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Abstract

Many existing protocols indicate that full utilization and fairness might be incompatible in high-speed-

high-latency MANs or LANs. The purpose of this paper is to study the fundamental limitations of dual

bus networks, in terms of full utilization, fairness and bounded access delay. A new protocol called FUFA

(fully utilized and fair) is used to demonstrate some of these basic properties. We define full utilization, and

fairness precisely, and show that both are achieved together in the FUFA protocol. In addition, the protocol

provides bounded access delay that is linear in the round trip propagation delay, and at most a constant

away from its minimum possible value for any bus protocol that is both fully utilized and fair. The main idea

is to compute, for each station, the latest estimate on the number of active downstream stations, according

to the information available, and serve them in a round robin scheme.
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1 Introduction

During the last fifteen years, we have witnessed a proliferation of proposals for high-speed-high-latency bus

networks. In many of these previous networks [4-7, 13, 16-19], full utilization and fairness are incompatible.

The well known distributed queue dual bus (DQDB) protocol with bandwidth balancing (the IEEE 802.6

standard for metropolitan area networks) achieves a fair distribution of the bandwidth by requiring each

station to use only a fraction of the available bandwidth for transmissions [6]. Thus, the protocol does not

provide full utilization of the bandwidth. Moreover, the protocol converges slowly to a fair distribution of

the bandwidth to the active stations. Many efforts have been made in the past to improve the fairness and

bandwidth utilization in dual bus network protocols, [1-3, 8-12, 14, 15], and simulation results and analysis

show that improvements are possible.

The objective of this research is to study the fundamental limitations of dual bus networks, in terms of full

utilization, fairness and bounded access delay. A new protocol called FUFA (fully utilized and fair) is used

to demonstrate that full utilization and fairness are in fact compatible. Full utilization means that a station

with traffic to send never releases an idle slot that is not used by some further downstream station. Fairness

is defined precisely later. We show that full utilization and fairness are achieved in the proposed protocol.

Additionally, the protocol provides a bounded access delay that is linear in the round trip propagation delay,

and only a constant away from its minimum value for any bus protocol that is both fully utilized and fair.

The main feature of this protocol is that each station takes account of the idle slots propagated previously

to interpret the information from downstream (i.e., estimated total number of packets in queue downstream

and estimated number of active downstream stations), and serve the active downstream stations in a round

robin scheme according to the updated information. The protocol is designed primarily to demonstrate these

properties rather than as a practical strategy.

The remainder of this paper is organized as follows. In section II we describe the basic dual bus topology.

In section III we state some simple facts on full utilization, fairness, and bounded access delay, starting with

the definitions. Then a lower bound on the maximum access delay is provided for any protocol that is both

fully utilized and fair. In section IV, we describe the FUFA protocol. We start with the basic concept, and

then give a full description of the FUFA protocol, followed by some basic properties of the protocol. In

Section V we prove the full utilization, fairness and bounded access delay properties of FUFA. Finally we

conclude our results in Section VI.

2 Basic Dual Bus Network

The dual bus topology we consider here is identical to that used in DQDB (see Figure 1). The two buses

support unidirectional communications in opposite directions. Stations are connected to both buses and

communicate by selecting the proper bus. A special unit at the head-end of each bus generates one slot

at each unit of time. The stations are numbered from left to right as stations 1, 2, ..., K. Because of the
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symmetry of the dual bus topology, we can consider only transmission on one bus. The bus from station

1 to station K is used to transfer data and is referred as the data bus or downstream bus. The bus from

station K to station 1 is used to make reservations and is referred as the reservation bus or upstream bus.

Therefore station 1 is the most upstream station, and station K is the most downstream station. For each

station i C [1, K], denote D/ as the propagation delay measured in slots between station i and its upstream

station i - I1 and D' as the propagation delay between station i and its downstream station i + 1, where

D' and D} are integers 1 . Each station has a local FIFO (first-in-first-out) queue to store data segments by

local users while these segments wait for assignment to appropriate idle slots on the data bus. Notice that

the protocol also works in principle on a folded bus, where one fold of the bus can be viewed as the date bus

and the other fold as the reservation bus.

- D~ -' data

- D- 1 reservation

Figure 1: Dual Bus Topology

3 Simple Facts about Full Utilization, Fairness, and Bounded Ac-

cess Delay

3.1 Definitions of Full Utilization, Fairness, and Bounded Access Delay

Definition 1: A protocol has full utilization if whenever a station with a non-empty queue propagates an idle

slot, that idle slot is used by some further downstream station.

That is, full utilization means that an idle slot is never wasted. It must be used if it could be used by

one of the stations with non-empty queues.

Definition 2: Let Sn = {il < i2 < ... < in} be the set of some n stations that have been "very active" since

to, where being "very active" is defined in Section 5.2. A protocol is fair if each station ik E Sn, k = 1, ..., n,

starting from to + CEii Ddh, transmits one data segment in every n time slots for as long as Sn remains the

set of "very active" stations and all the other stations remain idle (i.e., with empty queues).

Definition 3: An algorithm has the bounded access delay property if for each station i, i E [1, K], there

exists a finite constant Bi such that the access delay of the first data segment in queue is bounded by Bi.

1 the integer assumption is for notation simplicity, but each can be non-integer as shown in Appendix A
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Let Pi be some data segment at station i, i E [1, K], denote ta as the time that Pi becomes the first segment

in the queue, and tP as the time that Pi departs from the queue. Then an algorithm has the bounded access

delay property if and only if ti - ti < Bi for each i and each Pi with some constant Bi.

3.2 Greedy Algorithm: Fully Utilized But Not Fair

Greedy algorithm is fully utilized since it allows stations to use idle slots whenever there are data segments

waiting in queues. However, it is not fair since it prioritizes stations from the most upstream to the most

downstream.

3.3 An Algorithm with Full Utilization and Fairness

An algorithm that is both fully utilized and fair must be non-greedy. A non-greedy algorithm means that

some non-empty station is allowed to propagate idle slots. In order to have the full utilization property,

feedback information is necessary. This can be shown with a simple contradiction argument. The feedback

information carried by the reservation bus can be the queue length status of downstream stations, the arrival

information, etc..

From the definition of fairness, we can see that with a set of "very active" stations and all others being

idle, each station must know exactly the number of active stations downstream and apply a round robin

scheme.

3.4 Bounded Access Delay of An Algorithm with Full Utilization and Fairness

Here, we study the bounded access delay of a non-greedy algorithm that is both fully utilized and fair.

Denote Bi as an upper bound of the access delay for the first data segment at station i, and Br ain as the

minimum value of all the upper bounds of the access delay, thus the maximum access delay. Due to the full

utilization property, idle slots are propagated by a non-empty station based on only the information that

has been received. Therefore, the access delay of the first data segment at station i can be as large as the

round trip propagation delay between station i and the most upstream station, station 1, i.e.,

i-1

B"Z in J>+(D +1 D (1)

k=l

This is shown through a contradiction argument in section 5.3.

Besides the round trip propagation delay, the round robin cycle under the condition in the definition of

"fairness" can result in extra delay for a station to get access to the idle slot. This extra delay varies between

O and K - 1, depending on the position of the station in the cycle. Re-number the stations according to
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their positions in the round robin cycle as i' = 1, ..., K. Then,

i' (Du +D-1

k=l

A protocol called FUFA (fully utilized and fair) is used to demonstrate that both full utilization and

fairness can be achieved. It is shown in section 5.3 that FUFA protocol provides maximum access delay that

meets the lower bound in (2) for at least one of the stations, and at most a constant K - 1 away from it for

each of the other stations.

