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Abstract

In 2-D signal processing, FIR filters are the standard choice for implementing linear shift-invariant
(LSI) systems, as they retain all of the advantages of their 1-D counterparts. The same is not true in
general for IIR filters. In particular, with the exception of the class of causal recursively computable
filters, implementation issues for 2-D IIR filters have received little attention. Moreover, the forced
causality and apparent complexity in implementing even recursively computable filters has severely
limited their use in practice as well. In this paper, we propose a framework for implementing 2-D LSI
systems with 2-D noncausal IIR filters, i.e., filter systems described implicitly by a difference equation
and boundary conditions. This framework avoids many of the drawbacks commonly associated with
2-D IIR filtering. A number of common 2-D LSI filter operations, (such as low-pass, high-pass,
and fan filters), are efficiently realized and implemented in this paper as noncausal IIR filters. The
basic concepts involved in our approach include the adaptation of so-called direct methods for solving
partial differential equations (PDE's), and the introduction of an approximation methodology that is
particularly well-suited to signal processing applications and leads to very efficient implementations.
In particular, for an input and output with N x N samples, the algorithm requires only O(N2 )
storage and computations (yielding a per pixel computational load that is independent of image
size), and has a parallel implementation (yielding a per pixel computational load that decreases
with increasing image size). In addition to its uses in 2-D filtering, we believe that this approach
also has applications in related areas, such as geophysical signal processing and linear estimation,
or any field requiring approximate solutions to elliptic PDE's.

1 Introduction

For two-dimensional signal processing applications, finite impulse response (FIR) filters have been overwhelm-

ingly preferred to infinite impulse response (IIR) filters [3,10,12]. This preference is markedly different from
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that encountered in l-D signal processing, in which 1-D IIR filtering plays a significant role. In 1-D, an

extensive array of techniques exists for optimally designing both FIR and IIR filters. Both FIR and IIR

filters have efficient, stable implementations. FIR filters are always stable and can be implemented with the

FFT. 1-D IIR filters can be. implemented in a recursive manner, and often require less memory, lower order,

and fewer computations per sample than their FIR counterparts.

In 2-D, however, the design, analysis, and implementation of filters is complicated by a number of

factors, and for the most part practical 2-D filter design and implementation has focused on FIR filters.

Among the reasons for this preference are: (a) efficient implementation of FIR filters can be accomplished

equally well in 1-D or 2-D through the use of the FFT; and (b) FIR filters do not require any notion of

recursion or ordering of the sample points (in 1-D or in 2-D) in order to be implemented. In contrast, for IIR

filters the 1-D and 2-D cases appear to be dramatically different, and, in particular, both points (a) and (b)

become serious obstacles that have limited the investigation of 2-D IIR filters and led many to argue that

they cannot be implemented in practice (see [3,10,12] for more on these and related issues).

To understand these issues, as well as our approach to dealing with them, consider an IIR filter, in

1-D or 2-D, specified in terms of a difference equation. In either case, of course, the difference equation

by itself isn't sufficient to completely specify the filtering algorithm, as one must also specify a set of

boundary conditions. In 1-D, for the most part these are specified as a set of initial conditions, leading to

causally-recursive filtering algorithms with computational load per sample point proportional to the order

of the difference equation or, equivalently, the number of initial conditions required. Moreover, even for

noncausal 1-D filters - e.g., zero-phase IIR filters - implementation, accomplished in this case through

the combination of a causal recursion (with associated initial conditions) and an anti-causal recursion (with

"final" conditions), results in a per-sample computational load proportional to filter order or, equivalently,

to the total number of boundary (initial and final) conditions.

In contrast, in 2-D the dimension of the required boundary conditions depends not only on the order

of the difference equation but also on the size of the boundary - i.e., the dimensions of the 2-D domain

of interest - implying an apparently significant increase in computational complexity. In addition, since in

most 2-D applications there is no natural ordering of the sample points and no natural direction for recursion,
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there is no reason to expect that the boundary conditions would separate into anything that might resemble

"initial" or "final" conditions, but rather would more naturally be distributed around the entire 2-D domain,

leading to 2-D noncausal IIR (2DNC-IIR) filters that are not recursively computable.

On the other hand, if effective methods of implementation for 2DNC-IIR filters were available, there

would be numerous possibilities for their application. For example, one potential advantage of IIR filters

that is retained in 2-D is that a given set of frequency response characteristics typically may be met by an

IIR filter of considerably lower order than a corresponding FIR design. Moreover, 2DNC-IIR filters arise

naturally in applications such as the modeling of random fields for image processing [2,16] and computer

vision [1,9]. With potential applications like these as our motivation, in this paper we present an approach

to the efficient implementation of 2DNC-IIR filters that overcomes the difficulties we have described, thus

offering the possibility of recapturing in 2-D the computational advantages and flexibility that IIR filters

have in 1-D.

The key to our approach is the recognition of both the similarities and differences between the im-

plementation of 2DNC-IIR filters and the solution of finite difference and finite element approximations of

PDE's. In particular, the equations resulting from such PDE methods are equivalent to the difference equa-

tions for 2DNC-IIR filters, and thus the many methods that have been developed for the efficient solution

of such PDE's can be brought to bear in developing implementation concepts for 2DNC-IIR filters. These

methods by themselves, while offering considerable savings in computational complexity and storage, may

not reduce these loads enough to make 2DNC-IIR filters attractive. However, by taking advantage of a

fundamental difference in objective between solving PDE's and performing 2-D filtering, we can reduce the

computational complexity even further, resulting in implementations with complexity per 2-D data point

independent of domain size - the same attractive feature as in 1-D. In particular, while the focus in PDE's

is typically on obtaining numerically very accurate solutions to specific 2-D difference equations, and hence

accurate solutions to fluid flows or similar physical models, in 2-D the difference equation is not the funda-

mental object. That is, in filtering we generally begin with filter or frequency response specifications and

design or choose a 2-D difference equation that meets these specifications to within some given tolerances.

Consequently, approximations to the solution of the difference equation are acceptable as long as they lead
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to filters that also meet the desired tolerances, and in this paper we describe a method for approximating

solutions to 2-D difference equations that both meets the desired filtering objectives and also results in very

efficient implementations.

In the next section, we introduce the class of 2DNC-IIR difference equations and briefly discuss the

issue of the choice of boundary conditions for such an equation. In Section 3, we make explicit the connection

of the problem of interest here and the methods for solving sparse linear systems of equations such as those

arising in finite difference methods for PDE's. In Section 3, we also introduce one of the constructs used in

direct solution of such equations, namely, the organization of 2-D data points into 1-D arrays or columns and

the ordering of these l-D data sets in ways that lead to efficient solution procedures through the sequential

processing of these l-D sets of variables. The dimensionality of these 1-D data sets, of course, is quite large,

corresponding to the linear dimension (width or length) of the 2-D domain. However, if we view each of these

sequential processing steps as being itself a 1-D processing procedure along the 1-D data set, we are led

to the idea of approximating this step using low-order IIR filtering methods. This idea, which is developed

in Section 4, results in very efficient 2DNC-IIR filtering procedures applicable to a large class of noncausal,

nonseparable filtering applications. In particular, in Section 5 we illustrate the efficient implementation

of several zero-phase 2DNC-IIR filters. Zero-phase filters are of considerable interest in practice, and the

apparent difficulty in implementing IIR filters with zero phase has often been cited as one of the reasons that

FIR filters are commonly used. As our results here indicate, we now can implement zero-phase IIR filters

efficiently, removing a major obstacle to their use in practice.

