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Abstract

We show that some basic linear control design problems are NP-hard, implying
that, unless P=NP, they cannot be solved by polynomial time algorithms. The prob-
lems that we consider include simultaneous stabilization by output feedback, stabi-
lization by state or output feedback in the presence of bounds on the elements of the
gain matrix, and decentralized control. These results are obtained by first showing
that checking the existence of a stable matrix in an interval family of matrices is an
NP-hard problem.

1 Introduction

Consider the following three problems: the first was mentioned as a "major open problem
in systems and control theory" in a recent survey' of experts in the systems and control
field; the other two were mentioned indirectly.

Stabilization by static output feedback. This is perhaps the most basic problem
in control theory. We are given a linear system

2i(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
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and we consider a static feedback control law of the form

u(t) = Ky(t).

The resulting closed loop system is

2(t) = (A + BKC)x(t).

The problem is to find necessary and sufficient conditions on the triplet of real matrices
(A, B, C) under which there exists a feedback gain matrix K such that A + BKC is stable.
In the case of state feedback (C = I), a necessary and sufficient stabilizability condition
is given by the stabilizability of the pair (A, B) [12]. However, if C is not invertible, no
general necessary and sufficient conditions are known.

Simultaneous stabilization by static output or state feedback. 2 Our second
problem is a generalization of the static output feedback problem. Suppose that for each
i, i = 1,..., k, we are given a linear system

i(t) = Aix(t) + Biu(t)

y(t) = Cx(t).

Under the feedback control law
u(t) = Ky(t)

the ith closed loop system is

2(t) = (Ai + BiKCi)x(t).

The problem is to find conditions on the triplets of real matrices (Ai, Bi, Ci), i = 1,..., k,
under which there exists a matrix K such that Ai + BiKCi is stable for each i. This
problem is unsolved even if Ci = I for all i (state feedback).

Stabilization by decentralized static output feedback. We now impose some
structure on the feedback gains. Consider a linear system of the form

k

x(t) = Ax(t)-+EBiui(t)
i=l

yM(t) = Cix(t), i = ., k,

and suppose that we are interested in a static decentralized controller of the form

ui(t) = Kiyi(t), i= 1,..., k.

The closed loop system is
k

x(t) = (A + Z BiKiCi)x(t),
i=l

2This problem should not be confused with what is usually referred to as the "simultaneous stabilization
problem" ([11, 3]) in which dynamic - instead of static - compensation is sought.
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which is of the same form as in stabilization by static output feedback except that several
of the entries of K are forced to zero. This leads us to the problem of finding conditions
on the triplet of real matrices (A, B, C) under which there exists a matrix K with a given
structure such that A + BKC is stable. The problem can be further constrained by re-
quiring the matrix structure to be block diagonal, the blocks to have a bounded norm, or
the blocks to be identical (we discuss all of these cases later).

The reader is referred to [2], pp. 420, where the above three problems are presented and
motivated and where references can be found. A common feature of these three problems
is that, although they are easy to state, neither closed-form nor efficient algorithmic
solutions are known. It is rather improbable that closed-form solutions to these problems
are possible. On the other hand, algorithmic solutions do exist as we now argue.

All of the problems that we have described are finitely parametrized. They all in-
volve the search for a controller (the - possibly partitioned - matrix K) which can be
specified in terms of finitely many real parameters. In theory, it is thus possible to apply
the following methodology: (a) parametrize the gain matrix K in terms of finitely many
real coefficients; (b) express the matrix stability condition(s) in terms of the coefficients
of the system(s) and of the controller; (c) use the Routh-Hurwitz test on the resulting
characteristic polynomial(s). One is then left with a (large) set of multivariable polyno-
mial inequalities that have to be simultaneously satisfied for some choice of the controller
coefficients. As explained in [1], checking the existence of controller coefficients that sat-
isfy this system of multivariable inequalities can be performed using the Tarski-Seidenberg
elimination theory. The Tarski-Seidenberg elimination method leads, after a finite num-
ber of rational operations, to a yes-no answer regarding the existence of a solution and
produces a solution if one exists. The method is systematic and amenable to computer
implementation. Thus, all three problems described above are algorithmically solvable.

