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Abstract

This paper treats the Robust '72 Performance question of evaluating the rejection of contin-

uous time white noise, in the worst case over structured uncertainty in the system.

A frequency domain convex condition for robust - 2 analysis is presented, with analogous

properties as in the discrete time case. In particular, necessary and sufficient results are obtained

introducing a continuous time version of the methodology of set descriptions of white noise.

In addition, a state-space test in terms of Linear Matrix Inequalities is developed for the

robust 7 2 problem in the case of constant scales. This test is exact for robust 7-2 analysis under

time varying uncertainty, thus rendering the problem finite dimensional in the same situation

in which robust W-/O analysis is finite dimensional.

1 Introduction

The Robust 7'12 problem is rooted in the efforts in the 1970s to provide robustness guarantees

to the LQG regulator, designed from the point of view of white noise rejection. The difficulties

encountered in this combination of classical and modern control (see, e.g. [31, 7, 8, 9, 34]) led to a

decreasing interest in white noise rejection as a performance criterion, and the prevalence of WOO

control [38], which by means of the small gain theorem [39] is directly linked to robust stability

guarantees. This prevalence has led to a mature theory of robust performance based on the W,,N



measure (see e.g. [10, 19, 37, 32, 18, 29]), and also the L 1 measure (see [6]), to the point where

these performance criteria are often viewed as synonymous to robust control.

While the 7ice and M [10, 19] frameworks are natural for robust stability issues, the A7ie mea-

sure is not very satisfactory as a disturbance rejection criterion. 7ic optimal control treats the

disturbance as an adversary which will excite the worst possible frequency, and consequently yields

allpass closed loop transfer functions, paying the price of increased sensitivity over a large band-

width in order to reduce sensitivity at the worst frequency. Such closed loops would exhibit very

poor performance under the broadband disturbances of most real-world applications. This problem

can be alleviated by frequency weighting the 7Oc problem, but weight selection becomes a largely

ad hoc procedure, a difficulty which arises mainly because one attempts turn the peak frequency

response specification (Oc,) into a measure of the response to broadband noise, which is really an

7i2 specification in terms of the RMS value of the frequency response.

For these reasons, a continuing research effort has sought to reinstate the 7-2 performance

criterion, incorporating to it the issues of robustness which were absent form LQG regulators.

Among the many references we mention [3, 15, 40, 11, 28, 35, 27, 40, 14, 12], which have produced

a state space theory with robust performance bounds and synthesis methods to optimize these

bounds, bringing the 7-2 criterion back into the picture of robust control. Still, the W7-1 and

At frameworks retained some advantage, with the availability of convex frequency domain tests

for robust performance, and the theoretical characterization of such conditions as necessary and

sufficient robustness tests [32, 18, 29]. In [22, 23], we have succeeded in closing this gap by providing

a frequency domain characterization for robust 7-2 performance in discrete time, with analogous

properties as the A7cO conditions. In fact this test can be viewed as a systematic way to do weighted

7ic analysis, where the weight, as well as the multipliers corresponding to the system uncertainty,

are obtained from a convex condition in the frequency domain.

The purpose of this paper is twofold. In the first place, we provide an extension of the results

in [22, 23] to the continuous time case. Such extension is not trivial since it must handle the issue

of infinite bandwidth of continuous time white noise, which usually gives substantial mathematical
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difficulties. To that effect, we provide a continuous time version of set characterizations of white

noise in terms of constraints on the cumulative spectrum, extending the method of [21], from which

necessary and sufficient conditions for robust 712 performance are derived. A second objective

of this paper is to derive a state space characterization for robust W72 performance, to play the

role of the conditions available in the W7C theory. In fact, for the case of time varying structured

uncertainty a finite dimensional convex test is available for robust Wo- performance [19, 32, 18] in

terms of a Linear Matrix Inequality (LMI, see [4]). Based on our frequency domain conditions we

are able to derive a corresponding LMI test in state space which is exact for robust 7-2 performance

under structured time varying uncertainty.

The paper is organized as follows. The problem formulation and notation are established in

Section 2. In Section 3 we present the frequency domain condition for robust 7-2 performance,

and prove its sufficiency for the case of time invariant uncertainty. The method for white noise

characterization is introduced in Section 4, and applied in Section 5 to prove necessary and sufficient

theorems involving the aforementioned condition. Section 6 covers the state space characterizations,

and the conclusions are given in Section 7. The Appendix contains a technical proof.

2 Problem Formulation

This paper considers £2 signal spaces: L£(IR) denotes the Hilbert space of square-integrable, Cn -

valued functions over the real numbers, which is isomorphic via the Fourier transform with the

frequency domain space LC (jIR) of square integrable functions on the imaginary axis; the distinction

is dropped from now on, denoting both spaces by L£, or £2 if the vector dimension is clear from

context. £c(£2) denotes the set of causal, linear, bounded operators on /2. An important subset

is the class of linear time invariant (LTI) elements of Lc(L2), which commute with the T second

delay operator AT for every T > 0. The LTI operators in L2c(z2) can be represented by a transfer

function H(s) in the space 7-to of analytic, essentially bounded functions on the right half plane,

3



with the norm

IIHIlc 2 c, = IlHllto = ess sup a (H(jw)).
wEIR

We will also be interested in the space W72 of analytic functions on the right half plane such that by

IIHI1 2 := trace(H(jw)*H(jw)) 2d (1)
O-o

is finite. R7tO and 74Z 2 denote the subsets of rational functions in AO-( and W72, respectively.

Properties of these spaces can be found in [13] and references therein.

The results in this paper refer to the uncertain system of Figure 1, denoted by (M, A).

q M11 M12 P

Y M21 M22 U

Figure 1: Uncertain system (M, A).

In Figure 1, the nominal map M is a finite dimensional LTI system in RT7oo. The perturbation

A which represents system uncertainty is assumed to have spatial structure of block diagonal form

A = diag [61Ir , .., ALIrL, AL+1,..., AL+F], (2)

where the blocks are restricted to a class of dynamic operators, and normalized to size 1 in the

£ 2-induced norm. For background and motivation on this setup, see [19]. The largest class of

uncertainty considered here is the ball of structured linear time varying (LTV) perturbations

BALTV = {A E £c(L2): IAllf < 1, A = diag [611 ,... ,LIrL ,AL+1, ... AL+F]}.

The uncertainty can also be restricted to be LTI, which gives the structured set BALTI = {A E

BALTv : ATA = AAT, VT > 0}. Some recent work [29] has shown it is useful to introduce the
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mildly larger class of slowly varying operators, by defining for v > 0 the class

BAy = {A E BALTV SUP T < V}
T>O T

of operators with "rate of variation slower than v". For i = 0 we recover ALTI, but some of the

necessary conditions will hold for an arbitrarily small v > 0.

