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ABSTRACT

We develop a methodological framework and present a few different ways in which dynamic pro-

gramming and compact representations can be combined to solve large scale stochastic control

problems. In particular, we develop algorithms that employ two types of feature-based compact

representations, that is, representations that involve an arbitrarily complex feature extraction stage

and a relatively simple approximation architecture. We prove the convergence of these algorithms

and provide bounds on the approximation error. We also apply one of these algorithms to pro-

duce a computer program that plays Tetris at a respectable skill level. Furthermore, we provide

a counterexample illustrating the difficulties of integrating compact representations and dynamic

programming, which exemplifies the shortcomings of several methods in current practice, including

Q-learning and temporal-difference learning.
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1 Introduction

Problems of sequential decision making under uncertainty (stochastic control) have been studied

extensively in the operations research and control theory literature for a long time, using the

methodology of dynamic programming [Bertsekas, 1987]. The "planning problems" studied by the

artificial intelligence community are of a related nature although, until recently, this was mostly

done in a deterministic setting leading to search or shortest path problems in graphs [Korf, 1987].

In either context, realistic problems have usually proved to be very difficult mostly due to the large

size of the underlying state space or of the graph to be searched. In artificial intelligence, this issue

is usually addressed by using heuristic position evaluation functions; chess playing programs are a

prime example [Korf, 1987]. Such functions provide a rough evaluation of the quality of a given

state (or board configuration in the context of chess) and are used in order to rank alternative

actions.

In the context of dynamic programming and stochastic control, the most important object is

the cost-to-go function, which evaluates the expected future cost to be incurred, as a function of

the current state. Similarly with the artificial intelligence context, cost-to-go functions are used

to evaluate the consequences of any given action at any particular state. Dynamic programming

provides a variety of methods for computing cost-to-go functions. Due to the curse of dimensionality,

however, the practical applications of dynamic programming are somewhat limited; they involve

certain problems in which the cost-to-go function has a simple analytical form (e.g., controlling a

linear system subject to a quadratic cost) or to problems with a manageable small state space.

In most of the stochastic control problems that arise in practice (control of nonlinear systems,

queueing and scheduling, logistics, etc.) the state space is huge. For example, every possible config-

uration of a queueing system is a different state, and the number of states increases exponentially

with the number of queues involved. For this reason, it is essentially impossible to compute (or

even store) the value of the cost-to-go function at every possible state. The most sensible way of

dealing with this difficulty is to generate a compact parametric representation (compact represen-

tation, for brevity), such as an artificial neural network, that approximates the cost-to-go function

and can guide future actions, much the same as the position evaluators are used in chess. Since a
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compact representation with a relatively small number of parameters may approximate a cost-to-go

function, we are required to compute only a few parameter values rather than as many values as

there are states.

There are two important preconditions for the development of an effective approximation. First,

we need to choose a compact representation that can closely approximate the desired cost-to-go

function. In this respect, the choice of a suitable compact representation requires some practical

experience or theoretical analysis that provides some rough information on the shape of the function

to be approximated. Second, we need effective algorithms for tuning the parameters of the compact

representation. These two objectives are often conflicting. Having a compact representation that

can approximate a rich set of functions usually means that there is a large number of parameters

to be tuned and/or that the dependence on the parameters is nonlinear, and in either case, there

is an increase in the computational complexity involved.

It is important to note that methods of selecting suitable parameters for standard function ap-

proximation are inadequate for approximation of cost-to-go functions. In function approximation,

we are typically given training data pairs {(xl, Yi),. . , (XK, YK)} and we wish to construct a func-

tion y = f(x) that best explains these data pairs. In dynamic programming, we are interested in

approximating a cost-to-go function y = V(x) mapping states to optimal expected future costs, and

an ideal set of training data would consist of pairs {(x 1, yl), ... , (xK, YK)}, where each xi is a state

and each yi is a sample of the future cost incurred starting at state xi when the system is optimally

controlled. However, since we do not know how to control the system at the outset (in fact, our

objective is to figure out how to control the system), we have no way of obtaining such data pairs.

An alternative way of making the same point is to note that the desirability of a particular state

depends on how the system is controlled, so observing a poorly controlled system does not help us

tell how desirable a state will be when the system is well controlled. To approximate a cost-to-go

function, we need variations of the algorithms of dynamic programming that work with compact

representations.

The concept of approximating cost-to-go functions with compact representations is not new.

Bellman and Dreyfus (1959) explored the use of polynomials as compact representations for accel-

erating dynamic programming. Whitt (1978) and Reetz (1977) analyzed approaches of reducing

state space sizes, which lead to compact representations. Schweitzer and Seidmann (1985) devel-
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oped several techniques for approximating cost-to-go functions using linear combinations of fixed

sets of basis functions. More recently, reinforcement learning researchers have developed a num-

ber of approaches, including temporal-difference learning [Sutton, 1988] and Q-learning [Watkins

and Dayan, 1992], which have been used for dynamic programming with many types of compact

representation, especially artificial neural networks.

Aside from the work of Whitt (1988) and Reetz (1977), the techniques that have been developed

largely rely on heuristics. In particular, there is a lack of formal proofs guaranteeing sound results.

As one might expect from this, the methods have generated a mixture of success stories and

failures. Nevertheless, the success stories - most notably the world-class Backgammon player of

Tesauro (1992) - inspire great expectations in the potential of compact representations and dynamic

programming.

The main aim of this paper is to provide a methodological foundation and a rigorous assessment

of a few different ways that dynamic programming and compact representations can be combined

to form the basis of a rational approach to difficult stochastic control problems. Although heuristics

have to be involved at some point, especially in the selection of a particular compact representation,

it is desirable to retain as much as possible of the non-heuristic aspects of the dynamic programming

methodology, and to devise algorithms whose structure is similar to the structure of the exact

dynamic programming algorithms. A related objective is to provide results that can help us assess

the efficacy of alternative compact representations.

Cost-to-go functions are generally nonlinear, but often possess regularities (i.e. "smoothness")

similar to that found in the problems tackled by traditional function approximation. There are

several types of compact representations that one can use to approximate a cost-to-go function. (a)

Artificial neural networks (multi-layer perceptrons) present one possibility. This approach has led to

some successes, such as Tesauro's backgammon player which was mentioned earlier. Unfortunately,

it is very hard to quantify or analyze the performance of neural-network-based techniques. (b) A

second form of compact representation is based on the use of feature extraction to map the set of

states onto a much smaller set of feature vectors. By storing a value of the cost-to-go function

for each possible feature vector, the number of values that need to be computed and stored can be

drastically reduced and, if meaningful features are chosen, there is a chance of obtaining a good

approximation of the true cost-to-go function. (c) A third approach, is to choose a parametric form
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that maps the feature space to cost-to-go values and then try to compute suitable values for the

parameters. If the chosen parametric representation is simple and structured, this approach may

be amenable to mathematical analysis. One such approach, employing linear approximations, will

be studied here. This approach encompasses the popular group of compact representations often

called "basis function architectures," including radial basis functions and wavelet networks.

In this paper, we focus on dynamic programming methods that employ the latter two types

of compact representations, i.e., the feature-based compact representations. We provide a general

framework within which one can reason about such methods. We also suggest variants of the value

iteration algorithm of dynamic programming that can be used in conjunction with the represen-

tations we propose. We prove convergence results for our algorithms and then proceed to derive

bounds on the difference between optimal performance and the performance obtained using our

methods. We provide as an example, the application of our techniques to Tetris, the arcade game.

This paper is organized as follows. In Section 2, we introduce the Markov Decision Problem

(MDP), which provides a mathematical setting for stochastic control problems, and we also sum-

marize the value iteration algorithm and its properties. In Section 3, we propose a conceptual

framework according to which different approximation methodologies can be studied. To illustrate

some of the difficulties involved with employing compact representations for dynamic programming,

in Section 4, we describe a "natural" approach for dynamic programming with compact represen-

tations and then present a counter-example demonstrating the shortcomings of such an approach.

This counter-example also applies to certain algorithms in current use, such as Q-learning [Watkins,

1992] and temporal-difference learning [Sutton, 1988]. In Section 5, we propose a variant of the

value iteration algorithm that employs a look-up table in feature space rather than in state space.

We also discuss a theorem that ensures its convergence and provides bounds on the accuracy of

resulting approximations. Section 6 discusses an application of the algorithm from Section 5 to the

game of Tetris. In Section 7, we present our second approximation methodology, which employs

feature extraction and linear approximations. Again, we provide a convergence theorem as well

as bounds on the performance it delivers. This general methodology encompasses many types of

compact representations, and in Sections 8 and 9 we provide two subclasses: interpolative repre-

sentations and localized basis function architectures. Two technical results that are central to our

convergence theorems are presented in the Appendices A and B. In particular, Appendix A proves
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a theorem involving transformations that preserve contraction properties of an operator, and Ap-

pendix B reviews a result on stochastic approximation algorithms involving sup-norm contractions.

Apendices C and D provide proofs of the convergence theorems of Sections 4 and 6, respectively.