The advantage of the Tarski-Seidenberg method is its generality; its drawback is the
fact that its computational complexity increases at least exponentially. The examples
that can be worked on paper are very small (the example given in [1] involves only two
parameters) and computer algorithms cannot digest more than five or six parameters in
reasonable time.

In this paper we show that some of the above problems and their variations are very
unlikely to allow for efficient algorithmic solutions. We adhere to the general consensus in
computer science that identifies algorithmic efficiency with polynomial time computabil-
ity. We then show that some of the above problems are NP-hard [5], meaning that every
problem in NP can be reduced them. Thus, unless P=NP, these problems are not poly-
nomial time solvable.

Our results are as follows (see later for precise definitions):

1. The static output feedback stabilization problem is NP-hard if one constrains the
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coefficients of the controller K to lie in prespecified intervals. The same is true in
the case of static state feedback (C = I). We have not been able to establish the
complexity of the problem in the absence of constraints on K but we conjecture that
it is also NP-hard.

2. Simultaneous stabilization by output feedback is NP-hard.

3. Stabilization by decentralized static output feedback is NP-hard if one imposes a
bound on the norm of the controller or if the blocks are constrained to be identical.

These results will be proved as corollaries of the following main theorem: testing for
the presence of a stable matrix in a family of matrices whose members have entries that
are either fixed to some given real number or vary in the closed unit interval [-1, 1] is
an NP-hard problem. This latter result complements a recent theorem of Nemirovskii [8]
who showed that testing for the stability of all elements of such a family of matrices is
an NP-hard problem. Our proof is in fact inspired from his. Other references that are
directly or indirectly related to our work include [4] and [9]; see also [10] for a review of
other complexity results for problems in control theory.

In the next section, we prove the main result and derive some general corollaries. In
the last section we link these results with the linear control design problems mentioned in
this introduction.

2 Checking the existence of a stable matrix in an interval
family of matrices is NP-hard

In this section we show that checking the existence of a stable matrix in a unit interval
family of matrices is an NP-hard problem (a unit interval family of matrices is a family
of matrices whose members have entries that are either fixed to some given real number
or vary in the closed unit interval [-1, 1]). We prove this result by means of a polynomial
time reduction from the following problem which is already known to be NP-complete

[7, 5].
PARTITION

Instance: A positive integer 1, a set of I integers ai C Z.
Question: Do there exist tl,..., tj C {-1, +1} such that Ei=l aiti = 0?

We now define formally the problem of interest.
STABLE MATRIX IN UNIT INTERVAL FAMILY

Instance: A positive integer n, a partition of I = {(i, j) : 1 < i, j < n} into disjoint sets
I1 and 12, rational numbers a*. for (i, j) C I1.
Question: Does the set A of n x n matrices defined by

A = A = (aij) : aij = aij for (i, j) E I1, aij e [-1,1] for (i, j) E 12}
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contain a stable matrix?

Remark: Throughout this paper, when writing "stable" we actually mean "asymptot-
ically stable", i.e. "all eigenvalues have a negative real part". A slightly different problem
is obtained if we are interested in marginal stability ("all eigenvalues have a non-positive
real part"). We call this second problem MARGINALLY STABLE MATRIX IN UNIT INTERVAL
FAMILY.

The main result of this paper is as follows:

Theorem 1 STABLE MATRIX IN UNIT INTERVAL FAMILY and MARGINALLY STABLE MA-
TRIX IN UNIT INTERVAL FAMILY are NP-hard.

Proof: We prove NP-hardness of STABLE MATRIX IN UNIT INTERVAL FAMILY. NP-
hardness of MARGINALLY STABLE MATRIX IN UNIT INTERVAL FAMILY can be shown in
a similar way, we make a comment on this at the end of the proof.

Since PARTITION is NP-complete, it suffices to show that any instance of PARTITION

can be transformed in polynomial time into an equivalent instance of STABLE MATRIX IN
UNIT INTERVAL FAMILY.

