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ABSTRACT

A universal decoder for a family of channels is a decoder that can be
designed without prior knowledge of the particular channel over which
transmission will be carried out, and it yet attains the same random
coding error exponent as the optimal decoder tuned to the channel in
use. In this paper we study Ziv's decoding algorithm, which is based
on Lempel-Ziv incremental string parsing, and demonstrate that while
it was originally proposed as a universal decoder for the family of finite
state channels with deterministic (but unknown) transitions, it is in
fact universal for the much broader class of all finite state channels.

The complexity of this decoder is substantially smaller than that
of the universal decoder recently proposed by Feder and Lapidoth.
However, the universality established is somewhat weaker than that es-
tablished by Feder and Lapidoth as it only holds if the set from which
the codewords of the random codebook are drawn is permutation in-
variant, as is the case if the codewords are chosen independently and
uniformly over the set of sequences of a given type.
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1 INTRODUCTION

This paper deals with the design of a receiver for coded communication over
an unknown channel. The channel is assumed to belong to the family of
finite state channels over finite input and output alphabets X and y, but
is otherwise unknown. We do not even assume that the number of states is
known to the receiver designer, let alone the probability law governing the
channel behavior. The code being used is, however, known to the receiver
designer, and the receiver is expected to decode the received sequences with
a low probability of error. Had the channel been known to the receiver it
could have employed the maximum-likelihood decoding rule, which minimizes
the probability of error. This rule, however cannot be implemented in our
scenario because it depends on the channel law, which is unknown at the
receiver. In this paper we study a decoding rule that does not require knowing
the channel law, and can yet perform asymptotically as well as the maximum-
likelihood rule for many good codes.

The decoder we study was first proposed by Ziv in [1] for decoding finite-
state channels with deterministic (but unknown) state transitions, i.e., finite
state channels where the next state is a deterministic function of the present
state, input, and output. Ziv showed that if Pod,ML(error) denotes the average
(over messages and codebooks) probability of error incurred over the chan-
nel 0 d when maximum-likelihood decoding is performed to decode a rate-R
blocklength-n codebook whose codewords are drawn independently and uni-
formly over a permutation invariant set Bn C Xn, and if Pod,z(error) denotes
the analogous expression when Ziv's decoder is used instead of the optimal
maximum-likelihood rule, then

1 _0d (error)
lim sup 1 log P0d,z(error) 0,

n-+oo Od n Pod,ML (error)

where the supremum is over all finite-state channels with deterministic trans-
itions defined over common finite input, output, and state alphabets X, y, S
respectively. In the terminology of [2] this is referred to as "strong random
coding universality". (The adjective "strong" reflects that the convergence of
the performance of the sub-optimal decoder to that of the maximum-likelihood
decoder is uniform over the family.)

In this paper we extend Ziv's results in two ways. First, and most import-
antly, we show that if the sets Bn are permutation invariant then his decoder
is "strong random coding universal" for the family of all finite state channels,
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and not only for the set of finite state channels with deterministic transitions.
Thus

lim sup P,z(error) Olim sup 0,
n-+oo 0 Pf,ML (error)

where the supremum is over all finite-state channels defined over common
finite input, output, and state alphabets X, y, S. Secondly, we establish that
there exists a sequence of rate-R blocklength-n codebooks Cn C Bn such that

1 Po,z(errortCn)
lim sup 1 log (e = 0,rr

n-too o n PO,ML (error)

where Po,z(errorlCn) denotes the average (over messages) probability of error
incurred by Ziv's decoder in decoding the codebook C, over the channel 0.
This form of universality is referred to in [2] as "strong deterministic coding
universality".

It should be noted that prior to Ziv's work, CsiszAr and K6rner had studied
the problem of decoding an unknown memoryless channel in [3] and demon-
strated that a different decoder, the Maximum empirical Mutual Information
(MMI) decoder, is "strong deterministic coding universal" in the sense that if
POm,ML(error) denotes the average (over messages and codebooks) probability
of error over the memoryless channel 0 m incurred by the maximum-likelihood
decoder in decoding a random codebook whose codewords are drawn inde-
pendently and uniformly over a type set then there exists a sequence of rate-R
blocklength-n codebooks C, for which

1 POm,MMI(errorlCn)lim sup- log = 0,
n-ooo m n P.m,ML(error)

where POm,MMI(errorlCn) is the average probability of error incurred by the
MMI decoder in decoding the codebook Cn over the memoryless channel m,,

and the supremum is over all memoryless channel defined over common finite
input and output alphabets X, y.

For the class of memoryless channels the MMI decoder is equivalent to the
generalized likelihood ratio test that given a codebook C, a received sequence
y, and a family of channels F declares that the transmitted codeword is x C C
only if

maxpo(ylx) > maxp¢(y x'), Vx' E C.
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The universality of the MMI decoder for the family of memoryless channels
might lead one to conjecture that the generalized likelihood ratio test is ca-
nonical in the sense that it is universal for any family of channels for which
a universal decoder exist. As we shall see in Section 2, this is false.

