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Abstract

Two formulations of the problem of optimal finite horizon sequential vector quan-
tization of a Markov source are studied. The first aims to minimize a weighted sum
of average entropy of the quantized process and average distortion, while the second
aims to minimize the former with a hard constraint on the latter. These are converted
to equivalent stochastic control problems. Existence results and dynamic and linear
programming formulations are studied, leading to a 'verification theorem' for the first
case that gives sufficient conditions for optimality.

Keywords: Optimal vector quantization, Sequential source coding, Markov pro-
cesses

1 Introduction

In this paper, we consider the problem of optimal sequential quantization of stationary

Markov processes. In the traditional rate distortion framework, the well known result of

Shannon shows that one can achieve entropy rates arbitrarily close to the rate-distortion

function for suitably long lossy block codes [9]. Unfortunately, long block codes imply

long delays in communication systems. In particular, control applications require causal

sequential encoding and decoding schemes.

Witsenhausen [18] looked at the optimal finite horizon sequential quantization problem

for finite state encoders and decoders. His encoder, however, had a fixed number of lev-

els. He showed that the optimal encoder for a k-th order Markov source depends on at

most the last k source symbols and the present state of decoder's memory. Walrand and

Varaiya [17] looked at the infinite horizon sequential quantization problem for sources with

finite alphabets. Using Markov decision theory they were able to show that the optimal

encoder for a Markov source depends only on the current input and the current state of the

decoder. Gaarder and Slepian [10] looked at sequential quantization over classes of finite
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state encoders and decoders. Though they laid down many definitions, their results, by

their own admission, are incomplete.

In this paper, we do not impose a fixed number of levels on the quantizer. The aim is to

somehow jointly optimize the entropy of the quantized process in order to obtain a better

compression rate, and a distortion measure. The traditional rate distortion framework

calls for minimization of the former with a hard constraint on the latter. This is one

of the criteria we consider. For the most part, however, we consider the analytically more

tractable problem of minimizing a weighted sum of the two. Chou, Lookabaugh and Gray [8]

have looked at the entropy-constrained quantization problem for one-shot coding problems.

Neuhoff and Gilbert [16] showed that for a memoryless source, the optimal encoder and

decoder is also memoryless. Thus the optimal sequential quantizer for an independent

process is just the entropy-constrained quantizer of [8]. The situation, however, is much

more complex in the Markov case.

We approach the problem from a control point of view, treating the choice of the se-

quential quantizer as a control choice. The correct 'state space' can then be shown to be the

space of conditional laws of the process given the quantizer outputs. As already mentioned,

we consider two versions of the control problem. The first is a traditional average cost

control problem which seeks to minimize the asymptotic time average of expected running

cost given by a weighted sum of entropy and distortion terms. In this case, we obtain

a 'verification theorem' using dynamic programming which spells out sufficient conditions

for optimality. The second formulation is the more traditional one, viz., as a constrained

control problem wherein the entropy cost is to be minimized under a hard constraint on
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the average distortion. Here we have only an 'existence' result. In both cases, an important

conclusion is that for Markov sources, the optimal quantization scheme may be taken to be

'Markov' in an appropriate sense.

There are limitations to our model: we assume that the state space of the source is

compact. Also, a technical condition leads indirectly to an upper bound on the number of

output words any quantizer might have. Finally, we have only abstract existence results and

sufficient conditions. These do, however, provide a starting point for potential approximate

schemes for good quantizer design. We comment on this aspect again in the concluding

section.

The structure of the paper is as follows. In Section 2, we describe the sequential quantiza-

tion problem and introduce the formalism. Section 3 reduces it to a pair of control problems.

Section 4 recalls some relevant facts from nonlinear filtering. Section 5 establishes the ab-

stract existence results for optimal controls for both our formulations. Section 6 introduces

the Hilbert metric on the space of probability measures and derives its consequences in the

present context. Section 7 approaches the average cost problem using dynamic program-

ming, leading to the aforementioned 'verification theorem.' Section 8 comments briefly on

the constrained control problem. Section 9 concludes with some relevant remarks.

2 Sequential Quantization

In this section, we formulate the sequential vector quantization problem. We shall use

the following notation throughout: for a Polish space X (i.e., a separable Hausdorff space
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metrizable with a complete metric), P(X) will denote the Polish space of probability mea-

sures on X with the Prohorov topology ([7], Ch. 2). Also, for any random process {Ym},

set yn = {Yi; i < n}, its 'past' up to time n.