Let ai C Z (i = 1,..., ) be an instance of PARTITION. We construct a unit interval
matrix as follows. Let m be a positive integer such that I < m = k2 for some positive
integer k and define the m-dimensional vector a by aT = (a,a 2 , ... , al, 0,..., 0) C zm (the
superscript T denotes matrix transposition). Let -y - aTa, 3 = 1 - 1/(2m(1 + y)) and

A(x y)'= ( -k(Im + aaT) Y ), YT kO (1)

with Im the identity matrix of size m and x, y E ?'m (note that a > 0 and 0 < i < 1).

The set of matrices

A = {A(x, y) : x, y c [-1, 1]m } (2)

forms an instance of STABLE MATRIX IN UNIT INTERVAL FAMILY and is constructed in

polynomial time from the initial instance of PARTITION. It remains thus to show that A
contains a stable matrix if and only if there exist ti E {-1, +1} such that Ei=l aiti = 0.
We prove this in two steps.

Assume first that ti G {-1, +1} satisfy E 1=l aiti = O. Define = ( t, , t, 1,..., 1) 
Zm, yo = -:xo and note that aT xo = zTa = 0. We claim that the matrix Ao = A(xo, Yo) E

A is stable. Indeed, Ao can be decomposed as

Ao = Al + A 2 +A 3 (3)

= -kIm+ + 0 0) + aT T k(1 + '\( (4)
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The spectrum of Ao is the spectrum of A 2 + A 3 shifted to the left by k. The matrix Ao

will thus be stable provided that the real part of every eigenvalue of A 2 + A3 is strictly

less than k.

The matrix A2 has rank one; it has one eigenvalue at -k 7 and m eigenvalues at the

origin. The characteristic polynomial of the matrix A 3 is

sm-1 (S2 _ k(1 + P)s + k2 ) (5)

whose roots are either at the origin or have a real part equal to k(1 + 3)/2 which is always

strictly less than k since we have already observed that 0 < 8 < 1.

Due to the fact that aTxo = zoa = 0, we have A 2 A3 A 3 A2 = 0. Let A and w

be an eigenvalue and an eigenvector, respectively, of A 2 + A3. Thus, (A 2 + A 3 )w = Aw.

Multiplying by A 2, we obtain A2w = AA 2 w. If A 2 w / 0, then A is an eigenvalue of A2

If A 2w = 0, then A is an eigenvalue of A3. Consequently, every eigenvalue of A 2 + A3 is

either an eigenvalue of A2 or of A 3. These eigenvalues have a real part which is smaller

than k and by our earlier comment, the matrix Ao E A is stable.

For the reverse implication, assume that A contains a stable matrix and let xO, yo E

[-1, 1]m be such that Ao = A(xo, yo) E A is stable. Consider then the parametrized family

of matrices
B(O) = A(Oxo,Oyo)/k. (6)

We now study the dependence of the stability of B(O) on the variable 0 C [0, 1]. When

0 = 0, we have

-(Im + aaT) 0 )
B(0) = ( (m 0 ) (7)

The matrix -(Im + aaT) is negative definite, hence stable, and thus B(O) has a single

unstable eigenvalue (at 3 > 0). When 0 = 1, we have B(1) = Ao/k and so B(1) is stable

since Ao is.

The eigenvalues of B(O) are symmetric with respect to the real axis (complex conjugate)

and they vary continuously with 0. When moving from 0 = 0 to 0 = 1, we move from

a configuration where there is exactly one unstable eigenvalue to a configuration with

no unstable eigenvalues. When a conjugate pair of eigenvalues crosses the jw axis, the

number of unstable eigenvalues changes by an even number. Thus, for the number of

unstable eigenvalues to change from one to zero, some eigenvalue must cross the jw axis

at the origin. Therefore, there exists some O0 E (0, 1) for which B(00) has an eigenvalue

at the origin and B(0o) is singular. Elementary matrix manipulations show that the

singularity condition for B(0o) is equivalent to

02XoT(Im + aaT)-lyo = -k 2 p. (8)

