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Abstract

Background

Pancreatic cancer (PC) represents a substantial public health burden. Pancreatic cancer

patients have very low survival due to the difficulty of identifying cancers early when the

tumour is localised to the site of origin and treatable. Recent progress has been made in

identifying biomarkers for PC in the blood and urine, but these cannot be used for popula-

tion-based screening as this would be prohibitively expensive and potentially harmful.

Methods

We conducted a case-control study using prospectively-collected electronic health records

from primary care individually-linked to cancer registrations. Our cases were comprised of

1,139 patients, aged 15–99 years, diagnosed with pancreatic cancer between January 1,

2005 and June 30, 2009. Each case was age-, sex- and diagnosis time-matched to four

non-pancreatic (cancer patient) controls. Disease and prescription codes for the 24 months

prior to diagnosis were used to identify 57 individual symptoms. Using a machine learning

approach, we trained a logistic regression model on 75% of the data to predict patients who

later developed PC and tested the model’s performance on the remaining 25%.

Results

We were able to identify 41.3% of patients < = 60 years at ‘high risk’ of developing pancre-

atic cancer up to 20 months prior to diagnosis with 72.5% sensitivity, 59% specificity and,

66% AUC. 43.2% of patients >60 years were similarly identified at 17 months, with 65% sen-

sitivity, 57% specificity and, 61% AUC. We estimate that combining our algorithm with
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currently available biomarker tests could result in 30 older and 400 younger patients per

cancer being identified as ‘potential patients’, and the earlier diagnosis of around 60% of

tumours.

Conclusion

After further work this approach could be applied in the primary care setting and has the

potential to be used alongside a non-invasive biomarker test to increase earlier diagnosis.

This would result in a greater number of patients surviving this devastating disease.

Introduction

Patients with pancreatic cancer (PC) are predominantly diagnosed with late stage disease

when curative treatment is rarely possible resulting in very low survival and an important pub-

lic health burden [1–3]. It is probable that years elapse between the initiation of pancreatic can-

cer and diagnosis but that many patients display only non-specific symptoms during this time

[4]. Progress to increase the proportion of cancers diagnosed at an early enough stage has been

extremely slow [5,6]. Population-based screening for pancreatic cancer is not a viable option

due to the very low incidence (32, 202 and 300/100,000 amongst persons 40–59, 60–79 and

80–99 years respectively) [7,8] resulting in a prohibitively expensive, and even potentially dam-

aging programme [1,9].

Targeted screening, on the other hand, is a possibility. Diagnostic biomarkers [10–14] have

been actively sought for a number of years, and the most promising results have been obtained

using protein markers [15–17] either alone or in combination with the clinically established

biomarker, CA 19–9 [18]. The authors of these molecular studies mostly identify their applica-

tion to very high-risk groups containing small numbers of people, for example, those with at

least two affected first-degree relatives or individuals with known underlying gene abnormali-

ties [19]. However, such tests could be applied more systematically on a suitable high-risk sub-

population. Ideally, this high-risk sub-population would be identified within the primary care

setting among the general population, as the first step of a multi-stage, targeted screening

model (Fig 1).

This research examines the feasibility of identifying such a sub-population using routinely

recorded primary health care data. Our hypothesis is that patients who later develop pancreatic

tumours share similar profiles in terms of early, diffuse, warning signs which are detectable

within electronic health records.

Materials and methods

Data

The English National Cancer Registry (CR) was individually linked to Clinical Practice

Research Datalink (CPRD). These data were released under national statutory approvals from

The Confidentiality Advisory Group (CAG): PIAG 1-05(c)2007, PIAG 3-06(f) 2008 and

national ethical approvals from the Research Ethics Committee (REC): 13-LO-0610,

08-H1102-46.

