
JOTA (to appear)

May 1994 (revised October 1994) LIDS-P-2274:

PARALLEL ASYNCHRONOUS LABEL CORRECTING
METHODS FOR SHORTEST PATHS1

Dimitri P. Bertsekas 2, Francesca Guerriero 3, and Roberto Musmanno 3

Abstract. In this paper we develop parallel asynchronous implementations of some

known and some new label correcting methods for finding a shortest path from a single

origin to all the other nodes of a directed graph. We compare these implementations on

a shared memory multiprocessor, the Alliant FX/80, using several types of randomly

generated problems. Excellent (sometimes superlinear) speedup is achieved with some

of the methods, and it is found that the asynchronous versions of these methods are

substantially faster than their synchronous counterparts.

Keywords. Shortest path problem, parallel asynchronous algorithms, shared memory

multiprocessor, label correcting method.

1 Research supported by National Science Foundation under Grants 9108058-CCR, 9221293-INT, and 9300494-
DMI.

2 Laboratory for Information and Decision Systems, M.I.T., Cambridge, Mass. 02139, U.S.A.

3 Dipartimento di Elettronica, Informatica e Sistemistica, Universith della Calabria, 87036 Rende, Italy.

1. INTRODUCTION

In this paper we consider the problem of finding a path of minimum length from an origin

node to each of the other nodes in a directed graph (N,A), where N is the set of nodes and A is the

set of arcs. The numbers of nodes and arcs are denoted by n and m respectively. For each arc (i,j) E

A we are given a scalar length aij. For convenience, we assume that there is at most one arc from a

node i to a node j, so that we can unambiguously refer to arc (i,j). A path starting from a node il

and ending at a node ik consists of a sequence of forward arcs of the form (il,i2), (i2,i3), ..., (ik-l,ik).

The length of such a path is defined to be the sum of the lengths of its arcs

j= i jij+l

For each node j, we want to find to find a path of minimum length that starts at node 1 and ends at j.
Throughout this paper we assume that all arc lengths are nonnegative and that there exists at least

one path from node 1 to each other node.

The shortest path problem is very common in practice, either by itself or as a subroutine in

algorithms for more complex problems. Its fast solution is thus of great practical interest. In this

paper, we focus attention on the class of label correcting methods. A recent computational study by

Gallo and Pallottino [1] has shown that for single origin-all destinations shortest path problems, the

most efficient label correcting methods are faster than the most efficient label setting methods in a

serial computational environment, particularly for sparse problems, that is, for problems involving

graphs with a relatively small number of arcs. This conclusion agrees with our own experience. The

results of this paper strongly suggest that the advantage of label correcting methods for sparse all-

destinations problems carries over to a shared memory parallel computation setting.

The methods of this paper can be adapted to solve single origin-few destinations problems.

For such problems, however, label correcting methods have been outperformed by label setting

(Dijkstra) methods and also by auction algorithms, as reported in [3]-[5]. Parallel implementations

of these methods for single-origin single-destination problems have been given in [5] and [6], and it

is quite likely that for many problems of this type, the two-sided Dijkstra and the two-sided auction

methods of [5] and [6], respectively, outperform the methods of the present paper in both a serial

and a parallel computing environment.

The prototype label correcting algorithm, as given by Gallo and Pallottino [7], maintains a

vector (dl, d2, --, dn) of labels and a candidate list V of nodes. Initially, we have

dl =0, di=oo for i 1,

and

V={l}.

The algorithm terminates when V is empty, and upon termination, each label di is the shortest

-2-

distance to node i. Assuming V is nonempty, a typical iteration is as follows:

Remove from V a node i that is in V.

For each arc (i,j) E A, if dj > di + aij, set

dj := di + aij

and add j to V if j does not already belong to V.

Fig.1
Typical iteration of the generic label correcting algorithm

There are several different methods for selecting at each iteration the node to be removed

from the candidate list V. If the node exiting V is the node with the minimum label, Dijkstra's

method is obtained. In this case, each node will enter and exit V exactly once. Label correcting

methods avoid the overhead associated with finding the minimum label node at the expense of

multiple entrances of nodes into V.

The simplest label correcting method, the Bellman-Ford method [8], maintains V in a FIFO

queue; nodes are removed from the top of the queue and are inserted at the bottom. More

sophisticated label correcting methods maintain V in one or in two queues and use more complex

removal and insertion strategies. The objective is to reduce the number of node reentries in V.

These methods are significantly faster than the Bellman-Ford method, and will be discussed in the

next two sections with an emphasis on a general principle enunciated in [2] for the case where the

arc lengths are nonnegative. According to this principle, the number of node reentries is reduced if

nodes with relatively small label are removed from V. Dijkstra's method, the threshold algorithm of

[9], and the SLF (Small Label First) method of [2] conform to this principle. A new method, the

LLL (Large Label Last) method, which also conforms to this principle, will be presented in the next

section. Other methods can be obtained by combinations of threshold, SLF, LLL, and also the

D'Esopo-Pape method of [10]. For a recent textbook discussion and analysis of other shortest path

methods, we refer the reader to [11].

Label correcting methods can be parallelized in straightforward fashion. Furthermore, they

admit an asynchronous implementation, as first shown in [12] in the broader context of dynamic

programming. In such an implementation, multiple nodes of the candidate list can be

asynchronously and independently chosen for iteration by different processors, and the associated

calculations may be done at the various processors with label information that is potentially out-of-

date because of intermediate label updating operations by other processors; see also [13], p. 451.

