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Abstract

The problem of edge detection is viewed as a hierarchy of detection problems
where the geometric objects to be detected (e.g. edge points, curves, regions) have
increasing complexity and dimensions. A very early stage of this hierarchy consists
in detecting the regular portions of the visible edges. The input to this stage is
given by a graph whose vertices are tangent vectors representing local and uncertain
information about the edges. A precise model relating the input vector graph to the
curves to be detected is proposed. An algorithm is described which provably solves
the corresponding detection problem robustly and efficiently. The stability of curve
reconstruction in the presence of uncertain information and multiple responses to
the same edge is analyzed and addressed explicitly by the algorithm.
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1 Introduction

1.1 Global information and compositional hierarchies

The problem of curve inference from a brightness image is of fundamental importance

for image analysis. Curve detection and reconstruction is a difficult task since brightness

data provides only uncertain and ambiguous information about curve location. A source

of uncertainty is for instance the presence of "invisible curves", namely curves across which

there is no brightness change (Kanizsa, 1979). Local information is not sufficient to resolve

these uncertainties reliably and "global" information has to be used somehow. Methods

based on optimization of a cost functional derived according to Bayesian, minimum de-

scription length, or energy-based principles (Geman and Geman, 1984; Marroquin et al.,

1987; Mumford and Shah, 1989; Nitzberg and Mumford, 1990; Nitzberg et al., 1993; Zhu

et al., 1995) introduce global information by simply adding an appropriate term to the cost

functional. These formulations are simple and compact but usually lead to computation-

ally intractable problems. Moreover, it is often difficult or impossible to guarantee that

the optimal solution of these cost functionals represents correctly all the desired features,

such as junctions and invisible curves (Richardson and Mitter, 1994). Curve evolution

approaches, where the computed curves are defined to be the stationary solutions of some

differential equation (Kass et al., 1988; Tannenbaum, 1995), can be computationally effi-

cient but require an appropriate external initialization in order to converge to the desired

solution. Iterative procedures, such as relaxation labeling, can produce good results but

only at a high computational cost (Parent and Zucker, 1989; Hancock and Kittler, 1990).

A major difficulty is that in order to exploit global constraints it is necessary to use

large "contextual neighborhoods" so that interaction between data from distant locations

is possible. This typically causes a combinatorial explosion of the search space since the

number of states of each neighborhood grows exponentially with its size. A strategy to

avoid this combinatorial explosion is to increase the size of the contextual neighborhoods
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in stages. This leads to a hierarchy of representations whose primitive elements have larger

spatial extent and more internal structure as one moves up in the hierarchy. Large and

more complex descriptors can act as efficient carriers of global information. The increase

of the interaction distance and of the descriptors' complexity across two adjacent levels

should be small enough so that computation is always "local" and therefore efficient.

This approach is similar to multiscale schemes such as wavelet analysis in that rep-

resentations at a large scale are constructed efficiently from local data by using the ap-

propriate number of intermediate levels. The main difference is that the dictionary of

primitive elements used in wavelet-like multiscale approaches does not change across the

levels, except for a dilation transformation. As a result, information is lost or simplified

and representations become coarser at larger scales. On the contrary, we are interested in

hierarchies where the higher levels contain more information than the lower levels. Thus

the expressive power of the underlying dictionary has to increase when moving up in the

hierarchy.

Whereas the basic transformation underlying wavelet and similar multiscale represen-

tations is a dilation applied to the domain of the raw data, the hierarchies considered

here are based on a compositional transformation. That is, the models to be detected are

decomposed recursively into simpler units, leading to a hierarchy of models. Computation

is mostly a bottom-up process which detects and reconstructs these models by means of

composition. Top-down feedback, whose laws are derived from the model hierarchy, is

used to select groupings of primitive units which are consistent with higher level mod-

els. Pruning the exponentially large search space of all possible groupings is necessary to

keep computation efficient and can be done by using top-down feedback. A hierarchy of

descriptions obtained by recursive composition of descriptors is generated from the input

data as a result of this process.

To achieve robustness and computational efficiency, one needs to design a "smooth"

hierarchy. That is, any two consecutive levels of the hierarchy should be "close" to each
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other so that each level contains all the information necessary to reconstruct the objects at

the following level efficiently and robustly. Thus, to design the next level of the hierarchy

(in a bottom-up design approach), one has to understand what composite objects can be

formed efficiently and robustly from the parts present in the current level. This constraint

limits the amount of expressive power which can be added from one level to the next

and therefore determines how many levels in the hierarchy are needed to bridge the gap

between the input data and the desired final representation. For instance, in Section 1.2

it will be argued that in edge detection curve singularities and invisible curves should not

be included in the lowest level curve dictionary but only in higher level ones.

By using a hierarchical approach, it is easier to resolve uncertainties and ambiguities

at the right level, when the necessary contextual information is available. Typically, it

is impossible to eliminate efficiently all uncertainties in a single step. Then, one should

eliminate part of the uncertainties first and then use the new, more informative repre-

sentation to resolve more uncertainties. Those uncertainties which can not be resolved

should be propagated to the higher levels, rather than being resolved arbitrarily. Also, at

every level, only those decisions which are necessary to avoid a combinatorial explosion of

the search space should be taken. Therefore, in general, intermediate representations are

quite uncertain and ambiguous and may contain mutually inconsistent hypotheses.

1.2 Perceptual organization as a detection problem

Many authors have suggested that hierarchical algorithms can be useful to infer global

structures efficiently (Dolan and Riseman, 1992). Computation of global descriptors from

simpler ones is related to perceptual organization (Sarkar and Boyer, 1993; Mohan and

Nevatia, 1992; Lowe, 1985). Perceptual organization, which can be repeated recursively

and hierarchically, consists in grouping descriptors according to properties such as prox-

imity, continuity, similarity, closure and symmetry (Kanizsa, 1979). Every grouping of
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descriptors is then composed into a higher level, more global, descriptor. To assess the sig-

nificance of groupings in a task independent fashion, principles such as non-accidentalness

(Lowe, 1985) and minimum description length (Bienenstock and Geman, 1995) have been

proposed. These principles provide a general framework to design all the grouping proce-

dures in the hierarchy. However, they do not guarantee per se that particular classes of

objects are detected and reconstructed correctly by these procedures. The ultimate goal

of perceptual organization is to detect and represent explicitly all the relevant structures

present in the data. Thus, perceptual organization can be viewed as a detection problem

where the a-priori dictionary consists of all the higher level descriptors which may be used

to represent compactly any groupings of low level descriptors. A detection algorithm is

successful if it makes explicit all the object in the dictionary which are consistent with

the set of low level descriptors in the input representation. For instance, the problem

of grouping edge-points into curvilinear structures can be formulated as a problem of

curve detection by defining a class of curves and their relationship with their constituent

sub-components (e.g. points or tangents). One such model is proposed in Section 2.

In a hierarchical approach, perceptual organization is really a hierarchy of detection

problems. Each problem consists in computing explicitly all the objects in the dictionary

of that level which are consistent with the data at the previous level. Detection can be

achieved by composition: object sub-components are detected first and then composed to

reconstruct the object. This aggregation method is repeated at every level up to the top

level which contains the desired global description.

To guarantee robust performance, the representation computed at each level must be

complete with respect to the dictionary of that level. In other words, all the elements of

the dictionary consistent with the data must be present in the computed representation.

For instance, the set of regular curves computed by the algorithm proposed in the fol-

lowing sections contains an approximation to every regular curve which is consistent with

the input set of tangent vectors. The computed description represents explicitly all the
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important groupings of tangent vectors and is therefore complete.

