. Question i will be answered correctly with probability pi,

and the person will then receive a reward vi. At the first incorrect answer, the quiz terminates

and the person is allowed to keep his or her previous rewards. The problem is to choose the

ordering of questions so as to maximize expected rewards.

The problem can be viewed in terms of dynamic programming (DP for short), but can

more simply be viewed as a deterministic combinatorial problem, whereby we are seeking an

optimal sequence in which to answer the questions. It is well-known that the optimal sequence is

deterministic, and can be obtained using an interchange argument; questions should be answered

in decreasing order of pivi/(l -pi). This will be referred to as the index policy. An answer order

is optimal if and only if it corresponds to an index policy. Another interesting simple policy

for the quiz problem is the greedy policy, which answers questions in decreasing order of their

expected reward pivi. A greedy policy is suboptimal, essentially because it does not consider the

future opportunity loss resulting from an incorrect answer.

Unfortunately, with only minor changes in the structure of the problem, the optimal solution

becomes much more complicated (although DP and interchange arguments are still relevant).

Examples of interesting and difficult variations of the problem involve one or more of the following

characteristics:

(a) A limit on the maximum number of questions that can be answered, which is smaller than

the number of questions N. To see that the index policy is not optimal anymore, consider

the case where there are two questions, only one of which may be answered. Then it is

optimal to use the greedy policy rather than the index policy.

(b) A time window for each question, which constrains the set of time slots when each question

may be answered. Time windows may also be combined with the option to refuse answering

2

1. Introduction

a question at a given period, when either no question is available during the period, or

answering any one of the available questions involves excessive risk.

(c) Precedence constraints, whereby the set of questions that can be answered in a given time

slot depends on the immediately preceding question, and possibly on some earlier answered

questions.

(d) Sequence-dependent rewards, whereby the reward from answering correctly a given question

depends on the immediately preceding question, and possibly on some questions answered

earlier.

It is clear that the quiz problem variants listed above encompass a very large collection of

practical scheduling problems. The version of the problem with time windows and precedence

constraints relates to vehicle routing problems (involving a single vehicle). The version of the

problem with sequence-dependent rewards, and a number of questions that is equal to the max-

imum number of answers relates to the traveling salesman problem. Thus, in general, it is very

difficult to solve the variants described above exactly.

An important feature of the quiz problem, which is absent in the classical versions of vehicle

routing and traveling salesman problems is that there is a random mechanism for termination

of the quiz. Despite the randomness in the problem, however, in all of the preceding variants,

there is an optimal open-loop policy, i.e., an optimal order for the questions that does not depend

on the random outcome of the earlier questions. The reason is that we do not need to plan the

answer sequence following the event of an incorrect answer, because the quiz terminates when

this event occurs. Thus, we refer to the above variations of the quiz problem as deterministic

quiz problems.

There are variants of the quiz problem where the optimal order to answer questions depends

on random events. Examples of these are:

(e) There is a random mechanism by which the quiz taker may miss a turn, i.e., be denied the

opportunity to answer a question at a given period, but may continue answering questions

at future time periods.

(f) New questions can appear and/or old questions can disappear in the course of the quiz

according to some random mechanism. A similar case arises when the start and end of the

time windows can change randomly during the quiz.

(g) There may be multiple quiz takers that answer questions individually, and drop out of the

quiz upon their own first error, while the remaining quiz takers continue to answer questions.

3

1. Introduction

(h) The quiz taker may be allowed multiple chances, i.e., may continue answering questions up

to a given number of errors.

(i) The reward for answering a given question may be random and may be revealed to the quiz

taker at various points during the course of the quiz.

The variants (e)-(i) of the quiz problem described above require a genuinely stochastic for-

mulation as Markovian decision problems. We refer to these variations in the paper as stochastic

quiz problems. They can be solved exactly only with DP, but their optimal solution is pro-

hibitively difficult. This is because the states over which DP must be executed are subsets of

questions, and the number of these subsets increases exponentially with the number of questions.

In this paper, we develop suboptimal solution approaches that are computationally tractable

for both deterministic and stochastic quiz problems. In particular, we focus on rollout algorithms,

a class of suboptimal solution methods inspired from the policy iteration methodology of DP and

the approximate policy iteration methodology of neuro-dynamic programming (NDP for short).

One may view a rollout algorithm as a single step of the classical policy iteration method, starting

from some given easily implementable policy. Algorithms of this type have been sporadically

suggested in several DP application contexts. They have also been proposed by Tesauro [1996]

in the context of simulation-based computer backgammon (the name "rollout" was introduced

by Tesauro as a synonym for repeatedly playing out a given backgammon position to calculate

by Monte Carlo averaging the expected game score starting from that position).

Rollout algorithms were first proposed for the approximate solution of discrete optimization

problems by Bertsekas and Tsitsiklis [1996], and by Bertsekas, Tsitsiklis, and Wu [1997], and the

methodology developed here for the quiz problem strongly relates to the ideas in these sources.

Generally, rollout algorithms are capable of magnifying the effectiveness of any given heuristic

algorithm through sequential application. This is due to the policy improvement mechanism of

the underlying policy iteration process.

In the next section, we introduce rollout algorithms for deterministic quiz problems, where

the optimal order for the questions from a given period onward does not depend on earlier

random events. In Section 3, we provide computational results indicating that rollout algorithms

can improve impressively on the performance of their underlying heuristics. In Sections 4 and

5, we extend the rollout methodology to stochastic quiz problems [cf. variants (e)-(i) above],

that require the use of stochastic DP for their optimal solution. Here we introduce the idea

of multiple scenaria for the future uncertainty starting from a given state, and we show how

these scenaria can be used to construct an approximation to the optimal value function of the

4

2. Rollout Algorithms for Deterministic Quiz Problems

problem using NDP techniques and a process of scenario aggregation. In Section 6, we provide

computational results using rollout algorithms for stochastic quiz problems. Finally, in Section 7,

we provide computational results using rollout algorithms for quiz problems that involve graph-

based precedence constraints. .