In [2] Feder and Lapidoth introduced yet another universal decoding rule,
one that is based on the idea of "merging decoders" and demonstrated the
universality of this decoder for fairly general families of channels, including
the family of finite-state channels. The results reported there are somewhat
more general then the results reported in this paper, as the universality in
[2] does not require that the sets Bn from which the codewords are drawn
be permutation invariant. However, Ziv's LZ-based universal decoder has
significant advantages over the decoder proposed in [2] in terms of complexity.

Given some received sequence y both decoders associate a score with
each of the codewords, and choose the codeword that attains the highest score.
However while the complexity of assigning a score to each codewords is linear
in the blocklength for Ziv's decoder, this complexity is typically exponential
for the decoder proposed by Feder and Lapidoth. To compute the latter
score one needs to consider the ranking of the candidate codeword among all
sequences (not just codewords) in the set B,, and to compute this ranking for
each of a polynomial number channels. To compute this ranking for a given
channel, one must typically compute the likelihood of each of the sequences
in B~, of which there are typically an exponential number. Moreover, for a
finite-state channel, even to compute the likelihood of a single sequence for
a given channel requires complexity that is exponential in the blocklength
as the likelihood needs to be summed over all possible state sequences, see
(10). To compute the score assigned by Feder and Lapidoth's decoder to a
given codeword thus requires roughly IBlSISln computations, multiplied by
the polynomial number of decoders being merged. This should be contrasted
with the linear complexity (per codeword) of Ziv's decoder!

Moreover, as shown in [1], Ziv's decoder is sequential and is thus partic-
ularly suitable for sequential decoding. These implementation consideration
make Ziv's decoder particularly attractive. However, while the finite state
channel with deterministic transition studied in [1] is often useful for mod-
eling intersymbol interference channels [4], this model is ill suited for many
wireless applications where the channel time-variations may be independent
of the input signal, as in the Gilbert-Elliott channel [5].

The present contribution demonstrates that Ziv's decoder works, without
modifications, not only for finite state channels with deterministic transitions,
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but also for the more general finite state channels encountered in wireless
communications. It is hoped that the decoder's low complexity on the one
hand, and its universality for such general families of channel on the other,
will promote its use in wireless applications.

The rest of the paper is organized as follows. We conclude this section
with a precise statement of our main results. A proof of the main result,
Theorem 1, is given in Section 2, and the paper is concluded with a discussion
in Section 3 where we also demonstrate that the generalized likelihood ratio
test is not canonical, and where we discuss the duality between the universal
source coding problem and the universal decoding problem.

PRECISE STATEMENT OF THE PROBLEM AND MAIN RESULT

We begin by describing Ziv's decoding rule [1] for a channel with finite input
alphabet X and finite output alphabet y. To implement this decoding rule
the receiver must know the codebook being used, but need not know the
channel law. Consider then a codebook C of rate R and blocklength n,

C = {x(1),... ,x( 2n)) C X . (1)

(Strictly speaking we should denote the number of codewords by L2nRJ but
for simplicity we use 2nR instead.) Given a received sequence

Y = Y1, ,Yn

Ziv's decoder declares that the transmitted codeword is x(i) if

u(x(i),y) < u(x(j), y) Vj # i,

and declares a decoding failure if no such codeword exists, as can only be the
case if the minimum of u(., y) over C is not unique. The function u, mapping
XA x yn to the reals will be described next.

Given the received sequence y C yn and any codeword x c X n let w E
Xn x yn be the sequence of ordered pairs

w = wl, . . . , Wn, Wi = (Xi, Yi).

Consider the incremental parsing [6] of w into phrases (strings) such that 1)
all the phrases (except for possibly the last one) are distinct, and 2) the prefix
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of each phrase' is identical to some previous phrase. Let g be the number of
resulting phrases. Using wJ to denote the string of length j - i + 1 beginning
with wi and terminating in wj, i.e.,

Wi = Wiwi+i ... Wj,

we have that

ll~ 12 W /3 W,14 I (2
w lwl+lw12+l +l 3+1 Wlg_1+1, (2)

where w ll is the i-th phrase, 11 = 1, 19 = n, and for convenience we set
lo = 0. The first condition on the incremental parsing translates to

w +l lk ~kl+l k 5 1, 1 < i, k < g,

and the second condition on the parsing translates to

V1 < i < g 3k < i: wli- 1 = Wk,1 (3)

where (3) need hold only if li - li-1 > 1, since otherwise w l - I
1 is the empty

string. We let c(x, y) denote the number of distinct phrases and note that
g -1 < c(x, y) < g as all but possibly the last phrase are distinct.

