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Abstract
A new set of Integral Quadratic Constraints (IQC) is derived for a

class of "rate limiters", modelled as a series connections of saturation-
like memoryless nonlinearities followed by integrators. The result,
when used within the standard IQC framework, is expected to be
widely useful in nonlinear system analysis. For example, it enables
"discrimination" between "saturation-like" and "deadzone-like" non-
linearities and can be used to prove stability of systems with saturation
in cases when replacing the saturation block by another memoryless
nonlinearity with equivalent slope restrictions makes the whole sys-
tem unstable. In particular, it is shown that the L 2 gain of a unity
feedback system with a rate limiter in the forward loop cannot exceed

In addition, a new, more flexible version of the general IQC analysis
framework is presented, which relaxes the homotopy and boundedness
conditions, and is more aligned with the language of the emerging IQC
software.

Key Words: nonlinear systems, saturation, induced gain, integral
quadratic constraints, Hamilton-Jacoby-Bellman inequality.

1 Introduction

The aim of this paper is to improve the existing techniques of stability and
performance analysis of systems with rate limiters, i.e. systems involving sat-
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uration of an input to an integrator (see Figure 1.1). Two general questions

z - 1/-- 1/s8

Figure 1.1: Rate limiter with ideal saturation

are to be answered:

* How to use the weighted small gain theorem and similar arguments in
the case of a system that is not completely L2 stable ?

* How to distinguish between the "saturation" and "deadzone" types of
nonlinearities within the classical absolute stability framework (other-
wise, when using Integral Quadratic Constraints = IQC) ?

The importance of the first question is based on the wide success of
multiplier-based stability and performance analysis ( "mu", scaled small gain,
etc.) These IQC-based techniques provide low complexity/high accuracy re-
sults for systems that are represented as interconnections of L 2 bounded
subsystems. However, such techniques usually experience serious difficulties
when applied to critically stable systems.

On the other hand, the classical absolute stability was always weak at
employing the "fine" differences between nonlinearities. For example, it is
only natural to expect that replacing a saturation block y -X sat(y) by a
deadzone block y -X dzn(y), where

sat(y) = y/ max{1l, IyjI, dzn(y) = y - sat(y), (1.1)

(see Figure 1.2) may change system behavior dramatically. However, it was
not known how to represent the difference between the two nonlinearities
within the multiplier analysis framework. For example, the criterion by
Zames and Falb [4] for memoryless rate-bounded nonlinearities, will not make
a distinction between q(y) = sat(y) and 0(y) = dzn(y), because both have
same derivative range fq(y) E [0, 1].

The main technical issue in this paper is validation of a set of IQC relating
signals z and x in the system

x(t)= j b(z(r))dr, (1.2)
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z zsat(z) _ dzn(),
Figure 1.2: Saturation and deadzone

where X is a "saturation-like" memoryless nonlinearity. Though system (1.2),
because of its instability, does not fit well within the standard IQC analysis
framework, the results originally derived for (1.2) can be easily transformed
into a set of IQC for an "encapsulated" rate limiter system, defined by

x(t) = 0(v(t) - x(t)), w(t) = x(t) + q0(v(t) - x(t)), x(O) = 0 (1.3)

(see Figure 1.3). For example, it will follow from the main result that the
gain "from v to w" in system (1.3) does not exceed vA. For the special
case of the ideal saturation 0(z) = sat(z), we will thus recover the earlier
result [2]. Note that while the gain is exactly X2 for q(y) = sat(y), replacing
0(y) = sat(y) by its linearization at zero, 0(y) = y, yields an identity system
w = v (the induced L2 gain equals 1), while replacing 0(y) = sat(y) by
q(y) = dzn(y) results in an infinite L2 gain.

~~vow x;~~~~~

Figure 1.3: Encapsulation of a rate limiter

The IQC result has broad applications in the analysis of more complex
systems (higher order, other nonlinearities, time-variance, uncertainty) that
include the feedback interconnection (1.3) as a subsystem. Generally, the
results of this paper can be applied to any system of the form

Lv2 l ° (V2) G G21 (s + =)G22/s ()

where q is the same as in (1.3), Ai represents other nonlinearities/uncertainties
in the system, and Gij are stable proper transfer matrices. While system (1.4)
is not given in the standard IQC analysis format (Go is not stable), it can be
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reduced, via a simple feedback loop transformation, to a standard feedback
interconnection of a stable LTI plant with a structured "uncertainty" which
consists of blocks A1 and A\

[ = G A l (VI) ] G= G11 G12 (1.5)
v2 A (v2) G21 G22

where iA is the operator v -+ w defined by (1.3) (see Figure 1.4).