2 Two-Dimensional IIR Filters Given by Difference Equations

A rich class of 2DNC-IIR filters can be described implicitly through 2-D linear constant-coefficient difference

equations (LCCDE's) of the form

L1 L2 M1 M2

E alll2y[i--ll,j-12] = bmlm 2 [i - m,j - 2 ] (1)

11=-L 1 12=-L 2 ml=-M1 m2=-M 2
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Such an equation corresponds to a 2-D system function of the form

H(z, z2 ) ml_-M1 E22=-_ M2 b 2 Z1 m2)

Eqat=_L( o /2=_L anll2l1 Z 12 (2)

Equation (1), of course, provides only a partial specification of a system, as it must be accompanied by a

set of boundary conditions (BC's), and it is here that we see a significant difference from the 1-D case. In

particular, for a 1-D difference equation with system function H(z), the nature of the boundary conditions

is completely and very simply specified if we require the system to be stable so that it has a well-defined

frequency response. In this case, poles of H(z) inside the unit circle correspond to causal parts of the

system requiring initial conditions, while poles outside the unit circle correspond to anticausal parts of

the system requiring final conditions. Thus, in general, the difference equation corresponding to H(z) will

require conditions on both boundary points of the data interval of interest. In analogy, the specification of

a stable system corresponding to (1) requires the imposition of BC's around the entire boundary of the 2-D

domain of interest. Of course the lack of a factorization theorem for polynomials in two variables makes the

specification of the appropriate BC's a more challenging problem than in 1-D. Nevertheless, in Sections 4

and 5, we illustrate a number of important examples for which appropriate BC's are easily specified. For

these examples and in general, the BC's cannot be organized simply as sets of "initial" or "final" conditions,

e.g., as considered in [3, 12]. Consequently, no simple recursive solution is possible, and all of the output

values y[i, j] must be computed, in principle, simultaneously.

As in any practical application in 1-D or 2-D, the data domain of interest to us is assumed to be

bounded. While our approach can be applied to a non-square and non-rectangular regions, for simplicity in

the presentation here we focus on the case in which the filter difference equation is supported on the square

region of N x N samples

QN = {(i,j) < i < N, 1 < j < N}. (3)

Boundary conditions must then be specified around the boundary lQN of QN, which in analogy with finite

difference methods can be thought of as an annular region of some width around QN, where, roughly speaking,

the width of the annular region depends upon both the order of the difference equation and the nature of
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the boundary conditions. For example, in 1-D a second-order difference equation might require two initial

conditions, y[-1] and y[O], (and hence a "boundary" of width two at the left end of the interval of interest), or

one initial and one final condition, y[0] and y[N + 1], respectively, (corresponding to a boundary of width one

at either end). For 2DNC-IIR filters, two types of boundary conditions follow directly from finite difference

approximations to Dirichlet and Neumann conditions, which are commonly imposed on elliptic PDE's to

guarantee unique solutions. The discrete Dirichlet conditions ("of width one") set the value of y[i,j] on

aQfN, the boundary of QN of width one defined by

aQN = {(i,j) I i E {O, N 1, j C [O, N + 1] U {(i,j) i E [O, N + 1], j {O,N+ 1}})),

as illustrated in Figure 1. The discrete Neumann conditions correspond to a finite-difference approximation

of the derivative of the filter output normal to the boundary of QN. Thus Neumann conditions locally

constrain the values of y[i, j] as follows:

y[i,j] - y[p(i,j),q(i, j)] = r[i, j], (i,j) , (4)

where (p(i, j), q(i, j)) is the closest point in FQN to the boundary point (i,j). As can be seen from Figure 1,

Equation (4) provides a local constraint between each of the output values in the outermost square (rep-

resented by o's) and their nearest neighbor in QN (represented by the outermost square of .'s). Although

we will focus upon Dirichlet and Neumann conditions in this paper, the number of possible choices is much

greater. The suitability of particular choices for the BC's, however, is a function of the filter characteristics;

(the same is true in 1-D, but the choices for BC's are far more limited).
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Figure 1: The elements of QN (denoted by *) and aQ!A (denoted by o).

3 Implementing Noncausal IIR Filters as Linear Systems of Equa-

tions

3.1 Direct vs. Iterative Methods

In this section we examine the problem of implementing 2DNC-IIR filters and, in particular, make precise the

connection between this problem and the general problem of solving large, sparse, sets of linear equations,

in particular those arising in the solution of linear PDE's. The methods that result from this connection are

quite broadly applicable. For example, our methodology can be used for linear difference equations which

are not constant-coefficient, for regions of support Q which are non-square and irregularly sampled,

and for various types of boundary conditions. However, for notational simplicity in this and the following

sections, unless stated otherwise, we assume that the difference equation is LCCDE, that Q = QN, and that

the boundary conditions are of the Dirichlet type. Some of these assumptions are relaxed in the examples

of Section 5. Also, since our focus here is on the IIR nature of filters, for clarity of exposition we make

one final assumption, namely, that b,,,, = ,,,n1 2 in (1), where m,,,,2 is the Kronecker delta function.

Since implementing the right-hand side of Equation (1) is equivalent to implementing an FIR filter, a more

complicated right-hand side adds only notational but not conceptual complexity. These assumptions lead to
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a 2DNC-IIR filter system given algebraically by

11f=-L, Z12 --L2 alll 2 y[i - ll, - 12] = [i, jl, (ij) N

(5)

y[i,j] = r[i,j], (i,j) E aQfN

where r[i, j] is known.

Equation (5) can be cast in matrix form as

Ay = x +r b, (6)

where the non-zero elements of A are the filter coefficients all 2. Vectors x and y contain the filter input

x[i,j] and output y[i,j], respectively, in QN, and r contains the contribution of the Dirichlet conditions

entering through the filter difference equation. Since the focus here is on LSI systems, we set r equal to

zero to preserve linearity. The order in which the variables y[i, k] appear in y is the ordering of QN, or the

ordering of A. For direct methods (defined in the following paragraph), this ordering can drastically alter

the apparent complexity of the implementation.

Note that the matrix A has dimension N 2 x N2 . A nice property of IIR filters is that they generally

require a small number of coefficients, so that L1 < N and L2 << N. In other words, A will be very

sparse. This obviously suggests the use of numerical methods developed for solving large sparse systems,

like Equation (6), that take advantage of this sparsity to minimize computational and storage requirements.

In particular, there are two distinct classes of methods for calculating the output y in (6), i.e., for implicitly

calculating A-lb. This calculation can be performed by either iterative or direct methods. Iterative methods

begin with an estimate yo of y, and produce at each step an estimate yk which theoretically converges as

limk-,, OYk = Y; however, in practice the series must converge within a tolerable error in a finite number

of steps. Direct methods consist of variants of the LU factorization [6, 7] (Gaussian elimination followed by

back-substitution), and produce the exact solution (disregarding numerical errors) in a finite number of steps.

Assuming both methods produce a solution within a desired level of accuracy, their relative performance is
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measured in terms of storage and computational requirements.