The incremental parsing of w, see (2), induces a parsing on y defined by

= 11 12 13 14 19
Y i-' YYll+lY2+i1Yl+l ' ' Ylg-l+l

= y(l)y( 2) ... y(g)

e(1) e(2) e(g)
Yb(1) Yb(2) ' Yb(g) (4)

where we denote the m-th phrase by y(m), its beginning by b(m) and its end
by e(m). Thus

y lm-l+l -Yb(m) m = 1 ,... g9, (5)Y(m = I = e(m) 

is the m-th phrase in the induced parsing on y, a phrase that begins in time
index b(m) = 1,m_1 + 1 and ends at time e(m) = im. Similarly

X X11 12 13 X14 1,
l+lx 12 +1 /3 +1 * Xlg- 1+1

= X(1)X( 2) ... X(9)

= e(1) e(2) e(g) (6)
Xb(l)Xb( 2) Xb(g) (6)

1The prefix of a phrase is the string that results when the last symbol of the phrase is
deleted.
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where

x(m) _ xlml_+l=e(m) m= 1 9,...,. (7)

Note that in the induced parsings the phrases are not necessarily distinct, as
two phrases of w could be distinct and yet have identical y (or x) components.
We set c(y) to be the number of distinct phrases in the parsing of y induced
by the incremental parsing of w. We denote by y(l), 1 < I < c(y) the l-th
distinct phrase in the induced parsing on y, and set cl(xly) to be the number
of distinct x phrases that appear jointly with y(l). We thus have

c(y)

ECl(X y) = C(X, y). (8)
1=1

In fact, cl(xly) is at most the number of occurrences of the phrase y(l) in the
induced parsing of y, and at least this number of occurrences minus one, as
all but possibly the last phrase of w are distinct.

The function u(x, y) proposed in [1] can now be defined as

c(y)

(x Y) = E cl(xly) lo g cl(xly), (9)
1=1

thus concluding the description of Ziv's decoding rule.
In this paper we study the performance of Ziv's decoding rule when used

over a finite state channel. We thus need some definitions regarding finite state
channels. A finite state channel [4] over the finite input alphabet X, finite
output alphabet y, and finite state alphabet S is specified by a probability
law

P(y, s'x,s), y C Y, xE X, s,s' E S,

which specifies the probability law of the channel's current output and current
state, given the channel's current input and preceding state. Specifically the
probability of an n length output sequence

Y = (Y1, , yn) E yn

given the channel input

X= (x1, n=) E n7
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and the channel's initial state so E S, is given by

Pn(ylx, so) = E P=(y, six, so), (10)
sESn

where

n

Pn(y, sIx, ) S= O I P(Yi, s ixi, Si-1) (11)
i=l

We shall denote the set of all pairs of initial states so and probability laws
P(y, s'ix, s) by 0. For any

0= (so, P(., I, )) E o

we set

n

po(ylx) = _ I P(yi', ili, Si-l),
S1,.-.,Sn i=1

to be the corresponding channel law.
We say that the channel has deterministic state transitions if the channel

state is a deterministic function of its preceding state, i.e., if

si = q(si-1),

for some deterministic function q: S - S. Alternatively, the channel has
deterministic state transitions if

P(y, s'Ix, s)P( , s'l~, s) > 0 = s' = s'.

We shall denote by Od C O the set of all pairs of initial states and determin-
istic transition laws.

Our definition of finite state channels with deterministic transitions seems
to be more restrictive than the definition adopted in [1] where the channel
state si at time i is allowed to be a deterministic function not only of the
preceding state si-_ but also of the previous input xi-_ and previous output
Yi-1, i.e., when si = q(sil,xi-l,yi_1) for some deterministic function q :
S x X x y -+ S. This ostensibly more general situation can, however, be
accounted for by augmenting the state alphabet so that the channel input and
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output are determined by the channel state: one would consider the state
alphabet S defined by

= S xXxy,

and the law P, where for any input x E X, output y E Y and any two states
= (s, x, ) E S, and 8' = (s', x', ') E 

P(Y ^l' ^) {P(y, s'l x , s ) if ' =x and y' = y
/(y'sIx' ) = otherwise

Having defined the families of channels with which this paper deals, we
now turn to the performance measures we adopt. Given a rate-R, blocklength-
n codebook C as in (1) we set Po,o(errorlC) to be the average (over messages)
probability of error that is incurred over the channel 0 E O when decoding is
performed according to the maximum-likelihood rule tuned to the channel 0,
i.e., a rule that given a received sequence y E yn declares that the transmitted
codeword is x(i) only if

po(ylx(i)) > po(ylx(j)), Vj = i. (12)

We similarly denote by Po,z(errorlC) the average (over messages) probability
of error incurred when the code C is used over the channel 0 and is decoded
using Ziv's decoder, i.e.,

2 nR

Po,z(errorIC) = 2- n R po(yjx(i)),
i=l yo7i

where

TDi = (y: u(x(i), y) < u(x(j), y), Vj f i}.

Given a set B, C Xn and a rate R, we can consider a random codebook
whose 2nR codewords are drawn independently, each according to a uniform
distribution over the set B= C X n. We shall refer to the set B= as the
input set, and denote its cardinality by IBnI. The average (over messages)
probability of error for this random codebook when used over the channel 0
and when decoded using the maximum-likelihood rule is a random variable,
and we denote its expected value by Po,ML(error). Thus,

PO,ML(error) = (2nR) S P0 , (error) = BC),
C
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where the sum is over all the blocklength-n rate-R codebooks whose codewords
are all in Bn. We similarly define

Po,z(error) = BnI -(2nR) Po,z(errorlC),

to be the average (over codebooks and messages) probability of error that is
incurred over the channel 0 when a random codebook whose codewords are
drawn independently and uniformly over the set Bn is decoded using Ziv's
decoder.