1.3 A hierarchy of models for image segmentation

Let us now examine how this approach can be applied to the problem of edge detection and

image segmentation. The goal of image segmentation is to detect the boundaries (edges)

of the objects in the visual scene. The main source of information for image segmentation

is that most of these edges generate sharp brightness discontinuities. The result can be

represented as a set of curves or, at a still higher level, by a set of planar regions ordered

by depth (see for instance the 2. 1D sketch proposed in (Nitzberg and Mumford, 1990)).

What is a hierarchy suitable for this task? Curves representing edges can be naturally

decomposed into a set of tangent vectors plus a set of singularities (corners, junctions

and self-intersections). Efficient methods exist to estimate these tangent vectors from

the brightness data where the brightness discontinuity is large enough compared to the

noise (Canny, 1986; Haralick, 1984; Perona and Malik, 1990). (Singularities can also be

estimated directly from the brightness data but only at a high computational cost (Deriche

and Blaszka, 1993; Rosenthaler et al., 1992; Rohr, 1992)). These tangent vectors can then

be composed to yield a set of curves. What dictionary of curves should be used for the first

step of curvilinear organization? According to the hierarchical principles discussed before,

one should use a curve model simple enough to ensure that the resulting detection problem

can be solved reliably and efficiently. The model proposed in Section 2 yields a detection

problem which can be solved robustly in linear time. Only regular curves (namely curves

with no singularities) are considered in this model. Its two basic assumptions are that

the tangent vectors are aligned with the curves to be detected and their magnitude is

maximum in a neighborhood of these curves (these assumptions will be relaxed to include

noise in the model). Therefore, corners, junctions, and curves where the brightness change

is too small (invisible curves) can not be recovered at this stage. Once the regular portions
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of the visible curves have been detected, corners and junctions can be recovered more easily

at the following stage. Finally, invisible curves and two dimensional descriptors (regions)

can be detected. A possible hierarchy for the whole edge detection task is then composed

of the following stages: brightness data -+ tangent vectors (vector graph) -+ regular visible

curves -- visible curves with corners and junctions -+ closed partly invisible curves --

overlapping regions ordered by depth (2.1 sketch).

Notice that the whole detection problem has been broken down into a set of detection

tasks where the "distance" between the input and output dictionaries is small.

1.4 Outline

This paper deals with the second stage of this hierarchy, namely detection of regular curves

from a set of tangent vectors. The set of these vectors is endowed with a graph structure

by putting an arc between every pair of vectors estimated in adjacent regions. Thus the

data can be represented by a vector graph, namely a discrete vector field with a graph

structure. Section 2 describes vector graphs in more details. In Section 3 the concept

of stability in edge linking and the notion of stable graphs are introduced. It will be

argued that some of the errors incurred by conventional linking algorithms are due to the

instability of the underlying search graph.

The algorithm proposed to detect regular curves is composed of two parts. First, a

stable graph is computed from the initial vector graph (Sections 4 and 5). It is proved

that this stable graph preserves the relevant information about the regular curves to be

detected. At the same time, the uncertainties which may cause instability are removed

so that an approximation of every curve in r can be computed efficiently. Secondly, the

remaining ambiguities are resolved by selecting the paths with minimum turn (Section 6).

Section 7 discusses how to deal with cycles in the graph. The results of experiments are

presented in Section 8. The Appendix contains the proofs of the theorems.
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2 Vector graphs

This paper addresses the problem of detecting and reconstructing a set of regular curves

r from local and noisy information about these curves. This information is represented

by a vector graph, namely a triple (P, V, A) where

* P C V2 is a finite set of candidate curve points;

* V = {Vp : p C P} is a discrete vector field with vertices P;

* A c P x P represents a set of directed arcs.

A directed arc between Pi and P2 is represented by a pair (PI, P2) E P x P. The pair (P, A)

is a directed graph with arcs A and vertices P. Figure 1 shows an example of a vector

graph and introduces some useful notation. The orientations 0(p) of the tangent vectors

vp E V represent estimates of the local orientation of the curves in F and the magnitude

0(p) of these vectors measures the likelihood that each candidate point p C P belongs to

some curve. The vector graph (P, V, A) can be viewed as a noisy local projection of the

curves in F onto small neighborhoods of the image. A model of the relationship between

r and the vector graph (P, V, A) is proposed in Section 2.3.

2.1 Computation of the vector graph

What method is used to compute the vector graph from the brightness image is irrele-

vant as long as the vector graph satisfies the three assumptions in Section 2.3. In our

implementation, a fitting method similar to (Haralick, 1984) has been used. This method

assumes that brightness changes significantly across the curves to be detected. Further-

more, it is assumed that the scale at which this change occurs is known. To compute a

set of tangent vectors, the image is tiled with a set of overlapping regions. One tangent

vector is computed from each region by means of the following steps:
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------ > tangent vector vp C V
-- * Tarc a e A A

(a) Tangent vector (b) Vector graph

Figure 1: (a): Notation. (b): Example of a vector graph. Solid segments represent arcs of
the directed graph and dashed segment represent tangent vectors.

(a) Brightness (b) Points P (c) Vectors V (d) Arcs A

Figure 2: The vector graph (P, V, A) computed from the brightness image in (a) by using
the method described in Section 2.1. (b): The estimated curve points P. (c): The tangent
vectors V. The magnitude of the tangent vectors is coded by the gray level of the segments.
(d): The directed graph structure (the direction of the arcs is not shown).
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* Estimate the brightness gradient in the region by fitting a third order polynomial to

the brightness data.

* Locate to sub-pixel accuracy the point where the brightness gradient is locally max-

imum in the direction of the gradient and let p be this point.

* Let O(p) be the direction orthogonal to the gradient at p. This is an estimate of the

orientation of the curve passing through p.

* Let q(p) be the gradient magnitude at p. In general, q(p) is some positive quantity

depending on the gradient magnitude (and maybe also on the fitting error) which

represents some sort of feedback from the brightness image. This feedback evaluates

the likelihood that there exists indeed a curve with orientation O(p) passing through

p.

* Let vp be the tangent vector with foot p, orientation 0(p), and magnitude 0(p).

Then, let P be the set of all the estimated points p and let V be the set of all the tangent

vectors Vp, p E P. V is a discrete vector field. The set of arcs A is then given by the set of

all pairs (pl,p2) E P x P estimated from adjacent regions and aligned with vp1 (namely

such that (P2 - Pi) Vp, > 0). A path in this graph is a sequence 7 = (P1,... ,p ) such

that (pi, pi+) E A, i = 1,... , n - 1. The corresponding sequence of vectors (vP,... , Vp")

will also be called a path.

2.2 Relationship between the vector graph and r

r denotes the set of regular curves to be detected from the vector graph (P, V, A). What

assumptions are appropriate to model the relationship between r and (P, V, A)? In the

ideal case, when no noise is present, the following assumptions are quite natural:

* The vector graph contains a connected sampling of the tangent bundle of each curve

E r.
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* The vector field V is locally maximum on every curve y E F.

Recall that the tangent bundle of a curve is the set of all its tangents. Thus, the first

condition requires that for every curve 7y E F, the vector graph (P, V, A) contains a path

whose vertices are tangents to y. This is called the approximating path of y. In order for

this path to be a good approximation of y, the length of the arcs in the graph has to be

small enough.

The second condition is necessary because the graph may contain tangent vectors other

than those belonging to curve-approximating paths. Thus, ideally, the magnitude of these

spurious vectors is always smaller than nearby vectors belonging to a true curve.

When noise is present, the following distortions may be present:

* The vertices of the approximating paths are not exactly on the curve y C F. Let 60

be an upper bound on the distance of these vertices from y.

* The tangent vectors vp of the approximating path are not perfectly aligned with the

curve tangents of the approximated curve y. Let 01 be an upper bound on this

deviation.

* The magnitude of the vector field V may achieve the local maximum at some distance

away from -y. Let 61 be an upper bound on this distance.

