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1 Introduction

Parallel and vector supercomputers are today considered basic research tools
for several scientific and engineering disciplines. The novel architectural fea-
tures of these computers - which differ significantly from the von Neumann
model - are influencing the design and implementation of algorithms for nu-
merical computation. Recent developments in large scale optimization take
into account the architecture of the computer where the optimization algo-
rithms are likely to be implemented. In the case of network optimization,
in particular, we have seen significant progress in the design, analysis, and
implementation of algorithms that are particularly well suited for parallel
and vector architectures. As a result of these research activities, problems
with several millions of variables can be solved routinely on parallel super-
computers. In this chapter, we discuss algorithms for parallel computing in
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large scale network optimization.
We have chosen to focus on a sub-class of network optimization problems

for which parallel algorithms have been designed. In particular, for the most
part, we address only pure networks (i.e., without arc multipliers). We also
avoid discussion on large-scale problems with embedded network structures,
like the multicommodity network flow problem, or the stochastic network
problem. Nevertheless, we discuss parallel algorithms for both linear and
nonlinear problems, and special attention is given to the assignment problem
as well as other problems with bi-partite structures (i.e., transportation prob-
lems). The problems we have chosen to discuss usually provide the building
blocks for the development of parallel algorithms for the more complex prob-
lem structures that we are not addressing. Readers who are interested in
a broader view of parallel optimization research - both for network struc-
tured problems and mathematical programming in general - should refer
to several journal issues focused on parallel optimization which have been
published recently on this topic [85, 86, 90, 113] or the textbook [22].

1.1 Organization of this Chapter

The introductory section discusses parallel architectures and broad issues
that relate to the implementation and performance evaluation of parallel
algorithms. It also defines the network optimization problems that will be
discussed in subsequent sections. Section 2 develops the topic of parallel
computing for linear network optimization problems and Section 3 deals with
nonlinear networks. Concluding remarks, a brief overview of additional work
for multicommodity network flows and stochastic network programs, as well
as open issues, are addressed in Section 5.

Each of sections 2-4 is organized in three subsections along the follow-
ing thread: First, we present general methodological ideas for the design of
specific algorithms for each problem class. Here, we present selectively those
algorithms that have some potential for parallelism. The methodological de-
velopment is followed by a subsection of parallelization ideas, i.e., specific
ways in which each algorithm can be implemented on a parallel computer.
Finally, computational results with the parallel implementation of some of
the algorithms that have appeared in the literature are summarized and dis-
cussed.
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1.2 Parallel Architectures

Parallelism in computer systems is not a recent concept. ENIAC - the
first large-scale, general-purpose, electronic digital computer built at the
University of Pennsylvania - was designed with multiple functional units
for adding, multiplying, and so forth. The primary motivation behind this
design was to deliver the computing power infeasible with the sequential elec-
tronic technology of that time. The shift from diode valves to transistors,
integrated circuits, and very large scale integrated circuits (VLSI) rendered
parallel designs obsolete and uniprocessor systems were predominant through
the late sixties.

The first milestone in the evolution of parallel computers was the Illiac IV
project at the University of Illinois in the 1970's. A brief historical note on
this project can be found in [48]. The array architecture of the Illiac prompted
studies on the design of suitable algorithms for scientific computing. Inter-
estingly, a study of this sort was carried out for linear programming [104] -
one of the first studies in parallel optimization. The Illiac never went past
the stage of the research project, however, and only one machine was ever
built.

The second milestone was the introduction of the CRAY 1 in 1976. The
term supercomputer was coined at that time, and is meant to indicate the
fastest available computer. The vector architecture of the CRAY introduced
the notion of vectorization of scientific computing. Designing or restruc-
turing of numerical algorithms to exploit the computer architecture - in
this case vector registers and vector functional units - became once more
a critical issue. Vectorization of an application can range from simple mod-
ifications of the implementation with the use of computational kernels that
are streamlined for the machine architecture, to more substantive changes in
data structure and the design of algorithms that are rich in vector operations.

Since the mid-seventies, supercomputers and parallel computers have
been evolving rapidly in the level of performance they can deliver, the size of
memory available, and the increasing number of parallel processors that can
be applied to a single task. The Connection Machine CM-2, for example,
can be configured with up to 65,536 very simple processing elements.

Several alternative parallel architectures have been developed. Today
there is no single widely accepted model for parallel computation. A clas-
sification of computer architectures was proposed by Flynn [60] and is used
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to distinguish between alternative parallel architectures. Flynn proposed the
following four classes, based on the interaction among instruction and data
streams of the processor(s):

1. SISD - Single Instruction stream Single Data stream. Systems in this
class execute a single instruction on a single piece of data before moving
on to the next piece of data and the next instruction. Traditional
uniprocessor, scalar (von Neumann) computers fall under this category.

2. SIMD - Single Instruction stream Multiple Data stream. A single in-
struction can be executed simultaneously on multiple data. This of
course implies that the operations of an algorithm are identical over
a set of data and that data can be arranged for concurrent execution.
An example of SIMD systems is the Connection Machine of Hillis [75].

3. MISD - Multiple Instruction stream Single Data stream. Multiple in-
structions can be executed concurrently on a single piece of data. This
form of parallelism has not received, to our knowledge, extensive at-
tention from researchers. It appears in Flynn's taxonomy for the sake
of completeness.

4. MIMD - Multiple Instruction stream Multiple Data stream. Multiple
instructions can be executed concurrently on multiple pieces of data.
The majority of parallel computer systems fall in this category. Multi-
ple instructions indicate the presence of independent code modules that
may be executing independently from each other. Each module may
be operating either on a subset of the data of the problem, have copies
of all the problem data, or access all the data of the problem together
with the other modules in a way that avoids read/write conflicts.

Whenever multiple data streams are used (i.e., in the MIMD and SIMD
systems) another level of classification is needed for the memory organization:
In shared memory systems, the multiple data streams are accessible by all
processors. Typically, a common memory bank is available. In distributed
memory systems, each processor has access only to its own local memory.
Data from the memories of other processors need to be communicated by
passing messages across some communication network.

Multiprocessor systems are also characterized by the number of avail-
able processors. "Small-scale" parallel systems have up to 16 processors,
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"medium-scale" systems up to 128, and "large-scale" systems up to 1024.
Systems with 1024 or more processors are considered "massively" parallel.
Finally, multiprocessors are also characterized as "coarse-grain" versus "fine-
grain". In the former case each processor is very powerful, typically from
the 80386 family, with several megabytes of memory. Fine grain systems
typically use very simple processing elements with a few kilobytes of local
memory each. For example, the NCUBE system with 1024 processors is con-
sidered a coarse-grain massively parallel machine. The Connection Machine
CM-2 with up to 64K processing elements is a fine-grain, massively parallel
machine. Of course these distinctions are qualitative in nature, and are likely
to change as technology evolves.

A mode of computing that deserves special classification is that of vector
computers. While vector computers are a special case of SIMD machines,
they constitute a class of their own. This is due to the frequent appearance
of vector capabilities in many parallel systems. Also the development of al-
gorithms or software for a vector computer - like, for example, the CRAY
- poses different problems than the design of algorithms for a system with
multiple processors that operate synchronously on multiple data - like, for
example, the Connection Machine CM-2. The processing elements of a vec-
tor computer are equipped with functional units that can operate efficiently
on long vectors. This is usually achieved by segmenting functional units so
that arrays of data can be processed in a pipeline fashion. Furthermore, mul-
tiple functional units may be available both for scalar and vector operations.
These functional units may operate concurrently or in a chained manner,
with the results of one unit being fed directly into another without need for
memory access. Using these machines efficiently is a problem of structuring
the underlying algorithm with (long) homogeneous vectors and arranging the
operations to maximize chaining or overlap of the multiple units.

1.2.1 Performance Evaluation

There has been considerable debate on how to evaluate the performance of
parallel implementations of algorithms. Since different algorithms may be
suitable for different architectures, a valid way to evaluate the performance
of a parallel algorithm is to implement it on a suitable parallel computer and
compare its performance against the "best" serial code executing on a von
Neumann system for a common set of test problems (of course, the parallel
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and von Neumann computers should be of comparable prices). Furthermore,
it is not usually clear what is the "best" serial code for a given problem,
and the task of comparing different codes on different computer platforms
is tedious and time-consuming. Hence, algorithm designers have developed
several measures to evaluate the performance of a parallel algorithm that are
easier to observe. The most commonly used are (1) speedup, (2) efficiency,
(3) scalability and (4) sustained FLOPS rates.

Speedup: This is the ratio of solution time of the algorithm executing on
a single processor, to the solution time of the same algorithm when
executing on multiple processors. (This is also knownm as relative
speedup.) It is understood that the sequential algorithm is executed on
one of the processors of the parallel system (although this may not be
possible for SIMD architectures). Linear speedup is observed when a
parallel algorithm on p processors runs p times faster than on a single
processor. Sub - linear speedup is achieved when the improvement
in performance is less than p. Super - linear speedup (i.e., improve-
ments larger than p) usually indicates that the parallel algorithm takes
a different - and more efficient - solution path than the sequential
algorithm. It is often possible in such situations to improve the perfor-
mance of the sequential algorithm based on insights gained from the
parallel algorithms.

Amdahl [2] developed a law that gives an upper bound on the relative
speedup that can be expected from a parallel implementation of an
algorithm. If k is the fraction of the code that executes serially, while
1 - k will execute on p processors, then the best speedup that can be
observed is:

k + (1 - k)/p

Relative speedup indicates how well a given algorithm is implemented
on a parallel machine. It provides little information on the efficiency
of the algorithm in solving the underlying problem. An alternative
measure of speedup is the ratio of solution time of the best serial code
on a single processor to the solution time of the parallel code when
executing on multiple processors.

6



Efficiency: This is the ratio of speedup to the number of processors. It
provides a way to measure the performance of an algorithm indepen-
dently from the level of parallelism of the computer architecture. Lin-
ear speedup corresponds to 100% (or 1.00) efficiency. Factors less than
1.00 indicate sublinear speedup and superlinear speedup is indicated
by factors greater than 1.00.

