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INCREMENTAL LEAST SQUARES METHODSi

AND THE EXTENDED KALMAN FILTER

by

Dimitri P. Bertsekas2

Abstract

In this paper we propose and analyze nonlinear least squares methods, which process the data incre-

mentally, one data block at a time. Such methods are well suited for large data sets and real time operation,

and have received much attention in the context of neural network training problems. We focus on the

Extended Kalman Filter, which may be viewed as an incremental version of the Gauss-Newton method. We

provide a nonstochastic analysis of its convergence properties, and we discuss variants aimed at accelerating

its convergence.
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1. Introduction

1. INTRODUCTION

We consider least squares problems of the form

minimize f(x) = Ig(x)[2 = E g)i(x) 2 (1)

subject to x E Rn,

where g is a continuously differentiable function with component functions gl,..., g, where gi:

,n - J'ri. Here we write lzIIl for the usual Euclidean norm of a vector z, that is, lizil = A)z, where

prime denotes transposition. We also write Vg; for the n x r; gradient matrix of g;, and Vg for the

n x (rl + ... + rm) gradient matrix of g. Each component g; is referred to as a data block, and the

entire function g = (gl,. . . ,gm) is referred to as the data set.

One of the most common iterative methods for solving this problem is the Gauss-Newton

method, given by

xk+1 =- k - ak(Vg(xk)Vg(xk)) -lVg(xk)g(xk), (2)

where ak is a positive stepsize, and we assume that the n x n matrix Vg(xk)Vg(xk) ' is invertible.

The case ck = 1 corresponds to the pure form of the method, where xk+ l is obtained by linearizing

g at the current iterate xk, and minimizing the norm of the linearized function, that is,

xk+l = arg min 11g(xk) + Vg(xk)'(x - xk)ll2, if Ck = 1. (3)

In problems where there are many data blocks, the Gauss-Newton method may be ineffective,

because the size of the data set makes each iteration very costly. For such problems it may be better

to use an incremental method that does not wait to process the entire data set before updating x;

instead, the method cycles through the data blocks in sequence and updates the estimate of x after

each data block is processed. A further advantage is that estimates of x become available as data

is accumulated, making the approach suitable for real-time operation. Such methods include the

Widrow-Hoff LMS algorithm [WiH60], [WiS85] for the case where the data blocks are linear, and

other steepest-descent like methods for nonlinear data blocks that have been used extensively for the

training of neural networks under the generic name of backpropagation methods. A cycle through the

data set of a typical example of such a method starts with a vector xk and generates xk+ l according

to

Xk+l = En,

where 0,6m is obtained at the last step of the recursion

i -i- -- kVgi(bi- 1)gi(~i-1 ), i = 1,..., m,
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1. Introduction

ak is a positive stepsize, and So = xk. Backpropagation methods are often effective, and they

are supported by stochastic [PoT73], [Lju77], [KuC78], [Po187], [BeT89], [Whi89a], [Gai93], as well

as deterministic convergence analyses [Luo91], [Gri93], [LuT93], [MaS93], [Man93]. There are also

parallel asynchronous versions of backpropagation methods, and corresponding stochastic [Tsi84],

[TBA86], [BeT89], [Gai93], as well as deterministic convergence results [Tsi84], [TBA86], [BeT89],

[MaS93]. However, backpropagation methods typically have a slow convergence rate not only because

they are first order steepest descent-like methods, but also because they require a diminishing stepsize

ok = 0(1/k) for convergence. If ak is instead taken to be a small constant, an oscillation within

each data cycle typically arises, as shown by [Luo91].

In this paper we focus on methods that combine the advantages of backpropagation methods

for large data sets with the often superior convergence rate of the Gauss-Newton method. We thus

consider an incremental version of the Gauss-Newton method, which operates in cycles through the

data blocks. The (k + 1)st cycle starts with a vector xk and a positive semidefinite matrix Hk to be

defined later, then updates x via a Gauss-Newton-like iteration aimed at minimizing