The system (M, A) is said to be robustly stable if M is stable, and if I - AM 11 has an inverse

in LC,( 2) for every A E BA. When this holds, the closed loop map from u to y is well defined for

all A E BA and given by the Linear Fractional Transformation (LFT)

A *M := M22 + M 2 1A(I - M 11A) 1 M1 2. (3)

Given that the system is stable, a performance specification can be imposed; it has been cus-

tomary in robust control to specify a disturbance rejection condition, where the exogenous inputs

u are disturbances and the outputs y are error variables which must be kept small. One such

specification is the requirement that the £ 2-induced norm of the closed loop be smaller than a

prespecified amount (say 1). Since this corresponds to the W(OO norm for the LTI case, we will say

(with some abuse of language in the LTV case) that the system has robust W7-O performance if it

is robustly stable, and

sup A1 * MIKC2XL2 < 1

As argued in Section 1, the WO7-0 criterion for disturbance rejection is conservative in many

situations, and a more appropriate alternative is to model u as a white noise disturbance. In

the case of LTI systems, the response to white noise is measured by the 7-2 norm given in (1);

correspondingly, if A is LTI we will say that the system (M, A) has robust '72 performance if it is

robustly stable and

sup lA* M112 < 1.

We will also need to extend the notion of 1-2 performance to the case of LTV A; this is postponed

until section Section 4.
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2.1 Mathematical Preliminaries

The following mathematical facts are collected here for ease of reference (see, e.g., [17, 30, 33]).

First, we introduce the space BV(R) of real-valued functions of bounded variation on R. A

function @ (t) is of bounded variation if

N

TV(@) := sup IE(ti) - T(ti-)l < 00,
i=l

where the supremum is taken over N and the ti, with oc < to < ... < tN < oc; TV(@) is the total

variation of I. An analogous definition applies to functions over the half-line R1 = [0, oo).

We introduce the Banach space Co(l1R) of continuous, real-valued functions on R+ with limit

0 at infinity, with the norm 1igIKo := supteR+ Ig(t)I. It is a consequence of the Riesz representation

theorem (see [30, 33]) that every functional in the dual space Co(tR+ )* is characterized by a function

P E BV(IRW) which operates in terms of the Stieltjes integral (see [33])

r, (g) = jg(t)d4'(t)

Two useful properties of this integral are

/ g(t)dF(t) < [[g[[,oTV(F), (4)

and the formula for integration by parts

bg(t) dT(t) = g(b)I(b) - g(a)4(a) - (t)dg(t). (5)

Now consider the space C(R+ ) of continuous, real-valued functions on IR+ with a limit at infinity.

This is also a Banach space with the norm 11- I1I, and is isomorphic to the direct sum Co(IR+) E3 R.

Correspondingly, its dual is represented by BV(IR+) 3 IR, with functionals given by

/00
rt,4(g) = j [g(t) - g(oo)]dT(t) + 4g(oo). (6)
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In (6), I is defined up to a constant, so we can choose the convention X(O) = -(. With this in

place, we can integrate (6) by parts to obtain the equivalent formula

rT,((g) = g(-0) - (t)dg(t). (7)

Finally, a key element in the proofs of this paper is the following geometric version of the

Hahn-Banach theorem, (see, e.g., [17]):

Theorem 1 Let IC1, ]C2 be disjoint convex sets in a real normed space V, such that IC2 is open.

Then there exists a bounded functional r E V*, r $ 0, and a real number a such that

r(kl) < a < F(k2), for all k1 E IC1,k 2 E ]C2. (8)

3 A Frequency Domain Condition for Robust 7 2 Performance

The objective is to provide a condition for robust 7-12 performance analysis for the system (A, M).

For this purpose we introduce scaling matrices of the form

X = diag [X1,... ,XL, XL+1Iml,... .,XL+FImF] (9)

which commute with the elements in A. We will denote by X the set of positive definite, continuous

scaling functions X(w) with the structure (9).

Condition 1 There exists X(w) E X, and a matrix function Y(w) = Y*(w) Cmxm, such

that

M (jw) [ Xw) I] M(jw) - [ Y )] <; (10)

trace(Y(w)) 2< 1. (11)
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Remarks:

* This condition is very similar to the scaled-small gain conditions for robust 7/o- performance

analysis [19]; in that case only (10) is imposed, with Y(w) replaced by the identity matrix,

which imposes that the worst-case gain of the system is less than I at every frequency.

* The addition of the "multiplier" Y(w), subject to (11), allows the gain across frequency to

vary, provide that the accumulated effect over frequency is less than 1; this integral across

frequency provides a performance specification of the 7/2 type.

* An analogous condition was obtained in [22, 23] for the discrete-time case.

* To make Condition 1 precise, we interpret (10) to mean that there exists e > 0 such that

M(jw)* [X w) ] M(jw) - [ )W) ] < L ] Vw c R (12)

In this way the first block is made strictly negative definite, but a weaker bound is imposed

on the second block to make it compatible with Y E LC1(IR), as needed for (11).

The theoretical properties of Condition 1 can be summarized as follows.

1. It is sufficient for robust 7-2 performance under A C BALTI.

2. It is necessary and sufficient for robust 7-2 performance under A E BAV for small enough v.

3. If X is imposed to be constant, it is necessary and sufficient for robust -12 performance under

A E BALTV.

The same three statements are true of the corresponding condition for 7/O performance (see

[19, 32, 18, 29]), which shows that Condition 1 is indeed the appropriate extension for the 7-2 case.

These properties have already been established in discrete time in [22, 23].

We will now present the theorem for the LTI case, the other two are postponed to Section 5.
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Theorem 2 Suppose Condition 1 holds for matrix functions X(w),Y(w). If A E BALTI, then the

system is robustly stable and

sup IA *.M112 < 1.
AEBALTI

Proof: The first block of the inequality (12) gives IIX(w)2Mii(jw)X(w)-½2[oo < 1, which implies

(see [19]) robust stability of the system under LTI perturbations. Furthermore, defining

I O Ix o (13)0 I 0 I

we have that

(M*M)(jw) - 0 sw] <Y VwE I. (14)

Fix A E BA, LTI. For any fixed frequency, since A(jw), X2(jw) commute, we can replace M by

)M in Figure 1, giving A(jw) * M(jw) = A(jw) * MP(jw). Using (14), we have

Iy(w)12 + Iq(jw)12 < Ip(jw)l 2 + U(jw)*Y(w)u(jw), (15)

where we use the signal denominations of Figure 1.

