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I. Introduction

The Poisson channel attracts much interest as it serves as the standard model for optical communic-

ations [1]-[3]. Its conceptual simplicity and the advent of many uncoded and coded communications

techniques [1]-[4] have propelled an extensive information theoretic study of communication over

this channel in an effort to identify and quantify the ultimate limits and the ultimate potential of

this channel. The overwhelming majority of these papers [4]-[12] treat the single-user channel only.

In this model, which is depicted in Figure 1.A, the channel output y(t), t E [0,T] is a doubly

stochastic Poisson process with instantaneous rate x(t) + Ao, where x(t) > 0 is the channel input,

and A0 > 0 is a constant. The output y(t) corresponds to the number of counts registered by the

direct detection device (usually a PIN diode) in the interval [0, t]; the input x(t) is proportional to

the squared magnitude of the optical field impinging on the detector at time t integrated over its

active surface; and the constant Ao stands for "dark current" and accounts for spontaneous emissions

due to background radiation.

The input signal x(t) is often peak and average power limited [5]-[8] so that

o < x(t) < A

TE (T-oT X(T) dT) < B (

where A stands for the peak power and B denotes the allowed average power. Here IE denotes

the expectation operator, and subscripts, if attached, denote the random variables over which the

expectation is taken. The time T stands for the transmission duration and is usually assumed to

approach infinity. The capacity C1 in nats/sec under these constraints is given by [5]-[7]

C1 = A[popt(1 + xo/A) log(1 + Ao/A) + (1 -Popt) Ao/Alog(Ao/A) - (Popt + Ao/A) log(Popt + Ao/A)]

(1.2a)

where

Popt = min (B/A, po(Ao/A)) (1.2b)

and where
(1 + u)1 +U

p(u = u. (1.2c)uue

The capacity of the single-user Poisson channel is maximized in the absence of dark current (Ao = 0)

and when the average power constraints are relaxed. In this case the capacity is given by A/e. Thus

C1 < A/e. (1.3)
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To achieve capacity input signals of infinite bandwidth are required, and the capacity is typically

reduced if the input is subjected to bandwidth like constraints [10]-[12].

The Poisson single-user channel is one of the few channels for which, in addition to the channel

capacity, the reliability function at all rates below capacity is also known [5]. In fact, in the absence

of dark current and under capacity reducing average power constraints, the reliability function is

even known in the presence of a noiseless feedback link from the receiver to the transmitter [13].

In recent years optical multi-user communication systems were introduced and intensively invest-

igated [14],[15]. A variety of multiple access techniques such as Wavelength Division Multiplexing

(WDM), Time Division Multiple Access (TDMA), and Code Division Multiple Access (CDMA) are

commonly considered [14], [15]. While these accessing methods have natural counterparts in the

radio channel, the Poisson channel is unique in that the channel input must be non-negative.

Multi-user optical channels with a variety of single user and multi-user detection methods were studied

[16]; optical CDMA was particularly studied in [17]-[29] and in references therein. The constraints

of having non-negative inputs fundamentally impacts the design of good spreading sequences [26]-

[28]. In fact TDMA can be viewed as a special case of synchronous CDMA where the disjoint time

slots of the different users are determined by properly selecting the spreading sequences. Most of

the reported studies examine uncoded, possibly spread, communication systems, but see [29]-[32]

where coding is addressed in the context of multi-user optical communication and in particular in

combination with CDMA based methods.

The model for the Poisson Multiple Access channel (MAC) that we study is shown in Figure 1.B. The

input of the k-th user xk(t) > 0 determines the rate of the corresponding doubly stochastic Poisson

process yk(t) while the overall observation y(t) = EK= yk(t) + D(t), is also a doubly stochastic

Poisson process with instantaneous rate A0 + Ek=l1 xk(t). Here D(t) is a homogeneous Poisson

process of rate AO (the dark current), and K designates the number of users. This channel model is

equivalent to having an input EK=l Xk(t) to the single user Poisson channel. Clearly this multi-user

channel model accounts for any possible CDMA or TDMA multi-user optical system and therefore

motivates an information theoretic investigation in an effort to identify the ultimate possible reliable

transmission rates.

The literature on this topic is at best scarce. In [33] a somewhat loose upper bound on the overall

information throughput is given in terms of the total photon count of all users in the case of no dark

current. In [34] a somewhat different model for the two-user Poisson channel is investigated in terms

of cut-off rates. The channel model in [34] is different from our model in that our model assumes
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that the rates, rather than the optical fields, combine additively. The model in [34] is appropriate

when the surface area of the PIN diode is small compared to the wavelength and when the optical

fields produced at the detector by the different users can be individually controlled. For the model

studied in [34] and [16] it has been shown [34] that in the average power dominated regime a TDMA

strategy of both users optimizes the cut-off rates.

In this paper we address the Poisson MAC and investigate its capacity region and the overall through-

put in an effort to determine its ultimate limitations as predicted by multi-user Shannon theory [35],

[36]. In the next section we show that for the K-users case the capacity region is not reduced if

the users are limited to the use of binary waveforms taking on the extreme values of zero and the

peak power A. The full capacity region is treated in Section 3 and is determined in the two-user

case and peak power constrained inputs. The total throughput is discussed in Section 4 where it is

investigated for the many-user case both with and without average power constraints. No further

limitations on the input signal such as bandwidth and the like are imposed. We show that contrary to

the Gaussian MAC where maximum throughput increases logarithmically with the number of users

[36], in the Poisson regime maximum throughput is bounded in the number of users. This result

significantly sharpens the conclusion in [33]. In the concluding Section 5 we quantify the loss incurred

when TDMA is employed. We show that the loss is fairly mild in the two-users case with low dark

current, but that the loss is quite severe in the many users case with high dark current. We then

introduce a generalized TDMA scheme where more than one user may transmit at a given time slot,

but where single-user detection is employed. This generalized TDMA mitigates to a large extent the

loss that is incurred by the standard TDMA scheme.

II. Optimal Input Distributions

In this section we show that the capacity region of a Poisson MAC is not reduced if the inputs are

restricted to the set {0, A}, where A denotes the peak allowed power. The inputs shall be assumed

throughout to be subjected to the peak and average power constraints

O < xi(t) < A, Vt, i = 1,2,..., K (2.1)

lf oi mi(T)dr< B, i= 1,2,..., K (2.2)

where

mi(t) = IE (t)
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Here, as in (1.1), A and B stand for the peak and average power constraints respectively, and

T (T -+ oo) designates the transmission time.