CPRD is a complex, comprehensive database of anonymised electronic health records for

individual patients registered at general practices (GP) across the UK. It contains patient

demographic information, clinical diagnoses, prescriptions, immunisations, test results and

certain information on health and health-seeking behaviours. It is one of the largest sources of
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continuous patient records available and is broadly representative of patient and practice char-

acteristics in the UK. Research-quality (up-to-standard, UTS) data are available for 13 million

patients, five million of whom are currently registered, submitted to the central database by

over 600 UK primary care centres. Linkage of CPRD primary care data with other patient level

datasets, including cancer registrations, is available for English practices within CPRD who

have consented to participate in the linkage scheme.

Case definition and control selection

Cases were defined as patients aged 15–99 years diagnosed with primary pancreatic cancer

(ICD-10 code C25) between January 1, 2005 and June 30, 2009 whilst registered with a CPRD

practice who had been submitting UTS data for at least two years before their diagnosis (S1

Fig). Controls were patients diagnosed with an unrelated primary cancer at least 18 months

after the index date (date of diagnosis of matched PC case) who were similarly registered

within a CPRD practice submitting UTS data during the identical chronological period. We

excluded patients diagnosed with cancers of the lip, oral cavity and pharynx (ICD-10 codes

C00-14), digestive organs (C15-26), respiratory and intrathoracic organs (C30-39), breast

(C50) and, female genital organs (C51-58) which share at least one symptom or risk factor

with pancreatic cancer. Each case was matched to four controls on the basis of sex and birth

cohort ± 2.5 years.

Variable coding

We derived symptoms and health statuses of patients known to be associated, or possibly asso-

ciated with a subsequent diagnosis of pancreatic cancer during the two-year period prior to

Fig 1. Schematic of multi-stage screening process starting with machine-learning derived algorithm.

https://doi.org/10.1371/journal.pone.0251876.g001
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diagnosis (S1 Table). First, an exhaustive list of medical or product (drug) codes associated

with each symptom was derived from the Code Browser using broad search terms. Code lists

for frequently studied symptoms and drug use were also obtained via correspondence with

authors of published papers as well as from the LSHTM Data Compass [20], a curated digital

repository of research outputs produced by staff and students at the London School of Hygiene

& Tropical Medicine (LSHTM) and their collaborators. We also searched for clinical codes on

CALIBER [21] which is a comprehensive, open access resource for UK electronic health rec-

ords data.

Medical and drug prescription codes along with their event dates up to two years prior to

index date of pancreatic cancer were extracted using Clinical and Therapy files provided by

CPRD. We also searched for useful information in the Additional, Referral and Test files.

Codes were assigned to an appropriate symptom to build an analysable data structure. These

symptoms aimed to be as comprehensive as possible; derived from both extensive literature

searches as well as discussions with our clinical collaborator (SPP). After establishing a clean

and exhaustive code list for each symptom and drugs prescribed, the codes were checked for

non-repetition across all the different variables. Fifty-three symptoms were coded in this

fashion.

We derived patients’ status in relation to smoking, body mass index (BMI) [22], diabetes

and, alcohol consumption using previously-published code lists. We allocated ‘ever smoker’

status if patients had been recorded as being a current smoker or ex-smoker in the past two

years prior to index date, whilst ‘ever heavy drinker’ status was similarly attributed to patients

recorded as current or ex heavy alcohol consumers. Any recording of BMI in the previous 24

months (or height and weight on the same day) was extracted. If the most recent BMI prior to

cancer diagnosis was greater than or equal to 30, the patient’s status was marked as obese. We

allocated diabetic status to a patient if (s)he recorded any of the diabetes associated medical

codes or were prescribed anti-diabetic drugs during the time window of interest. In addition

to medical codes on weight loss entered by the GP, patients were also coded as having experi-

enced weight loss as a symptom if his/her most recent BMI was either five or more per cent

lower than their highest recorded BMI or the first BMI in the two years before cancer diagno-

sis. We used ecologically-derived measures of income deprivation for each person using quin-

tiles of the income domain score from the English Indices of Multiple Deprivation 2004, 2007

and, 2010 [23]. Deprivation categories were derived from the score temporally closest to each

person’s index date on the basis of their residential address. The consultation file was used to

calculate the total number of appointments a patient had with a doctor at the GP surgery

within the time period under study.