Since A is LTI, contractive we have Ip(jw)12 < Iq(jw)12 , which leads to

u(jw)* ( * M)(jw)* (a *M)(jw)u(jw) = Iy(w)12 < u(jw)*Y(w)u(jw).

Since this holds for any u(jw), we have

(A * M) (jw)*(a * M) (jw) < Y(w)

across frequency. Computing the trace and integrating gives, using (11),

lA* M12I <d trace(Y(w))- < 1.
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The preceding proof is remarkably simple and analogous to the standard theory for WCO per-

formance [19]. Also, the multiplier Y(w) is readily seen as playing the role of a weighting function

which modifies the WCO-type condition (10) to yield 7-2 performance. While weights with this prop-

erty are known to exist, so far no systematic method has been available to find them. In Condition

1, the weight Y and the scaling X for the uncertainty are obtained by a convex condition in terms

of a Linear Matrix Inequality (LMI) across frequency.

This convexity indicates in principle tractability of computation, although in the general case

of frequency varying scales X(w) as in Theorem 2, the condition is infinite dimensional (see Section

6 for the constant scales case). This is the same as in the corresponding condition for robust WOO

performance (i.e. the frequency domain p upper bounds [19]), and correspondingly, similar methods

can be used to obtain a finite dimensional approximation.

One such method is to grid the frequency axis, which provides no hard guarantees but is more

closely related to engineering intuition. The advantage of this method is that the problem can be

decoupled across frequency; at a fixed frequency wi, we solve the problem

Minimize trace(Yi) , subject to

M(jwi) [ i ]M(ji)- [x i 0 < 0,

Xi > 0.

Such minimization of a linear function subject to an LMI constraint can be computed efficiently

by the tools in [4], being of the same dimensionality and similar complexity to the , upper bound

computation. Subsequently, the sum 1 EN trace(Y)(wi - wi- 1), can be used to provide an

approximation to the integral in (11).

The alternative method is to select a finite set of rational basis functions for X(jw) and Y(jw)

restrict the search to the span of these functions. Condition (10) will then depend linearly on a finite

number of unknowns, and negativity over frequency can be converted to a single LMI in state-space

via the Positive Real Lemma (see, e.g. [4]). This procedure offers a guaranteed sufficient condition,
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but is computationally intensive since the problem is coupled. Once again the complexity is similar

to the WCO performance case.

As an additional remark, we note that if the uncertainty includes real parametric blocks, Condi-

tion 1 can be tightened by the use of "G-scales" introduced analogously to the corresponding upper

bounds for mixed M [37], and the sufficient condition still follows along similar lines as Theorem 2.

4 White Noise Rejection in a Worst-Case Setting

The following two sections are dedicated to showing that Condition 1 has necessity properties which

are analogous to the 7WO case. These are more technical in nature and require characterizations of

white noise which are compatible with a worst-case analysis for time varying systems.

White noise arises most commonly due to the accumulated effect of microscopic fluctuations,

which typically produces a broadband statistical spectrum. As an example, the spectrum of thermal

noise in electrical circuits is flat up to frequencies of the order of 1012 Hz (see [5]). When studying

systems which operate at a much lower bandwidth, the standard abstraction is to assume that the

spectrum is flat over the frequency interval (-o, +oo); this allows one to accurately predict, for

example, the power of the output of an LTI filter which is driven by such noise.

The mathematical formalization of such an abstraction raises, however, theoretical difficulties,

since white noise falls outside the standard theory of stationary random processes. The rigorous

treatment of white noise requires the introduction of the Wiener process and stochastic calculus

(see, e.g. [16]) to formalize the differential equations which arise in filtering theory. This theory

was in fact applied by Stoorvogel [35] to prove sufficiency of a robust 7l2 performance test in the

case of time varying systems. It is difficult, however, to obtain necessity results in this manner due

to the combination of stochastic and worst-case analysis.

In this paper we obtain such necessity results by extending the methodology of set descriptions of

white noise, developed in [20, 21, 22, 23] for the discrete time case. In particular, the necessary and

sufficient conditions obtained in [22, 23] use sets of signals defined by constraints on the cumulative
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spectrum, a procedure inspired on the so-called Bartlett test [1] from time series analysis.

We now extend this method to continuous time. A deterministic formalization of the concept

of signals with flat spectrum over infinite frequencies, is in fact no easier than in the stochastic

case; [40] discusses these difficulties when attempting a formalization within the class of bounded

power signals. The main idea of our formulation is to reverse the limiting process: instead of

making the infinite bandwidth abstraction and then analyzing rejection, we propose to analyze

first the response to signals with flat spectrum over a large bandwidth, and then take the limit over

the bandwidth. This procedure is mathematically very well behaved, and is conceptually equally

satisfactory in regard to the analysis of "realistic" white noise.

The development in this section is done for simplicity in the case of scalar noise. At the end of

the section we will indicate the extension to vector-valued signals. Given a signal u E L1, consider

the cumulative spectrum

Fu,(/) = u (jw)l 2 . (16)

The function Fu,() has the following properties:

* Fu is continuous on p E [0, oo).

* F,(O) = 0, limp_ Fu(/3) = Ilull2. Therefore Fu E C(IW) (cf. Section 2.1).

* Fu is monotone nondecreasing.

We wish to characterize the set of signals with flat (unit) spectrum over a bandwidth B. This can

be done by imposing that the cumulative spectrum lies in the set

Sv7,B := g C C(IR+): min (-1, -77< 9g(/3) < + , (17)

which is depicted in Figure 2. Correspondingly, we define the set of white signals with accuracy

parameter qr, bandwidth parameter B as

W,,B := {u E £2 : Fu(.) E S 7,B}. (18)

12



B

Figure 2: Constraints on the accumulated spectrum

Remarks:

* The functions in S,7,B are approximately (up to accuracy 7q) linear in the bandwidth wjl < B,

so signals in Wn,B are approximately white over this bandwidth.

* For frequencies higher than B, the lower bound is relaxed, allowing the spectrum to taper off,

which is necessary in the space £2 (and in realistic noise models). We still impose an upper

bound which constrains the distribution of energy with frequency.

* The sets S,,,B are nested: if q7 < 77', B > B' then S27,B C S7),,B,.

Consider a system H E £C,( 2). Define

IIHIIw,,B := sup IIHull. (19)
2UEWn,B

In general, IIHIw,,,B may be infinite (e.g. for H E R7-/O which is not strictly proper), but the class

of systems where it is finite can be seen to be independent of q7, B. We now identify a subclass of
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such systems by considering the family of frequency functions

Y = {Y E BV(R) : 3G E L1((R+), G monotone decreasing, with 0 < Y(w) = Y(-w) < G(lwj)}.

