October, 1996 LIDS-P 2350

Research Supported By:

ARO
AASERT-DAAH04-93-GD169

Play Selection in Football: A Case Study in Neuro—Dynarmc -
Programming

Patek, S.D.
Bertsekas, D.P.

Play Selection in Football: a Case Study in
Neuro-Dynamic Programming?

Stephen D. Patek
Dimitri P. Bertsekas

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Abstract

Using a version of the game of American football, this paper presents an extensive computational study of
approximate dynamic programming methods. The problem of optimal play selection for the offensive team
during a single offensive drive is cast as a stochastic shortest path problem and serves as a medium-scale
testbed for algorithms inspired by policy iteration. Our methods are such that at each iteration a new policy
is computed on the basis of an approximate evaluation of the policy’s reward-to-go function. For a given
policy, the approximate evaluation of reward-to-go is obtained either as the solution or as a step toward the
solution of a least squares training problem defined by simulated state/reward data pairs. Numerical results
for a variety of methods are presented. Because football is a medium-scale problem, a numerical solution can
easily be computed, providing a yardstick for meaningful comparisons of the approximate methods.

The main purpose of this paper is to illustrate the application of neuro-dynamic programming methods in
solving a concrete problem. Along the way, however, we are able to contrast and compare the methodologies
both in terms of performance and complexity of implementation. Finally, our numerical results nicely illustrate
some the interesting properties of the algorithms that are becoming recognized as “typical behavior” by various
researchers in the learning community.

1 Introduction

We present a case study of a dynamic optimization problem where rewards (to be maximized) accumulate in
stages as an underlying system transitions from state to state. Control actions for the system are applied at
every stage. At a given state, each control action has a corresponding probability distribution which governs
the transition to a successor state. The choice of a control at a state also determines a probability distribution
for the amount of reward to be earned that stage. The objective is to determine a policy (a mapping from
states to control actions) which maximizes the expected value of the reward accumulated over time.

The classical framework for solving problems of this type is that of dynamic programming, including both
the value iteration and policy iteration algorithms. In this paper we are primarily concerned with methods
that relate to policy iteration. In policy iteration, an optimal solution is computed through a sequence of policy
evaluations and policy updates (improvements). Each policy evaluation amounts to computing the expected
long-term reward (reward-to-go) from each state of the system. Each policy update involves computing
the action at each state which is “greedy” with respect to the expected long-term reward of the alternative
actions. Unfortunately, due to the “curse of dimensionality”, the steps of policy iteration are computationally
infeasible for most realistic, large-scale engineering problems. In this sense, policy iteration is really only a
conceptual algorithm, not of practical interest.

In recent years, Approximate Policy Iteration (API), has been suggested as a practical approach to solving
realistic dynamic optimization problems. In this framework, approzimations of the reward-to-go function for a
fixed policy are trained through simulation and least squares optimization, and policy updates are computed
based upon these approximations. Mathematically, the approximations take on a fixed parametric form,
known as an architecture.

API is one out of several classes of algorithms which comprise the methods of Neuro-Dynamic Pro-
gramming (NDP). As with API, the methods of NDP generally relate to the classical methods of dynamic

1Supported by the US Army Research Office AASERT-DAAHO04-93-GD169

programming. The “Neuro-” prefix is attached to indicate the use of (usually neural-network) approxima-
tions for reward-to-go. What distinguishes NDP from other forms of approximate dynamic programming is
its heavy reliance on simulation as a means for obtaining training data for reward-to-go approximations. In
other “machine learning” research communities, NDP is known as Reinforcement Learning (RL).

As an alternative to API (but still within the context of NDP) we consider a related class of algorithms
known collectively as Optimistic Policy Iteration (OPI). Before discussing OPI further, note that in API an
honest attempt is made to obtain an approximation of the reward-to-go function which is accurate everywhere
in the state space. This usually means that a large number of sample trajectories are generated in order to
have a representative set of training data. This data is often buffered and is then presented many times (by
cycling through the data buffer) to the training algorithms so that each distinct sample state/reward pair can
have a significant impact on the outcome of training. In OPI, on the other hand, a relatively small number
of sample trajectories are generated, and the data is allowed to impact the reward-to-go approximation in
only a very limited fashion before a new policy is computed. (The user of this type of algorithm is optimistic
about the effectiveness of the data in describing the reward-to-go function.) OPI has become a very popular
method, with a number of important success stories recently appearing in the literature (especially [9]).

As a case study, we have applied both API and OPI to a simplified version of American football. We
consider play selection for one offensive drive in the middle of an infinitely long game. Begin-game and
end-game effects are ignored. Also, in contrast to real American football, we ignore the fact that there is
an intelligent opponent which randomizes the optimal strategy and causes the state-transition probabilities
to be dependent on field position. In our version of football, state transitions are determined through a
probabilistic model (discussed in the Appendix) in which only offensive play decisions can impact the drive
trajectory. The objective is to maximize the expected difference between “our” team’s drive-score and the
opposing team’s score from the field position at which they receive the ball. To put it another way, we want
to compute a policy which achieves o

Points received at the end of our drive
from initial field-position, 7, under policy .)
anticipated points gained by the opposing
(team from our final field position.)

max E (
policies, =

IMOE (1)

The rules of this simplified version of football are detailed in the Appendix. Despite the simplicity of the
model, this is a moderately large scale problem, having 15,100 states. An interesting aspect of the model is
the fact that rewards are earned only upon transitioning the end of the offensive drive (the terminal state).
Because of this, the nature of the optimization problem is that of choosing policy that drives the system to a
desirable region of the state space.

To give a preview of our experimental results, we have found that many of the methods for training
reward-to-go approximations perform similarly. For a fixed policy (in API), the final approximations that
result from TD(A), for different values of A, are not that different from approximations due to the Bellman
Error method or even the approximations due to linear least squares regression via the matrix pseudo-inverse.
This is true even in the context of OPI, where policies change more on a continual basis. Regarding T'D(}),
we have found that values of A closer to one are generally best, but only by a slight margin. Our best results
were usually obtained with A = 1, supporting the assertion put forth in [1]. The results we have obtained
for football have helped to clarify our thinking about how Neuro-Dynamic Programming methods work. In
particular, the “greedy subsets” interpretation of the methods (which is discussed in Sections 2.3.1 and 2.3.2)
came from our observation of “oscillatory” limiting behavior in both OPI and APIL.

One of our main conclusions is that football is an effective testbed for Neuro-Dynamic Programming
methods. The problem itself is not trivial; the set of allowable policies is quite large, containing a huge
number of policies that are “reasonable” (but indistinguishable) in heuristic terms. On the other hand, since
an exact (numerical) solution can be computed, we have a useful basis for comparisons of the approximate
methods. Additionally, while this is not the focus of our research, our model is such that we may use our
understanding of real American football to attach heuristic interpretations to the the suboptimal policies that
are produced by the methods.

In Section 2, we give an overview of our methods. We begin by reviewing the pure forms of value iteration
and policy iteration which are targets for the approximate methods of NDP. We then discuss methods for
training approximations of reward-to-go for a fixed policy. Section 2 ends with a discussion of methods for

computing new policies. This is where the distinction between API and OPI will be clarified. In Section 3,
the problem of optimal play selection in football is formulated as a stochastic shortest path problem. We
present there the optimal solution for the precise mathematical problem that we pose. We obtain the solution
numerically through exact implementation of policy iteration. In Section 4, we discuss technical issues related
to our application of NDP to football. We consider there a number of different approximation architectures,
as well as issues relating to simulation. In Section 5, the experimental results of our case study are presented
and compared to the exact optimal solution. Section 6 finishes the paper with conclusions, and the Appendix
gives the exact rules of our simplified version of football.

2 An Overview of the Methods

This section gives an overview of our methods. The discussion is not specific to Football, nor is it specific to
a particular architecture for function approximation. (Our model for football is presented in Section 3, and
the details of our methods particular to football are given in Section 4.} To keep the presentation compact, we
limit the discussion primarily to the case of stochastic shortest path problems. For the appropriate extensions
to discounted and average cost problems, the reader is referred to [4].

2.1 Exact Dynamic Programming

The general class of problems we consider is that of Markov Decision Processes. We are generally interested
in choosing a policy (a map from states to controls) that maximizes long-term total reward. The control we
apply at a given state determines the probability distributions that govern both immediate reward and the
transition to a successor state. Our objective, in somewhat loose mathematical terms, is as follows: Given
that we are at a state 1, achieve the long-term discounted reward

J* (i) = max E{ Z o®g(ix, *(ix), tk41) | to, 7r} (2)
k=0

m={u®,pt,..} €11

where
1. the trajectory {ix} is a sequence of states in a finite state space S,

2. the policy 7 = {u®, ut,...} € 11 is a sequence of functions p* € M which map the state space S to a
finite set of allowable controls U,

3. 9(t,u,j) is the reward for transitioning from 7 to j under the control u,
4. o € (0,1] is a discount factor for future rewards, and

5. the expectation (which is conditional on the initial state iy and the policy =) is taken over all of the
state trajectories {ix} that are possible under =.

We assume that the mechanism for state transitions is Markov. That is, we assume that the probability of
transitioning to state j in one step is dependent only on the current state ¢ and the control u applied at i.
This probability is denoted p;;(u). For notational convenience, if a policy € II is such that 7 = {u,p,...},
then we shall refer to this as the stationary policy p.

We are primarily interested in problems where either

1. the reward function is bounded (i.e. |g(i,u, j)| < K, for all ¢,u, j) and o < 1, or
2. all of the following are true:

(a) there is no discounting (i.e. @ = 1},

(b) there exists a stationary policy such that for all initial states iy the system reaches a terminal,
zero-reward state with probability one (this is a “proper” policy), and

(¢) for all stationary policies that are not proper, the expected cost (negative reward) from some initial
state is infinite.