An extensive reference on parallel asynchronous algorithms, including shortest path methods, is

[14], particularly Ch. 6. There is considerable computational evidence at present that asynchronous

algorithms, when valid, can be substantially faster than their synchronous counterparts, primarily

because they avoid the penalty associated with synchronizing the iterations at different processors.

-3-

We note that with the exception of the auction algorithms of [6], all earlier implementations of

parallel shortest path algorithms that we are aware of, [5], [15], [16], are synchronous.

A major aim of this paper is to develop parallel synchronous and asynchronous

implementations of a variety of label correcting methods, and to evaluate their speedup over their

serial versions in a shared memory machine, the Alliant FX/80 with 8 processors. This is done in

Sections 3 and 4. Our major findings are that (a) with proper implementation, excellent (close to

linear) speedup can be obtained with some but not all label correcting methods, (b) asynchronous

implementations are considerable faster that their synchronous counterparts, and (c) the threshold

method, which in combination with the SLF and the LLL methods is the fastest serial method in our

experiments, does not lend itself to substantial speedup. As a result the pure SLF and SLF-LLL

methods are the fastest in a parallel setting.

2. LABEL CORRECTING METHODS BASED ON THE SMALL LABEL PRINCIPLE

In this section we describe three methods motivated by a general principle given in [2]

regarding the node selection policy of a label correcting method. According to this principle, for

problems with nonnegative arc lengths, the number of iterations of the method is strongly correlated

with the average rank of the node removed from V, where nodes are ranked in terms of the size of

their label (nodes with small labels have small rank). Thus one should make an effort to select

nodes with relatively small label. This was verified by extensive testing reported in [2] with two

methods based on this principle, the threshold and SLF methods, and their combinations. We

describe these two methods and we then propose a third new method, that can also be combined

with the first two.

In the threshold algorithm of [9], the candidate list V is partitioned in two disjoint queues

Q1 and Q2, on the basis of a threshold parameter s. At each iteration, the node removed from V is
the top node of Q1, while a node entering V is added at the bottom of Q2 or Q1 depending on

whether its label is greater than s, or smaller or equal to s, respectively. In this way, the queue Q1

contains only nodes whose labels are not larger than s. When Q1 is exhausted, the entire list V is

repartitioned in two queues according to an appropriately adjusted threshold parameter.

To understand the main idea of the threshold algorithm, suppose that at time t, the threshold

is set to a new value s, and at some subsequent time t'>t the queue Q1 gets exhausted. Then at time

t' all the nodes of the candidate list have label greater than s. In view of the nonnegativity of the arc

lengths, this implies that all nodes with label less or equal to s will not reenter the candidate list after

time t'. In particular, all nodes that exited the candidate list between times t and t' become

permanently labeled at time t' and never reenter the candidate list. We may thus interpret the

-4-

threshold algorithm as a block version of Dijkstra's method, whereby a whole subset of nodes

becomes permanently labeled when the queue Q1 gets exhausted.

However, when one tries to parallelize the threshold algorithm, it is difficult to maintain the

permanent labeling property described above. The reason is that this property depends on using a

uniform threshold value for the entire candidate list. In particular, this property will not hold if the

candidate list is divided into multiple (partial) candidate lists, each operated by a separate processor

with its own independent threshold value. The alternative to maintaining multiple parallel lists with

independent threshold values is either to maintain a single list, which is accessed by all processors,

or to maintain a common threshold value across the independent lists of the different processors.

Both of these alternatives requires considerable synchronization between processors, and this is the

reason why we were unable to parallelize the threshold method as efficiently as other methods.

We also note that the performance of the threshold method is very sensitive to the

procedure used for adjusting the threshold parameter s. In particular, if s is chosen too small, the

method becomes equivalent to an unsophisticated version of Dijkstra's algorithm, while if s is

chosen too large, the method is quite similar to the Bellman-Ford algorithm. The original proposal

of the threshold algorithm [9] gives a heuristic method for choosing the threshold that works

remarkably well for many problems, as also verified in [1] and [2]. However, it appears that

choosing appropriate threshold values becomes more complicated in a parallel setting.

In the Small Label First algorithm (SLF) the candidate list V is maintained as a double

ended queue Q. At each iteration, the node removed is the top node of Q. The rule for inserting

new nodes is given below:

Let i be the top node of Q, and let j be a node that enters Q.

If dj < di then enter j at the top of Q
else enter j at the bottom of Q.

Fig.2
SLF queue insertion strategy

The SLF method provides a rule for inserting nodes in the queue, but always removes

nodes from the top of Q. We now propose a more sophisticated node removal strategy, which aims

to remove from Q nodes with small labels. In particular, we suggest that, at each iteration, when the

node at the top of Q has a larger label than the average node label in Q (defined as the sum of the

labels of the nodes in Q divided by the cardinality IQI of Q), this node is not removed from Q, but

rather it is repositioned to the bottom of Q. We refer to this as the Large Label Last strategy (LLL

for short). Fig. 3 summarizes the LLL strategy for removing nodes from V.

-5-

Adj
Let i be the top node of Q, and let s = iQ

If di > s then move i at the bottom of Q .

Repeat until a node i such that di < s is found and is removed from Q.
Fig.3

LLL node selection strategy

It is simple to combine the SLF queue insertion and the LLL node selection strategies,

thereby obtaining a method referred to as SLF-LLL. We have found that the combined SLF-LLL

method consistently requires a smaller number of iterations than either SLF or LLL, although the

gain in number of iterations is sometimes more than offset by the extra overhead per iteration.