(20)

Proposition 3 Let Y(w) CE ., with G the corresponding upper bound, and u E W,7,B. Then

/fi 2/_cj 0 dw 1 0(
Y(w))Iu(jw)I 2 <j Y(w) 2 + r[3G(B) + TV(Y)] + - G(w)dw. (21)

Proof: An integration by parts gives

fB y (w)fu(jw)1 2dW oB 2 dw
/YB(W)(j)12 2 _= I Y(W)(Iu(jW)1 2 + f-ijw)12) 2 = Y(B)Fu(B)- Fu(w)dY.

A similar calculation gives

t Y(w) = Y(w)- Y(B)- dY,
YB ) = jB dw B 7

from where

jw • Y(w)- + Y(B) Fu(B)- + 7r(Fu(w) -) d
BBI\WI ~LLWWII 271r 1 B 2ii- U\)

Y< 0 Y() + qG(B) + rTV(Y ) . (22)

The last bound follows from (4) and Fu E Sv,,B. Now consider

'°/Y/(W)(jjI )j2 + InU(-)il2)dW</ G(w)(lu(jw)l2 + IU(-jW)12)2WlB +) ( uI(jW)I2)± lB + [U(-jw)f )2

= -Fu(B)G(B) - Fu(w)dG(w), (23)

where the last equality is an integration by parts. Since G is monotone decreasing, then -dG is

non-negative. Also, FU(w) < Wo(w) := min(' + r, II1II2), which implies

- Fu(w)dG(w) < J p(w)dG(w) = W(B)G(B) + J G(w)dy(w)

< p(B)G(B) +- G(w)dw.
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Substitution into (23) gives

I Y(w)(u~(jw) 2 ±+ u(-jw) 2)_ < [cp(B) - F(B)]G(B) + - G(w)dw
2w 71-J

< 2r1G(B) +- G(w)dw. (24)

Combining (22) and (24) gives (21).

Corollary 4 For any H E 7Z7-oo, 11HI12 < IIHIIw,B If in addition IH(jw)l2 c Y, then

lim IIHllw,,B = IIH112 (25)
B--oo

Proof:

For every B' > B, since the indicator function of [-B',B'] is in Wv,B, we conclude that

fB' IH(jw)12 & < 11H112 l which implies IIH1 2 < IlHIIl%,B.

Also, applying (21) to Y(w) = IH(jw)l 2 gives

W17 2 7'IIHIIw ,B < • IIHII + r(3G(B) + TV(1H12)) ± +-f G(w)dw,

which implies (25) by taking limit when ?7-40, B-+oo (recall G C £L1 (R+)). ·

We have characterized a rich class of transfer functions in 7- 3 7-n2, namely those with spectrum

of bounded variation, and bounded by a monotone decreasing frequency function of [wl which is in

L 2. These mild restrictions are satisfied, for example, by any transfer function in RT-I2. For such

systems, the worst-case gain over W,7,B is finite and converges, as r77-0, B-4oo to the R7-2 norm,

which provides an alternative way to motivate the standard W72 criterion.

In addition, this procedure can be transported directly to classes of LTV systems. In particular

we will be interested in systems obtained by LFT from the configuration of Figure 1, with M E

7Z7-c and A possibly LTV. Assume that the transfer functions M 12 (jw), M 22(jw) directly seen by

the noise are in Z7-fl2, and that (A, M) is stable. Then writing (3) in the form

A* M = [ M 2 1A(I -M 1 1 A) - 1 I] [ M21
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it follows that

IIA*MIIw, B < | [M21A(I-M11A)- I] 11L2 z2 M 2 2 W < 0

and we can define the 7/ 2 norm of such a system by

IIA*M12 := lim IIA*Mllw,B, (26)
B--oo

which naturally extends the LTI case, and captures the property which is interesting from the point

of view of applications: rejection of signals with flat spectrum over a large bandwidth. In the next

section, we develop necessary and sufficient conditions for robust Nl2 performance analysis of time

varying systems in the sense of (26).

To conclude this section, we indicate how the previous definitions extend to the case of multi-

variable noise. For u E £2, treated as a column vector, we define the cumulative spectrum

Ia dw
Fu(i3) = u(jW)u(jW)*2 (27)

13 -P27r'

which takes values in the space CHmXm(R+) of continuous, hermitian matrix-valued functions on

the positive reals, with a limit at infinity. Using the matrix norm IlAllmax := maxi,j laijl, introduce

the sets

S~,B = {9E- CH (R+): sup 9(13)- I < r; trace(9(3)) < m (- +V) V¥ > B ;
OF_<B max 

Wm = ( E m : Fu E S7,B}.

The signals in W m7B have cumulative spectrum which approximates the one for ideal white noise

up to a bandwidth B; note that a spectrum which is exactly equal to I is not possible within the

space of L2 signals (it must be a rank one matrix at every frequency) but W m7B is non-empty for

any r > 0. In addition a constraint is imposed on the increase of energy with frequency beyond B.

Defining IJHIlwmB as in (19), the theory follows analogously to the scalar case. In particular (25)
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holds for LTI systems H such that the spectrum H(jw)*H(jw) falls in the class

.Fm = {Y c BVmxm(R) : 3G E C1(IR+), G monotone decreasing, with 0 < Y(w) = Y(-w)* < G(IWI)I},

(28)

where BVmXm(IR) is the set of hermitian matrix valued functions with entries of bounded variation.

5 Necessary and Sufficient Conditions

In this section we consider the system (M, A) of Figure 1, with M12, M22 in Ri7-2. We will say the

system has robust W7-2 performance if there exists qr > 0 and B > 0 such that

sup IIA* Mllw,,B < 1. (29)
AEBA

This corresponds to the notion of 7-l2 norm introduced in (26), requiring in addition that the limit be

uniform across A. We now state two necessary and sufficient conditions for robust 7-2 performance

based on Condition 1.

Theorem 5 There exists v > 0 such that the system (M, A) has robust 7-12 performance for A E

_BA iff there exists X(w) E X of bounded variation and Y(w) E FT m, satisfying Condition 1.

Theorem 6 The system (M, A) has robust f7-2 performance for A E BALTV, iff there exists a

constant matrix X E X, and Y(w) G F m , satisfying Condition 1.

Discussion:

* The previous statements exactly characterize Condition 1, and are analogous to their coun-

terparts for 7-/1 performance. The constant scales condition is exact for LTV uncertainty,

and Theorem 5 serves to argue, as in [29], that there is mild conservatism involved in using

the frequency dependent scales condition for LTI uncertainty. This argument has of course

only qualitative value, based on the point of view that arbitrarily slowly varying uncertainty
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is a modest augmentation, from an engineering standpoint, to LTI uncertainty. We are not

claiming that there is a small quantitative gap between the worst-case 7H2 norms under these

two assumptions; this gap has not been precisely quantified but examples can be given where

it is non-negligible, and state space bounds such as those in [35, 12] may give a tighter result.