Let {Xn} be a stationary Markov process taking values in a compact subset S of Rd,

d > 1. We assume S to be such that for any relatively open O C S, A(O) > 0, A being

the Lebesgue measure on Rd. The transition kernel of {Xn} will be denoted by p(x, dy),

viewed as a measurable map S -4 P(S). We assume that p(x, dy) has a density p(ylx) > 0

w.r.t. A on S, which is continuous in x. The strict positivity of p(ylx) also implies that the

process is ergodic. This is because it forces any two ergodic invariant probability measures

to be mutually absolutely continuous w.r.t. A, hence w.r.t. each other, and therefore they

coincide.

Let {Tn} denote the transition semigroup associated with {Xj} and ft its unique invari-

ant probability measure. We impose the following 'strong ergodicity' condition [14]:

lim Tnf(x) = j(y)dfi(y) Vf E Ll(fi), x E support (ft).
n-+oo

Finally, we impose on p(ylx) the following restriction: these exist a2 > al > 0 and

c E C(S), >(.) > O, such that

0al (y) < p(yIx) < a2 p(Yi) Vx, y. (2.1)

We shall comment on a possible relaxation of this condition later, in the last section.
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Let E = {cal,ca2,...} be an ordered set that will serve as the alphabet for our vector

quantizer. Let {qn} denote the E-valued process that stands for the 'vector quantized'

version of {Xn}. The passage from {Xn} to {qn} is described below.

Let D denote the set of finite nonempty subsets of S (more generally, of a compact

subset S of Rd containing S - this won't affect our analysis), satisfying the following

condition:

(i) There exists a fixed A > 0 such that for any A E D and any distinct [xl,...xd],

[Yl, - - , Yd] Ec A, lxi - yil > A Vi.

Note that this restricts the maximum cardinality of A, A C D, by (say) N > 1. We endow

D with the Hausdorff metric which renders it compact metric and therefore Polish. For

A E D, let 1A : S -X A denote the map that maps x E Rd to the element of A nearest to it

w.r.t. 11 11, any tie being resolved as per some fixed priority rule. Let iA : A -+ E denote

the map that first orders the elements {(a,..., am} of A lexicographically and then maps

them to {oal,..., cm} preserving the order.

At each time n, a measurable map r/n: '°° -- D is chosen. With Qn _ n(qn), one

sets qn+l = iQn ° IQ, (Xn+,), which defines {qn} recursively. This is the process that will

be encoded and transmitted across a communication channel.

The explanation of this scheme is as follows: in case of a fixed vector quantizer, the

finite subset of Rd to which the signal gets mapped, can itself be identified with the finite

alphabet E. In our case, however, this set varies and therefore must be mapped to a fixed

alphabet E in a uniquely invertible manner. This is achieved through the map iA. Assuming

that the receiver knows ahead of time the deterministic maps j{n())} (we shall reduce this
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requirement later to that of knowing a single map /7(.)), he can reconstruct Qn as rln(qn),

having received qn at time n. In turn, he can reconstruct iQ-1 (qn+l) = Qn (Xn+1 ) as the

vector quantized version of X+,1 . The main contribution of condition (t) is to render the

map A = {ai,... am E D -4 {iA(al),...,iA(am)} E C* continuous. Not only does this

make sense from the point of view of robust decoding, but it also makes the central problem

we shall formulate later well-posed.

Our aim will be to jointly optimize over the choice of {v/n}, the average entropy of {q,}

(P the average codelength, if encoding is done optimally) and average distortion. We shall

consider two formulations of this problem. The first is the 'penalty function' model wherein

we minimize a weighted sum of the two, i.e.,

1 n-1
lim sup - E E [H(qm+l/qm) + V[IXm - mIl2 ] (2.2)

n--+oo nb

where qm = i-1 (qm) = IQm_ (Xm) Vm and V > 0 is a prescribed constant. The second is

the 'constraint' model wherein we minimize average entropy with a hard constraint on the

distortion, i.e., minimize

n-1

lim sup 1 E [H(qm+l/qm )] (2.3)
noo n M=O

subject to
n-1

limsup - E [lXm -m l 2] < C (2.4)
n--oo n m=O

for a prescribed C > 0.
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We shall primarily be concerned with the former problem, though we shall also comment

on the latter.

3 Reduction to Control Problems

In this section we reduce the two formulations of the optimal vector quantization problem

to equivalent control problems.