4 Fully Utilized and Fair (FUFA) Protocol

4.1 Basic Concept

Since all the idle slots on the data bus are generated from the head-end, station 1, which is the most

upstream station, has first access to idle slots. The basic concept of the protocol is to give equal access

to all the stations, according to the most updated information available through the reservation bus. In

particular, according to the information available, each station computes the latest estimate of the number

of active downstream stations, and uses a counter to serves them in a round robin scheme. The novel feature

of this protocol is that each station takes account of the idle slots propagated previously to interpret the

information from downstream (i.e., estimated total number of packets in queue downstream and estimated

number of active downstream stations).

4.2 Parameters

Next, we define the parameters used in the protocol. At time t, the information available at station i E [1, K]

is,

· ni(t): number of idle slots propagated by station i during the past Du+1 + D' time slots, also written

as ni(t-D - - D, t). Note that D+t1 + D' needs to be an integer. See Figure 2.

* Qi(t): number of data segments in the FIFO queue of station i,

* Ii(t): indicator function whether station i is busy or not, i.e.,

Ii(t) A 1 if Qi(t) > 0, 0 otherwise. (3)

The information sent by station i to the upstream station i - 1 is,

* Mi(t): estimated current number of active stations downstream from station i (including i itself),
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ni (t)

BB B B BB B B _ i
B: busy

;+HB, ,BI BI JBI I| |B || i+I

number of idle sldts that arrive'
between t - Du+ l and t + D'

- time
+t- +l t t +tD

the time when the information the time when the next slot
received at station i at t was sent will reach here

Figure 2: ni(t): the number of idle slots that have arrived at i + 1 before the next slots arrives

* mi(t): estimated aggregate number of data segments in the FIFO queues of all stations downstream

from station i (including i).

4.3 Distributed Algorithm

The algorithm is described in discrete time with the assumption of zero processing delay 2. At time t,

the information available at station i, i E [1, K], is Qi(t), Ii(t), and ni(t). Before station i receives any

information from downstream, it uses idels slots whenever it can with round robin counter Ci(t) being 0.

This is also the algorithm for the most downstream station K at all t, and,

mK(t) = QK(t), (4)

MK(t) = IK(t), (5)

CK(t) = 0.

In general, for time t, and station i E [1, K - 1], the algorithm runs as follows:

1. receive mi+l (t - D+1 ) and Mi+l (t - Di+1 ) sent by station i + 1 at t - D i+1

2. obtain the updated information r mation m(t) and M(t) which correspond to mi+(t - D' + ) and Mi+l(t -

2 Appendix A illustrates the case with non-discrete time and non-zero processing delay
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D/+1) as follows,

s (t) -= [Ti+l(t - Du+ 1 ) - ni(t)]+ , (6)

MiS(t) = min{Mj±i(t - D' 1), mi(t)Di + , (7)

where mS (t) is the estimated current number of data segments in the FIFO queues of all stations

strictly downstream from station i, and Mi(t) is the estimated current number of active stations

strictly downstream from station i.

3. update the counter and make a decision as follows:

Ci(t) = min{Ci(t - 1), Mi(t)}, (8)

* if Ii(t) = 1, the slot passing by is idle, and Ci(t) = 0,

then occupy it, and Ci(t) = K - i,

* if Ii(t) = 1, the slot passing by is idle, and Ci(t) > 0,

then propagate it, and Ci(t) = Ci(t) - 1,

* if li(t) = 1, and the slot passing by is busy,

then propagate it, and Ci(t) = Ci(t),

* if i(t) = 0,

then propagate the slot passing by, and Ci(t) = K - i.

4. obtain Mi(t) and mi(t) as below, and send them to station i - 1,

mi(t) = Qi(t) + mS(t), (9)

Mi(t) = Ii(t) + MiS(t). (10)

In review, the parameters used in the algorithm are, ni(t), Qi(t)(t), Ii(t), Mi(t), mi(t), MS(t), ms(t), Ci(t),

and Ci(t), for i E [1, K].

Notice that the core of the algorithm is the second step where station i uses the extra piece of information

ni(t) to update mi+l(t - Di+ l ) and Mi+l(t - Di+l). Take an example as in Figure 3. At time t, station i

receives the information that there are 10 data segments and 5 active stations downstream (mi+l (t - D + ' ) =

10 and Mi+l(t- Du+1 ) = 5). On the other hand, station i needs to take consideration of ni(t) = 3. In

the absence of new arrivals, station i knows that there are 7 data segments left at the queues of at most 5

downstream stations (i.e., mi(t) = 7 and Mis(t) = 5). Consider the same example except that ni(t) = 7.

Again, without new arrivals, station i knows that there are only 3 data segments left at the queues of at

most 3 downstream stations (i.e., mS(t) = 3 and Ms(t) = 3).

In order to guarantee the full utilization property, the decision made on idle slots should be based solely

on the information received, not the probabilistic estimates of future arrivals. As a consequence, downstream
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ni(t) = 3 ni(t) = 7

i 7- i -- 3
B: busy Bi' (t : busy 1Mf(t) =3

i+1 i+(t - + = 10 i+1 i+1 mi+(t- D- ) = 10 i i+1

Mi+i(t- Du+) = 5 Mi+i(t- Di+1, = 5

> time ' , time
t- Di+ t t + Dj t- D?+ t t+ Dj

information sending time slot receiving time information sending time slot receiving time

Figure 3: an example for the information updating step

stations still suffer from propagation delays. In order to compensate for this disadvantage, the protocol is

designed with a bias towards downstream stations in the updating equation (7), where Mis(t) takes its

maximum possible value in the absence of new arrivals. This can be seen in the second example above. The

3 data segments left can be distributed at one station, or at most 3 stations, and MS(t) = 3. On the other

hand, the estimate mS(t), the total number of data segments downstream, is the true value in the absence

of new arrivals. This ensures the full utilization property which is proved in Section 5.1.

4.4 Properties of the FUFA Protocol

In order to describe some basic properties, we first define the following parameters, for time t, s, and station

i, k e [1, K],

* Ai[t, t + s]: number of arrivals at station i during the interval [t, t + s); which is the time interval

starting at the t-th time slot and ending right before the (t + s)-th time slot,

* ni[t, t + s]: number of idle slots that station i propagates during the [t, t + s); for a special shorthand

notation with s = Dlu+ + Dj,

ni[t, t + Du+1 + DV] = ni(t + D'u+1 Dx),

* Ni[t, t + s]: number of idle slots that station i uses during [t, t + s); thus,

ni+l [t, t + s] = ni[t - D', t + s - D] - Ni+ 1 [t, t + s], (11)

* T- (t): time when the information arriving at station i at t was sent from downstream station k, for

k > i, or time when the information arrives at upstream station k, for k < i,
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k i

(t)-- t-- Dh for k > i T -t + C Dh for k < i (12)

h=i+l h=k+l

* Tk(t): time when the slot sent by station i at t arrives at downstream station k for k > i, or time when

the slot was propagated from upstream station k, for k < i,
k-I i-i

Tk(t) - t + Z Ddh for k > i Tk(t) -t- Ddh for k < i (13)

h=i h=k

See Figure 4 for the case when k > i.

i+1 i 

I I I i

T7 (t) T +l (t) t--D/+1 t t + Dd T + (t) Tk(t) time

Figure 4: illustration of Tk(t) and Tk(t) for k > i

Propositions: For all t, s, and all i E [1, K - 1], we have the following propositions.

Proposition 1: Qi(t) > Ii(t) > 0.

Proof: By definition in (3), Ii(t) = 1 if Qi(t) > 0, 0 otherwise.

Proposition 2: mS(t) > 0, mi+1(t - D+1) > 0, Mis(t) E [0, K - i], Mi+i(t - Du+ 1 ) E [0, K - i].

Proof: Use induction on i, from i = K up to i = 1.

Proposition 3: mi+1(t - D/+1) > mS(t).

Proof: This is based on the updating equation (6) in the algorithm.