A(x - xk)'Hk(x - xk) + lgl(x)112,

where A is a scalar with

0< A < 1,

then updates x via a Gauss-Newton-like iteration aimed at minimizing

A2 (x - xk),Hk(x - xk) + Algi(X)112 + gl( + g2(x)l 2 ,

and similarly continues, with the ith step consisting of a Gauss-Newton-like iteration aimed at

minimizing the weighted partial sum

A'(x - xk),Hk(x _ xk) + E A'i-jlgj(x)112 .
j=l

In particular, given xk, the (k + 1)st cycle sequentially generates the vectors

Oi; = arg min A(x- xk)'Hk(x- - xk) + E A'-llj(x, i,)112 , i = 1,..., m, (4)

and sets

xk+l = -'m, (5)

where .j(x, j--l) are the linearized functions

j(x, j-1) =- gj(oj-1) + Vgj(Oj-1)'(x - Oj-1), (6)
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and 0bo is the estimate of x at the end of the kth cycle

xk = o0. (7)

As will be seen later, the quadratic minimizations above can be efficiently implemented.

The most common version of the preceding algorithm is obtained when the matrices Hk are

updated by the recursion

m
Hk+l = AmHk + E Am-jVgj(j-1_)Vggj(j-i)I. (8)

j=l

Then for A = 1 and H ° = 0, the method becomes the well-known Extended Kalman Filter (EKF

for short) specialized to the case where the state of the underlying dynamical system stays constant

and the measurement equation is nonlinear. The matrix Hk has the meaning of the inverse of an

approximate error covariance of the estimate xk. In the case A < 1, the effect of old data blocks is

discounted, and successive estimates produced by the method tend to change more rapidly. In this

way one may obtain a faster rate of progress of the method, and this is the main motivation for

considering A < 1.

The EKF has been used extensively in a variety of control and estimation applications (see

e.g. [AWB68], [Jaz70], [Meh71], [THS77], [AnM79], [WeM80]), and has also been suggested for the

training of neural networks (see e.g. [WaT90] and [RRK92]). The version of the algorithm (4)-(8)

with A < 1 has also been proposed by Davidon [Dav76] who, unaware of the earlier work in the

control and estimation literature, described the qualitative behavior of the method together with

favorable computational experience, but gave no convergence analysis. The first convergence analysis

of the EKF was given by Ljung [Lju79], who assuming A = 1, used a stochastic formulation and the

ODE approach of [Lju77] to prove satisfactory convergence properties for a version of the EKF that

is closely related to the one considered here (Theorem 6.1 of [Lju79], which assumes a stationary

measurement equation and additive noise). Ljung also showed that the EKF, when applied to more

complex models where the underlying dynamic system is linear but its dynamics depend on x,

exhibits complex behavior, including the possible convergence to biased estimates. For such models

he suggested the use of a different formulation of the least squares problem involving the innovations

process (see also [Urs80]). The algorithms and analysis of the present paper apply to any type of

deterministic least squares problem, and thus also apply to Ljung's innovations-based formulation.

A deterministic analysis of the EKF method (4)-(8) where A < 1 was given in the MS thesis

by Pappas [Pap82], written under the author's supervision. Pappas considered only the special case

where min,, [g(x)112 = 0, and showed that the EKF converges locally to a nonsingular solution of the

system g(x) = 0 at a rate which is linear with convergence ratio Am. He also argued by example that
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when A < 1 and min, llg(x)112 > 0, the iterates Xi produced by the EKF within each cycle generally

oscillate with a "size" of oscillation that diminishes as A approaches 1.

The purpose of this paper is to provide a deterministic analysis of the convergence properties

of the EKF. Our analysis is complicated by the lack of an explicit stepsize in the algorithm. In the

case where A = 1 we show that the limit points of the generated sequence {xk} by the EKF are

stationary points of the least squares problem. To improve the rate of convergence of the method,

which is sublinear and typically slow, we suggest a convergent and empirically faster variant where

A is initially less than 1 and is progressively increased towards 1.

One nice aspect of the deterministic analysis is that it decouples the stochastic modeling of

the data generation process from the algorithmic solution of the least squares problem. Otherwise

expressed, the EKF discussed here will typically find a least squares solution even if the least

squares formulation is inappropriate for the real parameter estimation problem. This is a valuable

insight because it is sometimes thought that convergence of the EKF depends on the validity of the

underlying stochastic model assumptions.