The SLF and LLL strategies can also be combined with the threshold algorithm. In

particular, the LLL strategy is used when selecting a node to exit the queue Q1 (the top node of Q1

is repositioned to the bottom of Q1 if its label is found smaller than the average label in Q1).

Furthermore, whenever a node enters the queue Q1, it is added to the bottom or the top of Q1

depending on whether its label is greater than the label of the top node of Q1 or not. The same

policy is used when transferring to Q1 the nodes of Q2 whose labels do not exceed the current

threshold parameter. Thus the nodes of Q2 are transferred to Q1 one-by-one, and they are added to

the top or the bottom of Q1 according to the SLF strategy. Finally, the SLF strategy is also

followed when a node enters the queue Q2.

It is also possible to combine the SLF and LLL strategies with the D'Esopo-Pape method

[10], as has already been proposed (for the case of the SLF strategy) in [17]. In the D'Esopo-Pape

method the candidate list V is maintained as a double ended queue Q. At each iteration, the node

removed is the top node of Q, but a new node is inserted at the bottom of Q if it has never entered

Q before, and is inserted at the top of Q otherwise. The rationale for this queue insertion strategy is

somewhat unclear, but the literature contains numerous reports of excellent performance of the

D'Esopo-Pape method. However, the results of [2] show that the D'Esopo-Pape method is not

consistently faster than the Bellman-Ford algorithm and indeed in some cases it is dramatically

slower. Following the suggestion of [17], we have also experimented with serial implementations

of various combinations of the SFL and the SLF-LLL strategies with the D'Esopo-Pape method.

We have verified that the use of the SLF strategy for nodes that enter Q for the first time reduces

the number of iterations and that the use of the LLL strategy, in addition to SLF, reduces the

number of iterations even further. However, we found that in a serial environment, the

combinations of SLF and LLL with the threshold algorithm are much faster than the corresponding

combinations with the D'Esopo-Pape method. We have not experimented with combinations of the

D'Esopo-Pape method with SLF and LLL in a parallel setting. We note, however, that parallel

asynchronous implementations of such combinations based on the ideas of this paper are

-6-

straightforward. It is plausible that these implementations will prove effective for problems where

the D'Esopo-Pape method is much faster than the Bellman-Ford algorithm.

The results of [2] and [17], and the results of the present paper demonstrate that for

problems with nonnegative arc lengths the SLF and LLL strategies consistently improve the

performance of the Bellman-Ford, the threshold, and the D'Esopo-Pape method. It is seen therefore

that SLF and LLL are complementary to the other basic label correcting methods and improve their

performance when combined with them. We will see in the next two sections that the same is true in

a parallel setting.

Regarding the theoretical worst-case performance of the SLF and the combined SLF-LLL

algorithms, it is not known at present whether these algorithms have polynomial complexity.

However, extensive computational experience has yielded no indication of nonpolynomial behavior.

In any case, it is possible to construct provably polynomial versions of these algorithms as follows.

Suppose that there is a set of increasing iteration indices tl, t2,...,tn+l such that tl=l, and for

i=l,...,n, all nodes that are in V at the start of iteration ti are removed from V at least once prior to

iteration ti+l. Because all arc lengths are nonnegative, this guarantees that the minimum label node

of V at the start of iteration ti will never reenter V after iteration ti+l. Thus the candidate list must

have no more than n-i nodes at the start of iteration ti+l, and must become empty prior to iteration

tn+l. Thus, if the running time of the algorithm between iterations ti and ti+l is bounded by R, the

total running time of the algorithm will be bounded by nR, and if R is polynomially bounded, the

running time of the algorithm will also be polynomially bounded.

Assume now, in particular, that between iterations ti and ti+l, each node is inserted at the

top of Q for a number of times that is bounded by a constant and that (in the case of SLF-LLL) the

total number of repositionings is bounded by a constant multiple of m. Then it can be seen that the

running time of the algorithm between iterations ti and ti+l is O(m), and therefore the complexity of

the algorithm is O(nm). To modify SLF or SLF-LLL so that this result applies, it is sufficient that

we fix an integer k> 1, and that we separate the iterations of the algorithm in successive blocks of kn

iterations each. We then impose an additional restriction that, within each block of kn iterations,

each node can be inserted at most k-l times at the top of Q (that is, after the (k-l)th insertion of a

node to the top of Q within a given block of kn iterations, all subsequent insertions of that node

within that block of kn iterations must be at the bottom of Q). In the case of SLF-LLL, we also

impose the additional restriction that the total number of repositionings within each block of kn

iterations should be at most km (that is, once the maximum number of km repositionings is reached,

the top node of Q is removed from Q regardless of the value of its label). The worst-case running

time of the modified algorithms are then O(nm). In practice, it should be highly unlikely that the

restrictions introduced into the algorithms to guarantee O(nm) complexity will be exercised if k is

larger than say 3 or 4.

-7-

3. PARALLEL LABEL CORRECTING METHODS

The general principle for parallelizing the generic label correcting method is straightforward.

The basic idea is that several nodes can be simultaneously removed from the candidate list and the

labels of the adjacent nodes can be updated in parallel. In a shared memory machine, the label of a

node is maintained in a unique memory location, which can be accessed by all processors. During

the concurrent label updating it is possible that multiple processors will attempt to modify

simultaneously the label of the same node. For this reason, the label updating operation must be

executed with the use of a lock, which guarantees that only one processor at a time can modify a

given label.

Two important characteristics of a parallel shared memory implementation of a label

correcting method are whether:

1) The candidate list is organized in a single queue shared by all processors, or in multiple

queues, that is, a separate queue for each processor.

2) The label updating is synchronous or asynchronous.