2.3 Formal assumptions

We now proceed to state the three assumptions which define the curve model in terms

of the vector graph (P, V, A). These assumptions define rigorously the three distortion

parameters above. For simplicity, the term "curve", which usually means a continuous

mapping from an interval to 1W2, will be used to denote the image of the curve, which is a

subset of WI2. Thus, if -y is a curve, then -y C 2.



-r ~1~T~··llllA

-d d

~/ II

Figure 3: The asymmetric Hausdorff distance of -y from y', denoted d(-y; y') is the maximum
distance of a point in y from the set y'. Notice that d(y; -y') :A d(y'; y).

The polygonal curve defined by the path or is denoted ua(w). It is given by the union

of all the straight line segments a(a) on the path. Here o(a), a = (P1, p2), denotes the set

of points lying on the straight line segment with end-points pi and P2.

Let S1, S2 be closed paths. The asymmetric Hausdorff distance of S1 from S2 is defined

as

d(Si; S 2) = max d(pi; S 2) = max min I IP - P211
plESl PlESl p 2 GS 2

where d(pl; S 2) is the distance of the point pi from the set S2. See Figure 3.

The first assumption requires that every curve y E F has an approximating path in

(P, A) with error bounded by some constant o0.

Covering condition: The graph (P, A) covers F with distance 60. That is, for every

y E r there exists a path ir in (P, A) such that d(-y; a(r)) < 60.

The other two conditions involve only the vector field V and F. For simplicity, these

constraints are formulated only for unbounded curves with zero curvature (namely infinite

straight lines).

Let -y be any curve in r. The decay condition (see Figure 4) requires that the vector

field V decays at a distance J1 from -y. More precisely, let 51, 62 be two scale parameters

such that 0 < 60 < 61 < 62 (where 60 is the parameter used in the covering condition).
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t2 2 \ Da m 

Figure 4: Constraints on the vector field in the vicinity of a curve. The magnitude 0(p)
of the tangent vectors (length of arrows) is larger in DI than in D2 \ D,. The magnitude
$(p) is arbitrary in D1 \ D ° . The angle formed by a tangent vector in D1 with respect to the

orientation of the curve is less than 01.

Let Da, i = 0, 1, 2, be the neighborhoods of 'y given by

Da = {p E 2 : d(p; y) < 6i i = 0,1, 2

Decay condition:

P1 E DO; P2 E Da \ D O(p1 ) > q(p) (1)

The parameter 62 is the distance up to which y constrains the vector field V. Notice

that the magnitude of V in D1 \ DO is arbitrary. This is to model the fact that, due to

noise, the local maxima of 0(p) may be displaced from the inner neighborhood D °.

Finally, the alignment condition requires that the orientation of the vector field V at

a distance from ' less than 61 does not deviate by more that 01 from the orientation of

9y. That is, if 0, denotes the orientation of y,
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Alignment condition:

p E D1 I 11(p()-0711 < 01 (2)

Definition 1 Let F be a set of curve. The vector graph (P, V, A) is said to be a projection

of F with admissible deviations 60, 61, 62 and 01 if it satisfies the covering, decay and

alignment conditions on r.

3 Stability

The goal of the algorithm is to compute a set of disjoint curves F which approximate every

curve in F. Attaining robust performance in the presence of the uncertainties implicit in

the model described in Section 2.3 is potentially an intractable problem. In fact, inter-

ference due to nearby curves and uncertainty in curve location and orientation generate

ambiguities as to how candidate points should be linked together to form a curve. These

ambiguities result in bifurcations in the vector graph. The number of possible paths can

be exponentially large and it might be impossible to explore efficiently all of them. On the

other hand, to obtain a complete representation every plausible path must be somehow

taken into account.

3.1 Inadequacy of greedy linking methods

Figure 5 illustrates the inadequacy of straightforward linking methods in the presence of

uncertainties. Let's assume that there is just one curve y to be detected, namely F = -/},

and that y satisfies the decay condition. Also, let's assume that 62 = cx. The vector field

in the inner neighborhood D O (dark shaded area) is larger than the vector field in the

outer region R2 \ DI (white area) but it is not necessarily larger than the vector field in

the intermediate areas DI \ D O (the light shaded areas). Notice that in the example of
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A~, T I 2 true curve

a In. 2 i -it greedy curve

tr 2 Inst graphil

2, 3, 4 / 1, 2 respectively.(a) Instability (b) Wiggly curve

Figure 5: Noise can cause instability and wiggly curves in greedy tracking algorithms. (a):
The mneighborhoodel assumes thaten the vector field in the innuter neighborhood an (dark then is larger
than in the outer region \ D (white area). Instability in curve tracking occurs because
the maxima of path canp) leak from into Dan\ D (light gray areas). (b): Notice that noise can
cause greedy linking to follow a wiggling path rather than the smoother path on the right.

Figure 5 the values of the vector field in the inner/intermediate/outer areas are 3, 4, 5An

2, 3, 4 / 1, 2 respectively.

Now suppose that a polygonal curve -^y is constructed from the point Po by a greedy

linking procedure. That is, the current point is linked to its strongest neighbor and then

the procedure is restarted from the new point. Notice that the tracked path exits first the

inner neighborhood, then the outer neighborhood and then it diverges arbitrarily from -y.

Thus, this simple "greedy" procedure is unstable because a small deviation of the tracked

path from the approximating path can lead to an arbitrarily large deviation between the

two paths. This type of errors occur frequently in real images if greedy linking is used. An

example of these errors is shown in Figure 6, which shows the result of an implementation
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of Canny's edge detection algorithm followed by greedy edge linking (Perona, 1995).

.: . . .

(a) Brightness image (b) Edge-points (c) Greedy linking

Figure 6 Result of Canny's edge detection with greedy linking on the image shown in
(a). The set of points found by Canny's algorithm is shown in (b). The polygonal curves
obtained by linking each point to one of its neighbors are shown in (c). When ambiguities
are present, a "best" neighbor is determined by minimizing a cost function which depends on
the brightness gradient and on the orientation similarity between the linked points. Notice
that these ambiguities, which are usually caused by multiple responses to the same edge, can
disrupt the tracking process and lead to instability. That is, the reconstructed path can diverge
significantly from the true edge. This is particularly evident for the two parallel edges of the
bright thin long line on the right of the image.

3.2 Definition of stability

An important definition in this paper is that of a stable graph. Roughly speaking, a

graph is stable if every path in the graph "attracts" nearby paths. Section 4 describes

an algorithm which stabilizes a projection (F, V, A) of F. A weak definition of stability is

given below and a stronger one will be given in Section 5. Both definitions depend on a

positive constant w, which is the scale parameter used by the stabilization algorithm.

For p E R2W, w > 0, let Bw(p) be the ball centered at p with radius w:

Bw(p) = {p' E I 2 : I P - p'l. < w}.
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B:,:p) B :I

(a) (b)

Figure 7: The path ir in (a) is an attractor because the curve Jq(ir'), namely the curve
between q- and q+, lies in some neighborhood U of a(r) contained in N'(7). The path
7r in (b) is not an attractor because there is no such neighborhood U of -r. In fact, oq(7r')
diverges (laterally) from 7r, that is, the subcurve q -÷ q+ exits the neighborhood N(7r) without
intersecting B .(p').

The w-neighborhood of a path 7r is the set of points in R2 with distance from a(-F) less

than w. It is given by:

NW(Qr)= U B. (p).

Let WT = (Pi,...,pn) and r' = (P',... p',,) be two paths and let q C cr(a'). Let uq(r') be

the largest connected subcurve of u(7') which contains q and such that (see Figure 7)

rq(1r') B = q(1r') n Bw(p.) = 0.

In Figure 7, tq(7r') is the curve between q- and q+.

Definition 2 A path 7r in A is a w-attractor if there is a neighborhood U of u(.I), U C
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Nw(-r), such that aq(7r') C U for every path or' in A and every q E a(wr') n U. The set

U is called an attraction basin for ir. A graph (P, A) is w-stable if every path in it is a

w-attractor.