A comparison of direct and iterative methods is impossible without knowing the specific applications.

Iterative methods require little storage beyond that to store A, b, and yo, implying much less storage than

direct methods usually require. The storage and computational complexity of direct methods is determined

by the amount of fill-in which occurs during the factorization, i.e., the loss of sparsity that occurs in the

Gaussian elimination process (see [4] for a complete discussion of fill-in). The amount of fill-in is strongly

dependent upon the ordering of A, and the usefulness of a particular ordering depends upon the particular

application.

For signal processing applications, the same filter is typically applied to a large number of inputs.

Thus while b varies in (6), A remains fixed. For such applications, A must be factored only once. This

factorization can then be done off-line, in which case the factorization costs can either be considered part

of the filter design process or amortized over the large number of inputs. This property of direct methods

motivates us to focus here on direct implementations of 2DNC-IIR filter systems. Iterative methods, such

as preconditioned conjugate gradient or multi-grid, might be just as or more effective for some applications

(especially for 3-D problems), but we show here that direct methods allow for very efficient implementations

of a large number of filters.

The primary reason for using the LU factorization of A for direct methods is that triangular systems

are easy to solve [4]. The LU factorization

A = LU (7)

yields a unit lower-triangular matrix L and an upper-triangular matrix U. The LU factorization of a dense

M x M matrix requires 2M3/3 computations, measured in terms of floating point adds and multiplies.

Storage can be done in place of A, such that no extra storage is needed beyond that required for A. Given

the LU factorization of A, the solution to Ay = b can be found very efficiently. In particular, if A has

dimension M x M, solving the following two triangular systems requires only 2M 2 computations:

LC = b, "Forward substitution" (8)
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Uy = (. "Back substitution" (9)

Note that if we solved for y by explicitly computing A-1 and then computing A-1 b, 2M 3 +2M2 computations

would be required. Thus the computational savings which result from the LU decomposition solution to

Ay = b is modest for dense A. However, if A is sparse, as for 2DNC-IIR filter systems, the savings in both

storage and computations can be tremendous (orders of magnitude) [4]. In particular, if A is sparse, then L

and U will be sparse, especially if proper orderings are used. Amortizing the costs of the factorization over a

large number of filter inputs further decreases the effective computation requirements for the LU approach.

However, note that in our application M = N 2 , the number of 2-D data points, and thus computations of

order greater than linear in M can still make this approach prohibitive. Fortunately, as we will see, in the

context of 2-D filtering there are natural and very accurate approximations to the LU factorization approach

just described that do result in total complexity that is linear in M, (or, equivalently, quadratic in N).

Finally, note that a simple generalization of the LU factorization is the block LU factorization, in

which L and U are, respectively, lower and upper block triangular. We will make use of such a block

factorization in the next subsection, in which the block size is proportional to the linear dimension of the

domain of interest. In this case, of course, the complexity of the calculations implied by (8) and (9) increase

with increasing block size, and it is this fact that motivates the approximation introduced in Section 4.

3.2 Columnwise Orderings

The particular ordering choice that we make here is motivated by the structure of the 2-D difference equation

(5), which will be exploited in Section 4.1 for an approximate solution. To make the discussion explicit we

focus here on a common low-order 2-D LCCDE, the 9-point nearest neighbor model (NNM). This difference

equation also arises quite frequently in engineering applications, most notably as the first-order and second-

order finite difference and finite element approximations to elliptic PDE's [6,9,11,14]. The constant-coefficient

form of the 9-point NNM is given by

cy[i,j] = ny[i,j + 1] + sy[i,j - 1] + ey[i + 1,j] + wy[i- 1,j] (10)
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y[i-l,j+l] y[ijl1 y[i+l] y[i+lj+l]

O< >W O
i[ijj]

y[i-l,j-1] y[i,j-l] y[i+lj-l]

Figure 2: The output mask for the 9-point NNM difference equation.

+ n, y[i + l,j + 1] + 1, vY[i - 1,j + 1] + Se y[i + 1, j- 1] + sw y[i - 1,j -1]

+ x[i,j],

where the coefficients are labeled according to the directions of a compass. The output mask of this difference

equation is illustrated in Figure 2. Note that the LSI system characterized by the frequency response from

difference equation (10) is zero-phase if n = s, e = w, n, = sW, and n, = s,. Most of the filters implemented

in Section 5 are zero-phase. This model will be the used for the algorithmic development and simulations in

this paper, but the results readily generalize to filters of higher-order or shift-varying difference equations.

Consider a 2DNC-IIR filter supported on a square grid QN, with the difference equation given by (10)

and boundary conditions in Dirichlet form, i.e., y[i, j] = r[i, j] on aQ0N. If the filter input and output variables

defined on QNv are ordered columnwise into N x 1 dimensional vectors yi = [y[i, 1], y[i, 2],..., y[i, N]]T and

xi = [x[i, 1], x[i, 2],. . ., x[i, N]]T , respectively, the 2-D filter system is represented algebraically in the form



of Equation (6) as1

D1 E2 Y1 x1 b1

C1 D 2 E3 y2 X2 b2

- '+r= . (11)

EN YN-1 XN-1 bN-1

CN-1 DN YN XN bN

A y x b

As in Equation (6), the vector r contains the Dirichlet boundary values which enter through the difference

equation. The structure of A in (11) is block tridiagonal, and the N x N dimensional blocks Ci, Di, and Ei

are tridiagonal. Note that Equation (11) allows for a space-varying NNM difference equation, but for the

constant-coefficient difference equation the subscripts on the blocks of A can be dropped. In this case, the

non-zero elements of C, D, and E are given by

-s,, I=k+l -s, I = k+ 1 -,, I=k1 +

[C]kl = -w, I =k [D]kl c, I = k [Ekl -e, I = k

| I=k -1 -n, I=k-1 -ne, I=k-1

for 1 < k, I < N. For higher-order difference equations, a block tridiagonal ordering similar to that of (11)

can be created by allowing yi and xi to contain filter output and input values, respectively, for more than

one column of QN. In this case the blocks Ci, Di, and Ei are no longer tridiagonal, but will have small

bandwidths with the Reverse-Cuthill-McKee ordering (used for ordering the nodes of a "thin" graph [4]).

Another possibility, more appropriate for the algorithms discussed in Section 4, is to increase the number

of blocks in A according to the filter order. For a 25-point NNM difference equation, which has an output

mask with one more square layer of output values beyond that for the 9-point difference equation illustrated

in Figure 2, A would be block penta-diagonal

While the block LU factorization of a block tridiagonal system is not unique [4, 7], one particular

1 For any matrix in this paper, such as A in (11), block entries not indicated are zero.
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choice leads to a simple recursive algorithm for the computation of the successive blocks of the factorization.

Specifically, the quantities D 1, ..., DN and E 2, ... , EN needed in this factorization are recursively computed

from the following equations 2 :

DiEi+l = Ei+l (12)

Di+ = Di+1 - CiEi+l, (13)

where the recursion is initialized with D1 = D1. Thus the recursion begins by solving (12) for E2, then

computing D2 from (13), etc. Note that for these recursions to be well-posed, Di for i = 1,...,N must

be invertible. Conditions which guarantee this are discussed in [7]. In the filtering examples presented in

Section 5, the matrices Di are always invertible. Also, solving (12) at each step is performed by an LU

factorization on Di, and indeed, as we discuss next, this factorization Di = LiiUii is needed on-line.