The first type of problem is called a discounted reward problem; the second is called a stochastic shortest path
problem. For a careful definition of these problems and corresponding analysis, the reader is referred to [2].
When the Markov Decision Process falls into either of these categories, the optimal expected reward-to-go
from each state is characterized by “Bellman’s equation”:

J*(i) = max > opi(W)(9G,u,) + et (§))| Vie S 3)
JES

The value of u which achieves the maximum in Bellman’s equation for each ¢ € S, determines a stationary
optimal policy p*. Bellman’s equation can thus be viewed as a coupled set of nonlinear equations which have-
to be solved simultaneously. Solving this set of equations can be difficult to do explicitly, especially when
the state space is large. On the other hand, there are a number of algorithms that can be used to find J*
iteratively. One of these is value iteration. The form of this algorithm is suggested by Bellman’s equation
itself. We start with an initial guess for J*, denoted J°, defined for all i € S. The k% iterate function is
computed according to,

J*(i) = max Y opii(W)(gG,u) +a*7H()| Vies (4)
jes

It can be shown that J*(i) = limk00 J*(¢) Vi€ S.

If one has a suboptimal policy g, for which it is necessary to determine the expected reward-to-go func-
tion J#, an analogous form of Bellman’s equation holds. Here, U is replaced with {u(¢)}, eliminating the
“max” operation in (3). It can be shown that the corresponding form of value iteration (called successive
approzimation) is also valid. The determination of J¥ for a fixed policy p is referred to as policy evaluation.

Another algorithm for determining J* is known as policy iteration. In this algorithm, we start with an
initial policy u°, and then evaluate J # forallie S (using e.g. successive approximation.) The k-th iterate
policy is computed according to

p (i) = arg max jEE;mj(u)(g(i,u,j)+aﬂ"“(j>> Vies (5)

It can be shown that, as long as S and U are finite and the evaluations of J #* are ezact, then J u converges
to the optimal reward-to-go function J* in a finite number of iterations.

From this point on in the paper we shall be concerned exclusively with stochastic shortest path problems.
Since a = 1 for these problems, we shall drop a from the discussion.

2.2 Approximating Reward-to-Go for a Fixed Policy (Approximate Policy Eval-
uation)

A central idea for the methods of this paper is that exact evaluations of the reward-to-go function in policy
iteration can be replaced with approzimations, denoted J(-,r). As the notation suggests, the approximations
are selected from a parametric family of functions (e.g. neural networks), where the parameter r € R? is.
chosen on the basis of simulation data and least squares regression. Throughout this paper specific forms
for the approximation are referred to as “architectures.” We assume that, for each state ¢ € S, J (Z,7) is
continuously differentiable with respect to ». The various architectures we have used in football are detailed
in Section 4.1. In computer implementations of NDP, the approximations of reward-to-go are implemented
as subroutines. The process of executing the code for a reward approximation is referred to as “evaluating
the approximation.”

Given a batch of simulation data, a suitable parameter vector can be found by solving a least squares
optimization problem of the form

o1
min -
reR4

(Ck - j(ik, T'))2 (6)

M=

k=1

where ¢, is the sample total (discounted) reward from state iy, and N is the number of data pairs (i, ck).
Unfortunately, unless J is linear in the parameter vector r, this optimization problem may have many local
minima. Despite this, the usual approach to optimizing the parameter vector is to use gradient-like methods
to minimize least squares cost. The application of these methods is referred to as “training”. In many
cases the training methods may be used “on-line” in the sense that it is not necessary to have generated the
complete data set before training may begin.

Throughout this paper, approximations of the reward-to-go function are “feature-based”, meaning that
J(i,7) is of the form H(f(),r) where f = (fi,..., f4) is a vector of features. Each feature f; is a function
that maps the raw state (an element of the finite set S) to a real number, giving a quantitative description
of an important aspect of the system. For example, in our model for football there is a finite number of
field positions which our team may assume. Depending on how we label these states, it probably isn’t very
insightful to know only that the system is in some arbitrary state ¢ € S. On the other hand, knowing that
i corresponds to some number of yards to the goal gives us an immediate sense for how our team is doing.
The function f(7) = “number of yards to the goal from ¢” is an important feature for football.

It is in the construction of an approximation architecture where “engineering insight” into the problem may
be applied most effectively. The most important issue to resolve is what features should the approximation
rely upon? (What information is important?) It is possible that the choice of features depends on the type of
approximation architecture being used. There are many different kinds of architectures that may be employed,
including multilayer perceptrons, radial basis function networks, polynomial (in features), etc. Given that a
particular type of architecture has been selected, there are usually many architectural parameters which must
be fixed before training may begin. For example, if a multilayer perceptron is to be used, one must decide
upon the number and configuration of sigmoidal units within the hidden layers of the network. Clearly, the
resolution of these issues requires a great deal of insight into the problem at hand.

2.2.1 Generating Sample Data

Before discussing training algorithms proper, a few words about the generation of sample data are necessary.
As mentioned earlier, sample data is obtained through simulation. The goal is to obtain data that will yield
an accurate approximation of the reward-to-go function. A data set which is not representative will lead to
biased approximations. It may be that the biased approximations are accurate in some regions of the state
space yet highly inaccurate (or even misleading) elsewhere.

One important consideration which relates to infinite horizon problems in general is that of termination
of individual sample trajectories. For stochastic shortest path problems, it is easiest to simply terminate the
simulation whenever the system’s terminal state is reached; if more sample data is required then it is easy
enough to execute another simulation. For optimization problems where there is no terminal state, the issue
of termination is considerably more vexing.

There remains one more important question: How do we choose initial conditions for the simulation? In
our experience, the performance of NDP is very sensitive to the method used for picking (or “sampling”)
initial conditions. One method can lead to success, while another may lead to abject failure. Unfortunately,
in checking the literature, there seems to be a total lack of theoretical understanding of this problem, so
we have had to rely on our own engineering judgment. The discussion below is based largely on our own
computational experience with football and other similar problems.

Given a stationary policy g, suppose that the initial condition for the system has a strong influence on
which parts of the state space get visited. It is important then to choose initial conditions for simulation
carefully. The goal is to guarantee that after some number of sample trajectories all states are represented in
the data set. For any given fixed set of initial conditions, it may be impossible to provide this guarantee, so
the usual practical approach is to choose initial conditions randomly (and hope for the best.) A degenerate
form of this rule is to exhaustively cycle through the state space in picking initial conditions, guaranteeing
that all states are visited at least once. This may not be necessary, however, since the neural network should
be able to generalize from a smaller amount of training data. Moreover this degenerate approach may be
impractical if the state space is very large.

To appreciate the subtlety of the initial-condition sample issue, consider the case where there is a particular
state of interest which is the natural starting point for the system in real life. One would be tempted in this
case to use this state exclusively as an initial condition for simulation, the idea being to focus the simulation

so that data is generated just for the “important” regions of the state space. Unfortunately, because our basic
framework is that of policy iteration, all of the regions of the state space are important. To see why, suppose
that there is little training data representing a particular region of the state space, and suppose that, after
training, the approximation in this region is overly optimistic. When it comes to using this approximation to
pick actions (in updating the policy), there is false incentive to visit this region of the state space.

In the end, biased approximations and false policy improvement are intimately connected in way which
is difficult to untangle. When the optimization problem comes with a natural starting state, the general rule
for success seems to be to pick initial conditions randomly from a “large” ball of states around the special
initial state. The selection of a suitable probability distribution is a matter of engineering judgment.

2.2.2 Training algorithms

In this paper, training algorithms come in two flavors: (i) iterative incremental gradient methods (and their
cousins) and (ii) non-iterative linear least squares regression using the singular value decomposition. The
latter form of training is applicable to architectures where J(7,r) is linear in the parameter vector r. For a
general discussion of incremental gradient methods, the reader is referred to [3].

TD()) The general class of Temporal Difference (TD) learning methods include a whole family of al-
gorithms parameterized by A € [0, 1]. The specific algorithm that correspond to a given value of A is referred
to as “TD(A).” TD methods are best understood in the context of individual sample trajectories: each
sample trajectory results in a single (batch) TD()) update. Let 7 € R? be the ¢-th iterate of the algorithm.
(70 is a suitable initial guess.) We will show how to compute 7* based on the preceding iterate r*=1. Let
{(ik,9x); k = 0,...,N} be the sample data for the t-th trajectory, where i; denotes the k-th state in the
trajectory, i)y denotes the last non-terminal state in the trajectory, and gx is the cost to transition from iy
t0 ig+1. Defining

dk:gk-l-j(ik.;.l,’l’t—l)—j(ik,rt—l), k=0,...,N. (7)

to be the sequence of temporal differences for the t-th trajectory, the parameter update for this trajectory is
computed as 7t = SV, where

s = 1 + "/tdovj(i(), ’l‘t_l)
o= bdy [V, Y AV (o,)
N ~
Vo= SN ydy Y ATV (i, Y (8)
m=0

The scaling factor v; is a stepsize which is chosen to diminish as 1/¢. (More generally, we could allow the
stepsize factor to diminish as a function of simulation stage number, but we have omitted this possibility
in the notation.) A detailed analysis of TD() for the case of a linear compact representation can be found
in {4, 7].

It can be shown that with A = 1 the difference (r'~! — r’) is exactly the gradient of the cost in (6)
multiplied by the stepsize factor v;. Thus, each TD(1) iteration is equivalent to a gradient descent step
where the cost function is defined by the data of the corresponding sample trajectory. Since updates are
computed on the basis of complete, independently generated sample trajectories, this algorithm amounts to
stochastic gradient descent applied to a least squares problem of the form:

1 -
min E {5 P J("k""))z} 9

k=0

The expectation in (9) is over the sequence of random variables {(i,cx)} and is conditional on both the
policy of interest and the rule for picking initial conditions for simulation.

For the case that A # 1, the connection between (rt~! — r*) and the gradient of the cost function in (6) is
lost. In fact, it is an open question at present whether TD(A # 1) updates are related to the gradient of any

suitable cost function. In addition to this there is some analytical evidence that, with any value for A (other
than one), TD(A) can lead to arbitrarily bad approximations of reward-to-go. [1] On the other hand, the
computational experience of many researchers suggests that A # 1 is “best” when applied to large-scale/real-
world problems [9]. Because of this, we have given considerable attention to the case that A < 1 in our
football case study.

