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Abstract

In this paper and its sequel [BPT96] we consider a multiclass multiplexer, with segregated

buffers for each type of traffic. Under specific scheduling policies for sharing bandwidth, we

seek the asymptotic (as the buffer size goes to infinity) tail of the buffer overflow probability

for each buffer. We assume dependent arrival and service processes as it is usually the case

in models of bursty traffic. In the standard large deviations methodology, we provide a

lower and a matching (up to first degree in the exponent) upper bound on the buffer
overflow probabilities. We relate the lower bound derivation to a deterministic optimal

control problem, which we explicitly solve. Optimal state trajectories of the control problem

correspond to typical congestion scenarios. We explicitly and in detail characterize the

most likely modes of overflow. Here we consider the generalized processor sharing policy

(GPS) and in [BPT96] the generalized longest queue first policy (GLQF). The performance

of strict priority policies is obtained as a corollary. A comparison of the loss probability

characteristics of the GPS and GLQF policy is made in [BPT96]. Our results have important

implications for traffic management of high-speed networks. They extend the deterministic,

worst-case analysis of [PG93] to the case where a detailed statistical model of the input

traffic is available and can be used as a basis for an admission control mechanism which

guarantees a different loss probability for each type of traffic.

Keywords: Communication networks, ATM-based B-ISDN, Large Deviations.



1 Introduction

Future high speed, packet-switched communication networks, for example ATM-based B-

ISDN networks, will accommodate various types of traffic, namely, digitized voice, encoded

video, and data. One of the central and most challenging current problems in computer

networking is the design and the operation of these networks.

Congestion causes packet losses, due to buffer overflows, and excessive delays, phe-

nomena that greatly contribute to the degradation of the quality of service (qos) that the

network delivers to its users. Since voice and video are very sensitive to such phenomena

the network should have the ability to guarantee certain qos parameters to the user. We

quantify qos by the probabilities of excessive delay and buffer overflow. It is desirable to

operate the network in a regime where packet loss probabilities are very small, e.g., in the

order of 10 - 9. Moreover, large delays should also have a correspondingly small probability.

An essential step for preventing congestion through a variety of control mechanisms (buffer

dimensioning, admission control, resource allocation) is to determine how it occurs and to

estimate the probabilities of congestion phenomena, i.e., buffer overflows and large delays.

The problem is particularly difficult since it essentially requires finding the distributions

of waiting times and queue lengths in a multiclass network of G/G/1 queues with corre-

lated arrival processes (since it is needed to model bursty traffic) and non-exponentially

distributed service times. In this light, it is natural to focus on the large deviations regime

and obtain asymptotic expressions for the tails of congestion probabilities.

In this paper and its sequel [BPT96] we focus at a simplified version of the problem

which retains the most salient features, that is, it is multiclass and has correlated arrival

and service processes. In particular, we consider a multiclass multiplexer (one node), with

segregated buffers for each type of traffic. Under specific scheduling policies for sharing

bandwidth we seek the asymptotic (as the buffer size goes to infinity) tail of the buffer

overflow probability for each buffer. In other words, we estimate the loss probability for

each type of traffic. In this paper we consider the generalized processor sharing policy (GPS)

(introduced in [DKS90] and further explored in [PG93, PG94]), and in its sequel [BPT96]

the generalized longest queue first policy (GLQF). Both of these policies are parametric

policies and for specific values of the parameters reduce to strict priority policies. Thus, the

performance of strict priority policies is obtained as a corollary of our results (approximate

results for priority policies are reported in [EM94]).

In the standard large deviations methodology we provide a lower and a matching (up to

first degree in the exponent) upper bound on the buffer overflow probabilities. We prove
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2 Multiclass Multiplexers: The GPS Policy

that overflows occur in one of two most likely ways (modes of overflow) and we explicitly

and in detail characterize these modes. We address the case of multiplexing two different

traffic streams; for the general case of N streams our lower bound approach (which also

determines the modes of overflow) can be easily extended. It should be noted, however, that
there is an exponential explosion of the number of overflow modes (there are 2N-1 modes).
Proving a tight upper bound for the case of N streams is still an open problem. Our results

have important implications in traffic management of high-speed networks. They extend

the deterministic, worst-case analysis of [PG93] to the case where a detailed statistical
model of the input traffic is available. They can be used as a basis for an admission control

mechanism which guarantees desirable loss probability, and allows for different requirements

for each type of traffic.

We wish to note at this point that although our principal motivation for studying this

problem is computer networking, our results have applications in other queueing situations,

e.g. service industry and manufacturing systems.

Large deviations techniques have been applied recently to a variety of problems in com-

munications. A nice survey can be found in [Wei95]. The problem of estimating tail
probabilities of rare events in a single class queue has received extensive attention in the

literature [Hui88, GH91, Kel91, KWC93, GW94, EM93, TGT95]. The extension of these
ideas to single class networks, although much harder, has been treated in various versions

and degrees of rigor in [BPT94, GA94, Cha95, O'C95a, dVCW93].

Closer to the subject of this paper, the asymptotic tails of the overflow probabilities for

the GPS policy with deterministic service capacity are obtained in [dVK95] and [Zha95].

The latter paper raises and addresses a technical difficulty not handled in [dVK95]. Both pa-

pers use a large deviations result for the departure process from a G/D/1 queue [dVCW93].

Tail overflow probabilities for the GPS policy and deterministic service capacity were also

reported in [O'C95b, CW95]. The authors in [CW95] view the problem as a control prob-
lem where control variables are the capacity that the server allocates to each buffer, as a

function of the current state. This approach has some technical problems with boundaries

because it requires Lipschitz continuity of the controls.

In this paper, we provide an optimal control formulation of the problem. Our formulation

is different from the one in [CW95] and does not fall into problems with the boundaries
of the state-space. In particular, the exponent of the overflow probability is the optimal
value of the control problem, which we explicitly solve. Optimal state-trajectories of the
control problem correspond to the most likely modes of overflow; from the solution of the

control problem we obtain a detailed characterization of these modes. This formulation, as
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will be apparent later, motivates the selection of the two overflow scenarios that are used

to obtain the lower bound, a selection which is sort of arbitrary in most of the existing

literature. This optimal control formulation is general enough to include any scheduling

policy. The only thing that changes with the policy is the dynamics of the system. Optimal

control formulations are also used in [SW95] for large deviations results for jump Markov

processes. Moreover, our work extends the GPS results in the literature to the case of

stochastic service capacity. This extension makes it possible to treat more complicated

service disciplines. Consider for example the case where we have a deterministic server and

three types of traffic with dedicated buffers. We give priority to the first stream and use

the GPS policy for the remaining streams. These two remaining streams face a server with

stochastic capacity, a model of which can be obtained using the model for the arrival process

of the first stream. Stochastic capacity significantly alters the way overflows occur. To see

this recall that in deriving their results [dVK95] and [Zha95] use the departure process from

a G/D/1 queue. The large deviations behaviour of the departure process is different with

deterministic and stochastic service capacity as it is pointed out in [BPT94, CZ95].

Regarding the structure of this paper, we begin in Section 2 with a brief review of

the large deviations results that we use in this paper. We also state a set of assumptions

that arrival and service processes need to conform to. In Section 3 we formally define the

multiclass model that we consider and in Section 4 we formally define the GPS policy.

Moreover, in the latter section, we provide an outline of the methodology that we follow in

proving our results. In Section 5 we prove a lower bound on the overflow probability and

in Section 6 we introduce the optimal control formulation and solve the control problem.

In Section 7 we summarize the most likely modes of overflow obtained from the solution

of the control problem and in Section 8 we prove the matching upper bound. We gather

our main results in Section 9, where we also treat the special case of strict priority policies.
Conclusions are in Section 10.

2 Preliminaries

In this section we review some basic results on the Large Deviations Theory [DZ93b, SW95,

Buc90O] that will be used in the sequel.

We first state the Gartner-Ellis Theorem (see Bucklew [Buc90O], and Dembo and Zei-
touni [DZ93b]) which establishes a Large Deviations Principle (LDP) for dependent random
variables in IR. It is a generalization of Cramer's theorem which applies to independent and

identically distributed (iid) random variables.
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Consider a sequence {S1, S2,... } of random variables, with values in EI and define

n

For the applications that we have in mind, Sn is a partial sum process. Namely, Sn =

i=1 Xi, where Xi, i > 1, are identically distributed, possibly dependent random variables.