The block LU factorization resulting from the procedure just described is given by

D1 I I IE2

C1 D2
A =A (14)

I EN

CN-1 DN I

While implementing the recursions (12) and (13) is conceptually straightforward, the number of computations

and storage elements needed to implement the off-line factorization (14) can be overwhelming. This burden

is a direct result of the columnwise ordering, which leads to a destruction of the sparsity of A during the

factorization. Although Ci, Di, and Ei are very sparse, with the exception of D1 = D1, the matrices Di and

Ei are generally full. The storage of these matrices required for the on-line solution is thus O(N 3 ). Also,

each step of the recursion requires the factorization of the full matrix Di in order to compute Ei+l. Each

such factorization requires O(N3 ) computations, leading to O(N 4 ) computations overall.

The lack of sparsity in the blocks of (14) implies a large computational burden for the on-line solution.

2 The validity of the recursions (12) and (13) can be verified directly by equating A in (11) with the expression in (14).
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First note that, since the factorization Di = LiiUii is needed at each step of the recursion (12)-(13) to

compute Ei+l, these factors can be stored in place of Di in (14). The solution to (11) is then given by

forward-substitution, (initialized by Co(o = 0),

LiiUii(i = bi- Ci-1(i-1 i = 1,..., N (15)

followed by back-substitution, (initialized by YN = (N),

Yi = (i - Ei+lyi+l i = N- 1,...1. (16)

Since Lii and Uii are generally full, the solution of (15) and (16) requires O(N 2 ) computations per step

and hence 0(N3 ) total computations. Thus, not only is the off-line computational load large (O(N 4 )),

but the on-line storage and computations are both O(N 3 ), significantly greater than the O(N 2) goal that

corresponds to constant per-pixel computational and storage burden.

The O(N4 ) growth in computations and O(N 3 ) growth in storage makes the columnwise ordering

procedure, as we have described it, infeasible for even modestly sized 2-D filtering problems. For exact

solutions to (11), alternative orderings or iterative implementations must be employed (see Section 6).

However, if an approximate solution can be tolerated, the block LU factorization based on the columnwise

ordering leads to an efficient approximation strategy which achieves the goal of O(N 2 ) storage elements

and O(N2 ) computations for both the off-line factorization and the on-line solution. Before describing the

approximation strategy in detail (see Section 4), we can motivate its development by closely examining a

single stage of the on-line solution. Equation (15) requires first solving the lower triangular equations

Liizi = bi- Ci-li_l-, (17)

followed by solving the upper triangular system

Uiii = .Zi (18)
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Recall that we have organized our variables into 1-D columns, and thus the solution of the lower triangular

system (17) can be thought as a causal 1-D recursion, beginning at the bottom of the column (j = 1) and

proceeding recursively to the top of the column (j = N). The upper triangular system (18) thus corresponds

to an anticausal recursion proceeding from top to bottom. The back-substitution filtering, Equation (16),

requires implementing an FIR filter, in the form of a matrix multiplication, along a single column of QN.

Thus we can view (17) and (18) as 1-D recursive filtering operations, albeit shift-varying recursions,

since in general Lii and Uii will not be Toeplitz. If Lii and Uii are full, then the order of these recursive

filters equals the length N of the column, and it is the need to determine (off-line) and then implement

(on-line) these high-order recursions that leads to the severe computational burden. However, if these

recursive 1-D filters can be approximated by lower-order recursions - e.g., if Di and hence Lii and Uii

can be approximated by banded matrices, i.e., by matrices that are zero except for a band of preferably

small bandwidth around the main diagonal, then both the storage and computational requirements for the

forward-substitution phase of the on-line solution can be reduced to O(N2 ). For the back-substitution, the

computational burden is governed at each step by multiplication of the matrix Ei+l with Yi+l. Since Ei+l

is generally full and not Toeplitz, this operation will require O(N 2 ) computations per step. However, if

we similarly approximate Ei+l with a lower-order FIR filter, i.e., by approximating Ei+l with a banded

matrix, the total computational and storage requirements for the on-line solution reduce to the O(N 2 ) goal

we desire.

Note, however, to reduce the off-line computational load to O(N 2 ), it is not sufficient that Di and Ei

are well approximated matrices with narrow bandwidth; a method must exist for determining these approx-

imate matrices in O(N) computations per stage. In the next section, we describe such an approximation

procedure in detail and also discuss conditions under which we would expect the approximation to be an

excellent one. These conditions are typically satisfied in 2-D filtering applications, and we illustrate several

of these in Section 5.
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4 Efficient Implementations of 2DNC-IIR Filters

In this section, we develop an approximate implementation of 2DNC-IIR filters which requires O(N 2 ) compu-

tations and storage. Both the factorization of A4 given by Equations (12)-(13) and the on-line solution given

by Equations (15)-(16) are approximated in O(N 2 ) computations. A parallel approximate implementation

is outlined in Section 4.3. While the necessary and sufficient conditions under which the approximation is

valid are not prescribed, some analytical guidelines are provided. These guidelines are used to develop a

number of useful, low-order filters in Section 5, which are successfully implemented with the approximation

algorithm in Section 5. The generality of the guidelines and the success of the approximation algorithm

demonstrated in Section 5 leads us to believe that the approximation is valid for a significant class of filters.

4.1 Development of the Approximate Block LU Algorithm

The approximate implementation of 2DNC-IIR filters described in this subsection is motivated by a simple

observation regarding the structure of the LU factorization (14). Namely, for many filters, a small number of

elements in the blocks Ci, Di, and Ei dominate in magnitude the rest of the elements. (This dominance is

obvious for the tridiagonal blocks Ci in Equation (11).) An efficient approximation to the on-line solutions

follows by setting to zero the insignificant elements of Lii, Uii, (remember that Lii and Uii are stored in

place of Di), and Ei. Recursions (15) and (16) then can be implemented very efficiently if one takes care

to avoid operating on the zero elements. Also, if the number of significant elements in each block is O(N),

then in general only O(N 2 ) elements of (14) will need to be stored, implying that the on-line solution can

be approximated in O(N 2 ) operations.

Unfortunately, the approach of simply discarding the insignificant elements of (14) has significant

drawbacks. First, the off-line factorization will still require O(N 4 ) computations. Secondly, searching for

the significant elements of each block in (14) and storing them in data structures necessary for efficient

implementation of the on-line solution can be a costly procedure. A large class of filters, however, have a

property which allows us to overcome these difficulties. In particular, for filters such as those described in this

paper, all of the matrices of interest - Di, its LU factors Lii and Uii, and Ei - can be well-approximated
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by banded matrices of some bandwidth 3 < N. Thus, we know a priori what elements of these matrices

must be stored. Moreover, since each of these matrices has O(/3N) non-zero elements, there are O(N) such

matrices, and p is independent of N, the total required storage is O(N 2 ), as desired. Furthermore, as we

now describe, we can compute each of these approximations in O(/32 N) or O(3N) computations, resulting

in an overall computational load of O(N 2), again as desired.