2 Markov Decision Problems

In this section, we introduce Markov decision problems which provide a model for sequential decision

making problems under uncertainty [Bertsekas, 1987].

We consider infinite horizon, discounted Markov decision problems defined on a finite state

space S. Throughout the paper, we let n denote the cardinality of S and, for simplicity, assume

that S = {1,..., n}. For every state i E S, there is a finite set U(i) of possible control actions and

a set of nonnegative scalars pij(u), u E U(i), j E S, such that EjESPij(u) = 1 for all u E U(i). The

scalar Pij(u) is interpreted as the probability of a transition to state j, given that the current state

is i and the control u is applied. Furthermore, for every state i and control u, there is a random

variable ciu which represents the one-stage cost if action u is applied at state i. We assume that

the variance of ciu is finite for every i E S and u E U(i).

A stationary policy is a function 7r defined on S such that 7r(i) E U(i) for all i E S. Given a

stationary policy, we obtain a discrete-time Markov chain s (t) with transition probabilities

Pr(sJ(t + 1) = j I s](t) = i) = pij(-T(i)).

Let : E [0, 1) be a discount factor. For any stationary policy qr and initial state i, the cost-to-go

Vi? is defined by

Vi/ = E[Z tc(t) s'(O) = i],
t=O

where c(t) = Cs7(t),Tr(s1(t)). In much of the dynamic programming literature, the mapping from

states to cost-to-go values is referred to as the cost-to-go function. However, since the state spaces

we consider in this paper are finite, we choose to think of the mapping in terms of a cost-to-go

vector whose components are the cost-to-go values of various states. Hence, given the cost-to-go

vector V' of policy ir, the cost-to-go value of policy ir at state i is the ith component of V r. The

optimal cost-to-go vector V* is defined by

Vi* = min V, i E S.
7r
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It is well known that the optimal cost-to-go vector V* is the unique solution to Bellman's equation:

Vi = r min) (E[ciu] +/ Epij(U)Vj*), Vi C S. (1)
jES

This equation simply states that the optimal cost-to-go starting from a state i is equal to the

minimum, over all actions u that can be taken, of the immediate expected cost E[ciu] plus the

suitably discounted expected cost-to-go Vj* from the next state j, assuming that an optimal policy

will be followed in the future.

The Markov decision problem is to find a policy 7r* such that

Vi* = Vi, i E S.

This is usually done by computing Vi*, and then choosing 7r* as a function which satisfies

7r*(i) = arg min) (E[ciu] +/3pij(u)Vj*), Vi E S.
jES

If we can not compute V* but can obtain an approximation V to V*, we might generate a reasonable

control policy 7Jv satisfying

r7rv(i) = arg i) (E[ciu] + Pij(u) V), Vi E S.

Intuitively, this policy considers actual immediate costs and uses V to judge future consequences

of control actions. Such a policy is sometimes called a greedy policy with respect to the cost-to-go

vector V, and as V approaches V*, the performance of a greedy policy 7rV approaches that of an

optimal policy wr*.

There are several algorithms for computing V* but we only discuss the value iteration algorithm

which forms the basis of the algorithms to be considered later on. We start with some notation.

We define Ti : Rn c-_ R by

Ti(V) = min) (E[ciu] +± pij(u)Vj), Vi E S. (2)

We then define the dynamic programming operator T: Rn _-, Rn by

T(V) = (Ti (V), . , Tn(V)).

In terms of this notation, Bellman's equation simply asserts that V* = T(V*) and V* is the unique

fixed point of T. The value iteration algorithm is described by

V(t + 1) = T(V(t)),
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where V(O) is an arbitrary vector in ~Rn used to initialize the algorithm. Intuitively, each V(t) is

an estimate (though not necessarily a good one) of the true cost-to-go function V*, which gets

replaced by the hopefully better estimate T(V(t)).

Let 1· Ioo be the maximum norm defined for every vector x = (xl,...,xn) E ~Rn by IlxlI =-

maxi Ixil. It is well known and easy to check that T is a contraction with respect to the maximum

norm, that is, for all V, V' E Rn,

IIT(V) - T(V') Iloo <, PIV - V'Io.

For this reason, the sequence V(t) produced by the value iteration algorithm converges to V*, at

the rate of a geometric progression. Unfortunately, this algorithm requires that we maintain and

update a vector V of dimension n and this is essentially impossible when n is extremely large.

For notational convenience, it is useful to define for each policy ir the operator T? · : n -+ R:

Ti (V) = E[ciw(i)] + P3 ij(7r(i))Vj, Vi E S. (3)
jEs

The operator T w is defined by

T (V) = (TT (V),..., Tn(V)).

It is well known that T w1 is also a contraction of the maximum norm and that V r is its unique fixed

point. Note that, for any vector V E Rn we have

T(V) = T 7rv (V), (4)

since the cost minimizing control action in Equation (2) is given by the greedy policy.

3 Compact Representations and Features

As mentioned in the introduction, the size of state spaces typically grows exponentially with the

number of variables involved. Because of this, it is often impractical to compute and store ev-

ery component of a cost-to-go vector. We set out to overcome this limitation by using compact

representations to approximate cost-to-go vectors. In this section, we develop a formal framework

for reasoning about compact representations and features as groundwork for subsequent sections,

where we will discuss ways of using compact representations for dynamic programming. The setting

is in many respects similar to that in [Schweitzer and Seidman, 1985].
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A compact representation can be thought of as a scheme for recording a high-dimensional

cost-to-go vector V CE n using a lower-dimensional parameter vector W CE Rm (m < n). Such a

scheme can be described by a mapping V: ~Rm -, Rn which to any given parameter vector W E 1Rm

associates a cost-to-vector V(W). In particular, each component Vi(W) of the mapping is the ith

component of a cost-to-go vector represented by the parameter vector W. Note that, although we

may wish to represent an arbitrary vector V in Rn, such a scheme allows for exact representation

only of those vectors V which happen to lie in the range of V.

Let us define a feature f as a function from the state space S into a finite set Q of feature values.

For example, if the state i represents the number of customers in a queueing system, a possible and

often interesting feature f is defined by f(O) = 0 and f(i) = 1 if i > 0. Such a feature focuses on

whether a queue is empty or not.

Given a Markov decision problem, one may wish to use several features fl, ... , fK, each one

being a function from the state space S to a finite set Qk, k = 1,..., K. Then, to each state

i E S, we associate the feature vector F(i) = (fl(i),... , fK(i)). Such a feature vector is meant to

represent the most salient properties of a given state. Note that the resulting set of all possible

feature vectors is the Cartesian product of the sets Qk and its cardinality increases exponentially

with the number of features.

In a feature-based compact representation, each component Vi of the mapping V is a function

of the corresponding feature vector F(i) and the weight vector W (but not an explicit function of

the state value i). Hence, for some function g: (JrK1 Qk) X Rm _4 R,

Vi(W) = g(F(i), W). (5)

If each feature takes on real values, we have Qk C R for all k, in which case it may be natural to

define the function g over all possible real feature values, g: RK x Rm + R, even though g will

only ever be computed over a finite domain. Figure 1 illustrates the structure of a feature-based

compact representation.
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In most problems of interest, Vi* is a highly complicated function of i. A representation like

the one in Equation (5) attempts to break the complexity of V* into less complicated mappings

g and F. There is usually a trade-off between the complexity of g and F and different choices

lead to drastically different structures. As a general principle, the feature extraction function F

is usually handcrafted and relies on whatever human experience or intelligence is available. The

function g represents the choice of an architecture used for approximation and the vector W are the

free parameters (or weights) of the chosen architecture. When a compact representation is used for

static function approximation, the values for the parameters W are chosen using some optimization

algorithm, which could range from linear regression to backpropagation in neural networks. In this

paper, however, we will develop parameter selection techniques for dynamic programming (rather

than function approximation). Let us first discuss some alternative architectures.

Look-Up Tables

A possible compact representation can be obtained by employing a look-up table in feature

space, that is, by assigning one value to each point in the feature space. In this case, the weight

vector W contains one component for each possible feature vector. The function g acts as a hashing

function, selecting the component of W corresponding to a given feature vector. In one extreme

case, each feature vector corresponds to a single state, there are as many parameters as states, and

V becomes the identity function. On the other hand, effective feature extraction may associate

many states with each feature vector so that the optimal cost-to-go values of states associated to

any particular feature vector are close. In this scenario, the feature space may be much smaller

that the state space, reducing the number of required parameters. Note, however, that the number

of possible feature vectors increases exponentially with the number of features. For this reason,
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look-up tables are only practical when there are very few features.

Using a look-up table in feature space is equivalent to partitioning the state space and then

using a common value for the cost-to-go from all the states in any given partition. In this context,

the set of states which map to a particular feature vector forms one partition. By identifying one

such partition per possible feature vector, the feature extraction mapping F defines a partitioning

of the state space. The function g assigns each component of the parameter vector to a partition.

For conceptual purposes, we choose to view this type of representation in terms of state aggregation,

rather than feature-based look-up tables. As we will see in our formulation for Tetris, however, the

feature-based look-up table interpretation is often more natural in applications.