Figure 1.4: Loop transformation for encapsulation

Figure 1.4: Loop transformation for encapsulation

It should be pointed out that the finiteness of the gain in system (1.3)
follows from the more general result [3]. The main effort of this paper is
concentrated on finding minimal gain bounds valid for saturation-like non-
linearities within a given sector.

2 IQC background

Technically speaking, the results of this paper do not rely on the theory of
Integral Quadratic Constraints. However, it appears that they will be best
used within the IQC framework. This section contains a brief presentation
of the basics of IQC, which is somewhat different from the earlier description
in [1]: some of the assumptions are relaxed, and a different general setup is
used to align the theory with the emerging IQC software.

2.1 General setup

Integral Quadratic Constraints provide a simple, but often efficient way of
analysing stability and performance of feedback interconnections of the form
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shown on Figure 2.5, where f is the exogeneous disturbance, e is the "in-

Figure 2.5: IQC analysis setup

terconnection noise", M and G are known stable LTI systems, A is the
block representing nonlinear/uncertain/time-varying part of the system. The
analysis is based on describing A as a relation between v and z, using time-
invariant integral quadratic inequalities a(v, z) > 0. Such inequalities, which
only have to be satisfied under the assumption that signals f, w, z have fi-
nite energy, are called Integral Quadratic Constraints (IQC). As a rule, IQC
for A are produced by forming any convex combination of "standard" IQC
derived for "elementary" subsystems of A. For each IQC describing A, a
simple frequency domain condition (which can also be written as a Linear
Matrix Inequality (LMI) with respect to the "free" coefficients of the IQC)
guarantees stability of the feedback interconnection. Simultaneously with
stability, performance specifications represented in a quadratic inequality
form uo(w, f) > 0 can be analyzed, subject to e = 0. Thus, stability and
performance can be established by seacrhing through the set of all available
IQC, trying to find one that proves stability. The search is equaivalent to
solving a system of LMI.

2.2 Notation and Terminology

Signals are elements of Lne - the set of locally square integrable functions
x: [0, oo) -+ Rn. The energy of a signal x E Ln is defined by

x2 = Ix(t) 2dt. (2.6)

Ln denotes the set of signals x C L' of finite energy. For x, y C Ln, the
scalar product is defined by

(, y) = x(t)'y(t)dt. (2.7)

5



When signal dimensions are obvious or irrelevant, the dimention index in L2e
and L2 will be dropped. The difference between spaces of pairs of vectors
and spaces of concatenated vectors, such as the difference between L'e x L'2
and Lr +m will be ignored. Two important operations on the signal spaces
are past projections

v(t) for t < T,(PTv)(t) t) for t < T. (2.8)

and causal LTI transformations G : w -+ v, defined by

v -- (Cx + Dw), i = Ax + Bw, x(0) - 0, (2.9)

where A, B, C, D are given matrices of appropriate size. (When q > 0, G
could be defined on a subset Dom(G) of Lne only.) The LTI transformation
is called bounded, or stable if A is a Hurwitz matrix and q = 0 (and hence
Dom(G) = Lne. For convenience, G will denote both the LTI operator and
its transfer matrix

G(s) = sq(D + C(sI - A)- 1 B). (2.10)

By a time-invariant quadratic form we mean any function a : Q -4 R,
(Q C Ln is called the domain Q = Dom(o) of a), defined by

a(g) = aH(g) = (f, Hf), (2.11)

where H is an LTI transformation defined on Dom(o). When H is bounded
and Dom(a) = L'2, a is called a bounded time-invariant quadratic form.

A system is an operator S : L -+ L2. Multi-valued operators are
allowed, (they are useful in describing systems with friction, hysteresis, etc.),
in which case eqations such as w = S(v) are understood as w e S(v). The
non-commutative distance d(Q, S) between operators Q and S shows how
well the output of S can be approximated by the output of Q. It is defined
by

d(Q, S) = inf{r: inf IIPT(s - q)l < rllPTvll V v E Le, s E S(v), T > 0}.
qeQ(v)

(2.12)
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In particular, the induced L 2 gain IISII of system S is defined by

ISII = d(O, S) = sup 11PTw. (2.13)
PTvWEoES(v) IIPTvll '

A homotopy of systems is a family S = ST depending on a parameter T E
[0, 1]. A homotopy ST is called almost continuous if

1. for any T E [0, 1), 6 > 0 there exists f E (T, 1) such that d(S,, S,) < 6
for any v E I[, u];

2. for any s E ST(v), T > 0, T(i) C [0, 1] such that T(i) - T- E [0, 1] there
exist si E ST(i)(v) such that IIPT(Si - s)lI - 0.