2. ROLLOUT ALGORITHMS FOR DETERMINISTIC QUIZ PROBLEMS

Consider a variation of a quiz problem of the type described in (a)-(c) above. Let N denote the

number of questions available, and let Al denote the maximum number of questions which may

be attempted. Associated with each question i is a value vi, and a probability of successfully

answering that question pi. Assume that there are constraints such as time windows or precedence

constraints which restrict the possible question orders. Denote by V(il,..., iM) the expected

reward of a feasible question order (il,... , iMw):

V(il,... , iAI) - pi% (Vii + pi 2 (Vi 2 + pi 3 (. + PiMViM) * *)). (2.1)

For an infeasible question order (il,..., iv), we use the convention

V(il, . .. , iM) = -00.

The classical quiz problem is the case where A' = N, and all question orders are feasible.

In this case, the optimal solution is simply obtained by using an interchange argument. Let i

and j be the kth and (k + 1)st questions in an optimally ordered list

L = (il,...,ik-l,i,j,ik+2,...,iN).

Consider the list

L' = (il,. ., k1, ik i, ik+2, .. , iN)

obtained from L by interchanging the order of questions i and j. We compare the expected

rewards of L and L'. We have

E{reward of L}) E{reward of {i1,..., ik-1}}

pi, Pil Pi(pivi + PiPjvj)

+ Pil * Pik_lpipjE{reward of {ik+2 . . . ,iN}}

E{reward of L'} = E{reward of {il,..., ik-l}}

+ P ...'Pikl (pijv + Pjpivi)

+ pi, . pik_lpjpiE{reward of {ik+2,...,iN}}.

5

2. Rollout Algorithms for Deterministic Quiz Problems

Since L is optimally ordered, we have

E{reward of L} > E{reward of L'},

so it follows from these equations that

pivi + pipjvj > pjvj + pjpivi

or equivalently
pivi pjvj

I - pi - - pj

It follows that to maximize expected rewards, questions should be answered in decreasing order

of pivi/(1 - pi), which yields the index policy.

Unfortunately, the above argument breaks down when either M < N, or there are con-

straints on the admissibility of sequences due to time windows, sequence-dependent constraints,

or precedence constraints. For these cases, we can still use heuristics such as the index policy or

the greedy policy, but they will not provide optimal performance.

Consider a heuristic algorithm, which given a partial schedule P = (il,... ,ik) of distinct

questions constructs a complementary schedule P = (ik+l, , iM) of distinct questions such that

P n P = 0. The heuristic algorithm is referred to as the base heuristic. We define the heuristic

reward of the partial schedule P as

H(P) = V(il,. . .,ik,ik+1 . .. ,iAf). (2.2)

If P = (il,..., iAr) is a complete solution, by convention the heuristic reward of P is the true

expected reward V(il,..., im).

Given .a base heuristic, the corresponding rollout algorithm constructs a complete schedule

in AM stages, one question per stage. The rollout algorithm can be described as follows:

At the 1st stage it selects question il according to

ii = arg max H(i), (2.3)
i=1,...,N

and at the kth stage (k > 1) it selects ik according to

ik = arg max H(il, ... ik-1, i), k 2,..., AM. (2.4)

Thus a rollout policy involves N + (N - 1) +--- + (N - MI) = O(MN) applications of the

base heuristic and corresponding calculations of expected reward of the form (2.1). While this

6

2. Rollout Algorithms for Deterministic Quiz Problems

is a significant increase over the calculations required to apply the base heuristic and compute

its expected reward, the rollout policy is still computationally tractable. In particular, if the

running time of the base heuristic is polynomial, so is the running time of the corresponding

rollout algorithm. On the other hand, it will be shown shortly that the expected reward of the

rollout policy is at least as large as the one of the base heuristic.

As an example of a rollout algorithm, consider the special variant (a) of the quiz problem

in the preceding section, where at most MV out of N questions may be answered and there are no

time windows'or other complications. Let us use as base heuristic the index heuristic, which given

a partial schedule (il,... , ik), attempts the remaining questions according to the index policy, in

decreasing order of pivi/(l -pi). The calculation of H(il,..., ik) is done using Eq. (2.1), once the

questions have been sorted in decreasing order of index. The corresponding rollout algorithm,

given (il,... ,ik-l) selects i, calculates H(il,.. .,ik-_li) for all i : il,...,ikl, using Eq. (2.1),

and then optimizes this expression over i to select ik.

Note that one may use a different heuristic, such as the greedy heuristic, in place of the

index heuristic. There are also other possibilities for base heuristics. .-For example, one may

first construct a complementary schedule using the index heuristic, and then try to improve this

schedule by using a 2-OPT local search heuristic, that involves exchanges of positions of pairs of

questions. One may also use multiple heuristics, which produce heuristic values Hj(i1,..., ik), j =

1,..., J, of a generic partial schedule (il,..., ik), and then combine them into a "superheuristic"

that gives the maximal value

H(il,...,ik) = max Hj(il,...,ik).

An important question is whether the rollout algorithm performs at least as well as its

base heuristic when started from the initial partial schedule. This can be guaranteed if the base

heuristic is sequentially consistent. By this we mean that the heuristic has the following property:

Suppose that starting from a partial schedule

P = (i,. ,ik-1),

the heuristic produces the complementary schedule

P= (ik,..., i M).

Then starting from the partial schedule

P+ = (il, ik-1, ik),

2. Rollout Algorithms for Deterministic Quiz Problems

the heuristic produces the complementary schedule

P = (ik+l,. ,iM)-

As an example, it can be seen that the index and the greedy heuristics, discussed earlier,

are sequentially consistent. This is a manifestation of a more general property: many common

base heuristics of the greedy type are by nature sequentially consistent. It may be verified, based

on Eq. (2.4), that a sequentially consistent rollout algorithm keeps generating the same schedule

P U P, up to the point where by examining the alternatives in Eq. (2.4) and by calculating their

heuristic rewards, it discovers a better schedule. As a result, sequential consistency guarantees

that the reward of the schedules P U P produced by the rollout algorithm is monotonically

nonincreasing; that is, we have

H(P+) < H(P)

at every stage. For further elaboration of the sequential consistency property, we refer to the

paper by Bertsekas, Tsitsiklis, and Wu [1997], which also discusses some underlying connections

with the policy iteration method of dynamic programming.

