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Abstract

In this paper and its companion [BPT96] we consider a multiclass multiplexer, with seg-

regated buffers for each type of traffic, and under specific scheduling policies for sharing

bandwidth we seek the asymptotic (as the buffer size goes to infinity) tail of the buffer

overflow probability for each buffer. We assume correlated arrival and service processes

that are usually used in modeling bursty traffic. Here we consider the generalized longest

queue first policy (GLQF) and in [BPT96] the generalized processor sharing policy (GPS).

In the standard large deviations methodology we provide a lower and a matching (up to first

degree in the exponent) upper bound on the buffer overflow probabilities. We relate the

lower bound derivation to a deterministic optimal control problem, which we explicitly solve.

Optimal state trajectories of the control problem correspond to typical congestion scenarios.

We explicitly and in detail characterize the most likely modes of overflow. We find that the

GLQF policy outperforms the GPS policy with respect to loss probabilities characteristics.

Our results have important implications in traffic management of high-speed networks and

can be used as a basis for an admission control mechanism which guarantees different loss

probability for each type of traffic.

Keywords: Communication networks, ATM-based B-ISDN, Large Deviations.



1 Introduction

Future high speed, packet-switched communication networks, for example ATM-based B-

ISDN networks, will accommodate various types of traffic, namely, digitized voice, encoded

video, and data. One of the central and most challenging current problems in computer

networking is the design and the operation of these networks.

Congestion causes packet losses, due to buffer overflows, and excessive delays, phe-

nomena that greatly contribute to the degradation of the quality of service (qos) that the

network delivers to its users. Since voice and video are very sensitive to such phenomena

the network should have the ability to guarantee certain qos parameters to the user. We

quantify qos by the probabilities of excessive delay and buffer overflow. It is desirable to

operate the network in a regime where packet loss probabilities are very small, e.g., in the

order of 10-9. Moreover, large delays should also have a correspondingly small probabil-

ity. An essential step for preventing congestion, through a variety of control mechanisms

(buffer dimensioning, admission control, resource allocation) is to determine how it occurs

and to estimate the probabilities of congestion phenomena, i.e., buffer overflow and delay

exceedance probabilities. The problem is particularly difficult since it essentially requires

finding the distributions of waiting times and queue lengths in a multiclass network of

G/G/1 queues with correlated arrival processes (since it is needed to model bursty traf-

fic) and non-exponentially distributed service times. In this light, it is natural to focus on

the large deviations regime and obtain asymptotic expressions for the tails of congestion

probabilities.

In this paper and its companion [BPT96] we focus at a simplified version of the problem

which nevertheless keeps the most salient features, that is, it is multiclass and has correlated

arrival and service processes. In particular, we consider a multiclass multiplexer (one node),

with segregated buffers for each type of traffic, and under specific scheduling policies for

sharing bandwidth, we seek the asymptotic (as the buffer size goes to infinity) tail of the

buffer overflow probability for each buffer. In other words, we estimate the loss probability

for each type of traffic. In this paper we consider the generalized longest queue first policy

(GLQF) and in [BPT96] the generalized processor sharing policy (GPS) (introduced in

[DKS90] and further explored in [PG93, PG94]). The GLQF policy is a generalization of

the longest queue first policy (LQF), under which the server allocates all of its capacity to

the longest queue. Consider the case of two buffers (types of traffic). According to the

GLQF policy there is a threshold level, 3, and the server allocates all of its capacity to the

first buffer, if the ratio of the queue length in the second buffer versus the queue length in
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2 Multiclass Multiplexers: The GLQF Policy

the first buffer is below the threshold, otherwise it allocates all of its capacity to the second

buffer. For 3 = 1 we have the LQF policy. The LQF policy can be viewed as an attempt

to reduce the variance of delay between different types of traffic.

In the standard large deviations methodology we provide a lower and a matching (up to

first degree in the exponent) upper bound on the buffer overflow probabilities. We prove

that overflows occur in two most likely ways (modes of overflow) and we explicitly and in

detail characterize these modes. Our line of development is very similar to [BPT96]. We

address the case of multiplexing two different traffic streams; for the general case of N

streams our lower bound approach (which also determines the modes of overflow) can be

easily extended. Proving an upper bound is still an open problem. It should however be

noted that there is an exponential explosion of the number of possible overflow modes (there

are 2
N - 1 modes). Our results have implications for the traffic management of high-speed

networks. They can be used as a basis for an admission control which guarantees desirable

loss probability, and allows us to deal with different requirements for each type of traffic.

We compare the loss probabilities characteristics of the GLQF and the GPS policy and find

that the first outperforms the second. However, this may be happening at the expense of

greater delay. Though, since delay is due to long queues, it is intuitive that the GLQF

policy tries to balance (with a / "bias") the delay of the two traffic streams. In any case, if

only loss probability guarantees are needed, our results clearly suggest the use of the GLQF

policy instead of the GPS.

We wish to note at this point that although our principal motivation for studying this

problem comes from communication networks, our results have applications in other queue-

ing situations, e.g. service industry and manufacturing systems.

Large deviations techniques have been used, recently, in a variety of problems in com-

munications. A nice survey can be found in [Wei95]. The problem of estimating tail

probabilities of rare events in a single class queue has received extensive attention in the

literature [Hui88, GH91, Kel91, KWC93, GW94, EM93, TGT95]. The extension of these

ideas to single class networks, although much harder, has been treated in various versions

and degree of rigor in [BPT94, GA94, Cha95, O'C95, dVCW93].

Closer to the subject of this paper, [GGG+93] suggests the use of the LQF policy in

high speed networks and uses a deterministic model (only the rate of each incoming stream

is known) to calculate buffer sizes that guarantee no loss with probability 1. In [SW95] the

authors consider the LQF policy in a system with two buffers and address the question of

how one queue builds up when the other is large. They consider the M/M/1 version of the

system (i.e., Poisson arrivals and exponential service times).



Sec. 2. Preliminaries 3

Our work considers the generalization of LQF, the GLQF policy, and obtains the tails of

the buffer overflow probabilities for a system with correlated arrivals and stochastic capacity.

Stochastic capacity makes it possible to treat more complicated service disciplines. Consider

for example the case where we have a deterministic server and three types of traffic with

dedicated buffers. We give priority to the first stream and use the GLQF policy for the

remaining streams. These two remaining streams face a server with stochastic capacity, a

model of which can be obtained using the model for the arrival process of the first stream.

Moreover, we provide an optimal control formulation of the problem. In particular, the

exponent of the overflow probability is the optimal value of a control problem, which we

explicitly solve. This formulation, as it will be apparent later, motivates the selection of two

overflow scenarios whose probability constitutes the lower bound, a selection which is sort of

arbitrary in most of the existing literature. Optimal state-trajectories of the control problem

correspond to the most likely modes of overflow; from the solution of the control problem

we obtain a detailed characterization of these modes. The technique for proving the upper

bound is different from the corresponding proof in [BPT96] and does not use explicitly the

optimal control formulation. The optimal control formulation is general enough to include

any scheduling policy. The only thing that changes with the policy is the system dynamics.

Optimal control formulations are also used in [SW95] for large deviations results of jump

Markov processes.

Regarding the structure of this paper, we begin in Section 2 with a brief review of

large deviations results that we use in this paper. We also state a set of assumptions

that arrival and service processes need to conform to. In Section 3 we formally define the

multiclass model that we consider and in Section 4 we formally define the GLQF policy

and the probabilities of which we seek the asymptotic tails. Moreover, in the latter section,

we provide an orientation of the methodology that we follow in proving our results. In

Section 5 we prove a lower bound on the overflow probability and in Section 6 we introduce

the optimal control formulation and solve the control problem. In Section 7 we summarize

the most likely modes of overflow obtained from the solution of the control problem and

Section 8 we prove the matching upper bound. We gather our main results in Section 9. In

Section 10 we compare the GPS and GLQF policy and we conclude in Section 11.