To state our results we shall need one more technical term. We shall
say that the input set Bn is permutation invariant if Bn is closed under
permutations, i.e., if

(X1, , Xn) E Bn,

implies

(XIr(1) ... , Xr(n)) E Bn)

for any permutation ir on {1,... , n}. The most interesting case is where
the set Bn is the set of all n-length sequences of a given type (composition),
i.e., when Bn is the smallest permutation invariant set that contains some
sequence x.

In [1] Ziv proved that if the sets Bn are permutation invariant then, to use
the terminology of [2], Ziv's decoder is "strongly random coding universal"
for the family of finite state channels with deterministic transitions, i.e.,

lim sup I log P0d,z(error)
n-oo EOdEed n Pod,ML (error)

In this paper we shall strengthen this result in two ways. First, we shall show
that this result also holds for the larger family of all finite state channels, and
not only for those with deterministic transitions. In addition we shall demon-
strate a deterministic coding result that is referred to as "strong deterministic
coding universality" in [2]. We shall thus establish the following theorem:

THEOREM 1. Let E denote the set of all pairs of initial states and transition
laws of finite state channels defined over common finite input alphabet X,
finite state alphabet S and finite output alphabet Y. Let Po,ML(error) de-
note the average (over messages and codebooks) probability of error incurred
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over the channel 0 when the maximum-likelihood decoding rule is used to
decode a random rate-R blocklength-n codebook whose codewords are drawn
independently and uniformly over some permutation invariant set Bn C X n .

Similarly let Po,z(error) denote the analogous performance of Ziv's decoder,
i.e., the average (over messages and codebooks) probability of error incurred
over the channel 0 by Ziv's decoder. Finally, for a specific (deterministic)
codebook C let Po,z(errorlC) denote the average (over messages) probability
of error incurred by Ziv's decoder when the codebook C is used over the
channel 0. Then

1 Po,z(error)
lim sup 1 log Pz(er) = 0, (13)

n-+oo OE n P,,,P(error)

and there exists a sequence of rate-R blocklength n codebooks Cn C Bn such
that

lim sup - log = 0. (14)
n-xoo OCEE n PO,ML(error)

2 PROOF OF THEOREM

First note that (14), which is referred to as "strong deterministic coding
universality" in [2], follows from the "strong random coding universality"
(13) since the family of all finite state channels defined over common finite
input, output, and state alphabets X, y, S is strongly separable; see [2] and
particularly Lemma 6 and Lemma 12 there. It thus suffices to prove (13),
i.e., the random coding strong universality of Ziv's algorithm.

Rather than comparing the performance of Ziv's decoder and the maximum-
likelihood decoder directly, we shall find it easier to demonstrate that each
of these decoders performs very similarly to a third decoder, a "threshold
decoder", and hence infer that they must have similar performance, thus es-
tablishing the universality of Ziv's decoder.

A threshold decoder for the channel 0 C ( with threshold sequence an > 1
is a decoder that given the received sequence y declares that codeword x(i)
was transmitted only if

po(yjx(i)) > aopo(ylx(j)), V'j yk i, (15)

declaring an error if no such codeword exists. Notice that the threshold
decoder is not universal since its implementation requires knowing the chan-

11



nel law. Also, by its definition, it is, in general, inferior to the maximum-
likelihood decoder.

The first step in the proof is to demonstrate that even though the threshold
decoder is in general inferior to the maximum-likelihood, if the sequence of
thresholds an is sub-exponential, i.e., satisfies

lim - log cat = 0, (16)
n--oo n

then

lim sup log PTh(error) 0, (17)
n--oo oe g n POML(error)

where PO,Th (error) is the average (over messages and codebooks) performance
of the threshold decoder over the channel 0. This claim follows immediately
from Lemma 2 but before we can state and prove this lemma, we need to
introduce ranking functions [1], [2] and explain how they relate to the average
(over messages and codebooks) probability of error of the various decoders.

Consider first the maximum-likelihood decoder. Condition (12) does not
specify uniquely the maximum-likelihood decoding rule, because it does not
specify how ties in the likelihood should be resolved. Any deterministic way
of resolving such ties will result, however, in the same performance. To be
more specific we thus assume that the maximum-likelihood decoding rule is
based on a ranking function M 0 (x,y). This function from Bn x yn onto
{1,... , Bn } is assumed to satisfy that for any y E yn the function Mo(., y)
is one-to-one from B, onto {1,... ., BI} and

P0(Ylx) > po(ylx') =: MO(x, y) < MO(x', y).