To finish our description of TD()), we note that to compute s* one needs to have information about only
the first k + 1 stages of the sample trajectory. Because of this, TD(A) can be applied in real time. (One does
not have to wait until sample trajectories end to start computing the corresponding TD update.) We shall
address the issue of picking 4; further when we discuss the variations on policy iteration in section 2.3.

Bellman Error Method The Bellman Error method can be viewed as a variation on TD(0). As with
TD(}), let 70 € R? be an initial guess for the parameter of the approximation of reward-to-go, let vy, be a
stepsize parameter which decreases as 1/¢; and let {(¢x,gx); £ =0,..., N} represent the set of sample state
and transition reward pairs for the t-th sample trajectory. Also, let {dx; %k = 0,..., N} be the sequence
of temporal differences for the t-th sample trajectory. The ¢-th parameter in the Bellman Error method is
computed as rt = sV where

s° P 4 v do(V I (i, 1) = VI (i1, 707 Y)

81 = SO +’7td1(Vj(i1,7't—1) - Vj(zz,’rt_l))
Vo= VT4 4 dn (VI G, 7Y = VI (g, 7t Y) (10)
where {ix;k = 1,..., N + 1} is a sequence of independently generated successor states. That is, x4; and

ig4+1 are independent samples of successor states to i, under the stationary policy u. To see how this al-
gorithm is motivated, notice that (VJ(in, 7" ~1) = VJ (in41, 7' ~1)) is a zero-bias estimate of E(VJ (in, r*~1)—
VJ(in41,7'71)). With is interpretation in mind, it is possible to check that each complete iteration is a zero-
bias approximation to one gradient step toward solving the following problem:

N

i 3= 5 (Tt) = Bl). 9+ TGus) i) (1)

where p is the stationary policy of interest. As this iteration is applied to many sample trajectories, the overall

flavor of the algorithm is that of stochastic gradient descent applied to the minimization of the expected value
of a least squares objective function.

Linear least squares approximation via the Singular Value Decomposition (SVD) This training
method assumes that the approximation is linear in the parameter vector, as follows:

d
JG,r) =Y fili)n = F(i)'r (12)
=1

The functions f; : S — R are features. Let {(é,cx)} represent the set of state/reward-to-go data pairs
generated by many sample trajectories under the stationary policy of interest. A closed form solution to (6)

can be obtained as
N t /N
Zf(z'k)f(ik)'] (Z ckf(ik)) (13)
k=1 k=1

where []* denotes the matrix pseudo-inverse. Such a solution is very easy to compute numerically using the
matrix Singular Value Decomposition (SVD) as a basic building block.

r =

2.3 Policy Updates. API and OPI.

Methods for computing approximations of the reward-to-go function for fixed policies were discussed in the
preceding subsection. Here, we discuss methods of computing new policies based on these approximations.
In particular, we present two variations on classical (exact) Policy Iteration: Approximate Policy Iteration
(API) and Optimistic Policy Iteration (OPI). While there are significant differences between the two, they
both use the same fundamental technique for computing new policies: given the approximation J (-, 7*~*) for
a stationary policy p*~1, compute a new policy p* as

HH(0) = G(r)() 2 argmax | 3 pi(W)(9li,wd) + TG, *)| Vi€ S, (14)
JjES

We have defined here the “greedy” operator G which maps parameter vectors r € R? to state-action mappings
G(r) € M. (To make G well defined, we stipulate that a deterministic method of breaking ties between equally
greedy actions is employed.) Notice that (14) differs from (5) in that an approximation is used in place of
the exact reward function Jyk-1.

In the subsections which follow we give detailed descriptions of both API and OPI, highlighting the
differences between the two. Before preceding with that discussion, however, there remain some additional
details to cover that relate to the incremental training methods (TD()) and the Bellman Error method.) First
regarding stepsizes, we have used the following rule for both API and OPI.

Yo
= max ,
Ter { (1 + vrat)(1 + vrop) W}

is the stepsize for the ¢-th trajectory of the p-th policy, where 7o, ¥ra, ¥ro, and 5 are free parameters. Different
values for these parameters are appropriate, depending on whether the method is API or OPI. As a second
note, the final approximation parameter received in evaluating policy p¥ is always used as the starting point
in the evaluation of the updated policy p*+!. ' ‘

(15)

2.3.1 Approximate Policy Iteration (API)

As discussed in the Introduction, Approximate Policy Iteration can be (viewed) as an honest attempt to
emulate policy iteration. Generally, many sample data pairs are generated and used in the approximate
evaluation of reward-to-go, any of the training algorithms discussed previously may be used. For TD()) and
the Bellman Error methods, a fixed (large) number of sample trajectories are generated and stored in a data
buffer. The sample data is repeatedly processed by training algorithms. (This is called “cycling through the
samples buffer.”) Each time a sample trajectory is seen, it is treated as though it were a new trajectory.
Recalling the stepsize rule given by (15), 4, is generally set to 0. For the SVD method a large amount
of training data is generated, then the regression matrices are computed, and the least squares solution is
computed all in one shot. Generally, a predetermined number of policies are computed, and the weights of the
approximation corresponding to the best policy are stored for future use. The API algorithm is summarized
as follows:

1. Start with an initial stationary policy u°.

2. At the i-th iteration, generate a large number of sample trajectories to get the training data for the
policy pf~1.
(a) If using TD(A) or the Bellman Error method, store the data as complete (and distinct) sample

trajectories, keeping the data in the form (ix, gx), where 4x is the state at the k-th stage of a
trajectory with corresponding transitional reward gy.

(b) If using SVD, store the data as a running sum of f(ix)f’(éx) and a running sum of ¢ f(ix), where
¢k is the sample reward-to-go from the state 4.

3. Use the sample data to compute the “best” approximation parameter rf=1,

(a) If using TD(A) or the Bellman Error method, cycle through the sample data buffer updating the
parameter according to either (8) or (10) with a stepsize given by (15), where v, = 0.

(b) If using SVD, compute 7:~! as in (13).
4. Compute p¢ using (14). That is, u* = G(r*~1).
5. Either stop or go back to step 2.

As for analytical guarantees of performance, it has been shown in [2] that if the approximations of reward-
to-go are close to the actual reward function (in a specific mathematical sense) and if the policy updates are
computed accurately with respect to the approximations, then infinitely often in the limit the resulting policies
will yield actual rewards which are close to optimal. The bounds on limiting performance are proportional
to the accuracy of the approximations. This type of mathematical result serves mainly as a “sanity-check”,
guaranteeing that there aren’t any hidden bugs in the methodology which can lead poor performance a priori.
While results of this type are available for API, this method sees very little use in practice.

To gain a heuristic understanding of how API works, it is useful to recall the “greedy” operator G which
maps parameter vectors r to stationary policies G(r) € M. Given that there are finitely many control actions
for each state (in a finite state space), there is a finite number of stationary policies for the system. Because of
this the respective values of G form a partition of the parameter space R%. Given a convergent algorithm for
training reward-to-go approximations, each policy p has a “target” parameter value r# which is the limit of the
training algorithm applied to sample data generated by that policy. If, in implementing API, enough training
data is generated so that these limiting parameter values are closely approached, then the API iteration can
be expressed roughly as pFt! G(r“k). Clearly, the iterations of API are heavily dependent on the nature
of G and the relationship between u and r#. (These are in turn determined by both the architecture for
reward-to-go approximation and the method used for choosing simulation initial conditions.) A priori, there
is no guarantee (in fact, it is unlikely) that the method will converge to a single policy. It is more likely
that an “oscillatory” mode will arise where, after enough iterations, the method starts generating with some
periodicity the same policies over and over again.

2.3.2 Optimistic Policy Iteration (OPI)

OPI distinguishes itself from API in that policy updates are computed on the basis of very rough (optimistic)
approximations to the reward-to-go function. Generally, very little sample data is generated for each policy
(usually just one sample trajectory). Also, the training algorithms are allowed to have very few (usually
just one) passes through the data set, so the effect of training is very limited. The intuition here is that
the corresponding policy update represents an incremental change from the old policy. (This is viewed as
a beneficial property, since small changes in the policy hopefully will not result in entirely new regions of
the state space being visited from policy to policy. In the context of API, such drastic changes tend to
over-extend the approximation’s region of accuracy.) To make up for the limited amount of training data per
policy, usually a very large number of policy updates are computed.

OPI has one very important, practical difficulty: there is no automatic mechanism for evaluating the
policies that are computed. By the optimistic nature of OPI, very little data is required to compute new
policies. However, to gain a practical evaluation of a policy’s effectiveness, many additional sample tra-
jectories are required. (We would need such an evaluation to decide, for example, whether to terminate
the iterations of OPI.) Generating lots of “extra” sample trajectories is contrary to the spirit of OPI, so
evaluation is an inherent difficulty of the methodology. One way to circumvent this is to evaluate policies
only periodically within the OPI iterations. This technique will unfortunately allow many policies (some of
which may be very close to optimal) to slip by between evaluations. On the other hand, this technique allows
most of the computational effort to be directed toward the underlying OPI method. In contrast to OPI,, the
evaluation of individual policies is an integral feature of the API method.

We now give a formal description of the OPI methodology. As with API, optimistic policy iteration can
use any of the approximation training methods discussed in the preceding section. If either the TD(A) or
Bellman error methods are used, then the only difference from API (in addition to the amount of training
data) is that the stepsizes here are computed with 4., set to zero as opposed to vy, in (15). Otherwise, the
flow of the OPI algorithm is identical to that of API as given in the steps of the preceding subsection:

1. Start with an initial stationary policy u°.

2. At the t-th iteration, if (t—1) is a multiple of the desired number of policies per evaluation, then generate
a large number of sample trajectories under u'~!; estimate reward-to-go by computing sample means.

Store the results for post-processing.

