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Abstract

Orthogonal projection on vector subspaces arizes in many applied fields. The common

assumption about the orthogonal complementary subspace is that it is spanned by white noise

components. We extend some previously derived closed form recursive expansion formulas of

such operators to an arbitrary correlated noise field. The simplicity of the results is not only

insightful but potentially very powerful for many applications.
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1 Introduction

The analysis of a variety of applied problems invokes finite dimensional operators (matrices) on

account of their compactness and their algebraic simplicity. The analysis of these operators, as

well as the analysis of the more general infinite dimensional operators, have been for the most part,

carried out in a deterministic setting.

In spectral analysis, in contrast, powerful tools which are based on eigenanalysis and which have

emerged over the last fifteen years, are fundamentally statistical. They use the eigen factorization

of the covariance function of a stationary random process together with the orthogonality of two

complementary vector subspaces in a Hilbert space, to uncover hidden harmonics [1, 2, 3].

The spectral analysis techniques which are of interest here, are parametric and assume a well

defined structure of the underlying spectrum of the operator, to result in an improved resolution.

An error term is induced when estimating the covariance matrix, and results in a deviation of

estimated parameters. The theoretical prediction of this deviation relies on a perturbation analysis

of the projection operators onto corresponding invariant subspaces [4].

In array processing, various analyses have been carried out, and the most frequenlty encountered

being that which assumes an additive white gaussian error term. A number of specific eigen-based

estimation algorithms were considered, and their properties derived [5, 6, 4, 7, 8, 9, 10]. In [4, 7],

an approach based on the perturbation of the projection operators onto the invariant subspaces,

was proposed. This technique was also statistical and by avoiding the use of specific individual

eigenvectors, resulted in greater simplification and efficiency, and provided much more insight than

was previously possible. The perturbation study was, however, restricted to a white noise error

term, and scenarios deviating from such an assumption (e.g. array sensors exhibiting some mutual

coupling), would require a more general noise field model.

In this correspondence, we extend some of the previous perturbation results [4] and generalize

the noise field model to that of a correlated one.

Section 2 covers the relevant background and the statement of the problem. We give our main

result in Section 3 and conlude with some remarks in Section 4.



2 Background

2.1 Formulation

We let the space of observations B E CL be a Hilbert space endowed with an inner product which

provides the usual norm,

11 u II 1=< u, u >1/2

An observed vector x(t) E E is written as,

x(t) = As(t) + n(t), t = 1, ,T (1)

where A E CLx1 and restricted to the space of Vandermonde matrices, s(t) E CDXl, and n(t) E CLX l

respectively represent the signal and noise vectors. The observed process x(t) is assumed to be a

normal random process N(O, R), and circular (i.e. E(x(t)x(t)T } = 0, E{x(t)x(t)H } = R), where

(.)T, (.)H respectively denote transposition and conjugate transposition, i.e. Hermitian transpose).

The invariant subspaces of E, can be obtained by way of an eigen decomposition of the Hermitian

covariance matrix R,

R = UAUH + VrVH = APAH + N, (2)

with P = E{s(t)s(t)H}. Note that A = diag{Al,A 2,.-. ,AD} andr = diag{yD+1,'" ,'YL}, are real

and positive, and it is assumed that Ai A3j, Vi : j and/yi', 4 ?j, Vi' 0 j'. In signal analysis, the

subspace spanned by the columns of U is referred to as the signal subspace, and that spanned by

the columns of V is the noise subspace. Denoting S = APAH and N = vrvH, we point out that

these matrices are not observable. It is, nevertheless, possible in some cases (additive white noise),

to isolate the two subspaces by using the physics of a given problem.1 In what follows, we carry

out an analysis of projectors onto signal and noise subspaces, or S, N.

1Since the eigenvalues represent the power of the components present in the process, in some sense, the variances

of n(t) (in practical cases, this represents noise) will exhibit a smaller magnitude than that of their counterpart which

are the variances of the components of s(t) (signal in practice).
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2.2 Problem statement

As forementioned, one commonly makes use of an estimate R of a covariance matrix R. By denoting

all nonexact expressions by a', we can write, with AR E CLXL, and 11 AR 1I small, relative to R,

R=R+AR, (3)

and defining a projection operator on the column space of S (respectively N) as,

fi H = 0j ,

fi[ = VVH, (4)

we proceed to derive the resulting perturbation term AII of H (respec. All1 of *l) by performing

a series expansion of H (respec. II1) around II,

= n+ A = + 6 +...6n h + ... , (5)

where InH denotes the nth order term of the expansion of II with respect to AR.