System S is called stable if IISfl < 0o, and causal if the past of the output
does not depend on the future of the input, i.e. when PTSPT = PTS, which
means that PTW E PTS(PTV) iff PTW E PTS(v) for any w, v.

2.3 Feedback: well-posedness, stability, performance

Let G: L2 -4 L'e and M: Lk -4 L- be stable LTI systems. Let A : Le -4
L2 be a causal system. By a feedback interconnection .F[M, G, A] we mean
the system

(e, f) -+ w = F[M, G, ] (e, f)
defined by the equations

w = A(Gw + Mf) + e.. (2.14)

Here e E Lm plays the role of "interconnection noise" (see Figure 2.5), and
is taken into account in stability calculations only. The signal f, used to
define performance of the closed-loop system, plays the role of an "external
disturbance". Interconnection .F[M, G, A] is well-posed if the operator is
well-defined (i.e. a solution w of (2.14) exists for any pair (e, f)) and causal.
The interconnection is stable if system YF[M, G, A] is well-posed and stable.

Well-posedness of a feedback interconnection is usually equivalent to ex-
istence and continuability of solutions of the underlying equations. Stability
means that solution of the feedback equations is not large when the intercon-
nection noise and the external disturbance are small. Let a0o : Lm x L k - R
be a time-invariant quadratic form such that

ao(w, 0) > 0 V w C L. (2.15)
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A stable feedback interconnection F[M, G, A] is said to satisfy the perfor-
mance criterion 0.o > 0 if

o.(w, f)> 0 V w = A(Gw + Mf), f E L . (2.16)

As a rule, (2.16) is equivalent to some "induced L 2 gain bound" constraint.

2.4 System analysis using IQC

Let A : L - L L2m and a : Dom(o) -4 R be a system and a time-invariant
quadratic form. We say that the Integral Constraint a > 0 is valid for A if

(o(v, A(v)) > 0 V (v, A(v)) G Dom(u). (2.17)

Theorem 2.1 Let G : L2 Le, M: Lke - L n , a : Dom(o) -+ R, o-o
L2 x Lk -+ R and A = A: Le -4 L2 be two stable LTI transformations,
a time-invariant quadratic functional, a bounded time-invariant quadratic
functional, and a homotopy of systems, such that

1. feedback interconnection .F[M, G, AT] is stable for T = 0 and well-posed
for all T C [0, 1];

2. systems
A ' (w, f) -4 A,(Gw + M f)

are bounded and form an almost continuous homotopy;

3. time invariant quadratic form

&(z, w, f) = c(Gw + Mf, z)

is bounded, and the IQC o > 0 is valid for A for all CE [0, 1];

4. 0o : L2 x L-k - R is a bounded time-invariant quadratic form such
that uo(w, 0) < 0 for all w C LT.

Then .F[M, G, Al] is stable and satisfies the performance criterion Uo > 0 if
there exists e > 0 such that

uo(w, f) - u(Gw + Mf, w) > e6IwII 2 V w C Lm, f C L~. (2.18)
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Theorem 2.1 is proven in the Appendix.
As a rule, Theorem 2.1 is applied in the situation when w = A(v)

is a block-diagonal composition A = diag(Ai) of several nonlinear/time-
varying/uncertain blocks wi = Ai(vi), where wi = c'wW, vi = Cdv are compo-
nents of w and v respectively. The set of IQC describing A (generally, the
more IQC the better) is formed as the set of all convex combinations of IQC
describing the individual blocks

i : 'ij (Vi, Ai(vi)) > 0,

where the second index j may be ranging over an infinite set. Thus, the
general form of a is

(v,w) = Exij ij(cy'v,c W), Xij > 0.
i,j

A typical performance constraint is the induced L 2 norm bound in the chan-
nel f - zo0, where z0o = Gow + Mof is a stable LTI transformation of w, f.
Thus ao is defined as

a0 = 211lf112 _ IIGow + Mof 12,

and the combined stability/performance condition becomes the existence of
xij > 0 such that

x2 lf 112 - IIGow + Mof 2 - Z xijaij(c cW) > EIlw11 2 , Xij > 0.
i,j

In most cases, using the Kalman-Popov-Yakubovich lemma, this can be re-
written as a finite system of Linear Matrix Inequalities, and then solved
efficiently with simultaneous minimization of induced gain bound 7y.

