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Abstract

A universal decoder for a parametric family of channels is a decoder

that for any channel in the family attains the same random coding error

exponent as the best decoder for that particular channel. The existence

and structure of such a decoder is demonstrated under relatively mild

conditions of continuity of the channel law with respect to the parameter

indexing the family.
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1 Introduction

Consider a parametric family of channels

po(ylx), E , (1)

defined on a common finite1 input alphabet X and a (possibly infinite) output

alphabet Y, where po(ylx) is the probability (or probability density) of the

output sequence y E yn given that the sequence x E Xn is transmitted over

the channel with parameter 0 E 3. The parameter space E3 is assumed to be

separable in the sense that

{0k}k=1 CO : inflimsup sup l () 0 E E), (2)
k n--oo (x,y)EXnxyn n po k (Ylx)

*Department of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, Cambridge, MA 02139-4307. Prof. Feder is on leave from the Department
of Electrical Engineering-Systems, Tel Aviv University, Tel Aviv 69978, Israel.

1Our results can be extended to the case where the input alphabet is not finite but to
simplify notations we choose to restrict ourselves to a finite input alphabet.
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where throughout the paper we use the convention

0o a 0
log =O, log =-log - = ooVa > O. (3)

o o a

In words, condition (2) says that there exists a countable subset {Ok}=1j c e
that is dense in E) with respect to the semi-metric

d(O,O') = lim sup sup - log P°(YI) ) (4)
n-4oo (x,y)EXxyn xY n Pok (YlX)

i.e., that for any 0 E E and any e > 0 there exists some positive integer k
such that d(O, Ok) < e. The separability condition is a rather mild condition,
and as we shall see in Section 3 many of the parametric families arising in
wireless communications are separable. Some examples of separable families
include the family of discrete memoryless channels, and the family of finite
memory channels (which includes the Gilbert-Elliot family of channels as a
special case).

Given a codebook

C = {x(1),...,x(2nR)} C Xn (5)

of blocklength n and rate R, we define a decoder q5: yn - {1,..., 2 nR} as a
mapping that maps every output sequence y to an index i of some codeword
in C. If all codewords are used equiprobably (as we shall assume throughout)
then the average probability of error Po,¢(errorIC) incurred when the codebook
C is used over the channel po(ylx) with the decoder A, is given by

2nR

Po,o(errorlC) = 2 - nR E E po (yx(i)). (6)
i=1 {y:q(y)Oi}

For a given channel po(ylx) and a given codebook C, the optimal decoder (in
the sense of minimizing the average probability of error) is the maximum-
likelihood decoder q0 for which q0(y) = i only if

logpo(ylx(i)) > logpo(ylx(j)) VI < j < 2n . (7)

Notice that (7) does not completely define the maximum-likelihood decoder
because it does not specify how ties in the likelihood function are to be re-
solved. The manner in which such ties are resolved does not affect the average
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probability of error, and we shall assume some arbitrary but fixed determ-
inistic mechanism. A more precise description of the maximum-likelihood
decoder that also specifies this mechanism is as follows. Assume that all the
codewords are in some set Bn C X n of size IBnl,

x(i) E Bn Vl < i < 2nR ,

and consider a ranking function

MO: Bn x yn > { 1, B I),

that given any received sequence y maps the sequence x E Bn to its ranking
among all the sequences in Bn. The mapping MO(., y) thus specifies a com-
plete order from 1 to IBnl on all the sequences in Bn, i.e., for any y E yn
we have that MO(.,y) is a one-to-one mapping of Bn onto {1,..., IBnI). A
maximum-likelihood ranking function MO(x, y) ranks the sequences according
to decreasing order of likelihood, i.e.,

Po(ylx) > po(y x') =# MO(x,y) < Mo(x',y), (8)

where the sequence most likely (given the received sequence y) is ranked
highest, i.e., 1. Given a codebook C as in (5) the maximum-likelihood decoder

b0 that is determined by the ranking function M o (., ') is defined by

(0(y) = i iff Mo(x(i), y) < Mo(x(j), y) Vj =A i, 1 < j < 2nR. (9)