2 Preliminaries

In this section we review some basic results on the Large Deviations Theory [DZ93b, SW95,

Buc90] that will be used in the sequel.
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We first state the G/irtner-Ellis Theorem (see Bucklew [Buc90O], and Dembo and Zei-

touni [DZ93b]) which establishes a Large Deviations Principle (LDP) for dependent random

variables in IR. It is a generalization of Cramer's theorem which applies to independent and

identically distributed (iid) random variables.

Consider a sequence {S1, S2 ,... } of random variables, with values in IR and define

An(0) = - log E[eO]. (1)
n

For the applications that we have in mind, Sn is a partial sum process. Namely, S, =

Ein= Xi, where Xi, i > 1, are identically distributed, possibly dependent random variables.

Assumption A
1. The limit

A(0) lim An,() = lim logE[eOSn] (2)
3--~oo n--+o n

exists for all 0, where ±oo are allowed both as elements of the sequence An(0) and as

limit points.

2. The origin is in the interior of the domain DA ~ {0 j A(0) < oo} of A(0).

3. A(0) is differentiable in the interior of DA and the derivative tends to infinity as 0

approaches the boundary of DA.

4. A(0) is lower semicontinuous, i.e., liminfo,os A(0n) > A(0), for all 9.

Theorem 2.1 (Gdrtner-Ellis) Under Assumption A, the following inequalities hold

Upper Bound: For every closed set F

lim sup - loge P E Fl < - inf A*(a). (3)
n-oo n n aEF

Lower Bound: For every open set G

liminf 1 logP S-. E G > - inf A*(a), (4)
n-noo % n aEG

where

A*(a) - sup(Oa - A(O)). (5)
9
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We say that {S } satisfies a LDP with good rate function A*(.). The term "good" refers

to the fact that the level sets {a I A*(a) < k} are compact for all k < oo, which is a

consequence of Assumption A (see [DZ93b] for a proof).

It is important to note that A(-) and A*(.) are convex duals (Legendre transforms of

each other). Namely, along with (5), it also holds

A(O) = sup(Oa - A*(a)). (6)
a

The Gdrtner-Ellis Theorem intuitively asserts that for large enough n and for small

> 0,

P[S, E (na - nc, na + ne)] - e-nA(a).

A stronger concept than the LDP for the partial sum random variable Sn E IR, is the

LDP for the partial sum process (Sample path LDP)

1 [ntJ
Sn(t) = n Xi, t E [0, 1].

i=1

Note that the random variable Sn = Z/=l Xi corresponds to the terminal value (at t = 1) of

the process Sn(t), t e [0, 1]. In a key paper [DZ93a], under certain mild mixing conditions

on the stationary sequence {Xi; i > 1}, the authors establish an LDP for the process Sn(-)

in D[O, 1] (the space of right continuous functions with left limits).

Their result is a starting point for our analysis in this paper. In particular, we will be

assuming the following version of the sample path LDP.

Assumption B

For all m C N, for every E1, e2 > 0 and for every scalars ao,... am-l, there exists M > 0

such that for all n > M and all ko,... , km with 1 = ko < kl < ... < km = n,

e - ( n 2+ :, ' (k i l- k i )A * (a i ) )
< P[nSki+ - Sk i - (ki+l - ki)ai < Eln, i = 0,... ,m - 1]

< e(nf2 ~nl--1(ki+L-ki)A(i))(7
< ;=o \"'+1-"~I" \U'II (7)

A detailed discussion of this Assumption, and the technical conditions under which it is

satisfied is given by Dembo and Zajic in [DZ93a]. In the simpler case when dependencies

are not present (i.e., Si = j= Xj, where Xi's are iid), Assumption B is a consequence of
Mogulskii's theorem (see [DZ93b]). Intuitively, Assumption B deals with the probability of

sample paths that are constrained to be within a tube around a "polygonal" path made up
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with linear segments of slopes ao,... , am_. In [DZ93a] it is proved that this assumption

is satisfied by processes that are commonly used in modeling the input traffic to commu-

nication networks, that is, renewal processes, Markov modulated processes and correlated

stationary processes with mild mixing conditions.

In [Cha95] a uniform bounding condition is given under which the above Assumption

is true, and is verified that the condition is satisfied by renewal, Markov-modulated and

stationary processes with mild mixing conditions. Using this uniform bounding condition

it is not hard to verify (see [Cha95] for a proof) that the following assumption is satisfied.

This assumption can be viewed as the "convex dual analog" of Assumption B.

Assumption C

For all m E N there exists M > 0 and a function 0 < r(y) < oo, for all y > O, such that

for all n > M and all ko,... ,kkm with 1 = ko < kl < ... < km = n,

E[e° Z] < exp{E[(kj - k_l)A(0j) + r(oj)]}, (8)
j=1

where 0 = (01, .. .,) and Z = (So, Sk2 - Ski,... , Sk,/, - Sk, .).

On a notational remark, in the rest of the paper we will be denoting by S. a jk=i Xk,

i < j, the partial sums of the random sequence {Xi; i E Z}. We will be also denoting by

Ax(.) and A* (.) the limiting log-moment generating function and the large deviations rate

function (see eqs. (2) and (5) for definitions), respectively, of the process X.

3 A Multiclass Model

In this section we introduce a multiclass multiplexer model that we plan to analyze, in the

large deviations regime.

Consider the system depicted in Figure 1. We assume a slotted time model (i.e., discrete

time) and we let Al (resp. A2), i E Z, denote the number of type 1 (resp. 2) customers

that enter queue Q1 (resp. Q 2) at time i. Both queues have infinite buffers and share the

same server which can process Bi customers during the time interval [i, i + 1]. We assume

that the processes {A ; i c Z}, {Ai; i E Z} and {Bi; i E 2} are stationary and mutually

independent. However, we allow dependencies between the number of customers at different

slots in each process.

We denote by LV and L2, the queue lengths at time i (without counting arrivals at

time i) in queues Q1 and Q2, respectively. We assume that the server allocates its capacity
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Al

Q2

A2

Figure 1: A multiclass model.

between queues Q1 and Q2 according to a work-conserving policy (i.e., the server never stays

idle when there is work in the system). We also assume that the queue length processes

{Li, j = 1,2, i E Z} are stationary (under a work-conserving policy, the system reaches

steady-state due to the stability condition (9) by assuming ergodicity for the arrival and

service processes).

To simplify the analysis and avoid integrality issues we assume a "fluid" model, meaning

that we will be treating Al, A5 and Bi as real numbers (the amount of fluid entering or

being served). This will not change the results in the large deviations regime.

For stability purposes we assume that for all i

E[Bi] > E[A]] + E[Ai]. (9)

We further assume that the arrival and service processes satisfy a LDP (Assumption A),

as well as Assumptions B and C. As we have noted in Section 2, these assumptions are

satisfied by processes that are commonly used to model bursty traffic in communication net-

works, e.g., renewal processes, Markov-modulated processes and more generally stationary

processes with mild mixing conditions.

4 The GLQF policy

In this section we introduce the generalized longest queue first policy (GLQF).

Figure 2 depicts the operation of the GLQF policy in the L1-L2 space. Fix the parameter

of the policy / > 0. There is a threshold line, of slope Q, which divides the positive orthant

of the L' - L2 space in two regions. The GLQF policy serves Type 2 customers above the
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threshold line and Type 1 below it. The value f = 1 corresponds to the longest queue first

(LQF) policy. More formally, we define the GLQF policy to be the work-conserving policy

that at each time slot i serves Type 1 customers when

L2 </ fL and L 2 + A 2 < /(L± + A1 - Bi).