The function M 0 (x, y) thus ranks the sequences in Bn according to the like-
lihood score. The maximum-likelihood rule based on the ranking function
MO (x, y) is defined as the decoding rule that given the received sequence y
declares that the transmitted codewords was x(i) only if

MO(x(i), y) < MO(X(j), y), Vj # i.

If no such codeword exists, as can only be the case if there are two identical
codewords in the codebook, an error is declared.
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Denoting by PO,e(errorlx, y) the conditional probability of error over the
channel 0 using a maximum-likelihood rule based on the ranking function
M 0(., ') given the correct codeword x and the received sequence y, we have

P0,ML(error) = E E IBnIPo(ylx)Po,o(errorlx,y ),
xEB, yEyn

and

Po,0(errorjx,y) = 1- 1- (Bn (18)

The last relation follows as in [1] by noting that, given the correct codeword
x and the received sequence y, the decoder decodes correctly if and only if
all other codewords are ranked lower than MO (x,y), and by noting that the
incorrect codewords are drawn independently and uniformly over Bn.

In a similar way we express the probability of error of Ziv's decoder as

Po,z(error)= E E B lpo(ylx)Pe,z(errorjx,y),
xEBn yEy n

where

Po,,(error x,y)= 1- (1 - B ))

and where

Mz(x,y) = fx' : u(x', y) < u(x,y)}.

The following technical lemma will be useful in relating ranking functions
and decoders performance.

LEMMA 1. The following inequalities hold:

1. The function

f(z) = 1 - (1 - z)N 0 < z < 1,

satisfies

f(s) < max{1, Vs, t (1].
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2. If {alj} 1 and {b=}[t1 are two non-negative sequences then

a, + + aL< max- (19)
bl + ' + bL - 1<1<L bl'

where a/O = oo for a > 0, and 0/0 = 1.

3. If U and V are non-negative random variables then

E[U] < E[V] max V'

where a/O = oo, unless a = 0 in which case 0/0 = 1.

Proof. For a proof of this lemma see [2, Lemma 2]. 0

We are now in a position to state and prove Lemma 2, which implies (17).

LEMMA 2. Let PO,ML(error) denote the average probability of error incurred
by a maximum-likelihood decoder over the channel po(ylx) using a random
codebook consisting of N + 1 codewords that are drawn independently and
uniformly over a set Bn C Xn. Let Po,Th(error) denote the analogous ex-
pression for a threshold decoder with threshold ao > 1, i.e., a decoder that
declares that the transmitted codeword is x only if

PO(ylx) > aPO(ylx'),

for every codeword x' 7£ x, and declares an error if no such codeword exists.
Then

P,Th (error) < oln(e2 Bnl)P,,,M(error).

Proof. Fix some received sequence y, and let

pO(xNy) = PO(yjx)
px'EB, PO(YIx')

be the conditional distribution on x given the received sequence y for the
channel po(ylx) assuming that x is a priori uniformly distributed over Bn.
To avoid cumbersome notation we shall omit the dependence of quantities on
the received sequence y and the channel 0. We shall thus denote po(xly) by
p(x), and denote Mo(x, y) by M(x).
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Given y, the conditional probability of error of the threshold decoder
Po,Th(errorly) is given by

PoTh(errorly) = E p(x) I- (1 L(xB) )± L' (20)

where

L(x) = {x'' M(x') > M(x),p(x') > a-lp(x)}l (21)

is the number of sequences in Bn that, given that x is the correct codeword
and y was received, would cause an error in the threshold decoder if they
were drawn as codewords, but would not cause an error in the maximum-
likelihood decoder. Note that here too we have made the dependence on the
channel law and the received sequence implicit.

Let

r(x)= E p(x'), (22)
x':M(x')<M(x)

omitting, once again, the dependence on the channel law and on the received
sequence y. We can upper bound L(x) in terms of r(x) by

L(x) < 1- r (x) (23)

by noting that

1 = Z p(x')
x'EBn

> E p(x')
x':M(x')<M(x)+L(x)

> r(x) + p(x) + L(x)c-lp(x)
> r(x) + L(x)c-lp(x),

where the second inequality follows from (21).
It follows from Lemma 1 that

M(x) + L(x) < M(x) L(x) - M(x)) N1B.1 MI(x) 1B.- 1
(24)
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and we are now in a position to compare the conditional (on the received
sequence y) probability of error incurred by the maximum-likelihood decoder
to that incurred by the threshold decoder as follows.

PO,Th(errorly) - Po,o(errorly)

(a< L(x)(x) () 
xEBn

(b) N
E (1 r ) Mp(x) 1(x 1- i( x1

xEBBn x':M(x')>M(X) ) M(x) NB

(aE E P(x')M(X) 1 - 1
xJEBn x:M(x)<M(x') [ B

< oa E p(x')() 1- ( 1 BI
x'EB~ x:M(x)<M(x')

< a Ep(x,) 1- (I M(x' )]

(g)
< a(ln(lBl) + 1)Po,o(errorly),

where (a) follows from (18), (20), and (24); (b) follows from (23); (c) follows
from the definition of r(x) (see (22)); (d) follows by interchanging the order
of summation; (e) from the monotonicity of the function f(z) = 1- (1 - z)N;
(f) follows by increasing the range over which x is summed, and (g) follows
by a simple bound on the harmonic sum. It follows from this calculation that

Po,o(errorly) < (1 + a(ln(lB, ) + 1))PO,0(error y),

and the lemma now follows by noting that ac > 1 and by taking expectation
with respect to y.