(If no such i exists, as can only happen if some of the codewords are identical,
we declare an error.) Thus, given a received sequence y, the maximum-
likelihood receiver determined by M o( ., .) declares that the transmitted code-
word was x(i) if x(i) maximizes po(ylx(j)) among all the codewords x(j) in
C, and in the case that this maximum is achieved by several codewords, it
prefers the one that is ranked highest by Mo(., y)

It should be noted that any ranking function Mu(x, y), i.e., any function

Mu : Bn x yn -- {1 , I B IBnl

such that for any y E yn the function Mu(,y) is one-to-one and onto
{1,..., IBn l, defines a decoder u in a manner completely analogous with
(9). Thus given a codebook C as in (5) and given a received sequence y E yn

u(y) = i iff Mu(x(i),y) < Mu(x(j),y) Vj =A i, 1 < j < 2nR. (10)

3



Slightly abusing the notation introduced in (6) we denote by Po,o,(errorlC)
the average probability of error that is incurred when code C is used over
the channel po(ylx) and maximum-likelihood decoding is performed accord-
ing to the (possibly different) law po,(ylx). This situation is referred to as
mismatched decoding, and its effect on the achievable rates for memoryless
channels has been studied in [1], [2],[3], [4], [5], and references therein. Clearly
if 0 = 0' then there is is no mismatch and Po,o(errorlC) thus denotes the av-
erage probability of error incurred when the code C is used over the channel
of parameter 0 and is optimally decoded using the maximum-likelihood rule
corresponding to that channel.

Consider now the case where the codebook C is drawn at random. We
assume that the codewords are drawn independently of each other, each being
drawn uniformly over the set Bn C X n. The set Bn is often taken as the set
of all n-length sequences of some given type, but for our purposes, Bn can
be arbitrary. We define P0,p(error) to be the average of Po,o,(errorlC) over
this random choice of the codebook C. Once again we slightly abuse this
notation and use Po,o, (error) to denote Po,o0, (error) where 5o, is the maximum-
likelihood decoder corresponding to the channel of parameter 0'. In particular
Po,o(error) is the ensemble average of Po,o(errorlC) over all codebooks C whose
codewords are drawn independently and uniformly over the set B,.

Our main result, which is proved in Section 2, can be now stated as
follows:

Theorem 1 Consider a parametric family of channels po(ylx) 0 E E
defined over a common finite input alphabet X and a possibly infinite output
alphabet Y. If the parameter space is separable in the sense of (2) then there
exists a universal sequence of decoders un such that

I1 (PoUn (error) = O e, (11)

n+oo n ( P,0a (error) 

where the probabilities of error are averaged over the ensemble of random
codebooks whose codewords are drawn independently and uniformly over the
set Bn.

We thus claim that there exists a universal decoder that for any channel
in the family attains the same random coding error exponent as the optimal
decoder designed for that specific channel.
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The existence of a universal decoder for the family of memoryless channels
was demonstrated in [6] where it was shown that the maximum empirical mu-
tual information (MMI) decoder is universal. For discrete memoryless chan-
nels it can be shown that the MMI is equivalent to a generalized maximum-
likelihood decoder that ranks the codeword x according to maxOeo po(ylx).

In [71 Ziv proposed a different approach to universal decoding, one that is
based on the Lempel-Ziv approach to universal data compression, and showed
that a universal decoder exists for the special subclass of finite state channels
that satisfy that at any time v the law of the output Yv given the input xv, is
determined by the state of the channel s,, and where the next state s,+l is
a deterministic function of the previous state s, and the previous input and
output xv and yv

The family of channels for which Ziv showed the existence of a universal
decoder, while richer than the family of memoryless channel, is not suffi-
ciently rich for many applications arising in wireless communications. For
example, the Gilbert-Elliot channel in which the distribution of y, given xv is
determined by the state s, where the sequence of states forms a Markov pro-
cess, is not covered in Ziv's model. As we shall see in section 3 the families
of channels for which Theorem 1 demonstrates the existence of a universal
decoder includes the memoryless channels, the families studied by Ziv, the
Gilbert-Elliot family of channels, and many more. It should, however, be
noted that Ziv's universal decoder seems to have a simpler implementation
than the decoder that we propose, particularly for convolutional codes with a
long memory where sequential decoding is attractive.