It serves Type 2 customers when

L>2 /> L and L2 +A2 -Bi > /(L + Al).

When

L<2 /< L1 and L2 + A>2 f (L' + A'-Bi),

or when

L2 > 3L1 and L2+A2-_ Bi <i3(L' + Al),

then the GLQF policy allocates appropriate capacity to both types of customers such that

Li+l = fii3+l'. Similarly, whenever Li = 3L) the GLQF policy allocates its capacity to

Type 1 and 2 customers so that L2+ 1 = tLi+1.

L2

Serve 2

Serve 1

tanw = pf
/w 'i ,

L1

Figure 2: The operation of the GLQF policy.
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As in Section 3, we assume that the queue length processes {Li,j = 1,2, i C Z) are

stationary. We are interested in estimating the overflow probability P[LI > U] for large

values of U, at an arbitrary time slot i in steady-state. Having determined this, the overflow

probability of the second queue can be obtained by a symmetrical argument.

We will prove that the overflow probability satisfies

P[LI > U] - e-UOLQF, (10)

asymptotically, as U -- oo. Our methodology is similar to the one we used in analyzing the

GPS policy [BPT96]. To this end, we will develop a lower bound on the overflow probability,

along with a matching upper bound. Consider all scenarios (paths) that lead to an overflow.

We will show that the probability of each such scenario w asymptotically behaves as e-U° ( "),

for some function 0(w). For every w, this probability is a lower bound on P[L' > U]. We

select the tightest lower bound by performing the minimization 0
GLQF = min, 0(w). This is

a deterministic optimal control problem, which we will solve. Optimal trajectories (paths) of

the control problem correspond to most likely overflow scenarios. We show that these must

be of one out of two possible types. In other words, with high probability, overflow occurs

in one out of two possible modes. For the upper bound, we will consider the probability

of all sample paths that lead to overflow and show that it is, asymptotically, no more that

e UGLQF.

5 A Lower Bound

In this section we derive a lower bound on the overflow probability P[L' > U].

Proposition 5.1 (GLQF Lower Bound) Assuming that the arrival and service processes

satisfy Assumptions A and B, and under the GLQF policy, the steady-state queue length,

L 1, of queue Q1, at an arbitrary time slot satisfies

lim U logP[L1 > U] > - LQF (11)

where 0GLQF is given by

GLQF = min inf lQF (12)[a>OA LQF(a), inf a GLQF) (12)
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and the functions A*ALQF(.) and AULZQF(-) are defined as follows

ALQF(a) 2 inf [AA, (x1) + A*2 (x 2 ) + A*(x 3 )], (13)
LQaXI = -3=a 3 A

x22<S(x1-X3)

and

AGLQF(a) inf [AA1(X1) + AA2( 2) + AB(x 3 )]. (14)
X1 -- x 3-=a

X2 -(1 -O)z3=3a
0<0<1

Proof: Let -n < 0 and a > 0. Fix Xl,X 2, X3 > 0 and 1,62, E3 > 0 and consider the event

A { ISn,_i_ -(n - i)x < n , ISA ,_i_l -(n - i)x 2 1 < 62 n,

IS-n,-i- - (n -i)X 3 1 _< 63 n, i = 0,1,... ,n - 1}.

Notice that x1 , x2 (resp. x3) have the interpretation of empirical arrival (resp. service) rates

during the interval [-n, -1]. We focus on two particular scenarios

Scenario 1: x1 - x 3 a Scenario 2: xl - x3 = a

X2 _< P(X 1 - X3) X2 - (1 -- )X3 = Pa (15)
0 < < 1

Under Scenario 1, even if the server always serves Type 1 customers 1 in [-n, 0] we have

that Lo > na - ne', where e - O0 as 1, 62,63 -4 0.

Consider now Scenario 2, and let for the moment ignore e's (i.e., el = 62 = 63 = 0). We

will argue that L _> na. If L2_n = ,L' n and for given xl, x 2, x 3 there exists 0 such that

both queues build up together with the relation L2 = iLL holding in the interval [-n, 0].

According to the GLQF policy the server arbitrarily allocates its capacity to the two queues,

giving fraction q to Q1 and the remaining 1- q to Q2, yielding L' = na + L1 _> na. If

L2n > LI n then the first queue receives less capacity in [-n, 0] than nOx3, resulting also

in Ll > na. Finally, consider the case L < 3L1 n. Then at time -t E [-n, 0] we have

L 1 + (n - t(x- 3) and L = L + (n - t)x 2 . Notice that 12 > l(xl - x3).

1which is the case if we start from an empty system at -n and the arrival and service rates are exactly
Xl,X2, X3, respectively. Then the second queue, since it receives zero capacity, builds up with rate X2, and
its level always stays below /L', a necessary condition for the first queue to be receiving all the capacity.
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Otherwise, we have a contradiction, i.e.,

Pfa < X2 < (X1 - X3) < Pa.

Thus, for large enough n, there exists some t such that L2 t = ,3L t. From that time on,

both queues build up together with the relation L2 = PL' holding. Therefore and since

L2 + L >_ (1 + ,)a, we have L' > na.

With q, E2 , E3 > 0, and with the same 5b there exists e2 > 0 such that queue lengths are

within an e' band of their values in the previous paragraph, resulting in Lo > na- n-e,

where e2 - 0 as el,e2, e3 -+ 0.

The probability of Scenario 1 is a lower bound on P[L1 > na]. Calculating the proba-

bility of Scenario 1, maximizing over x1, x2 and X3 , to obtain the tightest bound, and using

Assumption B we have

P[Lo > n(a - l)] > sup P[ ISnjl - (n -i)xl < Eln, i = 0,1,... ,n - 1]
XI -X3=a

xZ2<1(xZ1-3)

x P[ IS,__ - (n - i)x2 1 _ Es2n, i = 0, 1,... ,n -1]

X P[ ISB -i- (n - i)x 3 l < e3n, i = 0,1, .. ,n- 1]

>exp -n inf [AA (xi1 ) + A* 2(x 2) + A*(x 3 )] + e
X2<(21XI-3)

=exp{-n(AG LQF(a) + E)), (16)

where n is large enough, and the E, e -+ 0 as e1, e2 , e3 -4 0.

Similarly, calculating the probability of Scenario 2, we have

P[L1 > n(a -E)] > Sup P[ JS-' ,--l-(n-i)xl < Eln, i 0 1,... n - ]

I L - _,,sup - (--i)Xl[ •_~ (eIm, i = 0,1,... ,m- 1]Xl -- 23--a 
21- O3=a

x2-(1-,)x3=Oa

0<0<1

x P[ ISA , - (n- i)x 2 1 < e2n, i = 0, 1,... n - 1]

X P[ ISn,-i - (n - i)zx3 < e3 n, i = 0, 1,... ,n - 1]

> exp -n ( inf [AA (x) + AA (2) + A(X3)] + 

X2-(1--)±x3=fa1

exp-n(,-ACILQF (a) + e')), (17)
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where n is large enough, and the e2, E' - as E1, 2, e3 - 0.

Combining Eqs. (16) and (17) we obtain that for all e, e' > 0 there exists N such that

for all n > N

1 log P[Ll > n(a - e)] > -(min(AGLQF (a), AILQF(a) + '). (18)

As a final step to this proof, letting U = n(a - e), we obtain that for all e, e' > 0 there

exists Uo such that for all U > Uo

1 1 1
log P[L' > U] = l > n(a --] ---- (min(AG*LQF(a), AII*QF (a)) +'),U nQ(a - )) +aE GL ' )

which implies

1
lim logP[L' > U] > -- min(ALQF(a) (a)).