A condition that is more general than sequential consistency is that the algorithm be se-

quentially improving, in the sense that at each stage there holds

H(P+) < H(P).

This property also guarantees that the rewards of the schedules produced by the rollout algorithm

are monotonically nonincreasing. The paper by Bertsekas, Tsitsiklis, and Wu [1997] discusses

situations where this property holds, and shows that with fairly simple modification, a rollout

algorithm can be made sequentially improving.

There are a number of variations of the basic rollout algorithm described above. In par-

ticular, we may incorporate multistep lookahead or selective depth lookahead into the rollout

framework. An example of a rollout algorithm with m-step lookahead operates as follows: at the

kth stage we augment the current partial schedule P = (i1,. . .. ikl) with all possible sequences

of m questions i 7 ii,..., ik-l. We run the base heuristic from each of the corresponding aug-

mented partial schedules, we select the m-question sequence with maximum heuristic reward,

and then augment the current partial schedule P with the first question in this sequence. An

example of a rollout algorithm with selective two-step lookahead operates as follows: at the kth

stage we start with the current partial schedule P = (il, ... ik-l), and we run the base heuristic

starting from each partial schedule (il, .. , i-k_, i) with i # il,..., ikl. We then form the subset

I consisting of the n questions i ~ il... , ik that correspond to the n best complete schedules thus

8

3. Computational Experiments with Deterministic Quiz Problems

obtained. We run the base heuristic starting from each of the partial schedules (il,..., i k-1, i, j)

with i E I and j h i.. . , ik-1, i, and obtain a corresponding complete schedule. We then select

as next question ik of the rollout schedule the question i E I that corresponds to a maximal

reward schedule. Note that by choosing the number n to be smaller than the maximum possible,

N - k + 1, we can reduce substantially the computational requirements of the two-step lookahead.

3. COMPUTATIONAL EXPERIMENTS WITH DETERMINISTIC QUIZ PROBLEMS

In order to explore the performance of rollout algorithms for deterministic scheduling, we con-

ducted a series of computational experiments involving the following seven algorithms:

(1) The optimal stochastic dynamic programming algorithm.

(2) The greedy heuristic, where questions are ranked in order of decreasing pivi, and, for each

stage k, the feasible unanswered question with the highest ranking is selected.

(3) The index heuristic, where questions are ranked in order of decreasing piui/(1 - pi'vi), and

for each stage k, the feasible unanswered question with the highest ranking is selected.

(4) The one-step rollout policy based on the greedy heuristic, where, at each stage k, for

every feasible unanswered question ik and prior sequence il,..., i-_l, the question is chosen

according to the rollout rule (2.4), where the function H uses the greedy heuristic as the

base policy.

(5) The one-step rollout policy based on the index heuristic, where the function H in (2.4) uses

the index heuristic as the base policy,

(6) The selective two-step lookahead rollout policy based on the greedy heuristic. At the k-th

stage, the base heuristic is used in a one-step rollout to select the best four choices for the

current question among the admissible choices. For each of these choices at stage k, the

feasible continuations at stage k + 1 are evaluated using the greedy heuristic to complete

the schedule. The choice at stage k is then selected from the sequence with the highest

evaluation.

(7) The selective two-step lookahead rollout policy based on the index heuristic.

The problems selected for evaluation involve 20 possible questions and 20 stages, which are

small enough so that exact solution using dynamic programming is possible. Associated with each

3. Computational Experiments with Deterministic Quiz Problems

question is a sequence of times, determined randomly for each experiment, when that question

can be attempted. Floating point values were assigned randomly to each question from 1 to 10 in

each problem instance. The probabilities of successfully answering each question were also chosen

randomly, between a specified lower bound and 1.0. In order to evaluate the performance of the

last six algorithms, each suboptimal algorithm was simulated 10,000 times, using independent

event sequences determining which questions were answered correctly.

Our experiments focused on the effects of two factors on the relative performance of the

different algorithms:

(a) The lower bound on the probability of successfully answering a question, which varied from

0.2 to 0.8

(b) The average percent of questions that are admissible (i.e., that can be answered) at any one

stage, which ranged from 10% to 50%.

The first set of experiments fixed the average percentage of questions which can be answered

at a single stage to 10%, and varied the lower bound on the probability of successfully answering

a question across four conditions: 0.2, 0.4, 0.6 and 0.8. For each experimental condition, we gen-

erated 30 independent problems and solved them, and evaluated the corresponding performance

using 10,000 MIonte Carlo runs. We computed the average performance across the 30 problems,

and compared this performance with the performance obtained using the stochastic dynamic

programming algorithm.

Table 1 shows the results of our experiments. The average performance of the greedy and

index heuristics in each condition are expressed in terms of the percentage of the optimal perfor-

mance. For low probability of success, both heuristics obtain less than half of the performance

of the optimal algorithm. The table also illustrates the improvement in performance obtained by

both the one-step rollout and the selective two-step rollout algorithms, expressed in terms of per-

centage of the optimal performance. As an example, the first column of Table 1 gives the average

performance across 30 problems with lower bound on the probability of successfully answering a

question 0.2. The performance achieved by the greedy heuristic was 41% of optimal, whereas the

average performance of the one-step rollout with the greedy heuristic as a base policy achieved

on average 75% of the optimal performance, which was a 34% improvement. Furthermore, the

two-step selective rollout achieved on average 81% of the optimal performance.