A standard inversion formula ([6] pp. 19) gives

O02zT(Im - aaTl(1 + 7))zo = k 2 3 (9)
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where we have defined zo = -yo and used the definition y = aTa. Remembering that
m = k2 and 00 C (0, 1), we finally obtain

xT (Im-aaT/(1 + - y))zo > mo3. (10)

The matrix (Im - aaT/(1 + y)) is symmetric and positive definite. Using also the fact
that the maximum of a convex function over a bounded polyhedron is attained at an
extreme point, we obtain

E ]m XT (Im - aaT/(1 + 7))Y = max XT(Im - aaT/(1 + ))X (11)

= max XT(Im -- aaT/(1 + ))X (12)
xE{-1lm,1}

= - min (xTa) 2/(1 y). (13)
E(-l1,}-m

In particular, this shows that

m- min (xTa)2 /( + y) > oT(I - aaT/(1 + 7))zo. (14)
xE{-1,1}'m

Combining inequalities (10) and (14), we obtain

m- min (aTa)2 /(l + ) > m3. (15)

Using the definition of /, we finally arrive at

min (zXTa) 2 < 1/2. (16)

The left hand side in this inequality is a positive integer; we are thus forced to the con-
clusion

min (xTa) 2 = 0. (17)
xE{-1,1}m

Assume that the minimum in (17) is obtained for xT = (xl, x 2 , ..., xl, ... , xm); we con-
clude the proof by setting ti = xi for i = 1, ... , 1.

Let us now briefly comment on the case where we are interested in marginal stability.
NP-hardness for this case can be obtained by a small adaptation of the preceding proof.
Let, as before, ai C Z (i = 1, ..., l) be an instance of PARTITION. We construct an interval
matrix as follows. Let m be a positive integer such that I < m = k 2 for some positive
integer k and define the m-dimensional vector a by aT = (al, a2, ..., a, 0, ..., 0) cE m and

A(,y)= ( -k(m + aaT) y (18)

The set of matrices A = {A(x, y): x, y E [-1, 1]m} forms an instance of MARGINALLY

STABLE MATRIX IN UNIT INTERVAL FAMILY and is constructed in polynomial time from
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the initial instance of PARTITION. Moreover, by the same argument as above, it is clear
that A contains a marginally stable matrix if and only if there exist ti E {-1, +1} such
that .i=l aiti = O. This shows the equivalence between the instances and hence proves
the second part of the theorem. El

If the problem is changed by including the additional requirement that the matrix A
must be symmetric, then it can be solved in polynomial time.3 In particular, consider the
problem of minimizing A subject to AI - A being a positive semidefinite symmetric matrix
and subject to the interval constraints on A. This is a semidefinite programming problem
and can be solved in polynomial time. Furthermore, the optimal cost in this minimization
problem is less than or equal to zero (respectively, negative) if and only if there exists a
marginally stable (respectively, stable) matrix A in the family. This in sharp contrast to
the results of Nemirovskii [8] who showed that deciding the stability of all elements of the
interval family is NP-hard even if one restricts to symmetric matrices.

As a direct application of our main theorem, we introduce a few matrix and polynomial
stability problems and show that they are NP-hard.

STABLE MATRIX IN INTERVAL FAMILY

Instance: A positive integer n, rational numbers aij, aij for 1 < i, j < n.
Question: Does there exist a stable matrix A = (aij) with aj < aij < aij?

STABLE MATRIX IN RANK ONE PERTURBED MATRIX

Instance: Positive integers n, k, and k + 1 real n x n matrices A0 , Al, ..., A with rational
entries, all of which have rank one, with the exception of Ao.
Question: Do there exist real values q* C [-1,1] such that A = A + q*A 1 + ... + q*Ak is
stable?

STABLE POLYNOMIAL IN FAMILY OF BILINEAR POLYNOMIALS

Instance: A positive integer r, a multivariable polynomial p(x, ql, ..., q.) with rational co-
efficients whose dependence on the real variables qi is bilinear.
Question: Do there exist real values q* E [-1, 1] for which the polynomial p(,,ql,...,q*)
is stable?

Corollary 1 The above three problems are all NP-hard.