U--+oo U a GLF (a), L*QF (a))

Since a, in the above, is arbitrary we can select it in order to make the bound tighter.

Namely,
1 1 1

lim - log P[L' > U] > - min inf -ALQF(, nf -A
U+ GLQF (a), i GLQF(a)']Uj-+0oU [a> a a>0oa

6 The optimal control problem

In this section we introduce an optimal control problem and show that G*LQF is its optimal

value. The ideas are similar to the case of the GPS policy, we will therefore keep the

discussion brief.

The scaling of time and fluid levels is done in exactly the same manner, as in [BPT96],

therefore the resulting control problem is identical to (GPS-OVERFLOW) with the excep-

tion of the system dynamics that are different in the case of the GLQF policy. In particular,

we distinguish three regions depending on the state as follows

Region A: L 2 (t) > 3Ll(t), where according to the GLQF policy

L1 = xl(t) and L2 = x 2 (t) -3(t ),
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Region B: L 2 (t) < fLl(t), where according to the GLQF policy

L= xl(t)-x 3 (t) and L 2 = x 2 (t),

Region C: L 2(t) = fLl(t), where according to the GLQF policy

L1
+ L2 X= x(t) + x 2 (t) - x 3 (t)

Let (GLQF-DYNAMICS) denote the set of state trajectories Li(t), j = 1, 2, t e [-T, 0],
that obey the dynamics given above.

We now formally define the following optimal control problem (GLQF-OVERFLOW).

The control variables are xj(t), j = 1,2, 3, and the state variables are LJ(t), j = 1,2, for

t E [-T, 0], which obey the dynamics given in the previous paragraph.

(GLQF-OVERFLOW) infJ [A- (xl(t)) + A, 2 (x 2 (t)) + A*(x 3 (t))] dt (19)
-T

subject to: LI(-T) = L 2 (-T) = 0

L'(0) = 1

L2(0): free

T: free

{Lj(t): t c [-T, 0], j = 1,2} E (GLQF-DYNAMICS).

This problem exhibits both the properties of constant control trajectories within each

region of system dynamics, and time-homogeneity. We omit the proofs since they are

similar to the GPS case. Using these properties we can make the reductions appearing

in Figure 3(a), (b) and (c), starting from an arbitrary trajectory with piecewise constant

controls. We conclude that optimal state trajectories can be reduced to having one of the

forms depicted in Figure 3(d), (e) and (f).

The optimal trajectory of the form shown in Figure 3(d) has value equal to

infT[TAG*LQF(T)] and the optimal trajectory of the form shown in Figure 3(e) has value

equal to infT[TAGIQF(#)], where AGLQF(-) and AGLQF(-) are defined in Equations (13) and

(14), respectively. Consider now the trajectory in Figure 3(f) which has value

inf inf [AA (xl) + A 2(x 2) + A*(x 3)]. (20)
1-T

22-Z3 > T
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The functions A* 2 ( x2) and A (x33) are non-negative, convex, and achieve their minimum
value which is equal to 0 at x2 = E[A2J and X3 = E[Bo ], respectively. Since I > 0, and due

value - 0, and due
to the stability condition (9), for X2- X3 > ST-- it has to be the case that either x2 > E[A2]

or X3 < E[Bo]. If the former is the case, we can decrease x2 and reduce the cost, as long

X2 - X3 > ST holds. Also, if X3 < E[Bo] is the case, we can increase X3 and reduce the cost,

as long X2 - X3 > AT holds. Thus, at optimality it is true that X2 - X3 = PT. Then, the
expression in (20) is equal to infT[TAQII*F(-) ] with X = 0 in the definition of AIIF( ).GLQ T G\f~- " CILC U~IL"IV" UI"aLQF(TI)

Thus, since the calculation of AIILQF(T) involves optimization over q, we conclude that the

L
2 , L

2

(a) Li

Figure 3: By the property of constant controls within each region of system
dynamics the state trajectory in (b) is no more costly than the trajectory in (a).
Also, by the time-homogeneity property, optimality of the state trajectory in (b)
implies optimality of the trajectory in (c). Candidates for optimal state trajectories
are depicted in (d), (e) and (f). The trajectory in (f) is eliminated as less profitable
to the one in (e). Hence, without loss of optimality we can restrict attention to
trajectories of the form in (d) and (e).

state trajectory Figure 3(f) is no more profitable than the one in Figure 3(e), leaving us
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with only the trajectories in Figure 3(d) and (e) as possible candidates for optimality. We

summarize the discussion of this section in the following theorem.

Theorem 6.1 The optimal value of the problem (GLQF-OVERFLOW) is given by 9
GLQF.

7 The most likely path

As we have explained in the Sec. 4 we will prove a matching upper bound to the one

in Proposition 5.1. This is sufficient to guarantee that the two scenarios identified in the

proof of Proposition 5.1 (or equivalently the two optimal state trajectories of (GLQF-

OVERFLOW)) are most likely ways that queue Q1 overflows. We summarize here these

two most likely modes of overflow. We distinguish two cases:

Case 1: Suppose OGLQF = infa A`LQF(a)/a holds. Let a* > 0 the optimal solution of

this optimization problem. The first queue builds up linearly with rate a*, during a

period with duration U/a*. During this period the empirical rates of the processes

Al, A2 and B, are roughly equal to the optimal solution (xl, x2, x), respectively, of

the optimization problem appearing in the definition of AGLQF(a*) (Eq. (13)). In this

case the first queue is building up to an O(U) level while the second queue builds up

at a rate of x2, in such a way that the server allocates its entire capacity to the first

queue. The trajectory in L'-L2 space is depicted in Figure 3(d).

Case 2: Suppose O0 LQF = infa AIQFQ(a)/a holds. Let a* > 0 the optimal solution of

this optimization problem. Again, the first queue builds up linearly with rate a*,

during a period of duration U/a*, and with the empirical rates of the processes Al,

A2 and B being roughly equal to the optimal solution (x*, xz, x), respectively, of the

optimization problem appearing in the definition of AGLQF(a*) (Eq. (14)). In this

case both queues are building up, the first to an O(U) level and the second to an

O(,fU) level. The trajectory in L1-L 2 space is depicted in Figure 3(e).

8 An Upper Bound

In this section we develop an upper bound on the probability P[L& > U]. In particular,

we will prove that as U -4 oo we have P[L0 > U] < e-B.LQFU+O+ (), where o(U) denotes

functions with the property limu,, o(U) = 0.U
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Before we proceed into the proof of the upper bound, we derive an alternative expression

for 0 ~LQF which will be essential in the proof In the next theorem, we will show that the

calculation of OGLQF is equivalent to finding the maximum root of a convex function. The

equivalence relies mainly on [BPT96, Lemma 8.2].

In the derivation of such an equivalence we will be using the same convention for the term

infinite root that we introduced in [BPT96, Section 8]. Namely, consider a convex function

f(u) with the property f(0) = 0. We define the largest root of f(u) to be the solution of

the optimization problem supu:f(u)<O u. If f(-) has negative derivative at u = 0, there are

two cases: either f(-) has a single positive root or it stays below the horizontal axis u = 0,

for all u > 0. In the latter, case we will say that f () has a root at u = oo. On a notational

remark, we will be denoting by AGLQF(-) and AGLQF(-), the convex duals of A`LQ (F)
and ALQF('), respectively. Notice, that the latter are convex functions. For A *LQF(a)
convexity is implied by the fact that it is the value function of a convex optimization problem
with a appearing only in the right hand side of the constraints. For AZQF(a), the sameAGLQr(a), the same

argument applies when we note the following reformulation

AI*QF(a) = inf [A (xi) + A* 2(x 2) +A*(x 3)]
GLFa) X1 --X3=x3=a

X2-(1-)X23=-a

inf [A 1 (x) + A2 (x 2 ) + A (x3)].
Z 1-x 3 =a

X2-(X 3-x 3 )=Oa

O<X<2X3

In preparation for the following theorem we prove the next monotonicity lemma.