The results in Table 1 show that one-step rollouts significantly improve the performance of

both the greedy and the index heuristics in these difficult stochastic combinatorial problems. In

particular, the rollout algorithms recovered in all cases at least 50% of the loss of value due to

10

3. Computational Experiments with Deterministic Quiz Problems

Minimum
Probability of 0.2 0.4 0.6 0.8

Success

Greedy Heuristic 41% 50% 61% 76%

Improvement by
One-step Rollout 34% 32% 27% 14%

Improvement by
Two-step Rollout 40% 34% 27% 14%

Index Heuristic 43% 53% 66% 80%

Improvement by
One-step Rollout 34% 30% 23% 10%

Improvement by
Two-step Rollout 38% 33% 24% 11%

Table 1: Performance of the different algorithms as the minimum probability
of success of answering a question varies. The average percentage of questions
which can be answered at a single stage is fixed at 10%. The numbers reported
are percentage of the performance of the optimal dynamic programming solution
achieved, averaged across 30 independent problems. As an example, the first
column gives the average performance across 30 problems with lower bound on
the probability of successfully answering a question 0.2. The performance achieved
by the greedy heuristic was 41% of optimal, whereas the average performance of
the one-step rollout with the greedy heuristic as a base policy achieved on average
75% of the optimal performance, which was a 34% improvement.

the use of the heuristic. Loss recovery of this order or better was typical in all of the experiments

with rollout algorithms in this paper. The results also illustrate that the performance of the

simple heuristics improves as the average probability of success increases, thereby reducing the

potential advantage of rollout strategies. Even in these unfavorable cases, the rollout strategies

improved performance levels by at least 10% of the optimal policy, and recovered a substantial

portion of the loss due to the suboptimality of the heuristic.

For the size of problems tested in these experiments. the advantages of using a two-step

selective lookahead rollout were small. In many cases, the performances of the one-step rollout

and the two-step selective lookahead rollout were identical. Nevertheless, for selected difficult

individual problems, the two-step selective lookahead rollout improved performance by as much

as 40% of the optimal strategy over the level achieved by the one-step rollout with the same base

heuristic.

The second set of experiments fixed the lower bound on the probability of successfully

3. Computational Experiments with Deterministic Quiz Problems

answering a question to 0.2, and varied the average percent of admissible questions at any one

stage across 3 levels: 10%, 30% and 50%. As before, we generated 30 independent problems

and evaluated the performance of each algorithm on each problem instance. The results of these

experiments are summarized in Table 2. As before, the performance of the greedy and index

heuristics improves as the experimental condition approaches the standard conditions of the quiz

problem, where 100% of the questions can be answered at any time. The results confirm the trend

seen in Table 1: even in cases where the heuristics achieve good performance, rollout strategies

offer significant performance gains.

Problem Density 0.1 0.3 0.5

Greedy Heuristic 41% 58% 76%

Improvement by
One-step Rollout 34% 28% 15%

Improvement by
Two-step Rollout 40% 32% 16%

Index Heuristic 43% 68% 85%

Improvement by
One-step Rollout 34% 22% 8%

Improvement by
Two-step Rollout 38% 24% 9%

Table 2: Performance of the different algorithms as the average number of
questions per period increases. The lower bound on the probability of successfully
answering a question is fixed at 0.2. The numbers reported are percentage of the
performance of the optimal dynamic programming solution achieved, averaged
across 30 independent problems.

The results in Tables 1 and 2 suggest that the advantage of rollout strategies over the

greedy and index heuristics increases with the risk involved in the problem. This advantage

stems from the forward-looking character of rollout strategies. In particular, by constructing

a feasible strategy for the entire horizon for evaluating the current decision, rollout strategies

account for the limited future accessibility of questions, and compute tradeoffs between future

accessibility and the risk of the current choice. In contrast, myopic strategies such as the greedy

and index heuristics do not account for future access to questions, and thus are forced to make

risky choices when no other alternatives are present. Thus, as the risk of missing a question

12

4. Rollout Algorithms for Stochastic Quiz Problems

increases and the average accessibility of questions decreases, rollout strategies achieve nearly

double the performance of the corresponding myopic heuristics.

4. ROLLOUT ALGORITHMS FOR STOCHASTIC QUIZ PROBLEMS

We now consider variants of the quiz problem where there is no optimal policy that is open-loop.

The situations (e)-(i) given in Section 1 provide examples of quiz problems of this type. We can

view such problems as stochastic DP problems. Their exact solution, however, is prohibitively

expensive.

Let us state a quiz problem in the basic form of a dynamic programming problem (see e.g.,

Bertsekas [1995]), where we have the stationary discrete-time dynamic system

Xk+l = fk(xk,kwk), k = 0, 1,...,T, (4.1)

that evolves over T time periods. Here Xk is the state taking values in some set, uk is the

control to be selected from a finite set Uk(xk), wk is a random disturbance, and fk is a given

function. We assume that the disturbance wk, k = 0, 1,..., has a given probability distribution

that depends explicitly only on the current state and control. The one-stage cost function is

denoted by gk(x, u, w). In this general framework, we assume that costs are minimized, but the

following discussion can be easily adapted to the case where rewards are maximized.

To apply the rollout framework, we need to have a base policy for making a decision

at each state-time pair (xk,k). We view this policy as a sequence of feedback functions r =

{/Io, ml, .. ,T}, which at time k maps a state Xk to a control PLk(Xk) E Uk(xk). The cost-to-go

of ir starting from a state-time pair (Xk, k) will be denoted by
T-1(4.2)

Jk(Xk) = E E i (xi, /,i(xi), wi) (4.2)
i=k

The cost-to-go functions Jk satisfy the following recursion of dynamic programming (DP for

short)

Jk(X) = E{g(x,pk(X),w) + Jkl(f(x, k(X),w))}, k = 1,... (4.3)

with the initial condition

JT(X) = 0.

The rollout policy based on 7r is denoted by T = {,t0,il,. .}, and is defined through the

operation

k (x)= arg min E{g(x,u, w) + Jk+l (f(x,u, w))}, V x, k = 0,.... (4.4)
uEU(x)

13

4. Rollout Algorithms for Stochastic Quiz Problems

Thus the rollout policy is a one step-lookahead policy, with the optimal cost-to-go approximated

by the cost-to-go of the base policy. This amounts essentially to a single step of the method of

policy iteration. Indeed using standard policy iteration arguments, one can show that the rollout

policy r is an improved policy over the base policy 7r.

In practice, one typically has a method or algorithm to compute the control pk(x) of the

base policy, given the state x, but the corresponding cost-to-go functions Jk may not be known

in closed form. Then the exact or approximate computation of the rollout control Tk(x) using

Eq. (4.4) becomes an important and nontrivial issue, since we need for all u E U(x) the value of

Qk(x, u) = E{g(x, u, w) + Jk+l (f(x, u, w)) }, (4.5)

known as the Q-factor at time k. Alternatively, for the computation of Tik(x) we need the value

of the cost-to-go

Jk+l (f(X, U, W))

at all possible next states f(x, u, Uw).