Let 7rn(dx) denote the regular conditional law of Xn given qn. (Thus {7rn} is a random

process taking values in the compact Polish space P(S).) For a E E, we have

P(qn+l = a/qn ) = E[E [Iqn+l = a}/qn,Xn] /qn]

= E [p(ylXn)I{iQf o IlQ (y)= a}A(dy)/qn]

J1rn, (dx) JP(YIX)I{in(qn) Ol7(qn)(Y) = a}A (dy) (3.1)

A ha (7rn , Qn)

where ha: P(S) x D -- R is defined by

ha(7r, A) = / -(dx)f p(yx)I{iA 0o A(Y) = a})(dy) (3.2)

Define k,g : P(S) x D -- R by:

k(7r,A) = -Eaha(7r,A) logha('r,A), (3.3)

g(Tr, A) = /7r(dx) p(YIx)(y-lA(y))2A(dy), (3.4)
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where the logarithm is to the base 2. Now (2.2), (2.3), (2.4) can be rewritten, respectively,

as

limsuPn,,O n Em=o E[k(rm, Qm) + Vg(7'm, Q m )], (3.5)

limsup,n-OO n En-0 E[k(Q7r, Qm), (3.6)

and,

limsup,,no n En-0 E[g (rm, Qnm)] C. (3.7)

A standard application of the Bayes rule shows that {7rn} is given recursively by the

nonlinear filter (see, e.g., [4], Ch. VIII)

I ~(dy) fI{iQn O IQn(Y() = qn+i}(yxz)A(dy)r- (dx)

n I{ iQn ' IQn (Z) = qn+1}p(ZIx)A(dz) r, (dx) (3.8)

By (t), A1 oiAl(a) contains a relatively open set of S for all a, A. Combining this with our

conditions on S and p(ylx), we see that the denominator of (3.8) is strictly positive and

thus (3.8) is well-defined.

In view of (3.1), one may now view {7rn} as a P(S)-valued controlled Markov process

controlled by the D-valued control sequence {Qn). The 'penalty function' model then

reduces to the control problem of minimizing the average cost (3.5). The 'constraint' model

in turn leads to the constrained control problem of minimizing the average cost (3.6) subject

to the hard constraint (3.7).
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Having cast the problem in the framework of controlled Markov processes, we can borrow

certain standard concepts from the latter. To start with, we enlarge the class of admissible

{Q(n} So far we considered Qn of the form 77,(q n ) for prescribed 1n(.). More generally,

we allow any {Q,) that satisfies: Qn+i, X' ° are conditionally independent given qn+l,

Qn. This is in tune with the class of possibly randomized but nonanticipative controls of

stochastic control theory, the largest class of control processes one usually admits a priori.

We shall call such {Qn} admissible. One then redefines Onr, as the regular conditional law

of Xn given qn, Qn. This does not affect (3.1)-(3.8).

A word of caution is warranted here. Though randomization of controls is standard

in stochastic control theory, it does not quite make sense in our original communications

problem. For one thing, the decoder will not know the exact quantizer used even on receiving

{qn} in an error-free manner. Worse, a little thought shows that (3.6) is not the correct

expression for long run average entropy if randomization is used, making our formulation

faulty. We shall, however, ignore these issues, treating randomization purely as a technical

convenience. Our aim will be to provide sufficient conditions for nonrandomized optimal

policies (a 'verification theorem' in control parlance) which we do for the penalty function

model.

We also identify two important subclasses of admissible {Qn). The first is that of

stationary policies wherein Qn = v(nr,) Vn for a measurable map v : P(S) -- D. The second

is the stationary randomized policies wherein each Qn is conditionally independent of qn, 7rn,

Qn-1 given 7rn, with a regular conditional law u(7rn, dz) for a measurable u : P(S) -+ P(D)

that is independent of n. We identify the stationary policy (resp., the stationary randomized
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policy) with the map v(.) (resp., u(.)) by abuse of notation. Under either, f{r)} becomes a

time-homogeneous Markov process.

We take up these control problems again in Section 5, following some additional results

on the nonlinear filter in the next section.

4 The Nonlinear Filter

This section establishes some key results concerning f{rn). Let (7r,A) E P(S) x D -*

r(ir,A,dy) E P(P(S)) denote the measurable map that is the transition kernel of the

controlled Markov process {n)}.

Lemma 4.1 The map r(., ., dy) is continuous.

Proof: It suffices to check that for f E C(P(S)), the map f f(y)r(, , dy) is continuous.

By the Stone-Weierstrass theorem, any f E C(P(S)) can be uniformly approximated by

functions of the form f (r) = F ( fi dr,..., ffm dr) for some m > 1, f C Cb(R m ), fi E

C(S) Vi. Thus it suffices to consider such an f. Let

Vai(7r, A) = fi fi(y)I{iA o IA(Y) = a}p(yjx)A)(dy)r(dx), a E, 1 < i < m.