Proposition 4: Mi+l (t - D+1) > Mi(t).

Proof: This is based on the updating equation (7) in the algorithm.

Proposition 5: mS(t) > Mis(t).

Proof: This is based on the updating equation (7) in the algorithm. ·
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Proposition 6: mi(t) > Mi(t).

Proof: From Proposition 1 and Proposition 5,

Qi(t) + mS(t) > Ii(t) + Mi(t).

The result thus follows from (9) and (10).

Proposition 7: MiS(t) > Ci(t) > O.

Proof: This comes from (8) in the counter updating step.

Proposition 8: ni+ [t, t + s] = ni[t - D, t + s - Dj] - Qi+l(t) - Ai+ [t, t + s] + Qi+l (t + s).

Proof: From (11),

ni+l [t, t + ] - n i [t - D , t - D] - Ni+l[t, t + s].

The result follows since the change in queue size during an interval is the difference of arrivals and departures.

Proposition 9: Ek=i+2 Nk[T '+l(t - D/+1 ), Tk(t)] = ni+l[t- Di+ l, t + Dj] - nl[Ti'+l(t - D+') T/i(t)].

Proof: Using (11) with k - 1, Tk i+(t - D+ 1 ), and Tk(t) in places of i, t, and t + s,

Nk[Tk+ (t - D/+1), Tk(t)] = nTk- 1 [Tk+(t - Di+ )-Dk-1, Tk(t)-Dd ] -nk[Tk+ (t- Du+ , Tk(t)]

nk- [Tk+l(t - D+1)- , Tk(_(t)] -- [Tk+l(t - DD+/+1 Tk(t)] (14)

Summing both side of (14) from i + 2 to 1, we have,

I 1

E Nk[TkI+'l(t -Di + l ) Tk(t)] = (nk-[Tki+l(t- DU+') Tki (t)] - nk[Tki+l(t - D+), Tk(t)])
k=i+2 k=i+2

= ni+l[Ti_++l(t - D 1) Ti+ 1(t)] - nl[Ti+l(t - D+1) Tli(t)]

= ni+l[t - D+1 t + D ] - nl[Ti+l(t - Di+1 ), Tli(t)],

with Tii+ (t) = t + D.

Proposition 10: If station i has a non-empty queue and propagates all the idle slots arriving during [t, t+s),

then

Ci(t) - Ci(t + s) > ni[t, t + s] > 0. (15)

Proof: This follows from the counter updating step. While a station has a non-empty queue, its counter is

decremented by at least one each time it propagates an idle slot.
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Proposition 11: Ms(t) > [Mi+l(t - Di+1) - ni(t)]+ .

Proof: According to the updating equation (7) in the algorithm, we can break the proof into two cases.

* Ms(t) = Mi+l(t - D+ 1 ). We have

Mi+l(t - Dt+1) > [Mi+l(t - Dt+1) - ni(t)]
+

Ms(t) = mS (t). We have

m/s(t) = [mi+l (t- D+1) -ni(t)] +

> [Mi+l(t- Di+)-ni(t)]+,

which follows from the updating equation (6) in the algorithm and Proposition 6.

Next, we prove two lemmas here and two later in Section 5.2, which are useful in the proofs of full

utilization, fairness and bounded access delay.

Lemma 1: For any given i E [1, K - 1], any t,

K

mi(t) < E Qk(Tk(t)). (16)
k=i+l

Remark: The main point of Lemma 1 is as follows. At time t, station i decides whether to use or propagate

the slot passing by based on the estimated number mra(t) of data segments that will be waiting at downstream

stations i + 1, i + 2, ..., K. Then the total number of data segments that the slot sees when it arrives at each

downstream station k E [i + 1, K] at Tk(t) should be at least as large as the estimation ms(t). It might be

larger due to the new arrivals at all the downstream stations i + 1, i + 2, ..., K. Thus, the lemma is useful

in the proof of full utilization.

Proof: We use induction on i from K - 1 to 1.

1. Let i = K- 1. We have,

mK-(t) = (mK(t-D ) - nK-l(t))+

- (QK(t - D) - nK-l(t))
+

= (QK(t + DdK - ) - AK[t - DK , t + DK - 1 ] - nK[t - D K , t + DdK 1 ])+ (17)

< QK(t + Dd K 1).

The first three equalities follow from (6), (4), and Proposition 8. The inequality is due to the nonneg-

ativity of QK(t + DdK-), AK[t - DK t + DdK-], and nK[t- DUK, t + DK- 1].
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2. Assume the inequality (16) is true for a given i + 1, i.e.,

K

ms+l(t- D/+
1

) < E Qk(Tki+
1
(t- D+l)) (18)

k=i+2

According to (6), (9), Proposition 8, nonnegativity of Ai+1[t - D +l , t + Dd], and (18),

ms(t) = [mi+l(t -Dt ) - ni(t)]+

= [Qi+l(t - D+l 1) + mi+l(t - D +l 1) - ni(t)]+

- [Qi+l(t + D') - Ai+ l[t - Du+1 , t + D'] - ni+l [t- Dt+1, t + Dd] + mS+l(t - D+')]+ (19)
K

< [Qi+l(t + Dj) - ni+l[t - D/t+, t + Dd] + E Qk(Tk +l (t - Du+1))]+
k=i+2

Combining with the fact that,

Qk(Tki+l(t - Dt+)) = Qk(Tk(t)) - Ak[T,(t-DU+1 ], Tk(t)) + Nk[Tk+l(t- D'+), TD(t)]

Qk(Tk(t)) + Nk[Tk+l(t - D/+1 ), Tk(t)],

we have,

K

ma(t) < {Qi+l(t + Dj)-ni+l[t- D+1, t + Dd] + E [(Qk(Tk(t)) + Nk[Tk+l (t- Di +1 ), Tk(t)]]}+
k=i+2

K K

= Qk(Ti(t)) - ni+l[t -D D+, t+Dd] + E Nk[Tk+l(t- DU+l), T, (t)] }+
k=i+l k=i+2

K

= { : Qk(Tk(t)) - nK[Tk+l(t - D+ 1 ), Tk(t)] }+ (20)
k=i+l

K

< E Qk(Tk(t)) (21)
k=i+l

where (20) is based on Proposition 9 with 1 = K. (21) is based on the nonnegativity of Qk(Tk(t)) and

nK[Tk+l(t - D+ 1 ), TK(t)].

Lemma 2: For all t, and all i E [1, K - 1], the following two statements are true:

m~(t) > o iff Mis(t) > 0.

mi(t) > 0 iff Mi(t) > 0
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Remark. Lemma 2 formalizes the intuitive fact that the estimated number of downstream data segments is

positive if and only if the estimated number of active downstream stations is positive.

Proof. The backward statements can be seen from Proposition 5 and Proposition 6. We prove that the pair

of forward statements are true by induction on i = K - 1,..., 1.

1. i = K - 1. Based on (4) and (5),

QK(t) = mK(t) > 0 == MK(t) = IK(t) > 0. (22)

Then,

mK_-(t) > 0 T mK(t- ~) > 0

::~ M,~_ l(t ) > K

= Mk_(t) = min{MK(t - DOK), mDK_(t)} > 0 (23)

according to Proposition 3, (22), and (7) in the updating step respectively. Based on (9) in the

algorithm, i.e.,

mK-l(t) = QK-1(t) + m 1K-l(t),

we have

mKl(t) > 0 = at least one of QK-l(t) and mK- 1 (t) is positive

= at least one of IK-l(t) and Mk_l (t) is positive

= MK-l(t) = IK-l(t) + Mk-l(t) > 0.

Thus we have established the basis for the pair of statements.

2. Assume that the pair of statements are true for a given i + 1, so that, in paticular,

mi+ (t/ - D+1 ) > 0 =:> Mi+1 (t - D+ 1-) > 0.