The capacity region of the MAC is intimately related to all possible sets of conditional (and un-

conditional) average mutual information expressions [35],[36] Ixav I (U x Tf; yT U x)
ieS jESc

where S stands for any subset of {1, 2,..., K}, Sc is the complementary subset, x5, xsc stand for a

vector with components indexed by the elements in set S and SC respectively, and the abbreviation

"av" stands for average. The notation u0T designates the sample path of a process u(t), O < t < T.

It should also be noted that in the synchronous (frame [37], and symbol [38]) multiple access channel

all the users {x(t)} are conditionally independent given the time axis, which means here that they can

choose their instantaneous average power IE(xi(t)) i = 1, 2,..., K, arbitrarily and in synchronism

provided that the peak and average power constraint (2.1),(2.2) are satisfied. The time varying

strategy of each user employed in (time) synchronism but otherwise independently is equivalent to

the independence of the user given the auxiliary (time-sharing) variable used to characterize the

capacity region of an input constrained MAC [35]-[39].

By Kabanov [6] and Davis [7] we then have

Ixs;ylxsc - T dtIE { xi(t), E xi(t))-q(Z Xi(t), E xi(t)) (2.3)
iEs iESC iEs iESC

where

i(t)= IE(xi(t) y, U x O), i ES, (2.4)
jESc

and where

O((a, /) = (a + P + Ao) log(ac + P + Ao) - (i + Ao) log(, + Ao), a, a, Ao > O . (2.5)

Hereafter natural logarithms are used.

We now upper bound the relevant average mutual information expressions with a bound that will

later be shown to be tight for "quickly varying" inputs. By convexity of q(a, 3) with respect to a,

the conditional independence of xi (t), i = 1, 2,..., K and Jensen's inequality and using

IE i(t) = E (xi(t)l Ujesc X,o) = E (xi(t)) = mi(t), i E S,
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it follows that

IS;ylxS < [ dt E/ ( xi(t), E xi(t); E mi(t)) (2.6)
iES iESC iES

where

0(a, 3; c) = 0(a, /) - 0(c, 3) (2.7)

is a function of the indeterminates a and /, and it is parameterized by a non-negative constant c.

For the time being we omit the time dependence of the integrand in the right hand side in (2.6) and

opt to maximize

max 1E0( xi, E xi; mi) (2.8)
~{zi} iES iESC iES

over all independent random variables {xi}iK satisfying the peak and average power constraints:

0 < xi < A, (2.9)
IE(xi) = mi

To this end, the following assertion will be useful.

Assertion 1.

(a) The function b(ca, /3; c) is strictly convex with respect to a for each / and constant c, and hence

IE3 (a, A ; c) is a strictly convex function with respect to a for each c and for any distribution on

the random variable f3.

(b) IEaib (a,/3; IE(a)) is convex with respect to /3, where a is assumed to be a random variable.

Proof: Part a) follows immediately by the strict convexity of q(a, /3) with respect to a for each 3.

To prove part b) we write

IEab(cta,/; IE(a)) = IEa(ac+/3 + A) log(a + /+ + 0)

-(IE(a) + + Ao) log (IE(a) + + Ao) (2.10)

Differentiating twice with respect to , (switching the order of expectation and differentiation) yields:

a2 EC--(,cx 0 3; IE(a))IE() 1 )> (2.11)
a/32 ,a +3 ) + AO IE(a) +/3 + A0
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where the inequality in the above is due to the convexity of the function x, x > 0 and Jensen's

inequality. O

We now state Assertion 2 which limits the optimizing distributions for expression (2.8) to binary.

Assertion 2. The optimizing independent random variables {xi), i = 1, 2,..., K in the maxim-

ization problem stated in (2.8),(2.9) are binary, taking on the values 0 and A with the probability

function:

Pr(xi = A) = 1 - Pr(xi = 0) = pi = mi/A, 1 < i < K. (2.12)

Proof: Consider the following random variables:

al = xi , s = xi = xl al
iES, i7l iES (2.13)
b 1 =~ifi IES x~ , w=Zx ~b(2.13)

bl = E Xi ,w = E Xi = Xl + bl

iESc, il iESc

Assume first that I E S. The expectation in (2.8) is then given by

Exi lEal lEw (xl + al , w; IE(s))

Note that by Assertion 1 the function %1 (a) = IEwb (a, w; IE(s)) is a strictly convex function of a,

and therefore the function

2 (z) = IEa,' I (x + al) = dpal, 1(x + al),

where [,al stands for the probability measure of al, is also a strictly convex function of x. Now fix

the probability measures /,x for all i E S, i E Sc but i f· 1 E S (i.e., the probability measures of w

and al are fixed). The optimization with respect to xl boils down to:

/A
max IE,,, 2(xi) = dtLX, ¢ 2(xl)

0 < x <_ A 1 E S (2.14)

IE(xl) =/ dlrxl x = ml,

i.e., the maximization of a strictly convex function over all finite support probability measures with

a given first moment. The solution is achieved by a distribution of two mass points - one at 0 and
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the other at A - and the maximizing probability measure ,px is given by (2.12), with i = 1. The

result holds for any l E S. The precise result from [40] that is needed here can be also found in [12,

Lemma 1].

Now, let 1 E Sc and in this case the optimization problem in (2.8) boils down to:

{ max IEx I Eb, IESP(s, xl + bl; IE(s)) ,

under the constraints in (2.9).

Fix now the probability measures of all xi, i E S, SC, except for xl, 1 E Sc (i.e., the probability

measures of s and bl are fixed). The optimization problem with respect to xl is then given by:

max Ex, (IEb, Es(s , xi E())) + b; E(s))= dllEbE (x + b; E(s))

0 < xl < A 1 E S c (2.15)
rA

IE(xl) = dlp t x = ml.