* The main appeal of our condition is that it provides a symmetric theory which summarizes

tractable methods for robustness analysis. Setting the blocks in X to be either constant or

frequency-varying selects between LTV or LTI (slowly-varying) uncertainty. Fixing Y = I or

allowing it to vary in frequency as in Condition 1, chooses between WH" or - 2 performance.

* Also, combined LTV/LTI uncertainty structures can be studied by the corresponding com-

bination of constant and frequency dependent X scales, and combinations of W2 and AH"

performance can be studied by including Y terms only for the signals which are assumed

white. For any of these combinations, we can state the robust performance problem for

which Condition 1 is necessary and sufficient, which can be proved by analogous methods as

those described below.

In the sequel, we will provide a proof of Theorem 6, which illustrates the method required to

handle robustness analysis over Wm,,B, extending the ideas of [22, 23]. The proof of Theorem 5

involves some additional technicalities and will be reported in [26] due to space limitations.

5.1 Proof of Theorem 6

For simplicity, the proof will be described in detail for the case of scalar inputs u E L£, and

for uncertainty A = diag[Al,..., AF] consisting only of full blocks. For the general case see the

remarks at the end of the section.

[Sufficiency]: The first block of (12) gives IIX21M1(jw)X-½ oo < 1, which implies [19, 32] robust

stability of the system under LTV perturbations. Also, X2 and A commute, so define M as in
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(13), which verifies (14), and leads to (15), which can be integrated across frequency to give

Illll2 + lqjll2 < llpll2 + | u(jw)*Y(w)u(jw) 2d

Since 11Ial < 1, then IIPll < lqll, leading (for scalar u) to

I ( * M)ul12 = ll12 < Y(W) lu(jw) 2 d
- oo 27r

Fix r7, B; for u E Wq,B, since Y E b we invoke (21) to obtain

I(A * M)uII 2 < | Y(W) 2 + rl[3G(B) + TV(Y)] + - -G()dw.

Since ffO. Y(w)~ d < 1 from (11), the right hand side can be made less than 1 for small enough r/,

large enough B. This gives

sup II(A * M)IIw ,B < 1.
AEBA

[Necessity]: The idea is to characterize the robust performance condition in terms of a set of

quadratic constraints (see [18]), and then invoke a duality argument to obtain Condition 1.

Let z = col(zl, ... , ZF+1) be the vector of all inputs to the M system, where z1 ... ZF partition

p in correspondence with the blocks A1, ... , AF, and ZF+l = u. Analogously (Mz)i, i = 1... F + 1

denotes the partition of the output of M. Introduce scalar valued quadratic functions of z E £2,

ai(z) = II(Mz)il12 -_ zill2, i = 1... F,

which are used to impose that the perturbation blocks Ai are contractive.

By hypothesis (29) holds for some 77, B. We select 3y such that

sup I(A* M) llw,,B < ' < 1, (30)
AEBA

and introduce the additional (non-homogeneous) quadratic form

UF+l(z) = II(Mz)F+l11 2 -_ 2,
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which compares the norm of the output y with -y. To impose that u = ZF,+1 W,7,B, we define the

function p: L 2 - C(IR),

p(z) = Fu(-), (31)

where Fu is given by (16). Therefore u E W,7,B if and only if p(z) C S,7,B.

By considering the real Banach space V = RIn + l ® C(1+), we can collect all these functions

together in a quadratic map A: £2 - V, given by

A(z) = (a1(z),...,UF+1(Z),P(Z)) (32)

The robust performance condition (30) imposes restrictions on the values A can take. Assume there

existed z E £2 such that

A(z) E CKo := {(r,.. . ,rF+l,g), ri > 0, g E Sv,SB} C V. (33)

Applying z = col(p,u) to M we obtain the corresponding signals (q,y). Since Ilqill > I[pill for

i = 1 ... F, there exist contractive operators Ai : £2--L2, such that Pi = /iqi, for i = 1 ... F.

Setting A = diag[Al,..., A,] results in Aq = p consistently with Figure 1. Also, we have Ilyll > a

from the inequality on aF+l(z), and u C Wn,,B from the constraint on p(z). This means we have

found A E BALTV, u E Wr,,B such that

Il(A *M)ull > y,

violating (30). This reasoning leads to the following statement.

Proposition 7 If (30) holds, there exists e > 0 such that V n c = 0, where

V = A(z) : z E £2} C V is the range of A, and

Kie := {(r1,.., rF+1, g) : ri > -e2, g C S ,B) C V,

with S,07B the interior of Sv,,B in the space C(R).
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To obtain this result the preceding argument must be strengthened in two ways. First, we must

impose the causality of A which was not considered in the construction above. Second, we have

replaced the set }o by the slightly different set KC,. These details are quite involved, but completely

analogous to those of the discrete time case of [23, 25]; for this reason they are omitted here.

We have reduced robust 7l2 performance to a geometric separation condition in the space V.

To bring in the Hahn-Banach theorem, we note that Ce is open and convex in V, and that

Proposition 8 The closure V of V is convex in V.

Proposition 8 is proved in the Appendix. By choosing /C1 = V, 1C2 = Ie,, we are in a position

to apply Theorem 1, and obtain the corresponding F E V*, r f 0, a C I , satisfying (8).

The structure of V and the Riesz representation theorem imply that F can be represented by

(x 1 ,. .. ,xF+1i raI,), where xi E IR, and rF,( E BV(R+) ® R. Then (8) gives

F+1 F+1

S xiui(z) + rT,,(p(z)) < a < xziri + rF,,(sg) V z E £2, ri > -e 2 , g E Sn,B. (34)
i=l i=l

We now apply (7) to describe the action of ra,. Note that [p(z)](0) = 0, and d[p(z)](w) =

(lu(jw)12 + Iu(_-jW) 2 )d, which gives

]r,7(p(z)) = - @(W)(lu(jw)l12 + IU(-jw) 2)d Y(W) Iu(jw) 12 _=, (35)

with Y(w) := (lwl) E BV(IR). Therefore (34) is rewritten as

F+1I dW

Xii(z)-J Y(W)IU(jW)I2 < aVZ E £2; (36)
i=1

F+1 00 ri > -E 2

xiri + =9(0) - (W)dg(w) > a, for S(37)
- S ,g B

These fundamental relations will lead to the desired Condition 1, through a sequence of steps.