As in (23), we have

m~(t) > 0 ~ mi+l(t - D +1 ) > 0

M i+l (t-Di +l ) > O

= MS(t) = min{Mi+l(t - D + 1 ), m'(t)} > 0
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Thus, the first statement is true given the induction hypothesis.

Based on (9) in the algorithm, i.e., mi(t) = Qi(t) + mM(t),

mi(t) > 0 z> at least one of Qi(t) and mS(t) is positive

= at least one of Ii(t) and MiS(t) is positive

> Mi(t) = Ii(t) + MS(t) > O.

Thus, the induction proof is complete.

5 Proof of Full Utilization, Fairness and Bounded Access Delay

5.1 Proof of Full Utilization

Theorem 1: The protocol FUFA has full utilization according to Definition 1 in section 3.1.

Proof: For the most downstream station K, an idle slot is allowed to pass by only if the FIFO queue is

empty. Therefore, we only need to prove the full utilization statement for station i E [1, K - 1]. At time t if

an idle slot gets propagated by a station i with a non-empty FIFO queue, then according to the algorithm,

we must have Mis(t) > Ci(t) > 0, which implies that mS(t) > 0 from Lemma 2. Then based on Lemma 1,

we must have

K

E Qk(Tk(t)) > 0. (24)
k=i+l

Therefore, it is sufficient to show the following statement.

Statement 1: if an idle slot arrives at station i C [1, K - 1] at t with Ek=i+l Qk(Tk(t)) > 0, and gets

propagated, then the idle slot must be used by one of the downstream stations.

We prove Statement 1 by induction on i from K - I1 to 1.

1. Let i = K - 1. We have

QK(t + DdK-) = QK(TK- (t)) > 0.

According to the algorithm, station K uses the idle slot.

2. Assume that the statement is true for a given i + 1. The idle slot propagated at time t by station i

with Ek =i+l Qk(Tk(t)) > 0 arrives at station i + 1 at t + D'. There are three cases to consider at

station i + 1.

Case 1: Qi+j(t + D}) > 0 and the idle slot is occupied by a data segment at station i + 1.

Case 2: Qi+l(t + D') > 0 and the idle slot is propagated downstream. According to the algorithm,

we have a similar argument as in (24) for station i + 1, i.e., _k=i+ 2 Qk(Tk+l(t - Dd)) > 0. Based on
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the induction assumption for station i + 1, the idle slot will be used by one of the downstream stations

k E [i + 2, K].

Case 3: Qi+l(Ti+l(t)) = Qi+1 (t + Dj) = 0, so that the idle slot is propagated downstream. Then,

based on (13),

K K K

Qk(Tk- + (t + DO)) = E Qk(Tk(t)) = E Qk(Tj(t)) > 0.
k=i+2 k=i+2 k=i+l

According to the induction assumption for station i + 1, the idle slot will be used by one of the

downstream stations k E [i + 2, K].

Hence the idle slot is used by one of the downstream stations from i in all three cases.

5.2 Proof of Fairness

In order to prove the fairness property of the FUFA protocol, we first need to prove Lemmas 3 and 4 below.

Lemma 3: For any given i E [1, K - 1], any t,

K

mT(t) > [ E (Qk(Tk(t))- Ak[T(t), Tk(t)]) 1+. (25)
k=i+l

Remark: The main point of Lemma 3 is as follows. At time t, station i decides whether to use or propagate

the slot passing by based on the estimated number ms (t) of data segments that will be waiting at downstream

stations i + 1, i + 2, ..., K. Then the total number of data segments that the slot sees when it arrives at

each downstream station k E [i + 1, K] at Tk(t) should be no larger than that estimate mS(t) plus all the

new arrivals.

Proof: We use induction on i from K - 1 to 1.

1. Let i = K - 1. From (17), we have,

m_ 1 (t) = (QK(t + Dd )-AK[t - Du t + D - nKt

= (QK(t + D -1)-AK[t - D-D , t + DK-])+ (26)

= (QK(TIK (t)) - AK[7K -(t), TK- (t)l)+ .

where (26) follows from full utilization, which implies that nK(t + DK-1 ) > 0 only if QK(t + DKd ) -

AK[t-DI , t + D K-1] < o.

2. Assume the inequality (25) is true for a given i + 1, i.e.,

K

m + (t - D'+ ) >_ { E (Qk(Tk+ (t - D/+I)) - Ak[Tk+ 1 ( t - D D +1 ) ' )])I+ (27)
k=i+2
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Combining (19) and (27), we have

mrs(t) > {Qi+1(t + D') - Ai+l[t- D1+l, t + D] - ni+ [t-D D +1, t + D]
K

-[ 
(

( l(t- +1))- Ak[+(t D+
1

), Tk+ (t- 8-/+)])]+)
+

k=i+2

Combining with the fact that,

Qk(Tk+x(t- D/+))-_ Ak[k-+l(t- D n+), T +l(t- D/+)] =

Qk(Tk(t)) - Ak[T(t), Tk(t)] + Nk[Tk+ (t - D+ 1 ), Tk(t)],

we have,

m (t) ({Qi+l (t + D) -Ai+l[t- Dl+1, t + D] - ni+l [t - D +1 , t + D]
K

+[ 3 (Qk(Tk(t)) - Ak[Tk(t), Tk(t)] + Nk[Tk+'(t - Di+l), Tk(t)])]+)+

k=i+2

K

- { E~ (Qk(T~(t)) - Ak[lr(t), T,(t)]) -- ni+l[t - ]-)i, t + Dd]
k=i+l

K

+ T Nk[T 1+l(t-Di+1), Tk(t)] })+
k=i+2

K

- { E (Qk(Tk(t)) - Ak[T(t), T -(t)]) -nK[Tk+ (t - D +1), Tk(t)] )+ (28)
k=i+l

where (28) is based on Proposition 9 with 1 = K. If Qk(Tk(t)) - AK[7k(t), Tk(t)] > 0 for some

k E [i + 1, K], then station K has a non-empty queue from Tk(t) to Tk(t), and then, by full utilization,

nK[T~+l(t- D+l), TK(t)] = O. Therefore, nK[TK+l(t-Di+X), Tk(t)] > O only if Ek=i+l (Qk(Tk(t)) -

Ak[7k(t), Tk(t)]) < 0. Combining with (28),

K

me(t) > [ E (Qk(Tk(t)) - Ak[k(t), T,(t)]) ]+.
k=i+l

Lemma 4: For any i E [1, K - 1], and any t,

K

E Ik(Tk(t)) > MS(t). (29)
k=i+l

Remark. Lemma 4 is intuitive based on the fact that taking extra idle slots into consideration in the

information updating can only reduce the estimated number of active downstream stations among i + 1,
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i + 2, ..., K.

Proof: We use induction on i from K - 1 to 1.

1. Let i = K-1. We have IK(TKK-l(t)) = IK(t-D i +1 ) = MK(t-D i + l) > Mi(t) according to Proposition

4, which establishes the basis.

2. Assume the statement is true for a given i + 1. Using i + I and t - D+l in place of i and t, (29)

becomes,

K

E Ik(Trk+(t- D/+I)) > Ms+l(t- D+1) (30)
k=i+2

Therefore,

K K

Ik(n/(t)) = Ii+l(t-D +) + E± Ik(Tk+l(t - D+))
k=i+l k=i+2

Ii+,(t-DU+ ' ) + MiS+l(t-Di + ')

Mi+1 (t - Di + )

> Mi(t)

according to (30), (10), and Proposition 4 respectively.

Thus, we have completed the induction.