The issue of one versus multiple queues primarily deals with the tradeoff between good

load balancing among multiple processor queues and increased contention for access to a single

queue. We will see, however, that multiple queues also enhance the effectiveness of the SLF and

LLL strategies because with multiple queues, more nodes with small labels tend to rise to the top of

the queues.

Our implementation of the various queue strategies is as follows:

Parallel One-Queue Algorithm. We have a single queue Q shared among all processors (in the

case of the threshold algorithms this queue is partitioned as discussed earlier). Each processor

removes the node at the top of Q, updates the labels of its adjacent nodes, and adds these nodes (if

necessary) into Q, according to the insertion strategy used. The procedure is repeated until Q is

found empty. In the latter case the processor switches to an idle state and reawakens when Q

becomes nonempty. The execution is stopped when the idle condition is reached by all processors.

This algorithm suffers for substantial contention between the processors to access the top node of

Q and also to insert nodes into Q.

Parallel Multiple-Queues Algorithm. In this algorithm, each processor uses a separate queue. It

extracts nodes from the top of its queue, updates the labels for adjacent nodes, and uses a heuristic

procedure for choosing the queue to insert a node that enters V. In particular, the queue chosen is

-8-

the one with minimum current value for the sum of the out-degrees of the nodes assigned to the

queue (the out-degree of a node i is the number of outgoing arcs from i). This heuristic is easy to

implement and ensures good load balancing among the processors. In our implementations, a node

can reside in at most one queue. In particular, a processor can check whether a node is present in

the candidate list (that is, in some queue) by checking the value of a boolean variable, which is

updated each time a node enters or exits the candidate list. In the case of the threshold algorithms,

the threshold setting policy of the corresponding serial method was used independently for each of

the queues.

For all algorithms tested, we have found that the multiple-queues versions were more

efficient than their single queue counterparts. The reason is that in the case of multiple queues, there

is much less contention for queue access than in the case of a single queue, because with multiple

queues, the likelihood of multiple processors attempting simultaneously to insert a node in the same

queue is much smaller. For this reason, we concentrate in what follows in the multiple-queues

implementation.

The issue of synchronous versus asynchronous implementation is an issue of tradeoff

between orderliness of computation and penalty for synchronization. In a synchronous

implementation, the computation proceeds in rounds of parallel iterations. During each round, each

processor removes a different node from the candidate list (if the number of processors is greater

than the number of nodes, some processors remain idle). The processors then update in parallel the

labels of the corresponding adjacent nodes. Finally, a new round begins once all the label updating

from the current round is finished.

In an asynchronous algorithm, there is no notion of rounds, and a new node may be

removed from the candidate list by some processor while other processors are still updating the

labels of various nodes. A single origin-single destination label correcting method resembling the

ones considered here is given in p. 451 of [14]. More formally, for t = 0, 1, ... , let dj(t) denote the

value of the label of node j at time t; this is the value of dj that is kept in shared memory. In our

mathematical model of the asynchronous label correcting algorithm, the label dj(t) is updated at a

subset of times Ti c { O, 1, ... I by some processor that need not be specified further.

The updating formula is:

idj(t + 1) = I t (1)
Jdj(t) , otherwise.

Here ti(t) is the time at which the label di was read from shared memory by the processor

updating dj at time t. The asynchronism results from the possibility that we may have tj (t) < t and

-9-

di ((t)) : di(t) because the label di stored in shared memory may have been changed between the

times t (t) and t by another processor. Note, however, that before the label of dj can be changed

according to Eq. (1), the value di(Ji(t))+ aij must be found smaller than the current value dj(t).

One way to accomplish this is to lock the memory location storing dj after dj is read, to ensure that

no other processor can change dj while the test

di (i(t)) + aij < dj(t) (2)

is conducted. The drawback of this method is that the memory location of dj may be locked

unnecessarily, while other processors are waiting to read the value of dj.

An alternative method that we found much more efficient is to first read dj(t') at some time

t' and (without locking its value) compare it to di(i (t')) + aij. If dj is found smaller, its memory

location is locked and its current value dj(t) (which may have been changed by another processor as

the test (2) was being conducted) is read again. Depending on whether the test (2) is passed, the

new value dj(t+l) is recorded according to Eq. (1) and the corresponding memory location is

unlocked. This memory management method reduced significantly the number of locking

operations and contributed substantially in the speedup of the algorithms.

The convergence of the preceding algorithm to the correct shortest distances d i , that is,

di(t)= di , Vt2 t > , i= 1,2, ... ,n, (3)

where t is some (finite) time, can be shown under very weak assumptions. In particular, what is

needed is that TJ is an infinite set for each j • 1, that if (i,j) is an arc, the node i is used in Eq. (1) for

an infinite subset of Tj, and that ti(t) - oo as t -> oo. These are the minimal conditions for

asynchronous convergence, as discussed in [14], Ch. 6. Note that the computation can be

terminated once a time t such that Eq. (3) holds is found. In our shared memory context, the time t

where termination occurs as in Eq. (3) is recognized as the time where the queue Q is empty and all

processors are idle. The proof of convergence closely resembles related proofs in [14], Section 6.4,

in [11], and in [13], Section 5.2.4, and will not be given here.

It has often been found empirically that asynchronous algorithms, when valid, outperform

their synchronous counterparts because they are not delayed by synchronization requirements.

Examples are given in references [6] and [18], which give parallel asynchronous implementations

of auction algorithms that bear similarity with the implementations given here. However, to our

knowledge, the present paper is the first to address the implementation of asynchronous label

correcting methods and to assess their performance.

