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Abstract-We develop and analyze a multiaccess communi- In this paper we present an analysis of a system with just

cation model over the additive Gaussian noise channel. The enough complexity to exhibit both aspects of a multiaccess

framework is information-theoretic; nonetheless it also incorpo- problem. In the analysis we use tools borrowed from both

rates some queuteing-theoretic aspects of the problem. queueing theory and information theory. As a result, we

are able to indicate the trade-offs between queueing-theoretic
I. INTRODUCTION quantities and information-theoretic quantities, such as the

A MULTIACCESS communication system consists of a trade-off between delay and error probability.

set of transmitters sending information to a single re-

ceiver. Each transmitter is fed by an information source II. TE MODEL AND A PRELIMINARY ANALYSIS

generating a sequence of messages; the successive messages

arrive for transmission at random times. We will assume Our multiaccess environment consists of an additive Gauss-
arrive for transmission at random times. We will assume oise channel with noise density No/2 and two-sided

that the information sources that feed the transmitters are 'an n
bandwidth 2W. All the transmitters have equal power P.

independent processes and that the messages generated by a T h e messages are generated in accordance equal Poisson

given information source form an independent sequence. The The messages are generate and we wil accordance with message is

signal received at the receiver is a stochastic function of the roc a

signals sent by the transmitters. We will further assume that transmitted by a different transmitter. In effect, there are an

the feedback from the receiver is limited; in particular, the infinite number of transmitters, each handling one message.
This assumption simplifies the model so that we do not have

possibility of any transmitter observing the received signal is This assumption simplifies the model so that we do not have

ruled out. to consider message queues at individual transmitters. Each

From the description above, one sees that there are two message consists of a sequence of bits of (possibly) variable

issues of interest: (1) the random arrival of the messages to the length. As soon as the message arrives, the transmitter encodes

transmitters, and (2) the noise and interference that affect the it into a time signal of infinite duration (henceforth codeword)

transmission of these messages. The main bodies of research i and starts transmitting it. However, the transmitter will- not

multiaccess communications seem to treat these two issues as transmit for the whole duration of the signal; it will transmit

if they were separable [1]. The collision resolution approach only until the receiver decodes the; message and instructs

focuses on the random arrival of the- messages but ignores the transmitter to stop. (see Fig. 1.) Thus, if the system, is

noise and trivializes the interference of the-transmitted signals; stable, with probability one, only a finite initial segment of the

e.g., [2], [3]. The multiaccess information4heoretic approach; infinite duration codeword will be transmitted 3 The decoder

on the other hand, develops accurate models for the transmis treats each transmitter independently; each message is decoded

sion process (noise and interference) but ignores the random regarding the other transmissions as noise;
arrival of the messages,1 e.g., [41-[7]. In addition, one can say If there are n active transmitters at a given time, the signal..

arrival of the oversimpl o that the results generated by the to-noise ratio (SNR) for- any of these active transmitters, is
with some oversimplification that the results. generated by the P/((n - 1)P+ N0 W). At this point let us assume that the

twoapproachesare dierent Theinformat P/((n - 1)P + NoW). At this point let us assume that the
two approaches are ocidiffrent character. The information-

decoder can resolve
theoretic results mostfI:stat: uppp and lower bounds (which

sometimes coincide) itlpierfformance of the best possible w
scheme, whereas collision resolution results mostly analyze . (n - 1)P+ NoW

the performance- of particular algorithms.,
nats3 per unit time for each transmitter. 4 Let us emphasize that
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Fig. 1. Transmission of a packet in the example system. In the figure, n(t) correspond to different SNR values ranging from 0 dB to 60 dB in increments
denotes the number of active transmitters. The lower illustration focuses on a of 10 dB. The delay is normalized by the nat arrival rate per unit bandwidth
particular transmitter. A message arrives at ta and is transmitted until t d at E[SI.
which time it is decoded at the receiver. The duration D of transmission is a
random variable, which is dependent on the values of n(t) for t > ta.