4 Stabilization of a complete graph

This section describes an algorithm which computes a stable graph from an arbitrary

vector graph (P, V, A). Moreover, if (P, V, A) is a projection of F then the result is also

a projection of F. The set of arcs in the computed graph is denoted S (V, A) where w

is the scale parameter. This parameter is related to the constants of the curve model by

means of the bounds in Theorem 2. Ultimately, w depends on the amount of noise in the

brightness image and on the sharpness of the brightness discontinuity across edges.

To obtain a stable graph, the algorithm ensures that every path 7r = (pl,... , p) in

SW(V, A) has an attraction basin Uw(ir) contained in Nw(i7). The boundary of Uw(w),

denoted 3~(7r), is a polygonal curve constructed as follows. For every p E P let p+ and

p- be the points lying w away from p in the direction orthogonal to the vector field at p.

That is,

p+ = p + wul(p) (3)

p- = p - wul(p) (4)

where ul(p) is the unit vector perpendicular to the direction of the vector field at p,

u±(p) = (sin 0(p), - cos 0(p)). The boundary of Uw(7r) is then the polygonal curve with

vertices (see Figure 8(a)):

p + +
P,... ,PnPn, ' I P.,P1+

The algorithm can be described as follows. Let /p(a), /w+(a) be the lateral segments of
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(a) Lateral boundaries of path Xr (b) Lateral segments of arc a

Figure 8: (a): The attraction basin Uw(wr) is the polygon with vertices
P+·.. ,P + Pn-,.. ,P- ,p+. Its perimeter ,w (7r) is composed of four parts ,iw (iT) = P3-(7r) U

(7wLPn) U /3+(Tr) U aL(p) where (pi) = (p- ,p+); t/3+(r) = UaGA1, fi(a); A, are the arcszo \rn/ 20 \rl' O'w -- Vww i --i 0.

of 7r; and 3i(a) are the lateral segments of a shown in (b). Notice that each point in Uw(Tr)
has distance from j(7r) less than w, that is, Uw(Tr) C Nw(7r).
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the arc a = (P1,P2) E A defined by (see Figure 8(b)):

/3 (a) = a(pi, P2) (5)

/3+(a) = r(p+,p+ ) (6)

Let a1 , a 2 be arcs in A. If al intersects one of the two lateral segments of a 2 or vice-

versa then we say that (al, a 2) is an incompatible pair. Let's define a boolean function

V)w: A x A -+ {false,true} such that OPw(a,, a2 ) = true if (a1 , a2) is incompatible and

OW(al, a 2) = false otherwise. Thus we have

/w(al,a2)= u(al) n /w(a2)# 0 V u(al) n,/+(a2) 0 v

u(a2) n/ -(aI) #0 v a(a2) n /+(al) 80

where V denotes the "or" operator. Let I, be the set of incompatible pairs of arcs in A.

For every (al, a2) E Iw let

* E(al, a2) be the four end-points of al and a 2:

E(a, a 2) = {Pl(al),p2 (ai),pi(a2),P 2(a 2)}

* Pmin(ai, a 2) be the set of points minimizing 0 in E(a1 , a2):

Pmin(al, a 2 ) = {p E E(ai, a 2 ) : X(p) = -o}, o0 = min 0(p) (8)
pEE(ai ,a2)

If q takes different values on the elements of E(al, a2), then Pmin(ai, a2) is a singleton. Let

FP (V, A) be the union of all these minimum-achieving points over all pairs of incompatible

arcs:

Pw(V, A)= U Pmin(ai,a2) (9)
(al ,a2)EIw

The set of vertices of the computed graph is P \ Pw(V, A) and

SW(V,A)= {(p,P 2) E A Pi,P2 Pw(V,A)} (10)
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1 For every (al, a 2) E A x A

2 compute 0w(al, a2 ), as given by equation (7)

3 For every al, a 2 E A such that ',W(al, a2 ) = true

4 compute Pmin(al, a2) as given by equation (8)

5 Pw (V, A) = U(ai,a2)cw, Pmin(al, a2)

6 Return A- Pw(V, A)

Table 1: The stabilization algorithm. Steps 2 and 4 need not be carried out over all pairs of
arcs. In fact, for each arc, it is enough to consider all the arcs in a fixed neighborhood around
its midpoint. If we further assume that the density of arcs in the image is upper bounded, then
the complexity of the algorithm is linear in the number of arcs.

(a) Arcs A (b) {awl(p)} (c) {/wi(a)} (d) Sw(V,A)

Figure 9: Stabilization of the graph in (a). (b): The segments aL(p), p E P. (c): The
lateral boundaries. (d): The result of the stabilization algorithm.

By using the following notation

A - P' := {(pl,p2) E A : Pl,P2 P}) (11)

for any P' C P, equation (10) can be rewritten as SW(V, A) = A - Pw(V, A). The proofs

of the following theorems are in the Appendix. The result of the stabilization algorithm

on the graph of Figure 9(a) is shown in Figure 9(c).

Theorem 1 For any vector graph (P, V, A) and w > 0, the graph with arcs SW(V,A)

generated by the stabilization algorithm is w-stable with attraction basins Uw(r).
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Let Imax(A) be the maximum arc length of the graph (P, A),

Imax(A) = max { lPl -P211 : (pl,p2) E A}

Theorem 2 Let F be a set of curves with bounded curvature and let (P, V, A) be a projec-

tion of r with admissible deviations 6o, 61, 62 and 01. If

265
< <w (1 - 1(/)), (12)

62 - 61 > max {w, lmaX(A)) (1 + E2 (K)) (13)

then the graph Sw(V, A) covers F with distance 6o. Namely, for every y E F SW(V, A)

contains a path 7r such that d(y; u(7r)) < 60.

In Theorem 2, r denotes the maximum curvature of the curves F and 61(K), E2(r) are

positive functions such that e1(0) = 62(0) = 0. As a corollary of Theorems 1 and 2, notice

that the vector graph with arcs SW(V, A) is a stable projection of F.

5 Invalid end-points and strong stability

In a stable graph, the tracked path is guaranteed to remain close to the true curve if this

path contains a point sufficiently close to the curve. Thus, errors such as those in Figure

5(a) can not occur in a stable graph. However, it is not guaranteed that all the paths

near the curve are long enough to cover the curve completely. Therefore, the tracked path

might terminate before reaching the end of the curve (see Figure 10).

To avoid this problem, invalid end-points such as P3 in Figure 10 are connected to some

collateral path by adding an arc (e.g. (p3,p5)) to the graph. To describe how this is done,

a few definitions are needed. First of all, let us assume for simplicity that the relationship
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P4 P5 q

Pi P2 P3

Figure 10: The path (pi,P2,P 4, ... ,q) covers y whereas (pl,P2,P3) does not (both paths
are maximal). p3 is said to be an "invalid" end-point. If during curve tracking p3 is chosen
instead of P4 at the bifurcation point P2 (this occurs if the most collinear arc with (Pl,P2) is
chosen), then the resulting path does not cover -y completely.

between the points in P and the other geometric entities is "generic", that is,

a(Pl,P2) n P = {P1,P2} (14)

al (p) n P = {p} (15)

w(Tr) n P = {Pl,Pn} (16)

where r = (pl,... ,p) and, as defined before, al(p) = a(p-,p±). Also, without loss

of generality, let us assume that (P, A) does not contain isolated vertices, namely every

vertex in the graph (P, A) is connected to at least one other vertex. Let Apn and ApUt

be the set of in-arcs and out-arcs from p, namely Apn = {a E A : p 2 (a) = p), Aput

{a E A : pi(a) = p}. A path r = (Pl,... ,pn) is said to be maximal in A if Ap' = Apt

0. Let (see Figure 11(a))

'±(P) = ±w(p) \ {P)

Definition 3 A point p e P is anend-point ifAut =0 or An =0. An end-point is

invalid if u(P1 , P2) n 'l ±(p) q 0 for some (P1, P2) c A.