Direct verification gives

f(v)r(7r,A,d.) d =, ha(Tr, A)F.hl(7r, A) " "' A)h1 (4.1)
ah 7,A) h 7,A



Let (xn, An) -+ (Xo,, Ao) in S x D. Since A -4 iA(A) is continuous,

I{iA, o 1A, (y) = a} - I{iAo o lA, (Y) = a} a.e. Va.

(The convergence fails only on the boundaries of the Voronoi regions IA1 (b), b E A, which

have zero Lebesgue measure.) Thus

Vj, a, fj (y)I {iA,, o IA, () = a} - fj (y)l {iAo o IA (Y) = a} a.e.

As n -+ oo, p(ylxn) -+ p(ylxoo) by continuity, Vy. By Scheffe's theorem ([7], pp. 26),

p(Xn, dy) -- p(xo, dy) in total variation. Hence Vj, a,

lfj (y)f{iA A = a}p(xn,dy) J(y)I{iAoo OlA() = a}p(xoo, dy)

That is, Vj, a, the map

(x, A) - J fj(Y)I{iA o IA(Y) = a}p(x, dy)

is continuous. It is clearly bounded. The continuity of Vai (, ') follows. The continuity

of ha(-,') follows similarly. The continuity of the sum in (4.1) now follows by one more

application of Scheffe's theorem. O]

We also have:
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Lemma 4.2 Under a stationary or stationary randomized policy, {rn}, is an ergodic

Markov process.

Proof: Under our hypotheses on {Xn), this follows exactly as in Theorem 2.2, pp. 242-244,

[14]. D

5 Existence of Optimal Controls

As a prelude to our search for optimal quantizers, we establish here existence results for

optimal control policies for the control problems introduced in Section 3. For this purpose,

define 'empirical measures' L EC P(P(S) x D), 'in E P(P(S)) by:

n-1

n (A x B) -= P(7n e A,Qm C B),
m=O

n-1

n b(A) = - Z P(im c A),
m=0

for A, B Borel in P(S), D respectively. Thus 'n is the marginal of [Ln under the projection

P(S) x D -- P(S). By compactness of D and P(S), it follows (cf. Prohorov's theorem, [4],

pp. 25) that {n}), {vn} are tight and hence relatively compact. Thus they each converge to

a compact set of limit points in the respective spaces. Our first task will be to characterize

the same.

Let u: P(S) -+ P(D) be a stationary randomized policy and mu(.) the unique invariant

probability measure of the corresponding ergodic Markov process {T n}. Define an associated
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'ergodic occupation measure' G E P(P(S) x D) by

q(dr, dA) = mu(d7r)u(r, dA). (5.1)

This satisfies: Vf G C(P(S)),

II [f () - f (7')r(r, z, dr') (d, dz) = (5.2)

This is simply a restatement of the invariance of mu(.) under u(.). Conversely, any b

satisfying (5.2) may be disintegrated as in (5.1), whereby the mu(.) therein will be the

unique invariant probability measure for the ergodic Markov process corresponding to the

stationary randomized policy u(.) in (5.1), specified mu-a.s. uniquely. This establishes a

correspondence between stationary randomized policies and their associated ergodic occu-

pation measures. Let H = {q E P(P(S) x D)1(5.2) holds} and Ho its subset with the

further restriction: for mu as in (5.1),

J (Jf (x)Tr(dx) m(dr) = E[f(Xo)] (5.3)

That is, the barycenter of mu coincides with the law of Xo ( = the law of Xn for any n).

Lemma 5.1 Ho = H, is nonempty, convex, compact and furthermore, b/n - H.

Proof: Let /i(d&r,dz) = mu(dir)u(7r, dz) G H. By Lemma 4.2, {Trn} is ergodic under the

stationary randomized policy u(-). Thus the law of 7rn converges in the Cesaro sense to the

unique invariant distribution mu, regardless of the initial condition. In particular, if we pick
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iTo = the law of Xo, then {7rn) has the interpretation of being the process of conditional laws

of Xn given qn, Qn resp. and therefore the barycenter of the law of 7rn is the law of Xn =

the law of Xo Vn. The same must then be true for m,. Thus /t E Ho. That is, Ho = H.

By Lemma 4.1, the expression in the square brackets in (5.2) is continuous in (Ir, z). Thus

if On - D in P(P(S) x D) and Dn satisfies (5.2) for each n, so will (. Thus H is closed.