All medical records referring to administration and routine examination codes were

excluded since they did not contain any clinical information. Symptoms relating to the eyes,

ears, skin and, skeleton were also excluded. Finally, we visually examined all the remaining

non-assigned codes occurring more than ten times in the database. These included symptoms

of cough, sore throat, dizziness, Polymyalgia rheumatica, gout, venesection and, Salicylate pro-

phylaxis. In discussion with our clinical collaborator (SPP), we excluded most of these codes

along with the codes which had fewer than ten clinical events within the whole cohort during

the entire study period.

Ethics

This pilot study was conducted on pre-existing linked data in order to evaluate the feasibility

of this approach. These data were released under national statutory approvals from The Confi-

dentiality Advisory Group (CAG): PIAG 1-05(c)2007, PIAG 3-06(f) 2008 and national ethical
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approvals from the Research Ethics Committee (REC): 13-LO-0610, 08-H1102-46. The study

protocol was approved by the London School of Hygiene & Tropical Medicine Ethics Commit-

tee on April 25, 2019 (Ref 17053).

Statistical analyses

We fitted models in the machine learning setting using R software [24]. Our aim was to derive

a risk score for developing PC for each patient at time points prior to diagnosis. The outcome

was the probability (between zero and one) that a patient would develop the disease, derived as

a function of the input variables which included all symptoms, status variables (obesity, smok-

ing, alcohol and, diabetes) age, sex, social deprivation and, the number of consultations in the

time window of interest.

Initially, all input variables for the full 24 months before diagnosis were included. The

model was then refitted for each monthly interval between 1 and 20 prior to diagnosis, disre-

garding each time information collected after the assessment time point. For example, the

model fitted for month one excluded any information recorded less than one month before

diagnosis, but included information between months 2–24; the model for 20 months excluded

all information recorded prior to 20 months, but included information for months 21–24.

Multivariate logistic regression (LR) and random forest (RF) models were fitted within the

supervised machine learning setting. We regarded the four patient statuses as non-time vary-

ing by recording them as binary (yes/no) variables if they occurred within the time window of

interest. Symptoms were fitted as continuous variables by including the count of the number

of times a symptom or drug was reported during the time window of interest.

The models were trained on 75% of the data (the training set) and then assessed on the

remaining 25% (the test set) by the derivation of the area under the receiver operating charac-

teristic curve (AUC), sensitivity, and specificity. Cases and their matched controls were kept

together in one or other of the sets. The model’s performance measures (AUC, sensitivity and

specificity) were assessed at different threshold values (cut-off points) between 0.1 to 0.5. If the

predicted probability of a patient’s outcome was higher than the threshold value, then they

were considered ‘high-risk’ of PC. The analyses were conducted by age in order to compare

younger patients (aged 60 years and under) to older patients (more than 60 years).

Results

Descriptive analyses

We identified 1,144 patients with primary pancreatic tumours eligible for inclusion. Four age-

and sex- matched controls were identified for 1,139 cases, whose male-to-female ratio was

0.957 and whose median age at diagnosis was 71 years. We were unable to find four controls

for the remaining five cases: these were females with mean age of 93 years all of whom died

within seven months from diagnosis. These cases were excluded.

We derived the percentage of cases and controls who reported each symptom at any time

during the 24 months prior to pancreatic cancer diagnosis (cases) or the index date (controls)

(Table 1). Pearson’s chi-square test [25] was used to test if these observed differences between

cases and controls for each symptom were by chance. Abdominal pain, irritable bowel syn-

drome and, constipation symptoms were reported around four times more frequently among

cases than controls while gastrointestinal conditions and diabetes were twice as common.

There was a negligible difference in the prevalence of genitourinary and immunological disor-

ders. The prevalence of each symptom in every monthly interval before diagnosis among cases

and controls varied by symptom. For example, reporting of jaundice was very different for
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Table 1. Percentage of cases and controls reporting symptoms or statuses within the 24-month period prior to diagnosis.