The key assumption required for these approximations to yield good results is that, for i = 1,..., N,

the blocks Di are approximately banded, i.e., well approximated by setting to zero all the elements which

do not fall within a small (relative to N) bandwidth of the main diagonal. For example, as holds for many of

the filters considered in this paper, the elements of Di decay geometrically in magnitude with distance from

the main diagonal. If Di is approximately banded, then from the recursions (12)-(13), it is apparent that

the blocks Di and Ei will generally be approximately banded as well. Furthermore, as the following corollary

states, if we have a banded approximation to Di, we can efficiently compute a banded approximation of its

inverse.

Corollary of [5] (See Appendix for proof) If D is an N x N matrix with bandwidth 1, the elements

of D- 1 which lie within the bandwidth /3 can be computed (exactly) in 0(P32N) operations.

This leads to the following approximation procedure, replacing Equations (12) and (13). Specifically,

suppose that Di is an approximation to Di which is 13-banded (i.e., banded with bandwidth 1). Note that

D)l = D1 = D 1 is exactly banded. We then compute a 1-banded approximation to D. 1:

[b-'] l, I~k- lI <
F(Di,)= [-]K 1 k (19)

t 0, otherwise

where F: IR:NXN -, RNxN requires O(/32 N) computations and is called the approximate inverse operator.

Assuming that D- 1 is a good approximation to D- and that F(Di, 3) is a good approximation to D-

then

F(bi,,$3) .i+j ; Ei+l . (20)

Since Ei+l is tridiagonal, the matrix multiplication in (20) requires O(O3N) computations. Note, however,
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that the approximation of Ei+l in (20) has bandwidth (,/+2), which will in turn require a growing bandwidth

at each step. However, under the key assumption that the matrices of interest are approximately 3-banded,

we can neglect elements outside the /3-bandwidth. Thus, define the operator Tp · IENxN _ n:NxN

HkI, Ik-f1•/
T [H] ={ (21)/0, otherwise

We thus have the following approximation to Equation (12):

E/i+t = T,[F(Di, /) Ei+l]. (22)

Similarly, substituting Ei+l into (13) in lieu of Ei+l yields

Di+l - CiDi+l .. , Di+, (23)

requiring O(ON) calculations. Once again, the quantity in (23) is (/ + 2)-banded, and applying our assump-

tion of /-bandedness, we obtain our approximation to (13):

Di+l = Tp[Di+l - CiEi+l]]. (24)

Equations (22) and (24) can then be repeated iteratively, each stage requiring O(/ 2 N) computations. For i =

1, . .., N, Equations (22) and (24) form an approximation to (14) requiring a total of O(/2 N2 ) computations

and O(/3N 2 ) storage elements. Furthermore, the LU factorization of each P-banded Di also requires only

O(/02 N) computations, yielding /-banded lower and upper-triangular matrices Lii and Uii. This process is

summarized as follows:

(i) choose / << N

(ii) for i= 1,...,N-1
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(a) factor Di = Lijiii, (D1 = D1); computations/step: 2P32A

store LU factors in place of Di; storage/step: (20 + 1)N

(b) compute Gi = F(Di,/3); computations/step: 2P82N

(c) compute Ei+l = Th[GiEi+l]; computations/step: 3(2P3 + 1)N

store Ei+l; storage/step: (2,3 + 1)N

(d) compute fi+l = TD[Di+l - Cii+, ]; computations/step: 3(2, + 3)N

set to zero values outside the bandwidth 13;

(iii) factor DN = LNNUNN (2/382N computations), and store factors in place of DN (2X3+1 storage elements)

This procedure results in the following approximation of (14)

- 2I E2

C1 D2
Am l l , (25)

I EN

CN-1 DN I

with Lii and Uii stored in place of /i. An approximate on-line solution follows by substituting Lii and Uii

into (15) for Lii and Uii, and E, into (16) for Ei.

While the approximation outlined by steps (i)-(iii) is straightforward, the utility and applicability of

the algorithm has not been demonstrated. In particular, for step (i), the approximation bandwidth P must

be chosen according to the desired level of accuracy of the solution and also according to the set of filter

coefficients (difference equation and BC's). How one chooses , to achieve a desired level of approximation

accuracy depends, of course, on the application. If 3 is too large, the computational savings obviously are

lost. What follows is an example intending both to suggest the class of filters for which the approximate

implementation will offer significant savings and to justify fwihy in such cases we expect to be able to choose

a small value of d independent of the size N of the image domain.
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4.2 Analysis of the Block LU Approximation

Consider a 2DNC-IIR filter on QN described implicitly by a 9-point NNM difference equation and homoge-

neous, Dirichlet BC's (i.e., Equation (11) with r = 0). To make subsequent analysis more simple, we make

a slight deviation from the constant-coefficient model of Equation (10). Namely, assume that c = (1 + a 2 )

and n = s = -a for all (i, j) E QN and i t 1. For i = 1 and (i,j) E QN, the corresponding coefficients

become c = 1 and n = s = -a. For the point we wish to make, the values of the other NNM coefficients are

of no consequence. Instead, we are interested in the utility of the block LU factorization for Icl < 1. The

first block row of Equation (11) follows as

1 0 0 .O 0

a 1+a 2 a 0 ... 0

0 a 1+ca2 a ... 0
Y1 + E2y 2 = x1, (26)

0 ... 0 a l+a 2 a

L0 ... 0 0 a l+a 2

D1

The factorization of A in (11) begins by factoring D 1, i.e.,

1 0 0 ... 0 1 a 0 .. 0

a 1 0 ... 0 0 1 

D1= 0 a 1 . 0 1 .0 . (27)

0O .' .' a

0 .. 0 1 0 0 .-. 0 1

Lll U11

The Toeplitz structure of L11 and U11 is a result of the particular choice of difference equation, but is not a

general property even of filters described by constant-coefficient difference equations.

The next step of the factorization is to compute E 2. Note that, even though D1, Lll, and U1 1 are
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banded, this operation will require O(N 2 ) computations and ((N 2 ) storage elements for E2 . To approximate

the first stage of the factorization, we only need to compute the elements of D1 within a pre-specified

bandwidth. For this simple example, some simple algebraic manipulations will allow us to determine for

which values of a such an approximation is valid. Note that since n = s, D1 = D1 is symmetric. Thus,

Ll = U1
T and D1 = UlU T . Also, since we can write U11 = I - F, where F is strictly upper-triangular,

the matrix identity (I- F)- 1 = I + F + + F N -A gives

1 -a, a
2

... (-a,)N
- 1

0 1 -a

U17 
1 -7J O 1 .. a2 (28)

-a

0 0 ... 0 1

The simple form of Equation (28) leads to a single expression for dkl [D1] , i.e.,

N-I

1=0

From this expression, the "clustering" of the significant elements dkl about the main diagonal of D1 can be

determined as follows (for 0 < lal < 1):

k-i 1 cd < i, (29)

Idk,l+ll < Ia 1dklI

Thus, the smaller the value of lal, (equivalently, the greater the diagonal dominance of D1 ), the tighter the

clustering about the main diagonal of D1 , and thus the smaller the approximation bandwidth f3 necessary to

obtain an approximation to D- at a desired level of accuracy. Also, Equation (29) shows that the elements

of D 1 essentially decrease in magnitude geometrically with distance from the main diagonal, where the rate

of decay depends only upon Ial and not N.