Theorem I (see e.g., [9, sec. 3.31): For the processor-sharing
by a particular transmitter during the time when there are a model described above, the number of jobs in the system has
total of n active transmitters is P/((n - 1)P + NoW), there is the steady-state distribution
no coding theorem that guarantees the existence of a code and 1
a decoder that can achieve the transmission rate indicated in Pr{u jobs in the system} = K (AE[SI)U
(1). With this remark, it is clear that the analysis that follows
is not rigorous. However it provides the intuitive setting in where
which to understand the essential ideas of a correct analysis u
presented in Section mIII. With this assumption, the decoder has +(u) = I +(v) and K = 1 + Z(E[S])U/0!(u)
a total information resolving power of v=1 u=1

P uttme provided that the infinite sum is well-defined.
n (n - 1)P + NoW) In the multiaccess problem we described we can take

which it shares equally among the active transmitters. Note S = message length in nats/W
that the total resolving power is not a constant, but depends
on the number of active transmitters. 1

One can liken the situation just described to that of a u)+ - SNR-)
processor-sharing system where jobs compete for the proces-
sors time. The role of the jobs is taken by transmitters that where SNR de f P/(NoW). The normalization by W will
are served by the decoder. The more transmitters that are make the results easier to present. Since we can compute the
active at a given time, lesser the rate of service each receives, steady-state statistics of the number of active transmitters, N,
since there is more interference. We can indeed formulate the we can use Little's law to compute the average transmission
problem as a classical processor-sharing system in queueing duration D
theory, with the following difference: the total service rate
depends on the state of the queue through the number of jobs AD = E[N].
competing for service. This problem has been analyzed (see For a given value of SNR, the average number of active
e.g., [9]) and we reproduce the relevant results below. Let us def

firstdefin the processor-sharing transmitters is a function of £ = AE[S] , which is the loadingfirst define the processor-sharing model.
Suppose that jobs in a processor-sharing system arrive in of the multiaccess system in terms of nats per unit time perSuppose that jobs in a processor-sharing system arrive in

accordance to a Poisson process of rate A. Each job requires unit bandwidth: A is the arrival rate of the messages, and E[S1
a random amount of service, *, distributed according to G is the average message length in nats per unit bandwidth, thus

AE[S] is the nat arrival rate per unit bandwidth. Fig. 2 shows
Pr{S < s} = G(s). the dependence of average waiting time to the loading f and

the SNR. Note that since
The service requirements of jobs are independent. Given u
jobs in the system, the server can provide service at a rate lim u ln(1+ = 1
of (u)) > 0 units of service per unit time, and it divides - u - + SNR -

this service rate equally among all jobs in the system. That
is, whenever there are u > 0 jobs in the system, each will
receive service at a rate of 0(u)/u per unit time. A job will
depart the system when the service it has received equals its K = 1 + (AE[Sl)u/(!(u)
service requirement. u=l

u1-----------------~---~~~-`------ I
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exists only when e is strictly less than unity. Thus the system We can model our Gaussian waveform channel of single-
is stable if and only if e < 1; equivalently the throughput of sided bandwidth W as a sequence of complex Gaussian scalar

the system is I nat per unit time per unit bandwidth. As long channels Ci, i E Z, by first bringing the waveform channel
as the rate of information flow normalized by the bandwidth to baseband, and sampling the complex baseband waveform

is less than 1 nat/s/Hz, the average delay will be finite and channel of two-sided bandwidth W at the Nyquist rate W. The

the system will eventually clear all the messages. If, on the channel Ci is the channel corresponding to the ith sample.
other hand, the normalized rate of information flow is larger Each channel Ci will be used only once. The noise for the
than 1 nat/s/Hz, the average delay will become unbounded and channel Ci is a complex Gaussian random variable of uniform
messages will keep accumulating in the system. This limit of phase and power
1 nat/s/Hz is a consequence of independent decoding: if n
transmitters are active and we decode each as if others were o = N0Vo + (Uk - 1)P/W, Wtk_l < i < Wtk.
noise, then the transmission rate per unit bandwidth of any
transmitter cannot exceed ln(1 + 1/(n - 1 + SNR-)) nats per This expression indicates that the noise density seen by a
unit time. Using the inequality In(1 + x) < x, the aggregate particular transmitter-receiver pair when there are u - 1 other
transmission rate per unit bandwidth is then upper bounded by active transmitters is Gaussian with intensity iVo + (u -
n/(n - 1 + SNR-1) , which for large n approaches unity. 1)P/W. The (complex valued) input to this channel is limited

in variance to P/W.
III. ANALYSIS AND RESULTS Note that the scalar channels are made available over time