1. xi > 0. This follows from (37).
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2. Y > 0. To see this, select zi = 0, i = 1... F. Then cai(z) > 0, i = 1... F, so (36) gives

F+1 I dw
-72XF+1 -- a < 7 Xii(Z) - < - Y(w) I(jw)12.

i~Y XF±1 - --L.. foo

Since u = ZF+1 is arbitrary in £2, we must have Y > 0.

3. a <0 , Y c £1 (IR), and f-o Y(jw)d w < -a. Consider gB() = 1 min(w,B) which is in SnB,

and ri = 0; then (37) gives

0 < Y(w) d < -a.
- B 27

This yields the desired conditions.

4. x,+1 > 0. If it were 0, applying (36) with z = 0 would yield 0 < a, a contradiction. From

here we conclude that xi, Y and a can be renormalized so that XF+1 = 1, preserving (36-37)

and the conclusions of the previous steps.

5. Setting XF+l = 1 in (36), and using definition of /i gives

K(M*[ X 0M- [X ]) Zz<)a+- 2 Vz 2,

where X := diag[xlI,... ., FI] > 0 commutes with A. This implies that

M(j)*[X ] M(jw) - [ Y( < 0 Vw E R, (38)

and also that 0 < <a + 72, so -a < -y2 which implies from Step 3 that

00 dw 2
Y(jw)27 <2 < 1. (39)

Equations (38-39) are "almost" what is required. To complete the proof, we must ensure

X > 0, tighten (38) to (12), and ensure that Y(w) is in the class YF. This is considered next.

6. Since the system is robustly stable under structured LTV perturbations, there exists [32, 18]

Xo C X such that Mll(jw)*XoMIi(jw) - Xo < -21 V w. Next, define

YO = M~2 XoM12 + M' 2XoM1 1 [I - MlXoMll + XO]- 1 M1
l X o M 1 2
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which is a rational function in £i(jIR) since [I - Mj1*X o M 11 + Xo]- E TRLcO, M1 2 E R4Z- 2,

and Mii E RC /. By a Schur complement operation, we have

0 0_ 0 0 Yo(w) 0M(jw) [ 0 ]<[o VwCE (40)
which implies from (38) that

M(jw)* [ o I jM(jw)- Y(w) < [ Vw E , (41)

for X = X + eXo > O, Y = Y + cYo > 0 and any e > O. For small enough E, we can obtain

from (39)
f0 du;o dw 00 dwi_ Y( ) =I Y(w)- +e Yo(w)- < 1. (42)

As noted before, Y E BV(IR); since Yo is rational and has no poles poles on the imaginary

axis, we also have Yo E BV(R) and consequently Y E BV(IR). The class Y imposes the

additional requirement that Y(lwl) < G(w) for a monotonic G E LC(RIt+). Since Y is bounded

this requirement only refers to the behavior of Y as w-*+oo. Noting that (41) imposes that Y

is lower bounded by a rational, strictly proper function of frequency (therefore monotonic at

high frequency), we can modify Y at very high frequencies to be in F while still satisfying

(41) and (42).

We conclude this section by commenting briefly on the various extensions to the above proof.

Multivariable noise u E WmB.

For the sufficiency proof, the bound (21) is extended to

u*Yu- < trace(Y)j + r1[2mG(B) + E (JYij(B) + TV(Yi,j))] + - G(w)dw,
~ -- 00 27r 00 i,j=l 

for Y E m . For the necessity, we use p(z) = Fu(,3) given by (27), taking values in CHmxm(R+).

The functionals on this space have the form

X,(g) = [(i,j(t) - i,j(oo)]d'i,j(t) + (i,jgi,j(oo))'
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where 'P is a hermitian-matrix valued function on IR+, with entries of bounded variation, and ( is

a hermitian matrix. The proof follows in a similar way.

SI perturbations in A.

If the i-th block of A is Iri,j then the scalar quadratic function vi must be replaced (see [25])

by a matrix-valued function

Ei(z) = [(Mz)i(jw)(Mz)* (jO) - zi(jw)z*(jW)] 2'

which takes values in the space of hermitian ri x ri matrices. The functionals in this space are of

the form Fxi(A) = trace(XiA), where Xi is a full, hermitian matrix. The argument then proceeds

in a similar fashion, Xi becoming a sub-block of the scaling matrix X.

Slowly varying perturbations

The preceding proof can be extended to obtain Theorem 5. For the necessity side, one must

replace ai, i = 1... F by a function-valued quadratic map opi: L2 t-+ Co (R), of the form

f3+h dw
[cpi(Z)](P) = ((Mz)i 12-i 2)i

Constraints on pi for a fixed h > 0 provide a characterization of A C BAy, and the duality argument

extends. Details on this procedure will be provided in [26].

6 State-space Conditions for Robust 72 Performance

In Section 3 we remarked that Condition 1 with frequency dependent X(w) was an infinite dimen-

sional test. For the case of constant X scales (i.e. LTV uncertainty), we will show in this section

that the problem can be reduced to a finite dimensional convex test in state space, analogously to

what happens in the case of 7-/0 performance.

For this purpose we select a state-space realization for M,

M- ICD 11 D1 2

C2 D21 D22
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The assumption M1 2, M22 E R47 2 implies that D12 and D22 are 0. To simplify the formulas we will

also assume that D11 and D21 are 0 (M is strictly proper), although this second restriction is not

essential and can be removed. Correspondingly we use

rAIB 1 AIB1 B2 A B1 B2
M= [A ] [A 2 [GC1 (43)

C2 0 0

It is assumed that the realization (43) is minimal and that A is Hurwitz, of state dimension n.

6.1 Review of state-space tests for Robust 74, Performance

Given a system M with state-space realization (43), where A is Hurwitz and (C, A) observable,

the condition IMMIloo < 1 can be characterized in terms of the solutions to the algebraic Ricatti

equation

AP + PA' + BB' + PC'CP = 0. (44)

More precisely, IIMloo < 1 if and only if there exists P_ > 0 solving (44), and A + P_C'C Hurwitz.

P_ is called the stabilizing solution of (44). This equivalence is the so-called Bounded Real Lemma

(see, e.g. [41]), and can alternatively be stated in terms of LMIs: A is Hurwitz and IIMl oo < 1 if

and only if there exists a solution P > 0 to

(45)[ AP + PA' + BB' PC' ]< O (45)

An advantage of this second characterization is that it can be easily combined with the scaling

matrices which arise in structured robust performance conditions. In particular, the condition for

robust W70o performance of (M, A) under structured LTV uncertainty is given [19, 32, 18] by the

existence of X E X such that

0[ O I I [ 

Incorporating the scaling X into the state space realization and using (45) gives the LMI condition

[ AP + PA' + BXB± + B 2B2 PCX

CP I < P>O XE25 (46)
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which is a finite dimensional convex test, necessary and sufficient for robust W-0O performance under

structured LTV uncertainty.