Definition 4: The set Sn = {il < i2 < ... < in} has been "very active" since to if, for each station ik E Sn,

and each t > Tiil(to) = to + i-ik1 Dh, the queue length at time t exceeds the number of new arrivals in the

interval from t back to the past round trip delay between ik and ii (i.e., some packet in queue at Tij (t) is

still in queue at T/ (t)), i.e.,

Qi(Ti(t)) > Ai [) (t), Tzl(t)] (31)

See Figure 5 for an illustration.

Theorem 2: The protocol FUFA is fair according to Definition 2 in Section 3.1.

Proof: For any station ik E S, that is "very active" at any t > T~ (to), (31) implies that

ik (s) = 1 Vs E [r (t), Tii (t)], (32)

Qik(s2) > A[sl, s2], for any [sl, S2) C [Tii(t), T;7(t)). (33)

17



Ti (to) ril(to) to Ti (to) TZi(to) time

Figure 5: illustration of Trk' (to) and Tik (to) for ik C Sn

With the assumption that all the other stations remain idle as in Definition 2, we have

K

Mi ,(t) < S I,(rtik(t)) = n- k, (34)
l=ik+l

according to Lemma 4 and (32) with Tik (t) _> <rl (t), respectively.

Next, we show that for any i > il, and t > Tij (to), the following inequality is true,

K

Mi[(t) > E Ik(Tk(t)) (35)
k=i+l

by induction on i = K - 1, ..., il.

1. Let i = K - 1. We need to prove that

Mk:_l(t) > IK(t + DK-). (36)

This leads to two cases.

* Station K is one of the idle stations, i.e., IK(t + DdK-) = 0, and (36) follows from Proposition 2.

* Station K E S,,. Based on (5) and (32) with t - Du > (to),

MK(t - DuK) = IK(t - D) = 1.
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And, based on (26) and (33) with [t- DK , t + DdK-) C [7k(t), TK (t)),

ml(t) = (QK(t + D - 1) - AK[t - DK, t + DdK1])+ > 1.

Therefore, according to the updating step (7) in the algorithm,

MIK_l(t) = min( MK(t - DuK), Tm_-1(t)} > 1 = IK(t + DK-1)-

2. Assume (35) is true for any given i + 1. Therefore,

K

Ms+l(t - D' 1 ) > S Ik(Tk+l (t - D+i')). (37)
k=i+2

Then,

Mi+l(t- D + 1 ) = Ii+l(t- D+1) + MS+ (t- +)

K

- i+l(t - Du+1 )+ E Ik(Tk+l(t- D-+1))
k=i+2

K

= i+l(t + Dd)+ E Ik(Tk(t))
k=i+2

K

= E Ik (Tki (t))
k=i+l

according to (10), (37), (32) with the fact that Tk+l(t - D'+1) E [k(t), Tk(t)] C [7T1(t), Tkl(t)], and

idle stations stay idle during [rk' (t), TJk (t)]. Moreover, based on Lemma 3,

K K

me(t) > { E (Qk(Tk(t)) - Ak[T(t)), Tk(t)]) }+ > E Ik(Tk(t))
k=i+l k=i+l

where the second inequality is due to the fact that,

for any k 9 Sn, Qk(Tk(t)) - Ak[rk(t)), Tk(t)] = 0 = Ik(Tk(t)),

for any k E Sn, Qk(Tk(t)) - Ak[rk(t)), Tk(t)] > 1 = Ik(Tk(t)).

Therefore, according to the updating step (7) in the algorithm,

K

Mis(t) = min{Mi+l(t - D+ 1), m (t)} > E Ik(Tk(t)).
k=i+l

Thus, we have completed the induction proof for (35).
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Based on (35), for any ik E S,, and any t > Ti~ (to) = to + E-h=il Dd

K

M (t) > E Il(Tik (t)) = n - k.
l=ik +1

Combining with (34), we have,

MiS (t) = n -k.

Hence, starting from to + ik-I Dnh, each station ik E Sn propagates an idle slot passing by when the

counter Ci(t) is positive, and decrements it by one until the counter gets to zero. When the counter gets

to zero, station ik occupies the next idle slot with its own data segment in queue, and resets the counter to

n - k. This is a perfect round robin cycle, where during each n time units,, the most upstream station il

uses one of the idle slots and propagates the remaining n - 1 idle slots. The station i2 uses one of these n - 1

idle slots and propagates the remaining n - 2, and so forth to station in. Then each station gets one of the

n slots for its own transmission.

5.3 Proof of Bounded Access Delay

Theorem 3: The protocol FUFA has the bounded access delay property; for each station i G [1, K] and

each first data segment Pi in queue, the access delay ti - ti < Bi = 5kl1 (Dk+1 + Dk) + K - 1.

Proof. For any i E [1, K], any packet Pi, and any k, h satisfying 1 < k < h < i, and any t, define the

following parameters,

* tk -Ti(t) =ta +h=k Dh+l Note that ti = tia,
· tk( = ) a + E'h=k u

* rk: the first time that counter Ck(t) is set to Mk(t) by (8) after tk, i.e.,

rk A min{t > tk I Ck(t) = Mks(t)} (38)

* Jnk(t): Jk(t) = 1 if Ih(rhk(t)) = 1 and Nh(rhk(t), Thk(t)) = 0; 0 otherwise.

Based on the definition, we have,

1 > I7hk(t)) Jh(t) > 0 (39)

k+1(t- Dk+1) > Jk(t) (40)

Part One: Show that the statement is true for i = 1, i.e., t' - ta < K - 1.

Since station I propagates all the (t' - tx) idle slots during [t1, t' - 1] while data segment P1 is waiting

at the queue, according to (15) in Proposition 10, we have,

Cl(t) - C(t) > nl(t, t) = t - t (41)
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Based on Proposition 2 and Proposition 7, we have,

C1(ta), Cl(td) E [0, K- 11 (42)

Combining (41) with (42), we obtain,

t--t 1 <K-1.

Part Two: Show the statement is true for any station i E [2, K].

With similar arguments as in Part One, we can conclude that at most K- i idles slots can be propagated

to downstream stations before data segment Pi fills an idle slot. This leaves us to show that each upstream

station k, k E [1, i - 1], can use at most one idle slot between tk and Ti(ti). Since the round robin counter

Ck(t) is set to M, (t) after each time station k uses an idle slot, it is sufficient to show that each station

k E [1, i - 1] uses no idle slot between rk and Tk(td). Here, we prove the following two stronger statements.

For any upstream station k e [1, i - 1], for any t E [rk, Tki(t')], we have,-kT~(td)] , we) h av, (

Statement 1: M(t) > E k+l Jh(t) + Ci(T(t)),

Statement 2: Nk[rk, Tk(ti) + 1] = 0.

We prove both statements using induction on k = i - 1, ..., 1.

Part A: Let k = i - 1. Show that both statements are true.

Part Al: Show that Statement 1 is true, i.e.,

MiLS-l(t) > Ci(Tii-l (t)). (43)

Based on (7),

,Mi_ (t) = min{Mi(t -D), mi_l(t)}. (44)

We now lower bound the first term in the minimum above.

Mi(t- Di ) = Ii(t- D) + Mi(t- DU)

> + ci(t-DU

> 1 + Ci(Tii-l(t))

according to (10), the fact that station i has data segment Pi in queue and Proposition 7, Proposition 10,

respectively.

We now lower bound the second term in the minimum of (44). Based on (6) and (9),

m 1l(t) = [mi(t - DO -ni l(t)]

= [Q(t - D) + ms(t - Di) -n i-(t)] + . (45)
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Note that

ni-l(t) = -- ni[t - D, t + Dd -'] + Ni[t - D, t + DT-] = ni[t - D , t + Dq--] (46)

from (11) with Ni[t - D/, t + D- 1] = 0. Combining (45) with Proposition 5 and (46), we have,

m _l(t) > (Qi(t-Di ) + Mis(t-D )-ni[t-D, t + Dd-])+

> (Qi(t - Du) + Ci(t - Du) -ni[t - D, t + Dd- ])+

> 1 + Ci(Ti-l(t))

where the last two inequalities are based on Proposition 7, the fact that station i has data segment Pi in

queue, and Proposition 10, respectively.