Cases [%] (n = 1139) Controls [%] (n = 4556) p-value

Cardiovascular disorders
Cardiovascular diseases 279 [24.5%] 758 [16.64%] <0.0001

Hypertension 216 [18.96%] 798 [17.52%] 0.9693

Circulatory system disorders
Migratory thrombophlebitis 0 [0%] 0 [0%] NA

Digestive disorders
Abdominal pain 368 [32.31%] 319 [7%] <0.0001

Jaundice 251 [22.04%] 11 [0.24%] <0.0001

Gastrointestinal conditions 350 [30.73%] 547 [12.01%] <0.0001

Constipation 134 [11.76%] 119 [2.61%] <0.0001

Oesophago-gastric problems 67 [5.88%] 109 [2.39%] <0.0001

Irritable bowel syndrome 53 [4.65%] 58 [1.27%] <0.0001

Diverticular disease 36 [3.16%] 63 [1.38%] 0.0004

Pancreatitis 15 [1.32%] 2 [0.04%] <0.0001

Abdominal mass 12 [1.05%] 2 [0.04%] <0.0001

Odynophagia 15 [1.32%] 14 [0.31%] 0.0002

Gallbladder diseases 17 [1.49%] 26 [0.57%] 0.0064

Flatulence 10 [0.88%] 9 [0.2%] 0.0023

Oral problems 10 [0.88%] 12 [0.26%] 0.0125

Xerostomia 6 [0.53%] 12 [0.26%] 0.3423

Inflammatory bowel disease 4 [0.35%] 5 [0.11%] 0.2002

Stomatitis 2 [0.18%] 11 [0.24%] 0.8489

Halitosis 1 [0.09%] 2 [0.04%] 1

Glossodynia 0 [0%] 0 [0%] NA

Steatorrhoea 0 [0%] 0 [0%] NA

Diseases of the musculoskeletal system and connective tissue
Back pain 191 [16.77%] 377 [8.27%] <0.0001

Rheumatoid arthritis 6 [0.53%] 14 [0.31%] 0.5046

Pruritis 33 [2.9%] 63 [1.38%] 0.0026

Drugs
On Opioids 281 [24.67%] 327 [7.18%] <0.0001

On Antiplatelets 333 [29.24%] 890 [19.53%] <0.0001

On HRT 116 [10.18%] 174 [3.82%] <0.0001

On NSAIDS 293 [25.72%] 919 [20.17%] 0.0063

Endocrine and Metabolic disorders
Diabetes 270 [23.71%] 439 [9.64%] <0.0001

Polydipsia 5 [0.44%] 5 [0.11%] 0.0684

Hyperlipidaemia 47 [4.13%] 167 [3.67%] 0.9027

Genitourinary disorders
Kidney problems 80 [7.02%] 237 [5.2%] 0.0969

Urinary problems 107 [9.39%] 356 [7.81%] 0.3727

Gynaecological conditions 29 [2.55%] 95 [2.09%] 0.6616

Endometriosis 0 [0%] 4 [0.09%] 0.6643

Fibroids 1 [0.09%] 2 [0.04%] 1

Dysmenorrhoea 0 [0%] 0 [0%] NA

Haematological disorders
Anaemia 50 [4.39%] 83 [1.82%] <0.0001

(Continued)
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cases and controls but only very close to diagnosis (S2–S9 Figs). By contrast, higher prevalence

of gastrointestinal problems amongst cases was evident from 24 months onwards.

Month by month, cases reported more symptoms than controls throughout the whole

period of observation (S10 Fig). The cumulative median number of symptoms in each time

window was higher among cases but still substantial among controls (S10 Fig). The number of

symptoms rose towards the diagnosis in both groups but especially in cases. Amongst patients

reporting at least one symptom in a given month (on average, 80% of cases and 70% of con-

trols) cases reported much higher total number of symptoms than controls in the same period

(S10 Fig).