Assumption A
1. The limit

A(0) - lim An(8) = lim ilog E[eOs.] (2)n--oo n--oo n

exists for all 0, where ±oo are allowed both as elements of the sequence An(8) and as

limit points.

2. The origin is in the interior of the domain DA a {8 I A(8) < oo} of A(8).

3. A(8) is differentiable in the interior of DA and the derivative tends to infinity as 0

approaches the boundary of D^.

4. A(8) is lower semicontinuous, i.e., liminfo,,0 A(On) > A(8), for all 8.

Theorem 2.1 (Gdrtner-Ellis) Under Assumption A, the following inequalities hold

Upper Bound: For every closed set F

limsup 1 -logP [-SnE F] < - inf A*(a) (3)
,n-+oo n aEF

Lower Bound: For every open set G

liminflogP [-E G] > - inf A*(a), (4)
n- oon Ln aEG

where

A*(a) - sup(Sa - A(9)). (5)

We say that ({Sn satisfies a LDP with good rate function A*(-). The term "good" refers
to the fact that the level sets {a I A*(a) < k} are compact for all k < oc, which is a

consequence of Assumption A (see [DZ93b] for a proof).



Sec. 2. Preliminaries 5

It is important to note that A(-) and A*(.) are convex duals (Legendre transforms of

each other). Namely, along with (5), it also holds

A(O) = sup(Oa - A*(a)). (6)
a

The Gdrtner-Ellis Theorem intuitively asserts that for large enough n and for small

> 0,

P[Sn E (na - n, na + n)] ~ e- nA * (a)

A stronger concept than the LDP for the partial sum random variable Sn E R, is the

LDP for the partial sum process (Sample path LDP)

1 LntJ
Sn(t) = E xi, t E [0, 1].

Note that the random variable Sn = Ein1 Xi corresponds to the terminal value (at t = 1) of

the process Sn(t), t E [0, 1]. In a key paper [DZ93a], under certain mild mixing conditions
on the stationary sequence {Xi; i > 1}, the authors establish an LDP for the process S,(.)

in D[O, 1] (the space of right continuous functions with left limits).

Their result is a starting point for our analysis in this paper. In particular, we will be

assuming the following version of the sample path LDP.

Assumption B

For all m E N, for every e1, e2 > 0 and for every scalars ao,... , am-l, there exists M > 0

such that for all n > M and all ko,... , kmi with 1 = ko < kl < .. < km = n,

e-
(ne+Z'

o
0(ki+l - ki)A ^ (ai)) _ P[ISki+ - Sk, - (ki+l - ki)ail < eln, i = 0,... , m - 1]

< e
( n

f2
- E

-.
° (k + l- - ki )A' ( a ) ) (7)

A detailed discussion of this Assumption, and the technical conditions under which it is

satisfied is given by Dembo and Zajic in [DZ93a]. In the simpler case when dependencies

are not present (i.e., Si = =l Xj, where Xi's are iid), Assumption B is a consequence of
Mogulskii's theorem (see [DZ93b]). Intuitively, Assumption B deals with the probability of
sample paths that are constrained to be within a tube around a "polygonal" path made up

with linear segments of slopes ao,... , a,,l. In [DZ93a] it is proved that this assumption
is satisfied by processes that are commonly used in modeling the input traffic to commu-
nication networks, that is, renewal processes, Markov modulated processes and correlated
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stationary processes with mild mixing conditions.

In [Cha95] a uniform bounding condition is given under which the above Assumption

is true, and is verified that the condition is satisfied by renewal, Markov-modulated and

stationary processes with mild mixing conditions. Using this uniform bounding condition

it is not hard to verify (see [Cha95] for a proof) that the following assumption is satisfied.

This assumption can be viewed as the "convex dual analog" of Assumption B.

Assumption C

For all m E N there exists M > 0 and a function 0 r F(y) < oo, for all y > O, such that

for all n > M and all ko,... ,km with 1 = ko < k1 < ... < km = n,

m

E[e ' Z] < exp( [(kj - kj_1 )A(Oj) + r(0j)]}, (8)
j=1

where 0 = (01,... , Om) and Z = (Sko,, Sk2 - Skk,. .. , - Skm- ).

On a notational remark, in the rest of the paper we will be denoting by SX A jk=i Xk,

i < j, the partial sums of the random sequence {Xi; i E Z}. We will be also denoting by

Ax(-) and A (-) the limiting log-moment generating function and the large deviations rate

function (see eqs. (2) and (5) for definitions), respectively, of the process X.

3 A Multiclass Model

In this section we introduce a multiclass multiplexer model that we plan to analyze, in the

large deviations regime.

Consider the system depicted in Figure 1. We assume a slotted time model (i.e., discrete

time) and we let Al (resp. A?), i E Z, denote the number of type 1 (resp. 2) customers

that enter queue Q1 (resp. Q2) at time i. Both queues have infinite buffers and share the

same server which can process Bi customers during the time interval [i, i + 1]. We assume

that the processes {Al; i E Z}, {A2; i E Z) and {Bi; i E Z) are stationary and mutually
independent. However, we allow dependencies between the number of customers at different

slots in each process.

We denote by Li and L2, the queue lengths at time i (without counting arrivals at

time i) in queues Q1 and Q2, respectively. We assume that the server allocates its capacity

between queues Q1 and Q2 according to a work-conserving policy (i.e., the server never stays

idle when there is work in the system). We also assume that the queue length processes

(L, j = 1, 2, i E Z) are stationary (under a work-conserving policy, the system reaches
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A1

Q1

Q2

A2

Figure 1: A multiclass model.

steady-state due to the stability condition (9) by assuming ergodicity for the arrival and

service processes).

To simplify the analysis and avoid integrality issues we assume a "fluid" model, meaning

that we will be treating A , A? and Bi as real numbers (the amount of fluid entering or
being served). This will not change the results in the large deviations regime.

For stability purposes we assume that for all i

E[B,] > E[Al] + E[A~I. (9)

We further assume that the arrival and service processes satisfy a LDP (Assumption A),
as well as Assumptions B and C. As we have noted in Section 2, these assumptions are

satisfied by processes that are commonly used to model bursty traffic in communication net-

works, e.g., renewal processes, Markov-modulated processes and more generally stationary

processes with mild mixing conditions.

4 The GPS policy

In this section we introduce the generalized processor sharing (GPS) policy that was pro-

posed in [DKS90] and further explored in [PG93, PG94]. According to this policy the

server allocates a fraction 01 E [0, 1] of its capacity to queue Q1, and the remaining fraction

02 = 1 - 01 to queue Q2. The policy is defined to be work-conserving, which implies that
one of the queues, say queue Q1, may get more than a fraction 01 of the server's capacity
during times that the other queue, Q2, is empty. More formally, we can define the GPS to
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be the policy that satisfies (work-conservation)

Li+ + L2+ = [L + L2 + Al + A2 - Bi]+,

and

Li+1 < [L | + A -qjBi] + , j = 1,2,

where [x]+ - max{x, 0).

We are interested in estimating the overflow probability P[L1 > U] for large values of U,

at an arbitrary time slot i, in steady-state. Having determined this, the overflow probability

of the second queue can be obtained by a symmetrical argument.

We will prove that the overflow probability satisfies

P[L' > U] - e-U*GPS, (10)

asymptotically, as U -4 oo. To this end, we will develop a lower bound on the overflow

probability, along with a matching upper bound. Consider all scenarios (paths) that lead

to an overflow. We will show that the probability of each such scenario w asymptotically

behaves as e-U`(w), for some function O(w). For every w, this probability is a lower bound

on P[LV > U]. We select the tightest lower bound by performing the minimization O*ps =

min 0O(w), which amounts to solving a deterministic optimal control problem. Optimal

trajectories (paths) of the control problem correspond to most likely overflow scenarios.