Lemma 8.1 (Monotonicity) Consider a random process {Xi; i E Z} that satisfies As-

sumption A. Assume Xi > O, i E Z. Then for all 0 < 0' we have Ax(0) < Ax(9').

Proof: Xi > 0, i E Z, implies SX > 0 which in turn implies

E[eS ix] < E[eo'S, ],

for all 0 < 0'.

This Lemma, clearly applies to the arrival and service processes.
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Theorem 8.2 0GLQF is the largest positive root of the equation

=LFLQF(O)] = 0, (21)

AGLQF(O) max[A'LQF(9) A"LQF(9) = 0, (21)

where AGLQF(-) is the convex dual of A'LQF(.) and is given by

ALQF(9) = inf[AA1 (-- /3) + AA2 (u) + AB(-0 + U3)], (22)u_<0

and AILQF(.) is the convex dual of AGLQF(.) and for 0 > 0 satisfies

AGLQF(0) = inf[AA (0 - u/3) + AA2(U) + max(AB(-u), AB(-0 + u/3))]. (23)

Proof: Let us first calculate AGLQF(.) and ALQF(-) by using convex duality. We have

AGLQF (0) = sup[Oa - ALQF (a)
a

=sup sup [Oa- A 1 (x1 ) - A2 ( 2 ) - A;(x 3)]
a X--X3=a

x2<0(xI1-3)

=sup sup [O(X 1 - X3 ) -A 1 ( 1 ) -AA 2 (x 2) -AB(X3 )]
a X1-X3=a

X2<13(X, X3)

-= sup [O (x1 X3 ) - A*1 (x) - A 2 (x 2 ) - A; (x 3 )]
X2<3(L(1-X3)

= inf sup [O(x 1 - 3 ) - A*(X 1 ) - AA2 (x 2 ) - A(x 3 )
u<O X1,,xz2,X3

- U(/X 1 - /3X 3 - X2 )]

u<O

Similarly,

ALQF(O) = sup[Oa- A QF(a)
a

=sup sup [Oa -A 1, (X1 ) -A 2 (x 2) - AB(x 3 )]
a z1--x3=a

X2-(1-0)23=,(Z1-X23)
0<0<1

= inf sup [O(x1 -qxX3) -AI (x 1) -AA 2(X 2 ) -AB(x3)
U X1,X2,X 3

+ u(x2 - ,XI + (q + ± - 1)X3)]
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= inf[AAI (9 - up) + AA2(U) + sup AB(-00 + (/0 + 0 - 1)u)]
u 0<_<1

= inf[AA1 (0 - u/3) + AA2(U) + (U) + max(AB(-u), AB(-0 + up))]

= inf[AA, (9 - u/p) + AA2(U) + max(AB(-u), AB(--0 + u/f))].
u>O

In the fifth equality above, we have used the monotonicity of AB(-) (see Lemma 8.1), and

the fact that the argument -00 + (305 + 0 - 1)u is linear in 0, thus, taking its maximum

value at either X5 = 0 or k = 1. For the sixth equality above, notice that because AB(.) is

non-decreasing it holds

AA1 (O - U) + AA2 (u) + max(AB(-u), AB(-O + Ufi)) ={ AA ( - u3) + AA2 (U) + AB(-U) if u < l

AA1(0 -u3) +AA2(U) + AB(-0 + u) if u> 0

since at the upper branch -u > -0 + u/p and at the lower branch -u < -0 + up3. Differ-

entiating the above at u = 0, and for 0 > 0, we obtain

-/3Ai (0) + AA2(0) - AB(O) • 0,

<0 (9)
<0

which implies (by convexity) that the infimum is achieved at some u > 0. Thus, the infimum

over unrestricted u has to be the same with the infimum over u > 0.

Using the result of [BPT96, Lemma 8.2], pi = infa, *GLQF(a) is the largest positive

root of ALQF(0) = 0 (it is not hard to verify that this equation has a positive, possibly,

infinite root). Similarly, P2 infa 'lAi*LQF(a) is the largest positive root of A/ILQF(0) = 0.

By Equation (12), 0GLQF = min(pl, P2). This implies that GL*QF is the largest positive root
of the equation max[AGLQF(0), AGLQF(0)] = 0.

We next prove the upper bound for the overflow probability.

Proposition 8.3 (GLQF Upper Bound) Under the GLQF policy, assuming that the

arrival and service processes satisfy Assumptions A and C, the steady-state queue length,

L 1, of queue Q1, at an arbitrary time slot satisfies

lim logP[L1 > U] < - LQF (25)

U----400 -------- -- GLQF- ~1^1~31".~~~11·8·
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Proof: Without loss of generality we derive an upper bound for P[L' > U]. We will

restrict ourselves to sample paths with Lo > 0 since the remaining sample paths, with

LI = 0, do not contribute to the probability P[L0 > U].

Consider a busy period for the system that starts at some time -n < 0 (L - L2 = = 0),

and has not ended until time 0. Such a time -n exists due to the stability condition (9).

Note that since the system is busy in the interval [-n, 0], the server works at capacity and

therefore serves Bi customers at slot i, for i E [-n, 0]. We will partition the set of sample

paths, with Lo > 0, in three subsets Q1, Q2 and Q3. The first subset, Q1 , contains all sample

paths at which only Type 1 customers get serviced in the interval [-n, 0]. As a consequence,

LLk = Sn,-k- S - Lk = -k and iLl k > L,2 k k E [0,n],

which implies

L = SA SB and /3(S-n,-1 A 

- -n,-1 an -- S,--) '

Thus

P[L1 > U and j1] <

<P[3n > 0 s.t. SA -SB-1 > U and (Sn, 1 -S B > SAn,-

max (Sn,--1 -- n,-1) > U]. (26)
{n>O: O(SA'_,-Is-n,)>sBZ._-n

The second subset, Q2, contains sample paths at which Type 1 customers do not receive

the entire capacity, and i3Lo < Lo. That is, there exists a q E [0,1] such that Type 1

customers receive only a X fraction of the total capacity (BS'B,_). Then we have

P[LO > U and Q2] <

< P[3n > 0, 0 < < 1, s.t. SA -1-Sn _ > U and

... (S. ,-j -1 _ 1) < _n,-- (l )S-n,-1U]

Pi max [(SA 1 - 1 > U].
{n>O, 0<.<1: 3(SAS, _1 - _ )Sr S (

(27)

Finally, the third subset, Q3 contains sample paths at which Type 1 customers do not

receive the entire capacity, and 3fLO > L2. Then there exists k E [0, n], such that the

interval [-k, 0] is the maximal interval that only Type 1 customers get serviced. That is,
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fL 1 i > L 2 i E [0, k- 1], and iLl k < L2_k Since Type 1 customers do not receive
the entire capacity, there exists 0 < 5 < 1 such that L1k = SA ,-- --- Since

.JL1 k < L2 k, we have

A1 _k A
2

k1k(Sn,_k-n-k- l . (28)

Now, due to the way we defined k we have L i = LLk + S -l-S-k i [0, k -1],

and the inequality fLl i > L2 i becomes

Sn -k-1 - Sn,-k-1 + S> + -k1 -_ > S k - (1 - -n,-k- + ,--1

which by (28) implies

,(Ski_ 1 -Sk,_,_,) > S k,_, i e [O,k 1].