Given that the sum of two orthogonal projection operators is identity I, we make the following,

Claim: AII = -AII

Proof:

H' = (I - f) = (I- II)- - n = i - n = nl± + An±

The analysis in the next section also makes extensive use of the following properties characteristic

of projection operators:

Properties P1 Idempotence: 111 = I, P2 Commutativity: HR = RH

P3 6nIH is hermitian, as a result of H* being hermitian
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3 Perturbation Analysis

3.1 General Noise Field

Assuming the perturbation model given in Eq. 3, our goal is to evaluate the induced error on the

operators II and fl'. The above properties will turned out very useful in carrying out the following

analysis. Letting 0 denote the Hadamard product, we state the following,

Theorem 1 The expansion terms of H and fi' resulting from a perturbation term AR of a

Hermitian matrix R are related by the following recurrence:

611 = U EVH + V EHUH

sn11 = U E,_ 1 VH + V EH 1UH

-II (VIIT) (JVII)HI + II' (anT) (JanI)H VH 1',

where VII = [ ,62, * 2II,, (1n- 1 ]T, and n > 1

the matrix E = UHARV 0 H and

-1 =- (UHSn-1IIARV- UHAR6n -l I I V ) 0 H with H = [Hij] = [a_-1],

and J is the (n - 1)L x (n - 1)L block exchange matrix.

Proof: First note that we can write,

6nH = (H + 1- ) (sn5 ) (n + n')

= nIJIIII + III6nIIIIL + II6nIIII± + lH'nIIIHI, (6)

where the first two terms of Eq. (6) are obtained by the idempotence property, while the other two

terms are derived using the commutativity property. Using the idempotence property IIII = II,

we obtain

(n + + ... )(n + an + ... ) n + (n)n + H(6n) ...,

which, by equating terms of corresponding first order, results in,

611 = In(In) + (611)11. (7)
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Premultiplying and postmultiplying Equation ( 7) respectively by II leads to,

11(n1)11 = n1(811)11 + 1n(81)II or,

n11(n1)1I = 0. (8)

We can similarly show that, II(SII)II = O. To evaluate the expressions of the expansion terms,

we call upon the commuting property, IR = R= , to derive the following,

(II + I)(R + AR) = (R + AR)(II +SII)

(8n)R + HAR = RII+ R(In). (9)

The expression of 6II in terms of II, IIl and AR, can now be arrived at by a simple algebraic

premultiplication by UH and postmultiplication by V:

UH(SII)R + UHAR = UHARII + AUH(sII), and

UH(8Ii)v r + UHARV = AUH( nII)V, (10)

where the fact that RU = UA and RV = vr was used. The latter equation can hence be rewritten

as,

AUH(611)V - UH(61n )V r = UHARV, (11)

which in turn, results in,

Vec{UH(611)V) = [(-r) · A]l-Vec{UHARV ) , (12)

where we used the fact that AX + XB = C, if A is (n x n), B, (m x m) and X is (n x m), has

the following solution: (BT ® A)Vec{X} = Vec{C}, with ¢ denoting a direct sum, and Vec(.) is

an operator which concatenates columns of a matrix into a vector. This can also be more simply

expressed as

UH(6II)V = UHARV O H,

where H = [Hij] = [A i -- ]. The derivation for the second and higher order terms is given in the

appendix. ·
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3.2 White Noise Field

It is clear that another choice of complementary linear manifold (e.g. different noise structure such

as white noise with a scaled identity for a covariance matrix) will lead to the scenario in [4] and

restated here as a corollary:

Corollary 1 The previous expansion of *t and HI, for a white noise case, i.e. R = S + a2I

simplifies to the following:

811 = II' ARSO +SO AR1- ,

5n8[I = n l I (8n-lii) AR SO + IIAR (8n1-l1I) So

-So AR (Sn-1II) II' + SO (sn-1II) ARII'

-11 (V11T) (JVII) 11 + ±II (VIIT) (JVII) II1 n > 1.

where VH = [11, 6211, .. , ,n-Il]T , J is the (n - 1)L x (n - 1)L block exchange matrix, and SO

is the pseudo inverse of S.

Proof:(Direct application of theorem and details are in [4].)

4 Conclusion

We have generalized some previous closed form expressions for the expansion of eigen projection

operators of Hermitian matrices. Recurrence formulae have derived, allowing one to obtain fairly

easily an expansion term of any order, thereby facilitating their application to any subspace-based

problem in spectral analysis.

Appendix

Second and higher order perturbation terms

Equating the nth order terms of 1111 = 1H yields:

n-1
Z 8n-JiSH +j1 n + 11in811 + 86nn11 = vnn1, (13)
j=l
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which, by using the idempotence property, leads to{n = HH- ( -1n ,6-i-JiHL) (14)-- II \L=1 V III~lllf II (14)
n' IHnnl HI (En-1 pn-in1 in) I .l

Let us consider only the nth order terms in the following equation,

IIR = RfI, thus,

5"- 1IIAR + 6"IIR = ARSn- 1II + R6nII (15)

Premultiplying the above equation by UH and postmultiplying by V results in,

_UHSnIIVr + AUH8nIIV = UHSIIn-lARV - UHARSn-IIIV

which as previously stated, has the following solution,

Vec {UHSnIIV} =

(A ® -r)-1 Vec {UHAR6 n- I I V}

_UHSn-1 IARV

USnIIHV =

(_UHAR6n-IHV + UH6n-IARV) 0 H, (16)

from which it is easy to obtain the first two terms of Eq. 8. E
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