3 Main Result

The results of this section hold for a large class of semiconcave functions
0. The definition of a semiconcave function summarizes those features of
the ideal saturation nonlinearity which are essential in proving the vr2-gain
result and its generalizations.
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Definition A monotonically non-decreasing odd function q : R -+ R is
called semiconcave if q(z) = q(z)/z is monotonically non-increasing over the
interval z C (0, oo).The set of all semiconcave functions will be denoted by
SC.

It is easy to see that a semiconcave function q = 0(z) is differentiable at
z = 0 iff q(z)/z is bounded on the interval (0, oo), in which case

3(0) = sup q(z) (3.19)
z>0 Z

For convenience, we will consider (3.19) as a definition of ¢(0) in the case
when the right side in (3.19) is infinity. Note also that q(0) = 0 would imply
0 - 0, in which case system (1.2) is trivial.

Theorem 3.2 Let q be a semiconcave function with ¢(0) = K, 0 < K < 0o,

b C R. The inequality

{21z + bx 2 - Z 2 - z-(z)/K} dt> 0 (3.20)

holds for any x, z E L2 satisfying relation (1.2). Moreover, if b > 0 then

{21z + bx 2 -zl 2 - z(z)/K} dt> 0 (3.21)

for all T > O0 z, x E L 2e satisfying relation (1.2).

A proof of Theorem 3.2 is given in the Appendix.
In a certain sense, it can be shown that Theorem 3.2 completes a descrip-

tion of the "extremal points" of the convex cone of all IQC of the form

|j 5(x(t), z(t), q(z(t)))dt > 0, (3.22)

where

-X /-X [11 E 12 E13
(X,z,u))= X E XJ E2 , 22 E 23 , 33 <0, (3.23)

u u E_13 E23 E33

which are satisfied for any x, z C L 2 satisfying relation (1.2). One corollary of
Theorem 3.2 is the following "complete" description of all memoryless IQC
relating z, x and 0(z).
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Theorem 3.3 Let a be the quadratic form in (3.23), K C (0, oc). The
following conditions are equivalent.

1. Inequality (3.22) holds for any x, z E L2 satisfying relation (1.2) and
for any semiconcave 0 such that b(0) < K.

2. The inequalities

[ 1l 2 2Z2 2 ] > 0 Z22 + 2KE2 3 + K 2
33 > 0 (3.24)

hold.

A proof of Theorem 3.3 is given in the Appendix.
Inequality (3.20) can be considered as a family of IQC describing the rela-

tion between z and q(z). Since the corresponding CL is defined by an unstable
system L (contains a pure integrator), it is difficult to use (3.20) directly in
IQC analysis of systems involving semiconcave nonlinearities. To resolve this
problem, (3.20) is re-written as a set of IQC describing the "encapsulated"
rate limiter from Figure 3.6.

v +[ w

Figure 3.6: Encapsulation of a rate limiter

The following result is a direct implication of Theorems 3.2 and 3.3.

Theorem 3.4 Let 0 be a semiconcave function with q(0) = K, 0 < K < oo,
b E R, a > O. Define Ai as a system v -+ w, where

= q(v - x), w = ax + q(v - x), x(O) = 0. (3.25)

The system is stable, and the inequality

/ (x, v- x, w - ax) > O (3.26)

holds for any v E L2 for any & defined by (3.23),(3.24). In particular, the
induced L 2 gain in the channel v -4 w does not exceed max{K, v/a).



Proof of Theorem 3.4. For b = 1, z = v - x, inequality (3.21) implies
IIPT(v - x) _ < 21PTV . Hence system A\ is stable. In particular, x, w C L2

whenever v E L2. Now, proving an upper bound IlAllI < 7 is equivalent to
proving the IQC of the form

0 < _y2Hv112 _- flfW2 -= _ 2 lX + (v - X)112 - flax + (w - ax) 112,

which, according to Theorem 3.4, refers us to checking conditions (3.24) for

2- a 2 72 -_a
_(X, Z, U) = _2lX + Z12 _ lax -+ U2, i.e = Iy2 / 2 O

-a 0 -1

The first inequality in (3.24) yields 72 > 2a2 , while the second yields 72 > K 2,
which results in the upper bound y = max{K, v/a}. ·

Note that x = GaW where Ga(s) = 1/(s + a), i.e. (3.26) are true IQC
relating v and w. If 0 is not a semiconcave function, these IQC are generally
not valid. For example, it is easy to see that replacing 0 by dzn yields an
unstable system A\a (infinite L 2 gain) for any a -: 0.