Notice that if ir is a path terminating at an invalid end-point p, then there might be

a collateral path of ir which "prolongs" it. This longer path contains the arc (P1, P2) such

that ar(p1, P2) n ' (p) 0.
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VP(VP P.(p)2w P existing I rc

new arc
Pi -I

(a) (b)

Figure 11: (a): Definition of 'l(p). (b): To deal with invalid end-points, pi is connected to
p and p to P2 whenever o(p1,p 2) intersects l(p).

To ensure that tracking does not get stuck at an invalid-end point, a new graph with

arcs A D A is constructed as follows. Initially, let A = A. Then, for any p such that

u(P, P2 ) n .5l(p) #k 0, (P1,P2) E A, add the arcs (pi,P) and (P,P2) to A. The new graph A

obtained from the graph in Figure 12(a) is shown in Figure 12(c). By stabilizing the graph

with arcs A one obtains a graph which possesses the following strong stability property.

Let A, A be sets of arcs.

Definition 4 A path 7r in A is a strong attractor with respect to A if there is a neighbor-

hood U of a(7r), U C Nw(7r), such that a(7r') n U =A 0 implies or(-r') C U for every path ir'

in A n A. A is strongly w-stable with respect to A if every maximal path in A is a strong

attractor with respect to A.

Here, U denotes the closure of U.

Theorem 3 For any vector graph (P, V, A) and w > 0, the graph with arcs Sw(V, A) is

strongly w-stable with respect to A with attraction basins Uw(ir).

A result similar to Theorem 2 holds also for SW(V, A). The only difference is that the

lower bound on 62 - 61 is now proportional to w + lmaX(A).
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(a) Arcs A (b) New arcs (c) A (d) SW(V,A)

Figure 12: Computation and stabilization of A. (a): Initial graph. (b): The arcs needed to
connect invalid end-points to a collateral path. (c): The graph A with the new arcs shown in
bold. (d): The graph obtained by stabilizing A. This graph is strongly stable.

Theorem 4 Let r be a set of curves with bounded curvature and (P, V, A) a projection of

r with admissible deviations 60, 61, 62 and 01 . If

265
cs1 < w. (1 - 1 (t )), (17)

62 - 61 > (W + -max(A))' (1 + 62(/K)) (18)

then, the graph SW(V, A) n A covers F. Namely, for every ?y E F, SW(V, A) n A contains a

path ir such that d(y; a(7)) < 6o.

Notice that, as a corollary of Theorems 3 and 4, SW(V, A) n A is a strongly stable

projection of F.

6 Computing a path covering

In the previous sections a strongly stable projection of r with arcs Sw(V, A) was con-

structed. This section addresses the problem of computing a family of disjoint paths

{Trl,..., rN in SW(V, A) which covers F. It is assumed for now that SW(V, A) does not

contain any cycles. The more general case where cycle can be present is treated in the

next section.
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1 Al = SW(V,A)
2 j=1

3 Do until Aj = 0

4 pick a source sj in Aj

5 =rj = maximalPath(sj, Aj)

6 Qj = PAj n Uw(wrj)
7 Aj+ 1 = Aj - Q

8 j=j+1
9 end do

Table 2: The algorithm to compute regular curves from SW(V, A). A source in Aj is a vertex
with no in-arcs. In line 6, PAj denotes the set of vertices of the graph Aj. The procedure
maximalPath(sj, Aj) returns a maximal path in Aj with starting point sj.

Recall that the length of an arc in A is less or equal to Imax(A) whereas arcs in SW(V, A)

have lengths less or equal to Imax(A) + w. Thus, elements in SW(V, A) n A will be called

short arcs and the other elements of S(V, A) will be called long arcs. Notice that the

subgraph of short arcs is sufficient to cover r. Long arcs have been added to ensure that

all maximal paths are sufficiently extended to cover the tracked curve.

The paths 7r,... ., TN are computed one at a time by an iterative procedure. This

procedure extracts a maximal path 7rj from the current search graph Aj and then defines

the new search graph Aj+1 C Aj by eliminating all arcs with a vertex in the neighborhood

Uw (7rj). This is continued until the search graph is empty. Existence of a maximal path in

A is guaranteed by the assumption that the graph does not contain cycles. The algorithm

is shown in Table 2.

Since Uw(7rj) is a neighborhood of ua(rj), all the vertices of 7rj belong to Uw(rj), except

for the two end-points (which belong to the boundary of U(w(7rj)). Thus, if 7rj has at least

three vertices, then no arc of 7rj belongs to Aj+l because every arc of 7rj has at least one

vertex in Uw(7rj) (see lines 6 and 7 of Table 2). That is, we have

Ar n Aj+l = 0 (19)
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(a) sw(V,A) (b) {(3i(a)) (c) I (d) {UW(7j))

Figure 13: (a): Computation of regular curves from the strongly stable graph Sw(V,A).
(b): The lateral boundaries formed by the lateral segments {(P/(a)}. (c): The regular curves
computed by the algorithm. (d): The neighborhoods {Uw( 1rj)}.

where A 5 denotes the arcs belonging the the path 7rj. If 7rj has just two vertices, then one

needs to modify slightly the algorithm shown in Table 2 so that (19) is still true. We omit

these details for the sake of simplicity. From (19) (and A=5 c Aj) we have that Aj+1 is a

proper subset of Aj. Since Al is finite, this implies that the algorithm terminates after a

finite number of steps. Moreover, it implies that the paths 7rj are arc-disjoint, that is,

Aj n Ar = 0, j # k (20)

Let F be the set of polygonal curves a(rj): r = {cr(rj) : 1 < j < N).

Theorem 5 Let r be a set of curves with bounded curvature and let (P, V, A) be projection

of F with admissible deviations 5o, 61, 62 and 01. If

2 (21)
cos 01

c2 - 61 > (w + Imax(A)) ' (1 + 62 (K)) (22)

then for every 'y E F there exists by E F such that d(y; y) < w + Jo.

Notice that, in the zero curvature case, and if w is set to the lower bound given by

equation (21), then the localization error is

0o +2 
cos 01
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The parameters Jo and S1 represent two different types of localization uncertainty in the

local data whereas 61 is an upper bound on orientation uncertainty. It is not clear how

tight this bound is. Probably, the factor 2 can be reduced but it is unlikely that it can be

made smaller than 1.

The parameter 62, which represents the minimum separation distance between two

curves, has to be at least 361 + max(A) (by letting n = 01 = 0). The Imax(A) part can be

made arbitrarily small by breaking down the arcs of the vector graph into smaller pieces.

This entails a linear slowdown of the algorithm. As for the other term, 3S6, we do not

know how tight it is.

6.1 Computing the optimal path

The algorithm in Table 2 contains the procedure maximalPath(sj, Aj) which returns a

path 7rj E Mj(sj), where Mj(sj) denotes the set of maximal paths in Aj with first element

sj. Notice that Theorem 5 holds for any choice of a path in Mj (sj). Thus, this path can be

determined according to an arbitrarily chosen cost function c(7). If this cost is additive,

n

C(70) = c(pi), = (P 

i=l

then the minimizing path can be computed by using an efficient dynamic programming

algorithm which runs in linear time in the number of arcs in the graph. In fact, let c*(p),

p E PAj, be the optimal cost of a maximal path starting at p. Then, the following Bellman

equation holds

c*(p) = c(p) + min c*(p ), p E PAj
p'EF(p)

where F(p) denotes the set of vertices p' such that (p,p') E Aj. The recursive algorithm

in Table 3 can be used to compute c*(p) for all p E PAj (assuming the graph does not

contain cycles). The optimal path starting from p is then

maximalPath(sj, Aj) = (sj),v(s), v(v(sj)),... , vn(sj)) (23)
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1 optimize(p)

2 if F(p) = 0

3 c*(p) = c(p)
4 else

5 for every p' E F(p)

6 optimize(p')

7 c*(p) = c(p) + min {c*(p') : p' E F(p)}

8 return

Table 3: The recursive algorithm to compute optimal maximal paths.

where v(p) is the minimizer of c*(p'), p' E F(p).