Thus,

P[Lo > U and Q3] <

< P[3n > 0, 0 < k < n,O 0 < 1, s.t.-n,-k- 1 
-

Sk,-1 _k,-1 > U

andand (S 1 - SA ) Ž S ]SB

< P.[ >0 <x< (S_,-k-1 - --n,--k--) + - - k-) > U] (29):Snd -/-n- ,- k- 1 i-k)S_ k- -1,-k-ICLUJ -k,-1 1) >
S-k,-1 ]

LGLQF m ma x (Al,_ B S > V] (29)
n>.OO<k<n,O< n,1 k<lk

LsSSAAiNSA _S]_ A)S _ -+)

Let us now define

LIQF = max (snl
(GF >o: msSAI_ -s SB )>SA2,_>s,_I_

Li I max
GLQF f(n>O, 0<0<1 )5 -(S k- 1-(A-I)SA2 -1.-1

=p(sA _S -q~S -Ak)
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which after bringing the constraints in the objective function become

A 1A 2 B_LGLQF - max inf [(1 + u )SS (30)GLQF- n>O u>0 uS, _ (-1 - ~u)$_Bm_l ] (3-n 0

A~LQF A n>O ZL>O + UA2 I 1~ - ~rR/X GLUQF = max inf[( 1 + US_1 + u/3- )SB (31)
n>0 u>0 -- --

0<<1 -

and

GLQF - max info[( 1 + l UlSn,-k- 1 + (-¢ + ul/30 - ul +n>O U1 >0 -n,-
O<k<n
0<9<1

Ul)Sn,-k-1] + inf [(1 + u2)_k,- - U2-k + (-1 - u2 3)Sk] (32)
U2Ž0 uf)O U + -k

Next, we will first upper bound the moment generating functions of LGLQF, LILQF and
LIIQF. For LGLQF and for 0 > 0 we have

E[eOLLQF]

< S E[exp{0 inf [(1 + u/3)SA' - uSA2 + (1 - -1 )SBn, 1 ]}]-U _>0 -' -n
n>O

• - inf E[exp{0[(1 + ufi)SA ' - US_1 + (-1 - p3)SS_,_} i
n>O -

< e n(inf,,>o[AA (O+Ou 3
)+AA2(-uO)+AB(-O-utO)]+el)

n>O

<K' (, el) if AGLQF(0) < 0. (33)

In the third inequality above we have used the LDP for the arrival and service processes.
In the last inequality above, when the exponent is negative (for sufficiently small E1), the
infinite geometric series converges to a constant, with respect to n, K'(O, E1). Also, in the
last inequality, we have made the substitution u := -Ou in the expression in the exponent

and used the definition of AGLQF(0) (Eq. (22)).

Similarly, for LILQF and for 0 > 0 we have

E[e GLQF]

< y E[exp{0 max inf[(1 -+ US,,_1 + (-q + u35 - u + U5)SB, 1 ]} ]
-- o_<0<1 u>O -0 -

n>0
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< E inf E[exp{0 max [(1 -u/3)S _ , _ + uS_,_- + (-_ + u/30 - u + Uq))S-1,_]} ]
u>0 0_<<1

n>O

i nfl (e, ( [ Â (O-0Lu)+A ,(uO)+A^(-Ou)]+4) + en([AA (O-Ou/,)+AA2(uO)+±A(-O+Ou)]+e'))

<2 E en(inf,, >o[ IA (0-O
u f)+A A2(uO)+max(Ao (-Ou),Ao (-±O+Ou3))]+e2)

n>O

<K I ( 0, 62), if AGLQF(0) < 0. (34)

In the third inequality above, the expression to be maximized over 0 is linear, thus, the

maximum is achieved at either 0 = 0 or 0 = 1, which implies that we can upper bound it

by the sum of the terms for 4 = 0 and 0 = 1.

Also, for LILQF and for 0 > 0 we have

E eOCLLQF]

< i eexp 0 max inf [(1-uu3)S + n,-k- + (-q + U1/30 -

n>O O<k<n 1,U2> 0<_n>O O<k<n - 1_n _kl] inf [(I + U2)(--1 -u2/) ,,<~-' C zcl~z>inf Eexp 0 max [(I - Ulj/)S_,_k_, + AU 2 +_ _k_, ql(--- + U10 -

•2 >3 nen(A"()+03) + 2 > nen(A 1(O)0)l

n>O O<k<nn>O O<k<n -

-2 Z C ~ene(n-k)(AH(O)+e3)ek(A'(O)+ea)

n>O n>O

<K"' I (O, 3), if max(Al LQF(O) , A t / QF(0)) < 0. (35)

In the third inequality above we have used the LDP for arrival and service processes, as well

as Assumption C. Concerning the maximization over 0, we have used the same argument

as in Eq. (34). In the fifth inequality above, since the exponent is linear in k, the maximum

over k is either at k = 0 or at k = n. Thus, we bound the term by the sum of the terms for
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k = 0 and k = n. Finally, for the last inequality, both series converge to a constant if both

their exponents are negative, which requires max(AlLQF(O), AIL QF()) < 0

To summarize (33), (34) and (35), the moment generating functions of GLQF GLQF

and LUGLQF are upper bounded by some constant K(O, e1,~ , 2, ) if max(AGLQF(O), AGLQF(O))

< 0, where E, E2, E3 > 0 are sufficiently small. We can now apply the Markov inequality to

obtain (using Eqs. (26), (27) and (29))

P[LO1 > U]

<P[L> U and Case 1] P[L > U and Case 2] + P[L > U and Case 3]

<(E[' + Ee () + E[esA e-U

<3K(O, el, e2, E3)e- ou if max(AILQF(9), AGLQF(0)) < 0.

Taking the limit as U - oo and minimizing the upper bound with respect to 0 > O, in

order to obtain the tightest bound, we have

lim -log P[LO > U] <- sup 0.
U-0oo U {0o>0: max(AI (O),A

11 ())<0}

The right hand side of the above is equal to - 0 GLQF by Theorem 8.2.

9 Main Results

In this section we summarize our main results for the GLQF policy.

Combining Propositions 5.1 and 8.3 we obtain the following main theorem. An exact

characterization of the most likely ways that lead to overflow were discussed in Section 7.

Theorem 9.1 (GLQF Main) Under the GLQF policy, assuming that the arrival and

service processes satisfy Assumptions A, B, and C, the steady-state queue length, L1, of

queue Q', at an arbitrary time slot satisfies

lim logP[L > U] = -GLQF, (36)
U-+oo U
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where OGLQF is given by

0 GLQF = min inf -AGLQF(a), inf GLQF(a)], (37)
a>O a a>0 a

and the functions A*LQF() and Al*QF(-) are defined as follows

AGLQF(a) -- inf [AA1 (X1 ) + AA2(x 2 ) + As(x3)], (38)
2LX1-z3 =a 

X2<-(X3I -X3)

and

GLQF(a) - inf [AA1 (x1) + AA2 (X2) + AB(X3 )]. (39)ZXI -Ax 3 =a

x2 -(1--)x3=3a
0<6<1

It should be noted that the performance of strict priority policies, which is characterized

by [BPT96, Corollary 9.2], can be also obtained as a corollary of the above theorem. We

obtain the performance of strict priority to Type 2 (P2) when 3 = 0, and the performance

of strict priority to Type 1 (P1 ) when /3 = oo. It is not hard to verify that the result

is identical to [BPT96, Corollary 9.2]. The above Theorem indicates that the calculation

of the overflow probabilities involves the solution of a convex optimization problem. In

Section 8, and for the purposes of proving Proposition 8.3, we proved in Theorem 8.2 that

the exponent of the overflow probability can also be obtained as the maximum root of a

convex function. This may be easier to do in some cases. Here, we restate this latter result,

simplifying the expression for AGLQF(').