2. THE EXTENDED KALMAN FILTER

When the data blocks are linear functions, it takes a single pure Gauss-Newton iteration to

find the least squares estimate. This iteration can be implemented as an incremental algorithm, the

Kalman filter, which we now describe. Assume that the functions gi are linear of the form

gi(x) = zi - Cix, (9)

where zi C Rri are given vectors and Ci are given ri x n matrices. Let us consider the incremental

method that generates the vectors

= arg minE Ai-jlzj - Cjxll2, i = 1,..., m. (10)
-=1

Then the method can be recursively implemented as shown by the following well-known proposition:

Proposition 1. (Kalman Filter) Assuming that the matrix C'Ci is positive definite, the least

squares estimates

arg min Ai-jllzj - Cjxll2, i = 1,... m,
j=1
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can be generated by the algorithm

7i = O--i +' H1-'Cj'(zi-Cios-1), i = 1,...,m, ( 11)

where 0o is an arbitrary vector, and the positive definite matrices Hi are generated by

Hi = AH;-1 + CiCi, i , m, (12)

with

H0 = 0.

More generally, for all i < i we have

+-- H2_ A1ti-jCj(zj -Cj-), i ... ,m. (13)

The proof is obtained by using the following lemma for the case of two data blocks, the

straightforward proof of which is ommited:

Lemma 1. Let (1, (2 be given vectors, and F1, r2 be given matrices such that Fr1r is positive

definite. Then the vectors

%l = arg min I1 - rixl1 2 , (14)

and

02 = arg min {I[11 - r1x12 + 112 - r2X112}, (15)

are also given by

0l = -o + (lFri)- [(C1 - FirLo), (16)

and

0k2 = lb1 + (Flrl + rFr22)- 1Fr2((2 - P2 01 ), (17)

where ,b0 is an arbitrary vector.

The proof of Eqs. (12) and (13) of Prop. 1 follows by applying Lemma 1 with the correspon-

dences ko -~ o, Oi O~ ), ,2 " Xi, and

C1- I'~ , ri-l J IiAJ iII

SG ~ , j F ~ , iC

Z6S'Ci

I I-- - ·~~~~~~~~~
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and by carrying out the straightforward algebra.

Note that the positive definiteness assumption on C'C1 in Prop. 1 is needed to guarantee

that the first matrix H1 is positive definite and hence invertible; then the positive definiteness of

the subsequent matrices H2 ,.. ., Hm follows from Eq. (12). As a practical matter, it is possible to

guarantee the positive definiteness of Cl C1 by lumping a sufficient number of measurements into the

first data block (Ci should contain n linearly independent columns). An alternative is to redefine

V;i as

¢bi =arg min 56 1jx-0b12 + '-jllzj - Cjx11, = 1,..., m,

where 6 is a small positive scalar. Then it can be seen that ,; is generated by the same equations

(11) and (12), except that the initial condition Ho = 0 is replaced by

Ho = 61,

so that H1 = 81 + C'Ci is positive definite even if C'C1 is not. Note, however, that in this case,

the last estimate tbm is only approximately equal to the least squares estimate x*, even if A = 1 (the

approximation error depends on the size of 6).

Consider now the general case where the data blocks gi are nonlinear. Then the EKF can be

used, and its first cycle can be implemented by means of the Kalman filter equations of Prop. 1.

Using the formulas (11) and (12) with the identifications

Zi = gi(i-)- vgi(i-)i- Ci =-Vgi(i)S

the kth cycle of the EKF can be written in the incremental form

= -i-- - H'lVgi(7/ 'i-_)gji(Vi-_), i = 1, ... , m, (21)

where the matrices Hi are generated by

Hi = ,H;_ 1 + Vgi;_l)Vgi(i-)', i = 1, .. .,m, (22)

with

Ho = 0. (23)

To contrast the EKF with the pure form of the Gauss-Newton method (unit stepsize), note

that a single iteration of the latter can be written as

m

xk+l = arg min E I[ci(x, xk)11. (24)
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Using the formulas of Prop. 1 with the identifications

zi = gi(xk) - Vgi(xk)ixk, Ci = -Vgi(xk) ',

we can generate xk+l by an incremental algorithm as

xk+l -= m,

where

=i = ,i-l - Hi- Vgi(xk)(gi(xk) + Vgi(xk)'(7i_1 - xk)), i = 1,... ,m, (25)

G0 = xk, and the matrices Hi are generated by

Hi = Hi-1 +- Vgi(xk)Vg(xk) ', i = 1,.. ., m, (26)

with

Ho = 0. (27)

Thus, by comparing Eqs. (21)-(23) with Eqs. (25)-(27), we see that, if A = 1, a cycle of the

EKF through the data set differs from a pure Gauss-Newton iteration only in that the linearization

of the data blocks gi is done at the corresponding current estimates i,-_1 rather than at the estimate

xk available at the start of the cycle.