The function IEsb(s,I ; IE(s)) is by Assertion 1 strictly convex with respect to : and hence the

function IEbl {IEs (;(s, bl + x; IE(s))) } is a strictly convex function of x. Thus, the maximization

in (2.15) is of a strictly convex function over the probability measures of xzUx of finite support [0, A]

and of a given expectation. The conclusion about the optimality of the binary (xl = 0, A) measure

now follows as in the previous case by [40]. Since the result is valid for all I E Sc and for all I E S,

the assertion is established. E]

So far we have examined an upper bound on the relevant mutual information expression (2.6). This

bound, however, can be made arbitrarily tight by selecting the time varying inputs

xi (t), 1 < i < K to be "infinitely fast" (infinite bandwidth) Markov processes. This follows directly

from the result of [41] and is also evident by the results of [5] and [7].

The rational behind this phenomenon is that the bounding step leading to (2.6) is the replacement

of xi(t) in (2.4) by IE (xi(t)) = mi(t). Now selecting xi(t) to be an infinitely fast varying process

with expanding unrestricted bandwidth, renders yt useless in the conditional estimation of xi (t) and

therefore

i E(t (xi(t)ly, U x04O) IE (xi(t)l Uj4SC xo) = IE(xi(t)) = mi(t),
jESc
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where the sign Bj-o denotes the limit of the process x(t) at infinite bandwidth, and where we resort

to [7],[41] for the precise definitions of this limiting process.

We can now state the following lemma, which is fundamental in the determination of the capacity

region of the Poisson MAC.

Lemma 1. The capacity region achieving distributions of the K-user Poisson MA C under peak (2.1)

and average (2.2) power constrained inputs are binary. The independent inputs xi(t) , i = 1,..., K,

assume the values 0 and A only. E]

The Lemma follows directly by examining the expression in (2.6) and invoking Assertion 2.

Lemma 1 can also be proved using the approximation technique of [5]. One first approximates the

signals in the codebooks by piecewise constant functions and then demonstrates that the effect of an

input that is constant over an infinitesimal time interval can be attained using binary pulse width

modulation. These approximations typically result in input signals of fast variations and are thus

applicable only when no spectral restrictions are imposed on the input [10, 11, 12] (as we assume

throughout). General results on sufficiency of binary inputs can be found in [42].

The supremization problem of 1 .s;yl xSc under the input peak and average power constraints (2.1),(2.2)

is equivalent to supremizing

1T | dt E ( xi (t), v xi(t); E mi (t))
° 0iES iESC iES

under these input constraints, because for processes of infinite bandwidth (2.6) holds with equality

[41]. By direct application of Assertion 2 it follows that the latter supremization is achieved by binary

signals xi(t) E {0, A}, Vt. Note, however, that Lemma 1 does not imply stationarity in the sense

that Pr (xi(t) = A) = Pi,t is independent of t. This possible time dependence allows for time-sharing

strategies [39],[8]. Nevertheless, in the following sections we will show that in a variety of interesting

cases time-sharing is superfluous .

III. The Boundary of the Capacity Region: Two Users

In this section we study the capacity region of the Poisson multiple-access channel when only two

users access the channel. The signal transmitted by each user is peak-power limited, with the peak
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power being identical for the two users. Thus,

0 < xl(t),x 2(t) < A, Vt. (3.1)

Throughout this section we shall assume that no additional average power constraints are in effect,

corresponding to setting B = A in (2.2).

By Lemma 1 we may assume without loss in optimality that the signals transmitted by the two users

take on the values 0 and A only. With this observation in mind we define, for any pair 0 < p, q < 1,

two independent random variables X 1, X2 by

Pr{X1 = A} = 1 - Pr{X1 = 0} = p, (3.2)

Pr {X 2 = A} = 1 - Pr {X 2 = 0} = q. (3.3)

By choosing the signal X1 (t) to be stationary with marginal distribution identical to that of X 1 but

otherwise of ever increasing bandwidth and likewise for X 2 (t), we can attain (2.6) with equality [44],

and we can thus deduce that for every 0 < p, q < 1 the pentagon l7p,q consisting of all pairs (R1, R 2)

satisfying

R1 < Ixl;YIx2 (p, ) , (3.4)

R2 < Ix 2;YIX (P, q) , (3.5)

R1 +R 2 < IX1,X2;Y(P,q), (3.6)

is achievable. The notation we adopt here makes the dependence of the average mutual informations

on p, q explicit with

IxI;Yx 2 (P,,q) = IEOb(X 1,X 2;Ap), (3.7)

Ix 2;Ylxl(p,q) = IEb(X2,X 1;Aq), (3.8)

Ix1,x 2;Y(P,q) = IEah(X 1 + X 2,0;A(p+q)) , (3.9)

and where all expectations are with respect to the independent random variables X1 and X 2 satisfying

(3.2) and (3.3).

By (2.6) we conclude that the capacity region C of the two-user Poisson multiple access channel is

given by

C = convex closure of R , (3.10)

where
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-R= U Rp,q. (3.11)
O<p,q<l

Notice that by (1.3) the pentagons 7Zp,q are compact in the two dimensional Euclidean space with

Zp,q C [0, A/e] x [0, A/e]. The convex closure of 7 is thus equal to the convex hull of the closure of

R, and it is also equal to the closure of the convex hull of R.

As mentioned above, in this section we only consider the case where no average power constraints are

placed on the transmitted signals. Average power constraints cannot be generally treated simply by

limiting the pairs (p, q) over which the union in (3.11) is taken to those pairs that satisfy the average

power constraint: the capacity region may be larger than that, see [39],[42].

We next demonstrate that the region 7R is compact, and that we can therefore replace (3.10) with

C = convex hull of Z . (3.12)

This easily follows by noting that C c [0, A/e] x [0, A/e], and by noting that the functions

X1;YIX2 (p, q) , Ix 2;YIX1 (P, q) , IX1,x 2;Y(P, q)

are all continuous1 on the compact [0, 1] x [0, 1]. Indeed assume that (R' , R') E 7Rpn,q,n, R' -+ R 1,

R' -+ R2. It then follows by the compactness of [0, 1] x [0, 1] that there exists a subsequence nk

and a pair (p*, q*) such that Pnk - p*, qnk - q*. The continuity of Ix 1;YIx 2(., ), Ix 2;Yxl (.,), and

IX1,X 2;Y(, ') now demonstrates that (R1, R2) E Tp.*,q*, and R is thus closed.