Scalability: This is the ability of an algorithm to solve a problem n times
as large on np processors, as it would take to solve the original problem
using p processors. Some authors [49] define scaleup as a measure of
the scalability of a computer/code as follows:

Scaleup (p, n) = Time to solve problem of size m on p processors
Time to solve problem of size nm on np processors

FLOPS: This acronym stands for Floating-point Operations per Second.
This measure indicates how well a specific implementation exploits the
architecture of a computer. For example, an algorithm that executes at
190 MFLOPS (i.e., 106 FLOPS) on a CRAY X-MP that has a peak rate
of 210 MFLOPS can be considered a successfully vectorized algorithm.
Hence, little further improvements can be expected for this algorithm
on this particular architecture. This measure does not necessarily in-
dicate whether this is an efficient algorithm for solving problems. It is
conceivable that an alternative algorithm can solve the same problem
faster, even if it executes at a lower FLOPS rate. As of the writt-
ting of this chapter most commerically available parallel machines are
able to deliver peak performance in the GFLOPS (i.e., 109 FLOPS)
range. Dense linear algebra codes typically run at several GFLOPS,
and similar performance has been achieved for dense transportation
problems [88]. The current goal of high-performance computing is to
design and manufacture machines that can deliver teraflops. Systems
like the Intel Paragon and the Connection Machine CM-5 can, in prin-
ciple, achieve such computing rates.

For further discussion on performance measures see the feature article by
Barr and Hickman [6] and the commentaries that followed.
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1.3 Synchronous versus Asynchronous Algorithms

In order to develop a parallel algorithm, one needs to specify a partitioning
sequence and a synchronization sequence. The partitioning sequence deter-
mines those components of the algorithm that are independent from each
other, and hence can be executed in parallel. These components are called
local algorithms. On a multiprocessor system they are distributed to multiple
processors for concurrent execution. The synchronization sequence specifies
an order of execution that guarantees correct results. In particular, it spec-
ifies the data dependencies between the local algorithms. In a synchronous
implementation, each local algorithm waits at predetermined points in time
for a predetermined set of input data before it can proceed with the local
calculations. Synchronous algorithms can often be inefficient, as processors
may have to spend excessive amounts of time waiting for data from each
other.

Several of the network optimization algorithms in this chapter have asyn-
chronous versions. The main characteristic of an asynchronous algorithm is
that the local algorithms do not have to wait at intermediate synchroniza-
tion points. We thus allow some processors to compute faster and execute
more iterations than others, some processors to communicate more frequently
than others, and communication delays to be unpredictable. Also, messages
might be delivered in a different order than the one in which they were
generated. Totally asynchronous algorithms tolerate arbitrarily large com-
munication and computation delays, whereas partially asynchronous algo-
rithms are not guaranteed to work unless an upper bound is imposed on the
delays. In asynchronous algorithms, substantial variations in performance
can be observed between runs, due to the non-deterministic nature of the
asynchronous computations. Asynchronous algorithms are most relevant to
MIMD architectures, both shared memory and distributed memory.

Models for totally and partially asynchronous algorithms have been de-
veloped in Bertsekas and Tsitsiklis [22]. The same reference develops some
general convergence results to assist in the analysis of asynchronous algo-
rithms and establishes convergence of both partially and totally asynchronous
algorithms for several network optimization problems.

Asynchronous algorithms have, potentially, two advantages over their syn-
chronous counterparts. First, by reducing the synchronization penalty, they
can achieve a speed advantage. Second, they offer greater implementation
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flexibility and tolerance to changes of problem data. Experiences with asyn-
chronous network flow algorithms is somewhat limited. A direct comparison
between synchronous and asynchronous algorithms for nonlinear network op-
timization problems [35, 58] has shown that asynchronous implementations
are substantially more efficient than synchronous ones. Further work on asyn-
chronous algorithms for the assignment and min-cost flow problem [14, 15, 16]
supports these conclusions. A drawback of asynchronous algorithms, how-
ever, is that termination detection can be difficult. Even if an asynchronous
algorithm is guaranteed to be correct at the limit, it may be difficult to
identify when some approximate termination conditions have been satisfied.
Bertsekas and Tsitsiklis [22, chapter 8] address the problem of termination de-
tection once termination has occurred. The question of ensuring that global
termination of an asynchronous algorithm will occur through the use of ap-
proximate local termination conditions is surprisingly intricate, and has been
addressed in [23, 114]. In spite of the difficulties in implementing and test-
ing termination of asynchronous algorithms, the studies cited above have
shown that these difficulties can be addressed successfully. Asynchronous
algorithms for several network optimization problems have been shown to
be more efficient than their synchronous counterparts when implemented on
suitable parallel architectures.

1.4 Network Optimization Problems

We introduce here our notation and define the types of network optimization
problems that will be used in later sections. The most general formulation
we will be working with is the following nonlinear network program (NLNW):

min F(x) (1)

s.t. Ax= b (2)

I < x < u, (3)

where F: ·Rm I , R is convex and twice continuously differentiable, A is an
n x m node-arc incidence matrix, b E Rn, 1 and u E Rm are given vectors and
x E Rm is the vector of decision variables. The node-arc incidence matrix
A specifies conservation of flow constraints (3) on some network G = (Al, A)
with IXJ = n and JAl = m. It can be used to represent pure networks
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in which case each column has two non-zero entries : a "+1" and a " -

1". Generalized networks are also represented by matrices with two non-
zero entries in each column : a "+1" and a real number that represents
the arc multiplier. An arc (i, j) is viewed as an ordered pair, and is to be
distinguished from the pair (j, i). We define the vector x as the lexicographic
order of the elements of the set {xij I (i,j) E A}. x is the flow vector in the
network G, and xij is the flow of the arc (i,j). For a given xij, i is the row of
the corresponding column of the constraint matrix A with with entry "+1",
while j denotes the row with negative entry "-1" for pure networks, or the
arc's multiplier -mij for generalized networks. Similarily, components of the
vectors 1, u, and x are indexed by (i, j) to indicate the from- and to-node of
the corresponding network edge.

As a special case we assume that the function F(x) is separable. Hence,
model (NLNW) can be written in the equivalent form:

min E fij(xij) (4)
(i,j)EA

s.t. Ax =b (5)

I <x<u. (6)

If the functions fij(xij) are linear we obtain the min-cost network flow
problem. It can be expressed in algebraic form (MCF):

min E cijxij (7)
(i,j)EA

s.t. E xij- : mjxj i = ViE n (8)
j:(i,j)EA j:(j,i)EA

lij _ xij < uij V (U, j) E A. (9)

This problem is a generalized network since the real-valued multipliers
mij appear in the flow conservation equations. If all multipliers are equal to
"1", then (MCF) is the pure min-cost network flow problem.

Some special forms of both the nonlinear and linear network problems
are of interest. In particular, we will consider problems where G is bipartite,
G (Ao U ND, A). A/'o is the set of origin nodes, with supply vector s;
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XD is the set of destination nodes, with demand vector d. The nonlinear
transportation problem can be written as (NLTR)

min E fij(ii) (10)
(i,j)EA

s.t. E xij = s Vi E No (11)
j:(ij)EA

E xij = dj VJ E D (12)
i:(ij)EA

lij < xij < uij V(i,j) e A. (13)

Of course, if the functions fij(xij) are linear, we have a linear transporta-
tion problem. The special case of a transhipment problem when the supply
and demand vectors are everywhere equal to one (i.e., si = 1 for all i E No
and dj = 1 for all j E ND) is known as the assignment problem. (Assignment
problems are usually stated as maximization than as minimization problems.)

We will also need some additional terminology when describing the algo-
rithms: A path P in a directed graph is a sequence of nodes (ni, n2,..., nk)
with k > 2 and a corresponding sequence of k - 1 arcs such that the ith
arc in the sequence is either (ni, ni+i) (in which case it is called a forward
path of the arc) or (ni+i, ni) (in which case it is called a backward arc of the
path). We denote by P+ and P- the set of forward and backward arcs of P,
respectively. The arcs in P+ and P- are said to belong to P. Nodes n1 and
nk are called the start node (or origin) and end node (or destination) of P,
respectively. In the context of the min-cost flow problems, the cost of a path
P is defined as (i,j)EP+ Cij - 2 (i,j)EP- Cij.

A cycle is a path whose start and end nodes are the same. A path is
said to be simple if it contains no repeated arcs, and no repeated nodes,
except possibly for the start and end nodes (in which case the path is called
a simple cycle). A path is said to be forward (or backward) if all of its arcs
are forward (respectively, backward) arcs. We refer similarily to a forward
and a backward cycle. A directed graph that contains no cycles is said to be
acyclic. A directed graph is said to be connected if for each pair of nodes i
and j, there is a path starting at i and ending at j. A tree is a connected
acyclic graph. A spanning tree of a directed graph r is a subgraph of r that
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is a tree and includes all the nodes of r. A simple path flow is a flow vector
x of the form

[ a if (i,j) E P+
x- 4 -a if(i,j) EP-

0O otherwise,

where a is some positive number and P is a simple path. Finally, some
additional notation: V 2 F(xk) and VF(xk) denotes the Hessian matrix and
gradient vector of the function F(x) evaluated at xk. The transpose of a
matrix A is denoted by AT. A.t and At. denote the t-th column and row
respectively of A. e will be used to denote a conformable vector of all "1".

2 Linear Network Optimization

2.1 Basic Algorithmic Ideas

We will discuss three main ideas underlying min-cost flow algorithms. These
are:

(a) Primal cost improvement; here we try to iteratively improve the cost to
its optimal value by constructing a corresponding sequence of feasible
flows.

(b) Dual cost improvement; here we define a problem related to the min-
imum cost flow problem, called the dual, whose variables are called
prices. We then try to iteratively improve the dual objective function
to its optimal value by constructing a corresponding sequence of prices.
Dual cost improvement algorithms also iterate on flows, which are re-
lated to the prices through a property called complementary slackness.

(c) Approximate dual coordinate ascent; here one tries to iteratively im-
prove the dual cost in an approximate sense along price coordinate
directions. In addition to prices, algorithms of this type also iter-
ate on flows, which are related to prices through a property called
e-complementary slackness, an approximate form of the complemen-
tary slackness property.
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2.1.1 Primal Cost Improvement - The Simplex Method

A first important algorithmic idea for the min-cost flow problem is to start
from an initial feasible flow vector, and generate a sequence of feasible flow
vectors, each having a better cost value than the preceding one. For several
interesting algorithms, including the simplex method, two successive flow
vectors differ by a simple cycle flow.