3. CONVERGENCE OF THE EXTENDED KALMAN FILTER

We have considered so far a single cycle of the EKF. To obtain an algorithm that cycles through

the data set multiple times, there are two basic approaches. The first approach is to reset the matrix

H to some fixed matrix Ho at the start of each cycle. Unfortunately, the convergence properties of

the resulting algorithm are questionable, and one can construct examples where the method diverges,

basically because the increments 0; - i;-1 produced by the method [cf. Eq. (21)] may be too large.

One may attempt to correct this behavior by selecting Ho to be a sufficiently large multiple of the

identity matrix, but this leads to large asymptotic convergence erroris (biased estimates) as can be

seen through simple examples where the data blocks are linear.

The second approach, which is followed in this paper, is to create a larger data set by concate-

nating multiple copies of the original data set, that is, by forming what we refer to as the extended

data set

(91g,g2, ... 9gm, 9gl,92, ... ,gm, 91g,g2, ... ). (28)
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3. Convergence of the Extended Kalman Filter

The EKF is then applied to the extended data set and takes the form given in the introduction [Eqs.

(4)-(8)]. The algorithm has the form

IHkm+ti AHkm+i-1 + Vgi(Okm+i-1)Vgi(Okm+i-1)'r i = 1,... m,

okm+i = Obkm+i-1 - Hkm+ i(k+-)i( km+i-1), i = 1,... m,

where Ho = 0 and b0o = xz is an arbitrary vector. Note that while in the above equations, A is written

as a constant, we will later consider the possibility of changing A in the course of the algorithm.

Also, we assume that the matrix Vgl(x°)Vgl(z°)' is invertible, so that H11 is well defined. However,

it can be shown that the convergence result to be given shortly also holds when Ho is any positive

definite matrix, in which case the invertibility of Vg1 (x°)Vgl(x°)' is unnecessary.

We will show that when A = 1, the EKF version just described typically converges to stationary

points of the least squares problem. The basic reason is that the EKF asymptotically resembles a

gradient method with diminishing stepsize of order 0(1/k). To get a sense of this, assume that the

EKF is applied to the extended data set (28) with A = 1. Let us denote by xk the iterate at the end

of the kth cycle through the data set, that is,

Xk = Okm, k = 1,2,...

Then by using Eq. (13) with i = (k + 1)m and i = kinm, we obtain

xk+l = xk - Hk (l)m ( Vg(km+_l)g(km+_l)) . (29)

Now H(k+l)m grows roughly in proportion to k + 1 because, by Eq. (12), we have
k m

H(k+l)m = Z S Vgi(bjm+i-) Vgi( i(jm+i-1)'. (30)
j=0 /=1

It is therefore reasonable to expect that the method tends to make slow progress when k is large,

which means that the vectors Ohkm+S-1 in Eq. (29) are roughly equal to xk. Thus for large k, the

sum in the right-hand side of Eq. (29) is roughly equal to the gradient Vg(xk)g(xk), while from Eq.

(30), H(k+l)m is roughly equal to (k + 1)(Vg(xk)Vg(xk)'), where g = (gl, 92,.. ., 9) is the original

data set. It follows that for large k, the EKF iteration (29) can be written approximately as

Xk+l ; -xk (Vg(xk)vg(xk) ') -1 Vg(xk)g(xk), (31)

that is, as an approximate Gauss-Newton iteration with diminishing stepsize. Thus, based on generic

properties of gradient methods with diminishing stepsize (see e.g. [Pol87]), we can expect convergence

to stationary points of the least squares problem, and a sublinear convergence rate.

When A < 1, the matrix Hi-l generated by the EKF recursion (22) will typically not diminish

to zero, and {x k) } may not converge to a stationary point of ZiTl Am-illsg(x)2ll. Furthermore, as the

following example shows, the sequences {?kkm+%} produced by the EKF using Eq. (21), may converge

to different limits for different i:
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3. Convergence of the Extended Kalman Filter

Example 1.

Consider the case where there are two data blocks, gi(z) = x - cl and g2(x) = x - c2, where cl and c2

are given scalars. Each cycle of the EKF consists of two steps. At the second step of the kth cycle,

we minimize

( ( 2 '-(z - Cl)
2

+ A2 2 (X - c2 )
2
)

i=l

which is equal to the following scalar multiple of A(x - c1) 2 + (z -2) 2 ,

(1 + A2 + * * * + A2 k-2)(A(x - c) 2 + (x - C2)2 ).