We show that these must be of one out of two possible types. In other words, with high

probability, overflow occurs in one out of two possible modes. We will obtain an upper

bound on P[LV > U] by first obtaining a sample path upper bound, i.e., L1 < L1 (which
implies P[L1 > U] < P[L1 > U]) and establishing that P[L1 > U] is at most e-u oPs.

5 A Lower Bound

In this section we establish a lower bound on the overflow probability P[L1 > U].

Proposition 5.1 (GPS Lower Bound) Assuming that the arrival and service processes

satisfy Assumptions A and B, and under the GPS policy, the steady-state queue length L1

of queue Q1 satisfies

lim log P[L1 > U] > -BPS, (11)
U-ao( U1
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where OGps is given by

GPS = min inf -ApS(a), inf AGPS(a) (12)
a>O a aA>O a

and the functions A'PS(-) and AIPS(.) are defined as follows

A`pS(a) a inf [Are(xi) + AA2 (X2 ) + A*(X 3 )] (13)
XG1+x2-x3=a

X2<02X3

and

AGps(a) = inf [AA* (xl) + AA2 (X2 ) + AB(X3)] (14)
X1-OlX3=a

X2>02X3

Proof: Let -n < 0 and a > O. Fix xl,x2, x 3 > 0 and e1,e2, E3 > 0 and consider the event

{ IS_n,__l - (n - i)xll < En, SA ,_i_l - (n - i)x2 1 < 622n,

ISB-,il - (n - i)x3 1 < e3n, i = 0, 1,... n, -1}.

Notice that xl, x 2 (resp. X3) have the interpretation of empirical arrival (resp. service) rates

during the interval [-n, -1]. We focus on two particular scenarios

Scenario 1: X1 + 2 - 3 = a Scenario 2: - 1 X3 = a (15)

X2 < 02 X3 X2 > b2 x3.

Under Scenario 1, the first queue receives the maximum capacity (at a rate of X3 - x2) while

the second queue stays always empty during the interval [-n, 0]. Thus, L1 > na- ne-,

where e1 -* 0 as e1, E2,E3 -+ 0. Similarly, under Scenario 2, the second queue is almost

always backlogged during the interval [-n, 0], and the first queue gets capacity roughly
l1x3, implying also Lo > na - ne', where E -+ 0 as 61, 2, 63 -- 0.

Now, the probability of Scenario 1 is a lower bound on P[L1 > n(a - e6)]. Calculating

the probability of Scenario 1, maximizing over xl, x2 and X3, to obtain the tightest bound,

and using Assumption B we have

P[Lo > n(a - el)] > SUP P[ ISn,-i- - (n -i)xll < ein, i = 0, ,....,n -1]
Z1+X2-X3=a

X2•502X3

X P[ IS,2 - (n-i)x 2 1 < 27n, i = 0, 1,... ,n - 1]
X l ~-X2--z3----a
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x P[ S-n,-i - (Tn - i)X3I < 63n, i = 0, 1, ... ,n - 1]

> exp{-n ( inf [A(x) + A* (x 2) + A(x 3 )] + e)
l1+X2--3=a---a 

=exp{-n(A,* ~s(a) + E)}, (16)

where n is large enough, and e, el - 0 as E1,E2, E3 -+ 0.

Similarly, calculating the probability of Scenario 2, we obtain

P[Lo > n(a -, e)] > exp{-n(A`s(a) + ')}, (17)

for n large enough, and with e', E2 -- 0 as el, e2, 63 -+ 0.

Combining Eqs. (16) and (17), we obtain that for all e, e' > 0 there exists N such that
for all n > N

- log P[L _> n(a -e)] > -(min(Aps(a), AIIs(a)) + e'). (18)

As a final step to this proof, by letting U = n(a - e), we obtain that for all e, E' > 0

there exists Uo such that for all U > UO

1 1 1
logP[L' > U] = logP[L > n(a -)] > -- (min(A* ps(a),AI*(a)) +± '),

n(a -E) 0 - a Oa-- GP

which implies

lim -log P[L1 > U] > - min(A*S (a), A s (a)) .
U--+o U a Gpsa'GP G

Since a, in the above, is arbitrary we can select it properly to make the bound tighter.

Namely,

lim - log P[L1 > U] > -min inf aA S (a), inf -A (a)]~~U->oa0 U [a>0 a G a>0-gp)in a GPS()

6 The optimal control problem

In this section we introduce an optimal control problem and show that OGPS is its optimal

value.

To motivate the control problem, we relate it, heuristically, with the problem of obtaining
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an asymptotically tight estimate of the overflow probability 1. For every overflow sample

path, leading to Lo > U, there exists some time -n < 0 that both queues are empty. Since

we are interested in the asymptotics as U -+ oo, we scale time and the levels of the processes

Al, A2 and B by U. We then let T = v and define the following continuous-time functions

in D[-T, 0] (these are right-continuous functions with left-limits):

L (t) = - LUtj j =1,2, SX(t) = S X E A 1, A 2,B), for t E [-T, 0].

Notice that the empirical rate of a process X is roughly equal to the rate of growth of SX (t).

More formally, we will say that a process X has empirical rate x(t) in the interval [-T, 0]
if for large U and small e > 0 it is true

Isx(t) - x(-) dl <, Vt E [-T, 0],

where x(t) are arbitrary non-negative functions. We let, x1 (t),x 2(t) and x 3(t) denote the

empirical rates of the processes A1, A2 and B, respectively. The probability of sustaining

rates xl(t),x 2(t) and x3(t), in the interval [-UT, 0] for large values of U is given (up to first

degree in the exponent) by

exp {-U j[A1 (x1 (t)) + A 2(x2 (t)) + A (x3 (t))] dt}

This cost functional is a consequence of Assumption B. With the scaling introduced here as

U -> co the sequence of slopes ao, al,... , am- appearing there converges to the empirical

rate x(.) and the sum of rate functions appearing in the exponent converges to an integral.

We seek a path with maximum probability, i.e., a minimum cost path where the cost

functional is given by the integral in the above expression. This optimization is subject to

the constraints L1(-T) = L 2 (-T) = 0 and L1(0) = 1. The fluid levels in the two queues

L (t) and L 2(t) are the state variables and the empirical rates x1 (t), x 2(t) and x3 (t) are the

control variables. The dynamics of the system depend on the state. We distinguish three

regions:

Region A: L'(t), L 2(t) > 0, where according to the GPS policy

L1
= X1(t) - 3 (t) and L2 = x 2 (t)- 0 2x 3 (t),

1Such a relation can be rigorously established using the sample path LDP for the arrival and service
processes, as it is defined in [DZ93a] and [Cha95].
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Region B: L'(t) = 0, L2 (t) > 0, where according to the GPS policy

L
2

= x (t) + x2 (t) - X3 (t),

Region C: L'(t) > 0, L2 (t) = 0, where according to the GPS policy

L1 = x1 (t) + x 2 (t) - x3(t).

Dotted variables in the above expressions denote derivatives 2. Let (GPS-DYNAMICS)
denote the set of state trajectories Lj(t), j = 1,2, t E [-T, 0], that obey the dynamics

given above.

Motivated by this discussion we now formally define the following optimal control prob-

lem (GPS-OVERFLOW). The control variables are xj(t), j = 1, 2, 3, and the state variables

are Lj(t), j = 1, 2, for t E [-T, 0], which obey the dynamics given in the previous paragraph.

r0

(GPS-OVERFLOW) minimize [A (x (t)) + A 2(x2 (t)) + A (x3 (t))] dt (19)
T

subject to: L1(-T) = L 2 (-T) = 0

L'(0) = 1

L2 (0): free

T: free

{Li(t): t E [-T, 0], j = 1, 2} C (GPS-DYNAMICS).

The first property of (GPS-OVERFLOW) that we show is that optimal control trajec-

tories can be taken to be constant within each of the three regions. The result is established

in the next lemma, where only Region A is considered in the proof. The other regions can

be treated similarly.