To continue our study of the region 7, we now compute the maximum throughput RE, which is

defined as

RE = max(Rl,R2 )ECR1 +R2 (3.13)

= max(Rj,R 2 )ER R1 + R 2 ,

where the second equality follows from (3.12). In fact,

Rz= max Ix,x2 ;Y (p,q), (3.14)
O<p,q<l

as can be verified by noting that if the maximum in (3.14) is achieved by (p*,q*) then the pair

(R*, R*), where

R* = Ixl;ylx2 (P*, q*),
1In the definition of the function (ca, 3) we define 0 log 0O = 0. With this definition, the function 0(o, /3) becomes

continuous.
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R* = Ixl,x 2;y(p*, q*) - R,

is achievable since

IX 2;YIXl (P, q) > IX1,X 2;Y(p, q) - IX;YIX2 (P, q).

The following lemma demonstrates that RE can be attained at a point of the form (p*,p*), thus

reducing the calculation of R 2 from a two dimensional optimization problem to a one dimensional

optimization problem. It should be noted that this cannot, in general, be deduced directly from the

symmetry of the channel and from the concavity of the mutual information functional, because a

convex combination of two product distributions is not a product distribution and thus cannot be

used as a valid input distribution to the multiple-access channel.

Lemma 2. Let {Xi2}iK 1 be independent random variables distributed as

Pr(Xi=A)=1-Pr(Xi=0)=pi, i=1,...,K,

then the function

E X( , 0; AEo;

is a Schur concave [40] function of pI,... ,PK and in particular,

IE L( Xi, 0; i= )< IE[ j X ;AKp'

where {X'} are iid with

Pr(Xi' = A) =1-r(X=) = p'

and

1 K
-K EPi'

i=1

Remark: A real valued function ( .) defined over A C IRk is Schur-concave if x = yP := +(x) > 0(y)

for any k x k doubly stochastic matrix P and for any pair of row vectors x, y in A. An important con-

sequence that we shall use repeatedly is that if q(-) is Schur-concave then +(x1,... ,xk) < q(x, ... ,x)

where x = (x 1 + . + Xk)/k.

Proof:
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To prove that the mapping

(PI,... ,pK) e E [ xi, 0; AEpi

is Schur-concave [43] for all (P,... ,PK) E [0, 1]K, we define the function

So(x) = q(x, 0) = (x + Ao) log(x + Ao) - Ao log Ao, (3.15)

where, as before, we define 0 log 0 = 0. Note that

1E [ Etxi , 0 ; AEpi)] [9 (a )] ( [ ])

The function 9o(.) will play an important role in this paper, and for future reference we list its

derivatives here.

c9'(x) = 1 + log(x + o) , (3.16)

9W"() = x+ (3.17)

o"'(x)= (x + Xo) 2 (3.18)

(9(iv) () =- (3.19)
-X + Ao)3 '

The proof can be now concluded by noting that by (3.17) the function 9(.) is convex in [0, oc), and

the lemma now follows from [43, Proposition F.I., p. 360], [44]. El

Continuing our computation of RE in the two user case (K = 2) we conclude from Lemma 2 that

R = max I2 (p) , (3.20)
0<p<l

where

I I2(p) = IX1i,X 2;Y(P,P)

= (0)(1 - p)2 + 2Wp(A)p(1 -p) + ±9(2A)p2 - 9o(2Ap) (3.21)

= 29(A)p(1 - p) + (p(2A)p2 - p(2Ap) .

One can readily verify from (3.18) that the third derivative I2"'(p) = -8A3 p"'(2Ap) is positive in

the interval (0, 1), and that I2(0) = 12(1) = 0. These facts and the positivity of I2(p) in the interval
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(0, 1) guarantee that in this interval I2(p) has a unique extremum, which is a global maximum. We

thus conclude that the maximum throughput Rr in the two user case is given by

R, = Ixl,x 2;Y(p*,p*) , (3.22)

where p* is the unique solution in the interval (0, 1) to the equation

d
dIX1,X 2;Y(P,P) = 0 (3.23)

Having determined the point of maximum throughput, we now continue our investigation of the region

R?. By the symmetry of the channel with respect to the two users it follows that R is symmetric

about the line R1 = R 2. It thus suffices to study the set

Rn {(R1,R 2): R > R 2}

In fact, it suffices to study the even smaller set D defined by

D = n I {(R1, R 2 ): R 1 > R 2, R2 < Ix 2 ;Y(P*,p*)} ,

where (p*, p*) achieves the maximum throughput, and

Ix 2 ;y(p, q) = Ix,x 2;Y(p, q) - Ixi;YIX2(P, q) · (3.24)

This observation follows by noticing that if maximum throughput is achieved by (p*,p*) then the

boundary segment of RTp*,p* that is of slope -1 must be on the boundary of R.

The region D) will be determined once we compute its boundary aD. The parts of aD that are of

least interest to us are those for which R 1 or R2 are zero. We thus define £ to be the interesting part

&0D, i.e.,

£ = {(R1,R 2 ) CE 9D: R1,R 2 > 0}

Inspecting (3.11) we see that for some pairs (p, q) the pentagon lRp,q may not touch (intersect) £ and

for others it may. The following lemma characterizes the point at which Rp,q could touch S.

Lemma 3. If for some pair (p, q) E [0, 1] x [0, 1]

7Zp,q n E / 0, (3.25)

then 7p,4 n £ consists of only one point, and

Zpq nf = {(IX;YIX2 (P, ), 2 ;y(,) . (3.26)
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Proof: We shall prove that (3.26) follows from (3.25) using a perturbation argument. Let

(Rl,R2) E Rpql n .

By the definition of £ it follows that R 2 $ 0 and thus q $ 0. It can be easily verified that Ix ;YIX 2(P.)

is monotonically decreasing, and it follows that (3.25) (and in particular R 2 > 0) implies

aIXl;yIX, (pv, q) < * (3.27)

It follows that

R1 + -R2 = Ix1,x 2;Y (P, 4) , (3.28)

for otherwise we would have

1 + R2 < IXI,X 2;Y(p, q),

and we could slightly decrease 4 and in this way achieve a point (R1 + 6, R 2) for some positive 3.