Thus at the second step, we obtain the minimizer of A(x - c1)2 + (z - c2)2,

Ac, + c2
A+1

At the first step of the kth cycle, we minimize

k-i

(x - Ci) 2 + X (A2
i-(X - c,)

2 + A2 -2(), _ 1)2)

i=l

which is equal to the following scalar multiple of (x - cI) 2 + A(x - c2)2

(1 + X2 + .. + A2 k-4) ((X - C1)2 + A(x - C2)2),

plus the diminishing term A2k- 2 (x _ CI) 2. Thus at the first step, we obtain approximately (for large k)

the minimizer of (z - c1) 2 + A(x- c2)2,

cl + Ac2
012k-1 ,C + AC

We see therefore that within each cycle, there is an oscillation around the minimizer (c, + c2)/2 of

(z - c,) 2 + (x - c2) 2. The size of the oscillation diminishes as A approaches 1.

The preceding example suggests that each sequence {0kkm+i}, where i = 1,... , m, may converge

to a stationary point of the function

m

f i(x) = E Am-jllg3+,(x)112, i = 1,. ., m,
j=l

where we use the definition

gS(x) = gjmod(m)+1(x) if j > m.

This is readily shown when the data blocks gi are linear in view of the definition of okm,+i as the

minimizer of
km+i

X 10m+'-|llgs(X)112
j=l
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which can also be written as

EA km+i-jiIgj(x)1i2 +.(1 + A2 + · + A(k-1)m)f i (x).
j=1

Since the leftmost summation above vanishes as k -+ oo, bkm+i minimizes fi(x) asymptotically. In

the case of nonlinear data. blocks, a related but more complex analysis of the cyclic convergence

behavior described above is possible, but this will not be attempted in this paper.

Generally, for a nonlinear least squares problem, the convergence rate tends to be faster when

A < 1 than when A = 1, essentially because the implicit stepsize does not diminish to zero as in

the case A = 1. For this reason, a hybrid method that uses a different value of A within each cycle

may work best in practice. One may start with a relatively small A to attain a fast initial rate of

convergence, and then progressively increase A towards 1 in order to attain high solution accuracy.

The following proposition shows convergence for the case where A tends to 1 at a sufficiently fast

rate. The idea of the proof is to show that the method involves an implicit stepsize of order 0(1/k),

and then to apply arguments similar to those used by Tsitsiklis [Tsi84], and Tsitsiklis, Bertsekas, and

Athans [TBA86] in their analysis of asynchronous distributed gradient methods, and by Mangasarian

and Solodov [MaS93] in their convergence proof of an asynchronous parallel backpropagation method.

Proposition 2. Assume that Vg1 (x) has full rank for all x and i = 1,..., m, and that for some

L > 0, we have

ljVgi(x)gi(x) - Vgi(y)gi(y)ll < Lxlz - yll, V x, y EG n, i = 1,..., m. (32)

Assume also that there is a constant c > 0 such that the scalar A used in the updating formula (22)

within the kth cycle, call it A(k), satisfies

0 < 1_-((k))- < k' V k = 1,2,.... (33)

Then if the EKF applied to the extended data set (28) generates a bounded sequence of vectors i;,

the sequence {f(xk)) converges and each of the limit points of {xk} is a stationary point of the least

squares problem.

We develop the proof of Prop. 2 through a series of lemmas, all of which implicitly assume the

conditions of Prop. 2:

Lemma 2. There exist positive scalars cl and c2 such that for all k, the eigenvalues of the matrices

Hkm lie within the interval [cl k, c2k].

Proof: We have using the update formula (22), that

H(k+l)m = (A(k + 1))m Hkm + (A(k + 1)) m Vgi(km+i- 1)Vgi(km+i-l)'. (34)
i=l
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Let X be a compact set containing all vectors x; generated by the algorithm, and let B and b be an

upper bound and a lower bound, respectively, for the eigenvalues of Vgi(x)Vgi(x)' as x ranges over

X. From Eq. (34), it is seen by induction that all eigenvalues of Hkm are less or equal to c2k with

C2 = mB. Furthermore, if vk is the smallest eigenvalue of Hkm, then from Eqs. (33) and (34) it is

seen by induction that

Vk+l > ( k+l vk+ (1-k+lmb Vk> 1. (35)

Using this relation, we will prove that vk > klf for a sufficiently small but positive value of fl. Indeed,

let k be the minimal positive integer k such that c/k < 1, and let /3 be any positive scalar such that

< (k + 1- c)mb
k+l++kc

From Eq. (35), it is seen that if vT > /3k, then

-> (1- +l pC + (1 k-+ )c

(k + 1 - c))mb (k + 1 + kc))/=/3(k + l) +

> P(k + 1).