Lemma 6.1 Fix a time interval [-T1 , -T 2]. Consider a segment of a control trajectory

{xl(t),x 2 (t),x 3(t); t E [-T 1,-T 2 ]}, achieving cost V, such that the corresponding state

trajectory {Ll(t), L 2(t); t E (-T 1 , -T 2)} stays in one of the regions A, B, or C. Then there

2 Here we use the notion of derivative for simplicity of the exposition. Note that these derivatives may not
exist everywhere. Thus, in Region B for example, the rigorous version of the statement L2 = xl(t) + x 2(t) -
x3 (t) is L2 (t2) = L2 (tl) + ftt2(xl(t) + x2 (t) - x3(t)) dt, for all intervals (tl,t 2) that the system remains in
Region B.
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exist scalars X1, X2 and X3 such that the segment of the control trajectory {x1 (t) = 1, x 2 (t) =

X2,X 3 (t) = 23; t E [-T1 ,-T 2]} achieves cost at most V, with the same corresponding states
at t = -T 1 and t = -T 2 .

Proof: Consider a segment of any arbitrary control trajectory {x 1(t),x 2 (t),x 3 (t); t E

[-T 1 ,-T 2 ]}, that satisfies

L 1 (-T 1 ) = al > O, L1(-T 2 ) = bl > 0,

L 2 (-T 1) = a2 > 0, L 2 (-T 2 ) = b2 > 0, (20)

and stays in Region A, i.e., L 1(t),L 2(t) > 0 for all t E (-T 1 ,-T 2). We will prove that the

time-average control trajectory

xi(T) = f CXxi(t) dt, i = 1,2,3, VT E [-T 1 ,-T 2 ], (21)
T1 - T1

is no more costly. To this end, notice that to stay in Region A, the state variables have to

be positive, which by the system dynamics implies

Li(t) = aj + [xj(T) - Jx 3(T)] > 0, j = 1,2, t E (-T 1 ,-T 2 ). (22)

Moreover, we also have

Li(-T 2 ) = aj + [xrj() -- jx 3 (T)] = bj, j = 1,2. (23)

Notice now that the time-average trajectory, has the same end points (i.e., satisfies (20)),

moves along a straight line and thus stays in Region A for t E (-T 1, -T 2). Moreover, by

convexity of the rate functions we have

-T [AA1(xi1(t)) + A*2 (x2(t))+ A* (x3(t))] dt > (T1 - T2) [A*1(x1) +-- A*2(2) + -A* (3)]-
-T1

Given this property, to solve (GPS-OVERFLOW) it suffices to restrict ourselves to state
trajectories with constant control variables in each of the regions A, B and C. A trajectory

is called optimal if it achieves the lowest cost among all trajectories with the same initial
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and final state. Since we have a free time problem, any segment of an optimal trajectory is

also optimal.

Consider now a control trajectory {xL(t); t E [-T, 0] with corresponding state trajec-

tory {(L(t), L 2(t); t E [-T, 0]}, which leads to a final state (L'(0), L 2(0)). Define a scaled

trajectory as

x9(t) = x4(t/a), i = 1, 2,3, t E [-aT, O],

Qj(t) = aLj (t/a), j = 1, 2, t E [-aT, 0O],

and note that it leads to the final state (aL(0), aL2(0)). Then, the cost of the Q trajectory

is given by

0
J [AA (x?(t)) + A' 2 (xQ(t)) + A*(xQ(t))] dt =
-aT

0

aJ f [A* (X1 (t)) + A22 2((t)) + AB(x3 (t))] dt.
-T

Using this observation, it follows easily that every scaled version of an optimal trajectory

is optimal for the corresponding terminal state. Given this homogeneity property we can

compare the state trajectories in Figure 2(a), (b) and (c). If the trajectory in Figure 2(a) is

optimal then so does the scaled version (by a = a 2/al) in Figure 2(b) and as consequence

its segment which appears in Figure 2(c) is also optimal (since we have a free time problem).

Using the homogeneity property we can make the reduction in Figure 2(e), starting

from any arbitrary trajectory with constant controls as the one appearing in Figure 2(d)

(by appropriately scaling the dashed segment). Therefore, we conclude that optimal state

trajectories which have L (t) = 0 for some initial segment can be restricted to have one of

the forms depicted in Figure 3(c) and (d). Similarly, optimal state trajectories which have

Ll (t) > 0 for some initial segment can be restricted to have one of the forms depicted in

Figure 3(a) and (b). Consider now the trajectories in Figure 3(c) and (c'). The segment of

(c) and (c') that is in Region A has the same slope, thus the same controls, which implies

that the trajectory in (c') is at least as cheap since it spends less time on the L2 axis. Hence,

we have reduced the candidates for optimal trajectories to the ones in Figure 3 (a), (b) and

(d).

Finally, consider the state trajectory in Figure 3(d). Assume, without loss of generality

that it spends a ( fraction of its total time T on the L 2 axis (Region B) and the remaining
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bl E:l |> (b)

:a2 . L1(e)
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bl az I·>

1 L

a2 L1

Figure 2: By the homogeneity property, optimality of the trajectory in (a) im-
plies optimality of the trajectory in (b) which by its turn implies optimality of the
trajectory in (c). Using the homogeneity property the trajectory in (d) reduces to
the one in (e).

1 - fraction in Region A. Let also, {xj; j = 1, 2, 3, } be the controls in Region B and

{yj; j = 1, 2, 3, } the controls in Region A. The feasibility constraints are

X1 `< 01X3

(T(xi + x 2 - x 3 ) + (1 - ()T(y 2 - 02Y3) = 0,

(1 - ()T(y1 - 01Y 3 ) = 1.

Note that the time average control over x2, Y2, i.e., x2 = (x2 + (1 - O)Y2, satisfies the

same feasibility constraints and therefore by convexity (using the argument in the proof of

Lemma 6.1) it is at least as profitable to have x2 = Y2 = x2. The corresponding trajectory
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L
2

L
2

(C) (d)

L2 L2

1 /
1

1 L/
1

(a) (b)

(C') (d')

1 1

1 L1

Figure 3: Candidates for optimal state trajectories are depicted in (a), (b), (c)
and (d). The trajectory in (c) is reduced to the one in (c') which has the same
form as the one in (d). The trajectory in (d) is reduced to the one in (d') which is
contradicted by the time-homogeneity property. Hence, optimal state trajectories
have only the form in (a) and (b).

can either have the form in Figure 3(a) or Figure 3(d). If the latter is the case then

X2 > 02 x 3,

· X2 < 02Y3.

Consider the trajectory with x 3 = X3 + and y = Y3 - for some small e > 0. This latter

trajectory serves the same total number of customers as the former in the interval [-T, 0]

(equal to (Tx 3 + (1 - ()Ty 3) and it is at least as cheap by convexity of the rate functions.

It is depicted in Figure 3(d'). We can now apply the same argument to its dashed segment.

If we keep doing that we conclude that the trajectory in Figure 3(a) is at least as cheap.

Therefore, for every state trajectory of (GPS-OVERFLOW), there exists one of the form

depicted in Figure 3(a) or (b) with no larger cost. We next calculate the optimal value of

(GPS-OVERFLOW). The best trajectory of the form shown in Figure 3(a) has value

inf inf T[A*1 (xi) + A* 2 (x 2) + A*(x 3)], (24)
T 1 A A B

l+zx2-x3= T
X2•<2X3
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which is equal to infT[TAIPs(1/T)] by the definition in (13). The best trajectory of the

form shown in Figure 3(b) has value

inf inf T[A*1 (X1) + A* 2(x 2) + A*(x 3)], (25)
1- xl_13=T

X2>02X3

which is equal to infT[TAIs(1/T)] by the definition in (14). Thus, the optimal value

of (GPS-OVERFLOW) is equal to the minimum of the two expressions above which is

identical to O*PS as it is defined in (12). In summary we have established the following:

Theorem 6.2 The optimal value of the problem (GPS-OVERFLOW) is given by BOps, as

it is defined in (12).

It is of interest to investigate under what conditions on the parameters of the arrival

and service processes the trajectory in Figure 3(a) dominates the one in (b) and vice versa.

We will distinguish two cases: E[A2] > 0 2E[B] and E[A2] < q 2E[B], where for j = 1, 2,

E[Aj] (resp. E[B]) denote the expected number of customers arriving from stream j (resp.

expected potential number of departures). In the first case we will establish that the trajec-

tory in Figure 3(b) dominates the one in (a). In the second case, however, the relationship

between expectations is not sufficient to discard one of the two trajectories and which one

dominates depends on the distribution of the arrival and service processes. The following

theorem describes the result.