In favorable cases, it is possible to compute the cost-to-go Jk(x) of the base policy ir for

any time k and state x. An example is the variant of the quiz problem discussed in Sections 2

and 3, where the base policy is an open-loop policy that consists of the schedule generated by

the index policy or the greedy policy. The corresponding cost-to-go can then be computed using

Eq. (2.1). In general, however. the computation of the cost-to-go of the base policy may be much

more difficult. In particular, when the number of states is very large, the DP recursion (4.3) may

be infeasible.

A conceptually straightforward approach for computing the rollout control at a given state

x and time k is to use Monte Carlo simulation. This was proposed by Tesauro [TeG96] in the

context of backgammon. In particular, for a given backgammon position and a given roll of

the dice, Tesauro suggested looking at all possible ways to play the given roll, and do a Monte-

Carlo evaluation of the expected score starting from the resulting position and using some base

computer program to play out the game (for both sides). To implement this approach in the

context of a general DP problem, we consider all possible controls u E U(x) and we generate

a "large" number of simulated trajectories of the system starting from x, using u as the first

control, and using the policy 7r thereafter. Thus a simulated trajectory has the form

xi+1= f(xi,pi(xi),wi), i = k + 1,..,T- 1,

where the first generated state is

Xk+l = f(x, UWk),

14

4. Rollout Algorithms for Stochastic Quiz Problems

and each of the disturbances Wk,..., wT-. 1 is an independent random sample from the given distri-

bution. The costs corresponding to these trajectories are averaged to compute an approximation

Qk(x,u) to the Q-factor Qk(x, u) of Eq. (4.5). The approximation becomes increasingly accu-

rate as the number of simulated trajectories increases. Once the approximate Q-factor Qk(x, u)

corresponding to each control u E U(x) is computed, we can obtain the (approximate) rollout

control Ak(x) by the minimization

Ik (x) = arg min Qk (x,u).
uEU(x)

Unfortunately, this method suffers from the excessive computational overhead of the Monte

Carlo simulation. We are thus motivated to consider approximations that involve reduced over-

head, and yet capture the essense of the basic rollout idea. We describe next an approximation

approach of this type, and in the following section, we discuss its application to stochastic schedul-

ing problems.

Approximation Using Scenaria

Let us suppose that we approximate the cost-to-go of the base policy ir using certainty equivalence.

In particular, given a state Xk at time k, we fix the remaining disturbances at some nominal values

Wk,Wk,+1, ,WT-1, and we generate the associated state and control trajectory of the system

using the base policy n starting from Xk and time k. The corresponding cost is denoted by Jk (xk),

and is used as an approximation to the true cost Jk(xk). The approximate rollout control based

on ir is given by

! k(x) = arg min E{g(k, u, W) + Jk+(f(Xk, U,))}.

We thus need to run Xr from all possible next states f(xk, u, w) and evaluate the corresponding ap-

proximate cost-to-go Jk+l (f(xk, u, W)) using a single state-control trajectory calculation based on

the nominal values of the uncertainty. The nominal disturbance sequence {Wk, Wk+l,... ,WT-l}

may be state-dependent, and in a practical setting, its choice is intended'to capture "interesting

and representative" aspects of the problem's uncertainty. This is hard to characterize precisely

in general, but it may be meaningful in specific contexts.

The certainty equivalent approximation involves a single nominal trajectory of the remaining

uncertainty. To strengthen this approach, it is natural to consider multiple trajectories of the

uncertainty, called scenaria, and to construct an approximation to the relevant Q-factors that

involves, for every one of the scenaria, the cost of the base policy 7r. Mathematically, we assume

that we have a method, which at each state xk, generates M uncertainty sequences

wm(xk) = (w = 1, ... ,W/ M.

15

4. Rollout Algorithms for Stochastic Quiz Problems

The sequences wm(Xk) are the scenaria at state Xk. The cost Jk(xk) of the base policy is

approximated by
M

Jk(Xk,r) = ro + ~ rmCm(Xk), (4.6)
m=l

where r = (ro, rl, ... , r) is a vector of parameters to be determined, and Cm(Xk) is the cost

corresponding to an occurence of the scenario wm(xk), when starting at state Xk and using

the base policy. We may interpret the parameter rm as an "aggregate weight" that encodes

the aggregate effect on the cost-to-go function of uncertainty sequences that are similar to the

scenario Wm(Xk). We will assume for simplicity that r does not depend on the time index k or

the state xk. However, there are interesting possibilities for allowing a dependence of r on k

and/or Xk, with straightforward changes in the following methodology. Note that, if ro = 0, the

approximation (4.6) may be also be viewed as limited simulation approach, based on just the Al

scenaria Wm(Xk), and using the weights rm as "aggregate probabilities."

Given the parameter vector r, and the corresponding approximation Jk(xk, r) to the cost

of the base policy, as defined above, a corresponding approximate rollout policy is determined by

[k(X) = arg min Qk(x,u,r), (4.7)
uEU(x)

where

Qk(x, u, r) = E{g(x, u, w) + Jk+l(f (x, , W), r) (4.8)

is the approximate Q-factor. We envision here that the parameter r will be determined by an

off-line "training "process and it will then be used for calculating on-line the approximate rollout

policy as above.

One may use standard methods of NDP to train the parameter vector r. In particular, we

may view the approximating function Jk(xk, r) of Eq. (4.6) as a linear feature-based architecture

where the scenaria costs Cm (xk) are the features at state Xk. One possibility is to use a straight-

forward least squares fit of Jk(xk,r) to random sample values of the cost-to-go Jk(xk). These

sample values may be obtained by Monte-Carlo simulation, starting from a representative subset

of states. Another possibility is to use Sutton's TD(A). WVe refer to the books by Bertsekas and

Tsitsiklis [BeT96] and Barto and Sutton [BaS98], and the survey by Barto et. al. [BBS95] for

extensive accounts of training methods and relating techniques.