3. Generate a small number of sample trajectories to get the training data for the policy u*~1. Store the
data as complete (and distinct) sample trajectories, keeping the data in the form (ix, gx), where i is
the state at the k-th stage of the trajectory with corresponding transitional reward g.

4. Use the sample data to compute parameter r*~1. Cycle (few times) through the sample data buffer
updating the parameter according to either (8) or (10) with a stepsize given by (15), where v, = 0.

5. Compute p¢ using (14). That is, ¢ = G(r*~1).
6. Either stop or go back to step 2.

Significant differences between OPI and API arise when the SVD method of training is used. To see where
these differences come from, recall that in API (with the SVD method), the parameters of the reward-to-go
approximation for u* are completely determined by the sample data generated under p*. The effect of data
generated for earlier policies is completely lost. This is acceptable the API scheme since very many sample
trajectories are computed per policy. On the other hand, a fundamental characteristic of OPI is that the
policies do not change very quickly and, while very little data is generated for each policy, a meaningful
aggregate approximation can be built after a number of policies are considered. The effect of past policies
is accumulated in the parameter vector, so that the SVD method as implemented in API will not work. An
appropriate OPI/SVD methodology is given by the following Kalman filtering scheme:

1. Start with H=1 =0 € R%4 =1 =0¢€ R?, r~! = 0 € R?, an initial stationary policy p°, and a scalar
parameter A € (0, 1].

2. At the t-th iteration, if (¢—1) is a multiple of the desired number of policies per evaluation, then generate
a large number of sample trajectories under p’~!; estimate reward-to-go by computing sample means.

Store the results for post-processing.

3. Generate a small number of sample trajectories to get the sample data pairs (i, cx) for the policy u?~1.

Let N be the (random) number of data pairs.

4. Compute H*~! and =1 as

N
H™Y = [E M=E £) Flak) | + AN HI2 (16)

k=1

N
't = {ZAN-"f(ik)(ck—f(ik)’r"‘z)] + Ay (17)

k=1

5. Compute r*~! as

pt=l = pt=2 4 [Ht—1]+nt—1 (18)

6. Compute p! using (14) with » = 7=, That is, u* = G(r*~1).
7. Either stop or go back to step 2.

The interpretation of OPI as an incremental form of approximate policy iteration is very appealing.
Unfortunately, the method suffers from a lack of mathematical analysis guaranteeing either convergence or
performance. The main analytical difficulty stems from the fact that the approximations at each iteration
bear little resemblance to the corresponding exact reward-to-go functions. The performance bounds for API
given in [2] are so weak here that the theory cannot explain any success of the method. Despite this, OPI has
become very popular in the machine learning research community.

10

To gain a heuristic understanding of OPI, recall the “greedy” partitioning of the parameter space R¢
provided by the operator G. Assume that parameter vectors generated by the iteration converge. (A formal
proof of convergence remains to be found.) Given convergence, the changes in the parameter vector that
result from each iteration become smaller and smaller. If there is convergence to a point interior to one

of the subsets of R?, then eventually the policies generated by OPI will converge (since r* =~ r*~! implies

that g*+1 £ G(r*) = G(rk-1) £ %) OPI exhibits more interesting behavior when the parameter vectors
converge to a point on the boundary of two or more of the greedy subsets of R?. In this case, it is no
longer true that the corresponding policies generated by the method will converge. Rather, as the parameter
vectors bounce from one subset to another {(even as the size of the excursions into the subsets gets smaller and
smaller), the corresponding greedy policies vary discretely. This provides a mechanism for the “oscillatory”
limiting behavior often exhibited by the methodology. It is possible for the parameter vectors of the algorithm
-to converge while the sequence of policies generated by the method may vary radically (even qualitatively)
in the limit. A priori, there are no guarantees that this behavior will not occur. (Again, what actually
happens depends on the architecture used for reward-to-go approximations and the method used for choosing
simulation initial conditions.) It is our belief that convergence to a boundary is the usual way in which OPI
plays out; convergence of the policies seems to be the exception, not the rule.

3 The Football Model

3.1 Problem Formulation

We present here a simplified version of American football and cast it as a stochastic shortest path problem.
The “system” in this model is the current offensive drive whose net score we are trying to maximize. The
state of the system is characterized by three quantities: = the number of yards to goal (field position), y =
yards to go until next first down, and d = down number. Note that z and y are constrained to taking on
integer values. Thus, there is a finite number of states at which the quarterback must have some control action
in mind. Let these states be identified by 7 € S, where S is a finite set. To keep the notation consistent,
the states of the system are the integer-valued elements i of the set S. The triple (z;,yi,d;) denotes the
field position, yards to go until next first down, and down number corresponding to state ¢ € S. We shall
sometimes abuse notation and refer to (z;,y;,d;) or simply (z,y,d) as the state. This should not lead to
confusion since for each state i € S there is only one triple (i, ¥i, d;) and vice-versa.

Transitions from state to state are governed by the probabilistic model discussed in the Appendix. At
each state, the quarterback must choose one out of four play options: 0 = Run, 1 = Pass, 2 = Punt, and 3 =
Kick (field goal). The quarterback’s policy is a function p : S — U, where U = {0, 1,2, 3} denotes the set of
control options.

“Our” team transitions to an absorbing, zero-reward termination state T° whenever it looses possession
of the ball. Rewards in this framework are earned only upon first transitioning to T'. The amount of reward
g is exactly the score received at the end of the our team’s drive minus the expected score to be received by
the opponent at the end of his drive, which is a function of where he receives the ball. As is the case in real
football, termination of the current offensive drive here is inevitable under all policies. (More precisely, for
the model described in the Appendix, this is a finite-horizon dynamic programming problem, with 40 being
the maximum number of transitions to termination.) The problem of maximizing expected total reward can
be viewed as a stochastic shortest path problem. Note that we use the terminology “reward” here, instead of
“cost” which is prevalent in the literature on stochastic shortest paths. Since termination is inevitable under
all policies, this is just a matter of semantics. Our objective is to “maximize net rewards” as opposed to
“minimize net costs”.

We believe football is an appropriate testbed for methods of Neuro-Dynamic programming because it
lies on the boundary between medium-scale (numerically tractable) problems and truly large-scale (compu-
tationally infeasible) problems. The model for football that we consider is obviously numerically tractable.
However, simple enhancements to the model can be implemented that make the computational requirements
for solving the problem much more significant. For example, by more finely discretizing the playing field,
say to half-yard units, we would suddenly have 60200 states, an increase by a factor of four (i.e. not linear).
Additionally, suppose we wanted to factor in time. If we discretized time in 10 second intervals and then

11

played for the last two minutes of the game (even without giving the other team the opportunity to make
decisions), we would suddenly have 602000 states. For these larger problems, it becomes impractical or even
impossible to solve the problem using numerical implementations of the classical methods. The memory and
processing requirements are simply too great. This is what motivates us to consider API and OPI. On the
other hand, because we have the optimal reward-to-go and optimal policy for our present formulation, we may
make meaningful comparisons of the algorithms both with respect to each other and to the optimal solution
of the problem.

3.2 The Optimal Solution

Our model for football (with 15100 states, four control options per state, and termination inevitable) leads to
a problem that can be solved exactly through numerical implementation of the classical methods discussed in
Section 2.1. On a 120 MHz Pentium machine running the Linux operating system, it took approximately 2.5
minutes to compute the optimal reward-to-go functions and optimal policies shown in Figure 1 using policy
iteration. To evaluate the reward-to-go function for each iterate policy, we applied successive approximation
applied until the sup-norm difference between the iterates was less than 10~% football points. Starting from
an initial policy that may be described as “always run”, six policy iterations were required to determine the
optimal policy. The code was written in the C programming language.

In Figure 1, first down is distinctive since the plots there are two-dimensional graphs. This reflects the
fact that, at first down, there is only one possible value of y for each value of xz. While it is optimal to
run from z = 1 to z = 65, the optimal policy requires that pass attempts be made from (roughly) z = 66
to £ = 94. For the next 5 yards it is optimal to run, and at x = 100, the optimal policy is to pass again.
(This is not the result of a bug in the software.) We note from the reward-to-go function that, from 80 yards
to the goal (which is where we typically expect to gain possession of the ball), the expected net reward is
-.9449 points. If our team were to actually receive the ball at 80 yards every possession, we could expect
ultimately to loose the game. This is strictly a function of the parameters which we have set arbitrarily in
our mathematical model. Another set of parameters could very well lead to an optimal expected net reward
from 80 yards to goal which is positive. S

The results for the remaining downs are presented as surface plots since for every value of x there are
many possible values of y. In theory, y can be as large as z. (However, in practical terms « > 20 is an
extremely unlikely event.) While z & y is accounted for in the computations, the plots in the figure show
what happens only for values of y from one to 20. At second down, the optimal policy dictates that pass
attempts be made for a wide range of values of £ and y. The plot also shows that there is a run-attempt
region for the remaining values of z and y. At third down it is usually optimal to pass; however, for z and
y large enough it is actually optimal to punt. (This is where our team’s outlook for this drive is particularly
gloomy. The risk is great that the other team will gain possession of the ball in a region disadvantageous to
us.) The fourth down optimal policy exhibits the most variety in terms of choosing different play options. If
“our” term is close enough to either a new first down or the goal, then a running or passing play is indicated.
On the other hand, if a new first down or touchdown is not likely, then either a field goal attempt or punt is
specified.

12

Expected net score

7 N S SN S S S S 0 —%
0 10 2 N 4 5 & 0 8 %0 10 Yards to Next st Down 0 10 s o God
Yards to goal
Optimal policy Optimal polcy
Pass
. 0
Aun VarstoNot Do %
f " " L \ L " ' ' [- 4l) .
0 10 2 30 4_5 6 70 8 %0 100 5 oo 0 YadsioGod
Yards to goal 0
314 Down Expected nﬁt}ffre 4th Down Expected net scori

0~ _
YadstoNed 1stDown 010 ¥

Yards to Goal

Optimal policy

60
Yards to Goal

Yards to Goal

~100

Figure 1: Complete characterization of the optimal policy.