The synchronous algorithms also use multiple queues, since we found the single queue

versions to be relatively inefficient. The insertion of nodes in the queues is done similar to the

-10-

corresponding asynchronous algorithms. Our implementation is depicted in Fig. 4, and involves

two synchronization points, the first at the end of the label updating procedure and the second at the

conclusion of the iteration. Each processor temporarily stores the values of the updated labels in a

private memory area; in this way, the new labels of nodes can be computed by a processor without

locking their shared memory locations, which would delay the reading of these labels by other

processors. Thus, at the end of the label updating task, the same node could be stored into multiple

private memory locations with different label values. Following the label updating task, the updated

labels are transferred to their main (shared) memory locations, and the corresponding nodes are

added to V, if they are not already present in V. We have also tried the alternative scheme where the

node labels are directly updated at their shared memory locations, but this approach turned out to be

less efficient. In our implementation of the asynchronous algorithms, a processor upon completing

an iteration, does not wait for the completion of the iteration of the other processors at any time but

starts instead a new iteration (if V is not empty), thereby avoiding the corresponding

synchronization penalty.

- 11-

V empty ?top

no

At most p nodes
in V are extracted

ii i

adjacPossible insertion of Possible insertion ofip
nodes in V nodes in V

Fig.4
Parallel synchronous label correcting algorithm

4. NUMERICAL EXPERIMENTS

The SLF and SLF-LLL algorithms were implemented and tested using an Alliant FX/80.

This computer is based on a vector-parallel architecture with 8 processors, each with 23 Mflops of

peak performance, sharing a common memory of 32 MBytes. The compiler used was FX/Fortran

-12-

4.2. The vectorization capability of the processors was not used in our experiments.

In order to evaluate numerically the efficiency of the methods, we have tested the following

six codes, which evolved from the codes of [1] and [2]:

- B-F: Bellman-Ford method;

- SLF: Small Label First method;

- SLF-LLL: Small Label First method, using in addition the Large Label Last strategy for node

removal;

- THRESH: Threshold method; the method for setting the threshold parameter is the same as

the one that was recommended in [9] and was also used in [2];

- SLF-THRESH: Threshold method in combination with the SLF method for the node

insertion strategy;

- SLF-LLL-THRESH: The preceding method, using in addition the Large Label Last strategy

for node removal;

We used four different types of randomly generated test problems for which all arc lengths

were chosen according to a uniform distribution from the range [1,1000].

Grid/random problems (G 1, G2, G3, G4). These are problems generated by a modified version

of the GRIDGEN generator of [11]. The number of arcs is 1,000,000 for all problems, and the

nodes are arranged in a square planar grid with the origin node 1 set in the southwest corner. Each

pair of adjacent grid nodes is connected in both directions. We can also have additional arcs with

random starting and ending nodes. The number of nodes was selected so that the total number of

additional arcs is approximately 2, 3, 4, and 5 times the number of grid arcs.

Euclidean grid/random problems (El, E2, E3, E4). These problems are generated similar to the

preceding class. The only difference is that the length of each nongrid arc from the grid node (ij) to

the grid node (h,k) is set to r-eij,hk, where eij,hk is the Euclidean distance of the nodes (the square

root of (i-h)2 +(j-k)2), and r is an integer chosen according to a uniform distribution from the range

[1,1000].

Netgen problems (N1, N2, N3, N4). These are problems generated with the public domain

program NETGEN [19]. The number of arcs is 1,000,000, whereas the number of nodes was

chosen as 31,622, 15,811, 11,952, and 10,000.

Fully dense problems (C1, C2, C3, C4). In these problems all the possible n(n-1) arcs are

present.

- 13 -

Road networks (R1, R2, R3, R4). These are the Manhattan, Waltham, Boston, and Middlesex

Country road networks from the TIGER/LineTM Census Files, which were also tested in [17]. We

thank Dr. T. Dung for providing these networks to us. In all our tests, node 0 was taken as the

origin.

Test Nodes Arcs
G1, E1 70756 1000000
G2, E2 50176 1000000
G3, E3 40804 1000000
G4, E4 35344 1000000

N1 31622 1000000
N2 15811 1000000
N3 11952 1000000
N4 10000 1000000
C1 250 62250
C2 500 249500
C3 750 561750
C4 1000 999000
R1 4795 16458
R2 26347 64708
R3 102557 250616
R4 108324 271340

Tab. 1
List of test problems

5. EXPERIMENTAL RESULTS AND DISCUSSION

We now discuss our experimental results. For each category of test problems we give the

sequential (one-processor) and the parallel (8-processor) solution times for each algorithm. We also

give the speedup for 4 and 8 processors. We measured speedup for a given problem and for a given

algorithm as the ratio of the one-processor time over the multiple-processor time required by the

algorithm. A more detailed accounting of our experimental results is given in the report [20], and

includes the number of iterations and the times required by the synchornous and the asynchronous

version of each algorithm on each of the test problems. For the parallel algorithms we report results

only with the more efficient multiple-queues versions.

Grid/random problems. Figure 5 gives the sequential execution times, and shows that the

threshold methods are much faster than the others. For these problems, the threshold methods

require a very small number of iterations, almost equal to the number of nodes, which is the lower

-14-

bound attained by Dijkstra's algorithm. The combinations with the SLF and LLL strategies

consistently require a smaller number of iterations than the pure threshold method. However, since

the threshold method works very well for these problems, there is little or no further reduction in

the serial execution time as a result of the combination and, in some cases, there is a slight time

increase due to the extra overhead of the SLF and LLL strategies. However, the SLF and LLL

strategies are also very helpful in reducing the number of iterations without a threshold, as can be

inferred by comparing the results of the SLF, SLF-LLL, and B-F methods.