Recall that the heuristic analysis given in the previous at the Nyquist rate of W per unit time. Let the number of
section suffers from our unjustified assumption as to the codewords be M (i.e., the message is log 2 M b = In M nats
decoding rate of the receiver. Here we will set things right. long).
We had assumed that the receiver decodes each transmit-
ter independently; we may imagine that there are as many A. Simple Decoding Rule
receivers as there are transmitters, each receiver decoding If we use the output of the first d channels to decode the
its corresponding transmitter, regarding other transmitters as transmitted message (i.e., decoding at time d/W), 5 we get the
noise. We will choose the codewords of each transmitter as following random coding bound on the error probability [10,
samples of bandlimited white Gaussian noise. Each receiver ch. 5, pp. 149-1501: for any 0 < p 1
will know the codebook of the transmitter that it is going to
decode; the signals transmitted by the other transmitters are d

indistinguishable from those generated by a Gaussian noise Pe <exp [pin M- Eo(p, oi)].
source. However, we will assume that each receiver is aware i=1
of the total number of active transmitters at all times. This is a
sensible assumption: we may imagine that there is a separate variance o2 and Gaussian input ensemble with variance P
channel on which the transmitters announce the start of their
transmissions so that a decoder will be assigned to them. To be p )
able to cast our system as a processor-sharing queue and use Eo(p, ) = p
Theorem I to analyze it, we must identify the service demand
of each transmitter and the service rate offered by the receiver If we fix a p E (0, 1] and a tolerable error probability Pc, then
to the transmitters. Intuitive candidates for these quantities are, we can view - In P, + p In M as the demand and Eo(p, a)
respectively, the number of nats in the transmitters' messages as the service rate (per transmitter-receiver pair per degree of
and the average mutual information over the channel. The freedom). Note that to cast these parameters in the context of
intuition behind these candidates is that the number of nats processor-sharing queues we need to express service rate in
of the transmitters' messages decoded per unit time should be terms of total service per unit time. This leads to a service
related to the mutual information over the channel, and thus the rate at time t as
rate of information flow should constitute the provided service
rate. In the previous section this intuitive idea was treated as Wu(t)Eo(p, u(t))
fact and the results derived were based on it. It will turn out Pt)
that this intuitive idea is too simplistic and we will define the (1 + p)(No
demand and service differently in the following. Nonetheless,
we will see that the intuitive candidates can be interpreted as Thus, we have a demand
the limiting case of the ones we will define.

Let us focus on a single transmitter-receiver pair, and S = -(In P5 ) + pin MI
condition on the process u(t), t > 0, the number of active
transmitter-receiver pairocs at all times times numbertov. 5 The careful reader will notice that when the decoder instructs the trans-

mitter to stop transmitting after the decoding time, all the transmitter can do
The samples of the process u(t- will be integer valued step is to force the Nyquist samples of its signal to zero. This is not the same as

functions. Let 0 =- to < tl < t2 < ... be the times the thetransmitted signal being equal to zero after the decoding time. This arises
simply from the bandlimitedness of the transmitted signal. One way to get

process changes value and let u, k > 1 be the-value of the around this is for the receiver to subtract the transmitter's signal from the
process in the interval [tk-1, tk). received signal once it decodes it.
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Let us first examine the stability of the multiaccess system 0.5

as predicted by this analysis. For stability we need I i ! Ee
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u-.oo +(U) Fig. 4. Delay versus error exponent with the simple decoding rule. (a)
I = 0.2. (b) E = 0.6.

Define

£ d AE[ln M]/W (1 + 2 for 0 < E, < 1 and 2(1 +'E,) for Ee > 1 . In
sum, the stability region of the system is

as the loading of the system (average nat arrival rate per unit
bandwidth) and (Ee, e) Ee E [0, 1], 0 < £(1 + V/) 2 < 1i

Ee d f-(ln Po)/E[ln M] U {(Ee, ): E, > 1,0 < i(2 + 2E) < 1}.

as the error exponent.6 Since 0(u) - Wp/(1 +p) as u tends Fig. 3 shows this stability region.
Whether one is interested in small or large values ofto infinity and