Since (5.2) is preserved under convex combinations, it is also convex. For f C C(P(S)), the

strong law of large numbers for martingales ([11], pp. 35-36) leads to

n-1

f ((7rm) - f(Tr')r(7Trm, Qm,,d7r')) -+ 0 a.s
m=0

By the dominated convergence theorem, we may take expectations to conclude that

f (i Tr) - f (7r')r( r, z, d7r')) (d7r, dz) -+ O .

Thus every limit point of {7rn} satisfies (5.2). That is, [t -+ H and H is nonempty. D

The limsups in (3.5)-(3.7) are recognized as lim,,, f(k + Vg)d,,, limn,,, f kd,

and limn,,, f gdlun respectively. But by the above lemma, all limit points of the pairs

(f kdtn, fgdp,) as n -4 oo, are of the type (fkdy, f gdl) for some tL E H. Thus it

suffices to restrict our attention to stationary randomized policies whereby the above limsups

become limits, equal to the integrals of k + Vg, k, g resp. w.r.t the associated ergodic

occupation measures. The penalty function problem then reduces to minimizing /Z -4

f(k + Vg)dlt on H. The constraint problem becomes: minimize u -+ f kdft on H subject

to f gd/t < C. By the usual compactness-continuity arguments, we then have:
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Lemma 5.2 Both problems above have optimal stationary randomized policies.

6 The Hilbert Metric

This section introduces the Hilbert metric on M4(S) and uses it to establish an important

contractivity property of the unnormalized filter, along the lines of [2].

The Hilbert metric p on M4(S) is defined by

p(, l) = In sup p (A)/ (B) 

where the supremum is over all Borel A, B for which /(A) > 0, [(B) > 0. Note that this

is +oo if [/, fi are not mutually absolutely continuous. Also, it does not change if /u, P are

scaled by positive scalars.

For each n, define Kn: M(S) -X M(S) by

(Kn/) (dy) = JI {iQ,n lQ(y) = qn+l) P(Y x)A(dy)pl(dx)

/fkn(x,y),'(dx)A(dy)

for a suitably defined kn(', ). Also define

p-(Kn) = supp(Knp, Knll')

= n [sup esssup kxy) kn(x y
yy ' zxI kn(x, y') kn(x', y)

Lemma 6.1 p(Kn,u,Knu') < tanh(p(Kn)/4)p(,, t,').
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For a proof, see Theorem 1.1, pp. 242-243, [15].

Corollary 6.1 p(Kn[t, Knt') < 6p(,L, i'), where 5 = tanh(ln(0c2 /ali)/2) < 1.

Proof: Immediate from Lemma 6.1 and (2.1). D

Lemma 6.2 For p,/l' C P(S), I/P-[L'IIlTV _< l 2 p(p, p'), where 1f [l[TV is the total variation

norm.

Proof: Without loss of generality, assume that u, AL' are mutually absolutely continuous.

Write the Hahn-Jordan decomposition of the signed measure A - A' as A - ,u' = -u+ - -,

where A/+, At- are mutually singular nonnegative measures, and let A c S be a Borel set such

that A (resp. AC) carries the entire mass of At+ (resp. A-). Since /u+(A) _> 0, A(A) > A'(A).

Similarly, IA'(AC) Ž> t(AC). Clearly, IL+,u- > 0. Then Au(AC), /'(A) > 0. Hence

0 < (A)) - '(A) < '(A) I (A) -1)

< p'(A) ( ((A) /t'(A' 1)

< A'(A) (eP(U') -)

Similarly,

o < A'(AC) - A(AC) •< (Ac) (eP(/,A') 1)

Thus

11- A'1IITv = (M,(A) - (A)) + (A'(AC) - (AC))

< (A'(A) + At(AC)) (eP(/) I)
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< 2 (ePU"4')- )

Since we also have

IlI - P'IITV < 2,

we have

1A - /I'TV= min (2,2 (eP(It)1') I))

On the interval [0, In 2], the graph of the function x -+ 2(ex - 1) lies below that of the line

x ln22x. Combining this fact with the last inequality above, the claim follows.

Let {irn}, ri' } denote the outputs o tthe nonlinear filter "differing only in the initial

conditions" in the following sense: Write (3.8) as

7rn+1 = F(ern, Qn, qn+l),n >- 0,

for a suitably defined map F. Also, it can be easily verified that the conditional law of qn+1

given {rm, qm, Qm, m < n} depends only on rn, Qn. Thus standard stochastic realization

theoretic arguments [5] allow us to write

qn+l = G(n, Q., ),n > 0,
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for a measurable map G, {6n} being i.i.d. random variables uniformly distributed on [0, 11

such that E, is independent of {7rm, qm, Q, ,ml,m < n} Vn. (This may need an enlarge-

ment of the underlying probability space, but this technicality does not affect our analysis.)