Proof:

STABLE MATRIX IN INTERVAL FAMILY is NP-hard because it is a generalization of
STABLE MATRIX IN UNIT INTERVAL FAMILY.

A matrix A in the unit interval family defined by I1 and a ,* (i,j) E I1, can be written

3 This was brought to our attention by M. Overton.
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in the form
A=Ao + qijAij,

(ij)¢l

where Ao has entries

a ai if(i,j) CI1
= 0 if (i, j) I1,

Aij is a matrix with all entries equal to zero except for the (i, j)th entry which is equal
to 1, and qij C [-1, 1]; note that Aij has rank one. This reduces STABLE MATRIX IN UNIT

INTERVAL FAMILY to STABLE MATRIX IN RANK ONE PERTURBED MATRIX and shows that

the latter problem is NP-hard.

In order to prove that STABLE POLYNOMIAL IN FAMILY OF BILINEAR POLYNOMIALS is

NP-hard, we argue as in the proof of Theorem 1. Let ai G Z (i = 1,..., I) be an instance
of PARTITION. Let m be a positive integer such that I < m = k2 for some positive integer
k and define = 1 - 1/(2m(1 + E1i= a?)) and

( -k(Im+aaT ) (qk+l, ,q2k)T )

From the proof of Theorem 1, we know that the set of matrices A = {A(ql, ... , qk, qk+l,..., , 2k)

qj E [-1, 1]} contains a stable matrix if and only if there exist tj c {-1, +1} such that
__=j aiti = 0. The set of matrices A contains a stable matrix if and only if the multivari-
able polynomial p(z, ql,..., q2k) = det(zI2k - A(ql,..., qk, qk+l, ... , q2k)) is stable for some
choice of qi C [-1, 1]. The latter polynomial is bilinear in the variables qi. We therefore
have an instance of STABLE POLYNOMIAL IN FAMILY OF BILINEAR POLYNOMIALS which

is equivalent to the original instance of PARTITION. []

Remarks:

1. All three problems addressed by Corollary 1 remain NP-hard if "stability" is replaced
by "marginal stability"; the proof is similar.

2. By a similar proof, both Theorem 1 and Corollary 1 remain valid if the interval
constraints aij C [-1, 1] are replaced by the open interval constraints aij C (-1, 1).

3 Application to linear control design problems

As explained in the Introduction, our initial motivation for this work was to address the
computational complexity of linear control design problems. We now introduce some such
problems and show that that they are NP-hard.

STATE FEEDBACK STABILIZATION BY BOUNDED CONTROLLER

Instance: A positive integer n, n x n matrices A and B with rational coefficients, rational
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numbers kij, kij for 1 < i, j < n.
Question: Does there exist a real matrix K = (kij) satisfying kij < kij < ki•j and such
that A + BK is stable?

SIMULTANEOUS STABILIZATION BY OUTPUT FEEDBACK

Instance: Positive integers n, m, p, k, a collection of k triplets of matrices (Ai, Bi, Ci) with
rational coefficients of respective sizes n x n, n x m, p x n.
Question: Does there exist a real m x p matrix K such that Ai + BiKCi is stable for all
i = l,...,k?

DECENTRALIZED OUTPUT FEEDBACK STABILIZATION BY NORM BOUNDED CONTROLLER

Instance: Positive integers n and k with n > k, n x n matrices A, B and C with rational
coefficients. A partition of n into k positive integers n = nl + n2 + ' . - + nk.
Question: Does there exist a n x n block-diagonal matrix K with blocks Ki of successive
sizes ni x ni and IIKi I < 1 such that A + BKC is stable?

DECENTRALIZED STABILIZATION WITH IDENTICAL CONTROLLERS

Instance: Positive integers nj, n 2, three (nn 2) x (nln2) matrices A, B and C with rational
coefficients.
Question: Does there exist a nl x nl matrix M such that the (nln2 x nin2) block diagonal
matrix K constructed with n2 identical blocks M is such that A + BKC is stable?

Corollary 2 The above four problems are all NP-hard.