Notice that the term in IBnl is at most linear in the blocklength n since
BA C X ' and thus,

In JBI n < n = nln IXI.
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We now turn to the second part of the theorem's proof and establish that
there exists a sub-exponential threshold sequence cn such that Ziv's decoder
competes favorably with the threshold decoder based on Cn, i.e.,

lim sup 1 log P'z(errr) . (25)
n-oo OEO n PO,Th (error)

This, combined with (17) and the optimality of the maximum-likelihood rule
will conclude the proof of the theorem.

Given some sequence of thresholds aC and a law po ( I), 0 C E we define
NAo(x, y) to be the set of all sequences x' E X n that are permutations of x
and that satisfy

p0(ylx') > an-po(yIx).

The set JNo (x, y) depends, of course, on the sequence of thresholds an, but
this dependence is not made explicit in our notation. Notice that if x is in Bn
then No (x, y) C Bn since, by assumption, Bn is permutation invariant. Also
note that

JAN' (x, y) I < Me (x, y) + L(x), (26)

where L(x) is defined in (21), and that this inclusion could be strict since we
insist that the sequences in o (x, y) be permutations of x. We now have

Ps,z (error) _ ExEBn EyEyn 1 Po,z(error x, y)

PO,Th (error) x EBn y PO,Th (error x, y)

Po,z (error Ix, y)
< max -
-xEB,,yCY

n PO,Th(error x, y)

< 1+ max Mz(X y)
- xEBn,yEY n Mo(x, y) + L(x)

< + max Mz y) (27)
- xEB,yEyn NO(x, y)I

where the first inequality follows from part 3 of Lemma 1, the second inequal-
ity follows from part 1 of Lemma 1, and the last inequality follows from (26).
It follows that to prove (25) we need to upper bound Mz(x, y) and to find a
sub-exponential sequences of thresholds that will yield a good lower bound
on A/e (x, y). The following lemma is used to upper bound Mz (x, y).
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LEMMA 3. Given two finite alphabets X, y, and any sequence y E Y',

-log l{x' E X' u(x',y) < D}l < D + loglog n (28)

where the correction term depends only the alphabet sizes jXI, jY , and the
function u(., .) is defined (9). In particular,

1 1
-log Mz(x, y)= -log o {x' E Bn: u(x', y) < u(x, y))l
n n

< -log {x' c An: u(x',y) < u(x,y)})

< u(xy)+ O ( lo log n) (29)

Proof. This inequality has nothing to do with the channel model, and is a
property of strings. This lemma appears in [1] where a proof can also be
found. []

We now turn to lower bounding IAe (x,y) . To this end we choose the
sequence of thresholds to be

an = Is 1(n,lllIYI), (30)

where ISJ is the number of states and -y(n, IXIIYI) is the maximum number
of phrases that can be produced when an n-length sequence over X x y is
incrementally parsed. Notice that ac is sub-exponential as

'y(n, IXHIY!) = 0 ) (31)

see [6]. For this choice of the thresholds we can now lower bound i/'o (x, y) 
as follows.

LEMMA 4. For the sequence of thresholds given in (30) and any sequence
x C Xn and y E Y'

log (J.V0 (x, y) ) > u(x, y) - 0 log I,3I (32)

where the correction term depends only on the cardinalities of the input and
output alphabets and not on the channel law or initial state.
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Proof. Fix some 0 E O corresponding to a transition law P(y, s'lx, s) and
some initial state so. Fix also some x E Bn and y E yn. Let g be the number
of distinct phrases that result from the joint parsing of (x, y) and recall that
this joint parsing induces a parsing on x and y as in (4), (6). For any g-length
sequence {s(m)}g=1 c S9 we define

S = S , n) E S : = S(m)},

and define

p(y, SIx, so) = Pn(y, sx, So). (33)

Given the input sequence x and the initial state so, the quantity p(y, sIx, so) is
thus the conditional probability of the channel producing the output sequence
y while following a state trajectory that coincides with s at the sampling
times e(l),. . ., e(g) (the sampling times corresponding to the endings of the
different phrases). It now follows from (10) and (33) that

po(ylx) = Z p(y, Six, so),

and hence that there exists a sequence {(r(m)}I= C S9 such that

p(y, a x, so) > sgPO(YIx). (34)

This choice of the sequence a depends, of course, on the received sequence y,
the correct codeword x, the initial state so, and the transition law P(yksk Ixksk-).