We finally mention a variation of the scenario-based approximation method, whereby partial

scenaria are used. In particular, only a portion of the future uncertain quantities are fixed at

nominal scenario values, while the remaining uncertain quantities are explicitly viewed as random.

The cost of scenario m at state xk is now a random variable, and the quantity Cm(Xk) used in

Eq. (4.6) should be the expected cost of this random variable. This variation is appropriate and

16

6. Computational Experiments with Stochastic Quiz Problems

makes practical sense as long as the computation of the corresponding expected scenaria costs

Cm (xk) is convenient.

5. ROLLOUT ALGORITHMS FOR STOCHASTIC QUIZ PROBLEMS

We now apply the rollout approach based on certainty equivalence and scenaria to variants of

the quiz problem where there is no optimal policy that is open-loop, such as the situations (e)-(i)

given in Section 1. The state after questions il,... ,ik have been successfully answered, is the

current partial schedule (il,... ,ik), and possibly the list of surviving quiz takers [in the case

where there are multiple quiz takers, as in variant (g) of Section 1]. A (partial) scenario at

this state corresponds to a (deterministic) sequence of realizations of some of the future random

quantities, such as:

(1) The list of turns that will be missed in answer attempts from time k onward; this is for the

case of variant (e) in Section 1.

(2) The list of new questions that will appear and old questions that will disappear from time

k onward; this is for the case of variant (f) in Section 1.

(3) The specific future times at which the surviving quiz takers will drop out of the quiz; this

is for the case of variant (g) in Section 1.

Given any scenario of this type at a given state, and a base heuristic such as an index or

a greedy policy, the corresponding value of the heuristic [cf. the cost Cm(xk) in Eq. (4.6)] can

be easily calculated. The approximate value of the heuristic at the given state can be computed

by weighing the values of all the scenaria using a weight vector r, as in Eq. (4.6). In the case of

a single scenario, a form of certainty equivalence is used, whereby the value of the scenario at a

given state is used as the (approximate) value of the heuristic starting from that state. In the

next section we present computational results for the case of a problem, which is identical to the

one tested in Section 3, but a turn may be missed with a certain probability.

6. COMPUTATIONAL EXPERIMENTS WITH STOCHASTIC QUIZ PROBLEMS

17

6. Computational Experiments with Stochastic Quiz Problems

The class of quiz problems which we used in our computational experiments are similar to the

problems used in Section 3, with the additional feature that an attempt to answer a question

can be blocked with a prespecified probability, corresponding to the case of variant (e) in Section

1. The problems involve 20 questions and 20 time periods, where each question has a prescribed

set of times where it can be attempted. The result of a blocking event is a loss of opportunity

to answer any question at that stage. Unanswered questions can be attempted in future stages,

until a wrong answer is obtained.

In order to evaluate the performance of the base policy for rollout algorithms, we use a

single partial scenario version of the approach described in the preceding section. Assume that

the blocking probability is denoted by Pb. For an lY-stage problem, at any stage k, we compute

an "equivalent" scenario duration Te as the smallest integer greater than or equal to the expected

number of remaining stages where there will be no blocking. The number of remaining stages is

h - k, and the probability of no blocking in each one of them is 1 - Pb, so we have

Te = [(1 - Pb) * (AM - k)l

At a given state and stage k, the expected reward of a base heuristic for the stochastic quiz

problem is approximated, using Eq. (2.1), as the expected reward obtained using the heuristic in

a deterministic quiz problem starting with the given state, with remaining duration Te (rather

than MAl - k).

As in Section 4, we used seven algorithms in our experiments:

(1) The optimal stochastic dynamic programming algorithm.

(2) The greedy heuristic, where questions are ranked in decreasing pivi, and, for each stage k,

the feasible unanswered question with the highest ranking is selected.

(3) The index heuristic, where questions are ranked by decreasing pivi/(1 - pivi), and for each

stage k, the feasible unanswered question with the highest ranking is selected.

(4) The one-step rollout policy based on the greedy heuristic and certainty equivalence policy

evaluation, where, at each stage k, for every feasible unanswered question ik and prior

sequence il,. . . , ik-1, the question is chosen according to the rollout rule (2.4). The function

H uses the greedy heuristic as the base policy, and its performance is approximated by the

performance of an equivalent non-blocking quiz problem as described above.

(5) The one-step rollout policy based on the index heuristic and certainty equivalence policy

evaluation, where the function H in (2.4) uses the index heuristic as the base policy, and is

approximated using the certainty equivalence approach described previously.

18

6. Computational Experiments with Stochastic Quiz Problems

(6) The selective two-step lookahead rollout policy based on the greedy heuristic, with certainty

equivalence policy evaluation corresponding to an equivalent non-blocking quiz problem with

horizon described as above.

(7) The selective two-step lookahead rollout policy based on the index heuristic, with certainty

equivalence policy evaluation corresponding to an equivalent non-blocking quiz problem

with horizon described as above.

The problems selected for evaluation involve 20 possible questions and 20 stages, which are

small enough so that exact solution using dynamic programming is possible. Associated with each

question is a sequence of times, determined randomly for each experiment, when that question

can be attempted. Floating point values were assigned randomly to each question from 1 to 10 in

each problem instance. The probabilities of successfully answering each question were also chosen

randomly, between a specified lower bound and 1.0. In order to evaluate the performance of the

last six algorithms, each suboptimal algorithm was simulated 10,000 times, using independent

event sequences determining which question attempts were blocked and which questions were

answered correctly.

Our experiments focused on the effects of three factors on the relative performance of the

different algorithms:

(a) The lower bound on the probability of successfully answering a question, which varied from

0.2 to 0.8

(b) The average percent of admissible questions at any one stage. which ranged from 10% to

50%.

(c) The probability 1 - Pb that individual question attempts will not be blocked, ranging from

0.3 to 1.0.

As in Section 4, for each experimental condition, we generated 30 independent problems

and solved them with each of the 7 algorithms, and evaluate the corresponding performance using

10,000 Monte Carlo runs. The average performance is reported for each condition.

