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When is a pair of matrices mortal? *
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Abstract

A set of matrices over the integers is said to be length-k-mortal (with k positive
integer) if the zero matrix can be expressed as a product of length k of matrices in
the set. The set is said to be mortal if it is length-k-mortal for some finite k. We
show that the problem of deciding whether a pair of 33 x 33 integer matrices is mortal
is undecidable, and that the problem of deciding, for a given k, whether a pair of
matrices is length-k-mortal is NP-complete.
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In [5] Paterson uses Post's correspondence problem to show that the problem of deciding
whether a given finite set of 3 x 3 integer matrices is mortal is undecidable (the 2 x 2 case
is open, see [2] for a discussion). We use Paterson's result and a simple matrix argument
(inspired from a construction appearing in [6]) to prove undecidability of the mortality of
pairs of 33 x 33 integer matrices.

MORTALITY OF A PAIR OF 33 x 33 MATRICES

Instance: Ao, A1 E Z33 x33.

Problem: Does there exist a finite product of Ao and Al that is equal to the zero matrix?

Theorem 1 MORTALITY OF A PAIR OF 33 x 33 MATRICES is undecidable.
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Proof

Let {B1,... , Bm} be a set of n x n integer matrices. Define two nm x nm matrices by
A = diag(Bi,... , Bi) (i.e., A is block-diagonal with blocks B 1, , Bm in that order) and

T =( In(m-1)
V In 0

where Ir is the r x r identity matrix. Notice that Tm = Inm and Ak := Tk-1ATm-(k-l) =
Tk-lAT - ( k-l) = diag(Bk, ', B, B1, , BiBk_l) for k = 1, ... , m.

We claim that {B1,... ,Bmi} is mortal if and only if {A, T} is.

In order to prove our claim suppose first that Bi, ... Biq = 0 for some ij E {1,..., m}.
Then, the first block of the block-diagonal matrix Ai, ' Aiq is equal to zero. But then

m-1

P := Tk (Aii * Aiq)T m - k = 0,
k=O

and since this product can be written as a product of matrices in {A, T} the first impli-
cation is proved.

Suppose now that P := TtlAalTt2 ... Ttq AaqTt q+1 = 0 for some ti, ai and assume without

loss of generality that 0 < ti < m - 1. We clearly have

P = TtlAal Tm-tl Ttl +t2-m... Ttq Aaq Ttq+l = (Atl+l)al Ttl +t2-m... Ttq Aaq Ttq+l.

By recursion we are thus lead to

T = (At +)al... (Atq+1)aqTt*- 0

for some t*, > 0. The matrices Ak are block diagonal and the second implication is there-
fore proved.

The mortality of the nm x nm matrices A and T is thus equivalent to that of the m n x n
matrices {B 1, ... , Bm,}. It is shown in Paterson [5] that the latter problem is undecidable
for integer matrices when n = 3. The proof given by Paterson uses a reduction from Post's
correspondence problem. It is shown in [3] that Post's correspondence problem remains
undecidable when the number of pairs of words is equal to nine. This leads to eleven 3 x 3
integer matrices in Paterson's proof and our proof is therefore complete. [

Using a reduction from the classical SAT problem [1] we now show that the a priori
bounded version of MORTALITY OF A PAIR OF MATRICES is NP-complete. (Notice that
it is trivially decidable.) Our proof is partly inspired from a reduction technique used in
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[4] and is similar to the proof of the main result in [7].

K-MORTALITY OF A PAIR OF MATRICES

Instance: k > 1 (encoded in unary), A0, Al E Z n x n .

Problem: Do there exist ij C {0, 1} for j = 1,.. -, k such that Ai, ... Aik = 0?

Theorem 2 K-MORTALITY OF A PAIR OF MATRICES is NP-complete.

Proof

K-MORTALITY OF A PAIR OF MATRICES clearly belongs to NP; this is because "yes" in-
stances have a certificate il,... ., ik that can be checked by means of k - 1 multiplication of
the n x n matrices Ail,..., Aik. Since k is encoded in unary, the certificate checking algo-
rithm runs in time polynomial in k and n. Thus, it suffices to exhibit a reduction from SAT.

Starting from an instance of SAT with n variables xl, "' , xn and m clauses C1,'", Cm,
we construct two directed graphs Go and G1 . The graphs have identical nodes but have
different edges. Besides the start node s, there is a node aij associated to each clause Ci
and variable xj, a 0-th node aoj associated to each variable xj, and a (n + 1)-th node
ai(n+l) associated to each clause Ci. Edges are constructed as follows: For i = 1, ... ,m
and j = 1,... , n there is

* an edge (aij, ai(j+l)) in both Go and G1 if the variable xj does not appear in clause

ci ;

* an edge (aij, aoj) in Go and an edge (aij, ai(j+l)) in G1 if the variable xj appears in
clause Ci negatively;

* an edge (aij, aoj) in G1 and an edge (aij, ai(j+l)) in Go if the variable xj appears in
clause Ci positively.

For i = 1,... , m there are edges (s, ail) and edges (ai(n+l), s) in both graphs. Finally, the
graphs have edges (aoj, ao(j+l)) for j = 1, ... , n - 1. There are no edges leaving ao,.