It follows from (3.28) and the definition of £ that

(1P, ) = (p*,p*), (3.29)

where (p*,p*) attains the maximum throughput. Condition (3.29) implies that the point (p,Q ) is

not a local maximum for IX1,x 2;Y(-, ), i.e., that there is some direction in which IX1,X 2;Y(', ) is

strictly increasing. Indeed, if p = q4 then this observation follows from the strict Schur concavity of

IX1,X 2;Y(', ') and if P = 4q this observation follows from our observation that the only zero in the

interval (0, 1) of the derivative of I2(p) = IX1,x 2;Y(p,p) with respect to p is p*, see (3.23).

With this observation we can readily deduce that

kR = xi;yIx 2(1i, ) (3.30)

for otherwise we would have

R1 < Ix 2iQx ) ( , )

and we would be able to achieve (R 1, R 2 + 3) for some positive 3 by slightly perturbing (p, q) in

the direction that increases IX1 ,X2;Y without violating (3.4). Equation (3.28) and (3.30) combine to

prove the lemma. O

Lemma 3 establishes that an achievable pentagon RTp,q can intersect the boundary £ at most at a

single point, and that this point must be a vertex point of the form

(IXi;yIX 2 (P, q), Ix 2;¥Y(P, q)) 
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The following lemma determines a relationship between p and q that must be satisfied if ?p,q is to

touch £.

Lemma 4. For condition (3.25) to hold, the pair (p, 4) must satisfy

aIxl,x 2;y(p, q) Olx;YJx 2(P, q) _ Ix ,x 2;Y(p, q) '9 xl;yIx 2 (P,, q) 0. (3.31)
Op qq pq 

Proof: First note that by the definition of £ it follows that (3.25) implies that (p, q) must be in the

interior of [0, 1] x [0, 1]. In particular, this implies that we can perturb (p, 4) in any direction. Clearly

a necessary condition for a pair (p, 4) to satisfy (3.25) is that in any direction we perturb (p, 4) we

cannot have both IXI;YIX 2 (.,-) and IX1,X 2;Y(-, ) increase. This implies that the gradients of these

two functions must be antipodal, which implies that the cross product of these gradients must be

zero. []

Using Lemma 3 and Lemma 4 we can obtain a description of £ and thus determine the set R. This

can be done by allowing 4 to vary freely between 0 and p* and by solving for Pj(q) from (3.31). The

curve

(Ixl;ylx2(P(4),1)x 2 ;y(P((4))4))I 0<q <p*, (3.32)

then traces £.

The final step in the computation of the capacity region C is to compute the convex hull of R, see

(3.12). If R is convex then C = R? and there is no need for further computation. To check whether

7? is convex one needs to check whether the trajectory £ has negative curvature, but the calculation

of this curvature is quite messy.

While we conjecture that 7; is indeed convex, we have been unable to verify this analytically using

the above approach. However, in the absence of dark current (Ao = 0) we were able to compute and

plot the curvature of £ and to verify that 7 is indeed convex.

In the absence of dark current we have that

A - 1Ixl,X2;y(p, q) = 2pq log 2 - (p + q) log(p + q) ,

A- 1 Ix;yIx 2(p,q) = 2pqlog2-q(l +p)log(l +p)-(1 -q)plogp.

Solving (3.23) numerically we obtain that p* " 0.2659, which corresponds to Rs m 0.434A. Equa-

tion (3.31) reduces to:

(2q log 2 - log(p + q) - 1) (2p log 2 - (1 + p) log(1 + p) + p logp) =
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(2p log 2 - log(p + q) - 1) (2q log 2 - qlog(1 - p) - (1 - q)logp - 1),

and the capacity region can be obtained by solving for P(q), 0 < q < p*, and mapping (/(q),q)

according to (3.32). The results are depicted in Figure 2. In Figure 2 we also show an example of a

pentagon Zp,q touching the capacity region, and the single-user based time-sharing capacity region,

whose boundary is the straight line connecting the point (A/e, 0) and (0, A/e). For reference we also

show the symmetry line of the region.

At the other extreme, when the dark current is very large, one can also verify that R is convex.

Indeed, for very large dark current the capacity region tends to an empty set, but if we properly

normalize the rates the limiting capacity region is a rectangle.

IV. K-Users: Maximum Throughput

A. Peak Power Constraints only

In this section we consider the case where more than two users access the channel and study the

maximal achievable throughput. We only consider the symmetric case where all users are subjected

to the same peak power constraint A.

Denoting the maximum throughput for K users by R(K) we have by Lemma 2 that

R(K) = max IK(p), (4.1)
pE[O,1]

where

IK( ) = E[ (Xi)] - (IE Xii (4.2)

and where X 1,..., XK are iid with

Pr(Xi = A) = 1 - Pr(Xi = 0) = p, (4.3)

and Q(.) is defined in (3.15).

Maximum throughput can be thus achieved when all users transmit at the same rate, without the

need for time division multiple accessing. It should be noted that this result does not hold true for

a general multiple access channel, where time division (and hence synchronization) may be required

to achieve maximum throughput at equal rates [45],[46].
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Lemma 5. The seqence {RK) , corresponding to the maximum throughput achievable by K

users, is monotonically increasing and bounded by the peak power A.

Proof: Monotonicity is a simple consequence of the Schur-concavity, which was proved in Lemma 2.

Indeed, setting one of K + 1 users to be deterministically zero demonstrates that the throughput

achievable with K + 1 users is at least as high as the throughput achievable with K users. In fact,

the strict Schur-concavity of IX1,...,XK+;Y demonstrates that RK(fl) is strictly bigger than R ®():

.xK+1;y(O,p,... P)K,p) < x ' '

IX1,--,XK+1;Y(i;Y(P , pi , P) ,

where p' = K/(K + 1)p.