We now develop a mathematical description of state aggregation. Suppose that the state space

S = {l,...,n) has been partitioned into m disjoint subsets S1,..., Sm, where m is the same as

the dimension of the parameter vector W. The compact representations we consider take on the

following form:

Vi(W) = Wj, vi E Sj.

There are no inherent limitations to the representational capability of such an architecture.

Whatever limitations this approach may have are actually connected with the availability of useful

features. To amplify this point, let us fix some c > 0 and let us define, for all j,

Sj = {iIje < Vi* < (j + 1)E}.

Using this particular partition, the function V* can be approximated with an accuracy of C. The

catch is of course that since V* is unknown, we are unable to form the sets Sj. A different way of

making the same point is to note that the most useful feature of a state is its optimal cost-to-go

but, unfortunately, this is what we are trying to compute in the first place.

Linear Architectures

With a look-up table, we need to store one parameter for every possible value of the feature

vector F(i), and, as already noted, the number of possible values increases exponentially with the

number of features. As more features are deemed important, look-up tables must be abandoned

at some point and a different kind of parametric representation is now called for. For instance, a
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representation of the following form can be used:

K

Vi(W) = Wkfk(i). (6)
k=l

This representation approximates a cost-to-go function using a linear combination of features. This

simplicity makes it amenable to rigorous analysis, and we will develop an algorithm for dynamic

programming with such a representation. Note that the number of parameters only grows linearly

with the number of features. Hence, unlike the case of look-up tables, the number of features need

not be small. However, it is important to choose features that facilitate the linear approximation.

Many popular function approximation architectures fall in the class captured by Equation (6).

Among these are radial basis functions, wavelet networks, polynomials, and more generally all

approximation methods that involve a fixed set of basis functions. In this paper, we will discuss

two types of these compact representations that are compatible with our algorithm - a method

based on linear interpolation and localized basis functions.

Nonlinear Architectures

The architecture, as described by g, could be a nonlinear mapping such as a feedforward neural

network (multi-layer perceptron) with weights W. The feature extraction mapping F could be

either entirely absent or it could be included to facilitate the job of the neural network. Both of

these options were used in the backgammon player of Tesauro and, as expected, the inclusion of

features led to improved performance. Unfortunately, as was mentioned in the introduction, there

is not much that can be said analytically in this context.

4 Least-Squares Value Iteration: A Counter-Example

Given a set of k samples {(il, Vi), (i2 , Vi*)..., (iK, Vi)} of an optimal cost-to-go vector V*, we

could approximate the vector with a compact representation V by choosing parameters W to

minimize an error function such as

K 

k=l

i.e. by finding the "least-squares fit." Such an approximation conforms to the spirit of traditional

function approximation. However, as discussed in the introduction, we do not have access to

such samples of the optimal cost-to-go vector. To approximate an optimal cost-to-go vector, we



must adapt dynamic programming algorithms such as the value iteration algorithm so that they

manipulate parameters of compact representations.

For instance, we could start with a parameter vector W(O) corresponding to an initial cost-to-

go vector V(W(O)), and then generate a sequence {W(t)lt = 1,2,...} of parameter vectors such

that V(W(t + 1)) approximates T(V(W(t))). Hence, each iteration approximates a traditional

value iteration. The hope is that, by approximating individual value iterations in such a way,

the sequence of approximations converges to an accurate approximation of the optimal cost-to-go

vector, which is what value iteration converges to.

It may seem as though any reasonable approximation scheme could be used to generate each

approximate value iteration. For instance, the "least-squares fit" is an obvious candidate. This

involves selecting W(t + 1) by setting

W(t + 1) = arg min E [V(W)- T(V(W(t)))] (7)

However, in this section we will identify subtleties that make the choice of criterion for param-

eter selection crucial. Furthermore, an approximation method that is compatible with one type

of compact representation may generate poor results when a different compact representation is

employed.

We will now develop a counter-example that illustrates the shortcomings of such a combination

of value iteration and least-squares approximation. This analysis is especially interesting, since

the same shortcomings are inherent to several algorithms in current use, such as Q-learning and

temporal-difference learning (TD(A)), with A is set to 0, and the same counter-example applies in

these cases.3 This section thus highlights some of the difficulties involved with the interfacing of

dynamic programming with compact representations.

Bertsekas (1994) described a counter-example to methods like the one defined by Equation (7).

His counter-example involves a Markov decision problem and a compact representation that could

generate a close approximation (in terms of Euclidean distance) of the optimal cost-to-go vector,

but fails to do so when algorithms like the one we have described are used. In particular, the weight

vector does converge to some W* E sm, but, unfortunately, this parameter vector generates a poor

3 There are proofs of convergence for these algorithms when a full cost-to-go vector (not a compact representation)
is used [Watkins, 1992; Tsitsiklis, 1994; Jaakola, Jordan, Singh, 1994]. Problems arise due to the ways in which these
methods are interfaced with compact representations.
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estimate of the optimal cost-to-go vector (in terms of Euclidean distance), that is,

IlV(W*) - V*112 > min IIV(W) - V*112,
WERn

where II 112 denotes the Euclidean norm. With our upcoming counter-example, we show that

much worse behavior is possible: even when the compact representation can generate a perfect

approximation of the optimal cost-to-go function (i.e. minw IIV(W)- V*112 = 0), the algorithm

may diverge.

wx x2

w 2W

FIGURE 2

Consider the simple Markov decision problem depicted in Figure 2. The state space consists

of two states, xi and x2, and at state xi a transition is always made to x2, which is an absorbing

state. There are no control decisions involved. All transitions incur 0 cost. Hence, the optimal

cost-to-go function assigns 0 to both states.

Suppose a feature f is defined over the state space so that f(xl) = 1 and f(x 2) = 2, and a

compact representation of the form

Vi(w) = wf(i), i E {(Xi, 2) ,

is employed, where w is scalar. When we set w to 0, we get V(w) = V*, so a perfect representation

of the optimal cost-to-go vector is possible.

Let us investigate the behavior of the least-squares value iteration algorithm with the Markov

decision problem and compact representation we have described. The parameter w evolves as

follows:

w(t + 1) = arg min [(w) -T(V(w(t)))]
iES

= arg min [(w -P 2w(t))2 + (2w -/ 2w(t))2],
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and we obtain

w(t + 1) = 6Ow(t). (8)

Hence, if p > 6 and w(O) i 0, the sequence diverges. Counter-examples involving Markov decision

problems that allow several control actions at each state can also be produced. In that case, the

least-squares approach to value iteration can generate poor control strategies even when the optimal

cost-to-go vector can be represented.

The iteration defined by Equation (7) may be computationally intractable when the number

of states is very large. Methods like Q-learning and TD(O) can be viewed as approaches to ap-

proximating the asymptotic behavior of the least-squares value iteration procedure, while requiring

computation of T(V(W(t))) for only one randomly sampled state per iteration. Similarly with

the least-squares value iteration algorithm, our counter-example applies to Q-learning and TD(O),

demonstrating that they may diverge even when the chosen compact representation can perfectly

represent the optimal cost-to-go vector.

The shortcomings of straightforward procedures such as least-squares value iteration charac-

terize the challenges involved with combining compact representations and dynamic programming.

The remainder of this paper is dedicated to the development of approaches that guarantee more

graceful behavior.

5 Value Iteration with Look-Up Tables

As a starting point, let us consider what is perhaps the simplest possible type of compact repre-

sentation. This is the feature-based look-up table representation described in Section 3. In this

section, we discuss a variant of the value iteration algorithm that has sound convergence properties

when used in conjunction with such representations. We provide a convergence theorem, which we

formally prove in Appendix C. We also point out relationships between the presented algorithm

and previous work in the fields of dynamic programming and reinforcement learning.

5.1 Algorithmic Model

As mentioned earlier, the use of a look-up table in feature space is equivalent to state aggregation.

We choose this latter viewpoint in our analysis. We consider a partition of the state space S =

{1,..., n} into subsets S1,S 2,..., Sm; in particular, S = S U S2 U.. US, Smand Si nSj = 0 ifi j.
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Let V: ~ Rm -_ 'n, the function which maps a weight vector W to a cost-to-go vector V, be defined

by:

Vi(W) = Wj, Vi E Sj.

Let ;V be the set of nonnegative integers. We employ a discrete variable t, taking on values in X,

which is used to index successive updates of the parameter vector W. Let W(t) be the parameter

vector at time t. Let Fr be an infinite subset of KA indicating the set of times at which an update

of the jth component of the weight vector is performed. For each set Sj, j = 1,..., m, let p (.) be

a probability distribution over the set Sj. In particular, for every i C Sj, pj (i) is the probability

that a random sample from Sj is equal to i. Naturally, we have pJ(i) > 0 and Eisj p(i) = 1.

At each time t, let X(t) be an m-dimensional vector whose jth component is a random rep-

resentative of the set Sj, sampled according to the probability distribution pJ(.). We assume that

each such sample is generated independently from everything else that takes place in the course of

the algorithm. 4

The value iteration algorithm applied at state Xj(t) would update the value Vxj(t), which is

represented by Wj, by setting it equal to Txj(t)(V). Given the compact representation that we are

using and given the current parameter vector W(t), we actually need to set Wj to Tx, (t)(V(W(t))).