Thus

rn+l = F(>n Qn, G(7rn, Qn, 6n)), n > 0.

We say that {irn}, {7r'} differ only in the initial conditions if both are generated by the

above recursion for the same processes {Qn}, {j,}, on a common probability space, but

7ro, 7rT are allowed to differ.

Lemma 6.3 There exists a constant C1 > 0 such that [I[rn - 7rnIITV < C15n .

Proof:

In view of the foregoing, and the fact that p is invariant under scaling by positive scalars,

ln - 7InIITV <2 -(rn,iK} I n- p(KioKKw) ln2 n-1p(Kl).

7 The Penalty Function Model

We shall approach this problem by adapting the 'vanishing discount' argument of Markov

decision theory [12]. But first we need some technical lemmas.

To start with, note that by (t), each Voronoi region (i.e., the polytope of points that

map to any given element of A under the nearest neighbor rule) corresponding to any
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A C D must contain a d-dimensional cube with sides of length A/3. By (2.1), this cube

has a minimum probability of some a > 0 where 'a' depends only on )9( ), r, and A. Thus

ha(-7, z) defined by (3.2), when nonzero, is at least a. Also, it is zero for a = ai, i > N. To

summarize, the vector [h.l (7r, z), hC2 (7I, z),.. .] takes values in

G {P [Pl,P2,...] i E [0,1], EPi = 1, Pi = 0 for i > N,

and for i < N, either Pi = 0 or Pi > a 4
The function p - - >i Pi lnpi is Lipschitz on G A straightforward computation then leads

to the following: Let {wrn}, (r'n} be as in Corollary 6.1.

Lemma 7.1 For a suitable constant C3 > 0,

|k(rZ)-k( ,z) c3 ll n-K I1Tv Vz,

g(7rn,z) -g(7r',z)f < C311Jn 7T1r llT Vz.

Let 3 > 0 and consider the 'discounted cost control problem' of minimizing over admis-

sible {Qn} the discounted cost

JO({Qn}, 1ro) = E [E n (k(rn) Qn) + V9(rn, Qn))
n=O

Define the 'value function' V: : P(S) -+ R by

V, (7r) = inf Jo({Qn}), Ir)
{Qn} admissible
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Lemma 7.2 V3(.) is the unique least solution in Cb(P(S)) to the following 'dynamic pro-

gramming' equations:

V:(r =) min (k(7r, Q)) +Vg(, Q) + F3 r(r, Q d7r')Vl(7r')) . (7.1)

Furthermore, these exists an optimal stationary policy v(.) optimal for any initial law,

satisfying

v(T) E Argmin (k(7, ) + Vg(, ) + i/ r(r, ,dT7)Vd(7r')) . (7.2)

Conversely, any stationary policy satisfying (7.2) is optimal under any initial law.

This follows from standard results in Markov decision theory [12].

Lemma 7.3 There exists a constant C > 0 such that

IV8(7) - Vg(7r')l < 7r, 7' E P(S), V > O0.

Proof: We have

IV (Xr) - V i(r')I | sup J 3(({Qn}, I) - sup J ((Qn}, ')

< sup IJ,(3({Qn}, r) - JO({Qn}, ') |
{Qn}

where in the r.h.s. we consider costs under processes {ir,n}, {r$n} differing only in the initial

conditions 7r, 7r' resp. By lemma 6.3, the r.h.s. is bounded by

sup E [ n fl k(7in, Qn) + Vg(rn, Q,) - k(r, Q') - Vg( 1
r ', Q)|

(Q) n=21
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< CE [ in Snj n < 1
- - - 1-8

for a suitable constant C > 0.

From Lemma 5.2, we already know that the problem has an optimal stationary ran-

domized policy u*(.). Let r denote the corresponding (optimal) cost and = 1 -1P. Write

J({Qn), v) as Jf,({Qn), v) to make explicit its dependence on P.

Lemma 7.4 limop ~:V3(v) = r vv E P(S).