2 A Proof of Theorem 1

If the codewords of a codebook are drawn independently and uniformly over
the set Bn C Xn, and if a decoder 0 that is based on the ranking function
MO(., .) is used, then the average probability of error Po,p(error) incurred over
the channel po(ylx) is given by [7],

Po,p (error) = E E [BnlpO(yIx) Pr (errorlx, y, q), (12)
xEBn yEY n IBn

where

Pr (errorix,y,) = 1-1- xX (13)



is the conditional probability of error given that the transmitted codeword is
x, the received sequence is y, and the decoder being used is 0. Equation (13)
follows from the observation that the codewords are drawn independently and
uniformly over Bn and that if x is the correct codeword and y is the received
sequence then an error occurs only if some other codeword x' is ranked higher
than x, i.e., if MO(x', y) < MO (x, y). Notice that Pr (errorIx, y, 0) does not
depend on the channel Po ('l) over which transmission is carried out, but only
on the correct codeword x, the received sequence y, and the decoder q.

Let q and q' be two decoders based on the ranking functions MO(x, y)
and M, (x, y) respectively. In the appendix we prove that

P(errorlx, y, q') < max 1 M(x (14)

P(errorlx, y, q) - ' M(x,y) '

and hence,

PO,qi (error) ExcEB, EyEyEnY i-iPO(yjx) Pr (errorlx, y, A')

Po, (error) - xEBn yEyn Yi-jPO(ylX) Pr (errorjx, y, O)

<• max P(errorlx, y, O')
-xEB,yEYn P(errorlx,y, )

< max MO, (x, y) (15)
xEB,,yEYy MqO (Xy)'

The equality follows from (12), the first inequality follows by noting that if
U and V are non-negative random variables then

E[U] < E[V] max V

and the last inequality follows from (14) by noting that

max M (x, y)
xEBn,yEY n M(x, y) -

since for any y E yn the functions MO(.,y) and MO,(.,y) are both one-to-
one mappings onto {1,..., BnI}. Inequality (15) is a refined version of an
inequality given in [7]. Its importance is that it relates differences in ranking
functions to differences in random coding error performance.

Consider now K maximum-likelihood decoders 001, ... , IOK with corres-
ponding ranking functions Mox(x,y),..., MK (x, y). For any received se-
quence y we define the merged decoder uk(y) via its ranking function MUK (., y)
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as in (10) where MUK(-, y) is defined as follows: Given a received sequence
y the ranking function MUK (-, y) ranks number 1 the sequence in Bn that
MOl (.,y) ranks highest. It then ranks second the sequence that M 02(, y)
ranks highest (unless it is equal to the sequence ranked highest by Mo1 (-, y)
in which case it skips to consider the sequence that M 03 (., y) ranks highest),
followed by the sequence that M03 (., y) ranks highest, etc. After the first
ranking of all the decoders M01 (., y), . , MoK: (, y) have been considered we
return to Mo1 (., y) and consider the sequence in Bn ranked second, followed
by the sequence that M02 (., y) ranks second etc. In all cases if we encounter
a sequence that has already been ranked we simply skip it. This construc-
tion guarantees that if a sequence x E B, is ranked j-th by the k-th decoder

Mk (., y) then x is ranked (j - 1)K + k or higher by MUK (., y), i.e.,

MO, (x, Y) = j : Mu K (X, Y) < (j- 1)K + k Vx E Bn, VI < k < K. (16)

Equation (16) can actually serve as a definition for the merging operation,
i.e., the construction of MUK(_, y) from M 0 1( ,y),... ,MOK (', Y). Crucial to
our analysis is the observation that with this construction

MUK(x,y) < KMOk(xy) V(x,xy) E Bn x yn, VI < k < K, (17)

which follows immediately from (16).
It now follows from and (15) and (17) that for every 0 E E)

PO,UK(error) < KPo,Ok(error) VO E E) V1 < k < K, (18)

so that on any channel po(.l.) the merged decoder performs, up to a factor
of K, as well as the best of the decoders 0ox, ... , I0OK. Actually, the merged
decoder satisfies