6.2 State-Space Conditions for an Auxiliary Mixed 7-oo/ 2 Problem

The objective is to obtain a finite dimensional test for the analogous situation of robust i- 2 per-

formance under structured LTV uncertainty. We know from Section 5 that this corresponds to

Condition 1 under constant scales X; however, the presence of the variable Y(w) seems to indi-

cate that Condition 1 remains infinite dimensional. In the following we will show that in fact the

condition can be reduced to a finite dimensional test in state space.

For this purpose we begin by analyzing the test obtained from Condition 1 by setting X = I,

which specifies the existence of Y(jw) = Y(jw)* E CmXm such that

M(j)*M(jw) - [ ( ]< 0, (47)

£0 dw
Xj trace(Y(jw)) < 1. (48)

This pair of conditions allows in fact an interpretation in terms of a mixed 7l-/7-2 performance

problem (with no uncertainty). If the system M = [M1 M2] has the input u partitioned into the

vectors ul, u2 E (Cm, with ul an arbitrary L 2 signal, and u2 white noise, (47-48) can be interpreted

as a test for the rejection of such signals. We will not expand on this interpretation here (see [23]

for the discrete time version), but remark that such mixed performance problem was among those

considered in [40] (see also [28]), although [40, 11] concentrated mostly on a solving a different

problem with causality restrictions between ul and u2. For a comparison between these problems

see [40, 23].

The following theorem provides a state-space characterization of the conditions (47-48).

Theorem 9 Let 1M = [M1 M2] [= A DB A Hurwitz, (C, A) observable. The following are

equivalent:
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1. 3 Y(jw) = Y(jw)* E Tm xm such that (47-48) hold.

2. IIM1llco < 1, and IIN- 1 M2112 < 1, where N is the spectral factor satisfying N E RlHOO,

N - 1 CE 7Zo, and I - M1 M* = NN*.

3. The algebraic Ricatti equation

AP + PA' + BIB + PC'CP = 0 (49)

admits a stabilizing solution P_ > 0, and defining Z to satisfy the Lyapunov equation

(A + P_C'C)'Z + Z(A + P_C'C) + C'C = 0, (50)

we have

trace(B'ZB2) < 1. (51)

Proof:

(1z==2 ) We first rewrite (47) in terms of the partition of M (the convention (12) is in place), and

obtain

Ml* MI -I Mj*M2 < - EI ° V w R.

MMI M MM 2 - Y 0 0
from the first block we conclude that IIMl[~I < 1. Also, a Schur complement operation yields

Y(w) > M2* [I + M 1 (I - Ml*M 1)-Ml*] M2 = M2(I- M 1Ml*)-M 2 = (N-1M2)*(N- 1M 2 ), (52)

with N satisfying I - MM* = NN*. Substitution of (52) into (48) gives
oo d

IIN 1M2 2 = j trace[(N-1M2)(jcw)*(N-1M2)(jw)]- < 1._0N- M21M)wl 1 27r

(2==,1) The previous argument can be easily reversed to yield the converse implication.

(2-==3) As mentioned in Section 6.1, the condition IIM lI1 < 1 is equivalent to the solvability of

(49). Furthermore, the same Ricatti equation provides a way of computing the spectral factorization

which defines N: it is shown in [41] that if P_ is the stabilizing solution of (49), then

[C E T2
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satisfies I - Ml(jw)Ml(jw)* = N(jw)N(jw)* for all w, with

A+ P-C'C P-C]
N-1W= [ CC sI] E R7-.

Composing with M 2 = [B2 gives

-A O B 2

N-1M2 = P_C'C A+ P_C'C 0
C C O

This last realization is non-minimal, and a similarity transformation T allows us to

eliminate unobservable states and reduce it to

N-1M 2 = [A+ C ' B 2 ]

Now the computation of the 1-/2 norm of N-1M 2 can readily be performed by solving the Lyapunov

equation (50) and computing trace(BfZB2 ). Therefore IIN-1M2112 < 1 is equivalent to (51).

The state-space conditions of the previous theorem can be computed by a three-stage procedure:

first solve (49) for the stabilizing solution, then substitute in (50) and solve the equation for Z,

finally compute (51).

We are interested, however, in combining this test with a search for the scaling X E X for robust

1-12 performance. For this reason we seek a single "one-shot" test for the combination of (49-51),

to play the role of (45) in the A-/O case. The key observation is that there is an explicit formula

for the solution to the Lyapunov equation (50). In fact, from the theory of the algebraic Ricatti

equation developed extensively in [36] (see also [41]), we extract the following':

* Given that JIIM,1o < 1, (C, A) observable there also exists an antistabilizing solution P+ to

(49) such that -(A + P+C'C) is Hurwitz. Furthermore P_ < P+ and we have

P- P P< P+ (53)

'These references usually work with the dual equations and controllability assumptions, which are easily converted

to our case with (C, A) observable.
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for every P satisfying (49) (or the LMI (45) with B 1 replacing B).

* The matrix Z = (P+ - p_)-1 satisfies the Lyapunov equation (50).

Note that, given P+ - P_ > 0, the last observation follows by direct substitution into (50), using

the fact that both P_ and P+ satisfy (49).

We are now in a position to write an LMI test for the mixed performance problem.

Theorem 10 The conditions of Theorem 9 are satisfied if and only if there exist hermitian n x n

matrices P_, P+, Z, satisfying

P_ > 0, (54)

AP_ +PA' + BIB PC'][1 cT1--l+ ulu I< 0, (55)CP+ -I
AP+ + P+A' + B1B' P+C (56)

P+trace(ZB2) < 1. (57)

trace(B'ZB2) < 1L (58)

Proof: For convenience we use the notation

(p) := [AP+ PA '+BB PC']

Note that T is an affine map, so

T(oaPi + (1 - ac)P2) = ca(PI) + (1 - ao)T(P2). (59)

[Necessity] Let Po < P+ be the stabilizing and antistabilizing solutions of (49), and ZO = (P+o

P2)-l be the corresponding solution to (50), satisfying trace(B'Z°B2) < 1. It follows from (49)

that T(P °) < 0, T(P+) < 0. Also, from (45) we know there exists pstr > 0 satisfying the strict
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inequality T(Pstr) < 0. Now pick at E (0, 1), and define

P_(a) = aPstr + (1- a)PO

P+(oa) = oPs*tr + (1 - ))p,

Z(a) = [P+(a) - P_(a)]-l + aI.

By construction, for any a E (0, 1) we have P+ > P_ > 0, T(P+) < 0 and T(P_) < 0 (using (59)).