Proof: (a) STATE FEEDBACK STABILIZATION BY BOUNDED CONTROLLER

Let n and aij, aij, for 1 < i, j < n be an instance of STABLE MATRIX IN INTERVAL FAMILY.
An equivalent instance of STATE FEEDBACK STABILIZATION BY BOUNDED CONTROLLER

is given by: n, A = 0, B = In,, kij = aij and kij = a-ij for 1 < i, j < n.
(b) SIMULTANEOUS STABILIZATION BY OUTPUT FEEDBACK

We prove NP-hardness for the case of marginal stability. Let n and akl, akl (1 < i, j < n) be
an instance of STABLE MATRIX IN INTERVAL FAMILY. Define the n x n matrices A + , A-j, Bi
and Cj by:

A.+. = (akl) with

akl = -aij if (k, l) = (1,1)

= O otherwise,

A-j = (akl) with

akl = aij if (k,l)= (1,1)
= 0 otherwise,

Bi = (bkl) with

bkl = lif(k, 1)=(1, i)

= 0 otherwise,
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and Cj = (ckl) with

Ckl = lif(k,l)=(j, 1)

= 0 otherwise.

It is immediate to see that (A + + BiKCj) is marginally stable if and only if kij _< aij
and similarly (A- + BiKCj) is marginally stable if and only if kij >_ aj. Thus, if we require
the simultaneous stabilization of the 2n2 + 1 triplets (0, I, I), I (A B, CI)) and (A, BA+ , Cj)
for 1 < i, j < n, we have constructed an equivalent instance of SIMULTANEOUS STABILIZA-

TION BY OUTPUT FEEDBACK.

(c) DECENTRALIZED OUTPUT FEEDBACK STABILIZATION BY NORM BOUNDED CONTROLLER

We prove that the problem is NP-hard even for the special case where all blocks are of
size 1 x 1, in which case A + BKC can be written as A + E=1 kibiCcT, where bi is the ith
column of B, cT is the ith row of C and ki is the ith diagonal entry of K. Given that
an arbitrary rank one matrix can be expressed in the form bcT for some vectors b and c,
it follows that every instance of STABLE MATRIX IN RANK ONE PERTURBED MATRIX can
be expressed as an instance of DECENTRALIZED OUTPUT FEEDBACK STABILIZATION BY
NORM BOUNDED CONTROLLER

(d) DECENTRALIZED STABILIZATION WITH IDENTICAL CONTROLLERS

We prove NP-hardness for the case of marginal stability. Consider k triplets of n x n matri-
ces (Ai, Bi, Ci) that form an instance of SIMULTANEOUS STABILIZATION BY OUTPUT FEED-
BACK. We define an equivalent instance of DECENTRALIZED STABILIZATION WITH IDENTI-
CAL CONTROLLERS by letting n1 = n, n2 = k, A = Al ( A2 ( ... ( Ak, B = B1 e B2 ...- E Bk
and C = C1 (3 C 2 fE ... ( Ck where E3 denotes direct sum of matrices. o]

Remarks:

1. For some of the problems, we provided the proof for the case of stability; for others,
we dealt with marginal stability. With little work, and using the remarks at the end of the
preceding section, it is easily shown that all problems are NP-hard for the case of either
stability or marginal stability.

2. STATE FEEDBACK STABILIZATION BY BOUNDED CONTROLLER is easily shown to

remain NP-hard even if the bounds kij, kij are constrained to be either 0 or 1. We have
assumed that we are dealing with square systems; the more general case of rectangular

systems is at least as hard and is therefore also NP-hard. Finally, the problem of output
feedback stabilization by a bounded controller is at least as hard as that of state feedback
and is thus also NP-hard.

3. Our proof shows that SIMULTANEOUS STABILIZATION BY OUTPUT FEEDBACK re-

mains NP-hard even if all the matrices involved are of same size (n = m = p). The
degenerate case m = p = 1 corresponds to simultaneous stabilization of single-input
single-output systems by proportional feedback and can be solved in polynomial time.

(An argument for this follows from footnote 1 pp. 54 in [1].) We do not know whether
the state feedback formulation of this problem is NP-hard.
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