P(errorlx, y, UK) < K
P(errorlx, y, k) -

for all x, y.
The next step is to study how on a given channel po (' ') the merged decoder

compares with the maximum-likelihood decoder q0 for that channel, where 00
is typically not one of the decoders q001,..., IqOK. Notice that even if 0 and 0'
are very close in the sense that po(ylx) and po, (y x) are very similar, still the
maximum likelihood decoder for 0 and 0' can be very different. This can be
seen by considering the family of binary symmetric channels parameterized by
their crossover probability and considering 0 = 0.5 - e and 0' = 0.5 + e where
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e > 0 is arbitrarily small. For this case the maximum likelihood decoder q0
minimizes Hamming distance whereas the maximum-likelihood decoder 0s,
maximizes Hamming distance. We cannot, therefore hope for a continuity of
the decoding rule with respect to the channel parameter, but what we can
show is the continuity with respect to the parameter of the mismatched error
exponent. This is formalized in the following lemma.

Lemma 1 If

- log < ), V(x, y) E Xc x Y,
nI po,(y x)

then
P1,o1 (error) < 22nEP o,(error),

where Ps,ol (error) is the mismatch ensemble averaged probability of error cor-
responding to channel po( [.) and a maximum-likelihood decoder for the law

Po'( l ), and Po,o(error) is the ensemble averaged matched probability of error
corresponding to the channel po(.l.).

Proof of Lemma 1: To make the proof of the lemma more transparent, let
us break up the assumptions of the lemma into two separate assumptions:

po,(ylx) < po(y x)2nE, V(x,y) E X n x yn, (19)

and
p0,(ylx) > po(ylx)2-nl, V(x,y) E Xn x yn. (20)

We now have

Po,o, (error) = E E B.po(ylx) Pr (errorlx, y, o0,)
xEBn yEYn | nl

< 2ne Z IBIpo,(ylx) Pr(errorlx, y,0,)
xEBn yEY n Bn

= 2 EPo,,0o, (error)

< 2ePo,,o(error)

- 2E E -i B po,(ylx) Pr (errorix, y, 00)
xEBnyEY n Bn

< 22nE E E Ipo(ylx) Pr (errorlx, y, Oo)
xEBYn yEY n

2 2nEP o , (error),
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which completes the proof of the Lemma. Notice that the first inequality
follows from (19), the second inequality from the optimality of the maximum-
likelihood decoder, and the third inequality from (20). All equalities follow
from (12) and the fact that the conditional error probability, which is defined
in (13), depends on x, y, and X but not on the channel Po(l'I).

Proof of Theorem 1: Consider the decoder UK(n) that is defined by merging
the maximum-likelihood decoders 01, ... , * vK(n) where for now K(n) = n,
and 01, ... , OK(n) are the first K(n) parameters in a sequence {0k})k= which
is dense in 3, see (2). Let 0* E O be arbitrary. By the separability assertion
it follows that for any e > 0 there exists some k* and some no such that for
all n > no

sup - log (ZI) < E.
(x,y)Exn xyn n n g ,po. (ylx) )

For all sufficiently large blocklength n we have that K(n) > k* and the
maximum-likelihood decoder q0k, is among the decoders ql 9, ... , q0OK(n) from
which UK(n) is constructed. It thus follows from (18) that for such sufficiently
large n

PO*,UK(n) (error) < K(n)Po.,ok* (error). (21)

If, in addition, n is sufficiently large so that n > no then by Lemma 1

Po*,ok* (error) < 22nEPo*,o (error). (22)

Combining (21) and (22) we have that for all sufficiently large n,

P*., UK() (error) < K(n)22nPo*,o.* (error), (23)

and the theorem now follows by letting e = en tend to zero, and by noting
that K(n) = n is sub-exponential. [

Note: Inspecting the proof we see that some of the conditions of The-
orem 1 can be actually weakened. First, we can limit x to Bn in condition
(2). Secondly, we can replace the separability condition with a weaker form
that requires that there exist a sequence {Ok} C O0 and a sub-exponential
function K(n) such that for any 0 E E

lims sup m sup log PO(YX) -0

nloo 1l<k<K(n) (x,y)EB, xyn n , pok(ylx)

Such a weaker condition could be useful when studying channels with infin-
itely many internal states where the number and effect of the internal states
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grows moderately with the blocklength n. This approach could be also useful
when the family of channels is more naturally parameterized with an infin-
ite number of parameters as would, for example, be the case if a natural
parameter is the autocorrelation function of some random process.