The first set of experiments fixed the average percentage of admissible questions at a single

stage to 10%, the probability that question attempts will not be blocked to 0.6, and varied the

lower bound on the probability of successfully answering a question across four conditions: 0.2,

0.4, 0.6 and 0.8. Table 3 shows the results of our experiments. The average performance of the

greedy and index heuristics in each condition are expressed in terms of the percentage of the

optimal performance. The results for this experiment are very similar to the results we obtained

19

6. Computational Experiments with Stochastic Quiz Problems

Minimum
Probability of 0.2 0.4 0.6 0.8

Success

Greedy Heuristic 54% 63% 73% 82%

Improvement by
One-step Rollout 31% 26% 17% 6%

Improvement by
Two-step Rollout 33% 26% 17% 6%

Index Heuristic 56% 67% 78% 84%

Improvement by
One-step Rollout 30% 22% 12% 4%

Improvement by
Two-step Rollout 31% 23% 12% 4%

Table 3: Performance of the different algorithms for stochastic quiz problems
as the minimum probability of success of answering a question varies. The av-
erage percentage of admissible questions at a single stage and the probability
that question attempts will not be blocked are fixed at 10%o and 0.6, respectively.
The numbers reported are percentage of the performance of the optimal dynamic
programming solution achieved, averaged across 30 independent problems.

earlier for deterministic quiz problems. Without rollouts, the performance of either heuristic is

poor, whereas the use of one-step rollouts can recover a significant percentage of the optimal

performance. As the risk associated with answering questions decreases, the performance of the

heuristics improves, and the resulting improvement offered by the use of rollouts decreases. On

average, the advantage of using selective two-step rollouts is small, but this advantage can be

large for selected difficult problems.

The second set of experiments fixed the lower bound on the probability of successfully

answering a question to 0.2, and varied the average percent of admissible questions at any one

stage across 3 levels: 10%, 30% and 50%. The results of these experiments are summarized

in Table 4. As in the deterministic quiz problems, the performance of the greedy and index

heuristics improves as the number of admissible questions at any one stage approaches 100%.

The results also show that, even in cases where the heuristics achieve good performance, rollout

strategies offer significant performance gains.

The last set of experiments fixed the lower bound on the probability of successfully answering

20

7. Quiz Problems with Graph Precedence Constraints

Problem Density 0.1 0.3 0.5

Greedy Heuristic 54% 65% 78%

Improvement by
One-step Rollout

Improvement by
Two-step Rollout

Index Heuristic
56% 74% 87%

Improvement by
One-step Rollout 30%

Improvement by
31% 16% 5%

Two-step Rollout

Table 4: Performance of the different algorithms on stochastic quiz problems

as the average number of questions per period increases. The lower bound on the

probability of successfully answering a question and the probability that question

attempts will not be blocked are fixed at 0.2 and 0.6, respectively. The numbers

reported are percentage of the performance of the optimal dynamic programming

solution achieved, averaged across 30 independent problems.

a question to 0.2, focused on varying the probability 1 - Pb that an attempt to answer a question

at any one time is not blocked over 3 conditions: 0.3, 0.6 and 1.0. The last condition corresponds

to the deterministic quiz problems of Section 3. Table 5 contains the results of these experiments.

As the blocking probability increases, there is increased randomness as to whether questions may

be available in the future. This increased randomness leads to improved performance of myopic

strategies, as shown in Table 5. Again, the advantages of the rollout strategies are evident even

in this favorable case.

The results in Tables 3, 4 and 5 provide ample evidence that rollout strategies enhance

substantially the performance of heuristics for stochastic quiz problems, while maintaining poly-

nomial solution complexity.

7. QUIZ PROBLEMS WITH GRAPH PRECEDENCE CONSTRAINTS

The previous set of experiments focused on quiz problems where questions could be attempted

21

7. Quiz Problems with Graph Precedence Constraints

Probability of
Non-Blocking 0.3 0.6 1

Greedy Heuristic 73% 54% 41%

Improvement by
One-step Rollout 17% 31% 34%

Improvement by
Two-step Rollout 18% 33% 40%

Index Heuristic 75% 56% 43%

Improvement by
One-step Rollout 16% 30% 34%

Improvement by
Two-step Rollout 16% 31% 38%

Table 5: Performance of the different algorithms on stochastic quiz problems
as the probability of non-blocking inrieases. The average percentage of admissible
questions at a single stage and the lower bound on the probability of successfully
answering a question are fixed 10% and 0.2, respectively. The numbers reported
are percentage of the performance of the optimal dynamic programming solution
achieved, averaged across 30 independent problems.

during specific time periods, with no constraints imposed on the questions which had been at-

tempted previously. In order to study the effectiveness of rollout strategies for stochastic schedul-

ing problems with precedence constraints, we defined a class of quiz problems where the sequence

of questions to be attempted must form a connected path in a graph. In these problems, a

question cannot be blocked as in the problems of Section 6, so there exists an optimal open-loop

policy.

Let g = (;, A) be a directed graph where the nodes X represent questions in a quiz

problem. Associated with each node n is a value for answering the question correctly, vn, and a

probability of correctly answering the question, p,. Once a question has been answered correctly

at node n, the value of subsequent visits to node n is reduced to zero, and there is no risk of

failure on subsequent visits to node n.

The graph constrains the quiz problem as follows: a question nl may be attempted at stage

k only if there is an arc (n, ni) E A, where n is the question attempted at stage k - 1. The

graph-constrained quiz problem of duration N consists of finding a path no, nl,...,nN in the

graph g such that no is the fixed starting node, (nk, nk+l) E A4 for all k = 0,..., N - 1, and the

path maximizes the expected value of the questions answered correctly before the first erroneous

22

7. Quiz Problems with Graph Precedence Constraints

answer.

The previous heuristic algorithms can be extended to the graph-constrained case. The

greedy heuristic can be described as follows: Given that the current attempted question was n,

determine the feasible questions i such that (n, i) E .A. Select the feasible question which has the

highest expected value for the next attempt pivi. In the graph-constrained problem, it is possible

that there are no feasible questions with positive value, and the path is forced to revisit a question

already answered. If no feasible question has positive value, the greedy heuristic is modified to

select a feasible node which has been visited the least number of times among the feasible nodes

from node n. The index heuristic is defined similarly, except that the index pivi/(l - pivi) is

used to rank the feasible questions.