13

3.3 A Heuristic Solution

To give an idea of the difficulty of football, we hypothesize a class of reasonable policies as follows:
1. At first down, PASS.

2. At second down, if the number of yards to the next first down is less than three, then RUN; otherwise,
PASS.

3. At third down,

(a) if the number of yards to the endzone is less than 41,

e and if the number of yards to the next first down is less than three, then [RUN or PASS],
o otherwise, [RUN or PASS]

(b) if the number of yards to the endzone is greater than 40,

¢ and if the number of yards to the next first down is less than three, then [RUN or PASS],
¢ otherwise, [RUN or PASS]

4. At fourth down,

(a) if the number of yards to the endzone is less than 41,

e and if the number of yards to the next first down is less than three, then [RUN, PASS, or
KICK],

¢ otherwise, [RUN, PASS, or KICK]
(b) if the number of yards to the endzone is greater than 40,

e and if the number of yards to the next first down is less than three, then [RUN, PASS, or
PUNT],

¢ otherwise, [RUN, PASS, or PUNT]

The particular options chosen for each region of the state space (all combined) define a stationary policy for
the quarterback which may be evaluated exactly (numerically), as in the preceding subsection. Each “exact”
policy evaluation requires roughly a minute to compute. The number of policies defined in this class is 1296,
so evaluating all of them can take close to a full day of compute-time. (This is quite slow compared to (i)
the computation of the optimal policy and (ii) many of the NDP runs described in the Section 5.)

To provide a means of comparing the policies in this class, we arbitrarily chose a state of interest:

PR S (.’L’i- = 80, yie = 10, d;e = 1) (19)

This is the “typical” state at which our team will receive the ball. (We chose this based on our observation
that, in real American football, when a team receives a kickoff, they usually manage to get the ball close to
the 80 yards-to-go marker.) The “best” policy in the heuristic class is defined to be the one which has the
highest expected reward-to-go from ¢*. Figure 2 shows the best heuristic policy, along with its corresponding
reward-to-go function. The best heuristic expected reward-to-go from 7* is -1.26, which is .32 game points
worse than optimal.

It is important to note that significant effort would be required to improve upon the performance of the
best heuristic policy. For example, if we included options for running and passing at first down and in both
regions at second down, then the number of policies in this class would jump to 10368. The computations
for this enhanced class of policies would require close to ten days!

14

Expected net score

_4 1] ! i 1 1] 1 1 1

0 10 2 30 4 5 6 70 8 9 10
Yards to goal
Heuristic policy

Pass

Run

0 0 N N 4o N 6 N 0 % 10
Yards to goal
ted net scor

3rd Down Expec

YadsoNetisDomn ° o ¥

Yards to Goal

Heuristic policy

20°
157 3
~60

107
Yards o Next 1st Down - Yards to Goal

Expected net scor

0 T 80 “

YaisoNed Do ° 010 ards o Geal

Heuristic policy

& 40
Yards to Goal

YadstoNed Do ° 0100

Heuristic poficy

Field Goal

107
YaidstoNext 1t Down o - Yards to Goal

Figure 2: Characterization of the best heuristic policy.

4 Approximate Methods for Football

In this section we provide details about our application of NDP to football which should make our experimental
results completely reproducible. This requires that we discuss our approximation architectures and our
methods for picking simulation initial conditions.

4.1 The Approximation Architectures

Our goal in this section is to present the architectures we have used for reward-to-go approximation in
football. To begin, recall that each state i € S can be uniquely associated with a triple (z;, i, di), where
z; is the current number of yards to the end-zone (goal), y; is the current number of yards to the next first
down, and d; is the down number at state ¢. As functions of ¢, the quantities z;, y;, and d; can be viewed as
features which characterize the state :. _

In theory it is possible to use an architecture of the form J(i,r) = H(z:,y;,d;), where H represents
a single “global” architecture, such as a multilayer perceptron with three inputs and one output. However,-
there are problems with this approach. While (for the undiscretized version of football) J*(z, y, d) is probably
smooth or at least continuous as a function of z and y with d fixed, d itself is a truly discrete parameter.
Because of this there is no reason to treat d as a “continuous” input to a global architecture. (Why force a
continuous architecture to learn discrete relationships?)

With this in mind we decided to use a piecewise continuous architecture, comprised of four independent
subarchitectures. The appropriate subarchitecture for any state 7 is determined by d;. Another way of saying
this is that we have partitioned the state space such that each state i € S belongs to the subset characterized
by the value of d;, and there is an independent architecture for each of these subsets. As far as the training
algorithms are concerned, this decomposition of the state space has a tangible impact on the details of the
training algorithms; however, the changes primarily amount to extra book-keeping. (Each data point is
allowed to affect only one subarchitecture.)

In the following subsections we discuss the three main parametric forms we have used in football: MLP,
Quadratic, and Recursive. To simply the discussion of these forms without sacrificing clarity, it is convenient
to describe the piecewise continuity of the architectures in explicit mathematical notation. The architectures
all have the following form:

J(i,r) = H(E2(3), ¢P(0), ra,) (20)

where H is a generic form for the approximation on the respective subsets, ¢¥(3) is a “standard” feature
vector containing scaled versions of z; and y;, ((¢) € R" is a vector of additional features (fi,..., f,,), and
r = (r1,...,74) is a data structure containing the parameters for the respective subarchitectures. To be more
specific, the feature vectors ¢= (i) and ¢¥ (i) are given by

€6) = (o5 -2, oY w) € B (21)
. . S .
B@) = (of A, 08" fay (i) € RM (22)
where ;
L={(0%, 0% olt,..., o) d=1,...,4}

denotes a set of fixed scaling parameters that multiply the input values z;, y;, and the feature values fi(i)
for different down numbers d;. These scaling parameters are not subject to training in approximate policy
evaluation. Rather, they are set in advance based on engineering judgment. (The elements of T are generally
chosen so that £€Z(i) and ¢*(4) lie in the closed interval from zero to one.)

4.1.1 Multilayer Perceptron (MLP)

Multilayer Perceptrons have a history that go way back to the earliest days of artificial neural networks. As a
parametric form for function approximation, they are generically comprised of one or more hidden “layers” of
sigmoidal activation units. Each layer of activation units is preceded by an affine transformation which fed by
the output of the adjacent layer closer to the input layer of the network. The output of the network is formed
either by a layer of activation units (whose output levels are constrained) or by a finial affine transformation.

16

In training, the coefficients of the affine layers are tuned according to a least squares cost criterion to give
the best approximation possible. For a comprehensive discussion of neural networks, including the multilayer
perceptron, the reader is referred to [8] and [6]. It has been shown elsewhere [5] that, with enough sigmoidal
units in a single hidden layer, multilayer perceptrons can be used to approximate arbitrarily closely any
continuous function defined on a multi-interval.

The MLP architecture for football reward-to-go approximation uses only a single hidden layer of activation
units. Moreover, our MLP’s use only the scaled “standard” feature vector ¢* as an input. (This allows us
to drop the feature vector (¥ from the notation.) To make the definition explicit, let R be a positive
integer equal to the number of hidden nonlinear elements for each multilayer perceptron (on each of the
subsets). Let £* represent the value of the scaled “standard” feature vector evaluated at some state i, and
let p = (Wi, b1, Wa, bs) be the parameter data structure which applies on the subset d;, where W; € RE*2
by € RE, W, € RY*E_ and by € R are collectively the weights of the multilayer perceptron for subset d;. The
output of the “MLP” architecture is computed as

H(E%, p) = Wad(€%) + by (23)

where ¢(¢¥) € RE is a vector whose elements are computed as

$1(€7) = tanh(¥1(€7)) (24)
and ¢;(£%) is the I-th element of the vector ¥/(¢¥) € RE, computed as
$(EF) = Wig® + by (25)

In the case study of the following section, we set R = 20. In addition, we set the scale factors in ¥ to .01.
That is, 0% = ¢ = .01 for d = 1,...,4. This guarantees that the elements of £%(3) are in [0, 1] for all states
t€S.

4.1.2 Quadratic

The name of this architecture is derived from the fact that the approximation is realized as a quadratic function
of the values of the features. The coefficients of this quadratic form are the parameters that get “tuned” in
training the approximation. Perhaps the most appealing aspect of this architecture is its simplicity. Computer
programs that implement both evaluation and training of the architecture are easy to develop and execute
quickly.

Before describing this architecture explicitly, it is useful to define the quadratic expansion of a vector. Let
6 =(61,...,05) € R" and let A = @—%QM Let Q(6) be the quadratic expansion of 8, where Q : R* — R?
is defined by the map

Q(e) = (1) 61)""6ﬁ) (91)2)9102:"':0107‘59 (92)2!9203)"‘30207—’7 "’)(eﬁ)z), € Rﬁ (26)

As before, let £% represent the value of the scaled “standard” feature vector evaluated at some state i, and
let p be the data structure for the parameters which apply on the subset d;. The “Quadratic” architecture
for reward-to-go approximation is given by H(¢%,p) = p'Q(¢F). Again, as is implicit in the notation, the
Quadratic architecture uses only the the “standard” feature vector.

The scale factors in ¥ for the case study were chosen as: o3 = .01 for all d; ¢% = .05 for d = 2,3,4; and
oy = 0. To see why we use 0¥ = 0, recall that at first down the number of yards to go until the next first
down, y, is uniquely determined by the number of yards to the end-zone, z. In training this architecture, we
will typically just compute the linear least squares parameter exactly using pseudo-matrix inversion. There
is no benefit to including y as an input at first down.