However, in order to reduce the sensitivity of the algorithm to the randomness caused by the

random sampling, Wj is updated in that direction with a small stepsize. We therefore end up with

the following update formula:

WjV(t + 1) = (1 - aj(t))Wj(t) + acj(t)Txj(t)(V((W(t))), t C ri, (9)

Wi(t + 1) = Wi(t), t ¢ ri . (10)

Here, caj(t) is a stepsize parameter between 0 and 1. In order to bring Equations (9) and (10)

into a common format, it is convenient to assume that acj(t) is defined for every j and t, but that

aOj(t) = 0 for t ¢ rP.

In a simpler version of this algorithm, we could define a single probability distribution p(.) over

the entire state space S such that for each subset Sj, we have ZiEsj px(i) > O0. Then, defining x(t)

4We take the point of view that these samples are generatred by some off-line randomization mechanism. If the
samples were generated by an on-line simulation experiment, independence would fail to hold. This would complicate
somewhat the convergence analysis, but can be handled as in [Jaakola, Singh and Jordan, 1995].
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as a state sampled according to the p(.), updates of the form

WjV(t + 1) = (1 - aj (t))VWj(t) + cj(t)T.(t) (V(W(t))), if x(t) c Sj, (11)

Wj(t + 1) = Wj(t), if x(t) ¢ Sj, (12)

can be used. The simplicity of this version - primarily the fact that samples are taken from only

one distribution rather than many - makes it attractive for implementation. This version has a

potential shortcoming, though. It does not involve any adaptive exploration of the feature space,

that is, the choice of the subset Sj to be sampled does not depend on past observations. Regardless,

this simple version is the one chosen for application to the Tetris playing problem which is reported

in Section 5.

We view all of the variables introduced so far, namely, aj(t), Xj(t), and W(t), as random

variables defined on a common probability space. The reason for acj (t) being a random variable is

that the decision whether Wj will be updated at time t (and, hence, whether acj(t) will be zero or

not) may depend on past observations. Let Y(t) be the set of all random variables that have been

realized up to and including the point at which the stepsize aj(t) is fixed but just before Xj(t) is

generated.

5.2 Convergence Theorem

Before stating our convergence theorem, we must introduce the following standard assumption

concerning the stepsize sequence:

Assumption 1 a) For all i, the stepsize sequence satisfies

00

E Oi(t ) = O, w.p.l. (13)
t=O

b) There exists some (deterministic) constant C such that

o00

ai2 a(t) < C, w.p.l. (14)
t=O

Following is the convergence theorem:

Theorem 1 Let Assumption 1 hold.

(a) With probability 1, the sequence W(t) converges to W*, the unique vector whose components
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solve the following system of equations:

W*= E pJ(i)Ti(V(W*)), Vj. (15)
iesj

Define V* as the optimal cost-to-go vector and e C Rm by

ei = max Vj* - , Vi {1, ... ,m}.
j,lESi

Recall that 7rv(w*) denotes a greedy policy with respect to cost-to-go vector V(W*), i.e.,

7rf(w*) (i ) = arg min (E[Ciu] +/ Pzij(u)Vj(W*)).
jES

The following hold:

(b)

IIV(W*) - V*fl10 <I le 

(c)

lIVr-v(w*) -_ < ( _ 1 )21

(d) there exists an example for which the bounds in (b) and (c) both hold with equality.

A proof of Theorem 1 is provided in Appendix C. We prove the theorem by showing that the

algorithm corresponds to a stochastic approximation involving a maximum norm contraction, and

then appeal to a theorem concerning asynchronous stochastic approximation due to Tsitsiklis (1994)

(see also [Jaakola, Jordan, and Singh, 1994]), which is discussed in Appendix B, and a theorem

concerning multi-representation contractions presented and proven in Appendix A.

5.3 The Quality of Approximations

Theorem 1 establishes that the quality of approximations is determined by the quality of the chosen

features. If the true cost-go function V* can be accurately represented in the form V(W), then

the computed parameter values deliver near optimal performance. This is a desirable property.

The distressing aspect of Theorem 1 is the wide margin allowed by the worst-case bound. As

the discount factor approaches unity, the 1 1- term explodes. Since discount factors close to one

are most common in practice, this is a severe weakness. However, achieving or nearly achieving

the worst-case bound in real world applications may be a rare event. These weak bounds are to be

viewed as the minimum desired properties for a method to be sound. As we have seen in Section

4, even this is not guaranteed by some other methods in current practice.

17



5.4 Role of the Sampling Distributions

The worst-case bounds provided by Theorem 1 are satisfied for any set of state sampling distribu-

tions. The distribution of probability among states within a particular partition may be arbitrary.

Sampling only a single state per partition constitutes a special case which satisfies the requirement.

For this special case, a decaying stepsize is unnecessary. If a constant stepsize of one is used in

such a setting, the algorithm becomes an asynchronous version of the standard value iteration algo-

rithm applied to a reduced Markov decision problem that has one state per partition of the original

state space; the convergence of such an algorithm is well known [Bertsekas, 1982; Bertsekas and

Tsitsiklis, 1989]. Such a state space reduction is analogous to that brought about by state space

discretization, which is commonly applied to problems with continuous state spaces. Whitt (1978)

considered this method of discretization and derived the bounds of Theorem 1, for the case where

a single state is sampled in each partition. Our result can be viewed as a generalization of Whitt's,

allowing the use of arbitrary sampling distributions.

When the state aggregation is perfect in that the true optimal cost-to-go values for all states

in any particular partition are equal, the choice of sampling function is insignificant. This is

because, independent of the distribution, the error bound is zero when there is no fluctuation of

optimal cost-to-go values within any partition. In contrast, when V* fluctuates within partitions,

the error achieved by a feature-based approximation can depend on the sampling distribution.

Though the derived bound limits the error achieved using any set of state distributions, the choice

of distributions may play an important role in attaining errors significantly lower than this worst

case bound. It often appears desirable to distribute the probability among many representative

states in each partition. If only a few states are sampled, the error can be magnified if these states

do not happen to be representative of the whole partition. On the other hand, if many states are

chosen, and their cost-to-go values are in some sense averaged, a cost-to-go value representative of

the entire partition may be generated. It is possible to develop heuristics to aid in choosing suitable

distributions, but the relationship between sampling distributions and approximation error is not

yet clearly understood or quantified.
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5.5 Related Work

As was mentioned earlier, Theorem 1 can be viewed as an extension to the work of Whitt (1978).

However, our philosophy is much different. Whitt was concerned with discretizing a continuous

state space. Our concern here is to exploit human intuition concerning useful features and heuristic

state sampling distributions to drastically reduce the dimensionality of a dynamic programming

problem.

Several other researchers have considered ways of aggregating states to facilitate dynamic pro-

gramming. Bertsekas and Castafion (1989) developed an adaptive aggregation scheme for use with

the policy iteration algorithm. Rather than relying on feature extraction, this approach automat-

ically and adaptively aggregates states during the course of an algorithm based on probability

transition matrices under greedy policies.

The algorithm we have presented in this section is closely related to Q-learning and temporal-

difference learning (TD(A)) in the case where A is set to 0. In fact, Theorem 1 can easily be

extended so that it applies to TD(0) or Q-learning when used in conjunction with feature-based

look-up tables. Since the convergence and efficacy of TD(0) and Q-learning in this setting have not

been theoretically established in the past, our theorem sheds new light on these algorithms.

In considering what happens when applying the Q-learning algorithm to partially observable

Markov decision problems, Jaakola, Singh and Jordan (1995) prove a convergence theorem similar

to part (a) of Theorem 1. Their analysis involves a scenario where the state aggregation is inherent

because of incomplete state information - i.e. a policy must choose the same action within a group

of states because there is no way a controller can distinguish between different states within the

group - and is not geared towards accelerating dynamic programming in general.

6 Example: Playing Tetris

As an example, we applied the algorithm from the previous section to the game of Tetris. In

this section we discuss the process of formulating Tetris as a Markov decision problem, choosing

features, and finally, generating and assessing a game strategy. The objective of this exercise was to

verify that feature-based value iteration can deliver reasonable performance for a rather complicated

problem. Our objective was not to construct the best possible Tetris player and, for this reason,

no effort was made to construct and use sophisticated features.
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6.1 Problem Formulation

We formulated the game of Tetris as a Markov decision problem, much in the same spirit of

the Tetris playing programs of Lippman, Kukolich and Singer (1993). Each state of the Markov

decision problem is recorded using a two hundred dimensional binary vector which represents the

configuration of the current wall of bricks and a seven dimensional binary vector which identifies

the current falling piece. For each location on our twenty by ten square Tetris screen, there is a

component of the stack vector which is assigned 1 if there is a brick at the location and 0 otherwise.

All components of the seven dimensional vector are assigned 0 except for the component associated

with the piece which is currently falling (there are seven types of pieces).