* B-F [THRESH

O SLF EJ SLF-THRESH
* SLF-LLL 0 SLF-LLL-THRESH

70

60

50

40

30

20

10

0.

G1 G2 G3 G4
Fig. 5

Time in secs required to solve grid/random problems with the sequential codes

The improvements due to parallelism are summarized in Table 2, where the speedup values

using 4 processors and 8 processors are reported for the asynchronous parallel algorithms. Fig. 6

gives the corresponding times using 8 processors.

Problem B-F SLF SLF-LLL THRESH SLF SLF-LLL
THRESH THRESH

G1 2.67 / 4.28 2.81 / 5.21 2.51 / 4.48 1.17/ 1.43 1.16/ 1.58 1.11/ 1.59
G2 2.92 / 5.09 3.01 / 4.77 2.49 / 4.61 1.22 / 1.61 1.28/ 1.96 1.27 / 1.95
G3 2.98 / 4.71 2.97 / 5.48 2.52 / 4.75 0.96 / 1.46 1.29 / 1.72 1.32/ 1.81
G4 2.03 / 5.25 3.21 / 6.25 2.75 / 5.47 0.92 / 1.36 1.19 / 1.83 1.28 / 1.81

Tab. 2
Speedup values for the asynchronous parallel codes (4 processors / 8 processors)

It can be seen from Table 2 that the performance of the parallel asynchronous threshold methods

is poor; a maximum speedup value of only 1.96 is obtained. This is due in part to the difficulty in

parallelizing the threshold methods, which involve operations, such as the threshold setting and the

transfer of nodes between the two queues, that are inherently sequential. Furthermore, with the use

-15-

of multiple queues the permanent labeling property of the threshold method is lost, as discussed in

Section 2. In addition, in the threshold methods, it is difficult to choose an appropriate threshold,

especially in the parallel case, when a threshold must be set for each queue. The SLF and LLL

strategies are very helpful in reducing the number of iterations and are well suited for

parallelization. An interesting result, especially with SLF, is that the use of multiple queues reduces

substantially the number of iterations over the sequential version. This phenomenon was also noted

for the other test problems. One possible explanation is that by using multiple queues, the sorting

process that places nodes with small labels near the top of the queues is enhanced. The reduction in

number of iterations accounts for the particularly good speedup achieved with SLF (up to 6.25 with

8 processors), and also with SLF-LLL.

* B-F U THRESH
D SLF 0 SLF-THRESH

14 E SLF-LLL 0 SLF-LLL-THRESH

12

10

G1 G2 G3 G4
Fig. 6

Time in secs required to solve grid/random problems with the parallel asynchronous codes using 8 processors.

Euclidean grid/random problems. These problems are more difficult than the preceding ones

because of the considerable difference between the lengths of the grid arcs and the nongrid arcs.

Here THRESH requires a substantially smaller number of iterations that B-F, but the number of

iterations of THRESH is quite large (two or three times larger than the number of nodes). The SLF

and LLL strategies substantially reduce the number of iterations as can be inferred from Fig. 7.

Also in the parallel case we observe a large speedup with SLF and SLF-LLL. In particular, with

SLF we achieve maximum speedup of around 6.82, whereas with the SLF-LLL version we achieve

a maximum speedup of 5.46. Again, our explanation is that the use of multiple queues enhances the

process of examining nodes with small labels first, and results in a reduced number of iterations.

-16-

* B-F [THRESH
120 O SLF E[SLF-THRESH
* SLF-LLL 0 SLF-LLL-THRESH

100

80

60

40

20

El E2 E3 E4

Fig. 7
Time in secs required to solve Euclidean grid/random problems with the sequential codes

Problem B-F SLF SLF-LLL THRESH SLF SLF-LLL
THRESH THRESH

El 2.65 / 4.69 2.83 / 5.49 2.28 / 4.54 1.40 / 2.32 1.40 / 2.70 1.13 / 2.12
E2 2.95 / 4.49 3.08 / 6.03 2.50 / 5.10 1.33 / 2.37 1.38 / 2.37 1.03 / 1.54
E3 3.13 / 5.50 3.36 / 6.82 2.78 / 5.46 1.17 / 1.97 1.15 / 2.30 0.89 / 1.82
E4 3.18 / 4.90 3.15 / 6.28 2.51 / 4.41 1.21 / 2.15 0.89 / 2.28 0.95 / 1.97

Tab. 3
Speedup values for the asynchronous parallel codes (4 processors / 8 processors)

- 17-

* B-F E THRESH
O SLF e0 SLF-THRESH

30 * SLF-LLL El SLF-LLL-THRESH

28

26

24

22

20

18

16

14

12

10

8

El E2 E3 E4
Fig. 8

Time in secs required to solve Euclidean grid/random problems
with the parallel asynchronous codes using 8 processors.

Netgen problems. These problems are substantially more dense than the preceding ones, and in

the sequential case, the threshold algorithms are much faster than the others. The improvement in

execution time relative to B-F is due to the substantial reduction of the number of iterations.

* B-F 1M THRESH
E3 SLF El SLF-THRESH

60 -- * SLF-LLL El SLF-LLL-THRESH

50

40

30

20

10

Fig. 9
Time in secs required to solve Netgen problems with the sequential codes

In the parallel asynchronous case, using multiple queues in combination with the SLF strategy

works very well and results in fewer iterations. The reduction in the number of iterations is so large

- 18 -

for one of the problems that the speedup is greater than 8 with 8 processors. As a result, the SLF

method outperforms all other parallel methods.