Notice that this method can be generalized to cost functions of the form
n-k

c(wr) = c(pi,Pi+l,... ,Pi+k) -
i=l

To do this, one needs to construct a graph whose nodes are all possible (k + 1)-paths

(q, .· · ·. , qk) in the original graph and whose arcs are all the pairs ((qi,... , qk), (ql', . . ,qk))

where qi' = qi+l, i = 2,... , k - 1 (see also (Casadei, 1995)).

This approach can be used to compute paths with minimum total turn. In fact, the

total turn of a path 7r = (P, ... , Pn) is given by

n-1

C(7r) = E C (pi-l ,i,Pi+l)

i=2

where c(pil, pi, pi+l) is the absolute value of the orientation differences between the arcs

(pi-l, Pi) and (Pi, Pi+l).

A dynamic programming approach for optimal curve detection was also proposed in

(Subirana-Vilanova and Sung, 1992; Sha'ashua and Ullman, 1988). Their method mini-

mizes a cost function which penalizes curvature and favors the total length of the curve.

Our approach is simpler in that only curvature appears in the cost function. This simplifi-

cation is possible because all the curves which can be constructed from a given point cover
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each other, i.e. they have the same "length". This is a consequence of the strong stability

of the graph. Due to this simplification, the optimal algorithm needs to pass through each

point only once and therefore has linear time complexity.

7 Classification and detection of cycles

A. 3w+(r)

(a) Regular cycle (b) Irregular cycle (looplet)

Figure 14: (a): A Regular cycle. (b): A looplet.

The curve extraction procedure of Section 6 needs some adjustment to deal with cycles

in the vector graph. Recall that a cycle is a path w = (pl,... ,pn) such that pi = Pn.

The structure of the stabilized graph Sw (V, A) makes it possible to classify cycles into two

classes, regular cycles and irregular cycles (or looplet). To do this, notice first of all that

the two lateral boundaries Pw+(ir) and Pw () of a cycles are closed curves (see Figure 14).

Since Sw(V, A) is the output of the stabilization algorithm, the closed polygonal curve

cT(r) is disjoint from 0w+(7r) and 3w(7r) (see Proposition 2 in the Appendix). Thus, two

cases are possible. In the first case, u(7r) encloses either Ow+ (w) or 3wp (7). Then, the other

lateral boundary encloses the other two closed curves (see Figure 14(a)). A cycle of this

type is said to be regular. In the second case, neither fw+(r) nor /w (r) encloses a(X) and

the interiors of the three cycles are all disjoint (Figure 14(b)). A cycle of this kind will be

called a looplet, or irregular cycle.
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The procedure optimize(p) in Table 3 can be modified slightly so that cycles are

detected and handled appropriately. Let optimize' be the modified procedure. Every

point p is assigned a status variable which can take one of three possible values: "new"

(which is the initial state), "active" and "done". When a point is opened for the first time,

namely optimize' is called with argument p, then the status of p is changed from "new" to

"active". Then, when the procedure optimize'(p) returns, the status of p is changed from

"active" to "done". A cycle occurs whenever optimize' opens a point which is already

"active".

To check whether the cycle is regular it is sufficient to pick one of its vertices and

verify whether it is enclosed by either /+(7r) or 3w(r). If the cycle is regular then the

path maximalPath(sj, Aj) in (23) is set equal to this cycle and lines 7,8 of the procedure

in Table 2 are applied to it. If the cycle is a looplet then all its nodes are coalesced into a

"super-node" and the procedure optimize' continues from this new super-node.

8 Experiments

The result of the algorithm on two images are shown in Figures 15 and 16. The vector

graph was computed by using the method described in Section 2.1. Rectangular regions

with width 4 and height 3 were used to compute the cubic polynomial fit and the tangent

vectors. Some thresholds were used to eliminate some of these tangent vectors. The

parameter w was set to 0.75 for all the experiments.

The results are compared to Canny's algorithm with sub-pixel accuracy followed by

greedy edge linking, as implemented in (Perona, 1995). The performance of the two algo-

rithms is comparable on edges which are isolated, with low curvature and with significant

brightness change. However, when the topology of the edges is more complex, the advan-

tages of a more robust approach become evident. In fact, greedy linking connects points

with very little knowledge about the semi-local curvilinear structure. If an unstable bi-
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furcation is present, then greedy linking makes a blind choice which may lead to a curve

diverging from the true edge. For instance, the two parallel edges on the left of telephone

keyboard are disconnected and merged together in 15(b). The contour of the telephone

keys and of the flower petals are often confused with nearby edges. Notice that the con-

tours obtained by the proposed algorithm, even though disconnected, remain close to the

true edges and do not diverge from them.

The limits of the proposed algorithm lie in the assumptions which are necessary for
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Figure 16: Flower image. The final result is shown in (d).
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Figure 16: Flower image. The final result is shown in (d).
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a curve to be recovered without disconnections. If a curve in the image violates one of

these assumptions, then the curve might be disconnected at the point where the violation

occurs. For instance, notice that edges are broken at points of high curvature and at curve

singularities such as T-junctions. Also, since the asymmetric Hausdorff distance is used

to evaluate the match between the true curve and the reconstructed one, curve end-points

may not be recovered correctly. Sometimes, curves are extended a little beyond the ideal

end-point.

These limitations can be dealt with at higher levels of the edge detection hierarchy by

using more powerful edge models. The regular curves extracted at the current level can

be used to construct efficient feedback loops to activate the appropriate high level models.

For instance, this method was used in (Casadei and Mitter, 1996) to bridge small gaps in

the curves due to high curvature and T-junctions.

9 Conclusions

A hierarchical and compositional strategy, based on a hierarchy of contour models, can be

useful to compute efficiently a global representation of the contours in an image. Computa-

tion in this hierarchy consists of two types of processes: bottom-up composition processes,

whereby complex descriptors are constructed from simple ones, and top-down feedback

loops which guide and constrain the search for relevant groupings to avoid combinatorial

explosion of the search space. Having enough many intermediate levels in the hierarchy

is necessary to ensure that enough top-down feedback is used so that uncertainties are

neither resolved arbitrarily nor causing exponential computational complexity.

When applied to the problem of composing local edge information into curve descrip-

tors, this requirement suggests that the curve dictionary used in the first composition stage

should be simple enough to ensure that the elements in this dictionary can be computed

efficiently and reliably. This leads to three natural assumptions on the initial curve mod-
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els, namely the covering, decay and alignment conditions on the input vector graph. The

corresponding detection problem, which consists in detecting the visible and bounded-

curvature components of the contours, can be solved robustly in linear time by assuming

upper bounds on the deviations from the ideal (noiseless) model. The analytical upper

bound on the localization error is quite reasonable and vanish linearly when the deviations

from the ideal model vanish.

A notion of stability is introduced and it is argued that instabilities due to uncertainties

and ambiguities in the local edge information, such as multiple responses to the same edge,

need to be addressed systematically at this stage.

9.1 Future work

The higher levels of the hierarchy, which are currently being developed on top of the

representation described in this paper, use regular curves as vehicles to efficiently include

global information into edge detection. To do this, compositional models of complex

descriptors (such as partially invisible curves with singularities) are being constructed.