Theorem 9.2 G9LQF is the largest positive root of the equation

AGLQF(O) = max{AA(0) + AB(--), inf [AA1(O - u) + AA2(u) + AB(-U)]} = 0.
o

O<U< 1+3 (40)

Proof: Due to Theorem 8.2 it suffices to prove that the expression in (40) is equal to

max[AGLQF(9), AIILF(9)]. Recall the definitions of AILQF(9) in (22) and of A/LQF(0)

in (23). Recall also the expression in (24) for the objective function of the optimization

problem corresponding to A"GLQF(0). Let now u* be the optimal solution of the optimization

problem in the definition of AIGLQF(O). We distinguish two cases:

Case 1: where u* > Ž 0 . Then, notice that u* is also the minimizer of the objective1+/3
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function in the definition of AGLQF(O). Thus, due to convexity, the constraint u < 0

is tight for the problem corresponding to AGILQF(0), and

max(AGLQ(F(0), ALQF(0)) = AA (0) + AB(-9), if u* > 0 (41)

But,

inf [AA l( - uf)+AA2(u) + AB(-U)]
O<u< 1+3

< [AA' (o- u/) + AA2(u) + AB(-u)]3) o
1+0

= [AA, ( -) + AA2( A+) + ( 1+ )
[AA1 ( - u1) + AA2(u) + AB (- + Up)] u=

< [AA^ (o - up) + ^B (-) + AB(-o + U)]u=O

= AA1(0) + AB(-9).

In the second inequality above we have used the assumption u* > o and convexity.

Therefore, combining it with (41) we obtain

max(AGLQF (0), ALQF ()) = max{AAl (0) + AB (-0),

inf [AAI (9 - u/3) + AA2(U) + AB(-u)] } = AGLQF(O) if u* > .0 (42)
O<_u< 1+

Case 2: where 0 < u* < 1-. To conclude the proof we need to show that max(AGLQF(0),

A`GLQF(0)) is not AGLQF(O) when the optimal solution, of the optimization problem

appearing in the definition of AGLQF(0), is some fi < 0. Let us, indeed, assume that
this optimal solution is some fi < O0. Then, for all u E [0, l ) (hence for u*) we have

AGLQF (0) = [AA1 (9 - fifl) + AA () + AB (-0 + fifl)]

< [AAI (9 - uf) + AA2(U) + AB(-0 + Ui)]

< [AA1 ( - u/) + AA2(u) + AB(-u)],

where in the last inequality we have used the fact that u < l- which implies (see
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also (24)) AB(-u) > AB(-0 + u/O). Therefore, for 0 < uO < u* < also, we have

max(AGLQF(O), ALQF(O)) = max(iAA (0) + AB(--),

inf [AA (O - ui3) + AA2(U) + AB(-u)] } = AGLQF(0)

81+O<u< 1+/

The results of this Theorem can be also specialized to the case of priority policies, to

obtain the characterization of [BPT96, Corollary 9.4].

We conclude this section, noting that, by symmetry, all the results obtained here can be

easily adapted (it suffices to substitute everywhere 1 := 2, 2 := 1, and /3 = a) to estimate

the overflow probability of the second queue and characterize the most likely ways that it

builds up.

10 A Comparison

In this section we compare the overflow probabilities achieved by the GPS and the GLQF

policy.

Let 7r be an arbitrary work-conserving policy to allocate the capacity of the server to

the two queues Q1 and Q2, and II the set of all work-conserving policies ir. Let L1 and L 2

denote the queue lengths of Q1 and Q2 , respectively, at an arbitrary time slot, when the

system operates under 7r. Let us now define 60 the vector (09, 0') where

0~ = lim U log P[L' > U] and 02 = lim 1 logP[L2 > U]. (43)1 U-400 U 2 U-+P> U

The GPS policy analyzed in [BPT96] is a parametric policy with performance depending on

the parameter 01. To make this dependence explicit we will be using the notation GPS(01).

Also, the GLQF policy analyzed in Section 4 is a parametric policy with performance

depending on the parameter fl. For the same reason we will be using the notation GLQF(,3).

Special cases of a work-conserving policy 7r are the GPS(0 1) policy, the GLQF(,3) policy,

the strict priority to Type 1 policy (P1 policy), and the strict priority to Type 2 policy (P2

policy). Using [BPT96, Theorem 9.1], and [BPT96, Corollary 9.2] one can readily obtain

the corresponding 90' for the policies GPS(q 1), GLQF(P3), P1 and P2.
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It is intuitively obvious that

0P' = (max O, minO) and P2 = (min , max 0).
7rE ' 7irEH rEll 7rEn

In Figure 4 we plot 0GPS(¢ l) as q1 varies in [0,1], and 0 GLQF (
3) as Pf varies in [0, oo).

For simplicity the calculations were performed with the arrival and service processes being

Bernoulli (we say that a process {Xi; i E Z} is Bernoulli with parameter p, denoted by

X -Ber(p), when Xi are i.i.d. and Xi = 1 with probability p and Xi = 0 with probability

1 - p). Also, for the calculations we used the expressions for 8Ops and OGLQF given in

4 I I I I

GPS

OP 2
---- -------- -- GLQF

3.5 . .

3.5~ iI · ·- ---; ·. .... ...... -----. .: . .
'. . . \ . ..

2 0

:'1.5 :

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

Figure 4: The performance GPS(..) f th GPS() policy as ....... varies in [, ],..............
and the performance 9 GLQF(3) of the GLQF(/3) policy as / varies in [0, oo), when

A' -Ber(0.3), A 2 --Ber(0.2) and B -Ber(0.9).
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[BPT96, Thm. 9.3] and Thm. 9.2, respectively, because they were more efficient to perform

numerically than the equivalent expressions in [BPT96, Thm. 9.1] and Thm. 9.1. Note

that 0P1 = 0 GPS(1) = 0 GLQF(OO) and that 0P2 = 0GPS(O) = 0 GLQF(O) .

Figure 4 indicates that the GLQF curve dominates the GPS curve, i.e., the GLQF

policy achieves smaller overflow probabilities than the GPS policy. The question that arises

is whether this depends on the particular distributions and parameters chosen in the figure

or is a general property. In the sequel we show that the latter is the case, that is, for all

arrival and service processes that our analysis holds (processes satisfying Assumptions A,

B, and C) the GLQF curve dominates the GPS curve. The intuition behind this result is

that the GLQF policy, which adaptively depends on the current queue lengths, allocates

capacity to the queue that builds up, thus, achieving smaller overflow probabilities than the

GPS policy which is static. This suggests than when one has to deal with delay insensitive

traffic (i.e., when there are no delay constraints) GLQF is more suitable than GPS. On

the other hand, GLQF does not have the fairness property of GPS, that is it may allow a

bursty class of traffic to be using all the available capacity until the backlog of the other

class reaches the level of the bursty one.

Let us first formally define the term the GLQF curve dominates the GPS curve.

Definition 10.1

We say that the GLQF curve dominates the GPS curve when there does not exist a pair of

C1 E [0, 1] and / E [0, oc) satisfying O1GPs(* ) > 1GLQF(O) and 2GPS((¢ ) > 0G LQF (
3)

In order to establish that the GLQF curve dominates the GPS curve, we need to prove

the three lemmata that follow.

Lemma 10.2 If Xl < Xl we have

0 GPS(01) < 6 GPS(O ) and 6 GPS(0 1) , GPS(O )
1Proof: We only prove the first relation. The second can be obtained by a symmetrical02

Proof : We only prove the first relation. The second can be obtained by a symmetrical

argument. We use the result of [BPT96, Theorem 9.3]. Note that 1 < X l, implies O' =

(1- -) •< 2 - (1 - 1 ). Thus, by Lemma 8.1, for all u, 0> 0 we have that AB(-O+ q 2u) >

AB(-O + q02u), which by [BPT96, Theorem 9.3] implies AGPS(O1)(0) > AGPS(¢1)(0) for all

0. Therefore, by convexity, for Op s,X as it is defined in [BPT96, Theorem 9.3], we have

ObGPS(0,,) < GPS(O,,,).
i
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A similar property is proven for the GLQF policy.