Proof: Since /Vp(v) •< /3J,({Qn},v) for {Qn} generated according to u*(.), we get

lim inf Vp(v) < lim sup PVp(v) < lim fJ({Q} ), ) = r

If either inequality is strict, we can find c < 0 and {3M)} in (0, 1) with f3m - 1 such that

Vm,

I3mJ/3m({Qn},v) > P - />3mV/Om(V)V

For each m, let vm (') be an optimal stationary policy under Om and (7m, Qm = vm(7r')),

n > 0, the corresponding optimal processes for initial condition v. That is, Vp3m(v) =

J,3m({ Qnm},v). Define Pom E P(P(S) x D), m > 1, as follows: For f E C(P(S) x D),

J d(pm = 3mE [ fj (rn X1 n)]
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Then (Pm satisfies:

J f dpo /3m JJ f (r')r(7r, z, d'r') pm(d7, dz) + rm f (v, vm(v))

Let p be a limit point of {(pn} in P(P(S) x D) as m -+ oo. Then po must satisfy: Vf as

above,

f f dp = J f (7r')r(7r, z, di')p(di, dz) .

Disintegrating cp(di, dz) as ?7(d-)uii(, dz), it follows that 7(') is the unique invariant proba-

bility measure under the stationary randomized policy iu(), i.e., p is the ergodic occupation

measure under u(.). But then f(k + Vg)dp = limf(k + Vg)d(pm (under an appropriate

subsequence) < r - e, which contradicts the definition of r. This proves the claim. E]

Now fix vo C P(S) and let V:(v) = V:,(v) - V,(vo) for v e P(S). Let V(v) =

limsupl V,/(v), bounded by virtue of Lemma 7.3. Rewrite (7.1) as

Vp((r) = min [k(7r, Q) + Vg(7, Q) -Vp(vo) f /r(7. , Q, d7')V/(1r')]

Thus

sup V:(Xr) < sup min k(r, Q) + Vg(r, Q) - V/3(vo)
1>/'>/ 1>p>/ Q

+/Jr(7r,Q,dor')( sup ,3P (a'))
1>/~'>/

< min Fk(7r, Q) +g(, Q) - inf > /3'V, (vo)
Q L>01>2
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+ (sup 1 /r(7rQ,dir') (sup Vil(7r'))1 (7.3)

Letting P -+ 1, we have:

Lemma 7.5

V(r) < inf [k(, Q) + g(Q) +)-V + r(, Q, d7r')V(7r')] (7.4)

Proof: First note that the r.h.s. of (7.3) differs from

inf 1(krQ) +V g(rQ) l>3>k]

by a term that goes to zero in a bounded fashion as 13 -+ 1. The claim then follows by

letting P3 -4 1 in (7.3) and observing that when a bounded sequence of real-valued functions

monotonically decreases pointwise to a function, the corresponding infima converge to the

infimum of the limiting function. O

Theorem 7.1 For any optimal stationary randomized policy u(.) with associated invariant

probability measure mu(.), the following holds:

(*) For mu- a.s. 7r, u(ir) is supported in

Argmin (k(7r,') + Vg(Tr,) + r(r, , ,dT')V(7r)),

and (7.4) holds with equality.
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Conversely, if (*) holds for a stationary randomized policy, it must be optimal.

Proof: Let u(.) be an optimal stationary randomized policy and {nr,) the corresponding

stationary ergodic process. By (7.4),

V(1n) < min (k(1rn,Q) + V9g(rn,Q) - r + r(7,Q, d')V(7r'))

< k(rn, Qn) + ]V9(7n, Qn)- r+ E [v(Tn+l)/n] (7.5)

where {Qn) is the control sequence governing {7rn}. Since a{rn} is optimal, E[k(7r, n, Qn) +

V9g(rn, Qn)] = r. Taking expectations in (7.5), we have E[V(Trn)] on the l.h.s. and

E[V(rn+l)] + E[k(7n, Qn) + + Vg(TrnQn)]- r = E[V(7Trn+)] = E[V(7nr)] on the r.h.s. Thus

equality must prevail throughout, establishing the first claim. For the converse, if the said

conditions hold, an argument similar to the above shows that the corresponding cost must

equal F, the optimum. [-

Corollary 7.1 Suppose v(.) is a stationary policy such that the inf in (7.4) is attained at

Q = v(ir) Vdr, with equality. Then v(.) is optimal for any initial condition.

Corollary 7.1 and the converse part of Theorem 7.1 specialized to stationary policies

serve as sufficient conditions for a stationary policy to be optimal. This is in the spirit

of the 'verification theorem' of classical optimal control. Note, however, that in absence

of proven lower semicontinuity of V(.), it is not guaranteed that the infimum in (7.4) is

attained for each -r. One does, however, have the following weaker claim:

Theorem 7.2 For any e > O, there exists an e-optimal stationary policy.
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Proof: By Lemma 7.3, /3V0(.)) -- O uniformly as P -4 1, thus JYV, 3(.) - IF -+ 0 uniformly.