These models relate complex descriptors to a set of simpler parts (such as regular visible

curves) that are computed by the lower levels of the hierarchy. Every model has to provide

validation criterion which relies on all the information at the lower levels to determine when

enough evidence exist to hypothesize a high level descriptor.

A first step consists in recovering curve singularities (e.g. corners and junctions) and

small curve gaps. It turns out that by using short-range semi-local information it is

possible to recover correctly many of these features (Casadei and Mitter, 1996). The

next higher dictionary is based on closed curves. The properties of the regions inside

these curves provide a very powerful validation tool to be used as a feedback mechanism.

Closed curves are computed by searching cycles in a curve graph ((Elder and Zucker,

1996) also propose to compute closed edges as cycles in a graph). Curve graphs, whose

nodes are regular visible curves, are a high-level generalization of vector graphs. Initially,
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only curves with nearby terminators are connected by an arc in the curve graph. At

a later stage, long-range arcs can be inserted in the graph so that invisible curves can

be represented. To control the number of long-range arcs and therefore computational

complexity, information about the shape of the curves and feedback from the region-based

validation mechanism will be used. At a later stage, edges will be represented as a set of

regions ordered by depth, as proposed in (Nitzberg and Mumford, 1990). This will make

possible to exploit occlusion and other higher dimensional constraints.

A Proofs

A.1 Proof of Theorem 1

The proofs of the main results will be preceded by some useful propositions.

Definition 5 A vector graph (P, V, A) is said to be arc-compatible if w, (al, a 2) = false

for every pair of arcs (al, a2) E A x A. The set A will also be said to be arc-compatible.

Proposition 1 For any vector graph (P, V, A) and w > O, Sw(V, A) is arc-compatible.

Proof. Let Vw(al, a2) = true for some al, a2 E A. Then, Pw(V, A) contains at least one

of the points in E(al, a2). Hence either al A - Pw(V, A) or al 0 A - Pw(V, A) so that

SW(V, A) can not contain both al and a2. [O

Proposition 2 Let A be arc-compatible. Then for any paths 7r, 7r' in A:

a(7r) n 3,w (Tr') = a(7) n fw+(r ' ) = 0 (24)
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Proof. Let A, be the set of arcs in the path ir. Notice that

o(w) U u(a), 0L (wT') U /3 (a'), mw (7r) = U ,3 (a')
aEAr a'EAwl a'EA,t

The result follows then from Proposition 1. 0]

Proposition 3 Let (P, V, A) be a vector graph and w > O. Then Uw(w) c Nw(7r) for any

path w in the graph (P, A).

Proof. The result follows directly from the construction of the boundary of Uw(7) (see

Figure 8(a)). L

Proof of Theorem 1 (page 21). Let 7r = (pl,... ,Pn) be a path in Sw(V, A). From

Proposition 3 we have Uw,(7) c Nw(7r). We have to prove that Uw(7r) is an attraction

basin for w (see Definition 2). Recall that the boundary of Uw(x) is

OvUw.() = O- (ir) = /3w(r- ) U= Uw (p.) U ,. (pi) U a ,(pI)

Let q C Uw(7r) and let 7r' be a path such that a(7r') contains q. From Proposition 2 it

follows that

-(7wr') n /3-(-() = '(7r') n /3w+ () = 0

so that a(wr') can intersect 3w,(ir) only at its extremities, crw (p) and orwl(pn), which are

contained in Bw(pl) U Bw(p,):

(c(7ir') n /3w(7')) c ('l(pl) U 'wl(Pn)) C (Bw(pl) U Bw(pn))

Therefore, cT(Tr') can intersect aUw (7r) only inside Bw(p 1)UBw(p,). Hence aq(F7') - namely

the largest connected subcurve of a(7r') disjoint from Bw(pl) U Bw(pn) - is contained in

Uw(7r). Thus, Uw(7r) is an attraction basin for 7r. O

37



A.2 Proof of Theorem 2

Lemma 1 Let 'y be an unbounded straight line and let (P, V, A) be a vector graph satisfying

the alignment condition on y. Let a A. If cr(a) C D1 and

2, ~< w (25)
cos 01

62 - &1 > w (26)

then /w+ (a) c D \ Da and iw (a) c D2 D .

Figure 17: Proof of Lemma 1.

Proof. Let us assume without loss of generality that -y coincides with the y-axis. For any

p CE 2 let x(p) be the x-coordinate of p so that d(p; 7) = Ix(p)l (see figure 17). Let p7,

p- be the end-points of /; (a) and p+, pj+ the end-points of fl+(a). Recall that

Pi Pi WU I(Pi), i = 1,2

where ul(pi) is the unit vector perpendicular to vpi. Then,

x(pi) = x(pi) + W cos Oi, i = 1,2
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where Oi is the angle between vpi and 'y. The alignment condition requires Oi < 01 so that

Ix(pi) - x(pi)l > W cos 0i, i = 1,2

Therefore, since Ix(pi)l < 61 and by using (25),

Ix(pf) I > w cos 1 - Ix(pi) I > W cos E)1 - 61 > 61

Also, by using (26),

Ix(pi)l < Ix(pi)l + w < 61 + W < 62

Thus pi E D,2 \ D2 and the result follows from the convexity of D 2 \ DI. C

Proposition 4 Let "y be an unbounded straight line. Let (P, V, A) satisfy the decay and

alignment conditions on y. Suppose equations (25) and (26) hold and 62 - 61 > Imax(A).

Let p E P. Then

pcD° == > P (V,A)

Proof. Let Ap be the set of all arcs in A which have p as one of its two end-points. Let

a = (p, ) E Ap and a' = (ql, q2 ) E A. We must prove that either a and a' are compatible

or q(p) > 0o, where

Oo = min {p, P, ql, q2 }

Let B 2 = D 2 \ D 1. Since Ilp - pjiI < Imax(A) < 62 - 61 and d(p; y) < 61 we have

d(p; "y) < d(p; y) + IIp- pll < 61 + (62- 1) < 62,

that is p E D1 U B 2 . If E B 2 then 0(p) > 00, because p c DI and o(p) > 0(fP) from the

decay condition. Let us assume then that P E D1. This implies that v(a) C D, and, from

Lemma 1,

+(a) U d- (a) c B (27)
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Case (i) Case (ii) Case (iii)

Figure 18: The three possible cases for a'.

The geometric relationship between a' = (qi, q2 ) and a can fall into one of three possible

cases (see Figure 18):

(i) At least one of q1, q2 belongs to B~ - = D2 D .

(ii) q1, q2 C Do.

(iii) ql, q2 E ~2 \ D?.

The case where one of q1, q~ is in D 1 and the other is in R2 \ D? can not occur because

fqe - q2ll < /m a x(A) < 62- 61.

Case (i). From the decay condition it follows ¢(p) > ¢(ql) or ¢(p) > ¢(q2) and therefore

q(p) > qo.

Case (ii). Notice that a(a') = a(ql, q2) C Di. From this and from equation (27) we

have

u(a') n ((f,3(a) U/ .+(a)) = 0.

Similarly, from ar(a) C Da and from Lemma 1 applied to a',

5(a) n ((5 j(a') U ,+(a')) = 0.

Hence goe,(a, a') = false and (a, a') is a compatible pair.

40" I~~~- ~ caes seeFigre 8)



Case (iii). Since 62 - 61 > w, it follows that

D) n ((,(a') U 3+ (a')) = 0

and therefore, from u(a) C D2,

a(a) n ((a, (a') u ,+(a')) = 0.

Since o(a') c B3, from (27) we have

u(a') n ((w ,(a) U /+(a)) = 0

and therefore Ow(a, a') = false. O

Proof of Theorem 2 (page 22). Let y E F and let us assume that ?y is an unbounded

straight line (The proof is given for this case only1). Since (P, V, A) is a projection of F,

y E F satisfies the covering, decay and alignment conditions. From the covering condition,

there exists a path 7r in A such that d(y; cr(wr)) < o0. Notice that the vertices of 7r belong

to DO so that, from Proposition 4, they do not belong to Pw(V, A). Therefore, 7r is also a

path in Sw(V, A) = A- Pw(V, A).