Multivariable regression

Multivariate logistic regression (LR) and random forest (RF) models presented similar results,

indicating that the choice of model was not important. For simplicity we henceforth report

outputs from only logistic regression models.

The performance of the models was checked in the 25% test set in every time window up to

20–24 months preceding diagnosis. An optimal cut-off for the predicted probability of out-

come, where AUC is maximal, was determined separately for models in each time window.

The AUC, sensitivity and, specificity were plotted corresponding to these optimal cut-offs

against varying time periods. The AUC (which represents a measure or degree of separability

of a true positive from a false positive at various threshold values) was optimal (highest) when

using all available 24 months, including the period immediately prior to diagnosis, and

Table 1. (Continued)

Cases [%] (n = 1139) Controls [%] (n = 4556) p-value

Immunological disorders
Atopic diseases 147 [12.91%] 489 [10.73%] 0.2757

Auto-immune diseases 34 [2.99%] 126 [2.77%] 1

Infections
Mumps 1 [0.09%] 0 [0%] 0.4854

Nervous system
Insomnia 48 [4.21%] 93 [2.04%] 0.0003

Hypersomnia 0 [0%] 0 [0%] NA

Oncological disorders
Family history of breast cancer 1 [0.09%] 3 [0.07%] 1

Peutz-Jeghers syndrome 0 [0%] 0 [0%] NA

Familial atypical multiple mole melanoma (FAMMM) 0 [0%] 0 [0%] NA

General clinical symptoms
Weight loss 380 [33.36%] 437 [9.59%] <0.0001

Fatigue/Malaise 102 [8.96%] 145 [3.18%] <0.0001

Anorexia 52 [4.57%] 8 [0.18%] <0.0001

Anxiety/Depression 115 [10.1%] 246 [5.4%] <0.0001

Weakness 23 [2.02%] 34 [0.75%] 0.0008

Fever 15 [1.32%] 41 [0.9%] 0.4088

Obesity 171 [15.01%] 465 [10.21%] 0.0003

Disturbances in smell/taste 0 [0%] 5 [0.11%] 0.5342

Health behaviours
Ever smoker 474 [41.62%] 1275 [27.99%] <0.0001

Ever heavy drinker 11 [0.97%] 25 [0.55%] 0.2535

https://doi.org/10.1371/journal.pone.0251876.t001
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decreased as the time window of analysis moved further away from diagnosis (Fig 2A). Sensi-

tivity (the ability to correctly detect a patient who developed pancreatic cancer) was maximized

at 73% at the time of diagnosis, dropping to 35% in younger and 53% in older patients in time

windows prior to 6 months from diagnosis (Fig 2B). Specificity (the ability to correctly detect a

patient who did not develop PC) ranged from 75%-88% across all time windows for all patients

(Fig 2C). The model’s performance varied by age, with higher sensitivity and lower specificity

in earlier months in the age-specific analyses, whilst the AUC was similar.

Since we were principally interested in maximizing sensitivity early in the course of the dis-

ease, further analyses were conducted on age-specific models for the time window more than

12 months prior to diagnosis which displayed the maximal AUC: 20 months for younger

patients and 17 months for older patients (S2–S5 Tables). For each of these time windows we

Fig 2. Model parameters obtained in each time window (0–24,1–24,. . .,20–24 months) prior to diagnosis. a) AUC

(%) b) Sensitivity (%) c) Specificity (%).

https://doi.org/10.1371/journal.pone.0251876.g002
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plotted age-specific model’s performance measures against various values in order to establish

the optimal cut-off point. For patients aged 60 or under, this was 0.3 (Fig 3) where the AUC

was 65.6%, the sensitivity of this model was 72.5% and, the specificity was 58.7%. In the popu-

lation of patients over 60 years, the optimal cut-off was 0.21 where the AUC was 60.9%, the

sensitivity was 65.1% and, specificity of 56.8% (Fig 3).