At each state of the Markov decision problem, the set of possible decisions includes all possible

locations and orientations at which we can place the falling piece on the current wall of bricks.

The subsequent state is determined by the wall configuration resulting from the action and the

next random piece that appears. Since the resulting wall configuration is deterministic and there

are seven possible pieces, there are seven potential subsequent states for any action, each of which

occurs with equal probability. An exception is when the wall is higher than sixteen rows. In this

circumstance, we consider the game to be over, and the state is absorbing.

The Markov Decision Problem in Tetris entails maximizing the expected number of rows elim-

inated during the course of a game. Though we formulate Markov decision problems in terms of

minimizing costs, we can think of Tetris as a problem of maximizing rewards, where rewards are

just negative costs that are being minimized. The reward of a transition is the immediate number

of rows eliminated. We chose a discount factor of 3 = 0.9999. This completes the description of

our Markov decision problem formulation.

6.2 A Heuristic Evaluation Function

As a reference Tetris playing program, we made a simple Tetris player that bases decisions on two

features of the state of the Markov decision problem. The two features used are the height of the

current wall and the number of holes (brickless slots with bricks both above and below) in the wall.

Let us denote the set of possible heights by H = {0, ..., 20}, and the set of possible numbers of

holes by L = {0, ..., 200}. We can then think of the feature extraction process as the application of

a function F: S X-+ H x L. The rule-based player consists of a quadratic function g: H x L -+ s
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which incorporates some heuristics developed by the authors. Then, although the composition of

feature extraction and the rule based system's evaluation function, g o F, is not necessarily an

estimate of the optimal cost-to-go vector, the expert player follows a greedy policy based on the

composite function.

The average score of this Tetris player on a hundred games was 31 (rows eliminated). This may

seem low since arcade versions of Tetris drastically inflate scores. To gain perspective, though, we

should take into account the fact that an experienced human Tetris player would take about three

minutes to eliminate thirty rows.

6.3 Value Iteration with a Feature-Based Look-Up Table

We synthesized two Tetris playing programs by applying the feature-based value iteration algorithm

to the Tetris Markov decision problem. These two players differed in that each relied on different

state sampling distributions during training. Both players were based on the same feature space

that was used by the rule-based player.

The first Tetris player used the states visited by the rule-based Tetris player as sample states for

value iterations. After convergence, the average score of this player was about 32. The fact that this

player does not do much better than the heuristic player is not surprising given the simplicity of the

features on which both players base position evaluations. This example reassures us, nevertheless,

that the feature-based value iteration algorithm converges to a reasonable solution.

We may consider the way in which the first player was constructed unrealistic, since it relied on a

pre-existing heuristic player for state sampling. The second Tetris player eliminates this requirement

by uses an ad hoc state sampling algorithm. In sampling a state, the sampling algorithm begins by

sampling a maximum height for the wall of bricks from a uniform distribution. Then, for each slot

below this height, a brick is placed in the slot with probability 3. Each unsupported layer of bricks

is then allowed to fall until each layer cannot fall any further without colliding with the previous

layer. The player based on this complicated but ad hoc sampling function gave an average score of

11 (equivalent to a human game lasting about one and a half minutes). This is a fairly respectable

score given the simplicity of features and the arbitrary nature of the sampling function.

The experiments performed with Tetris provide some assurance that the feature-based value

iteration algorithm produces reasonable control policies. In some sense, Tetris is a worst-case
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scenario for the evaluation of automatic control algorithms, since humans excell at Tetris. The goal

of algorithm that approximate dynamic programming is to generate reasonable control policies for

large scale stochastic control problems that we have no other reasonable way of addressing. Such

problems would not be natural to humans, and any reasonable policy generated by the feature-

based value iteration algorithm would be valuable. Futhermore, the features chosen for this study

were very crude; perhaps with the introduction of more sophisticated features, the feature-based

value iteration algorithm would excell in Tetris. An additional lesson can be drawn from the

differing scores for the two Tetris programs created by feature-based value iteration. This is that

the sampling distribution plays an important role in feature-based value iteration.

7 Value Iteration with Linear Architectures

We have discussed the use of feature-based look-up tables with value iteration, and found that their

use can significantly accelerate dynamic programming. However, employing a look-up table with

one entry per feature vector is viable only when the number of feature vectors is reasonably small.

Unfortunately, the number of possible feature vectors grows exponentially with the dimension of

the feature space. When the number of features is fairly large, alternative compact representations,

requiring fewer parameters, must be used. In this section, we explore one possibility which involves

a linear approximation architecture. More formally, we consider compact representations of the

form
K

Vi(W) = E Wkfk(i) = WTF(i), Vi E S, (16)
k=1

where W E RK is the parameter vector, F(i) = (fl(i),...,fK(i)) E RK is the feature vector asso-

ciated with state i, and the superscript T denotes transpose. This type of compact representation

is very attractive since the number of parameters is equal to the number of dimensions of, rather

than the number of elements in, the feature space.

We will describe a variant of the value iteration algorithm that, under certain assumptions on

the feature mapping, is compatible with compact representations of this form, and we will provide

a convergence result and bounds on the quality of approximations. Formal proofs are presented in

Appendix D.
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7.1 Algorithmic Model

The iterative algorithm we propose is an extension to the standard value iteration algorithm. At

the outset, K representative states il, ..., iK are chosen, where K is the dimension of the parameter

vector. Each iteration generates an improved parameter vector W(t + 1) from a parameter vector

W(t) by evaluating Ti(V(W(t))) at states il, ...,iK and then computing W(t + 1) so that Vi(W(t +

1)) = Ti(V(W(t))) for i E {il, ... , iK}. In other words, the new cost-to-go estimate is constructed by

fitting the compact representation to T(V), where V is the previous cost-to-go estimate, by fixing

the compact representation at il, ..., iK. If suitable features and representative states are chosen,

V(W(t)) may converge to a reasonable approximation of the optimal cost-to-go vector V*. Such an

algorithm has been considered in the literature [Bellman (1959), Reetz (1977), Morin (1979)]. Of

these references, only [Reetz (1977)], establishes convergence and error bounds. However, Reetz's

analysis is very different from what we will present and is limited to problems with one-dimensional

feature spaces.

If we apply an algorithm of this type to the counter-example of Section 4, with K = 1 and

il = xl, we obtain w(t + 1) = 2Pw(t), and if P > ½, the algorithm diverges. Thus, an algorithm of

this type is only guaranteed to converge for a subclass of the compact representations described by

Equation (16). To characterize this subclass, we introduce the following assumption which restricts

the types of features that may be employed:

Assumption 2 Let il, ... , iK E S be the pre-selected states used by the algorithm.

(a) The vectors F(il),..., F(iK) are linearly independent.

(b) There exists a value 3' E [3, 1) such that for any state i E S there exist 01(i), ..., OK(i) E X with

K

E10k(i)l < 1,
k=l

and

F(i) = Ok(i)F(ik).
k=l

In order to understand the meaning of this condition, it is useful to think about the feature space

defined by {F(i)li E S} and its convex hull. In the special case where /3 = /3' and under the

additional restrictions E Kil SOk(i) = 1 for all i, and Ok(i) Ž O, the feature space is contained in the

(K - 1)-dimensional simplex with vertices F(il),..., F(iK). Allowing /3' to be strictly greater than
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1 introduces some slack and allows the feature space to extend a bit beyond that simplex. Finally,

if we only have the condition Ek=l I0k(i)l < 1, the feature space is contained in the convex hull of

the vectors ±-iF(il), +±-F(i 2),..., ±+iF(iK).

The significance of the geometric interpretation lies in the fact that the extrema of a linear

function within a convex polyhedron must be located at the corners. Formally, Assumption 2

ensures that

IIV(W)11oo < -maxlVlk(W)I.

The upcoming convergence proof capitalizes on this property.

To formally define our algorithm, we need to define a few preliminary notions. First, the

representation described by Equation (16) can be rewritten as

V(W) = MW, (17)

where M E ~RnxK is a matrix with the ith row equal to F(i)T. Let L E }KxK be a matrix with the

kth row being F(ik)T. Since the rows of L are linearly independent, there exists a unique matrix

inverse L - 1 E RKxK. We define Mt C RKxn as follows. For k E {1, ..., K}, the ikth column is the

same as the kth column of L-l1 ; all other entries are zero. Assuming, without loss of generality,

that il = 1,..., ik = K, we have

MtM = [L - 1 0] L-1L =

where I E ~RKxK is the identity matrix and G represents the remaining rows of M. Hence, Mt is a

left inverse of M.