A.3 Proofs of Theorems 3 and 4

Definition 6 Let A, A be sets of arcs and let P be the set of vertices of A. The set A is

said to be U7a-connected with respect to A if

a (pl,p2) n wl(p) ( 0 (pl,p) E A, (P,P2) E A (28)

for every (P1,P2) E A n A and every p E P.

1The proof for finite curves requires a somewhat complicated generalization of the decay and alignment

conditions to constrain the vector field in the vicinity of the curve end-points. The generalization to curves

with bounded curvature is trivial, given the arbitrariness of the functions el (I) and e2 ().
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Proposition 5 The set A constructed in Section 5 is urI -connected with respect to A.

Proof. The result follows directly from the definition of A. O

The following Lemma ensures that a graph remains aul-connected if an arbitrary set

of vertices is suppressed.

Lemma 2 Let A, A be sets of arcs whose vertices belong to P. Let P' C P. If A is

o'L-connected with respect to A then A -P' is also u-rrconnected with respect to A.

Proof. Let p be a vertex in A - P' and (pl,P2) an arc in (A - P') n A such that

c(p 1 , p 2)n nc&l(p) $ 0. We have to prove that (Pi, p) E A-P' and (p, P2) E A-FP'. Notice

that since p is a vertex in A - P' it is also a vertex in A. Also, from (P1, P2) E (A - P') n A

we have (P1,P2) G A. Therefore, since A is al-connected w.r.t. A,

(pl, P) E A, (P, P2) E A (29)

Since p is a vertex in A - P' we have p ~ P'. Also, from (pI1,P2) E (A - P') n A we have

P1,P2 4 P'. Hence, from (29) it follows that (pl, p) E A - P' and (, P2) E A - P'. O

Proposition 6 For any vector graph (P, V, A), SW(V, A) is or-connected with respect to

A.

Proof. Notice that SW(V, A) = A - Pw(V, A). Therefore, since A is (X-connected w.r.t.

A, the result follows from Lemma 2. 0

Proposition 7 Let A be awJ-connected with respect to A, and let 7 = (Pl,... ,n) be a

maximal path in A. Then, for every (ql, q2) E A n A,

,(ql, q2 ) n A&w (P1) a= (q, q2)n ( (pn) 0= 
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Proof. For the purpose of contradiction, let (ql, q2) c A n A be such that

or(ql, q2) n lr (q) #A 0 (30)

where q is either pi or p,. Since A is awl-connected, we have that (q, q2) and (q1, q) belong

to A and therefore q has at least one out-arc and one in-arc. This contradicts the fact

that w7 is maximal in A.

Proposition 8 Let A be awl-connected with respect to A and arc-compatible.

* For every maximal path 7r = (P1,... ,Pn) in A and every path 7r' in A n A,

/w(7r) n (w7) C {Pl,Pn} (31)

* A is strongly w-stable with respect to A with attraction basins Uw(-).

Proof. Let i = (p, ... ,pn) be a maximal path in A and 7' a path in A n A. Since A is

arc-compatible we have from Proposition 2,

u((r~') n ,3w-(1r) = (a')0 n 7(1r) = 0

Since A is awl-connected and r is maximal in A we have from Proposition 7

(ir') n &'l(pl) = a(7r') n 'Wl(p) = 0

Thus, since aw (p) = &W(p) U {p),

(ir') n 0w( 7) = a(7r') n (w3 (7r) u ~W (pn) U /w (r) U Lw (Pi)) C {PP, n} (32)

which proves the first part. Let now 7r' be a path in A n A such that ao(r') n U (7r) # 0.

To prove that A is strongly w-stable, one has to show that cW(w') C Uw(iT). From the
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assumptions (14)-(16) and from A = A ut = 0 we have that a('ir') can not exit Uw(7r)

through the points pl, p,. This, together with 32, yields the result.

Proof of Theorem 3 (page 24). From Proposition 1, SW(V, A) is arc-compatible because

it is the output of the stabilization algorithm on the vector graph (P, V, A). Moreover,

Sw((V, A) is aow-connected from Proposition 6. The result then follows from Proposition 8.

Proof of Theorem 4 (page 25). The proof is similar the that of Theorem 2. Let y E F

and, as in the proof of Theorem 2, let us assume that 7 is an unbounded straight line. Since

(P, V, A) is a projection of F, y satisfies the covering, decay and alignment conditions. From

the covering condition, there exists a path 7r in A such that d(y; a(r)) < 60. Notice that

the length of the segments added to A to construct A is at most w + Imax(A). Therefore,

Imax(A) < w + Imax(A). Since the vertices of ir belong to D°, by using Proposition 4 with

A replaced by A, we have that none of the vertices of -r belongs to Pw (V, A). Hence, since

SW(V, A) = A -Pw (V, A) and A C A, 7r is also a path in Sw(V, A) n A. O

A.4 Proof of Theorem 5

Proposition 9 Aj is strongly w-stable with attraction basins Uw(1r).

Proof. Notice that

Aj = S(V, A) -(UQk

Thus, from Lemma 2 and Proposition 6, we have that Aj is awc-connected. Also, Aj is

arc-compatible because it is a subset of SW(V, A) which is arc-compatible. The result then
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follows from Proposition 8. 0

Proposition 10 Let ir be a path in SW(V,A) n A. Then there exists a 7rj such that

d(a(oir);a (irj)) < w.

Proof. As a first step we construct a partition of A 1 = Sw(V, A) into N sets Bj, j =

1,... , N. These sets are given by:

Bj = {(Pl,P2) E Aj : PI E Uj V p2 C Uj) (33)

where Uj = Uw(r-j). Notice that Bj C Aj. The following must be proven:

N

U Bj = Sw(V, A) = A1 (34)
j=l

Bj n Bk =0, k > j (35)

From the recursive definition of Aj (lines 6 and 7 of Table 2) we have

Aj+l = Aj-Qj = Aj \ { ( l , P 2) c A j : pi E Uj V P2 E Uj)

and therefore

Aj+l = Aj \ Bj (36)

From this it follows that Bj n Aj+l = 0. Thus, if k > j we have Bj n Bk = 0 because

Bk c Ak C Aj+l. This proves (35). Notice that by iterating (36) one obtains:

Aj = A1 \ U Bk (37)
k<j

Let N be the number of steps done by the procedure before terminating. That is, from

line 3 of Table 2,

AN¢+l =0
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By using (37) one gets

AN+1 = Al \ U Bk = 0
k<N

from which (34) follows. Notice that from (37) and (34) we have

Aj = Al \ U Bk = U Bk (38)
k<j k>j

Now let k be the smallest j such that Bj contains at least one arc of the path wF:

A , n Bj = 0, j < k (39)

A , n Bk $ 0 (40)

where A7 denotes the arcs of 7r. From (34), (39) and (38) we have

A 7, = U (A,nBJ)=U(A,nBj)cUBJ=B Ak
1<j<N j>k j>k

Thus, since wr is path in A1 n A by assumption, 7r is a path in Ak n A. From A7 n Bk - 0

and from (33) we have a(7r) n Uk 0. Then, since (from Proposition 9) Ak is strongly

w-stable, we have a(7r) C Uk C NW(Tk). From this it follows that d(a(wr); C(7k)) < w. O

Proof of Theorem 5. Let y C F. From Theorem 4 we have that there exists a path 7r

in Sw(V, A) nA such that d(y; a(Tr)) < 65. From Proposition 10 there exists a path Xrj such

that d(cr(r); o(7rj)) < w. Then, by the triangular inequality of the asymmetric Hausdorff

distance one gets d(y; o(7rj)) < w + do. [
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