Part A2: Show that Statement 2 is true, i.e.,

Ni_l[ri_l, T/i_l(t'd) + 1] = 0.

According to the algorithm, station i - 1 uses no idle slot if Cil(t) is positive for all t E [ri-1, Til(tid)].

Therefore, it is sufficient to prove the following inequality,

Ci-l(t) > Ci(Tii-l(t)) Vt E [ri-1, Tii_l(td)] (47)

since the right hand side is nonnegative.

We prove this by induction on t = ri-1, ..., Til(ta).

1. Let t = ri_1. Based on the definition (38),

Ci-l(ri-) = MiSl(ri-) > Ci(Ti-i(ri-1))

where the second inequality is based on (43). Thus, we have established the basis.

2. Assume (47) is true for a given t, t E [ril, T/_l(t) - 1], i.e.,

Ci-l(t) > Ci(Tii-l(t)). (48)

We need to prove that it is also true for t + 1, i.e.,

Ci-l(t + 1) > Ci(Tii-l(t + 1)). (49)

Consider the following two cases:
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Case one: the slot passing by station i - 1 at t is not idle. Thus,

Ci-l(t + 1) = min{Cil(t), MSl(t + 1)}. (50)

Based on the induction assumption (48) and Proposition 10,

Cil(t) > Ci(Tii-l(t)) > Ci(Tii-l(t + 1)). (51)

Based on (43) with t + 1 in place of t, we have,

Misl(t + 1) > Ci(Tii-l(t + 1)) (52)

Combining (50) with (51) and (52), we obtain inequality (49) for case one.

Case two: the slot passing by station i-1 at t is idle. Due to the induction assumption (48), Ci-1 (t) > 0.

Thus, the idle slot is propagated downstream. Thus,

Ci_l(t + 1) = min{Ci_l(t) - 1, Msl1 (t + 1)}. (53)

The idle slot must be propagated by station i at Ti/-l(t) since T/i-l(t) < ti, which results in

Ci(Ti-l(t)) -- Ci(Ti-l(t + 1)) > n[Tii-1(t), Ti-l1 (t + 1)] = 1 (54)

according to Proposition 10.

Therefore, according to (48) and (54),

Ci-l(t)-1 > Ci(Tii-l(t))-1 > Ci(Ti-l(t+ 1)). (55)

Combining (53) with (55) and (52), we obtain inequality (49) for case two.

Thus, the induction proof on (47) is complete. We have established the basis for both statements 1 and 2.

Part B: For a given k E [1, i - 2], assume both statements 1 and 2 are true for upstream stations i - 1, i - 2,

...,k + 1. We need to show that they are also true for station k, i.e., for any t C [rk, Tki(td)],

i-i

Ms(t) > E Jhk(t) + Ci(Tik(t)) (56)
h=k+l

Nk[rk, Tk(ti) + 1] = 0.

Part Bi: Prove (56) with the induction assumption.
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According to (7),

Mk,(t) = min{Mk+l(t - Dk+1), mS(t)}. (57)

We now lower bound the first term in the minimum above. Using (10),

Mk+l(t - DOk+) = Ik+l(t - Dk + MkS+l(t - Dk+). (58)

From (39),

Ik+l(t - Dk+ ) = Ik+1(Tkk+l(t)) > Jzk+l(t). (59)

Based on the induction assumption on Statement 1 for k + 1 with t - D+ l in place of t,

i-i

(t-Dk+1) > - k+(t - Dk+1) + Ci(Tik+ (t - Dk+)) (60)
h=k+2

i-i

> Jh(t)± + Cii(Tik(t)) (61)

h=k+2

i-1

Mk+l(t-Dkl) > 5 Jhk(t) + Ci(Tik(t)). (62)
h=k+l

We now lower bound the second term in the minimum of (57). Based on (6) and (9),

mS (t) = [mk+ (t - Dk+1 ) - nk(t)]+

=- [mtl +1(t - Dk+ ) +- k+(t + l )-nk(t)] + . (63)

Note that from (11) and (11),

nk(t) = nk[t D k + l- D k
, t] = nk+l[t - D k+ 1 t + Dk] + Nk+1[t - Dk + 1 t + D]. (64)

-- d, u , , '

Combining (63) with Proposition 5, Proposition 1 and (64), we have,

m_(t) > (MkS+l(t - Dl) + Ik+1(t - Dk) - nk+l[t- Dk +, t ± D]- Nk+l[t- k + l , t D])+

i-i

( Jk+j(t - Dk+l) + Ci(Tikl(t - Dk+l)) + Ik+l(t - D 1
h=k+2

-nk+l[t- Dk+ t + Dk] - Nk+l[t-D k + , t - D D])+ - [RHS]+ (65)
-nkEl [t -Du t+ u ,24
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where the second inequality is based on (60) and only valid when RHS > O.

According to Proposition 9 with k and i in place of i and 1, we have,

i

nk+1 [t - Du+l' ] -t E Nh[Th+l (t- Du+), Thk(t)] + ni[Tk+ (t - Dk+l), Tn (t)]
h=k+2

i-i

- S Nh[Thk+-(t - Dk+), Thk(t)] + nii[Tik+ (t - D k+ ), Tk(t)] (66)
h=k+2

where (66) is due to the fact that Ni[Tik+l(t - D 1+), Tik(t)] = 0.

From Proposition 10,

Ci(Tik+l(t - Dk+1)) - ni[T+ (t- D k+ l), Tik(t)] > Ci(Tik(t)). (67)

Based on the induction assumption on Statement 2 for k + 1, we have,

Ik+ (t - Dk+l) - Nk+l [t - Dk, t + D k] > J+l 1 (t). (68)

Similarly for each station h C [k + 1, i - 1], we have

Jhk+l(t - Dk+l )-Nh[Thk+l(t- Dk+l), Thk(t)] > jhk(t). (69)

Combining (65), (66), (67), (68), and (69), we have

i-1

RHS > 5 Jk(t) + Ci(Tk(t)) > . (70)
h=k+l

Since RHS > 0, (65) is valid in general. Combining (65) and (70), we have,

i-1

m~(t) > E Jhk(t) + Ci(Ti (t)). (71)
h=k+l

Combining (57) with (62) and (71), we obtain (56).

Part B2: Show that Statement 2 is true, i.e.,

Nk[rk, Tk(td) + 1] = 0.

Based on the induction assumption on Statement 2 for each station h E [k + 1, i - 1], we have,

Jhk(t) > Jhk(rk) - Nh[Thk(rk), Thk(t)] > 0 Vt E [rk, Tki(t)] (72)

See Figure 6 for the timing.
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time

Th (rk) h (t) rk t Thk(rk) Thk(t)

Figure 6: an illustration of the timing

Notice that each of the three parameters in (72) can be either 0 or 1. Thus, to show that the first

inequality of (72) is true, we only need to show that,

if Jhk(rk) = 1, and Nh[Thk(rk), Thk(t)] = 0, then Jhk(t) = 1. (73)

According to the definition, Jh(rk) = 1 means that,

I(7'k(rk)) = 1, (74)

Nh[Thk(rk), Thk(rk)] = 0.

Combining with the assumption Nh[Thk(rk), Thk(t)] = 0 in (73), we have

Nh [Th(rk), Thk(t)] = Nh[rh ('rk), Thk(rk)] + Nh[Thk(rk), Th,(t)] = 0.