Let us define a path P to be unblocked with respect to x if xij < uij for
all forward arcs (i,j) E P+ and lij < xij for all backward arcs (i,j) E P-.
The following is a basic result shown in several sources, e.g. [102, 112, 13]:

Proposition 1 Consider the min-cost flow problem and let x be a feasible
flow vector which is not optimal. Then there exists a simple cycle flow that
when added to x, produces a feasible flow vector with smaller cost than x; the
corresponding cycle is unblocked with respect to x and has negative cost.

The major primal cost improvement algorithm for the min-cost flow prob-
lem, the simplex method, uses a particularly simple way to generate un-
blocked cycles with negative cost. It maintains a spanning tree T of the
problem graph, and a partition of the set of arcs not in T in two disjoint
subsets, L and U. Each triplet (T, L, U), called a basis, defines a unique flow
vector x satisfying the conservation of flow constraints (8), and such that
xij = lij for all (i,j) E L and xij = uij for all (i,j) E U. The flow of the arcs
(i, j) of T is specified as follows:

xij = E bv- E lVW- E uVW + E lVW + E Uvw
vETi (v,tw)EL (v,w)EU (v,w)EL (v,w)EU

vETi vETi vETj vETj
WETj wETj wETi wETi

where Ti and Tj are the subtrees into which (i,j) separates T.
A basis will be called feasible if the corresponding flow vector is feasible,

that is, satisfies lij < zij < uij for all (i, j) E T. We say that the feasible basis
(T, L, U) is strongly feasible if all arcs (i,j) E T with xij = lij are oriented
away from the root (that is, the unique simple path of T starting at the root
and ending at j passes through i) and if all arcs (i,j) E T with xij = uij are
oriented towards the root (that is, the unique simple path from the root to i
passes through j). Strongly feasible trees are used to deal with the problem
of degeneracy (possible cycling through a sequence of bases).
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The simplex method starts with a strongly feasible basis and proceeds
in iterations, generating another feasible basis and a corresponding basic
flow vector at each iteration. Each basic flow vector has cost which is no
worse than the cost of its predecessor. At each iteration (also called a pivot,
following standard linear programming terminology), the method operates
roughly as follows:

(a) It uses a convenient method to add one arc to the tree so as to generate
a simple cycle with negative cost.

(b) It pushes along the cycle as much flow as possible without violating
feasibility.

(c) It discards one arc of the cycle, thereby obtaining another strongly
feasible basis to be used at the next iteration.

To detect negative cost cycles, the simplex method fixes a root node r
and associates with r a scalar Pr, which can be chosen arbitrarily. A basis
(T, L, U) specifies a vector p using the formula:

pi=p r- + c,v+ C c,, Vi E J,
(v,w)EP,+ (v,w)EPJ-

where Pi is the unique simple path of T starting at the root node r and
ending at i, and Pi+ and Pi? are the sets of forward and backward arcs of Pi,
respectively. We call p the price vector associated with the basis. The price
vector defines uniquely the reduced cost of each arc (i,j) by

ij = clj + pj - Pi.

Given the strongly feasible basis (T, L, U) with a corresponding flow vec-
tor x and price vector p, an iteration of the simplex method produces another
strongly feasible basis (T, L, U) as follows:

Typical Simplex Iteration
Find an in-arc ~ = (i, ) j T such that either

- < 0 if e E L

or

7j ->O if Z EU.
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(If no such arc can be found, x is primal optimal and p is dual optimal.)
Let C be the cycle closed by T and l. Define the forward direction of
C to be the same as the one of e if e E L and opposite to e if e E U
(that is, e E C + if e E L and e E C- if e E U). Let also

ra=min{ min xij -lij}, min {ui - Xij} }
m (ij)EC~ (i,j)EC+

and let C be the set of arcs where this minimum is obtained

C = {(i,j) E C- I xij - lij = 6} U {(i,j) E C+ I ui - xi= 6}.

Define the join of C as the first node of C that lies on the unique
simple path of T that starts from the root and ends at i. Select as
out-arc the arc e of C that is encountered first as C is traversed in
the forward direction starting from the join node. The new tree T is
obtained from T by adding e and deleting e. The corresponding flow
vector x is obtained from x by

xij if (i,j) E C
Tij= xij + 6 if(i,j) E C +

xij -6 if (i,j) E C-.

The initial strongly feasible tree is usually obtained by introducing an
extra node 0 and the artificial arcs (i, 0), for all i with bi > 0, and (0, i), for
all i with bi < O. The corresponding basic flow vector x is given by xij = lij
for all (i,j) E A, xio = bi, for all i with bi > 0, and xoi = -bi, for all i with
bi < 0. The cost of the artificial arcs is taken to be a scalar M, which is large
enough to ensure that the artificial arcs do not affect the optimal solutions
of the problem. This is known as the Big M initialization method. It can be
shown that if M is large enough and the original problem (no artificial arcs)
is feasible, the simplex method terminates with an optimal solution where
all the artificial arcs carry zero flow. From this solution one can extract an
optimal flow vector for the original problem.

2.1.2 Dual Cost Improvement

Duality theory for the min-cost flow problem can be developed by introducing
a price vector p = {pj I j E AJ). We say that a flow-price vector pair (x,p)



satisfies complementary slackness (or CS for short) if x satisfies lij < xij < uij
and

xij < uij pi - Pj < cij, V (i,j) E A, (14)

lij < xij Pi -pj 1 > cij, V (i,j) E A.. (15)

Note that the above conditions imply that we must have pi - Pj = cij if
lij < Xij < Uij.

The dual problem is obtained by a standard procedure in duality theory.
We view Pi as a Lagrange multiplier associated with the conservation of flow
constraint for node i and we form the corresponding Lagrangian function

L(x,p) = E cijxij+ E bi- E xij + E xji pi
(i,j)EA iE.JV {il(i,j)EA} {jl(j,i)EA}

= I (cij + pj - pi)xij + C bipi. (16)
(i,j)EA iEAr

Then, the dual function value q(p) at a vector p is obtained by minimizing
L(x,p) over all capacity-feasible flows x:

q(p) = min {L(x,p) I lij < xij < uij, (i,j) E A}. (17)

Because the Lagrangian function L(x,p) is separable in the arc flows xij ,
its minimization decomposes into A separate minimizations, one for each arc
(i, j). Each of these minimizations can be carried out in closed form, yielding

q(P) = qij(Pi-pj)+ bipi, (18)
(i,j)E.A iea

where

qij(Pi -Pj) = min{(cij +pj-pi)Xij I lij < xij < uij}
,ii

_ (cij + pj - pi)lij if Pi < cij + pj19
(cij + pj -pi)Uij if Pi > cij + pj

The dual problem is to maximize q(p) subject to no constraint on p. with
the dual functional q given by (18).

While there are several other duality results, the following proposition is
sufficient for our purposes:

16



Proposition 2 If a feasible flow vector x* and a price vector p* satisfy the
complementary slackness conditions (1) and (2), then x* is an optimal primal
solution and p* is an optimal dual solution. Furthermore, the optimal primal
cost and the optimal dual objective value are equal.

Dual cost improvement algorithms start with a price vector and try to
successively obtain new price vectors with improved dual cost value. An im-
portant method of this type is known as the sequential shortest path method.
It is mathematically equivalent to the classical primal-dual method of Ford
and Fulkerson [61]. Let us assume that the problem data are integer. The
method starts with an integer pair (x, p) satisfying CS, and at each iteration,
generates a new integer pair (x,p) satisfying CS such that the dual value of
p is improved over the previous value.

To describe the typical iteration, for a pair (x, p) satisfying CS, define the
surplus of a node i by

gi= E xji- E xij+bi.
{jl(j,i)EA} {ij(ij)EA}

An unblocked path is said to be an augmenting path if its start node has
positive surplus and its end node has negative surplus. Consider the reduced
costs of the arcs given by

rij = cij + pj - pi, V (i,j) E A. (20)

We define the length of an unblocked path P by

Lp = E rij- E rij. (21)
(i,j)EP+ (i,j)EP-

Note that since (z,p) satisfies CS, we have

rij > 0, V (i,j) E P+, (22)

rij < 0, V (i,j) E P-. (23)

Thus the length of P is nonnegative.
The sequential shortest path method starts each iteration with an integer

pair (x, p) satisfying CS and with a set I of nodes i with gi > 0, and proceeds
as follows.
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Sequential Shortest Path Iteration

Construct an augmenting path P with respect to x that has minimum
length over all such paths that start at some node i e I. Then,
calculate

6 = min minuij - xij (i, j) E P+), {xj - lij I (ij) E P-},

increase the flows of the arcs in P+ by 6, and decrease the flows of
the arcs in P- by 6. Then, modify the node prices as follows: let d
be the length of P and for each node m E XV, let dm be the minimum
of the lengths of the unblocked paths with respect to x that start at
some node in I and end at m (din = oo if no such path exists). The
new price vector p is given by

Pm = Pm + max{0, d- dm}, V m E .h. (24)

The method terminates under the following circumstances:

(a) All nodes i have zero surplus; in this case it will be seen by Proposition
2 that the current pair (x, p) is primal and dual optimal.

(b) gi < 0 for all i and gi < 0 for at least one i; in this case the problem is
infeasible, since EiEKV bi = EiEjV gi < 0.

(c) There is no augmenting path with respect to x that starts at some node
in I; in this case it can be shown that the problem is infeasible.

We note that the shortest path computation can be executed using stan-
dard shortest path algorithms. The idea is to use rij as the length of each
forward arc (i, j) of an unblocked path, and to reverse the direction of each
backward arc (i,j) of an unblocked path and to use -rij as its length [cf.
the unblocked path length formula (21)]. Since by (22) and (23), the arc
lengths of the residual graph are nonnegative, Dijkstra's method can be used
for the shortest path computation. One can show the following result, which
establishes the validity of the method (see e.g. [57, 13]).

Proposition 3 Consider the min-cost flow problem and assume that aij, lij,
uij, and bi are all integer. Then, for the sequential shortest path method, the
following hold:
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(a) Each iteration maintains the integrality and the CS property of the pair
(x,p).