How might these observations be used to screen or suggest filters appropriate for the approximate
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block LU implementation? In analyzing only the first stage of the factorization, the effect of the NNM

coefficients other than c, n, and s has not been accounted for. In essence, in cases where the matrices Di

have inverses for which all the significant elements are tightly clustered about the main diagonal, the same

property does not necessarily hold for the inverses of the matrices Di (i = 2,..., N), which depend upon all

the filter coefficients. However, a general guideline verified by extensive numerical simulations, some of which

are given in Section 5, is that the approximate factorization becomes more accurate (for fixed i) as the ratio

(In[ + Isl)/1cI decreases. Furthermore, the approximation appears to be very useful, i.e., 3 is small for any

desired level of accuracy, for Inl + IsI < Icl/2. These observations are consistent with the preceding example,

since (Inl + lsl)/Ilc -- 0 as jo -+ 0. Note that Icl/(InI + Isl) is a measure of the "degree" of diagonal dominance

of the elements in the blocks Di. For the non-constant coefficient filters, analogous observations apply, i.e.,

the approximate block LU factorization becomes more accurate as the degree of diagonal dominance in the

blocks Di increases. The issue of how to select the value of P is discussed in Section 5, where we show that

this approach can be successfully applied to a variety of filtering tasks ranging from low-pass filtering to fan

filtering to high-pass operations such as edge enhancement.

4.3 A Parallel Approximate Implementation

In this section, we briefly discuss a straightforward parallelization of the algorithm discussed in Section 4.1.

Many of the details of the implementation are omitted, since they depend in part upon the available computer

architectures.

A variant of the serial block LU factorization is cyclic block reduction [4], which is easily implemented

in parallel. The block LU factorization proceeds by eliminating columns yi sequentially from i = 1 to i = N.

However, it is possible to eliminate columns in the interior of Q independently. For example, consider again

the block tridiagonal matrix A given in (11), which corresponds to a 2DNC-IIR filter described by a 9-point

NNM difference equation and Dirichlet BC's. Assume for simplicity of notation that N is odd. If we order the

even columns (yi for i = 2, 4,.. ., N - 1) last and the odd columns (yi for i = 1, 3, ... , N) first, Equation (11)
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takes the form

All A 12 Yodd 1 0 dd 

A21 A22 Yeven beven

Because of the coupling of the NNM difference equation, the elimination of the odd columns of yi for the

block factorization of (30) can be performed in parallel. Upon completing this step, the second block equation

of (30) becomes

D(1) E(1) bl)12 4E' Y2

C(1) D(1) E(1) E4 0)

· ..... - .. · (31)

N-C5 N-3 N-1 YN-N-1

YN--3

C) D1)i YN--1 b(l)

22

where the superscript (I) is used to relabel the variables after the i-stage of the cyclic block reduction. The

blocks of A12) are given by

D1_) = Di - Ci-lDi-l-lEi - Ei+lDi+l-lCi, i = 2,4,..., N -1

C(1) = -Ci+_ Di+l-lCi, i = 2,4,..., N - 3 (32)

Ei 1) = -Ei_lDi_l-lEi. i = 4,6,..., N - 1

Note that, if the difference equation is constant-coefficient, each of the three equations in (32) only needs to

be computed for single value of i.

Since A12) is again block tridiagonal, the odd-even reordering can continue recursively, where roughly

one half of the remaining columns are eliminated in parallel at each stage of the algorithm. Thus, rather

than the N stages required for the block LU algorithm (and corresponding on-line solution), approximately

log2 N stages are required for block cyclic reduction (and corresponding on-line solution), and each of the

columns in each stage can be operated on in parallel. If more coarse-grained parallelism is required, QN

can be partitioned into M regions, where the columns in each region can be eliminated independent of the

other regions. (In the case of cyclic block reduction, M = L(N + 1)/21.) An example of partitioning for four
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in the regions o overlap are denoted by ). For a 9-point filter, the internal variables of each region (denoted

by o) are independent of the internal variables of other regions, allowing parallel Gaussian elimination. The

arrows indicate the direction of elimination for each of the four processors.4 o o o o o o 4 o o o 4 o o o ,
I I l

I I I I I

Figure 3: Q partitioned into four regions Ri which overlap with neighboring regions by one column (variables
in the regions of overlap are denoted by ). For a 9-poing submatrix filter, the internal variables of each region (denoted
by o) are independent of the internal variables of other regions, allowing parallel Gaussian elimination. The
a rrows indic ximate the direction of elimination falgor each of the four processors.

processors, M - 4, is illustrated in Figure 3. Note that the four sub-regions Ri have overlapping domains,

so that all but the boundaries can be eliminated independently. As shown by the arrows in Figure 3, the

direction of elimination for each region Ri is from the center outwards to the boundary columns. In essence,

the boundaries are ordered last, and the resulting submatrix for the boundaries after the interiors of Ri are

eliminated is block tridiagonal.

An approximate block cyclic reduction algorithm follows for any of these parallel structures by noting

the strong similarities between implementing Equation (32) and Equations (12)-(13). Namely, if a processor

is allocated for each of the odd columns of QN, the first stage of the (parallelized) approximate cyclic block
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reduction is:

(a) factor Di and compute F(Di, 3) on processors i 1, 3,..., N;

(b) compute Ci- 1 = F(Di, d) Ci-1 on processors i 3, 5,..., N;

compute Ei+l = F(Di, /) Ei+l on processors i = 1, 3,.. , N- 2;

(c) compute +) =-T [Ei Ei+l] on processors i = 3, 5,.. ., N- 2;

compute C(_) = -TO[Ci Ci-l] on processors i = 3, 5,..., N- 2;

(d) compute Gi+1 = Ci Ei+l on processors i = 1, 3, ... , N- 2;

compute Ji- 1 = Ei Ci-1 on processors i = 3, 5, ... , N;

(e) compute b)1 = Tp[Di+1 -Gi+1-Ji+ 1 ] on processors i = 1, 3,.. ,N- 2;

Note that step (e) requires communication between the processors, since Gi+1 and Ji+1 are computed on

different, but "neighboring", processors. For the first stage, the computational load for each processor is

O(O2 N), where the asymptotic complexity is determined primarily by step (a). The computational load

for each processor will remain constant for subsequent stages of the algorithm. Ignoring inter-processor

communication costs after each stage of the recursion, the total factorization will require a total computation

time of O(P2Nlog2 N). Since there are N2 pixels, the per pixel computation time for the fully parallel

implementation is O(/2 log 2 N/N), which decreases with increasing image size. The on-line calculations

also can be performed in parallel with similar computational savings.

5 Examples and Simulations

In this section, a number of 2DNC-IIR filters are presented. The filter difference equations, along with easily

specified BC's, yield frequency responses corresponding to canonical and widely used frequency-selective

filter classes, e.g., low-pass, high-pass, and fan filters. As we will see, the frequency-selective characteristics

of these filters can be achieved quite efficiently by implementing the approximation algorithm of Section 4.1.

Each 2DNC-IIR filter considered here has a difference equation in the form of Equation (10). The system
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function for such difference equations is given by

-2 Z1

Z2 -nw -nT -n e Z 1

Z2 1 J -w c -e z1 -- 1 .