We now turn to proving that

R(K) < A. (4.4)

Note that since dark current cannot increase throughput 2, for the purposes of proving (4.4) we may

assume the absence of dark current, i.e., A0 = 0. Let p be fixed and set

K

Z = EX,, (4.5)
i=1

where {Xi}/ l are independent random variables satisfying (4.3). The random variable Z satisfies

0 < Z < KA, (4.6)

IE[Z] = KpA, (4.7)

IE [z 2] = (Kp(1- p) + K2p2) A 2. (4.8)

We upper bound

IK(P) = 1ET(Z) - (p(lE(Z))

by maximizing

IE(p(Z') - Wo(lE(Z')) (4.9)

over all random variables Z' that satisfy (4.6), (4.7), and (4.8). Since o(-) has a strictly negative third

derivative for all positive arguments (3.18), it follows that the solution to this maximization problem
2 Dark current cannot increase throughput because in its absence the receiver can always add an independent

homogeneous Poisson process to the received process and thus in effect introduce dark current.
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is to have Z' take on only two values, one of which is 0 [40], see also [12, Lemma 1]. Denoting the

second of the two values by 5 and its corresponding mass by q, we can solve for ~ and q:

= A(Kp + (1 -p)),

Kp
Kp+ (1-p) 

Computing (4.9) and noting that cp(0) = 0 we have

R-) < qT(() - To(q()

Kp
= K p (1 p) p (A(Kp + (1 -p))) -Tp(Kpa)

KpAlog(Kp+ 1-p) (4.10)

< A(1 - p) (4.11)

<A,

concluding the proof of the lemma. Here the inequality before last follows from the inequality

log(l +x) < x.

Having established that the sequence R( converges we now study its limit.

Lemma 6.

(a) Irrespective of the strength of the dark current Ao

lim R(K) > A/2. (4.12)
K--oo

(b) In the absence of dark current

lim R ®(K) 0.58A, (4.13)
K-+oo

and

0 < limsup Kp* < oo, (4.14)
K-+oo

where p* is the argument that achieves the maximum in (4.1).
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Proof: To simplify notation we normalize the peak power and assume that A = 1. We begin by

proving part (a) of the lemma. To this end we define the random variable Z as in (4.5), where {Xi}fi 1

are independent random variables satisfying (4.3). We next define the zero-mean unit variance

random variable N by

N = Kp (4.15)

and note that by the Central Limit Theorem, as K tends to infinity, the distribution of N tends to

a zero-mean, unit-variance Normal distribution. We now have

IK(P) = IE[(Z)] - p(IE[Z])

/[(/ Kp( -p)v+ Kp) -(Kp)] d/N(V),

where /N(v) is the probability distribution of N. Noting that the fourth derivative of so(x) is positive

for positive x (3.19) it follows from Taylor's expansion of the function Tp(x) about Kp that

T(xKp(l-p)v+ Kp)-sp(Kp) > vKp(1-p)vt(Kp)

+ 2 (Kp(1-p)v) 2 p"(Kp)

1+ 3!(Kp(1-p)v)3 o"'(Kp), Vv > 0. (4.16)

Similarly, for negative v we note that the third derivative of Wo(x) is negative for all x (3.18), and

hence by a second order Taylor expansion we obtain

W( Kp( -p)+ Kp)-p))-(Kp) > VKp(1 -p).v'(Kp)

+ 2(Kp(1-p)v)2 "(Kp), Vv < . (4.17)

Recalling that N is of zero mean and unit variance we obtain from (4.16) and (4.17)

i _p))3/2.3
IK (P) > 2Kp(l -p)p"(Kp) + (Kp(1 p) 3/ 2 (Kp ) 3dN() .

Upon substitution of the derivatives of Tp from (3.17) and (3.18) we obtain

Kp(I1-_p) (Kp(1 - p)3/2 f0 3'd/N (V)

2(Kp + A) - 6(Kp + A) 2 Ao

1 -p
220
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where the limiting behavior as K tends to infinity follows from the Central Limit Theorem, which

guarantees 3 that

1 3000 N(v) .

Choosing p arbitrarily small demonstrates (4.12) and thus concludes the proof of (a).

To prove part (b) we must consider three cases, corresponding to the limsup of KpK being equal to

zero, a constant, or infinity. The first case is ruled out by (4.10) as it leads to zero throughput.

We next consider the second case corresponding to

lim sup Kp = 00 .
K--+oo

To simplify notation we shall normalize the peak power and assume that A = 1. We define Z via

(4.5) where {Xi) are iid Bernoulli random variables with probability of success PK. We also define

N as in (4.15). To upper bound the resulting throughput we need the four moments of N and their

limiting behavior as KPK tends to infinity. Those are given by

E[N]= O,

IE[N 2] = 1,

IE[N 3 ] = KpK(1 -pK)(1 - 2pK) = (KpK(1 -pK))- 1/ 2 (1 - 2 PK) -> 0.
(KpK(1 -pK))3 1 2

To compute IE[N 4] note that

IE[(Z - Kp K)4 ] = 3 Z IE[(Xi -pK)2(Xj -PK) 2] + IE[(Xi -PK)4]
(i,j)ij i

< 3 (KpK(1 - pK)) 2 + KIE[(X1 - PK)4 ]

< 3 (KpK(1 -pK))2 + KpK(1 -PK)

where the last inequality follows from

IE[(X 1 - PK)4 ] = pK(1 - pK)4 + (PK)4 (1 - PK) < pK(1 - PK).

We thus have

E[N ] < 3 (KpK(1 - pK)) 2 + KpK(1 - PK) 3 (4.18)
-- N4 (KpK(1 -- pK))2

3 Strictly speaking this does not follow directly from the Central Limit Theorem since the function f(v) = v3 is

unbounded. Nevertheless, standard techniques, possibly using (4.18), guarantee this limiting behavior.
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where the limiting behavior holds when PK does not converge to 1, which is the only case of interest

by (4.11). We can now upper bound the maximum throughput as follows:

IK(PK) = IEp(Z) - W(E[Z])

= E [( 2N + Km) log (K + Km)] -Km log(Km)

IE[( KK2N+Km) log (1+ vN )

where a 2 = PK(1 - PK) , m = PK and the last equality holds because IE[N] = 0. Since a 2 < m we

have

IK(PK) < IE [( KmN + Km) log (I + (Km)-1/2N)]

We now use the inequality

X2 X3

log(1 + x) < x- + --

to get

1IK(PK) < E [((Km)l/2N + Km) ((Km) l-2N - (Km)-'N2 + lI(Km) -3/2N3)

-2 -6 (Km)-1/2E[N3 ] + (Km)-1 E[N4 ] -+ -.2 6 2

We can thus conclude that

limKpK = oo =~ limsup lIK(pK) < 1/2.

The monotonicity of the maximum throughput in the number of users now establishes

lim sup Kp 4 = oo = lim RK < A/2.

To conclude the discussion we now examine that case where KpK -- A for some 0 < A < oo. In this

case the distribution of Z converges to Poisson with parameter A. One can now numerically compute

oo Ak
e-> E kjt(k) - p(A)

k=O
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and verify that this is maximized at A t 1.35 with corresponding mutual information that satisfies

(4.13).