Let r denote the total number of nodes (r = (n + 1)(m + 1)). We construct two r x r
matrices Ao and Al. Associated to the graph Go (respectively, G1) is the r x r adjacency
matrix Ao (respectively, Al) whose (i,j)-th entry is equal to 1 if there is an edge from
node j to node i in Go (respectively G1), and is equal to zero otherwise. (Thus, the
j-th column is associated with edges that leave node j.) Let k = (n + 1)(n + 3). We
claim that the set {Ao, A1) is length-k-mortal iff the instance of SAT is satisfiable. Since
all transformations are performed in polynomial time, this claim will establish the theorem.
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To any given node co we associate a column-vector x(a) of dimension r whose entries are
all zero with the exception of the entry corresponding to the node ac which is equal to one.
We need two observations for proving our claim.

1. Let a partition of the nodes be given by Po = {s}, Pi = {ail : i = 1,... m}, P2 =

{ao1,ai2 i = 1,...m},... ,Pn = {ao(n-l),ain: i= 1,... ,m} and Pn+l = {aon, ai(n+l)
i = 1,... , m}, then, any edge (from Go or G 1) leaving from a node of partition Ph goes
to a node of partition Ph+l. Furthermore, the edges leaving from partition Pn+l go back
to PO. Thus, any path in the graphs Go and G1 either gets to the node ao, from which
there is no outgoing edge, or it visits node s after £(co) steps, where 0 < £(ca) < n + 1. In
matrix terms this implies the following. If A is a product of h factors in {Ao, A 1} where
h is a nonnegative integer equal to £(oa) modulo n + 2, then

Ax(a) = x(s). (1)

for some nonnegative scalar b.

2. Let ql,".. , E {0, 1} be a truth assignment of the boolean variables xj and consider
the product Aqn ... Aql. The vector Aqn ... Aqlx(ail) is equal to x(aon) if the clause Ci is
satisfied and is equal to x(ai(n+l)) otherwise. Let A, be any of Ao or A 1. There are no
edges leaving aon and there are edges from s to ail for i = 1, ... , m. therefore we have
A*x(aon) = 0 and A,x(s) = Em= x(a il). From this we conclude

m m

A, Aqn . . AqA, x(s) = A*Aqn ... Aq l Z (ail) = A*, Aq, ... Aqix(ail ) = Ax(s). (2)
i=l i=l

where A is equal to the number of clauses that are not satisfied by the given truth assign-
ment.

With these two observations we now the claim. Assume that the instance of SAT is satisfied
by the assignment xi = qi for ql,' " ,qn E {0, 1} and define A by A = A Aqn ... Aq1A*
with A* any of Ao or A 1. Since all clauses are satisfied, Eq. (2) gives Ax(s) = 0. Using
Eq. (1), we infer

(A,A)(n+l)x(ao) = 0,

for all cz. Since R r is spanned by x(oa) when ac ranges over the nodes, we conclude that

(A,A)(n+l) = 0

and the set {Ao, A 1 } is length-k-mortal for k = (n + 1)(n + 3).

For the reverse implication, assume that the instance of SAT is not satisfiable and consider
any product of n + 2 factors Aqo ... Aqn+1. Since the instance is not satisfiable, we infer
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from Eq. (2) that

Ao... Aqn+1x(s) > x(s). (3)

Let A be an arbitrary product of k matrices. A n +2 is a product of (n + 2)k matrices and
Eq. (3) gives An+2x(s) > x(s), hence A # 0. Since A was arbitrary the proof is complete.

Remarks:

1. In Theorem 2 we assume k to be encoded in unary. The reason for this is that the
certificate checking algorithm runs in time polynomial in k and n. If k was encoded
in a non-unary base, the certificate checking algorithm would run in time exponential
in the size of k and the proof of the membership in NP would fail. Thus, when k
is encoded in non-unary decimal expansion, K-MORTALITY OF A PAIR OF MATRICES

becomes NP-hard.

2. The proof of Theorem 2 involves only boolean matrices (i.e., matrices with 0-1
entries). Thus, the theorem remains valid in the special case where we restrict all
matrices in the given family to have 0-1 (or nonnegative) entries.

3. If we constrain the entries of the matrices in MORTALITY OF A PAIR OF 33 x 33
MATRICES to have nonnegative entries, then the problem becomes decidable.

MORTALITY OF A PAIR OF MATRICES WITH NONNEGATIVE ENTRIES

Instance: A0 , A 1 E Nn xn.

Problem: Does there exist a finite product of A0 and Al that is equal to the zero
matrix?

We claim that MORTALITY OF A PAIR OF MATRICES WITH NONNEGATIVE ENTRIES

is decidable, and is in fact NP-complete. Our argument is as follows. The mortality
of any set of matrices with nonnegative entries is equivalent to the mortality of the
associated set of boolean matrices whose entries are put to zero (respectively, one)
when the corresponding entry in the initial matrix is equal to zero (respectively,
positive). Because there are at most 2n2 boolean matrices of dimension n x n, any
elements of the semigroup generated by a pair of boolean matrices can be written
as a product whose length is less than 2n2. Mortality can thus be checked by simple
enumeration.

By a small adaptation of the proof of Theorem 2 one can show that MORTALITY OF
A PAIR OF MATRICES WITH NONNEGATIVE ENTRIES is NP-complete. As before, the

proof involves only boolean matrices and thus the problem remains NP-complete
when the given matrices are boolean.
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