Similarly, it is shown that vk > /3k for all k > k. Thus, by taking / equal to the scalar cl given

below,

cl = min (k + l-c)mb min k
k + 1 + kc ' k,..., k

we see that vk > cl k for all k > 1. Q.E.D.

We will use the notation

f(X) = 2 Z I 1g1(x)112, (36)
i=l

from which we have
m

Vf(x) = E Vgi(x)g(x). (37)
/=l

The next lemma shows that the vector that is multiplied by H-1l)m to obtain the direction used by

the EKF differs from the gradient Vf(xk) by a relatively small amount.

Lemma 3. Let

m

ek = Vf(xk) - (A(k 1))m Vgi( km+i-l)gi(bkm+i-l) (38)
1=l
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3. Convergence of the Extended Kalman Filter

Then there exists a scalar 7 such that for all k

Ijekll < 7 (1+ V f(xk)) (39)

Proof: We have using Eqs. (37) and (38),

ek= Z (1 - (A(k + 1))m )Vgi(xk)gi(xk)
i=l

+ (A(k + 1)) m-(Vgi(xk)g (xk) - Vgi(Okm+i-1)gi(lkm+i-1)),
i=l

so from the assumption (32) and the formula (37) for Vf(xk), we obtain

IlekIl < (1- (A(k + 1))m) 1Vf(xk)1I + L Z IIxk - km+i-1I. (40)
i=1

We also have using Eq. (21), for all k and i > 2

i-1

IIxk - Okm,+-lJl < IIH-kll S IlVgi(,,kmj)9g( bkm+j)l.-
j=1

Using the boundedness of Pli and Lemma 2, we see that for all i and some 6 > 0 we have

IIxk - km+;-11I < k 

Combining this relation with Eq. (40) and the assumption 1 - (A(k + 1))m < c/(k + 1), we obtain

the desired relation (39). Q.E.D.

The assumption (32) together with Eq. (37), imply that

IIVf(x) - Vf(y)l I < mLlIx -Yll, V x,y E n". (41)

The next lemma is a well-known consequence of this relation. We include the proof for completeness.

Lemma 4. For all x and y, there holds

f(x + y) < f(x) + y'Vf (x) + m llY112. (42)

Proof: Let t be a scalar parameter and let F(t) = f(x + ty). Using Eq. (41), we have

f(x + y)- f(x)= F(1) - F(O)= j- = (t) dt j y(f (x)y) dt

< J y'Vf (x) dt + J y'(Vf(x + ty) - Vf(x)) dt

o o<1 y'Vf(x) dt + 1 IYll y IIVf(x + ty) - Vf(x)lIIdt

< y'Vf(x) + IIYII J Ltllyll dt

mL
y'Vf(x) + mL lyll2 .

13



3. Convergence of the Extended Kalman Filter

Q.E.D.

We are now ready to prove Prop. 2.

Proof of Prop. 2: We have using the Kalman filter recursion (13) and the definition (38) of ek,

xk+l = x _- H l)m ( (A(k + 1)) -$vi(gkm+,-)gi(Okm+±-l)) = Xk + dk,

where

dk = -H (kl) (Vf(xk) - ek). (43)

Using Lemmas 2 and 3, and the fact

(I+jl)mI< c2(k + 1)'

which follows from Lemma 2, it is seen that

dk'Vf(xk) --Vf(xk)'H(Sl)mVf(xk) + ekIH(k+l)mVf(xk)

<IVf(xk)112 + Ilek IIVf(xk)ll
-2 (k + 1) c2(k + 1)

< -1 + 0 1XI

(c 2 (k + 1) +0 ((k + 1)2)) [vf(xk)[ 2 +O ((k - 1)2)' f()[

and

IIdk1I2 < IIHS(;kl)ml12(11Vf(Xk)ll + Ilekll)2

((k + 1)2) (IVf(xI + 0 1 + IIVf(k)l (44)