Let v: (.) be an optimal stationary policy for / and m: (.) the corresponding unique invariant

probability distribution of {r,}. Then f/Vf (Vr()m8(d7r)- F - 0. A straightforward

computation shows that

P / ())mp (do) (k (a v: (X)) + Vg (a v: (X))) mo (d7)

i.e., the cost (3.5) under v(7r). The claim follows. O

Note that this also gives a recipe for finding near-optimal stationary policies.

If (V, 1) is another solution to (7.4) with V(.) bounded measurable, we have

V(7rn) < k(n,, Qn) + Vg(irn, Qn) - r + E[V(rn+i)/inr]

under an optimal stationary ergodic {7)} controlled by an optimal stationary randomized

policy realized as {Qn}. Taking expectations, we have

r < E [k(7r, Q.) + Vg(7r., Qn)] = r.

Now recall the 'occupation measure' formulation of the control problem from Section 5.

It can be recast as: minimize f(k + Vg) dlu over / E P(S x D) satisfying

Jf (y)r(x, u, dy) (dx, du) = f(x) (dx, D) f E C(S).
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This can be viewed as an infinite dimensional linear programming problem in the space of

measures. As in [12], Ch. 6, the dual program is to find the pair (b, V(.)), V(.) bounded

measurable, that maximizes b subject to

b < fr(x,u, dy)V(y)-V(x) + k(x, u) + Vg(x, u) Vx c S, u E D.

The foregoing discussion then implies that both linear programs have a solution and that

there is no duality gap.

8 The Constraint Model

The aim of this brief section is to underscore the difficulties in analyzing the constraint

model. From Section 5, we already know the existence of an optimal stationary randomized

policy for this problem. It is, however, difficult to go beyond that. If we pursue the convex

programming approach of Section 5, standard Lagrange multiplier theory would tell us that

the /L E Ho that is optimal for the constrained problem is also optimal for the penalty

function problem for a specific choice of V, viz., the associated Lagrange multiplier. But

this is not necessarily much help even if we knew V, because it is just one of the minimizers

of the latter cost, among possibly others. Thus, this constraint - penalty function model

equivalence does not let us conclude the existence of an optimal stationary policy.

Even in the analytically more accessible discrete state/time stochastic control problems

with constraints, these very problems remain [1], [6]. In fact, randomization may be un-

avoidable in some cases. Also, dynamic programming is not found to be a very tractable
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approach to constrained problems. One usually goes for the linear programming formula-

tion where the constraint leads to another additional inequality without altering the nature

of the linear program significantly [I]. In the present framework, it would be interesting to

use approximation to this linear program to come up with 'good' suboptimal quantization

rules.

9 Concluding Remarks

We shall comment on some potential extensions of the foregoing.

(i) The condition (2.1) can be relaxed by replacingp(ylx) by n-stage transition probability

density for some prescribed n. One then has to apply the arguments of Section 6 to

the process sampled at times kn + i, k > 0, separately for each i, 0 < i < n, and

combine the results.

(ii) The extension to the whole space, i.e., S = Rd, can be managed by considering

Rd = the one point compactification of Rd and then imposing conditions (t) and

(2.1) on this compactified state space, in terms of an appropriate metric on Rd for

the former. These conditions, however, become quite restrictive and artificial. It

would be interesting to extend these results to S = Rd without having to impose such

restrictions. The main difficulty lies in extending the results of Section 6.

(iii) The abstract dynamic/linear programming formulations we have arrived at may be

made a basis of approximation scheme for deriving 'good' vector quantization
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schemes. One promising approach is the recently developed techniques of neuro-

dynamic programming [3].

(iv) Though stationary randomized policies are untenable for reasons already discussed,

one may be able to achieve the same effect through time-sharing deterministic sta-

tionary policies. This needs further study.

(v) In this paper we do not take into account channel statistics. It is conjectured the

separation theorem of information theory that states that source coding and channel

coding can be designed separately without loss of optimality will no longer hold in this

formulation. A future paper will discuss the effects of noisy channels on sequential

lossy coding.

Finally, a concluding remark from a stochastic control perspective: What we have here

is what is known as the 'separated control problem' associated with a control problem with

partial observations ([4], Ch. XIII). For the average cost case, the derivation of dynamic

programming conditions via the 'vanishing discount' argument is known to be hard in this

case and only limited results are available [12]. We have here a special case where the

situation is more fortunate, a key role being played by the fact that the 'control' affects

only the observation process and not the original 'state' process {Xn}.
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