Our algorithm identified 41.3% (Fig 3) of younger patients and 43.2% (Fig 3) patients being

classified into a ‘high-risk sub-population’ (Fig 1). Using the most recently published incidence

for England [7,8] this equates to 10,923 persons per pancreatic cancer present in younger

patients and 740 in older patients. Were a biomarker with a sensitivity of 87.5% [17] applied,

around 30 older and 400 younger persons would be identified as ‘potential pancreatic cancer

patients’ (those referred on for imaging and potentially endoscopy) leading to the early detec-

tion of around 63% of pancreatic cancers in younger patients and 57% in older patients.

(Table 2).

Diabetes was the principal influential risk factor in younger patients. (S2 and S4 Tables).

Since we learned the importance of diabetes in both age groups, we observed 89% of the

Fig 3. AUC, sensitivity and specificity of the models with % of the population recommended for biomarker (Stage

2) testing.

https://doi.org/10.1371/journal.pone.0251876.g003

Table 2. Parameters of the optimal logistic regression models envisioned in the context of the hypothetical multi-stage screening model�: England 2017.

Age-group (years)

15–60 61–99

Median age (5th, 95th) percentile

55 (42, 59) 76 (62, 92)

Incidence rate [7,8] A 0.00003781 0.00058378

Tumours registered per 100,000 persons 3.8 58.4

Optimal model time window (months) 20–24 17–24

AUC 65.6% 60.9%

Sensitivity B 72.5% 65.1%

Specificity C 58.7% 56.8%

Positive predictive value 40.0% 32.5%

Negative predictive value 72.2% 83.6%

Proportion identified as ’high-risk’ D = (A×B) + ((1-A)×(1-C)) 0.41 0.43

Persons identified as ’high-risk’ per cancer present E = D/A 10,923 740

Best estimate of biomarker sensitivity [17] F 87.5% 87.5%

Best estimate of biomarker specificity [17] G 96.4% 96.4%

Persons referred for Stage 2� testing per cancer present H = (1×F) + ((E-1)×(1-G) 394 27

Maximum proportion of cancers detected J = B×F 0.63 0.57

�See Fig 1.

https://doi.org/10.1371/journal.pone.0251876.t002
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younger and 96% of the older diabetic patients correctly predicted to develop PC, as opposed

to 68% of the younger and 47% of the older non-diabetics.

Discussion

We have demonstrated that it is possible to detect a sub-population of people at higher risk of

developing pancreatic cancer in the primary care setting up to two years before the cancer is

diagnosed. Our algorithm scales down the general population potentially at high risk of this

disease by more than a half, and suggests that it could be possible to diagnose around 60% of

pancreatic cancers early. Although the total numbers of persons who would need to be tested,

particularly in younger patients, is unfeasibly high, this is likely to be largely driven by the use

of cancer patients as controls. Our study thus suggests that logistic regression has potential

within the machine learning setting to enable a multi-stage screening model for pancreatic

cancer, but does not yet demonstrate high enough specificity to be applied in practice without

further calibration and development.

Public health context

It is widely accepted that pancreatic cancer is not a good candidate for mass population-based

screening due to its low incidence in the general population. As small as 10% of the patients

diagnosed with pancreatic ductal adenocarcinoma (PDAC) have either a strong family history

of PC, hereditary pancreatitis or a particular genetic syndrome [1]. The remaining 90% of

PDAC patients are non-inherited cases who overwhelmingly display no alarm symptoms until

the tumour is well-advanced.

Strengths and limitations

This study has a number of strengths. First, we used prospectively collected data and a high-

quality database. Under-recording or inaccurate reporting may be present but is unlikely to be

differential. We evaluated temporal patterns by establishing the predictive accuracy of our

model at separate time points throughout the two-year period leading up to diagnosis. We

used the machine learning setting to carry out statistical analyses, rather than multivariable

regression methods or conditional logistic regression as has previously been implemented

[26,27]. Machine learning techniques are more powerful in settings such as this one where

they are more likely to identify numerous weak signals which are only predictive when used in

complex combination with each other. Both of the prediction models (LR and RF) produced

similar outcomes suggesting that our results are valid irrespective of the model choice. This is

an advantage of applying machine learning techniques in our study setting which confirms

comparable predictions using two different regression models.