Since

Nh[rhk(rk), Thk(t)] = Nh[Thk(rk), Thk(t)] + Nh[Thk(t), Thk(t)],

we have,

Nh[Thk(rk), Thk(t)] = 0, (75)

Nh[Tk(t), T1k(t)] = 0. (76)

Combining (75) with (74), we have

I(hk(t)) = 1. (77)

According to the definition, (77) with (76) means that Jhk(t) = 1. Therefore, we have shown the first part of
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(72).

Again, to show that the second inequality of (72) is true, we only need to show that,

if Nh[Thk(rk), Thk(t)] = 1, then Jhk(rk) = 1. (78)

Combining the assumption Nh[Thk(rk), Thk(t)] = 1 in (78) with the fact that,

1 > Nh[Thk(rk), Th (t)] = Nh[Thk(rk), Th(rk)] + Nh[Thk(rk), Th (t)] > 0,

we have,

Nh[Th-(rk), Thk(rk)] = 0. (79)

According to the induction assumption on Statement 2 on h and the assumption Nh[Thk(rk), Thk(t)] = 1 in

(78), we have rh > Thk(rk) > rhk(rk). Thus, according to definition of rh, Ih(rhk (rk)) has to be 1. Combining

with (79), this means that Jhk(rk) = 1. Hence, we have shown the second part of (72).

According to the algorithm, station k would not use any idle slot if the counter Ck(t) > 0 for all

t E [rk, T~k(t')]. Therefore, it is sufficient to prove the following inequality,

i-1

Ck(t) > E (Jhk(rk) - Nh[Thk(rk), Thk(t)]) + Ci(Tik(t)) > 0 Vt e [rk, Tk(t)] (80)
h=k+l

where the nonnegativity is based on (72) and Proposition 7.

We prove this by induction on t = rk, ..., Tk(td).

1. Let t = rk. Based on the definition (38),

i-1

Ck(rk) = Mk(rk) > Jhk (rk) + Ci(Tik(rk))
k+l

where the second inequality is based on (56) with t = rk. Since the interval [Thk(rk), Thk(t)) is empty

in this case, this establishes the basis for (80).

2. Assume (80) is true for a given t, t E [rk, Tk(ti) -1], we need to prove that it is also true for t + 1, i.e.,

i--1

Ck(t + 1) > 5 (Jk(rk) - Nh[Thk(rk), Thk(t + 1)]) + Ci(Tik(t + 1)). (81)
h=k+l

Consider the following two cases:
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Case one: the slot passing by station i - 1 at t is not idle, thus,

Nh[Thk(rk), Thk(t)] = Nh[Thk(rk), Thk(t + 1)]. (82)

According to the updating equation (8),

Ck(t + 1) = min{Ck(t), MkS(t + 1)). (83)

Based on the induction assumption on (80) for t,

i-1

Ck(t) > E (Jk (r)k) - Nh[Thk(rk), Tk(t)]) C(Tk(t))(84)
h=k+l

Combining (84), (82), and the fact that Ci(Tik(t)) > Ci(Tik(t + 1)) by Proposition 10, we have

i-1

Ck(t) > (J(rk)-Nh[T(rk), Th(t + 1)]) + Ci(Tik(t + 1)). (85)
h=k+l

Based on (56) with t + 1 in place of t,

i-1

Mk(t± + 1) > _ Jnk(t + 1) + Ci(Tik(t + 1)). (86)
h=k+l

Combining (86) and (72) with t + 1 in place of t, we have,

i-1

Mks (t + 1) > (Jhk(rk) )-Nh [Thk (rk), Th(t + 1)]) Ci(Tik(t + 1)). (87)
h=k+l

Combining (83) with (85) and (87), we obtain inequality (81) for case one.

Case two: the slot passing by station k at t is idle. Due to the induction assumption on (80), Ck(t) > 0.

Thus, the idle slot is propagated downstream. Therefore,

Ck(t + 1) = min{Ck(t) - 1, Mk(t + 1)}). (88)

Based on the induction assumption on Statement 2 for each station h E [k + 1, i - 1], the idle slot is

either taken by one of the station h C [k + 1, i - 1], which results in that,

i-1 i-1

S Nh[Thk(rk), Thk(t)] + 1 = Nh[Thk(rk), Thk (t+1), (89)
h=k+l h=k+l

Ci(Tik(t)) - Ci(Tik(t + 1)) > n[Tik(t), Tik(t + 1)] = 0; (90)
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or propagated by station i at Tik(t), which results in that,

Nh[Thk(rk), Thk(t)] = Nh[Thk(rk), Thk(t + 1)], (91)

Ci(Tik(t)) - Ci(Ti(t + 1)) > n[Tik(t), Tik(t + 1)] = 1 (92)

where the inequality is based on Proposition 10.

Combining (84) with (89), (90), (91), and (92), we have,

i-1

Ck(t) - 1 > E (Jhk(rk) - Nh[Thk(rk), Thk(t + 1)1) + Ci(Tk(t + 1)). (93)

h=k+l

Combining (88) with (93) and (87), we obtain inequality (81) for case two.

Thus, the induction proof on (80) is complete. So is the proof of bounded access delay.

Remark. Theorem 3 states that the access delay for the first data segment in queue Pi at station i is upper

bounded by Eikl (D k + 1 + Ddk ) + K - 1, the round trip propagation delay between station i and the most

upstream station 1, plus a constant K - 1, where K is the total number of stations in the network. Another

nice property stated by Statement 2 in the proof is that any station k upstream from station i that is active

at tk (the time when the information on Pi arrives at station k) can take at most one idle slot before it

propagates the idle slot that is used by data segment Pi. Also for those upstream stations that are idle at

tk, no idle slots are taken by them during this period. In fact,

i-1 i-1

t - •ti < (D k+ 1 ± Dd) + E Nk[TD(tl), Tk(ti) + 1] + ni[Til(tl), t' + 1]. (94)
k=l k=l

According to Statement 2, for each k e [1, i - 1], we have

Nk[Tkl(tl), Tk(ti) + 11 < Nk[tk, Tk(t/) + 1] < Ik(tk) (95)

On the other hand,

K

ni[Ti(tl), td + 1] < ni[ti, td + 1] < Ci(ti) < Mi(ti) < E Ik(tk) (96)
k=i+l

where the last inequality is based on Lemma 4. Combining (94) with (95) and (96), we have

i-1 K

td-ta < (D+ ±+ Dd) + E Ik(tk)

k=l k=l, ksAi

where EK=l, ki Ik(tk) is bounded by K - 1i.
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For any general bus protocol with the full utilization property, any upper bound Bi to the access delay

for the first data segment in queue at station i (i E [1, K]) is at least as large as the round trip propagation

delay, i.e., Bi > Ei-' 1 (Dku+ + Dk). This can be shown through a contradiction argument as below.delay, i.e., Bi _ - 1d q- cn

Assume the access delay of the first data segment in queue at station i is upper bounded by the round

trip propagation delay minus one, i.e.,

i-1

td- tZa < CD 1 + D) - 1. (97)
k=l

Consider the case where all the stations are idle except station 1 and station i. Station i is idle until ti

when data segment Pi arrives at the empty queue. Meanwhile, station 1 has a long queue and uses all the

idle slots generated from the head-end except ISpi, the one used by data segment Pi. In order to satisfy

condition (97), idle slot ISpg must be propagated by station 1 before the information on Pi reaches station

1. In other words, station 1 propagates an idle slot without knowing that any downstream station is active.

Now, let's consider another case which is exactly the same as the previous one except that station i is always

idle instead. Then the idle slot ISpi propagated by station 1 is wasted since there is no active downstream

station. This is a contradiction to the full utilization property.