(b) If the problem is feasible, then after a finite number of iterations, the
method terminates with an integer optimal flow vector x and an integer
optimal price vector p.

(c) If the problem is infeasible, then after a finite number of iterations, the
method terminates either because gi < 0 for all i and gi < 0 for at least
one i, or because there is no augmenting path from any node of the set
I to some node with negative surplus.

2.1.3 Approximate Dual Coordinate Ascent

Our third type of algorithm represents a significant departure from the cost
improvement idea; at any one iteration, it may worsen both the primal and
the dual cost, although in the end it does find an optimal primal solution.
It is based on an approximate version of complementary slackness, called e-
complementary slackness, and while it implicitly tries to solve a dual problem,
it actually attains a dual solution that is not quite optimal.

The main idea of this class of methods was first introduced for the sym-
metric assignment problem, where we want to match n persons and n objects
on a one-to-one basis so that the total benefit from the matching is maxi-
mized. We denote here by aij the benefit of assigning person i to object j.
The set of objects to which person i can be assigned is a nonempty set de-
noted A(i). An assignment S is a (possibly empty) set of person-object pairs
(i, j) such that j E A(i) for all (i, j) E S; for each person i there can be at
most one pair (i, j) E S; and for every object j there can be at most one pair
(i, j) e S. Given an assignment S, we say that person i is assigned if there
exists a pair (i, j) E S; otherwise we say that i is unassigned. We use similar
terminology for objects. An assignment is said to be feasible if it contains n
pairs, so that every person and every object is assigned; otherwise the assign-
ment is called partial. We want to find an assignment {(1,ji),... , (n,j,)}
with total benefit n-l aijj, which is maximal.

It is well-known that the assignment problem is equivalent to the linear
program
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n

max E E aij(xij) (25)
i=1 jEA(i)
n

s.t. zExi=l; i i=1,...,n (26)
j=1
n

Zxij = 1 Vj = 1,...,n (27)
i=1

0 < xij < 1 Vi = 1,...,n,j E A(i). (28)

This linear program in turn can be converted into a min-cost flow problem
of the form (7)-(9) involving n nodes i = 1,..., n corresponding to the n
persons, another n nodes j = 1,..., n corresponding to the n objects, the
graph with the set of arcs

A = {(ij)ji = 1,...,n,j e A(i)}

with corresponding costs cij = -aij for all (i,j) E A, and upper and lower
bounds lij = 0, uij = 1 for all (i, j) E A. The supplies at the nodes i =
1,.. ., n and j = 1,..., n are set to bi = 1 and bj = -1 respectively.

The auction algorithm for the symmetric assignment problem proceeds
iteratively and terminates when a feasible assignment is obtained. At the
start of the generic iteration we have a partial assignment S and a price
vector p = (Pl,... ,p,) satisfying e-complementary slackness (or e-CS for
short). This is the condition

aij - pj > max (aik -Pk}- , (i, j) e S. (29)
kEA(i)

As an initial choice, one can use an arbitrary set of prices together with
the empty assignment, which trivially satisfies E-CS. The iteration consists
of two phases: the bidding phase and the assignment phase described in the
following.
Bidding Phase:

Let I be a nonempty subset of persons i that are unassigned under the
assignment S. For each person i E I:

1. Find a "best" object ji having maximum value, that is,

ji = arg max aij - pj},
jEA(i)
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and the corresponding value

vi = max({aij -- pj}, (30)
jEA(i)

and find the best value offered by objects other than ji

wi = max aij -pj}. (31)
jEA(i),jji

[If ji is the only object in A(i), we define wi to be -oo or, for compu-
tational purposes, a number that is much smaller than vi.]

2. Compute the "bid" of person i given by

lij, = Pji + vi - wi + e = aij, - wi + 6. (32)

[We characterize this situation by saying that person i bid for object ji,
and that object ji received a bid from person i. The algorithm works
if the bid has any value between pji + e and pj, + vi - wi + E, but it
tends to work fastest for the maximal choice of (32).]

Assignment Phase:
For each object j:

Let P(j) be the set of persons from which j received a bid in the bidding
phase of the iteration. If P(j) is nonempty, increase pj to the highest
bid:

pj := max lij,
iEP(j)

remove from the assignment S any pair (i, j) (if j was assigned to some
i under S), and add to S the pair (ij,j), where ij is a person in P(j)
attaining the maximum above.

Note that there is some freedom in choosing the subset of persons I
that bid during an iteration. One possibility is to let I consist of a single
unassigned person. This version, known as the Gauss-Seidel version in view
of its similarity with Gauss-Seidel methods for solving systems of nonlinear
equations, usually works best in a serial computing environment. The version
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where I consists of all unassigned persons is the most well suited for parallel
computation, and is known as the Jacobi version, in view of its similarity
with Jacobi methods for solving systems of nonlinear equations.

The choice of bidding increment vi - wi + c for a person i [cf.(32)] is such
that e-CS is preserved, as stated in the following proposition (see [8, 12, 22,
13]).

Proposition 4 The auction algorithm preserves E-CS throughout its execu-
tion, that is, if the assignment and price vector available at the start of an
iteration satisfy e-CS, the same is true for the assignment and price vector
obtained at the end of the iteration.

Furthermore, the algorithm is valid in the sense stated below.

Proposition 5 If at least one feasible assignment exists, the auction algo-
rithm terminates in a finite number of iterations with a feasible assignment
that is within ne of being optimal (and is optimal if the problem data is integer
and e < 1/n).

The auction algorithm can be shown to have an O (A(n + nC/e)) worst-
case running time, where A is the number of arcs of the assignment graph,
and

C = max laijl
(ij)EA

is the maximum absolute object value; see [8, 12, 22]. Thus, the amount
of work to solve the problem can depend strongly on the value of e as well
as C. In practice, the dependence of the running time on e and C is often
significant, particularly for sparse problems.

To obtain polynomial complexity, one can use c-scaling, which consists
of applying the algorithm several times, starting with a large value of e and
successively reducing e up to an ultimate value that is less than 1/n. Each
application of the algorithm, called a scaling phase, provides good initial
prices for the next application. In practice, scaling is typically beneficial,
particularly for sparse assignment problems, that is, problems where the set
of feasible assignment pairs is severely restricted. c-scaling was first proposed
in [8] in connection with the auction algorithm. Its first analysis was given
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in [70] in the context of the E-relaxation method, which is a related method
and will be discussed shortly.

The E-CS condition (29) can be generalized for the min-cost flow problem.
For a flow vector x satisfying lij < xij < uij for all arcs (i, j), and a price
vector p it takes the form

xij < uij pi - pj < aij + e V (i,j) E A, (33)

ij < xij pi - pj > aij + e V (i,j) E A. (34)

It can be shown that if x is feasible and satisfies the e-CS conditions (33) and
(34) together with some p, then the cost corresponding to x is within Ne of
being optimal, where N is the number of nodes; x is optimal if it is integer,
if e < 1/n, and if the problem data is integer.

We now define some terminology and computational operations that can
be used as building blocks in various auction-like algorithms.

Definition 1 An arc (i,j) is said to be E+-unblocked if

pi = pj + aij + e and xij < uij.

An arc (j, i) is said to be e--unblocked if

Pi = pj - aji + e and Iji < xji.

The push list of a node i is the (possibly empty) set of arcs (i, j) that are c+ -

unblocked, and arcs (j, i) that are e--unblocked.

Definition 2 For an arc (i, j) [or arc (j, i)] of the push list of node i, let 6 be
a scalar such that 0 < 6 < uij- xij (O < 6 < xji-lji, respectively). A 6-push
at node i on arc (i, j) [(j, i), respectively] consists of increasing the flow xij
by 6 (decreasing the flow xji by 6, respectively), while leaving all other flows,
as well as the price vector unchanged.

In the context of the auction algorithm for the assignment problem, a
6-push (with 6 = 1) corresponds to assigning an unassigned person to an
object; this results in an increase of the flow on the corresponding arc from
0 to 1. The next operation consists of raising the prices of a subset of nodes
by the maximum common increment y that will not violate e-CS.
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Definition 3 A price rise of a nonempty, strict subset of nodes I (i.e., I $ 0,
I $ Kr), consists of leaving unchanged the flow vector x and the prices of
nodes not belonging to I, and of increasing the prices of the nodes in I by
the amount 7 given by

_ min{y+, -}, ifS+US -U 0,
o-1, if S+US- = 0,

where S + and S- are the sets of scalars given by

S+ = {pj + aij + - Pi I (i,j) E A such that i E I,j I, xij < uij),

S- = pj - aji + E -Pi i (j, i) E A such that i E I, j t I, lji < xji,

and
y+ = min s, = min s.

sES+ sES-

The e-relaxation method, first proposed in [10, 11], may be viewed as
the extension of the auction algorithm to the min-cost flow problem. The
e-relaxation method uses a fixed positive value of e, and starts with a pair
(x,p) satisfying E-CS. Furthermore, the starting are flows are integer, and it
will be seen that the integrality of the arc flows is preserved thanks to the
integrality of the node supplies and the are flow bounds. (Implementations
that have good worst-case complexity also require that all initial arc flows
be either at their upper or their lower bound; see e.g. [22]. In practice, this
can be easily enforced, although it does not seem to be very important.) At
the start of a typical iteration of the method we have a flow-price vector pair
(x,p) satisfying e-CS and we select a node i with gi > 0; if no such node can
be found, the algorithm terminates. During the iteration we perform several
operations of the type described earlier involving node i.

Typical Iteration of the e-Relaxation Method

Step 1: If the push list of node i is empty go to Step 3; else select an arc a
from the push list of i and go to Step 2.

Step 2: Let j be the node of are a which is opposite to i. Let

6=1 min{gi,uij-xij} ifa = (i,j),
l min{gi,xji - lji} if a = (j, i).
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Perform a 6-push of i on arc a. If as a result of this operation we
obtain gi = 0, go to Step 3; else go to Step 1.

Step 3: Perform a price rise of node i. If gi = 0, go to the next iteration; else
go to Step 1.

It can be shown that for a feasible problem, the method terminates finitely
with a feasible flow vector, which is optimal if e < 1/n.