Also Z > (P+ - P_)-l, which implies by Schur complement that (57) holds. Finally, Z(o)-4Z ° as

Oa-+0+, so (58) holds for sufficiently small oa.

[Sufficiency]: (54) and (55) imply by (45) that A is Hurwitz, and IIMlllo < 1. This means we

can introduce Po, PO , Z0 as before. From (53) and (57) we know that

PO < P_ < P+ _< p.

This implies that P!_ - PO > P+ - P_ > 0, so we have

z > (P+ - P_)- 1 > (pO - pO)- = ZO

using (57). Now (58) implies trace(BZ°0 B 2) < 1, so the conditions of Theorem 9 hold.

6.3 State-space LMIs for Robust 7t2 Performance

Using the characterization of Theorem 10, we are finally in a position to state the main result

of this section, which is an exact state-space condition for robust 7/2 performance in the case of

structured LTV uncertainty.

Theorem 11 The system (M, A) has robust 7f2 performance for A C BALTV, if and only if there

exist X E X, and hermitian n x n matrices P_, P+, Z satisfying

P_ > 0, (60)
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AP_ + PA' + B 1XB P[J (
CP_ [ O1 I < O. (61)

AP+ + P+A' + B 1XBl P+C'
CP+ [ oI] < o, (62)

[ I P- >P_ 0, (63)
trace(B ZB 2) < 1. (64)

Proof: From Theorem 6 robust 7-2 performance is equivalent to Condition 1 with constant scales;

for convenience we write this condition replacing X by X - 1 which is also in X:

M(jw)) [ O ] MUW)- [0 Y(O) < 0,

dw
| trace(Y(w)), < 1.

Defining

[7= X- 0 X1 X- ]
0 I0 0

2M satisfies the conditions (47-48). Applying Theorem 10, this is equivalent to the LMIs

P_ > 0,

x-- 0
0 I

L"o OI < 0, (65)

xP -]CP <I0,O I
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[ z I ]> 0I P+ -P_ >0,
trace(B'ZB2) < 1.

Multiplying (65) and (66) on the left and right by [ x 0 , these equations are equivalent

to (60-64). ·

The previous result provides an exact, finite dimensional LMI condition for robust 7-2 perfor-

mance under LTV perturbations, which plays the same role as (46) for 7O1O performance. Although

(60-64) is somewhat more expensive to compute, the condition is of the same nature since it is exact

and its dimensionality depends only on the original system. The LMIs (60-64) can be evaluated by

the standard methods of [4].

As a final remark, we note that analogous state-space tests can be developed for the discrete

time problem studied in [22, 23], by replicating the previous steps in a routine way.

7 Conclusions

This paper provides a general method for robust 712 analysis in continuous time, complementing the

results in [23] for the discrete time case, and extending them to include state space characterizations.

The resulting theory completely parallels that of the W7O performance measure, and the conditions

involve a comparable computational cost, with the advantage that the rejection of broadband noise

is directly addressed. It is expected that these tools will be incorporated into current practical uses

of the W7OO and f frameworks [2], alleviating the effort of weight selection in these methods, since

the performance weights can now be obtained directly from Condition 1.

While these tests give an exact treatment of LTV uncertainty, and a mildly conservative method

for the LTI case, there is probably more room for improvement in the case of parametric uncertainty.

The use of "G-scales" in Condition 1 suggested in Section 3 helps impose that the perturbations

are real, but can still be very conservative. This is well known in the standard mixed Az theory [37],
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and here the conservatism can be greater since the fl 2 condition depends on all frequencies (not

just the worst), and these tests do not impose that the perturbation is constant across frequency

(see the discussion in [24]). This potential conservatism emphasizes the need for lower bounds on

robust performance, extending those of the , theory [19, 37], which remain open for future research.

Finally, we have the question of synthesis. It is shown in [23] that "D-K" iteration methods for

synthesis extend directly to the case of 7W2 performance, and the same happens for the continuous

time case considered here. These iterations are based on WO optimal control, using the weight

Y(w) obtained from Condition 1 to shape the synthesis. The availability of state-space conditions

for the mixed performance problem (47-48) raises the possibility of state-space synthesis for this

problem which is slightly different than the one considered in [11], and could lead to an alternative

procedure for robust 7L2 synthesis. These issues, as well as the practical behavior of these iterations,

are the main open directions for further research in this problem.

Appendix: Proof of Proposition 8

Consider a convex combination A0 = caA(z) + (1 - a)A(f) of two points in V. Let zk = v/az +

v1 -coa)kf, where Ak is the k-second delay, k is an integer. We have

11z112 k1j llzill2 + (1 - )lfill 2, (67)

II(Mzk)i112 k-- I all(Mz)i112 + (1- oa)l|(MAf)i112 (68)

This follows from the fact that (z, Akf) -k 0 for any functions z,f E L2. For (68) we use

MAk = AkM from the time invariance of M. (67-68) imply that

)i(z ) k--+c0i(z) _ (1 -- o)ci(f) i = 1... F + 1. (69)

We now show that

p(zk) k-zoo op(z) + (1 - a)p(f), (70)
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with convergence in the sense of C(RIt). From (31) and (16) it follows that

kz* kfF+l(jv) dw
[p(zk) _- p(z) -(1- o)p(f)] (/3)= 2 a/(1 - oD)Re dw(jW)eWkfF (

Introduce
Z* jwk dw

Ok(/3) := Z+l(jw)eJw fF+l (jw) = (l1[-,/]ZF+±1,AkfF+l) (71)(71

We must show that k (/3) converges to 0 uniformly over/3 E IR+. Pointwise convergence at a fixed

/3 (including oc) follows from (71). If it were not uniform over Et+, we could find a subsequence

kj and points /3k E I+ with k (kj(/3k)I > e. By taking a further subsequence we can assume that

Pkj -+ /3o, where 3o may be infinity. Now we write

Wk '41 () ±dw dw
WPkj (Okj3 ) =kj() ZF+(()) eFwk fF+l(W 2 + ZF+1 (W) ejWkj fF+l (W) 2'

which implies that

0 << k (kj )I < lok (o) I + ZF+ I fF+ I + IZF+ I fF+ I (72)
J/0 1r kj 2i

The right hand side of (72) converges to 0 from the pointwise convergence of 79kj, and the fact that

Pkj = -/3o, (since IZF+ll fF+1I E C1(lR)). This is a contradiction, so we have shown (70), which

together with (69) implies that A(zk) ko-j caA(z) + (1 - a)A(f) in the topology of V.

Since A(zk) E V, we conclude that co(V) C V, where co(V) is the convex hull of V and V its

closure. This implies that co(V) C co(V) C V, so V is convex.
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