Our algorithm proceeds as follows. We start by selecting a set of K states, il, ... iK, and an

initial weight vector W(0). Then, defining T' as Mt oTo M, successive weight vectors are generated

using the following update rule:

W(t + 1) = T'(W(t)). (18)

7.2 Computational Considerations

We will prove shortly that the operation T' applied during each iteration of our algorithm is a

contraction in the parameter space. Thus, the difference between an intermediate parameter vector
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W(t) and the limit W* decays exponentially with the time index t. Hence, in practice, the number

of iterations required should be reasonable. 5

The reason for using a compact representation is to alleviate the computational time and space

requirements of dynamic programming, which traditionally employs an exhaustive look-up table,

storing one value per state. Even when the parameter vector is small and the approximate value

iteration algorithm requires few iterations, the algorithm would be impractical if the computation of

T' requires time or memory proportional to the number of states. Let us determine the conditions

under which T' can be computed in time polynomial in the number of parameters K rather than

the number of states n.

The operator T' is defined by

T'(W) = MtT(MW).

Since Mt only has K nonzero columns, only K components of T(MW) must be computed: we

only need to compute Ti(MW) for i = i, ... , ik. Each iteration of our algorithm thus takes time

O(K 2 tT) where tT is the time taken to compute Ti(MW) for a given state i. For any state i,

Ti(MW) takes on the form

Ti(MW) = min (E[cu] + Epij(u)WTF(i)).
jES

The amount of time required to compute EjEsPij(u)WT F(i) is O(NsK), where Ns the maximum

number of possible successor states under any control action (i.e. states j such that pij (u) > 0). By

considering all possible actions u E U(i) in order to perform the required minimization, Ti(MW)

can be computed in time O(NUNsK) where Nu is maximum number of control actions Nu allowed

at any state. The computation of T' thus takes time O(NUNSK3 ).

Note that for many control problems of practical interest, the number of control actions allowed

at a state and the number of possible successor states grow exponentially with the number of

state variables. For problems in which the number of possible successor states grows exponentially,

5To really ensure a reasonable order of growth for the number of required iterations, we would have to characterize
a probability distribution for the difference between the initial parameter vector W(O) and the goal W* as well as how
close to the goal W* the parameter vector W(t) must be in order for the approximation error bounds to hold. This
depends on a priori knowledge concerning the Markov decision problem at hand. Hence, without knowing anything
about the types of Markov decision problems we are dealing with, we can make no promises about the number of
iterations required. However, given some information (eg. the maximum expectation E[ci,,] of any transition cost
and the minimum non-zero difference between the optimal cost-to-go values at two states) we could generate a good
bound.

25



methods involving Monte Carlo simulations may be coupled with our algorithm to reduce the

computational complexity to a managable level. We do not discuss such methods in this paper

since we choose to concentrate on the issue of compact representations. For problems in which the

number of control actions grows exponentially, on the other hand, there is no satisfactory solution,

except to limit choices to a small subset of allowed actions (perhaps by disregarding actions that

seem "bad" a priori). In summary, our algorithm is suitable for problems with large state spaces

and can be modified to handle cases where an action taken at a state can potentially lead to any

of a large number of successor states, but the algorithm is not geared to solve problems where an

extremely large number of control actions is allowed.

7.3 Convergence Theorem

Let us now proceed with our convergence result for value iteration with linear architectures.

Theorem 2 Let Assumption 2 hold.

(a) There exists a vector W* E 3RK such that W(t) converges to W*.

(b) T' is a contraction, with contraction coefficient /', with respect to a norm I 1 II on RK defined

by

IIWII = IIMWlI.o

Let V* be the optimal cost-to-go vector, and define e by letting

e = inf I V* - V(W) ||o,
WER K

where V* is the optimal cost-to-go vector. Recall that 7rV(W*) denotes a greedy policy with respect

to cost-to-go vector V(W*), i.e.

v(w*) (i) = arg m(i) (E[ciu] + 3 pij (u)Vj(W*)).UEU(i) jeS

The following hold:

(c)
/3 + /'

IlV* - V(W*)lloo < 1 

(d)
11V7,rv(W*) V*||. < 2 (1 + Y')

(Iew - o <(1 - )')

(e) there exists an example for which the bounds of (c) and (d) hold with equality.
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This result is analogous to Theorem 1. The algorithm is guaranteed to converge and, when the com-

pact representation can perfectly represent the optimal cost-to-go vector, the algorithm converges

to it. Furthermore, the quality of accuracy of approximations generated by the algorithm decays

gracefully as the propriety of the compact representation diminishes. The proof of this Theorem

involves a straightforward application of Theorem 3 concerning multi-representation contractions,

which is presented in Appendix D.

Theorem 1 provides some assurance of reasonable behavior when feature-based linear architec-

tures are used for dynamic programming. However, the theorem requires that the chosen represen-

tation satisfies Assumption 2, which seems very restrictive. In the next two section, we discuss two

types of compact representations that satisfy Assumption 2 and may be of practical use.

8 Example: Interpolative Representations

One possible compact representation can be produced by specifying values of K states in the state

space, and taking weighted averages of these K values to obtain values of other states. This

approach is most natural when the state space is a grid of points in a Euclidean space. Then, if

cost-to-go values at states sparsely distributed in the grid are computed, values at other points can

be generated via interpolation. Other than the case where the states occupy a Euclidean space,

interpolation-based representations may be used in settings where there seems to be a small number

of "prototypical" states that capture key features. Then, if cost-to-go values are computed for these

states, cost-to-go values at other states can be generated as weighted averages of cost-to-go values

at the "prototypical" states.

For a more formal presentation of interpolation-based representations, let S = {1,..., n} be the

states in the original state space and let i, ... , iK E S be the states for which values are specified.

The kth component of the parameter vector W CE K stores the cost-to-go value of state ik. We

are then dealing with the representation

Vi (V) = W T F (i ), otherwise,

where F(i) E RK is a vector used to interpolate at state i. For any i E S, the vector F(i) is fixed; it

is a part of the interpolation architecture, as opposed to the parameters W which are to be adjusted

by an algorithm. The choice of the components fk(i) of F(i) is generally based on problem-specific
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considerations. For the representations we consider in this section, we require that each component

fk(i) of F(i) be nonnegative and EkK_ l fk(i) = 1 for any state i.

In relation to feature-based methods, we could view the vector F(i) as the feature vector

associated with state i. To bring Equation (19) into a uniform format, let us define vectors

{F(il), ..., F(iK) as the usual basis vectors of Rm so that we have

Vi(W) = WTF(i), Vi E S.

To apply the algorithm from Section 6, we should show that Assumption 2 of Theorem 2 is

satisfied. Assumption 2(a) is satisfied by the fact that F(il), ..., F(iK) are the basis vectors of ~Rm.

This fact also implies that F(i) = Ik Ok(i)F(ik) for Ok(i) = fk(i). Since the components of F(i)

sum to one, Assumption 2(b) is satisfied. Hence, this interpolative representation is compatible

with the algorithm of Section 6.

9 Example: Localized Basis Functions

Compact representations consisting of linear combinations of localized basis functions have at-

tracted considerable interest as general architectures for function approximation. Two examples

are radial basis function [Poggio and Girosi, 1990] and wavelet networks [Bakshi and Stephanopou-

los, 1993]. With these representations, states are typically contained in a Euclidean space Rd

(typically forming a finite grid). Let us continue to view the state space as S = {1, ..., n}. Each

state index is associated with a point x i E Rd. With a localized basis function architecture, the

cost-to-go value of state i E S takes on the following form:

K

Vi(W) = EWk , p k), (20)
k=l

where W E Rd is the parameter vector, and the function R: jd x R x iX R R is the chosen basis

function. In the case of radial basis functions, for instance, q is a Gaussian, and the second and

third arguments, /uk E Rd and ak E I, specify the center and dilation, respectively. More formally,

lIx-_u1ll2
0(x, /, oa) = ae- 2,2 , R,/ d E Ad E R,

where 11 - 112 denotes the Euclidean norm and a E X is a normalization factor. Without loss of

generality, we assume that the height at the center of each basis function is normalized to one.
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In the case of radial basis functions, this means a = 1. For convenience, we will assume that

I'k = xik Vk E {1,... ,K), where il, .,iK are preselected states in S. In other words, each basis

function is centered at a point that corresponds to some state.

Architectures employing localized basis functions are set apart from other compact represen-

tations by the tendency for individual basis functions to capture only local characteristics of the

function to be approximated. This is a consequence of the fact that 0(x, A, A) generates a signif-

icant value only when x is close to A. Otherwise, O(x, u, u) is extremely small. Intuitively, each

basis function captures a feature that is local in Euclidean space. More formally, we use locality

to imply that a basis function, 0, has maximum magnitude at the center, so qb(p, /A, a) = 1 while

I0(x, ,au) < 1 for x 1 /u. Furthermore, 1(x, y,to)l generally decreases as lix - 1112 increases,

and the dilation parameter controls the rate of this decrease. Hence, as the dilation parameter is

decreased, l4(x, c,) I becomes increasingly localized, and, formally, we have

lim 0~(x, /, a) = O, VX =/ .

In general, when a localized basis function architecture is used for function approximation,

the centers and dilations are determined via some heuristic method which employs data and any

understanding about the problem at hand. Then, the parameter vector W is determined, usually

via solving a least-squares problem. In this section, we explore the use of radial basis functions

to solve dynamic programming, rather than function approximation, problems. In particular, we

show that, under certain assumptions, the algorithm of Section 6 may be used to generate weights

for approximation of a cost-to-go function.