The e-scaling technique discussed for the auction algorithm is also im-
portant in the context of the e-relaxation method, and improves its practical
performance. A complexity analysis of E-scaling (first given in [70]; see also
[17, 18, 22, 71]) shows that the e-relaxation method, coupled with scaling,
has excellent worst-case complexity.

It is possible to define a symmetric form of the e-relaxation iteration
that starts from a node with negative surplus and decreases (rather than
increases) the price of that node. Furthermore, one can mix positive surplus
and negative surplus iterations in the same algorithm. However, if the two
types of iterations are mixed arbitrarily, the algorithm is not guaranteed
to terminate finitely even for a feasible problem; for an example, see [22,
p. 373]. For this reason, some care must be exercised in mixing the two types
of iterations so as to guarantee that the algorithm eventually makes progress.
With the use of negative surplus iterations, one can increase the parallelism
potential of the method.

2.2 Parallelization Ideas

2.2.1 Primal Cost Improvement

The most computation-intensive part of the primal simplex method is the
selection of a new arc (i, j) to bring into the basis. Ideally, one would like to
select an arc (i, j) which violates the optimality condition the most, so that it
has the largest Irij. However, such an algorithm would require computation
of all the reduced costs rij of all arcs at each iteration, and would be very
time-consuming. An alternative is to select the first nonbasic arc (i,j) 4 T
that has negative reduced cost and its flow at its lower bound, or has positive
reduced cost and its flow is at its upper bound. Such an implementation may
quickly find a candidate arc, but the progress towards optimality may be slow.

Successful network simplex algorithms [94, 80, 65, 72] often adopt an
intermediate strategy, where a candidate list of arcs is generated, and the
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algorithm searches within this list for a candidate arc to bring into the basis.
In this approach, selection of arcs becomes a two-phase procedure: First, a
candidate list of arcs is constructed (typically, the maximum size of this list
is a preset parameter). Second, the candidate list of arcs is scanned in order
to find the arc in the candidate list which violates the optimality condition
the most. While performing the second search at each iteration, arcs in the
candidate list which no longer violate the optimality conditions are removed;
eventually, the candidate list of arcs is empty. At this point, a new candidate
list would be generated, and the iterations would be continued.

The main idea for accelerating the network simplex computations is the
parallel computation of the candidate list of arcs. Using multiple processors,
a larger list of candidate arcs can be generated and searched efficiently in
a distributed manner to find a desirable pivot arc. Many approaches are
possible, depending on how many arcs are considered between pivot steps
and how the different candidate lists of arcs are generated. We will briefly
overview three approaches: the work of [91] for transportation problems and
the work of [103] and [5] for min-cost network flow problems.

In [91], a parallel simplex algorithm is presented for transportation prob-
lems. This algorithm is structured around the concept of selecting a candi-
date list of pivot arcs in parallel, and then performing the individual pivots in
that candidate list in a sequential manner. Each processor evaluates a fixed
number of arcs (for transportation problems, this corresponds to a fixed num-
ber of rows in the transportation matrix) in order to find the best pivot arc
among its assigned arcs. The union of the sets of arcs evaluated by the par-
allel processors may only be a subset of the network. The set of pivot arcs
found by all the processors becomes the candidate arc list. If no admissible
pivot arcs were found by any of the processors, a different subset of arcs is
searched in parallel for admissible pivot arcs. For transportation problems,
this is coordinated by selecting which rows will be searched in parallel. Once
a candidate list of pivot arcs is generated (with length less than or equal to
the number of processors), the pivots in this candidate list are executed and
reevaluated in sequential fashion.

The algorithm of [91] is essentially a synchronous algorithm, with pro-
cessor synchronization after each processor has searched its assigned arcs.
Using this synchronization guarantees that all of the processors have com-
pleted their search before pivoting begins. Synchronization also facilitates
recognition of algorithm convergence; at the synchronization point, if no
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candidate pivot arcs are found, the algorithm has converged to an optimal
solution.

In [103], a different approach is pursued. Multiple processors are used to
search in parallel the entire set of arcs in order to find the most desirable
pivot arc in each iteration. At first glance, this appears inefficient. How-
ever, the parallel network simplex algorithm of [103] performs this search
asynchronously, while the pivot operations are taking place. The processors
are organized into a single pivot processor and a number of search proces-
sors. While the pivot processor is performing a pivoting operation, the search
processors are using node prices (possibly outdated, since the pivoting op-
eration may change them) to compute reduced costs and identify potential
future pivot arcs. Each search processor is responsible for a subset of the
arcs. Once a pivot operation is complete, the pivot processor obtains the
combined results of the searches (which may not be complete), selects a new
pivot arc, and performs a new pivot operation.

In contrast with [91], the algorithm of [103] has no inherent sequential
computation time, since the search processors continue their search for pivot
arcs while pivot operations are in progress. In order to guarantee algorithm
convergence, the pivot processor must verify that the results of the search
processors have indeed produced an acceptable pivot. In essence, one can
view the operation of the search processors as continuously generating a small
candidate list of pivot arcs; this list is then searched by the pivot processor to
find the best pivot arc in the list. If this list is empty, the pivot processor will
search the entire network to either locate a pivot arc or verify that an optimal
solution has been reached. Thus, convergence of the asynchronous algorithm
is established because a single processor (the pivot processor) selects valid
pivot arcs, performs pivots and checks whether an optimal solution has been
reached.

The algorithm of [5] is a refinement of the asynchronous approach of [103].
Instead of having processors dedicated to search tasks or pivot tasks, Barr
and Hickman create a shared queue of tasks which are allocated to available
processors using a monitor [76]. This approach offers the advantage that the
algorithm can operate correctly with an arbitrary number of processors, since
each processor is capable of performing each task. Barr and Hickman divide
the search operation into multiple search tasks involving groups of outgoing
arcs from disjoint subsets of nodes; they also divide the pivot operation
into two steps: basis and flow update, and dual price update. Thus, the
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shared queue of tasks includes three types of tasks: searching a group of arcs
to identify potential future pivot arcs, selecting a candidate pivot arc and
performing a basis and flow update, and updating the prices on a group of
nodes. Among these tasks, the task of selecting a candidate pivot arc and
performing a basis and flow update is assigned the highest priority.

In Barr and Hickman's algorithm, an idle processor will first confirm that
there is no current pivot operation in progress, and check the list of candidate
arcs to determine whether any eligible pivot arcs have been found. If this
is the case, the processor will begin a pivot operation and, after completing
the basis and flow update, the same processor will perform the dual price
update. In the interim, other processors will continue the search operations,
generating candidates while using potentially-outdated prices. However, if
a pivot is currently in progress, then the idle processor will select a search
task and search a subset of arcs to generate pivot candidates. An additional
refinement introduced by Barr and Hickman is that, when the number of
dual price updates is sufficiently high, the task of updating dual prices is
split into two tasks, and scheduled for two different processors. Convergence
is achieved when all search tasks have been completed after the dual prices
have been updated, and no candidate pivot arcs are identified.

As the discussion indicates, all of the above parallel network simplex algo-
rithms perform pivots one at a time. An alternative approach was proposed
in [103], where multiple pivot operations would be performed simultaneously
in parallel. As [103] points out, this is possible provided the different pivots
affect non-overlapping parts of the network; otherwise, significant synchro-
nization overhead is incurred. Computational results using this approach
([103]) indicate that, for general network problems, little speedup is possible
from parallel computation. In contrast, the approaches discussed above ob-
tain significant reductions in computation time using parallel computation,
as described in the computation experience section.

The above concepts for parallel network algorithms have been extended
to the case of linear generalized network problems by Clark and Meyer and
their coworkers [36, 38, 40, 37, 39]. In their work, they develop variations
of the parallel network simplex algorithms discussed above. In addition, due
to the special structure of the basis for generalized network problems (dis-
cussed more extensively in the next chapter), it is often possible to perform
parallel pivots which do not overlap. Clark and Meyer and their colleagues
show that, for generalized networks, algorithms which perform multiple piv-
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ots in parallel often outperform the generalizations of the network simplex
algorithms discussed above.

2.2.2 Dual Cost Improvement

In contrast with the network simplex algorithms of the previous section,
there are two successful classes of parallel sequential shortest path algo-
rithms for min-cost network flow problems: we denote these as single node
and multinode parallel algorithms. By a single node parallel sequential short-
est path algorithm, we mean an algorithm where a single augmenting path
is constructed efficiently using parallel computation. In contrast, a multin-
ode algorithm constructs several augmenting paths in parallel (from multiple
sources), and potentially executes multiple augmentations in parallel.

The key step in single node parallel shortest path algorithms is the com-
putation of a shortest path tree from a single origin. Most sequential im-
plementations use a variation of Dijkstra's algorithm [50], thereby exploiting
the fact that only the distances to nodes which are closer than the length
of the shortest path are needed. In a parallel context, alternative short-
est path algorithms (e.g. Bellman-Ford [7] or the recently-proposed parallel
pabel-correcting algorithm of [20] and auction algorithm of [107]) can be in-
troduced which would be more amenable for parallel implementation. Never-
theless, the increased efficiency may be offset by the additonal computation
of shortest paths to all nodes.

Parallelization of Dijkstra's algorithm can take place at two levels: paral-
lel scanning of multiple nodes, and parallel scanning of the arcs connected to
a single node. The effectiveness of the first approach is limited by the nature
of Dijkstra's algorithm, which uses parallel scanning only when the shortest
distance to two nodes is the same. Thus, most parallel implementations of
Dijkstra's algorithm have been limited to parallel scanning of the arcs con-
nected to a single node (e.g. [79, 123]) The effectiveness of this approach
to parallelization is limited by the density of the network; the work of [79]
and [123] focuses on fully dense assignment problems with large numbers of
persons, so that significant speedups can be obtained. For sparse problems,
the effective speedup is very limited.

The alternative multinode approach is to compute multiple augmenting
paths (starting from different sources with positive surplus), and to combine
the outcome of the computations to perform multiple augmentations in par-
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allel and to obtain a new set of prices which satisfy CS with the resulting
flows. Balas, Miller, Pekny, and Toth [3] introduced such an algorithm for the
assignment problem. They developed a coordination protocol for combining
the computations from multiple augmenting paths in order to increase the
number of assignments and the node prices while preserving CS. In [15], these
results were extended to allow for different types of coordination protocols,
including asynchronous ones. Subsequently, the results of [3] and [15] were
extended to obtain multinode parallel algorithms for the general network flow
problem [16]. We discuss these results below.