4.1.3 Quadratic with Feature Recursion (Recursive)

Because the Quadratic architecture uses relatively few parameters and is a form which admits an exact optimal
solution in training, reward approximations using this architecture can be evaluated and trained very quickly.
Unfortunately, for the same reasons, the Quadratic architecture has a limited ability to accurately approximate

17

very irregular functions. The richness of the Quadratic architecture is limited by the number of elements of
the feature vector £¥. If there were more features, then the number of coefficients for the architecture (and
thus the architecture’s power to approximate reward) would increase sharply. The “Recursive” architecture
that we describe here is essentially the Quadratic architecture of the preceding subsection with the additional
twist that after every policy update a new feature function is added to the list of features used by the
architecture. The new features are themselves the past approximations to the optimal reward-to-go function.
The Recursive architecture was originally proposed as a method to decrease the amplitude of the “oscillations”
that are usually exhibited in the limit in both API and OPL.

To give a mathematical description of the architecture, let é% represent the value of the scaled “standard”
feature vector evaluated at some state 7, and let p be the data structure for the parameters which apply
on the subset d;. Suppose that u* is the current policy (in either API or OPI) and that we are trying to
approximate J 7| Let {J (-,7*=1),..., J(-,7*="»)} represent the approximations of the reward-to-go functions
for the pr(;ceding n, policies. With the proper scalings, these are the elements of the vector of “additional”
features ¢*:

) = (of - TG Y, L ol JG,) (27)

The Recursive architecture for reward-to-go approximation is given by H(¢%,¢%, p) = p'Q(€%,¢%), where
Q(a, b) is the quadratic expansion of the elements of both a and 4. To make the architecture well-defined for
the first n, iterations, we initialize (¥ with zeros, so that the earliest iterations tend to imitate the Quadratic
architecture.

Although this architecture is basically “quadratic”, there are significant complexities involved with its
implementation. The architecture is inherently computationally intense. The reason for this is that all of the
past approximations of reward-to-go are needed to evaluate the architecture, even if n, = 1. For example, to
evaluate the approximation J (3,7%), one of the features needed in the computation is J (¢,7%=1). Similarly,
the evaluation of J(i,7* 1) requires the evaluation of J(%, 7*~2), and so on. This difficulty has an important
impact on the details of implementing OPI with this architecture. (To be discussed shortly.) Despite its
computational complexity, the Recursive architecture does have is merits. One of these is the fact that the
number of features does not increase as a function of the policy iteration number. That is, as long as n, is
held constant for all policy iterations, the dimension of parameter vector is fixed at roughly (n, +3)(n, +4)/2.
In other methods of automatic feature-extraction, it is not always so clear how to prevent an explosion of the
number of features.

Because relatively few policies are ever generated in API, it is practical to the Recursive architecture
as described above. With OPI, for the computational issues described above, this architecture would be
impractical. A simple modification, which allows the use of the Recursive architecture in OPI, is to not
perform feature recursions at every iteration; rather, compute recursions infrequently keeping track of “good”
policies in between. Use of the Recursive architecture in OPI is formally described below.

1. Start with an initial stationary policy u°.

2. At the ¢-th iteration, if (¢ — 1) is a multiple of the desired number of policies per evaluation, then

1

(a) generate a large number of sample trajectories under p’~!; estimate reward-to-go by computing

sample means. Store the results for post-processing.

(b) If the number of this sample mean calculation is a multiple of the desired number of mean-
calculations per feature recursion, then look back over the last batch of sample means, identify
the best policy, and incorporate as a new feature the reward-to-go approximation that induced the
best policy.

3. Generate a small number of sample trajectories to get the training data for the policy u*~!. Store the
data as complete (and distinct) sample trajectories, keeping the data in the form (ix, gx), where iy is
the state at the k-th stage of the trajectory with corresponding transitional reward gx.

4. Use the sample data to compute the “best” approximation parameter r*~!. Cycle through the sample
data buffer updating the parameter according to either (8) or (10) with a stepsize given by (15), where

Yra = 0.

18

5. Compute p® using (14). That is, p* = G(rt=1).
6. Either stop or go back to step 2.

The scale factors in ¥ for the case study for the Recursive architecture were chosen as: ¢ = .01 for all
d; 0y =.05ford=2,3,4;0Y =0;and 0}* =1/Tforalldand k=1,...,7n,.

4.2 Simulation: sampling initial conditions

In the case study of the following section, we have used two different rules for picking initial conditions for
simulation. Both are random, using stationary probability distributions that emphasize different parts of the
state space. The first rule (Rule 1) is the one used most often. It selects initial conditions corresponding to
Jjust about any field position our team is likely to see. The second rule, which highlights the effect of different
sampling methods, is used only once in our case study. It selects initial conditions “close” to z = 80,y = 10,
and d = 1.

Rule 1

1. With probability .35 start at fourth down.

¢ Choose yards to go, z, uniformly from 1 to 100.

o Choose yards to next first down, y, uniformly from 1 to z.
2. With probability .30 start at third down.

e Choose uniformly from 1 to 100.

e Choose y uniformly from 1 to .
3. With probability .25 start at second down.

e With probability .25, choose & uniformly from 1 to 50.
o With probability .75, choose z uniformly from 51 to 100.

e Choose y uniformly from 1 to z.
4. With probability .10 start at first down.

e With probability .25, choose z uniformly from 1 to 75.
e With probability .75, choose # uniformly from 76 to 100.
e If z < 10, choose y = z. Else, choose y = 10.

Rule 2
1. Pick x uniformly from 75 to 85.

2. Pick y uniformly from 1 to 10.

3. With probability .45 start at 1st down. With probability .25 start at 2nd down. With probability .15
start at 3rd down. With probability .15 start at 4th down.

19

5 Experimental Results

Figure 3 shows the various NDP-type algorithms we have tested in the football case study. Each row in the
table corresponds to

1. a particular scheme for updating policies: API or OPI,
2. an approximation architecture: MLP, Quadratic, or Recursive, and
3. a training algorithm: TD(A), Bellman Error, or SVD.

In the columnslabeled “Training method(s)” and “Details” are shown the parameter settings for the algorithm,
some of which may vary for particular trials. The table shows in bold the parameter settings which are best
with respect to sample expected reward-to-go from the typical initial condition :*. (The sample evaluation
is based on 8000 independent sample trajectories, all starting from ¢*.) Ezact evaluations of reward-to-go
from ¢* for the best runs are shown in the column labeled “Exact RTG of Best”. The last column of the
table gives the figure number for each algorithm’s corresponding trials. In general, for the OPI runs, unless
stated otherwise in the table, sample evaluations from * are computed every 200 policy updates. For all of
the algorithms in the table, we used the “Rule 1” sampling method (for picking simulation initial conditions.)

The algorithmic parameters shown in the table represent the best settings we could find based on a
considerable amount of tinkering with the methodologies. We tried to be even handed in this process, not
wanting to “sabotage” any particular algorithm. Our goal was to be both comprehensive in scope and
objective in evaluation. Regarding the runs of Figure 8, these were originally intended to be API-type runs;
the table entry v,o = .001 is not a mistake. (Normally, we would have 4., = 0 and ~,, # 0 for OPI. We
discovered, while tinkering with the parameters, that 1 cycle through a data set of 64000 samples is not
enough to make sufficient progress toward the best (approximate) evaluation of reward-to-go. Consequently,
these runs are really more like OPI than API.)

Results for the case study are shown in Figures 4 through 11. The figures all generally follow the same
format. For each experimental run, we plot

1. the sample evaluations of reward-to-go from ¢* as a function of policy number, and
2. first down error from optimal of

(a) the approximation that yielded the best policy
(b) the exact evaluation of the best policy

as a function of z, the number of yards to the goal.

In some cases we also show the exact evaluation of the rollout policy based on (i) the best policy of the trial
and (ii) 20000 “rollouts” per state/action pair. The axis scales in the figures are held constant to aid visual
comparisons. (For some the the runs the traces go “off-scale.”) Results for the API methodology are shown
in Figures 4 through 6. Figures 7 through 11 are devoted to OPI.

Figures 12 and 13 show results that augment the main body of the case study. In Figure 12 we show
results for both API (SVD) and OPI (Kalman Filtering) for the Quadratic architecture using “Rule 27 for
picking simulation initial conditions. In Figure 13, we show the evolution of the weights of the reward-to-go
approximation for various NDP-type runs as a function of policy number. The plots on the left correspond
to API, while the plots on the right correspond to OPI.

20

Scheme | Architecture | Training Method | Details Exact RTG | Fig
of best
API MLP TD(0, .5, 1) and | 70 = .05, 9ra =5-107%,y, =1-107° 4
Bellman Error (100 cycles through buffer of 10k
trajectories) /policy -.954
API Quadratic SVD 4k trajectories/policy -1.172 5
30k trajectories/policy
API Recursive SVD 30k traj/policy with n, = 2, -.957 6
30k traj/policy with n, = 5,
45k traj/policy with n, =7
OPI MLP TD(0, .5, 1) and | 70 = 002,70 =1-1075y; =1-107° -1.022 7
Bellman Error (1 cycle through buffer of 1 traj)/policy
OPI | MLP TD(0, 5, 1) and | 7o = .002,9ra = .001,7; = 1105 -1.042 8
Bellman Error (1 cycle through buffer of 64k traj)/policy
OPI Quadratic TD(0, .5, 1) and | y0 = .001,7,0=5-10"%9, =1.107° -1.161 9
Bellman Error | (1 cycle through buffer of 1 traj)/policy
OPI Quadratic SVD A =1, .95 | No extra details. -.988 10
OPI Recursive TD(0, .5, 1) and | 70 = .01, 7o =2-107%, v, =1-107° -1.006 11
Bellman Error (1 cycle through buffer of 1 traj)/policy
200 policies/evaluation
200 evaluations/recursion

Figure 3: Table of experimental runs for the football case study. All of these experiments used Rule 1 for
picking simulation initial conditions. The best run for each experiment is shown in bold. Note that the
optimal reward to go from 7* is -.9449.