To bring localized basis functions into our feature-based representation framework, we can view

an individual basis function, with specified center and dilation parameter, as a feature. Then, given

a basis function architecture which linearly combines K basis functions, we can define

fk(i) = 0(xi ,hk, C ), Vi E S,k E 1, .. ,K},

and a feature mapping F(i) = (fl(i),... fK(i)), Vi E S. The architecture becomes a special case of

the familiar feature-based representation from Section 6:

K

V(W) = g(F(i), W) = E Wkfk(i), Vi E S. (21)
k=l
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We now move on to show how the algorithm introduced in Section 6 may be applied in con-

junction with localized basis function architectures. To do this, we will provide conditions on

the architecture that are sufficient to ensure satisfaction of Assumption 2. The following formal

assumption summarizes the sufficient condition we present.

Assumption 3 (a)

- max E Ifik (ij) < 1

(b) For some 3' E [3, 1), and for all i E S,

K

Ifk(i)I < (1 - )
k=l 

Intuitively, 6 is a bound on the influence of other basis functions on the cost-to-go value at the

center of a particular basis function. By decreasing the dilation parameters of the basis functions,

we can make a arbitrarily small. Combined with the fact that maxiEs Ekk=l F(i) approaches unity

as the dilation parameter diminishes, this implies that we can ensure satisfaction of Assumption 3

by choosing sufficiently small dilation parameters. In practice, a reasonable size dilation parameter

may be desirable, and Assumption 3 may sometimes be overly restrictive.

We will show that Assumption 3 guarantees satisfaction of Assumption 2 of Theorem 2. This

will imply that, under the given restrictions, localized basis function architectures are compatible

with the algorithm of Section 6. We start by choosing the states (il,..., iK} whose to be those

corresponding to node centers. Hence, we have Xik = uk for all k.

Define B E RKxK as a matrix whose kth column is the feature vector F(ik)T. Define ]11. :

RK X_4 X as the 11 norm on ~RK. Suppose we choose a vector 0 E RK with 11011i = 1. Then

Assumption 3(b) implies that

IIBOIIi 1 - 6 > 0.

Hence, B is nonsingular. It follows that the columns of B, which are the vectors F(iF),..., F(ik),

are linearly independent. Thus, Assumption 2(a) is satisfied.

We now place an upper bound on IIB-1'1, the 11-induced norm on B-1:

IIB-1 111 = max 1IB1 x1
XEK Illxiii

= min

O 30 IIBOllx
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<

Let us define 0(i) = B- 1 F(i) so that

K

F(i) = E Ok(i)F(ik)-
f=1

For any i, we can put a bound on IlO(i)l as follows:

109(i) 1i = IIB-'F(i)ll

< JIB-1 j111IF(i)j]j

< IIF(i) 1
- 1-.

Hence, Assumption 2(b) is satisfied. It follows that the algorithm of Section 6 may be applied to

localized basis function architectures that satisfy Assumption 3.

APPENDICES

A Multi-Representation Contractions

Many problems requiring numerical computation can be cast in the abstract framework of fixed

point computation. Such computation aims at finding a fixed point V* CE Rn of a mapping T :

RIn 1-X Rn; that is, solving the equation V = T(V). One typical approach involves generating a

sequence {V(t) t = 0,1,2,...} using the update rule V(t + 1) = T(V(t)) with the hope that the

sequence will converge to V*. In the context of dynamic programming, the function T could be

the value iteration operator, and the fixed point is the optimal cost-to-go vector.

In this section, we deal with a simple scenario where the function T is a contraction mapping

- that is, for some vector norm I 11, we have IIT(V) - T(V')I <I P lV - V'll for all V, V' E Rn and

some 3 E [0, 1). Under this assumption, the fixed point of T is unique, and a proof of convergence

of the iterative method is trivial.

When the number of components n is extremely large (n often grows exponentially with the

number of variables involved in a problem), the computation of T is inherently slow. One potential

way to accelerate the computation is to map the problem onto a smaller space Rm (m << n), which
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can be thought of as a parameter space. This can be done by defining a mapping V: ~ Rm F- Tn and

a pseudo-inverse Vt: Rn f+ lRm. The mapping V can be thought of as a compact representation.

A solution can be approximated by finding the fixed point of a mapping T': RIm 1+ Rm defined by

T' = Vt o T o V. The hope is that V(W*) is close to a fixed point of T if W* is a fixed point of T'.

Ideally, if the compact representation can exactly represent a fixed point V* E Rn of T - that is, if

there exists a W E Rm such that V(W) = V* - then W should be a fixed point of T'. Furthermore,

if the compact representation cannot exactly, but can closely, represent the fixed point V* E jRn

of T then W* should be close to V*. Clearly, choosing a mapping V for which V(W) may closely

approximate fixed points of T requires some intuition about where fixed points should generally be

found in Rn.

A.1 Formal Framework

Though the theorem we will prove generalizes to arbitrary metric spaces, to promote readability,

we only treat normed vector spaces. We are given the mappings T: in i-_ Rn, V: Rm -+ Rn, and

Vt : Rn _ ~Rm. We employ a vector norm on Rn and a vector norm on Rm, denoting both by

11 II. We have m < n, so the norm being used in a particular expression can be determined by the

dimension of the argument. Define a mapping T' : Rnm ~_+ Rm by T' = Vt o T o V. We make two

sets of assumptions. The first concerns the mapping T.

Assumption 4 The mapping T is a contraction with contraction coefficient P E [0, 1) with respect

to II 11. Hence, for all V, V' E 'Rn,

IIT(V) - T(V') II < PllV - V'll.

Our second assumption defines the relationships between V and Vt.

Assumption 5 The following hold for the mappings V and Vt:

(a) For all W E ~Rm,

W = Vt(V(W)).

(b) There exists a e' E [3, 1) such that, for all W, W' E Rm,

IIV(W) - V(W')1 _< 11W - W'll.
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(c) For all V, V I' E Rn,

llVt(v) - Vt(V')ll < - V'11.

Intuitively, part (a) ensures that Vt is a pseudo-inverse of V. Part (b) forces points that are close

in ~Rm to map to points that are close in ~Rn , and part (c) ensures the converse, nearby points in

fRn must project onto points in ~Rm that are close.

A.2 Theorem and Proof

Since T is a contraction mapping, it has a unique fixed point V*. Let

e = infm lV* - V(W)I.

Theorem 3 Let Assumptions 4 and 5 hold.

(a) We have

IIT'(W) - T'(W')II < 'l' IW - W'll, VW, W' E m.

(b) If W* is the fixed point of T', then

11v* (W *)11 _< F +a

This theorem basically shows that T' is a contraction mapping, and if V* can be closely approxi-

mated by the compact representation then W* provides a close representation of V*.

Proof of Theorem 3 (a) Take arbitrary W, W' E ~Rm . Then,

IT'(W) - T'(W')l = IVt(T(V((W))) - Vt(T(V((W')))l

< IIT(V(W)) -T(V(W'))11

_ 3fllV(W) - V(W')11

_ /'IIW- W'll.

Hence, T' is a contraction mapping with contraction coefficient /'.

(b) Let e' = e + J for some 6 > 0. Choose Wopt E ~Rm such that IIV* - V(Wopt)ll < E'. Then,

IWopt-T'(Wopt)l = Ilvt(v(w(op,)) -vt(T(v(Wop)))ll

< IIV(Wopt) -T(V(Wopt))1l

llV(Wopt) - V*11 + IT(((Wopt)) - V*lI
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= (1 +P)'.

Now we can place a bound on IIW* - Wptll:

IIw* - WoptI < IW* - T'(Wopt)ll + IIT'(Wopt) - Woptll

< O'IIW* - Woptl + (1 + 3)e',

and it follows that

1+/
I W* - Woptll < 6.

1 - /3'

Next, a bound can be put on {IV* - V(W*)II:

IIV* - V(W*)ll < IIV* - V(Wopt)ll + IlV(Wopt ) - 7(W*)ll
/3'

< ' + -±I Wopt - W*11

< e 3'/( 1 +/ 3),

-- + 

3 (1 - p')

Since a can be arbitrarily small, the proof is complete. q.e.d.

B Asynchronous Stochastic Approximation

Consider an algorithm that performs noisy updates of a vector V E 'n, for the purpose of solving

a system of equations of the form T(V) = V. Here T is a mapping from Rn into itself. Let

T 1,... , Tn T Rn -+ R be the corresponding component mappings; that is, T(x) = (Tl(),. .. ,Tn(x))

for all V E Cn.

Let ,A be the set of nonnegative integers, let V(t) be the value of the vector V at time t, and

let Vi(t) denote its ith component. Let Pi be an infinite subset of XA indicating the set of times at

which an update of Vi is performed. We assume that

Vi(t + 1) = Vi(t), t ¢ ri. (22)

and

Vi(t + 1) = Vi(t) + ci (t) (Ti(V(t)) - V(t) + i(t)), t E ri. (23)
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Here, oli(t) is a stepsize parameter between 0 and 1, and qi(t) is a noise term. In order to bring

Equations (22) and (23) into a unified form, it is convenient to assume that cai(t) and r7i(t) are

defined for every i and t, but that cai(t) = 0 for t rPi.