The following parallel algorithm [16] is a direct generalization of the as-
signment algorithm of [3] to min-cost network flow problems. It starts with
a pair (x,p) satisfying CS and generates another pair (~,p) as follows:

Parallel Synchronous Sequential Shortest Path Iteration:
Choose a subset I = (il,..., iK} of nodes with positive surplus. (If
all nodes have nonpositive surplus, the algorithm terminates.) For
each ik, k = 1,...,K, let p(k) and P(k) be the price vector and
augmenting path obtained by executing a sequential shortest path
iteration starting at ik, and using the pair (x,p). Then generate se-
quentially the pairs (x(k),p(k)), k = 1,...,K, as follows, starting
with (x(O),p(O)) = (x,p):
For k = O,... , K - 1, if P(k + 1) is an augmenting path with respect
to x(k), obtain x(k + 1) by augmenting x(n) along P(k + 1), and set

pj(k + 1) = max{pj(k),ipj(k)}, V j E KN.

Otherwise set

x(k + 1) = x(k), p(k + 1) = p(k).

The pair (~, p) generated by the iteration is

= x(K), p = p(K).

In [16], the above algorithm is shown to converge to an optimal solution
of problem (MCF). Note that the protocol used for combining information
from multiple parallel sequential shortest path computations consists of two
conditions: First, multiple augmenting paths can be used provided that the
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paths do not have any nodes in common. Second, whenever multiple aug-
menting paths are used, the prices of nodes are raised to the maximum level
associated with any of the paths used for augmenting the flow in the network.
The first condition guarantees that the arc flows stay within bounds, while
the second condition guarantees that CS is preserved.

The preceding algorithm can be parallelized by using multiple processors
to compute the augmenting paths and the associated prices of an iteration in
parallel. On the other hand the algorithm is synchronous in that iterations
have clear "boundaries". In particular, all augmenting paths generated in
the same iteration are computed on the basis of the same pair (x, p). Thus,
it is necessary to synchronize the parallel processors at the beginning of each
iteration, with an attendant synchronization penalty.

In [16], an asynchronous version of the above algorithm is introduced.
Let us denote the flow-price pair at the times k = 1,2, 3,... by (x(k),p(k)).
(In a practical setting, the times k represent "event times", that is, times at
which an attempt is made to modify the pair (x, p) through an iteration.) We
require that the initial pair (x(1), p(1)) satisfies CS. The algorithm terminates
when during an iteration, either a feasible flow is obtained or else infeasibility
is detected.

kth Asynchronous Primal-Dual Iteration:
At time k, the results of a primal-dual iteration performed on a pair
(x(rk),Pp(rk)) are available, where mk is a positive integer with Tk < k;
let Pk denote the augmenting path and Pik the resulting desired prices.
The iteration (and the path Pk) is said to be incompatible if Pk is not
an augmenting path with respect to x(k); in this case we discard the
results of the iteration, that is, we set

x(k + 1) = x(k), p(k + 1) = p(k).

Otherwise, we say that the iteration (and the path Pk) is compatible,
we obtain x(k + 1) from x(k) by augmenting x(k) along Pk, and we
set

pj(k + 1) = max{pj(k),pj(k)}, V j E K.

Parallel implementation of this asynchronous algorithm is quite straight-
forward. The main idea is to maintain a "master" copy of the current flow-
price pair; this is the pair (x(k),p(k)) in the preceding mathematical de-
scription. To execute an iteration, a processor copies the current master
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Figure 1: Operation of the asynchronous primal-dual algorithm in a shared
memory machine. A processor copies the master flow-price pair at time Tk,

executes between times Tk and k a generic iteration using the copy, and
modifies accordingly the master flow-price pair at time k. Other processors
may have modified unpredictably the master pair between times Tk and k.

flow-price pair; during this copy operation the master pair is locked, so no
other processor can modify it. The processor performs a primal-dual itera-
tion using the copy obtained, and then attempts to modify the master pair
(which may be different from the start of the iteration); the results of the
iteration are checked for compatibility with the current flows x(k), and if
compatible, they are used to modify the master flow-price pair. The times
when the master pair is copied and modified correspond to the indices Tk and
k of the asynchronous algorithm, respectively, as illustrated in Fig. 1.

In [16], the asynchronous algorithm is shown to converge under the con-
dition

lim Tk = 00
kc--oo

This is a natural and essential condition, stating that the algorithm iterates
with increasingly more recent information. A simpler sufficient condition
guaranteeing convergence is that the maximum computation time plus com-
munication delay in each iteration is bounded by an arbitrarily large constant.
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2.2.3 Approximate Dual Coordinate Ascent

The auction and E-relaxation algorithms of Section 2.2.3 allow for a variety
of parallel implementations. Most of the experimental work (e.g. [105, 14,
123, 121, 122]) has focused on auction algorithms for assignment problems,
for which the sequential performance of the auction algorithm is among the
fastest. Thus, we restrict our parallelization discussion to the auction al-
gorithm for assignment problems. Extensions of the concepts for parallel
auction algorithms to parallel E-relaxation algorithms for min-cost network
flow problems have been developed recently by Li and Zenios [83] for imple-
mentation on the Connection Machine CM-2, and by Narendran et. al. in
[96] for implementation on the CM-5.

The auction algorithm for the asignment problem was designed to allow an
arbitrary nonempty subset I of unassigned persons to submit a bid at each
iteration. This gives rise to a variety of possible implementations, named
after their analogs in relaxation and coordinate descent methods for solving
systems of equations or unconstrained optimization problems (see e.g. [101,
22]):

Jacobi where I is the set of all unassigned persons at the beginning of the
iteration.

Gauss-Seidel where I consists of a single person, who is unassigned at the
beginning of the iteration.

Block Gauss-Seidel where I is a subset of the set of all unassigned per-
sons at the beginning of the iteration. The method for choosing the
persons in the subset I may vary from one iteration to the next. This
implementation contains the preceding two as special cases.

Similar to the dual improvement methods of the previous section, there
are two basic approaches for developing parallel auction algorithms: in the
first approach ("multinode"), the bids of several unassigned persons are car-
ried out in parallel, with a single processor assigned to each bid; this approach
is suitable for both the Jacobi and block Gauss-Seidel implementations. In
the second approach ("single-node"), there is only one bid carried out at a
time, but the calculation of each bid is done in parallel by several processors;
this approach is suitable for the Gauss-Seidel implementation.
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The above two approaches can be combined in a hybrid approach, whereby
multiple bids are carried out in parallel, and the calculation of each bid is
shared by several processors. This third approach, with proper choice of the
number of processors used for each parallel task, has the maximum speedup
potential.

An important characteristic of the auction algorithm is that it will con-
verge to an optimal solution under a totally asynchronous implementation.
The following result from [14] describes this asynchronous implementation:

We denote

pj(t) = Price of object j at time t
rj(t) = Person assigned to object j at time t [rj(t) = 0 if object j is
unassigned]
U(t) = Set of unassigned persons at time t [i E U(t) if rj(t) $ i for
all objects j].

We assume that U(t), pj(t), and rj(t) can change only at integer times t ( t
may be viewed as the index of a sequence of physical times at which events
of interest occur.)

In addition to U(t), pj(t), and rj(t), the algorithm maintains at each time
t, a subset R(t) C U(t) of unassigned persons that may be viewed as having
a "ready bid" at time t. We assume that by time t, a person i E R(t) has
used prices pj(Tij(t)) and pj(rij(t)) from some earlier times Tij(t) and rij(t)
with Tij(t) _ -ij(t) < t to compute the best value

vi(t) = max (ai - pj(rij(t))}, (35)
jl(i,j)EA

a best object ji(t) attaining the above maximum,

ji(t) = arg max {aij -Pj(rij(t)))}, (36)
jI(ij)EA

the second best value

Wi(t) = max (ait - Pd(Tijd(t))}, (37)

and has determined a bid

Pi(t) = aiji(t) - wi(t) + E. (38)
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(Note that ordinarily the best and second best values should be computed
simultaneously, which implies that Tij(t) = Tij(t). In some cases, however, it
may be more natural or advantageous to compute the second best value after
the best value, with more up-to-date price information, which corresponds
to the case Tij(t) < Tij(t) for some pairs (i,j).)

Assumption 1:

U(t) : nonempty : R(t'): nonempty for some t' > t.

Assumption 2: For all i, j, and t,

lim Tij(t) = 00.
t--oo

The above assumptions guarantee that unassigned persons do not stop
submitting bids and old information is eventually discarded. At each time t,
if all persons are assigned (U(t) is empty), the algorithm terminates. Oth-
erwise, if R(t) is empty nothing happens. If R(t) is nonempty the following
occur:

(a) A nonempty subset I(t) C R(t) of persons that have a bid ready is
selected.

(b) Each object j for which the corresponding bidder set

Bj(t) = {i E I(t) I j = ji(t)}

is nonempty, determines the highest bid

bj(t) = max /i(t)
iEBj(t)

and a person ij(t) for which the above maximum is attained

ij(t) = arg max pi(t).
iEBj(t)

Then, the pair (pj(t), rj(t)) is changed according to

(pj(t + 1), r(t+ 1))= (bj(t), ij(t)) if bj(t) > pj(t) + e
(pj(t), rj(t)) otherwise.
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The following proposition [14] establishes the validity of the above asyn-
chronous algorithm.

Proposition 6 Let Assumptions 1 and 2 hold and assume that there exists
at least one complete assignment. Then for all t and all j for which rj(t) 5 O,
the pair (pj(t), rj(t)) satisfies the e-CS condition

max (aik - pk(t)} - < aij -pj(t), if i = rj(t).
kl(i,k)EA

Furthermore, there is a finite time at which the algorithm terminates. The
complete assignment obtained upon termination is within ne of being optimal,
and is optimal if e < 1/n and the benefits aij are integer.