There are other IQC known to describe the relation between z and q(z).
The classical criterion by Zames and Falb [4] states that

(Kz - q(z), Hiz) > 0, (3.27)

(H 2(Kz - q$(z)), z) > 0, (3.28)

where H 1, H2 are LTI systems such that

Hi(s) = Di + Ci(sI - Ai)-'Bi, Di > j CieAitBi dt, (3.29)

and X C [0, K]. These IQC can be re-written as input/output relations for
w = Alv:

(K(v - x) - (w - ax), HI(v - x)) > 0, (3.30)

(H 2(K(v - x) - (w - ax)),v - x) > 0, (3.31)

where, as before, x = GaW.
Similarly, the Popov IQC (z, q(z)) > 0 is valid, and can be used in the

analysis, whenever z is an output of a strictly proper subsystem. In terms of
the encapsulated rate limiter block w = AO , it can be re-written as the IQC

(v - w + ax, w - ax) > O, (3.32)

which can be used when z is an output of a strictly proper subsystem.
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4 The homotopy

An important condition required in applications of IQC is existence of a
homotopy A = A,, T E [0, 1], which "connects" a given operator A = Al to
a simpler operator A = A0 (see Theorem 2.1). Existence of the homotopy
is usually obvious in the case when the quadratic form u(v, w) defining the
IQC uo(v, A(v)) > 0 is concave with respect to w and convex with respect to
v, i.e. when o(0, w) < 0 and u(v, O0) > 0 for all w, v. Then one can simply
set A, = -A. While the "convexity" condition is usually satisfied (it simply
means that the IQC under consideration will be valid for A = 0), the other
(concavity) condition is sometimes not valid. In particular, this is the case
in (3.26) and (3.30) for some valid choices of b, a, Hi.

This section is concerned with providing the required homotopy, that will
work for any choice of b, a, Hi. The most natural choice appears to be the
homotopy between A1 = Aa and the LTI system A0 = K(s + a)/(s + K),
where AT = A a~[],

$[T](Z) = T-(z) + (1 - T)Kz. (4.33)

Since [-T] is quasiconcave and satisfies the rate bound 0 _< q[] < K for all
'r E [0, 1], this is a valid homotopy preserving all IQC.

Theorem 4.5 The homotopy between A 1 = A, and the LTI system A0 =

K(s + a)/(s + K), where A, = A[T], is almost continuous.

Theorem 4.5 is proven in the Appendix. Note that it is still not known
to the author whether the homotopy is strictly continuous, i.e. whether
IlAT - A,ll - o0 as A - T -+ 0 (the continuity at T = 1 is the only real
concern here, the continuity at all other points being trivial). Luckily, the
new formulation of the general IQC stability theorem allows to use the notion
of "almost continmuity" instead of the strong continuity.

5 Appendix

In the appendix, formal proofs of the major statements of this paper are
given.
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5.1 Proof of Theorem 2.1

The proof is similar to that given in [1], except for the modifications needed
to accomodate the relaxed conditions of continuity of the homotopy The IQC
assumption 3 and condition (2.18) are used to show that there is a constant
C > 0, independent of T E [0, 1], such that

IlPTwII2 < C(IIPTeI 2 + [IPTfII2 |) V T > 0 (5.34)

for any solution of (2.14) and for any r C [0, 1] such that the interconnection
Y[M, G, At] is stable.

Then, part 2 of the definition of almost continuity (weak lower semicon-
tinuity), together with the assumption of stability of .F[M, G, Ao], is used
to show that there exists a maximal T = -, E [0, 1] such that .F[M, , AT]

is stable, and part 1 of the same definition (strong upper semicontinuity) is
used to show that this maximal T, must be equal to 1.

As soon as stability of .T[M, G, AT] is established, i.e. w is guaranteed
to be square integrable whenever f and e are, the performance inequality is
obvious: for

w = A(Gw + Mf) = A(v),

we have
uo(w, f) > a(Gw + Mf, w) = a(v, A(v)) > 0.

5.1.1 Uniform gain bound

Since u(Gw + Mf, z) is a bounded time-invariant quadratic form, for any
El > 0 there exists C1 > 0 such that

la(Gw + Mf, z + e) - o(Gw + Mf, z) I < l ilw112 + Cl(lle112 + lf 112).