Theorem 6.3 If E[A 2] > q2E[B] then optimal state trajectories of (GPS-OVERFLOW)

can be restricted to have the form in Figure 3(b) with optimal value

inf inf T[A*1 (xl) + A*(x3)].T _ 1 A __
21-0123=T

Proof: Assume E[A2] > 02E[B] and consider the state trajectory in Figure 3(a) which

has optimal value given by the expression in (24). Since x2 < 02x 3, either x2 < E[A2] or

x 3 > E[B]. Then we can increase x2 and decrease x 3 until x2 = + 2x3, making xl + x 2 - x 3 >

T. The segment of this trajectory with terminal point at L1 = has the form of the state

trajectory in Figure 3(b). Thus we have reduced optimal state trajectories to Figure 3(b).

To determine the optimal value, notice that if x 3 > E[B] we can decrease x3 to E[B], without

violating the constraint x2 > 02 x3, making 1 - 01 3 > 1, and keeping the segment of the

resulting trajectory with terminal point at L' = T. Thus, it has to be the case X3 < E[B].= .Thsithstbetecsx3_E[.
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Then we can actually fix x 2 to E[A2 ], without violating the constraint x2 > + 2x3 (since

x2 = E[A2 ] Ž> 2 E[B] > 02 x3). This proves that the optimal value is given by the expression

appearing in the statement of this theorem.

7 The most likely paths

As we have explained in the Section 4 we will prove an upper bound that matches the lower

bound in Proposition 5.1. This is sufficient to guarantee that the two scenarios identified

in the proof of Proposition 5.1 (or equivalently the two optimal state trajectories of (GPS-

OVERFLOW)) are two generic ways that queue Q1 overflows. We summarize here these
two modes of overflow.

In particular, we distinguish two cases:

Case 1: Suppose OGPS = infa A*ps(a)/a holds. Let a* > 0 the optimal solution of this

optimization problem. In this case, the first queue is building up to an O(U) level

while the second queue stays at an o(U) level. The first queue builds up linearly with

rate a*, during a period with duration U/a*. During this period the empirical rates

of the processes A l , A2 and B, are roughly equal to the optimal solution (x1, x, x*),

respectively, of the optimization problem appearing in the definition of AGps(a*) (Eq.

(13)). The trajectory in L1-L 2 space is depicted in Figure 3(a).

Case 2: Suppose sGPs = infaAIGIs(a)/a holds. Let a* > 0 the optimal solution of this

optimization problem. In this case, both queues are building up to an O(U) level.

The first queue builds up linearly with rate a*, during a period with duration U/a*.

During this period the empirical rates of the processes A l , A2 and B, are roughly

equal to the optimal solution (xl, x, x3), respectively, of the optimization problem

appearing in the definition of AIGs(a*) (Eq. (14)). The trajectory in L1-L 2 space is

depicted in Figure 3(b).

It is interesting to reflect at this point on the implications of this result on admission

control for ATM multiplexers operating under the GPS policy. Consider the admission

control mechanism for queue Q1 and suppose that the objective of this mechanism is to

keep the overflow probability below a given desirable threshold. A worst-case analysis as

in [PG93] would conclude that the admission control mechanism has to be designed with

the assumption that the second queue always uses a fraction 02 of the service capacity.
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If instead the results of this paper are used (assuming that a detailed statistical model of
the input traffic streams is available) a statistical multiplexing gain can be realized. In the

overflow mode described in Case 1 above, the second queue consumes less than the fraction

02 of the total service capacity, implying that more Type 1 connections can be allowed
without compromising the quality of service. Even if the overflow mode described in Case

2 above prevails, the overflow probability is explicitly calculated (in an exponential scale)

and can be taken into account in the design of the admission control mechanism.

8 An Upper Bound

In this section we develop an upper bound on the probability P[L1 > U]. In particular, we

will prove that as U --+ o we have P[Lo > U] < e-° PsU + °(U), where o(U) denotes functions

with the property limuv,, o(U) = 0.U

In proving the upper bound we will distinguish two cases:

Case 1. E[A2] < 02E[B].

Case 2. E[A2] > 02E[B].

8.1 Upper Bound: Case 2

We will first establish the proof for Case 2, which is easier.

We consider a busy period of the first queue, Q1, that starts at some time -n* < 0

(L'n,, = 0) and has not ended until time 0. Notice that due to the stability condition (9)

and the fact E[A2] > 02E[B], it is true that E[AI] < O1E[B], which implies that such a
time -n* always exists. We will focus on sample paths of the system in [-n*, 0] that lead

to Lo > U. Note that

Lo < S_A,_,1 - 1n-1. (26)

Thus,

P[Lo > U] <P[3n > 0 s.t. S_ 1 - -1 > U]

<P[mna(S _ _,- 1 S_n,_1 ) > U]. (27)

We next upper bound the moment generating function of maxno>0(SAn - 1S . Ap-~~- - n b$,~_) A -n
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plying the LDP for the arrival and service processes for 0 > 0 we can obtain

sA. _1_,OSB .,_J)] _,_,6,S1 __,s_
E[esmaxn(s-n,--1 lS-n,-1)] < EE[ e o

(S
- n ' -I

5-,)]

n>O

< Z en(AA1 (0)+AB(-010)+e)

n>O

<K(O,E) if AA1(0) + AB(-010) < 0, (28)

since when the exponent is negative (for sufficiently small e), the infinite geometric series

converges to a constant, with respect to n, K(O, e). We can now apply the Markov inequality

in (27) to obtain

P[L
1

> U] <E[e maXn>°(sA- l - -n-l)]e

<K(O, e)e-° U if AA1 (0) + AB(--010) < 0. (29)

Taking the limit as U -+ oo and minimizing over 0 to obtain the tightest bound we establish

the following proposition.

Proposition 8.1 If E[A2] > 02E[B] and assuming an LDP for the arrival and service

processes (Assumption A)

lim U-log P[L > U] <l- sup 0.
limU- ylogP[L >U]• {>0O: AAl(0)+AB(-010)<o)

We are now left with proving that this upper bound matches the lower bound, OGPS,

which in Case 2 is given by the expression in Thm. 6.3.

In preparation for this result, consider a convex function f(u) with the property f(0) =

0. We define the largest root of f(u) to be the solution of the optimization problem

supusf(u)<o u. If f(.) has negative derivative at u = 0, there are two cases: either f(.)

has a single positive root or it stays below the horizontal axis u = 0, for all u > 0. In the

latter, case we will say that f(.) has a root at u = oo.

Lemma 8.2 For A*(-) and A(.) being convex duals it holds

inf 1A*(a) = 0,
a>O a

where 9* is the largest root of the equation A(0) = 0.
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Proof:

inf 1A* (a) = inf sup - [9a - A(0)]
a>O a a>O 0 a

= inf sup[9 - a'A(O)]
a'>O 0

= sup 0.
0: A(8)<O

In the second equality above, we have made the substitution a' := - and in the last one we

have used duality.

Based on this lemma and Proposition 8.1 we establish the following proposition.

Proposition 8.3 (GPS Upper bound, Case 2) If E[A2] > 02E[B] and assuming that

the arrival and service processes satisfy Assumption A, the steady-state queue length, L1,

of queue Q', at an arbitrary time slot satisfies

lim 1 log P[L 1 > U] < -OGps.
U-+oo U

Proof: It suffices to prove that OGPS = sUP{0>O: AA1 ()+AB(-01e)<o } 0. Since we are in Case
2, 8Ops is given by the expression in Thm. 6.3. Due to Lemma 8.2 it suffices to prove that

AA1(0) + AB(-q$10) is the convex dual of A*(a) - infx_1-x3=a[A t(xl) + A*(x 3)]. Notice

that the latter is a convex function of a as the value function of a convex optimization

problem with a appearing only in the right hand side of the constraints. Indeed the convex

dual of A*(a) is

sup sup [Oa-A*1 (xi) - A*(x 3)] =
a X1--1x3=a

= sup [0 (Xi - q1 x 3) - A, (x1 ) - A* (x3)]
X1 ,X3

=AA1 () + AB(-01 0) .
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8.2 Upper bound: Case 1

We now proceed to establish the upper bound in Case 1.