Let F(t) be the set of all random variables that have been realized up to and including the

point at which the stepsizes ai(t) for the tth iteration are selected, but just before the noise term

7i(t) is generated. As in Section 2, 1 I denotes the maximum norm. The following assumption

concerns the statistics of the noise.

Assumption 6 (a) For every i and t, we have E[r7i(t) I .F(t)] = 0.

(b) There exist (deterministic) constants A and B such that

E[rqi (t) I .F(t)] < A + B lx(t) I, Vi, t.

We then have the following result [Tsitsiklis, 1994] (related results are obtained in [Jaakola,

Jordan, and Singh, 1994]):

Theorem 4 Let Assumption 6 and Assumption 1 of Section 5 on the stepsizes oai(t) hold and

suppose that the mapping T is a contraction with respect to the maximum norm. Then, V(t)

converges to the unique fixed point V* of T, with probability 1.

C Proof of Theorem 1

(a) To prove this result, we will bring the aggregated state value iteration algorithm into a form to

which Theorems 3 and 4 (from the Appendices A and B) can be applied and we will then verify

that the assumptions of these theorems are satisfied.

Let us begin by defining a function T' : Rm + Rm, which in some sense is a noise-free version

of our update procedure on W(t). In particular, the jth component Tj' of T' is defined by

Tj(W) = E[Tx( (V(W))] = pJ(i)Ti (V(W)). (24)
icsj

The update equations (9) and (10) can be then rewritten as

Wj4(t + 1) = (1 - oaj(t))Wj(t) + -j (t)(Tj(W) + -j(t)). (25)
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where the random variable 7j (t) is defined by

lj (t) = Txj(t) ((W(t))) - E[Txj (t) ((W(t)))].

Given that each Xj(t) is a random sample from Sj whose distribution is independent of XF(t) we

obtain

E[771j(t) I F(t)] = E[rlj(t)] = 0.

Our proof consists of two parts. First, we use Theorem 3 to establish that T' is a maximum

norm contraction. Once this is done, the desired convergence result follows from Theorem 4.

Let us verify the assumptions required by Theorem 3. First, let us define a function Vt · : Rn

~m as

Vt(V) = p(i)Vi.
iEsj

This function is a pseudo-inverse of V since, for any W E RM,

Vt (V (W)) = E p (i)i (W) = Wj.
iEsj

We can express T' as T' = Vt o T o V, to bring it into the form of Theorem 3. In this context, the

vector norm we have in mind for both TRn and Rm is the maximum norm, I · Ioo.

Assumption 4 is satisfied since T is a contraction mapping. We will now show that Vt, V, and

T, satisfy Assumption 5. Assumption 5(a) is satisfied since Vt is a pseudo-inverse of V. Assumption

5(b) is satisfied with 3' = P since

IV(W) - V(W')lI = max Vi(W) -V(W' )|

jE{1...)m}

= W - W'lloo.

Assumption 5(c) is satisfied because

IV(V)- Vt(V')ll = jim} | (i) (Vi-Vi)

< max max Vi/-V/'l
- j{...,m} iEsj

= IIV- V'11o.
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Hence, Theorem 3 applies, and T' must be a maximum norm contraction with contraction coefficient

/.

Since T' is a maximum norm contraction, Theorem 4 now applies as long as its assumptions

hold. We have already shown that

E['rj(t) I T(t)] = 0,

so Assumption 6(a) is satisfied. As for Assumption 6(b) on the variance of rj (t), the conditional

variance of our noise term satisfies

E[?j2(t) (t)] = E [ (TX (t)((t)( t)))-E[Txj (t) (V(w (t)))]) 2 ]

< 4(maxTi(V(W(t)))) 2

< 8 maxE[Ci2u + 811W(t)112 .

Hence, Theorem 4 applies and our proof is complete.

(b) If the maximum fluctuation of V* within a particular partition is ei then the minimum error

that can be attained using a single constant to approximate the cost-to-go of every state within the

partition is 2. This implies that minw IIV(W) - V*11,, the minimum error that can be attained

by an aggregated state representation, is Ileo. Hence, by substituting e with lel_0_, and recalling

that we have 3' = ,, the result follows from Theorem 1(b).

(c) Now that we have a bound on the maximum norm between the optimal cost-to-go estimate

and the true optimal cost-to-go vector, we can place a bound on the maximum norm between the

cost of a greedy policy with respect to V(W*) and the optimal policy as follows:

IIV7V(w*) - V* 11O < IIVr(w*) - T(V(W*))lloo + IIT(V(W*)) - V*llo.

Since T(V) = T' v (V) for all V E Rn', we have

IIV7v(w*) - V*llo < lIVr7·(w*) - Tr(W*) (V(W*))ll[o + IIT(V(W*)) - V* ll

•< PIIV *(wJ*) - V(W*)l1o + PIIV(W*) - V*lloo

< /IIv~r( c w *) - v*l10 + 3PllV* - V(w*)lIoo + PilV(w *) - v*Iloo.

It follows that

2/3IIV( w*) - V *l < lv(w* - v*l3o
(1 - 0)2 le|
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Figure 3

(d) Consider the four state Markov decision problem shown in Figure 3. The states are x1, x2,

X3 , and X4, and we form two partitions, the first consisting of x1 and x2, and the second containing

the remaining two states. All transition probabilities are one. No control decisions are made at

states x1, x2, or X4. State x1 is a zero-cost absorbing state. In state x2 a transition to state x1 is

inevitable, and, likewise, when in state X4, a transition to state X3 always occurs. In state X3 two

actions are allowed: move and stay. The transition cost for each state-action pair is deterministic,

and the arc labels in Figure 2 represent the values. Let c be an arbitrary positive constant and,

let b, the cost of staying in state X3 , be defined as b = 2c-6 with 6 < /3c. Clearly, the optimal

cost-to-go values at X1, X2, X3 , and X4 are 0, c, 0, -c, respectively, and Hell = c.

Now, let us define sampling distributions, within each partition, that will be used with the

algorithm. In the first partition, we always sample x2 and in the second partition, we always

sample X4. Consequently, the algorithm will converge to partition values wT, 2 and W3*,4 satisfying

the following equations:

W1 2 = C +,W1,2

3,4 = -C±+/W3,4 .

It is not hard to see that the unique solution is

w1, 2 = 1_

1 -C
w34 = C-c 
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The bound of part (b) is therefore satisfied with equality.

Consider the greedy policy with respect to w. For a > 0, the stay action is chosen at state x3,

and the total discounted cost incurred starting at state X3 is 2_--6z-. When 5 = 0, both actions,

stay and move, are legitimate choices. If stay is chosen, the bound of part (c) holds with equality.

q.e.d.

D Proof of Theorem 2

(a) By defining Vt(V) = MtV, we have T' = Vt o T o V, which fits into the framework of multi-

representation contractions. Our proof consists of a straightforward application of Theorem 3 from

Appendix A (on multi-representation contractions). We must show that the technical assumptions

of Theorem 3 are satisfied. To complete the multi-representation contraction framework, we must

define a norm in our space of cost-to-go vectors and a norm in the parameter space. In this context,

as a metric for parameter vectors, let us define a norm I1 II by

[IWII = I IgMWIloo) VW E RK.

Since M has full column rank, ·11 has the standard properties of a vector norm. For cost-to-go

vectors, we employ the maximum norm in Rn as our metric.

We know that T is a maximum norm contraction, so Assumption 4 is satisfied. Assumption

5(a) is satisfied since, for all W CE RK ,

V/t(V(W)) = MtMW

=W.

Assumption 5(b) follows from our definition of I11 I and the fact that 3' E [3, 1):

11W-w'll = if IiMW-MW'lly0

- pfIV(W) - V(W')ll.

Showing that Assumption 2 implies Assumption 5(c) is the heart of this proof. To do this, we

must show that, for arbitrary cost-to-go vectors V and V',

IIV - V'11o llVt(V) - Vt(V')llI. (26)
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Define D = -M(Vt(V) - Vt(V')). Then, for arbitrary i C S we have

[Dil = IFT(i)(Vt(V)- _ Vt(V'))I

Under Assumption 2 there exist positive constants 01 (i), ..., OK(i) R, with k=l 10k(i)l < 1, such

that F(i) = I 5jkc=l Ok(i)F(ik). It follows that, for such Ol(i), ... , OK(i) E R,

IDil , • YI( ( Ok(i)FT (ik))(Vt(V)- Vt (V')) I
O' P k=l

< max FT(ik)(Vit(V) - Vit(V'))|
k

< Dik lI

= Vik - Vik I

< IlV - V'oo.

Inequality (26) follows. Hence, Theorem 3 applies, implying parts (a), (b), and (c), of Theorem 2.

Part (d) can be proven using the same argument as in the proof of Theorem l(c). For part (e),

we can use the same example as that used to prove part (d) of Theorem 1. q.e.d.
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