Problem B-F SLF SLF-LLL THRESH SLF SLF-LLL
THRESH THRESH

N1 3.37 / 6.07 3.10 / 6.12 2.46/ 4.73 1.03 / 1.33 1.11 / 1.68 1.25 / 1.71
N2 3.37 / 6.37 4.46 / 8.56 2.60 / 6.31 0.81 / 1.44 1.06 / 1.85 1.10/ 2.01
N3 3.67 / 6.85 3.93 / 7.12 3.08 / 4.44 0.96 / 1.50 1.19 / 2.16 0.89 / 2.08
N4 3.47 / 6.76 4.51 / 8.45 2.65 / 5.35 0.80 / 1.48 1.06 / 2.04 1.01 / 2.05

Tab. 4
Speedup values for the asynchronous parallel codes (4 processors / 8 processors)

B-F U] THRESH
a SLF 17 SLF-THRESH

12 SLF-LLL 3 SLF-LLL-THRESH

10

N1 N2 N3 N4
Fig. 10

Time in secs required to solve Netgen problems with the parallel asynchronous codes using 8 processors.

Fully dense problems. For fully dense problems the results are quite similar to those for the

preceding problems, as can be seen from Fig. 11 and 12. The value of speedup is larger for these

problems and the parallel performance of the Bellman-Ford method is relatively better than for the

preceding problems.

Problem B-F SLF SLF-LLL THRESH SLF SLF-LLL
THRESH THRESH

C1 3.96 / 7.26 3.38 / 7.52 2.97 / 5.72 1.90 / 3.18 1.85 / 2.84 1.57 / 2.72
C2 4.03 / 7.50 4.22 / 8.08 3.33 / 5.98 1.88 / 3.59 2.03 / 3.92 1.67 / 2.97
C3 4.10 / 7.73 4.20 / 8.23 3.09 / 5.80 2.32 / 2.96 2.08 / 3.87 1.70 / 3.32
C4 4.21 / 8.02 4.15 / 8.13 3.06 / 6.16 2.09 / 3.05 2.25 / 4.07 1.68 / 3.32

Tab. 5
Speed-up values for the asynchronous parallel codes (4 processors / 8 processors)

-19-

* B-F B THRESH
O SLF E] SLF-THRESH

40 * SLF-LLL El SLF-LLL-THRESH

35

30

25

20

15

10

5

0

C1 C2 C3 C4
Fig. 11

Time in secs required to solve fully dense problems with the sequential codes

* B-F A THRESH
a SLF 0 SLF-THRESH

8 U SLF-LLL E' SLF-LLL-THRESH

6

C1 C2 C3 C4

Cl C2 C3 C4
Fig. 12

Time in secs required to solve fully dense problems with the parallel asynchronous codes using 8 processors.

Road networks. For these problems, the SLF and LLL strategies are remarkably effective. In a

serial setting they improve a great deal the performance of the Bellman-Ford and the threshold

algorithms, as can be seen from Fig. 13. In a parallel setting they exibit excellent (often superlinear)

speedup, due to a greatly reduced number of iterations, as can be seen from Tab. 6 and Fig. 14. The

reduction in the number of iterations for the SLF and LLL strategies must be attributed to the use of

-20-

multiple queues and the associated enhanced sorting that places nodes with small labels near the top

of the queues.

Problem B-F SLF SLF-LLL THRESH SLF SLF-LLL
THRESH THRESH

R1 1.81 / 2.49 2.53 / 5.39 2.49 / 5.05 1.16 / 1.70 1.04 / 1.24 0.93/ 1.33
R2 1.94 / 3.35 3.88 / 5.08 4.17 / 7.12 0.69 / 1.20 0.69 / 0.90 0.72 / 1.05
R3 2.21 / 3.60 5.78 / 10.45 17.53 / 21.13 0.59 / 0.49 0.40 / 0.59 0.63 / 0.81
R4 1.84 / 2.43 7.37 / 12.66 11.33 /18.38 0.64 / 1.24 0.77 / 1.23 0.64 / 0.76

Tab. 6
Speed-up values for the asynchronous parallel codes (4 processors / 8 processors)

* B-F [] THRESH
O SLF QE SLF-THRESH
* SLF-LLL 0 SLF-LLL-THRESH

3.5 45 1000 600

3 40 900

*35 l*800 5
2.5 700

30 400

12 - 25 -600
500 300

1.5 2-400
15 2200

10

200

R1 R2 R3 R4

Fig. 13
Time in secs required to solve road network problems with the sequential codes

-21-

* B-F [] THRESH
O SLF 0[SLF-THRESH
* SLF-LLL : SLF-LLL-THRESH

1.4 14 350 250

1.2 12 300 200

1- *fft10 250

0.8 8 200 150

0.6 - 6 150 100

0.4 -4 100

50
0.2 2 50

0 S-~ i 0 -f L 0 ~ 0

R1 R2 R3 R4
Fig. 14

Time in secs required to solve road network problems with the parallel asynchronous codes using 8 processors.

In Table 7 and Fig. 15 we aim to summarize the performance of the various methods and
also to show the advantage of the asynchronous implementations versus their synchronous

counterparts. In particular, we compare the methods following an approach that is similar to the one

proposed in [21], by giving to each method and for each test problem, a score that is equal to the

ratio of the execution time of this method over the execution time of the fastest method for the given

problem. Thus, for each method, we obtain an average score, which is the ratio of the sum of the

scores of the method over the number of test problems. This average score, given in Table 7,

indicates how much a particular method has been slower on the average than the most successful

method.