Henceforth the sequence cr will be held fixed.
Since we have defined -y(n, IXIYll) to be the maximal number of phrases

into which an n-length sequence over X x y can be incrementally parsed, it
follows that g _< ((n, IXilyl), and thus, by (34),

p(y, rx, so) Ž> clpo(ylx). (35)

We next show that if x' is a permutation of x with some properties that will
be discussed shortly, then

p(y, aix'", So) = p(y, Oix, so), (36)
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and thus x' E AN (x, y) because

po(yx') = p(y, six', so)
9ES9

> p(y, oix', so)

= P(Y, tix, so)

-> a lp(y|x, So),

where the second equality follows from (36), and the last inequality follows
from (35). The proof of the lemma will be then concluded by counting the
number of permutations of x that satisfy (36).

We shall find it convenient to define a(O) = so and to note that

9

p(y, ox, So)= I p(y(m) a(m)Ix(m), ' (m- 1)) (37)
m=l

where p(y(m), a(m) x(m), (m - 1)) is the probability that the channel will be
at time e(m) - b(m)+ 1 at state o(m) and produce the output y(m) given that
it starts at state a(m - 1) and is fed with the input x(m). Thus

/(m)

p(y(m) ,o(m)x(m), (m - 1)) = E JI P(Yb(m)+i-1, Si Xb(m)+i-1, Si-1),
o,... ,l(m) i=1

.o=a(m-1)
gl(m) =-(m)

where

1(m) = e(m) - b(m) + 1,

is the length of the m-th phrase. Suppose now that 1 < m < m' < g are such
that:

* I(m) = (m')

* y(m) = y(m')

a(m - 1) = a(m' - 1)

· a (m) = u(m').
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It follows from (37) that if x' is produced from x by exchanging x(m) with
(m'), i.e,

X- = X( 1) ... x(m-1)X(m')X ( m+ l ) ... x(m'-l)x(m)x ( m ,+ l ) . . . X(),

then (36) holds. It thus remains to count how many permutations of x can be
produced with such transpositions. This counting argument is identical to the
one appearing in [1] in the proof of Lemma 1. For the sake of completeness
we repeat it here.

For any s, s' E S and for any y-phrase y(l) we set c,(x y, s, s') to be the
number of distinct x-phrases that appear jointly with y(l), that end in state
s, and such that the phrase preceding them ends at state s'. Thus

cl(x y,s, s') = {(m) 1• m < g y(m) = y(l),u(m) = s, (m- 1) = s'}|,

and

SE c(xly, s, s') = ci(xly) . (38)
(s,s')ES2

Recalling that c(y) denotes the number of distinct y phrases we have

c(y)

IAo (x, Y) I > f | Cl (xly, Ss')!
I=1 s,s'

Using the Sterling formula we have

c(y)

log lAJ0o(x, y) > E E cl(xIy, s, ')(log(xy, s, s') -loge)
1=1 s,s'

-- C(x Cl(X yIY, S, S') log C(X Y, S, St)

=c -E( c(XIY) c (x)y)

+ (log c (xly) - log e),
1=1

where the last equality follows from (38). By the convexity of the logarithmic
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function, and using (8) we have

c(y)

log IANl(x, y)I > c1(xy) (log c(xly) - log SI2 - loge)
1-1

c(y)

= E cl(xfy) log c(xy) - c(x, y) log(lSI2 e)
1=1

>n [u(x,y) - IO( )log S,2],

where the last inequality follows from (31) by noting that c(x, y) < y(n, XI IY),
and by recalling the definition of the universal decoding function u(x, y), see
(9). 0]

Proof of Theorem 1: We now have all the ingredients needed to complete
the proof of Theorem 1. Choose the sequence of thresholds as in (30) and
note that by (31) this sequence is sub-exponential, i.e., satisfies (16). It
follows, by Lemma 2 that the threshold decoder based on the sequence Ac

and the maximum-likelihood decoder have the same asymptotic performance,
i.e., that (17) holds. Comparing the performance of Ziv's decoder to that
of the threshold decoder we use (27), (29), and (32) to deduce that Ziv's
decoder and the threshold decoder perform similarly, i.e., that (25) holds.
The theorem is now follows from (17) and (25).

3 DISCUSSION

As Theorem 1 demonstrates, the Lempel-Ziv incremental parsing is a very
powerful tool not only in universal source coding, but also in universal chan-
nel decoding. It is thus interesting to explore the duality between universal
source coding and universal channel decoding, and to investigate whether
every universal source code can be used to design a universal channel de-
coder. After all, any source code can be used to assign probabilities P(u)
to source sequences u according to the length of the codewords assigned to
them using the assignment

P(u) = 2- r( U). (39)

For a good universal source code this assignment should approximate the true
probability of the sequence, and one could therefore use a universal source
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code as a channel decoder in the following way: Given a received sequence
y and any candidate codeword x(i) one would estimate the true probability
p (x(i), y) using the source code, and pick the codeword that maximizes this
probability. Assuming that the universal probability assignment is close to
the true probability, this rule should be somewhat similar to the maximum-
likelihood rule tuned to the true channel, and there is hope for universality.