21

(00}

Expected Net Score

4 6 8 10 12 14 16 18 D

Error from optimal at 1st down

T0(1.0)

20 30 40 5 60 70 8 9 100
Yards to goal

Expected Net Score

4 6 8 10 12 ¥ 16 18 N

(=3
]

o
T

----- Error of NN approximati
-= Er:for of rol}oui polk,}y

<

Error from optimal at 1st down
1
o

s
P X

0 60 0 8 % 10
Yards to goal

10(05)

Expected Net Score

0 2 4 6 & 10 12 14 16 18

:Enor dvbest.polifcy -
Enmor of NN approximati : :

[
g
k]
8
I
% 0
£
5 o
E | :
s 3
8§ I :
5_02 1 1 1 H 1 1 1 1 1
0 10 20 30 40 5 6 70 8 90 {0
Yards to goal
Bellman Error
T T H T l T T T T
0 :
8
]
3
z
14
(4
g
X
w

0 2 4 6 8 10 12 4 16 18 2
Policy Iteration number

o
~

[=]
T

=)

Error from optimal at 1st down
o

R T S
3% 4 5 60 70 80 %0 100
Yards to goal

2

(=2
S P
n>
=1

Figure 4: API with the MLP architecture using the TD()) (A = 0, .5,1) and the Bellman error methods with
100 cycles through 10000 sample trajectories in training per policy.

22

SVD: 4k

Expected Net Score

0 2 4 6 8 10 12 4 6 188 2
Policy Hteration number

Error from optimal at 1st down

_ Brror of NN ‘approximation;
02 L MY 1 L I 1 I L
0 10 20 3 40 5 6 70 8 9% 100
Yards to goal

: : 1 :
2 4 6 8 10 12 14 16 18
Policy lteration number

<
L)

o
o

(=3

£

~ - Ertor of rollout policy

Error from optimal at 1st down

S
o'

5 6 70 8 9
Yards to goal

3
N
sl

Figure 5: API with the Quadratic architecture using the SVD method of training: 4k and 30k sample

trajectories per policy.

23

Recursive: 2 Past Policies

Recursive: 5 Past Policies

T T l T t l T T "li T T T l T T T ‘I T
0 : : 0 : :
§ §
38 3
z z
3 3
[0
] Q
Q o
X X
i} u
2 4 6 8 10 12 ¥ B 18 2N 0 2 4 6 8 10 1 4 16 18 20
Poicy Iteration number Policy Hteration number
é T I I T 1 l T T g 1 l T T 1 T T I
3 : : 3 : : : —Erzrorofbegst f :
% 02 % 02} igiorecalivus ISR B
k] E:
_a 0.1‘ ,a 01
£ E
g 0 :. & 9 :-
£ : £ i :
01> : Soif- ;
| | : |
5-02 : I 1 I I L | L 1 1 §-02 L 1 I 1 1 1 L ¢ t
0 10 2 3 40 5 60 70 8 9 100 0 10 20 30 4 5 60 70 8 9% 10
Yards to goal Yards to goal
Recursive: 7 Past Policies
4
8
)
8
z
i
2
Q
]
Q
X
u

8 10 12
Policy Iteration number

T T

o
[

T T

= Error’of best policy -

o
T

[=3

s

Error from optimal at 1st down
—

&

R

o

50
Yards to goal

Figure 6: API with the Recursive architecture using the SVD method of training: 2 past policies (30k sample
trajectories), 5 past policies (30k sample trajectories), 7 past policies (45k sample trajectories).

24

TD(0.0) D(3)

Expected Net Score

f=d
[
T

o
Y

(=)

—Errorofbeslpol K

Error from optimal at 1st down
Error from optimal at 1st down

|+ Exror of NN approximation:
04t e DRI L R foofonns -
! A S S N N N ! A S S N S S U
0 10 2 3 4 5 6 70 8 0 100 0 10 20 30 4 5 60 0 8 90 100
Yards to goal Yards to goal
Bellman Error

Expected Net Score

o
N
T
[=
[)

o
T
o
—
T

<

Error from optimal at 1st down

Error from optimal at 1st down

. 1 o
0 10 20 3 40 5 6 70 8 9% 10
Yards to goal

Figure 7: OPI with the MLP architecture using the TD(A) (A = 0,.5,1) and Bellman error methods of
training with one sample trajectory per policy.

25

D0)

Expected Net Score

0 5 10 15 2 25

0 B 40 4H 50

Bt of NN approximaiion

Error from optimal at 1st down

) S S S s oo W e

5 6 70 8 % 100
Yards to goal

1
0 5 0 15 20 25 30 3B 40 4 5

<
[

o

=3

'
o

.
oi\)

»»»»» rror of NN approximation

Error from optimal at 1st down

1 1 1] l
5 6 70 8 9% 100
Yards to goal

5 20 25 0 B 40 45 50

€

H

°

ke

§0.2

3

3 01

£

20

E | .

E-04}s :

4 : : : : :

Iﬁ_oz 1 1 1 1 1 1 1 1 !
6 10 2 30 4 5 60 0 80 9 10

Yards to goal
Beliman Error

Expected Net Score

1 1 1 I ! 1 i

5 2 25 30 3B 40 45 50
Policy teration number

o o
Py [

(=3

Error from optimal at 1st down

o : : : : : N ap :
02 Y I] 1 L I 1 i 1
0 0 20 30 4 5 6 70 8 9% 100
Yards to goal

Figure 8: OPI with the MLP architecture using the TD(A) (A = 0,.5,1) and Bellman error methods of

training with 64k sample trajectories per policy.

26

0(0) (05)

LoL
)

Expected Net Score
1
>

Expected Net Score

L
o

[

o
—
~

3 4 5 6 7 8

o
N
T

o

Error from optimal at 1st down

Error from optimal at 1st down

0
" - Enorof SN appoxinaton N Enor of N dpprosimation:
02 1 | J; 141 i N 1] 02 1 1] | !
0 10 20 3 40 5 6 70 8 % 100 0 10 20 30 4 50
Yards {o goal Yards to goal
TD(1.0} : Bellman Eror
o - 2
3
3-1.2 @
] 3
z
214 5
9 0
5.16 FRE
Iy <3
X X
w-18 w-1
K]

picy
approximation.

Error from optimal at 1st down

Error from optimal at 1st down

I A ‘
0 16 20 30 4 5 6 70 8 90 100 Yards §

Yards to goal ogoal

Figure 9: OPI with the Quadratic architecture using the TD(A) (A = 0,.5,1) and Bellman error methods of
training with one sample trajectory per policy.

27

Kalman Fitter: lambda = 1.0 Kalman Filter: lambda = 0.95

Lo
-

1
—
k=23

Expected Net Score
i
o

1
—_
-

Expected Net Score

LN
20

1 1 1 i

'
~n

S

[
[X)

o

N

o

o

(=)

T

0 0 20 30 4 5 6 0 8 % 100

Yardsto goal 0 10 20 3 4 5 6 0 8 % 100
Yards to goal

Error from optimal at 1st down

Error from optimal at 1st down

S b
N

Figure 10: OPI with the Quadratic architecture using the SVD (Kalman Filtering) method of training:
A=1,.95.

28

Recursive: TD(0.0) Recursive: TD(0.5)

o ‘ 9
Q
5-1.2 - @
[} 2
214 z
3 g
S-16f
4 &
G-18 w

'
~

08 1 12 14 16 18 2 ‘0 02 04 06 08 1 12 14 16 18 2

(=)
o
>
o
~
o
o

§ £

8 3

% 02 @ 02

* o N

3 0 3 0t :

£ £ : -

‘g 0 % 0 : .

£ E | :

£-01 £-01 ;

5 : v 5 :

5_02) L 1 1 ! I] 1 I w-02 . L L L ’ . L !
0 10 220 M 4 5 60 70 8 9% 10 0 0 2 N 4 5 & 0 80 W 10

Yards to goal Yards to goal

Recursive: TD(1.0)

Expected Net Score

0 02 04 06 08 1 12 14 16 18
Policy fteration number 10

o
[

o
-

Error from optimal at 1st down

0 el
01k ; | — Errorof best policy;...........| .. 4
: -+ Error of NN approximation :
02 R I I I T T T T
D 10 2 % 4 5 & 70 8 90 10

Yards to goal

Figure 11: OPI with the Recursive architecture using the TD(A) method of training: A = 0,.5,1, with one
sample trajectory per policy.

29

SVD: 30k

Expected Net Score

| | Ertor of best poliy..........
----- Error of NN approximation

Qo

0 10 20 3 4 5 60 70 8 %0 100
Yards to goal

Error from optimatl at 1st down

Kalman Fiter: lambda = 1.0

Expected Net Score

R S S S
0 1 2 3 4 5 6 7 8
Policy Iteration number e

[=3
N

P=1

(=3
7

Error from optimal at 1st down

58

N -

[=)

10 2 30 4 5 60 70 8 9 100
Yards o goal

Figure 12: API (with SVD) and OPI (with Kalman Filter) using the Quadratic architecture. We used here
“Rule 2”7 for picking initial conditions for the simulation. Otherwise, the algorithmic settings are the same of
those used in the earlier runs. Notice that Rule 2 significantly degrades performance for API and significantly

improves performance for OPI.

30

API, MLP, TD(1.0)

Parameter Vaiue

) I S S S S R S
0 2 4 6 8 10 12 14 16 18
Policy Heration Number
AP\, Quadratic, SVD w/ 30k
10 T T T T T T T T I

Parameter Value

2 4 6 8 10 12 14 16
Policy fteration Number

Figure 13: Evolution of approximation weights for selected trials from the case study.

Parameter Value

Parameter Value

OPI, MLP, TD(1.0)

0 50 100 150 200 250 300 350 400
Policy lteration Number
OP!, Quadratic, Kalman Fifter w/ lambda = 1.0
T T T T T
=
0
.5 4
-10
-15 r
% I S S S S B
0 50 100 150 200 250 300 350 400
Policy Hteration Number

6 Discussion and Conclusions

Our observations from the case study are as follows.

1. Regarding API:

(a)
(b)

(c)

This methodology (along with the MLP architecture) has yielded the best results.

For the best API runs, the first-down approximations of the reward-to-go are fairly close to the
optimal reward-to-go function. FEzact evaluations of the best suboptimal policies are extremely
close to the optimal reward-to-go function.