Ee depends on the message length and the desired error
E[S] = E[p In M - (ln P,)] probability. If one has long messages then a small value of

= E[ln M](p + Ee) Ee may be sufficient to drive the error probability down to
acceptable levels. For short messages, however, E, will need

we get to be large to achieve the same error performance. Note that
E, can be made arbitrarily large if one is willing to sacrifice

lim = £(1 + Ee/p)(1 + p) throughput.
~u-lo q5(u) Given a stable (Ee,£) pair, an SNR df- P/(NoW), and

and we can rewrite the stability condition as p E (0, 1] we can use Theorem 1 to compute the steady-
state distribution of the number of active transmitters and use

e(l + p)(l + Ee/p) < 1 for some p E (0, 1]. Little's law to compute the average delay. One can further
choose the value of p to minimize this average delay. Fig. 4

This is equivalent to the statement shows the value of this optimized average delay as a function
of Ee for various values of the loading f and SNR.

£ inf (1 + p)(1 + Ee/p) < 1.0<p<l Note that we can interpret the results of Section II as
a limiting case of the results of this section by letting Ee

This minimization occurs at p = vE~ for 0 < Ee < 1 and at approach 0.
p 1 for Ee > 1. The corresponding value of the infimum is

6This definition of the error exponent is different than the usual definition, B. Improved Decoding Rule
which would define it as minus the logarithm of the error probability divided Let us examine the operation of the decoding rule we
by the transmission duration. Here we normalize by the average message
length rather than by the transmission duration. This is both convenient and are employing above: When a transmitter becomes active,
sensible, the receiver accumulates the values of Eo(p. c(t)) for this
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transmitter, and when this sum exceeds the service demand, the our definition of demand and write it only in terms of the

receiver decodes the message. Observe that a(t) only depends error and erasure probabilities
on the number of active transmitters at time t , and thus the
receiver chooses the time of decoding only on the basis of the S' = -(1 - s) In Px - s In Pe + p In M.

number of interferers, and ignores what the received signal
actually is in making the decision about decoding time. It can The demand thus defined does not take into account the fact
turn out that at this time for decoding the receiver finds that the that the transmission consists of multiple stages. This can
received signal has been corrupted by noise and thus making be remedied by recalling that the number of transmission
correct decoding unlikely. For this reason we will consider a stages is a geometrically distributed random variable with
modification of the previous decoding rule as follows: mean 1/(1 - Px). Thus the expected value for the overall

In this modified rule, the decoder proceeds in stages. The demand is
duration of each stage is determined by the number of inter-
ferers in that stage and at the end of each stage the decoder E[S] = E[S]/( - x) = A-leW(p + sEe + (1-s)E)
decides whether to decode or to proceed to the next stage. The
decision to decode or to proceed is made on the basis of the
received signal in the current stage. If the decoder chooses f = AE[ln M]/(W( - Px)) (loading) (2)
to proceed to the next stage, it disregards the signal it has
received in the previous stages, and starts anew. Note that the E = -(ln Pe)/E[ln M] (error exponent) (3)
transmitter does not need to know about the stages, it just and
keeps transmitting the signal corresponding to the message Ex = -(n Px)/E[ln M] (erasure exponent). (4)
throughout the stages. Let Px be the probability that at the
end of a stage the receiver will not decode but will proceed As before, the service rate function ((u) will be given by
to the next stage. We will call Px the erasure probability. WuEo(p, s, oa) evaluated at the 0a corresponding to u - 1
Then, the number of stages the decoder will take to decode interferers
the message is a geometrically distributed random variable
with mean (1 - Px) - . If the expected service demand for +(u) = pWln +(s/p) No+(
the individual stages is E[S], then the overall service demand NoW+(u1)P
will have expected value E[S]/(1- Px). To analyze this +Wln [ 1+ ( - s - sp)(s/p)(P/(NoW+(u - 1)P))
decoding rule we shall make use of a result of Forney [11]. - 1+ (s/p)(P/(NoW + (u - 1)P))
Forney proves his results for discrete channels, but it is easy to
generalize them to channels with continuous input and output We proceed, just as before, by first examining the stability of
alphabets as we have here: if a stage uses the output of d the system. Noting that lim,_ o ~(u) = Ws(2 - s(l + p)/p)
channels (i.e., the stage lasts d/W units of time) we have the the stability condition
following random coding bound error probability Pe and the AE[S]
erasure probability Px: for any 0 < s < p < 1 and T > 0 lim < 1

_U-o0 +(U)
d

Pe < exp [plnM + (s- )T- Eo(p, s,i) reduces to
i=lP+ E+( s)E
andeP + see + (1 s)E < 1. for some 0 < s < p < 1.and s(2 - s(l + p)/p)

d 1 This in turn, is equivalent to
Px < exp [p InM + sT- Eo(p, s, i)].