Finally, if the random coding error exponents of the channels in the fam-
ily are uniformly bounded then we may exclude some subset of pairs (x, y)
from the supremum in (2) provided that the subset has a probability that is
negligible with respect to the best error exponent in the family. This may be
useful if the output alphabet is not finite.

3 Some Examples

Example 1: Consider the case where the family of channels is the family
of all discrete memoryless channels over the finite input alphabet X of size
IXI and the finite output alphabet Y of size l y. This family of channels is
parameterized naturally by the set of all IXI by [YI stochastic matrices. We
shall thus take this set of matrices as our parameter space E and have

n

po(ylx) = 1i O(y, lx),
-=1

where 0(ylx) denotes the entry in row x and column y of the matrix 0, and
where x = (x 1,..., xn), and y = (yi,... , y). Since the channels in the family
are memoryless we have

po(Ylx) _ 0(y, X,)

Po' (Y Ix) v(yl 0(Yvlx>)

-- ~(x,y)EXXY a/(ylX)

and hence

- log ) max log(l) 
n pe'(yjxI) - y O 0 (ylx)

The required separability now follows by considering the countable set of all
stochastic matrices with rational entries. Theorem 1 therefore demonstrates
the existence of a universal decoder for the family of all memoryless channels
with finite input and output alphabets. This results is due to Csiszdr and
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K6rner [6]. In fact, the result stated in [6] is somewhat stronger as it shows
the existence of a single sequence of universal codes that achieves the random
coding exponent of any channel over which it is used, see also example 3.

Example 2: Consider now the family of all finite memory channels
defined over a common finite input alphabet X and a common finite output al-
phabet Y, with the set of channel states denoted S and its cardinality denoted
IS. The law of such a channel is determined by a probability distribution
7ro(si) on the initial state sl, a conditional distribution qo (sl, Is,-, X-l, YV-I)
of the next state sv given the previous state s,_l the previous channel in-
put x- 1_ and the previous output yv-l, and by the conditional distribution
ro(yvl x, s,) on the channel output Yv given the channel input xv and the
channel state s,. The channel law is thus given by

pO(ylx) = E po(y, sIx), (24)
sESn

where x = (Xl,... ,Xn), Y = (Yl,..., Yn), s = (sl,... sn), and where

n

pO(y, six) = iro(sl)ro(yjlxl, s1) I (qo(slSv-1, x-l,J Y,-l)ro (YVlIx, s,)).
v=2

(25)
We now wish to use Theorem 1 to demonstrate the existence of a universal

decoder for this family. First note that since a countable union of separable
spaces is separable, we may assume without loss of generality that the set of
states S is of some fixed size, say ISI = m. Using the fact [8, Lemma 1] that
if {al}l=l and{bl} I= are two non-negative sequences then2

al +...+aL al
a, + < max a, (26)

b,... + bL 1- <1<L bl'

where a/O = oo for a > 0, and 0/0 = 1, we conclude from (24) that

PO(YIX) ZEES Po(Y, six)max = max
x,y po,(ylx) x,y EEspo,(y, SIX)

w78 o(s1)roi(ylxll, S) HnV= 2 (qo(s Isv-, xv-)1, y-l)ro(yvlxV, sv))

-7ro(s) qo(S21S1, 1, Y1) n -l r(ylx,s) \
< max max max.

S 7ro (s) SlS2,sXlyl qol (S2 s1, X1, YI) Xys ro (yx, s)

2In [8, Lemma 1] 0/0 is defined as 0, whereas we chose to define it as 1. Nevertheless,
it is straightforward to verify that inequality (26) still holds.
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Taking the logarithm of the above equation and considering the same argu-
ment applied to 0 and 0' in reverse roles we obtain

max! log P(YI max log ) +
x,y r p,(ylx) 0- I s)

max log q°(s21slxYi) 
Sl,S2,X 1 ,Y1 qo' (S2 ,S1, x 1, Y1) +

max log ro,(y lx,s) (
XIYIS ro (y ,S) x(27)

The separability of the family of finite memory channels and hence the
existence of a universal decoder for this family now follows by considering the
countable set of all tuples (t(s), q(s21sl, Xl, Y1), r(ylx, s)) taking non-negative
rational values.