One-step rollout policies can be based on the greedy or index heuristics, as before. Since

the class of problems is similar to the deterministic quiz problems discussed earlier, it is straight-

forward to determine the expected value associated with a given policy. The rollout policies are

based on exact evaluation of these expected values.

In the experiments below, we compare the following five algorithms:

(1) The optimal dynamic programming algorithm.

(2) The greedy policy.

(3) The index policy.

(4) The one-step rollout policy based on the greedy heuristic.

(5) The one-step rollout policy based on the index heuristic.

The first set of experiments involves problems with 16 questions and 16 stages. This problem

size is small enough to permit exact solution using the dynamic programming algorithm. The

questions were valued from 1 to 10, selected randomly. On average, each node was connected to 5

other nodes, corresponding to 30% density. In these experiments, the probability of successfully

answering a question was randomly selected between a lower bound and 1.0, and the lower bound

was varied from 0.2 to 0.8, thereby varying the average risk associated with a problem.

Table 6 summarizes the results of these experiments. The first observation is that the

performance of the heuristics in graph-constrained problems is relatively superior to the perfor-

mance obtained in the experiments in Section 4. This is due in part to the lack of structure

concerning when questions could be attempted in the problems tested in Section 4. In contrast,

the graph structure in this section provides a time-invariant -set of constraints, leading to better

performance. In spite of this improved performance, the results show that rollout algorithms can

23

7. Quiz Problems with Graph Precedence Constraints

improve the performance of the heuristics, to levels where the achieved performance is roughly

95% of the performance of the optimal dynamic programming algorithm, with a significant re-

duction in computation cost compared with the optimal algorithm.

Minimum
Probability of 0.2 0.4 0.6 0.8

Success

Greedy Heuristic 74% 77% 77% 84%

Improvement by
One-step Rollout 20% 17% 14% 10%

Index Heuristic 84% 87% 89% 90%

Improvement by
One-step Rollout 11% 9% 7% 5%

Table 6: Performance of the different algorithms on graph-constrained quiz
problems as the minimum probability of success of answering a question increases.
The probability of successfully answering a question was randomly selected be-

tween a lower bound and 1.0, and the lower bound was varied from 0.2 to 0.8.
The numbers reported are percentage of the performance of the optimal dynamic
programming solution achieved, averaged across 30 independent problems.

To illustrate the performance of rollout algorithms on larger problems, we ran experiments

on graphs involving 100 questions and 100 stages. For problems of this size, exact solution via

dynamic programming is computationally infeasible. The problems involved graphs with 10%

density and varying risks as before. The results are summarized in Table 7. Since there is no

optimal solution for reference, the results include the average improvement by the rollout strate-

gies over the corresponding heuristics, expressed as a percentage of the performance achieved by

the rollout strategies. The average improvement achieved by the rollout algorithms, as shown in

Table 7, is consistent with the corresponding improvement shown in Table 6. The results indicate

that rollout strategies continue to offer significant performance advantages over the corresponding

heuristics. In contrast with the optimal dynamic programming algorithm, the average compu-

tation time for these problems when using rollout algorithms is a fraction of a second on a Sun

HyperSparc workstation.

24

8. Conclusion

Minimum
Probability of 0.2 0.4 0.6 0.8

Success

Improvement
over Greedy by 28% 29% 31% 24%

One-step
Rollout

Improvement
over Index by 13% 12% 10% 6%

One-step
Rollout

Table 7: Performance improvement achieved by rollout algorithms over the
corresponding heuristics on 100 question graph-constrained quiz problems as the
minimum probability of success of answering a question increases. The numbers
reported are percentage of the performance of the rollout algorithms, averaged
across 30 independent problems.

8. CONCLUSION

In this paper, we studied stochastic scheduling problems arising from variations of a classical

search problem known as a quiz problem. We grouped these variations into two classes: the

deterministic quiz problems, for which optimal strategies can be expressed as deterministic se-

quences, and the stochastic quiz problems, for which optimal strategies are feedback functions

of the problem state. For either of these classes, the computational complexity of obtaining ex-

act optimal solutions grows exponentially with the size of the scheduling problem, limiting the

applicability of exact techniques such as stochastic dynamic programming.

In this paper, we develop near-optimal solution approaches for deterministic and stochastic

quiz problems that are computationally tractable based on the use of rollout algorithms. For

stochastic quiz problems, we introduced a novel approach to policy evaluation, based on the

use of scenaria, which resulted in polynomial complexity algorithms for obtaining near-optimal

strategies. Our computational experiments show that these rollout algorithms can substan-

tially improve the performance of index-based and greedy algorithms for both deterministic and

stochastic quiz problems.

25

References

REFERENCES

[BBS95] Barto, A. G., Bradtke, S. J., and Singh, S. P., 1995. "Learning to Act Using Real-Time

Dynamic Programming," Artificial Intelligence, Vol. 72, pp. 81-138.

[BTW97] Bertsekas, D. P., Tsitsiklis, J. N., ard Wu, C., 1997. "Rollout Algorithms for Combi-

natorial Optimization," Heuristics, Vol. 3, pp. 245-262.

[BaS98] Barto, A. G., and Sutton, R., 1998. Reinforcement Learning, MIT Press, Cambridge,

MA.

[BeT96] Bertsekas, D. P., and Tsitsiklis, J. N., 1996. Neuro-Dynamic Programming, Athena

Scientific, Belmont, MA.

[Ros83] Ross, S. M., 1983. Introduction to Stochastic Dynamic Programming, Academic Press,

N. Y..

[TeG96] Tesauro, G., and Galperin, G. R., 1996. "On-Line Policy Improvement Using Monte Carlo

Search," presented at the 1996 Neural Information Processing Systems Conference, Denver, CO.

[Whi82] Whittle, P., 1982. Optimization over Time, Vol. I, Wiley, N. Y.

[Whi83] Whittle, P., 1983. Optimization over Time, Vol. II, Wiley, N. Y.

26