0 1 1117f (Xk)112 + 1 (44)

°((k + 1)2) IIVf(xk)112 +0 ((k ) Ilf(xk)l + 0 (k + 1)4

Using these relations in Eq. (42), we obtain

mL
f(xk+l) < f(x I ) + dk'Vf(xk) + 2 Ildk112

<-f(xk)- (C2 (k + 1) + ((k + 1)2)) V( 2

+ 0 ((k + 1)2) IVf(x)l + ((k + 1)4

Thus, since IIVf(xk)ll is bounded, there exist constants /1 > 0 and /2 > 0, and a positive integer k

such that

f(xk+l1) < f(xk) - ~1 lvf(xk)112 + 2 V k > k. (45)

It is well known that if {uk} and {dk} are nonnegative sequences such that uk+1 < uk + 6k for all

k and Z]°=l 6 k < oo, then {uk} converges; this is a special case of the supermartingale convergence

14



3. Convergence of the Extended Kalman Filter

theorem (see e.g. [Pol87], p. 49, or [BeT89], p. 677). Since f(z) > 0 for all x, it follows from Eq.

(45) that {f(zk)} converges.

From Eq. (45) we have for all k > k

f(xk+l) < f(xI)-E 1 Vf ((xs)l 2 + E (46)
~2 ~~i2=

Since limk-,, Ei= 1/i = oo and limk,,oo ik= 1/i2 < oo00, we see also that there cannot exist an c > 0

such that IlVf(xk)112 > e for all k > k. Therefore, we must have liminfk-, I Vf(xk)l I= 0.

We will now show that IlVf(xk)ll - 0. Indeed, assume the contrary, that is, there exists an

e > 0 such that IlVf(xk)ll > e for all k in an infinite subset of integers K. For each k E K, let i(k)

be the first index i such that i > k and IlVyf(x)ll < e/2, so that

i(k)-1

< IVf(xk)l I - IVf(xz(k))ll < IIlVf(xk)- Vf(xi(k))I < Lflxk - x_(k)11 < L E Ild'll. (47)

Since from Eq. (44) we have IIdkI = O(l/k), Eq. (47) implies that for some constant B1 > 0,

i(k)- 1{5 1
2 •Bi E , Vk keK.

i=k

From Eq. (46) we see that

2i(k)-I i(:k)-1

f(xi(k)) <_ f(xk)3 ( + - k E IC.
S=k si=k

Since {f(xk)} converges and limkos Yi(- 1 /32/i2 = 0, it follows that

i(k)-I 1

lim i - = 0,
k O,kEXC i

contradicting the earlier conclusion 2 < B -i(k)-l 1/i for all k E K. Therefore, IlVf( xk)l -+ 0, and

it follows that every limit point of {xk} is a stationary point of f. Q.E.D.

Note that the proof of Lemma 2 carries through even if the initial matrix Ho is any positive

definite matrix rather than Ho = 0. As a result Prop. 2 also holds when Ho is some positive definite

matrix, in which case it is unnecessary to assume that Vg l(x°)Vgl(zx°) is invertible. More generally,

our method of proof shows thats the convergence characteristics of the method are maintained by

any scheme that varies A and/or H in a way that the crucial Lemma 2 holds.

In practice the method seems to converge considerably faster if A is initially less than 1 and

is progressively increased towards 1 in a judicious manner. On the other hand an implicit dimin-

ishing stepsize as indicated by Lemma 2 is essential for the convergence of the method, and such
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a stepsize induces a generically sublinear convergence rate. This characteristic is shared with the

backpropagation method where, to achieve a linear convergence rate, it is essential to use a stepsize

that is bounded away from 0, but when such a stepsize is used, the method tends to converge to

a nonoptimal point [Luo91]. Thus the development of an incremental least squares method with

linear convergence rate remains an important open research question.

We finally note that the boundedness assumption on the sequence of vectors li is a substantial

weakness of Prop. 2. It is not easy to remove this assumption because the algorithm does not have

an explicit stepsize mechanism to control the magnitude of the initial iterates. On the other hand

one can employ the device of projecting the iterates lb on a compact set that is known to contain an

optimal solution, and to use a projection version of the EKF of the type introduced in [Ber82a], and

[Ber82b], Section 1.5. Projecting the iterates on a compact set is a well-known approach to enhance

the theoretical convergence properties of the EKF (see [Lju79]).
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