.:-,p + sE, + (I.- s)E]
g min min p + .

Notethat eT is the ratio of the two upper bounds; the parameter O<peiO<ssp s(2 - (1+ p)/) <

T controls the trade,.olicbetween Pe and Px. The function The minimization over s can be- done via differentiation and
Eo for a complex additive Gaussian noise channel with noise we obtain
variance a 2 and Gaussian input ensemble with variance P/W
is given by * = + Ex ( I 1)

Ee - Ex

Eo(p, s, ) = pn 1 + (s/p) def 
; W -2 as the minimizing value of s where 3 = P(p) df 1p E+Ex

+i - - sp)(s/p)P/(W 2 ) Using the inequality v4ti < 1 + <, we see that s* <

p+p/(1 + p) and thus s* < p as desired. Substituting this value.

If we fix p E (0, 1], s E (0, p] and tolerable values of Px of s we get the following condition for stability
and Pe, we may identify ln(Px/Pye asT, -In Px +sln T+
plnM as the demand and Eo(p, s, oi) as service rate. We may e rin (Ec-Ex) < - 1..
now use Theorem 1. We first eliminate the parameter T from + 21)(1 +
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Fig. 6. Stability region of the multiaccess system as Ex -- 0. Any (Ee, £)
pair under the curve belongs to the stability region. Compare with Fig. 3 to
see the enlargement of the stability region. For a comparison with the previous decoding rule consider

values of £ close to 1. In this range Ee needs to be small, and
The quantity to be minimized is a decreasing function of , we can approximate the stability condition to Ee < 1 - e.
and thus the value of p that minimizes the above expression Compare that with the previous decoding rule: the largest
is the one that maximizes /. error exponent the previous rule could support for large £ is

The nature of the mapping p - P,(p) depends on the value approximately (1 -e) 2/4. One should note that the comparison
of Ex. There are three cases as illustrated in Fig. 5: is meaningful only when Px is small, since the definition

1) Ex = 0. The range of the mapping is [½Ee, E,]. The of e has a factor (1 - P)-l in the second case. We are
maximum is achieved at p = o. thus assuming that although Ex is close to zero, the average

2) 0 < Ex < 1. The range is [0, (E, - Ex)/(1 + Vr/EX)2]. message length is large enough to make Px close to zero as
The maximum is achieved at p = . well.

3) Ex > 1. The range is [0, (E, - Ex)/(2 + 2Ex)]. The As before, we can compute the the average delay for any
maximum is achieved at Ep = 1. given E, Ex, SNR and £. In Fig. 7 we show the normalized

average delay as a function of E, for various values of thePutting the above together we have the following stability averag e delay as a function each curve arious values of thea.ndition: .other parameters. Points on each curve are the result of an
optimization over p and s to yield minimum delay.

1) If 0 < Ex < 1

IV. CONCLUSION

We developed and analyzed a multiaccess communication
2) if Ex > 1 model over the additive Gaussian noise channel. Unlike pre-

2 vious approaches to multiaccess we seek to combine queueing
1e ( /1T + +i -Ex < 1. theory and information theory to arrive at our results.

/2 The results presented here are not to be taken as a proposal
If we are interested in maximizing Ee for a given value of £ to build a system which operates as described. Indeed, joint
irrespective of Ex, we see that we should let Ex approach decoding of the transmitters and the feedback from the receiver
0. The stability condition is then can be used to greatly improve the throughput, which in our

1 model is lnat/s/Hz . Rather, the paper aims to demonstrate
fe(l + E, + HV'l ) <~ 1. that it is possible to combine the methods of information

theory with those of queueing theory to simultaneously address
This region is shown in Fig. 6. the two defining characteristics of multiaccess systems. We
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