Lemma 10.3 If < /3' we have

0GLQF(3) < GLQF(' and GLQF(3) > 0 GLQF(>')

Proof: Again we only prove the first relation. The second can be obtained by a symmetrical
argument. We use the optimal control formulation of Section 6. We argued there that
optimal trajectories have the form of Figure 3(d) and (e), with cost infa- LQF(a) and
infa 'AGILQF(a), respectively. Let us fix / and consider how the cost is affected by using
the policy with 3' = / + e, for small e > 0.

Consider first trajectories of the form in Figure 3(e). Note that we can rewrite

GLQF(3) (a) as

AQ = inf [A* 1(Xi) + A* 2(x2) + A*(x 3 )].GLQF(a) (a) Xl-OX3=a A A B
Xl1+z2-X3=0(1+a)

We shall show A,,* ( A'
We shall show ALQ QF(a) (a) for all a > 0. Assume the contrary. Consider the

optimal solution of the problem corresponding to 3' which satisfies the feasibility constraints

1- 3 = a

X1 + X2 -X =/P5(1 + a)

0 < b' < 1

We distinguish two cases: 4' > 0 and O' = 0. We provide an argument only for the first case.
The second case can be handled similarly. Since /, a > 0, at least one of the following holds:
xl > E[Ao] or x2 > E[A2] or 4X < E[Bo]. Depending on which one is the case we can decrease
xl, or x2, or increase x3, respectively, reducing the cost, until xl +x- x' = f(1 +a). Thus,

we have constructed a feasible solution of the problem corresponding to / with smaller cost
than CALQF(,3) (a). This contradicts our initial assumption. We conclude that by increasing
/3 to 3' we also increase the optimal cost of trajectories having the form in Figure 3(e).

If now, an optimal trajectory has the form in Figure 3(d), then it will still be the optimal,
by convexity, when , is increased to /'. Thus, in this case, the optimal cost does not change.

We summarize by considering how the cost is affected as 3 is increased from 0 to oo.
At 3 = 0, possible optimal trajectories have the form of Figure 3(e). There is a threshold
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value / such that for all 3< • optimal trajectories have the form of Figure 3(e) with values

increasing as /3 increases from 0 to /. For all f > d optimal trajectories have the form of

Figure 3(d) with slope / and do not change as P increases from : to oo.

We next prove a sufficient condition for the GLQF curve dominating the GPS curve.

Lemma 10.4 If for all f C [0, oo) there exists 01 E [0, 1) such that

OGPS(01) < OGLQF(O) and 0
G P

S(
*

l) < 02
G

LQF(O)

then the GLQF curve dominates the GPS curve.

Proof: We use contradiction. Assume that the condition given in the statement holds but

the GLQF curve does not dominate the GPS curve. Then, by definition, there exist /' and

Xl such that

1GPS(O1) > OGLQF(f') and vGPSL(F) > ·GLQF(')

By Lemma 10.2 all points with ql < q' have IGPS(1I) > OGPS(~ ) > 9GLQF(3') Also, by the

same lemma, all points with Xl > Xl have 07 PS( (1) > OGPS( i) > OGLQF(i') . This contradicts

our initial assumption.

We now have all the necessary tools to prove that the GLQF curve dominates the GPS

curve.

Theorem 10.5 Assuming that the arrival and service processes satisfy Assumptions A, C,

and B, the GLQF curve dominates the GPS curve.

Proof: Fix an arbitrary /3. We will prove that there exists Xl satisfying the condition

of Lemma 10.4. It suffices to prove that for both queues and such Xl, overflow with the

GLQF(/3) policy implies overflow with the GPS(0 1) policy. Then, the overflow probability

of GLQF(,3) is a lower bound on the corresponding probability of GPS(0 1), i.e., it holds

P[LcLQF(I) > U] < P[LGpS(o,) > U], j = 1,2,

which implies

0 GPS(0 1 ) < 0 GLQF(0) and 02GPS(( 1) < 0 GLQF
(
3)
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Since we have established that both in the GPS and the GLQF case, the overflow

probability is equal to the probability of overflowing according to one out of two scenarios,

it suffices to establish the above only for these scenarios. In particular, we distinguish

the following cases depending on the possible modes of overflow for GLQF(,3), which are

described in Section 7.

Case 1: Mode 1 for overflow of Q' and mode 1 for overflow of Q2 .

Case 2: Mode 1 for overflow of Q' and mode 2 for overflow of Q2.

Case 3: Mode 2 for overflow of Q1 and mode 1 for overflow of Q2 .

Case 4: Mode 2 for overflow of Q1 and mode 2 for overflow of Q2.

In Case 1 and 2, we have

X1 - 3 = a,

X2 < pa,

where xj, j = 1,2,3, a, solve the optimization problem corresponding to the overflow of

Q1 in mode 1. Then, since x 1 - 0lX 3 > xl - X3 = a Vo1, it is clear that for all 01 the GPS

policy will overflow Q1. If we are in Case 1, then also for all q1 the GPS policy will overflow

Q2. If we are in Case 2, we have

Y2 - kY3 = a,

Yl - (1 - )Y3 = al3,

0 < X < 1,

where yj, j = 1, 2, 3, a, q, solve the optimization problem corresponding to the overflow of

Q2 in mode 2. Then, the GPS policy with 01 > 1 - 0 will overflow Q2 .

Consider now Cases 3 and 4. We have

X1 - #X3 = a,

2 - (1 - q)x 3 = adf,

0<•< 1,

where xj, j = 1, 2, 3, a, X, solve the optimization problem corresponding to the overflow of

Q' in mode 2. Then the GPS policy with 01 < X will overflow Q2 . In Case 3, for reasons
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explained in the previous paragraph, the GPS policy will overflow Q2 for all l1. If, finally,

we are in Case 4, we have

Y2 - (1 - 0')Y 3 = a',

Y1 - 4'Y3 = a'/3,

0 < I' < 1,

where yj, j = 1,2,3, a', +', solve the optimization problem corresponding to the overflow

of Q2 in mode 2. Then the GPS policy with Xl > Žb' will overflow Q2. To show that there

is at least one X1 that overflows both queues we need to show X = q'. To see that notice

that (by making the substitution a' := /a')

inf - inf [Ah1 (Y1) + A* 2(Y2) + A*(Y 3 )] =
a' a' y2-(1-b')y3=a

Y1 -- Y3=a'/,I

0<0'<1

1 1
- inf - inf [A*, (yl) + AA2(Y2) + AB(Y3) ]./3 a a yl-'y3 =

a

Y2-(1-"')Y3= a'
0<0'<1

The right hand side is exactly the problem corresponding to the overflow of Q1 in mode 2.

11 Conclusions

In this paper we considered a multiclass multiplexer, with segregated buffers for each type of

traffic, and under the GLQF policy we have obtained the asymptotic (as the buffer size goes

to infinity) tail of the overflow probability for each buffer. In the standard large deviations

methodology we provided a lower and matching (up to first degree of the exponent) upper

bound on the buffer overflow probabilities. We have explicitly and in detail characterized

the most likely modes of overflow. We formulated the problem of calculating the maximum

overflow probability (over all scenarios that lead to overflow) as an optimal control problem,

general enough to include any work conserving policy. This provides particular insight into

the problem. We have addressed the case of multiplexing two streams. Our lower bound

proof extends to the general case of N streams, the proof of an upper bound is an open

problem.
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