We thus see that of the three cases originally considered, the case that yields the highest throughput

is the third case where the sum of the channel inputs obeys a Poisson Limit Theorem.

B. Peak and Average Power Constraints

We now consider the case where in addition to the peak power constraints the users are also average

power limited. We treat only the case where the peak powers and average powers of all users are

identical. The peak powers are denoted by A and the average powers by B, according to (2.1),(2.2).

Accounting for average power constraints in a multiple-access channel is generally more complicated

than in the single user case [39], [42]. The capacity region in the constrained case could be larger than

the convex hull of the union of all pentagons corresponding to pairs of input distributions that satisfy

the average power constraint. To simplify the analysis, we shall not study the entire capacity region

but only the maximum throughput, which we denote by R(K)(B), where K denotes the number of

users accessing the channel, and B is the highest allowed average power for each user.

It follows from [39], [42] that the set of achievable rates for the constrained Poisson channel is the

closure of the set of all tuples (R1,..., RK) of the form

L

(R1, * , RK) a= (R(l),..., R(l)),
1=1

where
L

al=1, al>O, I, ... ,L,
1=1

and the tuple (Rl),... , R()) is achievable with some product input distribution

Pr(Xk = A)= 1-Pr(Xk = O) = P) k = ,.., K ,

and where
L

E aip < B / A , < k < K. (4.19)
1=1
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Here by Caratheodory's Theorem4 [36] L can be taken to be 2K + 1, but in fact K + 2 is enough

[47, 48].

It is clear that if p(, 1=1, . . ., L, k-1, . . ., K satisfy (4.19) then so do P(l), I = 1, . . ., L, k =

1,...,K where

k=-1

We can now conclude from the Schur-concavity of the maximum-throughput (Lemma 2) that

L

RK (B) = max E olIK(p(')), (4.20)
(Cl,-,aL) 1=1

(l),...,p(L))

where the maximum is over all non-negative al that sum to one, and all tuples (p(1),... ,p(L)) with

entries between zero and one that satisfy

L

- alp(') < B/A. (4.21)
1=1

We have thus proved the following assertion:

Assertion 3. If the function IK(p), which is defined in (4.2) as the maximum throughput achievable

with the input distribution Pr(Xi = A) = p for all 1 < i < K, is concave in the interval [O,PK],

where p: is the argument that maximizes IK('), then the maximal throughput under an average

power constraint B is given by

R(K) (B) = IK(),

where

/5 = min{B/A,pK}.

The significance of this lemma is in demonstrating that under the above concavity conditions, max-

imum throughput can be achieved in the presence of average power constraints without the need to

resort to time division multi-accessing, and that synchronization is thus not needed. The analogous

result in the absence of average power constraints follows, of course, from Lemma 2. While we

conjecture that the function IK(p) is indeed concave in the interval [0,p:K] irrespective of the number

of users K and of the dark current Ao, we have been unable to prove this in general. Note, however,

4Note that L larger than K + 1 may be required here due to the average power constraints[39], [42],[47],[48].
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that for a particular number of users K and a particular value of the dark current Ao this condition

can be easily checked numerically. In the two users case it is particularly simple to show that I2(')

is concave in the interval [O,p*], see the discussion leading to (3.22).

We next show that in the absence of dark current, time sharing is not required to achieve maximum

throughput in the three users case, i.e., that our conjecture holds for K = 3 and A0 = 0. To simplify

notation we assume normalized peak power A = 1. By the definition of I3(p) we have

I3(p) = p3 W(3) + 3p 2 (1 -p)p(2) + 3p(1 -p) 2 O(1)- (3p)

= p3 [To(3) - 3Tp(2) + 3o(1)] + p2 [3Tp(2) - 6W(1)]

+p[3o(1)] - W(3p) . (4.22)

Note that

I3(p) lp=1 > 0, (4.23)

as can be verified by evaluating

I3(p) = 6p[W(3 ) - 3o(2) + 3((1)] + 2[3((2) - 6(1)] + A ' (4.24)

at p = 1 (and A0 = 0). Next note that

3 (P)) p=o < O, (4.25)

which can be verified by evaluating (4.24) at p = O. Consider now the function I3(p) for A0 = 0.

It starts negative at p = 0 and ends positive at p = 1. If I3(p) has more than one zero in (0, 1)

then I3" (p) must have at least two zeros. This would contradict the fact that I3"(p) < 0, which can

be easily verified. We thus conclude that I3g(p) starts negative, and then goes positive and remains

positive until p = 1. The zero of Ig3(p), which we denote by P must satisfy

P >p* ,

where p* is the zero of I3(p), which exists because 13(0) = 13(1) = 0. This easily follows by noting

that I3(1) < 0. Indeed, suppose, by contradiction that p < p*. Since I3(0) > 0 this would imply that

I3(pj) > 0. But for p > p~ we have that I3(p) > 0 which implies that for p > p we have that I3(p) is

monotonically increasing in (p, 1), and hence, I3 (p) > 0 implies I3(1) > 0 which is a contradiction.
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V. Summary and Conclusions

In this paper we have studied the capacity region of a Poisson multiple-access channel. In the

case where only two users access the channel we have demonstrated how the capacity region can

be computed when both users are subjected to the same peak power constraint, but are otherwise

unlimited in their average transmit power. The computation relies on the optimality of binary

signaling (Lemma 1) and on a perturbation argument that leads to a characterization of the input

distributions that achieve points on the boundary of the capacity region (Lemma 3, Lemma 4). The

perturbation argument leading to this characterization may well find uses in the computation of the

capacity regions of other multiple-access channels.

We next considered the maximum-throughput achievable on the Poisson multiple-access channel, and

demonstrated that in the absence of average power constraints, maximum throughput can be achieved

at equal rates without the need for time division multi-accessing (Lemma 2). This result does not

hold for all multiple-access channels as demonstrated in [45] and [46]. We have also demonstrated

that the maximum-throughput is monotonically increasing with the number of users, but bounded

by the peak power A (Lemma 5) (or more precisely, by roughly 0.58A - Lemma 6). This should be

contrasted with the Gaussian channel where throughput increases logarithmically in the number of

users [36].