Similarly, since ao(w, 0) > 0, for any E2 > 0 there exists C2 > 0 such that

0co(w, f) < E2 112 + C211f 112

Hence, by choosing e1 + e2 < c, for any w, f, e c L 2 satisfying (2.14) we have
(with z = w - e):

0 < a(Gw+Mf,w-e)

< cr(Gw + Mf, w) + qlllwI1 2 + Cl(Ille12 + lf 112 )

< ao(W, f) - Ew112 + EillI112 + C(lHe|i2 + (fIl 2 )

• -(6 - 61 - 62)11W112 + (Co + C2)(llel 2 + lf 112).
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Hence

ffwll2 < C(llell2 + llff 2) (5.35)

for any solution of (2.14) of finite energy. Now, if T E [0, 1] is such that
YT[M, G, AT] is stable, w E L' whenever e C L' and f C L'. Moreover, by
the well-posedness, the map (e, f) -+ w is causal, i.e. replacing e by PTe and
f by PTf does not change PTW. hence (5.35) implies

I PTF[M, G, A,] (e, f) l = I PT:[M, G, AT] (PTe, PTf) f
_< fIf[M, G, A,] (PTe, PTf)ll

< C(fPTrell2 + lipTf l 2.

5.1.2 Stability points T form a closed subset of [0, 1]

Let S be the set of r C [0, 1] such that TF[M, G, AT] is stable.

Lemma 5.1 S is a closed subset of [0, 1].

Proof Let T(i) E S, T(i) -+ r as i -- oo. Our objective is to show that
- E S. Let w = Y[M, G, AT](e, f), i.e.

z = w - e = A,(Gw + Mf).

By the assumption, for any T > 0 there exists a sequence

zi: Zi = AT(i)(Gw + Mf), IPT(Zi - z)ll -+ 0.

Since r(i) E S and

w = A,(i)(Gw + Mf) + (e + z - zi),

the inequality

fIPTWIf2 < C(ffPTf 12 + fIPT(e + z - zi)112 )

holds, where C does not depend on i. As i -+ oo, this yields stability of
Fi[M, G, AT]. ·
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5.1.3 Stability preserved under small increments of r

The following statement, similar to Lemma 5.1, is based on the second part
of the definition of almost continuity.

Lemma 5.2 If r E S and T < 1 then v E S for some v > T.

Proof By the definition of almost continuity, for any 6 > 0 there exists
E (-, 1] such that for any T > O, e C L2, f E L2 e, and for any ZT E

A/\(Gw + Mf) there exists z, E A(Gw + Mf) such that

IIPT(ZT - Z)llI < •6(PTWI 2 + IIPTfI 2).

Choose 6 = (4C)-1, where C is the constant in (5.34). Then for any w =
Fr[M, G, A/](e, f) we have

w = A\(Gw+Mf)+e

= Z + e

=Z + (e + z - ZT)

- A(Gw + Mf) + (e + z, - zT).

Hence, by stability of .F[M, G, A,],

IlPTwII2 = C(IIPTfl 2 + IlPT(e + z - z,)112)
< C(lPTf112 + 2liPTe|l2 + 211PT(z - T) 112)
• c(||P f12 + 2IPTe||2 + 26(I1PTWl2 + lPTf 112))

< 26CPw 2Pe 2 + ( + 2CC) PTf l 2

< 0.5*PTwl 2 + @c IPTe 2l + (C + 0.5) PTf 12.

Hence

|IPTw[2 < (4C + 1)(lPTeI2 +± IPTf 2),
which proves stability of .F[M, G, A/]. ,

5.2 Proof of Theorem 3.2

The IQC (3.20) to be proven follow from existence of a solution V: R - R
of the Bellman inequality

21w + bx12 - wl12 - wq(w)/K > V(x)q(w). (5.36)
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Moreover, (3.21) follows from the fact that, for b > O, V can be chosen in
such a way that V(x) > 0 for any x.

In order to prove existence of V from (5.36), we notice that it is equivalent
to

V12 -_2lz _ V12 v 21z2 + U12
-_U12 U

V(x) up + inf - ] (5.37)
v>O OM) u>o O K '

where z = bx. The reduction from (5.36) to (5.37) is done by substituting
w = u > 0 and w = -v < 0 into (5.36). A major part of the proof
concentrates on showing that the interval in (5.37) is not empty. Then V(x)
can be defined by its derivative (which, subject to (5.37), can be chosen
arbitrarily), and by the initial condition V(0) = 0.