The example that will be described in this section demonstrates that the
above approach does not always yield a universal decoder, even if the re-
dundancy of the universal source code is small for every sequence [7] and not
only on the average. The problem seems to be that while the source coding
universality of a code guarantees a lower bound on the probability it assigns
to sequences (in terms of the true probability) it does not always guarantee
an upper-bound that is sharp enough for the purpose of efficient universal
channel decoding.

The example also serves to show that even for finite families of channels .F,
for which a universal decoder can always be constructed by merging the dif-
ferent maximum-likelihood decoders [2], the generalized maximum-likelihood
rule may fail to be universal, where the generalized maximum-likelihood rule
decides that message x(i) was transmitted only if

PGL(YIX(i)) > PGL(YIX(j)), Vj,

where

L(Y IX) y supnp p (yjix )PGL(Y]X) - uPOEYP(YX)
Ey/eyn SupEF pO(yAX) '

Note also that the generalized maximum-likelihood decoder is universal for
the family of discrete memoryless channels [3] (for which it is equivalent to the
maximum empirical mutual information decoder MMI), but, as the example
demonstrates, not for all families, not even those with a finite number of
channels.
Example: Consider a family of channels O = {01, 02 consisting of two
channels defined over the input alphabet X and output alphabet Y where

X = y = {O, 1, 2, 3}.

Under both channels the output sequence y = Yi, n.. corresponding to
the input sequence x = x 1,... , xn is given by

y = x + z mod 4, (40)
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where z is a random noise sequence, and the mod four addition in (40) cor-
responds to componentwise addition, so that

Yi = xi + zi mod 4. (41)

The two channels 01 and 02 differ in the probability law governing the noise
sequence z. To specify these laws consider three disjoint subsets of XA, say
E, F, and G of cardinalities

EJ= 1, (42)

FJ= 2 (43)

IGI = 3n. (44)

Under the channel 01 the law of z is given by

q ifzGE

P, (z)= p ifz E F (45)
0 otherwise

where

q = 1- 2-n , (46)

2-n

P= tIF' (47)

A direct calculation demonstrates that

3-n
< p < 3- n (48)

1 + (2/3)(

which follows because by (43)

2 II< + (49)
( 2 ), ( 2 )
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Under the law 02 the noise sequences are distributed according to

3- n if z c G
P02 (z) otherwise (50)

The generalized likelihood of a sequence z is defined as

PGL(Z) = maxoe{01 , 0 ) (51)
Zz max0e{l,02 } po(z') 

Notice that

PGL(Z) > 2Poi(z), i = 1,2, (52)
25

since the numerator in (51) is no smaller than Poi(Z), and the denominator
can be upper bounded by noting that

max p0(z') < Po1 (z') + Po2 (z'),
OE{01,02}

and hence

2

max pO(z') <Z p0~(z')
0 E{ 01,02}E E Poi (ZZ/ i=1 z'

2.

Consider a random codebook consisting of two codewords, each drawn
uniformly over the set

Bn = X
n

,

and consider the performance of this random codebook on the channel 01.
First note that by the symmetry of the problem the average (over codebook
and messages) probability of error, conditioned on the received sequence y,
does not depend on the received sequence, i.e., the performance of a random
codebook is independent of the received sequence, and

POl,ML(error) = Po,,l (error)y), Vy E yn,

so that we may assume without loss in generality that the all-zero sequence
was received.
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Given that y is all zero, the maximum-likelihood rule tuned to 01 ranks
the sequence in E highest, followed by the sequences in F. We now have that

p ifxcFpe 1(x I ) { p if x E F

and thus
1 IEI + FI

POl,ML(error) < q l- + (1 - q) iA

which follows from the pessimistic assumption that if the correct codewords is
not in E then it is ranked lowest by the maximum-likelihood decoder among
all the sequences in F. Evaluating this expression we obtain that

- lim log Poa,ML(error) = log(4). (53)
n-*oo 7

(The equality follows by noting that the probability of error is always lower
bounded by IXI - n since this is the probability that the two codewords in the
codebook are identical.)

Consider now the performance over the channel 01 of the generalized
maximum-likelihood decoder. Once again we may assume without loss in
generality that the all-zero sequence was received, and we note that the gen-
eralized maximum-likelihood ranks the sequence in E highest, followed by
the sequences in G, followed finally by the sequences in F. Lower bounding
the average probability of error by assuming that if the correct codeword is
not in E then it is ranked highest among all the sequences in F we conclude
that

1 IEI + IGI + 1
P0 1,GL(error) > q + (1 - q) IX

which demonstrates that

-lim inf- 1log P 1,GL(error) < log ( (54)
n-*oo 3

Comparing (53) and (54) demonstrates that for this example the generalized
maximum likelihood decoder is not universal, even though, as a source code
it has low redundancy for every message, as seen in (52); the redundancy is
always upper bounded by log2/n. Moreover, the failure of the generalized
maximum-likelihood rule is not due to the non-existence of a universal decoder
for the family: since the family is finite, the universal decoder derived by
merging the maximum-likelihood decoders corresponding to the two channels
[2] is universal for the family.
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