Z2 -Sw -S -Se Z1

Note that the system function (33) has no numerator. Adding a polynomial z 2TPzl to the numerator of

(33) would obviously allow one to improve the filter frequency responses, such as by narrowing the transition

regions; however, our primary interest is to implement the recursive portion of the difference equation, in

order to justify both the viability of 2DNC-IIR filters and the utility of the approximation given in Section 4.1.

If n = s, e = w, ne = sW, and nw = s,_ the frequency response is real and follows as

H(e j "'w ej3W) = 1 (34)
H(ewe =' c - 2[n cos W2 + e cos +o s( + nw cos(Wi + W2) + nw cos(wl - w 2)]

These filters have zero-phase. Three examples of zero phase filters are given by

1 1 1 0 -1 0 -1 1 -1

J1 = 1 9 1 J2 = -1 5-1 , J3 = 5 1 5 1 (35)

1 1 1 0 -1 0 -1 1 -1

where Hi(zl, z2) = (Z Ji z) - 1. A fourth example, whose frequency response is not zero-phase, is

0.13 -0.5 0.37

J4= 0.50 2.0 0.50 (36)

0.13 -0.5 0.37

The coefficients of each filter are scaled such that H(ej"', ej
iW2 

) 1(|, 2 )= (o, O) = 1 - a desirable filter property

which prevents the filter from biasing image intensity [13].
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Figure 4: 64 x 64 point sampling of Hi(e ,ew) for four filters: (a) low-pass filter H1 given by J1 ; (b)5~ 4- .XUMNV~s ~ ~ fl~v~n 0.8.0.6.
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Figure 4: 64 x 64 point sampling of IHi(e j -, eiJ-2)1 for four filters: (a) low-pass filter Hi given by J1; (b)

high-pass filter H2 given by J2; (c) edge enhancer H3 given by J3; (d) fan filter H4 given by J4.
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The frequency responses of all four difference equations are illustrated in Figure 4. The frequency

response H1 is that of a low-pass filter, while H2 corresponds to a high-pass filter. The difference equation

for system H2 is identical to the frequency response of the edge enhancer in [13]. The frequency selection of

H3 can also be used to enhance edges aligned with the j and i axes, while H4 corresponds to the frequency

response of a primitive (low-order) fan-filter. Fan filters are commonly employed in seismic signal processing

to select wavefronts by their velocity of propagation [13]. As demonstrated by the examples given in [8,15], the

frequency responses of each of the example filters could be improved, e.g., with sharper transition regions,

by using higher-order ARMA difference equations. (Higher-order filters can be implemented, exactly or

approximately, with simple extensions of the algorithms prescribed in Sections 2 through 4.)

5.1 LSI Filtering with 2DNC-IIR Filters: the Effects of BC's

As mentioned previously, boundary conditions must be specified for each of the four difference equations

corresponding to (33) with J = J1 , J2, J3 , J4. In addition, since these filters will be applied to images defined

over finite N x N domains, we expect that the responses of these filters will exhibit transient behavior

near the boundary of the domain. To examine and illustrate the choice of boundary conditions and the

transient behavior near the boundaries, we first implement the low-pass filter corresponding to J1 assuming

homogeneous Dirichlet conditions. Since low-pass filters are often used as shaping filters, the filter input is

chosen to be White Gaussian Noise (WGN) with zero mean and unit variance.

The low-pass filter system, in the form of Equation (11) with r = 0, is solved directly and without

approximation in MATLAB using sparse matrix data types and the minimum degree ordering algorithm. A

sample output y[i, j] for N = 64 is illustrated in Figure 5(a). Ideally, this output signal will be identical to

the signal obtained by frequency-selective filtering according to the frequency response given in Figure 4(a).

However, transient effects are introduced by the BC's. The transient signal Ye is defined by

y[ij] = yl[i,i,j] + -ye[i,j] , (i,j) E QN

where Ylsi is the output of an FFT filter obtained by sampling H1 (ej 'wl, ejw2). For the output signal y[i, j] in
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Figure 5: The 2DNC-IIR low-pass filter (a) response to WGN, and (b) the corresponding transient signal
induced by the boundary conditions.

Figure 5(a), the corresponding transient signal is illustrated in Figure 5(b). Note that the energy in ye[i, j] is

concentrated at the boundary of QN, and has relatively insignificant values away from 8 QN. Nearly identical

results are obtained for other realizations of the WGN input signal or if Neumann conditions are imposed

in place of Dirichlet conditions.

The magnitude of the transient signal yJe [i, ] relative to that of the filter output is a function of both

the difference equation coefficients and the choice of boundary conditions. Fortunately, for the examples of

the following section, boundary conditions are easily prescribed which lead to relatively insignificant transient

signals. In fact, for the examples in which the energy of the filter response y[i,j] is small near &QN, the

transient effects are barely distinguishable from finite-precision arithmetic error.

5.2 The Utility of the Approximate Block LU Factorization

In this section, each of the four example filters described at the beginning of Section 5 is implemented

with the approximate block LU algorithm of Section 4.1. One can check that, for each of the example

difference equations, the coefficients satisfy Inl + Isl < Icl/2, a condition argued in Section 4.2 to allow

efficient implementation of such filters by the approximation algorithm.
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For analyzing the approximation errors, two error measures are given by

e I= 2 . 1 i (37)
-Y11 2 HY11 

where e is the relative energy of the approximation error. The vector e contains the approximation errors at

each point in QN and II IIp, P = 1, 2, is the standard Ip norm.

For simplicity, homogeneous Dirichlet boundary conditions are assumed in all of the examples which

follow. For the first three examples, assume N = 64. In the fourth example, the effect of variations in N

upon the approximation accuracy is considered.

Example 1: The Frequency Selection of Low-pass and Fan Filters

In this example, we consider the response of the low-pass and fan filters to single frequency sinusoids of the

form

x[i,j] = -2 cos ( 1 i) COS (n2 ) (i,j) C EQN (38)

The approximation errors are then analyzed for various values of /. Analysis for this example is thus most

easily done in the frequency domain.

For each filter, two different input signals, corresponding to two different choices for the pair (kl, k2 )

in (38), are chosen such that one input lies in the filter pass-band and the other in the stop-band. For the

low-pass filter, Equation (38) with (k1 , k2) = (3, 2) lies in the pass-band, while (k1 , k2 ) = (25, 20) is clearly in

the stop-band (see Figure 4(a)). The exact response of the low-pass filter to the pass-band input is illustrated

at the top of Figure 6, while the exact response to the stop-band input is illustrated at the top of Figure 7.

The relative magnitudes of the two outputs illustrate the 9-to-1 selection ratio of the low-pass filter. Also,

the transient signals - manifested by the ridges in the DFT's - are relatively small; in fact, these ridges

are barely noticeable for the response to the stop-band sinusoid.

The effectiveness of the algorithm of Section 4.1 is demonstrated in Figures 6 and 7 for P = 2 and

4. For each of the two low-pass filter inputs, the approximate filter solution y,[i,j] and the approximation

error e[i, j] = y[i, j] - ya[i, j] are illustrated. For both inputs, the approximation errors are small even when

/3 = 2, and the errors decrease by an order of magnitude when : increases from 2 to 4. (The approximation
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error will be shown to decrease geometrically as a function / in Example 3.)