This result considerably generalizes the result of Ziv [7] who showed the
existence of a universal decoder for the special case where the state trans-
ition law qo(slsvl, x,-l , yv-l) is deterministic, i.e., when the next state is a
deterministic function of the previous state and previous input and output.
In particular as opposed to Ziv's results, our result holds for the family of
Gilbert-Elliot channels [9],[10] (and references therein) for which the state
sequence forms a non-deterministic Markov chain.

For the Gilbert-Elliot channel the input and output alphabet are both bin-
ary, as is the state space. The state of the channel forms a Markov process,
and when the channel is in state "0" ("1") the output of the channel is re-
lated to the input as it would for a binary symmetric channel with crossover
probability po (respectively Pi). Our results thus show that one can design a
universal decoder for the class of all Gilbert-Elliot channels without knowing
the law of the underlying Markov process that describes the channel state and
without knowing the crossover probabilities that correspond to each state.

It should be noted that the existence of a universal decoder in the sense of
Theorem 1, i.e., in the sense (11), is meaningful only if the average probabil-
ity of error decreases exponentially with the blocklength for rates below the
channel capacity. Fortunately, this is usually the case, and holds for indecom-
posable finite memory channels [11, Theorem 4.6.4, 5.9.2], and in particular
for the Gilbert-Elliot channels in the non-trivial case where the underlying
Markov chain is ergodic.

Example 3: The following is a pathological example that demonstrates
the subtleties involved with defining universality as in (11). Consider the
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family of channels with binary inputs and binary outputs (i.e, X = y =
{0, 1}) that is parametrized by E, where ( is the countable set of all half-
infinite binary sequences that have a finite number of ones. Let 0(1), 8(2),...
denote the binary sequence corresponding to 0 G (0, and let

1 ify = x0
Po(YIx) = 0 otherwise

Thus, if the sequence x = (x(1),... ,x()) E Xn is transmitted through the
channel with of parameter 0 = 8(1), 0(2),... then the resulting output is y E yn
where

y = X(1) (1),, X,(n) e 0(n)

and E9 denotes binary addition (exclusive or).
Every channel po(ylx) has capacity 1 bit and an infinite error exponent

(for rates below capacity). Since the parameter space E) is countable it is
separable, and Theorem 1 guarantees the existence of a universal decoder
that need not know 0 and can nevertheless achieve (11).

However, one can easily show using standard techniques from the theory
of arbitrarily varying channels [12], [13, Appendix] that for any code C (with
more than one codeword) and any decoder X that is ignorant of the channel
over which transmission is carried out, the average probability of error, max-
imized over the parameter 0, is bounded from below by 1/4. There is thus
no way to achieve uniformly good performance over all the channels in the
family.

Nevertheless, we can show that there exists a deterministic family of codes
{Cn,}n=l which, when decoded using our universal decoder, gives rise to the
right exponential decay of the probability of error for a restricted class of
parameters Dn, a class which increases to ( as n tends to infinity.
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Appendix

In this appendix we give a proof of (14). Observe that for any N > 1 the
function f(x) = 1- (1-x)N is concave in x for 0 < x < 1, and that f(O) = 0.
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Thus, by Jensen's inequality, for any 0 _< c < 1 and any 0 < x < 1,

f(cax) = f(cax + (1 - a)0) > af(x) + (1 - ca)f(0) = acf(x).

Letting K = 1/~a > 1 and substituting y = ax so that x = Ky, and 0 <
Ky < 1 we have

f(Ky) 1-(1 Ky)N <K, K>1. (28)

Also, since f(.) is monotonically increasing in [0, 1], we have for K < 1, 0 <
) Ky <1, K 1. (29)

f(y) I - (1 - y)N -

Inequality (14) now follows from (28) and (29) by substituting N = 2nR - 1,
y = Ma(x, y)/IBnl, and K = MO, (x, y)/MO (x, y).
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