In general, the more complex the architecture, the better the results (at the expense of longer
computation times.) The existence of local minima in training the MLP architecture does not
seem to have impacted the results.

When using TD(A) to train the approximations, we found that A = 1 gave the best results (com-
pared to A = 0 and A = .5), although not by a very great margin. The Bellman Error method
gave the worst results.

API seems to be very sensitive to the method used to pick initial conditions for the simulation.
(More experimentation along these lines is necessary.)

The “oscillatory” limiting behavior of API can be seen in the means plots of Figures (4) through (6),
as well as in the weights plots Figure 13.

As an imitation of exact Policy Iteration, API is not totally convincing. In particular, the means
plots are not always monotonically increasing. On the other hand, usually only 10 iterations are
required to obtain “peak” performance. (This compares favorably with the 6 policy iterations that
are required to solve the problem exactly.)

2. Regarding OPI:

(a)
(b)

Despite the methodology’s lack of theoretical guarantees, OPI can find policies whose sample
evaluations from * are competitive.

In the end, even for the “best” OPI runs, the approximations of the reward-to-go function at
first down are not very close to the optimal reward-to-go function. The exact evaluations of the
reward-to-go function are also not very close to optimal. In general, these exact evaluations have
strange properties: (i) while there are prominent exceptions, it is often the case that for states
where z < 20 the exact evaluation is fairly accurate, but extremely inaccurate for z > 20, and (ii)
in some cases there is a precipitous drop in performance for values of z just greater than 80.

In general, the more complex the architecture, the better the results (again, at the expense of
longer computation times.)

Regarding the incremental training algorithms used in conjunction OPI, there is no clear winner.
For the MLP architecture, the best results were obtained with TD(1). For the Quadratic architec-
ture, Kalman filtering with A = .95 worked best (although the resulting approximations look very
strange). For the Recursive architecture, the Bellman Error method was best.

The “oscillations” in policy space predicted by the “greedy subsets” heuristic understanding of
OPI is exhibited in the figures. (We observe corresponding convergence of the parameters for the
reward-to-go approximations.)

OPI will very quickly find a policy which is significantly better than the initial policy. On the other
hand, to come up with policies that are close to optimal, it is necessary to let the algorithm run
for a very long time. (There is one exception: OPI with the Quadratic architecture using A = .95.)

In light of the strange nature of the evaluations of reward-to-go, it is not completely clear that the
peak performances obtained in OPI are not just statistical flukes. The difficulty of evaluating the
many policies that go by is significant.

3. Football is a nice testbed for NDP:

32

(a) It is a truly medium-scale example. Because we can compute the optimal solution to the problem,
which have a yardstick for comparisons of the alternative methods.

(b) Footballis not totally trivial, as evidenced by (i) the relatively poor performance of the approximate
methods (API and OPI) and (ii) the poor performance of the heuristic policy discussed in Section
3.2.

(c) Finally football is fairly intuitive. This aids in the implementation and debugging of the method-
ologies and also provides a means for interpreting the results.

A few words about computation times are in order. Our empbhasis in this case study was to determine
the limits of performance for the competing forms of NDP. As a result, we were not careful to keep records
of run-times. Nonetheless, the following comments should be useful. As a rule, the trials which gave the
best results took the longest to complete. In general, the amount of time required for a particular algorithm
depends on the complexity of the approximation architecture. Holding everything else fixed, API and OPI
take roughly the same amount of time to complete. (One is not clearly always faster than the other.) Except
for the experiments with the Recursive architecture, the “good” API and OPI runs took significantly less
time than the exhaustive search through the heuristic class of policies discussed in Section 3.2. On the other
hand, for this model of football, the exact computation of the optimal policy required considerably less time
than the fastest of the approximate methods (by more than an order of magnitude.)

As for the future, football can provide a vehicle for many more interesting case studies. In particular, by
adding new features to the model and enhancing its realism, the dynamic optimization problem can easily
become intractable, providing a truly large-scale testbed for NDP. One significant change to the model would
involve allowing the defense to make play selections in addition to the offense. The case of an intelligent
opponent would be very interesting to explore computationally. Other case studies may involve alternative
methods of NDP, most notably Q-learning. k

Appendix: The Rules of the Game

Our model describes a simplified version of football. We consider one offensive drive in the middle of an
infinitely long game from the perspective of the offense. The objective is to maximize the score earned during
“our” team’s current offensive drive offset by the opponent’s expected score from the position at which he
receives the ball. The state of “our” team is characterized by three quantities: ¢ = number of yards to goal
(field position), y = yards to go until next first down, and d = down number. The offensive drive ends
(terminates) whenever:

1. A new first down fails to be earned after four plays. (For the benefit of those who are not familiar with
American football, the offense always receives the ball at first down, i.e. d = 1. At first down, a value
for y is set which is the number of yards the offense must move forward in four plays (called downs).
If the offense is successful in this endeavor, then they receive a new first down, i.e. d = 1, along with a
new value for y. Otherwise, each play results in d being incremented by one, along with with y being
decremented by the number of yards earned during the previous play. New y-values at first down are
always computed according to min{10,z}.)

2. A touchdown is scored. {This occurs whenever the offense is able to achieve 2 < 0.)

3. A run attempt is fumbled, a pass is intercepted, or whenever a punt or field-goal attempt is made.

The playing field here is discretized, with z and y taking on integer values. It is important to note that
states in which y > x are impossible and are thus not considered to be part of the state space. Moreover,
since there are no penalties in this game, there can be only one value of y associated with each value of z at
first down. All totaled, there are 15,100 states for which the quarterback (the team’s decision maker) must
have some control action in mind.

The outcome of a given drive is random, dependent on the quarterback’s strategy and the transition
probabilities associated with the various play options and points in state-space. The quarterback always has
four play options to choose from: 0- Run, 1- Pass (attempt), 2- Punt, and 3- Field-goal (attempt). Transition
probabilities and further details of the rules are spelled out in the following paragraphs. These data should
make the results in this paper completely repeatable.

33

Play option 0: Run attempts The number of yards which the ball moves (toward the goal) during a
run attempt is given as the outcome of a Poisson random variable (with mean 6.0) minus two. Negative gain
during the run is entirely possible, although not probable. The run attempt may (with probability .05) result
in a fumble, in which the opposing team recovers the ball at the new ball position.

If the run attempt is not fumbled and results in # < 0, then the current drive ends with a touchdown.
If the run attempt is fumbled in the opponent’s end zone (i.e. ¢ < 0), then the opponent recovers the ball
at = 20. (When the “opponent recovers the ball at ¢ = 20”, the opponent has 80 yards to go to reach his
goal.) If the run attempt is not fumbled and results in > 100, then the opposing team scores a safety and
“recovers the ball at £ = 20”. Even worse, if the run attempt is fumbled in the offense’s own endzone (i.e.
z > 100), then the drive ends with the opposing team scoring a touchdown.

Play option 1: Pass attempts -Pass attempts can result in one of four possibilities: pass intercept (with
probability .05), pass incomplete (with probability .45), quarterback sack (with probability .05), or pass
complete. If the pass is either completed or intercepted, the amount by which the ball moves is given as the
outcome of a Poisson random variable (with mean 12) minus two. Incomplete passes result in no movement
of the ball. If the quarterback is sacked, the sack occurs a number of yards behind the initial position which
is the outcome of a Poisson random variable with mean 6.0.

If the pass attempt is completed and results in ¢ < 0, then the current drive ends with a touchdown. If
the pass attempt is intercepted in the opponent’s end zone, then the opponent recovers the ball at z = 20. If
the pass attempt is completed and results in # > 100, then the opposing team scores a safety and recovers
the ball at £ = 20. Even worse, if the pass attempt is intercepted in the offense’s own endzone, then the drive
ends with the opposing team scoring a touchdown.

Play option 2: Punt attempts Punts always result in the ball being turned over to the other team.
Unless punt distance exceeds the distance to the goal, the amount by which the ball moves after a punt
attempt is given as six times the outcome of a Poisson random variable (with mean 10.0) plus six. If this
distance is greater than the distance to the goal, then the punt is considered out-of-bounds, and the opposing
team receives the ball at z = 20.

Play option 3: Field goal attempts The proba.bility of a successful ﬁeld-goal attempt is given as
max{0, (.95 — .952/60)}. If the field goal attempt is successful, the opponent receives the ball at = = 20.
However, if the field-goal attempt fails, the opponent picks up the ball wherever the field-goal attempt was
made.

Drive score and Expected net score If either team scores a touchdown, then the immediate reward for
that team is 6.8 points. {Note that with the above setup it is possible for either team to score a touchdown.
If the opposing team scores a touchdown, then the offense receives a net score of -6.8.) The “.8” reflects
the fact that the probability of a successful extra-point is taken to be roughly .8. If a successful field-goal
attempt is made, then the immediate reward is 3 points. If a safety is scored against the offense, then the
immediate reward received (by the offense) is -2.0. When the offense’s current drive is over, an amount equal
to the opposing team’s ezpected score (for their drive) is subtracted from the immediate reward received by

the offense. The opposing team’s expected score is a function of where they receive the ball at the beginning
of their drive: 6.82/100.

References

[1] D. P. Bertsekas. A counterexample to temporal differences learning. Neural Computation, 7:270-279,
1995.

[2] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 2. Athena Scientific, Belmont,
MA, 1995.

[3] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1995.

34

[4] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, Belmont, MA,
1996.

[5] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals,
and Systems, pages 303-314, 1989.

[6] Hertz J A, Krogh A, Palmer R G. Introduction to the Theory of Neural Computation. Addison-Wesley,
Reading, MA, 1991.

[7] B. V. Roy J. N. Tsitsiklis. An analysis of temporal-differences learning with function approximation.
LIDS Technical Paper, LIDS-P-2322, 1996.

[8] Haykin S. Neural Networks, a comprehensive foundation. Macmillan, New York, 1996.

[9] G.J. Tesauro. Temporal Difference Learning and TD-Gammon. Communications of the ACM, 38:58-68,
1995.

35