Consider all sample paths that lead to Lo > U. Looking backwards in time from time

0, let -k* < 0 be the first time that L' = 0. Since the system is busy during the interval
[-k*, 0], the server operates at capacity and

L +SL*,L 2 sA1 S A2 _ S B (30
L < L + L = L2k. + Sk.,_1 + Sk. - - k*,l- (30)

Since according to the GPS policy Q2 gets at least a fraction 02 of the capacity, we can
upper bound L 2 k by the queue length at a virtual system which gives to Q2 exactly a 02

fraction of the capacity (wasting some capacity at times that Q1 is empty). This trick of

using the virtual system to upper bound the queue length in the second queue has been

introduced in [dVK95] and used in [Zha95], although the upper bound proofs there do not

extend to the general services case. To establish the upper bound we will use the fact

that 09pS is the optimal value of (GPS-OVERFLOW). Let -n* < -k* be the first time

(looking backwards in time from -k*) that the queue length of Q2 becomes zero in the

virtual system. Notice that such a time -n* always exists since we are in Case 1, and Q2

is stable when it gets exactly a fraction q2 of the capacity. Then

,2 = A2
- B (31)

L- k*---S-n*,-k*-- 2 (31)

which when combined with (30) yields

L <SA' 1 S-n*,-A 1 -SB - 2 B 1 (32)
-k ,-1 --n -k )2S -n ,-_k-1'

Now, since Q1 is non-empty during the interval [-k* + 1, 0]

L' < SA'*,_ - q51sB . (33)L < S_k, 1 -01 -k*,-1 (33)

We will use the bound in (32) when SA2
n- 1 < 2SBn* 1 and the bound in (33) otherwise.

Namely we will use

A
1

A
2

_S _ S B
.. if SA2 .L1 < |S-k*,-1 + S_ 1 -- S-n-k,-- if SAn. 1 < 2. SB.n* 1-k -n -k -n*,-1-- -n ,--1 2 -n,---1

0 - SAI _ 01SB if SA2 >,-et ~21 thoat ck*-1, -0 ~ kr- B *if An1 -> 0 )2S-n*,-p

Let Q1 the set of sample paths that satisfy SnA
2

1 < 02 SB and 2 its complement.-- _2 --n ,-1 adQ
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We have

P[Lo > U and Q1] <

<P[3n > k > 0 s.t. SAn_, <_ 02SB _l and

Sk-n + SA, 4 -_, - > U]
S-k -1 + S- ,- 1 -k,-1 --()2S-n,-k-1 > U(

_P[ max + SA 2 -_ -S2Sf2 , -k-1l) > U]. (35)
{n>k>O: S_ ,_12S .n_ 1 }

For sample paths in Q2 we have

P[Lo > U and Q2] <

5 2 Si SAl OS
<P[3n > k > 0 s.t. S_n > 02S-n,--1 and --- 1 -1S k,- > U]

A
1

<P[ max -(Sk,-1 -01Sk,-l) > U]. (36)
{n>k>O: S_2_,>Ž, 2 Sn,- 1 }

Let us now define

LI A a A' +SA22 - k1- S -k-l),GPS,1 -n>k>O SA SB } -1 + 

and
L" A ASA'l

GPS,1 - max (S-k,--1 - q1 k,-1),
{n>k>O: SA_ ,_1 >2s_ _, 1 }

which after bringing the constraints in the objective function become

LGPS,1 = max inf[S ,-1 + (1 - U)Sn, 1 - (1 -U 2)SBk, 1 - 2(1 - )SB,_-k-1
n>k>O u>O k nl(1n

(37)

and

LGPS,1 max inf[S-k- 1
' + US-n,- + (-U 2 - 51)S-k-1 - U 2 Sn,-k-1 (38)

L' n>k>O u>O 0

Next we will upper bound the moment generating functions of LGPS,1 and LIPS1 by

using Assumption C. For the moment generating function of L I PS 1 and 0 > 0 we have

E[eOLGPs,l] <

-u>0 -- '--<n>0 inf 1 + (1 -u)S,- - (1 -U2)Sk,1n>O O<k<n-
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- 02(1 -U)Sn,-k-1}]

< S ~ inf exp{(n - k)[AA2( - Ou) + AB(-0q 2(1 - u))]
n>OO<k<n -

+ k[AA (0) + AA2(O - Ou) + AB(-O(1 - U02))] + r(0, u)}

< E n sup inf exp{n[((AA2 ( - Ou) + AB(--02(1 - u)))
n>o CE[0,1] u>O

+ (1 -()(AA (0) + AA2( - Ou) + AB(-O(1 - u02))) + r G_,]}, (39)

where we let ( = n-k. In the second inequality above we have used Assumption C with

m = 2. Let us now define

AGPS,1(0 ) - sup inf[((AA2( -Ou) + AB(-0q 2(1 -u))) +
Ge[O,1] u>O

+ (1 - )(AAl (0) + AA2( - Ou) + AB(-H(1 -uq2)))].

Let u*(0) be the optimal u in the above optimization problem. From (39) we have

E[eOL' Ps,,] <

< 5: n sup exp{n[((AA2(0 - Ou*) + AB(-00 2(1 - u*)))
n>o CE[0,1]

+ (1 - )(AA1(0) + AA2 (O - u*) + AB(-0(1 - u*0+2))) + r(O_,*)]} (41)

Now for every e > O0 and 0 > 0 we can take n large enough such that r(o,u*) < e. For

sufficiently small e and if AGPS, 1(0) < O0 then the infinite geometric series in the right hand

side of (41) converges to a constant, with respect to n, K1 (0, e). That is,

E[e° L "Ps,] < Kl(9,e), if APS, 1() <°0 (42)

Similarly, for the moment generating function of LUIPs, and 0 > 0 we have

E[eLIGPS,1] <

-< S E inf E[exp{O[S_k,- 1 + USA , 1 + ( - U2 l)S-u>O -- -- -k,-1
n>OO<k<n -

- 'Uc2 Sn,_k-11}]

< S ~ inf exp{(n - k)[AA2(Ou) + AB(--00 2u))]
n>OO<k<n

+ k[AA1 (0) + AA2(u) 1 + AB(-()) + ] (0, U)}
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_< n sup inf exp{n[((AA2(Ou) + AB(-q00 2 u)))
n>o CE[o,1] i_>O

+ (1 - )(AA1 (0) + AA2 (Ou) + AB(-0(01 + u0 2))) + r'(0,]) (43)

In the second inequality above we have used Assumption C. Let us now define

A"GpS,1(0) = sup inf[((AA2 (Ou) + AB(-O9b 2 u)))
C([O,1] u>O

+ (1 - ()(AA1 (0) + AA2(OU) + AB(- 0(q1 + Uc2)))].

Let ft*(0) be the optimal u in the above optimization problem. From (43) we have

E[eLGPS,1e ] <

< n sup exp(n[((AA2(9&*) + AB(-092jL*)))
n>O CE[0,1]

+ (1 - ()(AA1(0) + AA2(0It*) + AB(-0(91 + u* 2))) + fl_)]} (45)

Now for every e' > 0 and 0 > O we can take n large enough such that r',af*) < c'. For

sufficiently small C' and if AGPS, l(0) < 0 then the infinite geometric series in the right hand

side of (45) converges to a constant, with respect to n, K2(0, e'). That is,

E[eL GPs1] K 2 (,), if AGps,1(0 ) < 0. (46)

We can now invoke the Markov inequality and by using the bounds (39) and (43) on

(35) and (36) obtain

P[L 1 > U] _ P[Li > U and Ql] + P[L1 > U and Q2 ]

<(E[eOLPS,1 ] + E[e OLPS, ])e-

<(K1 (0,e) + K 2 (0,e'))e- °u, if max(AIps5,(0),Aps(0)) < 0.G GPS1(B~lGPS,i

(47)

Optimizing over 0 to get the tightest bound we establish the following proposition.