The one major limitation of our study is the poor specificity of our models arising princi-

pally from the use of cancer patients as controls. Our controls were selected from cancer

patients diagnosed later in time with unrelated malignancies. Despite the fact that we ensured

that the controls’ own diagnosis was at least 18 months after that of their matched case, they

nevertheless reported increasing numbers of symptoms of interest over the study period in a

fairly similar fashion to that of the cases. This implies that the controls are not representative

of the general population, and explains why our models predict a high number of false posi-

tives. However, in the light of this limitation, our results are still promising: the models achieve

a relatively high sensitivity and the specificities of the final models are in excess of 55%. Repeat-

ing the analyses using full population-based controls would lead to a much higher specificity

and is the first priority in progressing this research.
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Our results suggest that further age differentiation is required to truly evaluate the utility of

this approach in patients under 60 years, which would be possible in a larger dataset. In partic-

ular, it would be important to evaluate performance separately for patients aged 40–49 and

50–59 amongst whom the potential effectiveness of our models is currently obscured by the

very low incidence amongst 15-59-year olds. Initial calculations show that if the model param-

eters for ages 15–59 held for the limited age group of 40–59 years (median age 55 years) 1,290

persons per pancreatic cancer would have been identified as ‘high-risk’ and 47 as ‘potential

cancer patients’ (compared to 10,923 and 394 for the age group 15–59).

Further limitations are relatively minor. Alcohol consumption and smoking habits are

almost certainly under-reported in primary care [28,29], but arguably accurately reflect what is

known to the GP at any given time and thus are as good as clinical knowledge of any other

symptom. Patient status was recorded as ‘diabetic’ if this disease was reported in the time win-

dow of interest which did not permit us to distinguish between long-term or recent onset

disease.

Comparison with existing literature

Previous authors have highlighted putative features associated with PC diagnosis such as jaun-

dice, abdominal pain, back pain, gastric problems, weight loss, malaise and new-onset diabetes

[26,30]. Whilst our results are consistent with these findings, we have examined whether it is

possible to predict future PC diagnosis based on the presence or absence of symptoms or

abnormalities present more than 12 months before diagnosis, ignoring late stage symptoms.

Comparison with existing literature is, therefore, limited.

Implications for future research

This study is preliminary, and thus needs to be expanded and extended in order for these find-

ings to be confirmed. First, it is essential that future analyses use population-based controls so

that true specificity of the algorithm within a population-based database can be derived. Sec-

ond, analyses should differentiate between diabetics and non-diabetics, as well as in a more

refined manner by age. A notable result was the relative importance of diabetes, over time-

varying symptoms, in predicting later pancreatic cancer diagnosis, which is consistent with

previous research [31]. Since studies have established a particularly increased risk amongst

new onset diabetics [1], stratified analyses by diabetic history hold promise to improve the pre-

dictive ability of the model for all patients. Third, testing the algorithm in ‘real time’, where a

primary care database is interrogated as if this algorithm were in use is important to under-

stand its cost-effectiveness. In reality, the greatest potential of this algorithm lies within a mul-

tiple-testing model, where a number of different biomarkers for several different malignancies

are evaluated simultaneously within the same patient. This study is an important first step to

establishing such a programme.

Conclusion

We have demonstrated that it is possible to discriminate a high-risk sub-population of patients

whom are more likely to go on to be diagnosed with pancreatic cancer from routine primary

care records. Our results could lead to increasing early diagnosis through a multi-stage screen-

ing model which utilises recently developed biomarkers applied to the ‘high-risk’ population

identified using this approach. Further work is certainly required to confirm, refine and evalu-

ate the potential use of these findings in practice.
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