For any general bus protocol that is both full utilized and fair, an extra term can added to the lower

bound of the maximum access delay. Consider the following scenario. The most upstream station 1 is always

active with a long queue. All the other stations i > 1 stay idle until ril(t) when many data segments arrive

at the same time. Based on the full utilization property, station 1 will not propagate idle slots until time t

when the information of downstream stations being active first arrives. Therefore, idle slots will not arrive

at station i > 1 earlier than Til(t), a round trip propagation delay away from fi(t). Hence,

i-i

Bmi
n

> Z(D + l D)

k=l

Notice that starting from t, all the stations are in the set of "very active" stations. According to the definition

of "fairness", a round robin cycle starts at Til (t) at each station i E [1, K]. Re-number the stations according

to their positions in the round robin cycle as i' = 1, ..., K. Then,

i' -1

n ŽZ + 1 ±Dk ) + i'Bimin > .(Dkl u ) + i _ 1 (98)
k=l

Comparing (98) with the upper bound of the access delay in FUFA protocol Bi = k= (D + D) +

K - 1 , we can see that with FUFA protocol, the station with i' = K has exactly the minimum possible

value of the maximum access delay, while each of the other stations has a maximum access delay that is at

most K - 1 away from its minimum possible value.
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6 Conclusion

In this paper, we have designed and analyzed a fully utilized and fair (FUFA) dual bus protocol to demon-

strate some of the fundamental limitations of dual bus networks, in terms of full utilization, fairness and

bounded access delay. The basic concept of the protocol is to give equal access to all the stations according

to the most updated information available through the reservation bus. In particular, according to the infor-

mation from downstream and the idle slots propagated previously, each station computes the latest estimate

on the number of active downstream stations, and serves them in a round robin scheme. It was shown that

FUFA achieves fairness with full utilization. Additionally, the protocol provides a bounded access delay

which is linear in the round trip propagation delay, and at most a constant K - 1 away from its minimum

possible value for any bus protocol that is both fully utilized and fair.

This research represents a new direction in the design and study of multiaccess protocols in high-speed-

high-latency networks. The following issues warrant further research.

* Simulation results would be useful to analyze both steady state and transient state behaviors.

* The fairness defined here is for steady state behavior. It is desirable to analyze the protocol in transient

states, where a protocol is defined to be "fair" if the number of idle slots used by any heavily loaded

station during some interval T is at least as large as the number used by any other station, less some

constant independent of T.

* Modifications of the protocol to make it more practical should be investigated.
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Appendix A: Timing Issues in A Non-Discrete Time System with

Processing Delays

Here, we remove the assumption of zero processing delay and discrete time. When a slot on the data bus

arrives at a station, the busy bit is read. If it is 1, meaning that the slot is busy, it stays 1. Otherwise, the
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bit is set to 1 if the station decides to use the idle slot according to the algorithm, or stays 0 if the station

decides to propagate the idle slot. Then the processed busy bit is written back to the bus, followed by either

the old data segment from upstream or a new one from the station, which results in a queue length change

at the station. This change of queue length is assumed to take place at the time right after the busy bit

leaves the station. The delay parameter Dd, i E [1, K - 1], used in the algorithm can be defined as the

time starting when the busy bit of a slot on the data bus leaves station i and ending when the same busy

bit leaves station i + 1. Denote Dc, > 0 as the delay between reading and writing the busy bit as a slot

passes by station i. It is easy to see that this delay is equivalent of having slots going through an extra loop

around the station which generates the same amount of delay. Denote D'd > 0 as the propagation delay

downstream from i. Then,

Dd = Dd + P (99)

In practice, there are cases where the busy bit is placed a few slots ahead of the slot that it indicates. For

example, data segments are not stored in the queue, and it takes time to get them ready to be sent. Still,

the decision has to be made after the busy bit is read by a station according to the information available at

the time. Then the queue length has to be changed accordingly when the busy bit is written. Since all the

decisions are based on the busy bits, delaying the data segments by k slots changes nothing in the algorithm

and simply increases the overall delay by k slots.

To analyze the other delay parameter D/, i E [2, K], recall from the algorithm that the information

mi-1 (t + Di ) is generated as follows,

mi-l(t + D) = Qi-l(t + D) + mil(t + Du)

= Qi-1 (t + Di) + [mi(t)- ni_ 1 (t + D)] +

= Qi-l(t + Du) + [Qi(t) t) i+ (t + D )]+

Notice that information mi- 1 (t + Di) takes into consideration of both the queue length of station i - 1 at

t + Du and the queue length of station i at t, and D/ is the difference between the two time instances. DU

consists of the following three parts of delay,

DU = DC D 1 + D Dg, + D 2 (100)

where

* Dc,1 > 0 is the time from t when the busy bit of a slot on data bus leaves station i till the time when

the combined information mi(t) leaves station i with a slot on the reservation bus. Note that mi(t) is

obtained by combining Qi(t), the queue length of station i right before t, with ms(t), the most recent

updated information available up to t,
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· Dg > 0 is the propagation delay from station i to the upstream station i - 1,

* DC,,2 > 0 is the time starting when the information mi(t) arrives at station i - 1 ending right before the

busy bit of the next slot on the data bus leaves station i - 1, which is also the time that the updated

information m 1_(t + Du) starts being combined with Q-i- (t + Di). Thus, this later time instance is

t + DIU.

Note that slots on the data bus and the reservation bus can arrive at or leave a station at different time.

In the algorithm, station i uses ni(t), which includes the the most recent slot propagated at t - 1, to

make decision on the slot passing by at t. This is essential to guarantee the full utilization property. Denote

Si(s) as the slot with its busy bit leaving station i at time s. At time t - 1 when the busy bit of slot Si(t - 1)

leaves station i, the information ni(t) becomes available. Then the decision on slot Si(t) has to be made

before t when the busy bit of slot Si(t) leaves the station.

Appendix B: Overhead

In this section, we study how much overhead is needed for FUFA protocol to be implemented. We want

to remind readers that the purpose of this paper is not to introduce a protocol to be used in practice, but

rather to provide a machinery to illustrate some principles in dual bus networks.

According to the algorithm, a busy bit is needed in every slot of the data bus. It is 0 if the slot is idle, 1

otherwise. In the reservation bus, two parameters, Mi(t) and mi(t), i E [2, K] are carried in every slot. We

want to find out how many bits are needed to represent Mi(t) and mi(t) individually.

Since Mi(t) is upper bounded by K - 1, total [log2 (K - 1)1 bits are needed for Mi(t).

As for mi(t), according to Lemma 1, mi(t) = Qj(t) + m(t) < =i Qk(Tk(t)). Since the queue length of

station i can not be greater than the buffer size of the station, denoted as BSi, mi(t) < Ek=i BSk = BS i <

BS2 , where BS2 is the sum of the buffer sizes of all stations except station 1. Hence, total Flog2BS 2] bits

are needed for mi(t).

Next, we present a method that provides a possible better upper bound for mi(t). As we can see, the

decision making at station k at time t in the algorithm is controlled by the round robin counter Ck(t), thus

by Mk/(t). Therefore, we want to find the least upper bound for mi(t), denoted as m UB(t), such that Mk(t)

is not affected for all k E [1, K - 1]. Based on the algorithm and Proposition 5,

mSl(t + Du) = [mi(t) - ni- l(t + D)] + > MS_(t + Du).

Therefore,

mUB(t) > max Ms_l(t + Di ) + maxnil(t + Di ) = K - i + 1 + D + D-l 1. (101)
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On the other hand,

mi(t) = Qi(t) + mr~(t) = Qi(t) + [mi+l(t - Di )+ )- ni(t)]+

Then,

-UB(
t - Di+l) > mUB(t) + maxni(t) - minQi(t) mUB(t) + D +' + D'. (102)

Combining (101) and (102), for i E [2, K], we have

mYB(t) < K- 1 + ± (D + Dk-1). (103)
k=2

This implies that, at most [K- 1 + _k=2(D k + D-1 ) bits are needed for mi(t), where Zk=2(Du + Dd- 1)
is the round trip delay between station 1 and station K.

35