Notice that if rij(t) = t and U(t) = R(t) for all t, then the asyn-
chronous algorithm is equivalent to the auction algorithm given in Section
2.1.3. The asynchronous model becomes relevant in a parallel computation
context where some processors compute bids for some unassigned persons,
while other processors simultaneously update some of the object prices and
corresponding assigned persons. Suppose that a single processor calculates
a bid of person i by using the values ai j - pj(rij(t)) prevailing at times rij(t)
and then calculates the maximum value at time t; see Figure 2. Then, if
the price of an object j E A(i) is updated between times rij(t) and t by
some other processor, the maximum value will be based on out-of-date in-
formation. The asynchronous algorithm models this possibility by allowing

/ij(t) < t. A similar situation arises when the bid of person i is calculated
cooperatively by several processors rather than by a single processor.

It is interesting to contrast the asynchronous auction algorithm described
above with the asynchronous sequential shortest path algorithm of [15]. In
the sequential shortest path algorithm, computation of each shortest path
must be based on a complete set of flows and prices (x,p) which may be
outdated, but which represent a single previous state of the computation.
In contrast, the asynchronous auction algorithm can use prices and assign-
ments from many different times; thus, this algorithm requires much less co-
ordination, and allows different processors to modify assignments and prices
simultaneously.

Similar to the auction algorithms, the e-relaxation algorithm of Section
2.1.3 also admits Gauss- Seidel, Jacobi and hybrid parallel implementations,
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Figure 2: Illustration of asynchronous calculation of a bid by a single pro-
cessor, which reads from memory the values pj at different times rij(t) and
calculates at time t the best object ji(t) and the maximum and second max-
imum values. The values of pj may be out-of-date because they may have
been updated by another processor between the read time rij(t) and the bid
calculation time t.

as well as asynchronous implementations. For a convergence analysis of
several synchronous and asynchronous implementations of E-relaxation, the
reader should consult [22].

2.3 Computation Experience

2.3.1 Primal Cost Improvement

In this section, we overview the results of parallel computation experiments
reported in [91], [103], and [5] using parallel simplex algorithms for trans-
portation and min-cost network flow problems.

As discussed previously, Miller, Pekny, and Thompson [91] implemented a
synchronous version of the transportation simplex algorithm for dense trans-
portation problems on the BBN Butterfly Plus [108] computer. The But-
terfly Plus is a distributed- memory computer; each processor (Motorola
68020/68881) has 4 Megabytes of local memory. Processors may access in-
formation in other processor's memory, but such accesses are slower than
accesses to local memory. The implementation of [91] divides of the rows of
the transportation matrix among the processors; each processor only stores
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the elements for which it is responsible. In addition, each processor keeps a
complete local copy of the basis tree and dual variables.

The algorithm of [91] works as follows: At the beginning of each iteration,
each processor searches a subset of its rows to locate suitable pivot arcs; the
best arc found by each processor is stored in a pivot queue. A synchronization
point is introduced to make sure that all processors have completed the search
before going to the next part of the iteration. After synchronization, the
processors check the pivot queue; if it is empty, a new search operation takes
place using different rows. If the pivot queue is not empty, every processor
uses the identical logic to select pivot elements and update its local copy of
the basis tree and dual variables. Due to the distributed memory nature of
the Butterfly Plus, it is more efficient to replicate these computations than
to communicate the results among processors. At the end of an iteration,
the processors start the search process for the next iteration.

The algorithm of [91] was tested on dense assignment and transportation
problems with equal numbers of sources and sinks, using between 500 and
3000 sources and costs generated uniformly over a variable range. In order to
evaluate the speedup, two sets of experiments were conducted: First, a single
processor was used (although the data was stored over all 14 processors due to
memory limitations); second, all 14 processors were used. Unfortunately, dis-
tributing the problem data across all 14 processors slows down the execution
of the single-processor algorithm significantly, as most of the reduced cost
computations require referencing to memory which is not colocated with the
processor. In contrast, the parallel algorithm does not require use of any non-
local memory references; this results in increased effectiveness of the parallel
algorithm. In the computation experiments with arc costs in [0,1000] and
[0,10000], the parallel algorithm ran between 3 and 7.5 times faster than the
single-processor algorithm [91]; notably, this speedup increased with problem
size. This is because the number of arcs to be searched increases quadrati-
cally with problem size, so that the search time becomes a larger fraction of
the overall computation time.

Similar results were observed by Peters [103] in test experiments using
the parallel network simplex code PARNET. The PARNET code was imple-
mented on a shared-memory multiprocessor (Sequent Symmetry S-81 [116]).
The PARNET implementation requires a minimum of 3 processors (1 pivot
processor and 2 search processors), so that a direct comparison with a single-
processor version was not possible. Instead, Peters [103] compares the PAR-

38



NETGEN Problem NETFLO (1) PARNET (3) PARNET (7)
110 430.50 28.19 12.42
122 802.60 72.28 21.91
134 195.40 23.94 6.26
150 802.60 71.62 15.13

Table 1: Computation time in seconds on Sequent Symmetry for PARNET
and NETFLO.

NET performance with the performance of NETFLO [80] on a variety of
NETGEN [81] problems. The results indicate that PARNET is often 10-20
times faster using only three processors. However, this speedup is more in-
dicative of the different search strategies used by NETFLO and PARNET
than the advantage of using parallel processing. In essence, the use of multi-
ple processors to search the entire set of arcs for candidate pivots reduces the
total number of pivot iterations required for convergence. An even greater
difference is observed when PARNET is implemented using 7 processors; al-
though the number of search processors is tripled, the computation times
compared to PARNET with three processors is often reduced by factors
greater than 3! This superlinear speedup is again due to the use of dif-
ferent pivot strategies; by using more processors, more arcs can be searched
between pivots. Table 1 summarizes some of the results reported in [103].

It should be noted that the above times represent a single run of the
algorithm for each problem. Given the asynchronous nature of the PARNET
algorithm, some variability in computation time should be expected, as small
variations in the relative timing of search and pivot iterations may result in
very different sequences of iterations.

Peters also examined the question of whether parallelization effectiveness
increases with problem size. Two sets of experiments were conducted. In the
first set, a set of network problems with constant number of arcs per node
were generated (roughly 50 arcs per node, with problems ranging from 20,000
to 50,000 nodes). Interestingly, the results in [103] indicate that, once the
number of processors is around 7, little additional speedup is obtained from
using more processors. In essence, using 6 search processors provides enough
processing to search the entire set of arcs while the pivot processor performs a
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NETGEN Problem PPNET (1) PARNET (3) PPNET (3)
110 39.98 28.19 13.99
122 79.91 72.28 32.84
134 64.94 23.94 15.42
150 84.93 71.62 34.49

Table 2: Computation time in seconds on Sequent Symmetry for PARNET
and PPNET

pivot operation. In the second set of experiments, Peters generated problems
with a constant number of nodes (1000), but an increasing number of arcs
(from 25,000 to 500,000). In these experiments, Peters found that the number
of processors which could be used efficiently increased from 6 in the sparsest
problems to 12 in the denser problems. For additional details and results,
the interested reader is referred to [103].

Barr and Hickman [5] developed their parallel network simplex code, PP-
NET, as an extension of the sequential NETSTAR code written by Barr
based on the ARC-II code of [4]. Their experimental results on a comparable
Symmetry S81 showed that the PPNET algorithm is roughly twoice as fast
as the PARNET algorithm of [103]. This is due in part to the superiority of
the task scheduling approach, and to the division of of the lengthier price up-
date tasks among two different processors. Table 2 summarizes some of the
results in [5], and compares the performance of the PPNET and PARNET
algorithms using 3 processors for the same NETGEN problems.

It should be noted that the PARNET times in Table 2 include input, ini-
tialization, computation, and output times. In contrast, the PPNET times
exclude input and output times. Furthermore, all times reported are the
results of single runs of the algorithms; the results of [5] and [103] do not
provide any indications concerning the run-to-run variability of the compu-
tation times.

Barr and Hickman [5] conducted an exhaustive test of PPNET for NET-
GEN problems with 1,000 to10,000 nodes and 12,500 to 75,000 arcs, using
from 1 to 10 processors. Their results show that, for most problems in
this range, maximum speedups are obtained using 5 or 6 processors; adding
additional processors can reduce the performance of the algorithm due to
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additional synchronization overhead associated with the monitor operations.
With 6 processors, an average speedup of 4.68 was obtained. As in [103],
the critical limitation in speedup is the time required to perform a pivot op-
eration; once enough search processors are available to perform a complete
search of the arcs during a pivot operation, adding additional processors
merely creates extra overhead. In PPNET, this limit is reached sooner be-
cause the average duration of pivot operations is reduced as compared to
PARNET due to the use of parallel dual price updates. Indeed, Barr and
Hickman's experiments confirm that when 3 or more processors are used, a
pivot is in progress over 85% of the time. For additional results and details,
the reader is referred to [5].

2.3.2 Dual Cost Improvement

Most of the work on parallel dual cost improvement algorithms has focused
on implementations of the algorithm (JV) of Jonker and Volgenant [77] for
dense assignment problems. The JV algorithm is a hybrid algorithm con-
sisting of two phases: an initialization phase (which uses an auction-like
procedure for finding a partial assignment satisfying CS) and a sequential
shortest path phase, which uses Dijkstra's algorithm. The first parallel im-
plementation of the JV algorithm was performed by Kennington and Wang
[79] on an 8-processor Sequent Symmetry S81. In their implementation, both
the initialization and sequential shortest path phases are executed in paral-
lel. For the sequential shortest path phase, multiple processors are used to
update node distances and to find which node to scan next in parallel. Ex-
perimental results in [79] using dense assignment problems with 800, 1000
and 1200 persons indicate speedups in the range of 3-4 as the number of pro-
cessors is increased from 1 to 8. However, this is the combined speedup of
the initialization phase; no information was provided concerning how much
speedup was accomplished during the shortest path phase of the algorithm.
Futhermore, the speedups increase with problem size, since the number of
arcs which must be examined in parallel increases with problem size (for
dense problems).