Finally, (3.20) can be obtained by integrating (5.36) with x = x(t), w =
w(t), from t = 0 to t = oo (in the case when x, w C L2), or, with the use of
the inequality V > 0, from t = 0 to t = T (in the case when b > 0).

5.2.1 Continuity of the upper limit

For b > O, u > 0 let

21u + z12 - 1U12 U (U 1 U Z2

q(u, z) = () - = u (u - + 4-)Z + 2¢).

(5.38)

Since q(u) < Ku, we conclude that q > 0. Define

p(z) = inf q(u, z). (5.39)
u>0

Lemma 5.3 p: [0, oo) -+ [0, oo) is continuous.

Proof Since
0< dq(u,z) < 2q

- dz - z

p is locally Lipschitz on (0, oo). Also, since

q(z, z) < 8z 2/q(z) - 0 as z -+ 0,

we conclude that p(z) -+ 0 as z -+ 0.

17



5.2.2 The main inequality

We extend the definition of p by setting

p(-z) = -p(z) for z > 0.

The following is the main technical detail of the paper.

Lemma 5.4 The inequality

21w ±- z2 - w12 - wo(w)/K > p(z)q(w) (5.40)

holds for any z, w E R.

Proof Since both p and 0 are odd functions, it is sufficient to consider the
case when z > 0. Consider the following possible locations of w.

When w = 0, the inequality is obvious.
When w > 0, (5.40) follows directly from the definition of p in (5.38),(5.39).
When w = -v < 0, (5.40) is equivalent to

21z + U12 u 1 2 U V12 - 21 z- V12 V 
$(u) K> (v)>±+ Vuv>0, z>0. (5.41)O(U) K - () K

An equivalent form of (5.41) is

2Z2 -- U2 2z22 -+ V2 u+V (V 

i(+) O(v) K > () q(v)q(u)) V,v > o z > o.
(5.42)

Since 0(u) < Ku and 0(v) < Kv, the left side of (5.42) is always non-
negative. Hence, since v/0(v) is monotonically non-decreasing, (5.42) holds
for v < u.

Now let v > u > 0. We need to consider two different situations:
Case 1: q(v) < Ku. Then, since 0(u) _< (v),

21z + U12 - JU12 U Iv12 - 21z - vl 2 v>
q(u) K M(v) K

18



21z + 12- _ U12 U V12 - 21z- 12

- (v) K (v) K
4z 2 + 4z(u - v) + v 2 + U2 U+ v

M(v) K
_ 2z - v12 + 4zu +u 2 u+ v

0(v) K
12z-vl 2 +4zu+u 2 u+v

-Ku K
]2z - v12 + 2(2z - v)u + vu

Ku
12z - v12 + 2(2z - v)u + u 2

Ku
2z - v +U 2 > 0.

Ku

Case 2: q(v) > Ku. Then, since q(u) < Ku,

2lz+U12 -_ U12 U v12 - 2z-vl2 v

O(u) K 0(v) K-

> 21z+U12 - U12 U Iv12 -2lz-vI212 V

Ku K O(v) K
2z2 4Z 21Z - V12 _ 1V2 V

Ku K (Mv) K
2z2 4z 21z-vl12- Iv2 v

0 (v) K + O(v K

12z-v 2 4z v
O(v) K K

2> v12 + 4z v
-Kv K K

4z 2

- > 0.
Ky 
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5.2.3 Finishing remarks

To finish the proof of Theorem 3.2, define

bx
V(x)= p(z)dz.

By Lemma 5.3, V is continuously differentiable. By Lemma 5.4, V satisfies
the Bellman inequality (5.36). Finally, since p > 0, V > 0 when b > 0.

5.3 Proof of Theorem 3.3

To prove that 1 implies 2, we essentially have to show the necessity of the
resulting HJB inequality (5.36). To show that 2 implies 1, we represent a as a
convex combination of quadratic forms for which inequality (3.22) is known to
be satisfied. 113 12/03 iam@ariel.harvard iiMuz, mne nado nachinat' delat'
priglashenie, i, naskol'ko ja ponim.