Code SEQ SYN ASYN
BF 17.86 26.97 4.67
SLF 9.39 5.72 1.21
SLF-LLL 6.10 6.62 1.03
THRESH 8.50 10.14 4.41
SLF THRESH 3.33 2.77 1.44
SLF-LLL THRESH 2.63 2.23 1.33

Tab. 7
Average scores of all implemented methods

- 22 -

30
* SEQUENTIAL

25 -0 - rO SYNCHRONOUS
l* ASYNCHRONOUS

20

15

10

B-F SLF SLF-LLL THRESH SLF SLF-LLL
THRESH THRESH

Fig. 15
Plot of the average scores of all implemented methods as per Table 7

In conclusion, the use of multiple queues seems to work very well in conjunction with the

SLF and LLL strategies, and the asynchronous parallel algorithms consistently outperform their

synchronous counterparts. The threshold method, which is robust and efficient for serial

computers, is not well suited for parallelization. Finally, the SLF and LLL strategies maintain their

efficiency when implemented in parallel, and when combined with other methods, significantly

improve their performance both in a serial and in a parallel environment.

6. ACKNOWLEDGMENT

We would like to acknowledge the director and the staff of CERFACS, Toulouse, France, for

allowing us to use the Alliant FX/80.

- 23 -

7. REFERENCES

1. GALLO, G., and PALLOTTINO, S., Shortest Path Algorithms, Annals of Operations

Research, Vol. 7, pp. 3-79, 1988.

2. BERTSEKAS, D. P., A Simple and Fast Label Correcting Algorithm for Shortest Paths,

Networks, Vol. 23, pp. 703-709, 1993.

3. BERTSEKAS, D. P., An Auction Algorithm for the Shortest Path Problem Mathematical

Programming Study, Vol. 26, pp. 38-64, 1986.

4. BERTSEKAS, D. P., PALLOTTINO, S., and SCUTELLA', M. G., Polynomial Auction

Algorithms for Shortest Paths, Report LIDS-P-2107, Mass. Institute of Technology, May

1992, to appear in Computational Optimization and Applications.

5. HELGASON, R. V., and STEWART, D., One-to-One Shortest Path Problem: An Empirical

Analysis With Two-Tree Dijkstra Algorithm, Computational Optimization and Applications,

Vol. 2, pp. 47-75, 1993.

6. POLYMENAKOS, L., and BERTSEKAS, D. P., Parallel Shortest Path Auction Algorithms,

Parallel Computing, Vol. 20, pp. 1221-1247, 1994.

7. GALLO, G., and PALLOTTINO, S., Shortest Path Methods: A Unified Approach,

Mathematical Programming Study, Vol. 26, pp. 38-64, 1986.

8. BELLMAN, R., Dynamic Programming, Princeton University Press, Princeton, N.J., 1957.

9. GLOVER, F., GLOVER, R., and KLINGMAN, D., The Threshold Shortest Path Algorithm,

Networks, Vol. 14, 1986.

10. PAPE, U., Implementation and Efficiency of Moore - Algorithms for the Shortest Path

Problem, Mathematical Programming, Vol. 7, pp. 212-222, 1974.

11. BERTSEKAS, D. P., Linear Network Optimization: Algorithms and Codes, M.I.T. Press,

Cambridge, MA, 1991.

12. BERTSEKAS, D. P., Distributed Dynamic Programming, IEEE Transactions on Aut.

Control, Vol. AC-27, pp. 610-616, 1982.

13. BERTSEKAS, D. P., and GALLAGER, R. G., Data Networks (2nd ed.), Prentice-Hall,

Englewood Cliffs, N.J., 1992.

14. BERTSEKAS, D. P., and TSITSIKLIS, J. N., Parallel and Distributed Computation:

Numerical Methods, Prentice-Hall, Englewood Cliffs, N.J., 1989.

15. MOHR, T., and PASCHE, C., Parallel Shortest Path Algorithm, Computing (Vienna/New

York), Vol. 40, pp. 281-292, 1990.

16. TRAFF, J. L., Precis: Distributed Shortest Path Algorithms, Proceedings of the 5th

International PARLE Conference, Munich, Germany, pp. 720-723, Springer-Verlag, 1993.

17. DUNG, T., HAO, J., and KOKUR, G., Label Correcting Shortest Path Algorithms: Analysis

and Implementation, GTE Laboratories Incorporated, Waltham, MA, Unpulished Report,

- 24-

1993.

18. BERTSEKAS, D. P., and CASTANON, D. A., Parallel Asynchronous Implementations of the

Auction Algorithm, Parallel Computing, Vol. 1, pp. 707-732, 1991.

19. KLINGMAN, D., NAPIER, A., and STUTrz, J., NETGEN - A Program for Generating Large

Scale (Un)Capacitated Assignment, Transportation and Minimum Cost Flow Network

Problems, Management Science, Vol. 20, pp. 814-822, 1974.

20. BERTSEKAS, D. P., GUERRIERO, F., AND MUSMANNO, R., Parallel

Asynchronous Label Correcting Methods for Shortest Paths, Report LIDS-P-2250, Mass.

Institute of Technology, May 1994.

21. BROWN, A. A., AND BARTOLOMEW-BIGGS, M. C., Some Effective Methods for

Unconstrained Optimization Based on the Solutionof Systems of Ordinary Differential

Equations, Tech. Report 78, Numerical Optimization Centre, The Hatfield Polytechnic,

Hatfield, UK, 1987.

- 25 -