Proposition 8.4 If E[A1] < 02E[B] and assuming that the arrival and service processes

satisfy Assumptions A and C

lim U log P[L > U] <- sup .
{0_>0: max(AIps, 1 (0),A/p S,1 ())<O}
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We are now left with proving that this upper bound matches the lower bound, OGPS.

The result which is based on Lemma 8.2 and convex duality is established in the next

proposition.

Proposition 8.5 (GPS Upper bound, Case 1) If E[A 2] < 4 2E[B] and assuming that

the arrival and service processes satisfy Assumption A and C, the steady-state queue length,

L1 , of queue Q1, at an arbitrary time slot satisfies

lim U log P[LX > U] < -0Gps
U-*oo U

Proof: It suffices to prove that O*ps = sup{9>0: max(Alps(),A p )<O. Consider the

following expressions

AGps, (a) = inf [((A*2 (x2 ) + AR (X3))
((x2-02x3)+(1--)(Y1+Y2-Y3)=a

(x2-02x3)+(1--)(y2--02Y3)<0O
0<(<1

+ (1 -- )(A A1(y 1) + A* 2(y2 ) + AB(Y3 ))], (48)

and

AGPS,1 (a) - inf [((AA2 (x 2 ) + A (x 3))

C(X2-2X3)+(-1- C)(y2--02y3) >0
0_<(<1

+ (1 - ()(Ah (yi) + A*2(Y2) + A) + (Y3))], (49)

which by a change of variables can be written as

AGPs,l(a) = inf inf [((A* 2 (x2/C) + A*(x 3/C)) +
(Z2--2x3)+(Yl+y2-y3)=a (E[0,1]
(X2-02X3 )+±(y2-02Y3 )0O

+ (1 - )(A (y(/(1 -))+ A(y/(1 -))+ A(y3/(1 -)))], (50)

and

AIISl(a) = inf inf [((A*2 (x 2/ ) + A*(x 3/C))
(Yl1--lY3)=a (E[0,1]

(zx2- 2 x3)+(Y2-02Y3)>0

(1 -_'((A*_g,, /( 1 _/Tl + A*(,, /1 _ _ _ A* n(Y, / 1 _ (' f1)lAr\ A B51
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By [Roc70, Thm. 5.8] the function

inf [((A* 2(x 2 /1) + A;(x 3/())
Ce[O,1]

+ (1 - (A (yl/( -)) + A 2(y2/(1 -)) + A(y 3/(1 -)))]

is convex in (x2, X3 , Y1, Y2, Y3) and therefore the functions A (a) and A*P S, 1 (a) are convex

in a as optimal value functions of a convex optimization problem with a appearing only in

the right hand side of the constraints. We will next show that the convex duals of these

functions are A, PS,1 (0) and AGpS,1(9), respectively. Indeed, by using convex duality, we
have

sup[0a - AGps,(a)] =
a

= sup sup sup [Oa - ((A* 2(x 2) + A*(x3))
(E[0,1] a C(X2-02X3)+(1--)(yl+Y2-Y3)=a

((X2--2X3)+(l-(C)(2-02Y3)<O
0<(<1

- (1 -()(A 1 (y1 ) + A(Y 2) + )+ A(Y 3 ))]

= sup inf sup [04(x2 - + 2x 3) + (1 -()(Y1 + Y2 - Y3) - ((x 2 - 2 x 3)
(E[0,1] u>0 X2,X3Y1,Y2,Y3

- u(1 - 5)(Y2 - 0 2Y 3) - (A 2 (x 2) + A;(x 3))

- (1 -( )(A 1 (y 1 ) + A* 2 (y 2 ) + A;(y 3 ))]

= sup inf[((AA2(0- u) + AB(-092 + uq02))
CE[0,1] u>_

+ (1 - )(AA~ (0) + AA 2 (- u) + AB(-0 + u ¢'2)))]

=AhPS,1 (0)

Similarly it can be shown that A" S, (9) is the convex dual of A`PS,1 (a). Let now

0t inf aAGP, (a), (52)
a>0 a

and

1 (53)
OH - inf -AIPS,1 (a). (53)

a>0 a

Using the result of Lemma 8.2, 90 (resp. 0,I) is the largest positive root of AGPs,, (0) = 0

(resp. AGPS,1 (0) = 0). As Figure 4 indicates, due to convexity, OGPS,1 = min(0I, 0I) is



28 Multiclass Multiplexers: The GPS Policy

the largest positive root of the equation AGPS,1(0) = max[AIps,l(0), AGPS,(0)] = 0, that

is -OGps, 1 is equal to the upper bound established in Prop. 8.4. The last thing we have

AGPS(0)

------ AIGI S(0)

......... AI (0)

0 '. 0 .- 02 0

Figure 4: GPS, 1 as the largest positive root of the equation AGPS,1(0) = 0

to show is that s0*PS,1 = 0 PS. This is based on PS being equal to min(0I, 0II). Note,

from (52), that 01 corresponds to the optimal solution of a control problem very similar to

(GPS-OVERFLOW) with a trajectory of the form appearing in Figure 5(a). Also, from

(53), OII corresponds to the optimal solution of a control problem with a trajectory of the

form appearing in Figure 5(b) 3. The only difference from (GPS-OVERFLOW) is that on

the L2-axis the cost functional is A*2 (x 2) + A*(x 3) instead of A* 2(Xi) + A* 2 (x 2) + A*(X 3).

Using exactly the same techniques as in Section 6, that is convexity and the homogeneity

property, it can be established that optimal state trajectories do not spend any time on

the L2 axis. Thus, Figure 5(a) and (b) can be reduced to the ones in Figure 3(a) and (b),

respectively. This establishes the desired result 8Ops,1 = 0*Ps and concludes the proof of
the theorem.

We summarize Propositions 8.5 and 8.3 in the following proposition.

Proposition 8.6 (GPS Upper Bound) Assuming that the arrival and service processes

3For both trajectories we let ( be the fraction of time that they spend on the L2 axis and x2, x2 (resp.
yl, y2, y3) the controls for the initial ( (resp. last 1 - () fraction of the time.
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L2 I L 2

(a) (b)

1 L1 1 L 1

Figure 5: Trajectories for the control problems corresponding to 0I and OII.

satisfy Assumptions A and C, and under the GPS policy, the steady-state queue length, L1,

of queue Q1, at an arbitrary time slot satisfies

lim logP[Ll > U] < -Gp s. (54)

9 Main Results

In this section we combine Propositions 5.1 and 8.6 and summarize our main results for the

GPS policy. As a corollary we obtain results for priority policies.

Theorem 9.1 (GPS Main) Under the GPS policy, assuming that the arrival and service

processes satisfy Assumptions A, B, and C the steady-state queue length, L1, of queue Q1,

at an arbitrary time slot satisfies

lim U log P[L' > U] = -s, (55)
U-+00 U

where SOPS is given by

= min inf AGPS(a), inf a GPS(a) (56)
GS a>Oa G a>O
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and the functions A'*,S(-) and AIPS(.) are defined as follows

AGPs(a) - inf [Al (xi) + AA2 (X2 ) + AB(X 3 )], (57)
1+X2 -x3=a
X2<•2X3

and

AUIS(a) = inf [A 1 (xi) + A* 2(x 2) + A*(x 3)]. (58)
X1--l13=a

X2>02X3

An interesting observation is that strict priority policies are a special case of the GPS

policy. Type 1 customers have higher priority when 01 = 1 and lower priority when q 1 = 0.

We can therefore obtain the performance of these two priority policies as a by-product of our

analysis. Note that the result for the policy that assigns higher priority to Type 1 customers,

matches the FCFS single class result (see [Kel91, GW94, BPT94]) since under this policy,

Type 1 customers are oblivious of Type 2 customers. We summarize the performance of

priority policies in the next corollary. The discussion of Section 7 can be easily adapted to

the cases q1 = 1 and 01 = 0 to characterize the most likely ways that lead to overflow under

priority policies.