5.3.1 Necessity

The objective of this subsection is to prove that the inequality

0(u)-l&u(x, u, ()) + q(v)-1 (x, -v, -q(v)) > 0 (5.43)

must be satisfied for all u, v > 0 and for all x E R. Assume that, to the
contrary,

O(uo)-<'(xO, uo, q(uO)) + q(vo)->1 (xo, -vo, -q(vo)) < O

for some q, xo, uo, vo. Then there exists e > 0 such that

q(u0)-lO(zl, Uo, 0(Uo)) + q(VO)-1 U(X2, -Vo, -0(V 0 )) < --e (5.44)

for all x1 ,x 2 such that xl - xoI < e and Ix2 - xo < e. Let us construct
functions x, z in (1.2) such that the integral (3.22) is negative. Let N be a
large integer. Define z(t) as follows:

sgn(xo) for t E [0, xol1/q(1)],
-sgn(xo) for t E [ xol/q(l) + 2 * N, 2 * lxol/O(1) + 2 * N],

z(t) = U for t C [Ixol/0(1) + (2k - 2)/N, Ixol/0(l) + (2k - 1)/N], k = 1, 2, ..., N 2 ,1 -Vo for t E [[xo1/q(1) + (2k - 1)/N, xofl/q(l) + 2k/N], k = 1, 2,..., N 2 ,
0 otherwise.
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It is easy to see that the resulting x(t) first raises to xo, then "oscillates"
within a small neighborhood of xO N 2 times, and then returns back to zero.
The part of the integral in (3.22) that corresponds to the first and the last
time segments does not depend on N, while the part that corresponds to
"oscillations around x0O is less than -Ne, due to inequality (5.44), which
contradicts to the assumption.

Now, using (5.43), it is easy to derive (3.24). First, substituting

vo = 1/K, 0(vo) = 1, xo = Rx, uo = Ru,

where R -+ oc, yields

(X, U, O0) + ±(X, 0, 0) > 0,

which is equivalent to the first inequality in (3.24). Similarly, substituting

xO = 0 , = = 1 (u) = (v) = K

yields
a(O, 1, K) > 0,

which is equivalent to the second inequality in (3.24).

5.3.2 Sufficiency

Represent a in the form

-(X, Z, U) = 0o(X, , Z) + C1 (X, U) + ± 2(Z, U),

where
ao(X, Z, u) = Ell x 2 + 2E 12 xZ + 2E 22 Z2 + 2E 22zU,

&1 (x, u) = 2E 13 xU,

&2(z, u) = -Z 2 2Z
2 + 2(Z 2 3 - Z 22/K)zu + 3 3 U2 .

Note that, because of the first inequality in (3.24), a0 is a convex combination
of quadratic forms

ab(x, z, u) = 2(z + bx)2 _ Z2 -_ u/K,

for which the non-negativity of the integral in (3.22) is proven by Theo-
rem 3.2. The integral of 6U1 is zero because u = dx/dt. Finally, because of
the second inequality in (3.24),

&2 (z, u) > 0 for any u = kz, kc [O,K].

This completes the proof of sufficiency.
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5.4 Proof of Theorem 4.5

For v E L 2, 0 < ' 0 < 71 < 1 let

Wi = al(V) = aZi + Tio(v - xi) + (1 - Ti)K(v - xi),

where i = 0, 1,

i = Tio(V - xi) + (1 - i)K( - xi), Xi(O) = 0.

Since
O(v - x 1 ) - O(v - x 2) = q(t)(x2 - x 1 ), q(t) E [0, K],

for
y=Xl -X 2 , u = (v- 2)-K(v-xi)

we have

y (t) =-(1 - i + q(t))y(t) + (T1 - To)u(t). (5.45)

Since IlA [v][I is bounded for any v E [0, 1], there exists a constant C such
that IIPTUII < CIIPTVII for all T > 0. Our goal is to show that the solution
y of (5.45) cannot be large when 71 - T0 is small.

Indeed, when T1 < 1, multiplying both sides of (5.45) by y(t) yields

'y < -(1 - T)y 2 + (T1 - To)Uy.

Since y(O) = 0, and py = 0.5(d/dt)y2 , integration of the last inequality over
the time interval [0, T] yields

(1 - T1)lPTy112 < (71 - To)(U, y),

which in turn implies that

lIPTYII < (1 - T1) -(T - To)CllPTVlI. (5.46)

Similarly, when T1 = 1, multiplying both sides of (5.45) by the sign of
y(t) yields

dlylldt < (7Ti - To) lU,

which implies

ly(T)l < (Ti- o) lu(t)ldt

< (T1 - O) v T) tIIPTU II.
The last inequality, together with (5.46), imply almost continuity of A'[T].
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