Notice that if we allowed full cooperation between the users by assuming that the messages to be

transmitted by each of the users is known to all other users, a maximum throughput of KAle could

have been achieved (in the absence of dark current and average power constraints). This throughput

can be achieved by viewing this situation as a single-user Poisson channel with peak power KA.

Maximum throughput thus increases linearly in the number of users if full cooperation is allowed,

whereas it is bounded in the number of users if each user is ignorant of the other users' messages.

In the absence of dark current the maximum throughput achievable using time division multiple-

access (TDMA) is A/e 0.368A irrespective of the number of users, while the maximum achievable

throughput with optimal coding and decoding is 0.434A in the two user case, and converges to 0.58A

as the number of users tends to infinity. We can thus conclude that in the absence of dark current,

the loss in throughput due to time division is at most a factor of 1.58.

The situation changes dramatically in the presence of a large dark current. TDMA achieves a

throughput that does not depend on the number of users and which decreases to zero with the dark

current (1.2). In contrast, with optimal signaling, throughput increases with the number of users,

and in the limit where the number of users tends to infinity one can achieve a throughput of 0.5A,

irrespective of the dark current (Lemma 6).
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Time division multi-accessing has the advantage that it does not require joint decoding, and the

receiver complexity is thus significantly reduced. A natural question is thus whether one can find a

channel accessing scheme that would not require joint decoding and yet achieve a positive throughput

in the limit of large dark current and many users. A positive answer to this question is given in

Appendix 1 where we describe a "generalized TDMA" scheme that does not require joint detection

and yet achieves a throughput of A/4 in this limit.

In the generalized TDMA scheme K-time zones are specified and in different time zones the strategies

of users are cyclically shifted. As opposed to standard TDMA, in each time zone more than one

user can be active, but each user is decoded by treating all other users as background radiation. It

is shown that with this scheme one can achieve a throughput of

RGTDMA = E [q(k) (A, A q(J) -q (q(k)A, A E q(j) ] (5.1)
k=l jAk jAk

where 0 < q(l),..., q(K) < 1 are arbitrary, and where k(, ) is defined in (2.5).

Standard TDMA results when all but one of {qk}k=l are zero. A throughput of A/4 results when

the dark current is large and

q(k)= , 1 < k < K.

A different approach to achieving high throughput with single-user detection can be based on the

rate splitting approach [49]. This approach allows one to achieve the entire capacity region of the

asynchronous channel using single-user detection (and without requiring synchronization). While rate

splitting was originally proposed for discrete memoryless multiple access channels, it also applys to

the Poison MAC as the latter can be viewed as a limit of discrete memoryless multiple-access channels

by finely discretizing the time axis [5]. Note also that for various scenarios we have demonstrated that

the maximal throughput in the asynchronous Poisson MAC is identical to the maximum-throughput

in the synchronous case.

In this paper we have also treated average power constraints. If average power constraints are present,

the computation of the capacity region becomes much more elaborate. We have therefore focused

on maximum throughput and derived the maximum throughput under average power constraints for

the two-user case as well as for the three-users case in the absence of dark current. For these cases,

time-division is not necessary, and maximum throughput can be achieved without synchronization.

We conjectured that this behavior holds for more users too, and gave a numerical algorithm for

checking this conjecture for a given number of users and a given level of dark current.
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Our model did not account for any spectral (bandwidth) constraints. Bandwidth constraints are of

practical interest and an investigation of the Poisson MAC subjected to such additional constraints

is called for, thus extending the single-user results reported in [10, 11, 12].
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Appendix A: Generalization of TDMA: Single User Decoding

Here we generalize the standard optical TDMA technique by allowing more than one user to be active

in a given time slot. Only single-user detection is, however, allowed, and each user is thus decoded by

treating the other active users as background radiation (noise). The scheme depends on a parameter

vector (q(l),..., q(K)) whose components are in the interval [0, 1]. If average power constraints (2.2)

are in effect we shall require that the vector additionally satisfy

E q(k) < B/A.
k=1

The proposed accessing scheme can be described as follows. The time axis is divided into K slots,

and in slot m user 1 transmits using a stationary binary signaling scheme with the probability of

transmitting A being Pm,l. To achieve symmetry we shall assume

PmI - q(m+l mod K)

so that the signaling schemes are cyclically shifted from slot to slot. Decoding is assumed to be

single-user decoding treating other users as noise.

Using a random coding argument one can demonstrate that for the purposes of computing the

achievable rates for a given user one can treat all other active users in the slot as background

radiation. Since the scheme is symmetric we can obtain the maximum-throughput by summing over

the achievable rates of the active users in a given slot to yield (5.1).

Throughput is maximized by optimizing over {q(k) }. In the two-user case and in the absence of dark

current the optimal parameter vector is (l/e, 0) corresponding to regular TDMA. However, when
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dark current is high and many users access the channel the vector (1/2,...,1/2) outperforms TDMA

to achieve a throughput of A/4 in the limit of high dark current and many users.
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Figure Captions

Figure 1: Schematic diagram of the single- and multiple-access Poisson channel.

1A. The single user channel. y(t) is a conditional Poisson process with instantaneous rate

x(t) + Ao.

1B. The multiple-access Poisson channel. y(t) is the observed Poisson process combined

of the Poisson processes {yk(t)}, which correspond to the individual rates of the in-

dependent users {xk(t)}, k = 1,2,..., K. D(t) is the dark-current Poisson process

with rate Ao.

Figure 2: The capacity region of the Poisson multiple-access channel in the absence of dark current.

Also shown is the sub-optimal TDMA region, a pentagon (corresponding to some pair

of input distributions) touching the boundary of the region, and the region's symmetry

line.

List of Footnotes

Footnote 1: In the definition of the function q0(a, 3) we define 0 log 0O = 0. With this definition, the

function q(a, ,3) becomes continuous.

Footnote 2: Dark current cannot increase throughput because in its absence the receiver can always

add an independent homogeneous Poisson process to the received process, and thus in

effect introduce dark current.

Footnote 3: Strictly speaking this does not follow directly from the Central Limit Theorem since

the function f (v) = v3 is unbounded. Nevertheless, standard techniques, possibly using

(4.18), guarantee this limiting behavior.

Footnote 4: Note that L larger than K+1 may be required here due to the average power constraints[39],

[42],[47],[48].
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