Similar results are obtained for the fan filter. For a sinusoidal input in the pass-band with (k1 , k2 ) =

(0, 20), the exact filter response, the approximate responses for / = 2 and 4, and the corresponding approxi-

mation errors are illustrated in Figure 8. Figure 9 contains the analogous plots for the stop-band input given

by (ki, k2 ) = (25, 0). For both figures, the exact responses exhibit the frequency-selectivity given by H4 in

Figure 4(d), and the transient signals are relatively small. Also, as for the low-pass filter, the approximation

errors are small even when d = 2 and decrease an order of magnitude when /, increases to 4.

Example 2: Edge Enhancement of a Square Pulse

For this example, the response of the two edge-enhancing filters (J 2 and J3 in Equation (35)) to a square

pulse is approximated with / = 2 and / = 4. The square pulse input and the exact response of filter J2 are

illustrated at the top of Figure 10. The exact response of filter J3 is given in Figure 11. Ignoring machine

error, both of the exact responses are identical to those dictated by the frequency response of the filter

difference equations, i.e., there is no transient signal induced by the boundary conditions. The absence of

the transient is due to the fact that the filter responses determined directly from the frequency responses

are zero on the boundary of QN-

The approximation errors are unrecognizable in Figures 10 and 11, unless one closely examines the

approximate solution for system J3 when : = 2. In any case, for both filters the errors again decrease an

order of magnitude as / increases from 2 to 4.

Example 3: Accuracy of the Approximation vs. /

To demonstrate the relationship between the approximation bandwidth / and the accuracy of the approxi-

mation, the relative energy of the approximation error, defined by e in (37), is plotted versus / in Figure 12

for each of the four example filters. (For Figure 12, the input is WGN and the error e is the sample average

over 10 sample inputs.) For each filter, the errors decrease with P at a constant geometric rate, which is

consistent with the analysis of Section 4.2. In Section 4.2, we argued that the approximation errors will

be small, even for small /, when In| + Isl < Icl/2. In these cases, the elements in the blocks Di and Ei

will typically decrease geometrically in magnitude with distance from the diagonal. Thus, for /3-banded

approximations of these blocks, one would expect the approximation errors to also decrease geometrically
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with increasing approximation bandwidth.

Example 4: The Independence of the Approximation Accuracy upon N

In Section 4.1, the computational and storage loads of the approximation algorithm were shown to be

O(32 N2 ) and O(/N 2 ), respectively. However, if the computational and storage loads are to be truly constant

per pixel, the approximation bandwidth needed for a desired approximation accuracy must not be an

increasing function of N. Figure 13 shows that the approximation error remains constant over a wide range

of N for a fixed value of / = 4. (As for Figure 12, the errors e in Figure 13 are computed by averaging over

ten WGN inputs.) Identical results are obtained for other values of 3. The independence of / upon N for a

desired solution accuracy is consistent with the analysis of Section 4.2, and we expect when In[ + Isl < Icl/2

that / will be independent of N for a desired level of approximation accuracy. Thus, the approximation

algorithm has constant per pixel computational and storage load.

6 Conclusion

In this paper we describe an approach to the efficient implementations of 2-D noncausal IIR filters. In the

past, 2-D IIR filters received comparatively limited attention due to the apparent difficulty of implementing

these filters efficiently. In addition to efficiency, we were also motivated to consider filters specified by

boundary conditions rather than initial conditions, as the former are frequently the natural choice and are

required, for example, if zero-phase filtering is desired. Indeed, a number of methodologies now exist for

designing 2-D difference equations to meet desired frequency-selective specifications [8], and we demonstrated

that imposing boundary conditions, such as Dirichlet or Neumann, upon these difference equations leads to

the desired frequency selectivity.

The approach we developed for efficiently implementing 2-D noncausal IIR filters involved a combi-

nation of two things: (a) the application of concepts from the direct solution of PDE's to the calculation

of the solution of a 2-D difference equation; and (b) the development of new approximations, motivated

by and appropriate for filtering applications, that reduce the algorithms' complexity to desired levels. In

particular, the algorithms resulting from our procedure have constant computational complexity per pixel

32



and, if implemented in maximally parallel form, have total computation time per pixel that decreases as

image size increases. In particular, our approximation is based on the columnwise ordering of data points

and the block LU factorization of the linear system that results from this ordering. While exact factorization

is still complex computationally, the observation that each successive block of computation could be viewed

as a 1-D filtering operation along a column of the image led to the idea of a reduced-order approximation

of each of these 1-D columnwise filters. In matrix terms, this corresponds to a banded approximation to

each of the blocks in the block LU factorization, with bandwidth (and 1-D filter order) /. The resulting

algorithm was shown both to achieve the computational levels mentioned previously and to yield excellent

results using small values of : for a number of low-order frequency-selective filters.

The approach that we have just described is, in principle, applicable to a broad range of filtering

problems, e.g., those that are higher order or have non-constant-coefficient difference equations. Indeed, the

success we have demonstrated here together with the guidelines we have described for situations in which our

approximation should work well provide ample motivation for the application of this methodology. These

properties also suggest a theoretical investigation of general conditions on the difference equation coefficients

under which our approach is guaranteed to provide accurate answers for small values of /. Finally, we also

believe that there is much more that can be done in adapting other numerical methods, both direct and

iterative, for solving PDE's in order to develop efficient procedures for 2-D IIR filtering.

A Computing Certain Elements of the Inverse of a Banded Ma-

trix

A special application of the results in [5] is the ability to compute very efficiently certain elements of

the inverse of a banded matrix. Namely, if A: is an N x N dimensional matrix with bandwidth / and

Z = A-l , then the elements of Z which lie within a bandwidth : of the diagonal can be computed in

O(P2 N) computations. The results of [5] are based on the following observation: given A, = LDU (where
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L and U are unit lower-triangular and upper-triangular, respectively), then

Z = D - 1 L -' + (I-U)Z (39)

Z = D-1U- 1 + Z(I-L) (40)

From these relations, [Z]lk for 11 - kl < 3 is given by Equation (41), which does not depend upon

computing any elements in L- 1 and U- 1.

([D]ll)' Z- Z+1+j[U]im[Z],, 1I = k

[Z]lk = -- l+=~zl [U]lz,[Z]k, m < k (41)

- Elm=+ +[Z]lm[L]mk, m > k

For certain matrices, such as those discussed in Section 4.1, the elements of Z which fall within the bandwidth

3 can be seen as a reasonable approximation to A 3.

To implement this algorithm, note that [Z]NN must be the first element computed of Z. Also, to

compute any element [Z]lk, all elements [Z],,n such that m > 1, n > k, and II - kI < 0 must already have

been computed. With these restrictions placed on the recursion, the number of computations to compute Z

within a bandwidth : is bounded closely by

# computations < N[(0 + 1) + 202], (42)

where the first term represents the computations for the diagonal elements only. The computational com-

plexity of the algorithm is thus O(0 2N).
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Figure 6: The DFT magnitude of the exact and approximate responses of the 2DNC-IIR low-pass filter to
Equation (38) for (kl, k2) = (3, 2). Note from the axes of the two error plots that the approximation error
for/3 = 4 is an order of magnitude less than that for/5 = 2. For fi = 2, c = 9.1 x 10 - 2 and rl = 8.6 x 10- 2.

For i = 4, E = 9.7 x 10 - 3 and r/= 8.7 x 10 - 3 .
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