Corollary 9.2 (Priority policies) Under strict priority policy for Type 1 customers (P1 ),

assuming that the arrival and service processes satisfy Assumptions A, B, and C the steady-

state queue length, L', of queue Q1 , at an arbitrary time slot satisfies

lim Ulog P[L1 > U] = -0k (59)
U-+00 U

where O*1 is given by

s1 = inf IA. (a), (60)
a>O a 

and where

A 1 (a) inf [A%(xl) +A(x 3)]. (61)

Under strict priority policy for Type 2 customers (P 2), the steady-state queue length, L1, of

queue Q1, at an arbitrary time slot satisfies

lim Ulog P[L' > U] = -*, (62)
U-bo0 UP2
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where O* is given by

0* = inf -a (a), (63)a>O a 2

and where

A*2 (a) inf 3 [A~ (x1 ) + A* 2 (x 2) + AB(X 3 )], (64)
X 1-X+52-X3=a - - - B

X2Xz3

Proof: For policy P1 apply Theorem 9.1 with 01 = 1. For such 01, it is easy to verify that

A*ps(a) > AGps(a), for all a. Thus, we define A* (a) to be equal to AGIps(a) with q1 set

to 1.

For policy P2 apply Theorem 9.1 with bl = 0. Application of 01 = 0 to A*Gps(a) yields

AGps(a) = x inf [A* (xl) + A* 2(x 2) + A*(x 3)]. (65)
P 1+X2-x3=a

X2 <X3

Also, application of 1 0 = 0 to AIGPS(a) yields

AGPs(a) = inf [A* 1(x 1) + A* 2 (x 2) + A*(x 3)]- (66)
X2>X3

The functions A* 2 (x2) and A (x 3) are non-negative, convex, and achieve their minimum

value, which is equal to 0, at x2 = E[Ao] and x3 = E[Bo], respectively. Since E[Bo] > E[A2],

the inequality x2 > x3 implies that either x2 > E[Ao] or x3 < E[Bo]. If the former is the

case, we can decrease x2 and reduce the cost, as long x 2 > x 3 holds. Also, if x 3 < E[Bo] is

the case, we can increase x3 and reduce the cost, as long x 2 > x3 holds. Thus, at optimality

X2 = X3 in (66). But, the region characterized by x1 = a and x2 = X3 is included in the

region defined by the constraints in the optimization problem in (65). Hence, for all a,

and when q1 = 0, A`Fs(a) < AIIps(a). Therefore, we define A* (a) to be equal to the
expression in (65).

As the results of Theorem 9.1 and Corollary 9.2 indicate, the calculation of the overflow

probabilities involves the solution of an optimization problem. We will next show that

because of the special structure that these problems exhibit, this is equivalent to finding

the maximum root of a convex function. Such a task might be easier to perform in some

cases, analytically or computationally. This equivalence relies mainly on Lemma 8.2. Hence,
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using duality, we express O8ps as the largest root of a convex function. On a notational
remark, we will be denoting by AGPS(.-) and AGPS(.), the convex duals of A`*PS(-) andGPSJGP

AII*S( ), respectively. Notice, that A,*sS(a) and A 5GPS(a) are convex functions of a as the

value functions of a convex optimization problem with a appearing only in the right hand

side of the constraints.

Theorem 9.3 OGp S is the largest positive root of the equation

AGPS(O) AA1(0) + inf [AA2( - u) + AB(-O + 4 2u)] = 0. (67)
O<u!<O

Proof: The first thing to note is that AGps(O) is a convex function of 0. This can be seen

when we write it as the value function of a convex optimization problem with 0 appearing

only in the right hand side of the constraints, i.e.,

AGPS(O) = AA' (0) + inf [AA2(z - u) + AB(-z + q22 u)].
z=O

0<u<o

Next we show that Equation (67) has a positive, possibly infinite, root. To this end,

observe that

AGPS(0) < AA (0) + AA2(0) + AB(-0),

and that both sides of the above inequality are 0 at 0 = 0. This implies that their derivatives

at 0 = 0 satisfy

A'PS(O) < A' 1(O) + A' 2(0) - AB(0) < 0,

where the last inequality follows from the stability condition (9). The convexity of AGPS(')

is sufficient to guarantee the existence of a positive, possible infinite, root.

We now calculate the functions A'GPS(0) and A` S(0), using convex duality. We have

APS(0) = sup[Oa - A*S(a)]
a

= sup sup [Oa - A 1, ( 1) - A* 2 (x 2 ) - A;(x 3)]
a Xl+z2-x3=a

X2<02X3

=sup sup [9(Xl + X2 - X3 ) - A 1(x 1 ) - A*2 (X 2) - A*(X 3)]
a Xl+X2-X3=a

X2 <02X3

= sup [9(X1 + X2 - X 3) -A 1 (x 1) - A 2(X2) - A(X 3)]
X2<•02X3

= AA (0) + inf sup[(x 2 - 3)- A* 2 (x 2) - A*(x 3) + u(052x 3 - x 2)]
U>0 X2,X3
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= AA1 () + inf [AA2 ( - u) + AB(-0 + U5 2 )].
u>O

In the fifth equality above we have dualized the constraint x2 < 0 2x3 and used the definition

of AA1 (0). Similarly, the convex dual of ALGPS(.) is

ApS(0) = sup[0a - AUPS(a)]
a

=sup sup [a - A 1 (X)l) - A 2( 2)- A(x 3 )]
a X1-1lX3=a

X2>42X3

= AA1 (0) + inf sup [ (-1 X3) - A*2 (x 2) - A (x 3 ) + U(-0q2x 3 + x 2 )]

= AA1 (0) + inf [AA2 (u) + AB (-001 - uq 2)]
u>O

= AA1 (0) + inf [AA2 ( - u) + AB(-O + uq 2)].
u<0

In the fifth equality above we have made the substitution u := 0 - u.

Using the result of Lemma 8.2, 01 = infa>eo 1A`,ps(a) is the largest positive root of

AGPS(0) = 0 (this equation has a positive, possibly, infinite root by the argument used

to establish that AGPS(0) = 0 does). Similarly, 02 = infa>po 'AIs(a) is the largest pos-

itive root of A sI S(0) = 0. By Equation (56), 0Gps = min(0 1, 2). The situation is ex-

actly the same as in Figure 4, that is 8Ops is the largest positive root of the equation

max[Aps (0), A s (0)] = 0.

The last thing we have to show to conclude the proof is that AGPS(0) = max[Aps (0),

AGPS(0)]. Indeed, we have

max(Aps(0),A"sP(0)) = max(AA1 (0) + inf[AA2(9 - ) AB(-) + (- + 2 )],
u_>O

AA1 (0) + inf[AA2(0 - U) + AB(-O + uq52)])u<O

=AA1 (0) + inf [AA2 ( - u) + AB (--0 + uq$2)]0<u<0

-AGPS(0)

Again, as it was the case with Theorem 9.1, the result of Theorem 9.3 can be specialized

to the case of priority policies.
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Corollary 9.4 08P1 is the largest positive root of the equation

Apl(0) = AA1 (0) + AB (-O) = 0. (68)

Also, 0P2 is the largest positive root of the equation

Ap 2 (0) AA1 (0) + inf [AA2 ( - u) + AB (-0 + -u)] = 0. (69)

We conclude this section noting that, by symmetry, all the results obtained here can

be easily adapted (it suffices to substitute everywhere 1 := 2 and 2 := 1) to estimate the

overflow probability of the second queue and characterize the most likely ways that it builds

up.

10 Conclusions

In this paper we considered a multiclass multiplexer, with segregated buffers for each type

of traffic. Under the GPS policy, we have obtained the asymptotic (as the buffer size goes

to infinity) tail of the overflow probability for each buffer. In the standard large deviations

methodology we provided a lower and matching (up to first degree of the exponent) upper

bound on the buffer overflow probabilities. We formulated the problem of calculating the

maximum overflow probability (over all scenarios that lead to overflow) as an optimal control

problem. The specifics of the GPS policy enter in the formulation of the control problem only

through the system dynamics. Therefore, this approach can potentially be used to obtain the

performance of other scheduling policies as well. The optimal control formulation provides

particular insight into the problem, as it yields an explicit and in detailed characterization of

the most likely modes of overflow. We have addressed the case of multiplexing two streams.

Our lower bound proof extends to the general case of N streams, the proof of a matching

upper bound is an open problem.
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