In order to shed some insight on the effectiveness of single-node paral-
lelization for sequential shortest path methods, we developed a parallel im-
plementation of the JV algorithm on the Encore Multimax, a 20-processor
shared-memory parallel computer. In these experiments, we used 1000 per-

41



1000 x 1000 assignment, cost range [0- 1000]

No. Processors 1 2 4 6 8

Shortest Path time (100% dense) 112.7 77.5 60.0 54.0 52.0

Total time (100% dense) 132.5 87.9 65.7 59.0 56.2

Shortest Path time (10% dense) 14.6 10.4 8.6 8.6 X

Total time (10% dense) 17.4 12.1 9.7 9.7 X

Table 3: Computation time of the parallel JV algorithm on the Encore Mul-
timax.

son assignment problems of different densities, and varied the number of pro-
cessors. Table 3 summarizes the results of the experiments using fully-dense
and 10% dense assignment problems. Note that the speedup of the sequential
shortest path phase is significantly smaller for the successive shortest path
phase than for the overall algorithm. Furthermore, the overall speedups are
in the order of 2.5 for dense problems, and decrease to under 2 for 10% dense
problems.

The experimental results discussed above have used shared-memory par-
allel architectures for implementing single-node parallelization. These archi-
tectures permit the use of sophisticated data structures to take advantage of
problem sparsity in the algorithms; however, the above results illustrate that
the effectiveness of single-node parallel algorithms is limited by the density of
the network. As an alternative, these parallel algorithms can be implemented
using massively parallel single-instruction, multiple-data stream (SIMD) pro-
cessors such as the Connection Machine. Castafion et al. [27] have developed
parallel implementations of the JV algorithm on the DAP 510 (1024 single-
bit processors) and the Connection Machine CM-2 (using only 1024 of its
65,536 processors). Both of these machines are array processors attached to
a sequential processor. In order to minimize communications, the cost ma-
trix was stored as a dense array, spread across the processors so that each
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processor has one row of the cost matrix. For the same problems discussed in
Table 3, the computation times on the DAP 510 were 1 and 1.6 seconds for
the dense and sparse problem, respectively. On the CM-2, the computation
times were 18.7 and 29.1 seconds respectively.

Note the effectiveness of the massively parallel DAP architecture for solv-
ing both dense and sparse assignment problems (compared with the Encore
Multimax results of Table 2.) The difference between the DAP and CM-2
times is due to the CM architecture, which is designed to work with 65,536
processors; our implementation required the use of only 1000 processors. In
contrast, the DAP 510 architecture is optimized for 1024 processors. The
above results highlight the advantage of SIMD architectures for implement-
ing single-node parallel algorithms.

The theory of multinode parallel dual cost improvement algorithms has
been worked out recently [3, 15, 16]; thus, computational experience with
these methods is limited. For fully- dense assignment problems, Balas et
al. [3] developed a synchronous parallel sequential shortest path algorithms
and implemented it on the 14-processor Butterfly Plus computer discussed
previously. Subsequently, Bertsekas and Castafion [15] conducted further
experiments on the Encore Multimax with other synchronous algorithms as
well as an asynchronous variation of the sequential shortest path algorithm
(corresponding closely to the theoretical algorithm of Section 2.1.3), in order
to identify relative advantages and disadvantages of the synchronous and
asynchronous algorithms. We discuss these experimental results below.

In [15], three different parallel variations of the successive shortest path
algorithm were evaluated:

(1) Single path synchronous (SS): At each iteration, every processor finds
a single shortest augmenting path from an unassigned person to an
unassigned object.

(2) Self-scheduled synchronous (SSS): At each iteration, every processor
finds a variable number of shortest augmenting paths sequentially un-
til the total number of augmenting paths equals some threshold num-
ber, which depends on the number of unassigned persons and the
number of processors. This variation closely resembles the implemen-
tation of [3].

(3) Single path asynchronous (AS): At each iteration, each processor finds
a single shortest augmenting path from an unassigned person to an
unassigned object, but the processors execute the iterations asyn-
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chronously.
The purpose of the self-scheduled synchronous algorithm is to reduce

the coordination overhead among processors, while improving computation
load balance among the processors. Processors which find augmenting paths
quickly will be assigned more work. Furthermore, synchronization is used less
often than in single-path synchronous augmentation, because a fixed number
of augmenting paths must be computed.

The experimental results of [15] illustrate many of the limitations in re-
ducing computation time using multinode parallelization in dual improve-
ment algorithms. Figure 3 summarizes the computation time in the sequen-
tial shortest paths phase (averaged across three runs) of the three algorithms
for a 1000 person, 30% dense assignment problem, cost range [1,1000]. When
a single processor is used, the self-scheduled synchronous algorithm is the
slowest because it must find additional shortest paths (as a result of incom-
patibility problems). As the number of processors increases, the reduced
coordination required by the self-scheduled synchronous algorithm makes it
faster than the single-path synchronous algorithm. For these experiments,
the single path asynchronous algorithm is fastest.

In [15], a measure of coordination overhead is proposed. This measure,
called the wait time, is the time that a processor which has work to do spends
waiting for other processors. For the synchronous algorithms, the majority
of the wait time occurs at the synchronization point in each iteration, when
processors which have already completed their augmenting path computa-
tions wait for other processors. For the asynchronous algorithm, it is the
time waiting to get access to the master copy (while other processors are
modifying it). Figure 4 shows the average wait time per processor for the
results in Figure 3.

The above results indicate the existence of some fundamental limits in the
speedups which can be achieved from parallel processing of dual improvement
algorithms. As discussed in [15], the principal limitation is the decreasing
amount of parallel work in each iteration. Initially, there are many augmen-
tations which must be found, so that many processors can be used effectively.
However, as the algorithm progresses, there are fewer unassigned persons, so
the number of parallel augmentations decreases significantly. Furthermore,
the later augmentations are usually harder to compute, as they involve re-
versing many previous assignments. This limits the net speedup which can
be achieved across all iterations. Other factors such as the synchronization
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Figure 3: Computation time of parallel multinode Hungarian algorithms for
1000 person, 30% dense assignment problem with cost range [1,1000], as a

function of the number of processors used on the Encore Multimax.
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overhead further limit the achievable speedup.
In terms of synchronous versus asynchronous algorithms, additional re-

sults in [15] indicate that, as the problems become sparser, the coordina-
tion overhead of the asynchronous algorithms may become larger than the
overhead of the synchrous algorithms! This is because the time required to
compute an augmenting path is much shorter for the sparse problems; this
reduces the coordination overhead for synchronous algorithms because there
is less variability in computation time across processors. However, it also in-
creases the coordination overhead for asynchronous algorithms because more
of the time is spent on modifying the master copy (rather than computa-
tion), so that the probability of access conflicts is increased. For a greater
discussion of these topics, the reader is referred to [15].

Although the above discussion focused on assignment problems, Bertsekas
and Castafion [16] have extended the single- path synchronous algorithm to
min-cost network flow problems, and evaluated its performance using NET-
GEN uncapacitated transshipment problems. Extensions of the self- sched-
uled synchronous algorithm and the asynchronous algorithm to these classes
of problems are straightforward, based on the results of Section 2.2.3.

2.3.3 Approximate Dual Coordinate Ascent

The auction algorithm for assignment problems has been tested widely across
a variety of parallel implementations on different parallel computers. The
simplicity of the auction algorithm makes it a natural candidate for parallel
implementation. In addition, many variations exist which are amenable for
either Gauss-Seidel, Jacobi or hybrid parallelization.

One of the earliest parallel implementations of the auction algorithm was
reported by Phillips and Zenios [105] on the Connection Machine CM-2 for
dense assignment problems (also subsequently by Wein and Zenios [121]). In
their implementation, they used the large number of processors in the CM-2
to simultaneously compute bids for many different persons and to compute
in parallel the bids of each person (thus using the hybrid approach discussed
earlier). Their work was the first to illustrate the utility of massively parallel
architectures for assignment problems.

A similar hybrid implementation was reported by Kempa et al. [78] on
the Alliant FX/8 parallel computer. In their work, they experimented with
various synchronous implementations of the auction algorithm for dense as-

47



signment problems. In their hybrid implementation, the vector processing
capability of the Alliant's processors was used to compute in parallel the bid
of each person, while the multiprocessor capability was used for computing in
parallel multiple bids. For 1000-person dense assignment problems, with cost
range [1,1000], Kempa et al. obtained total speedups of 8.6 for their hybrid
auction algorithm using 8 vector processors. Subsequent work by Zaki [123]
on the Alliant FX/8 produced similar results.

In [26], several synchronous and asynchronous implementations of the
auction algorithm were developed and tested for dense and sparse assign-
ment problems on different parallel computers (Encore Multimax, Alliant
FX/8, DAP 510 and CM-2). Similar to the dual improvement algorithms,
the SIMD implementations of the auction algorithm on the DAP 510 were
extremely efficient, solving 1000-person dense assignment problems in under
3 seconds! Other important results in [26] are evaluations of the relative
computation advantage of asynchronous auction algorithms versus their syn-
chronous counterparts.

In [14], where a number of variations of the auction algorithm were im-
plemented and evaluated on the Encore Multimax. The auction algorithm
variations tested were:

1. Synchronous Gauss-Seidel Auction : Parallelization using only one
bidder at a time.

2. Synchronous Jacobi Auction: A block Gauss- Seidel parallelization
where each processor generates a bid from a different person.

3. Synchronous Hybrid Auction: A hybrid parallel algorithm, where pro-
cessors are hierarchically organized into groups; each group computes
a single bid in parallel, while multiple groups generate different bids.

4. Asynchronous Jacobi Auction: A block Gauss- Seidel parallel algo-
rithm, where each processor generates a bid from a different person.

5. Asynchronous Hybrid Auction: A hybrid parallel algorithm where
processors are divided into search processors (for computing a single
bid) and bid processors (for computing multiple bids).

The most interesting results in [14] are the comparisons between the
synchronous and asynchronous algorithms. For example, for 1000 person,
20% dense assignment problems, the synchronous Jacobi auction algorithm
achieves a maximum speedup of 4, whereas the asynchronous Jacobi auction
algorithm achieves speedups of nearly 6 due to its lower synchronization over-
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head (which allows for efficient utilization of larger numbers of processors).
This asynchronous advantage is the consequence of the strong asynchronous
convergence results for the auction algorithm, which allow processors to per-
form computations with little need to maintain data consistency or integrity.

The asynchronous hybrid auction (AHA) algorithm of [14] is similar in
structure to the parallel network simplex algorithms discussed previously
[103, 5]. In each iteration of the AHA algorithm, some processors are desig-
nated as search processors, which evaluate arcs in the network and produce
information for generation of bids. Other processors are bid processors, which
process the information generated by the search processors and actually con-
duct the auction process. The search processors and the bid processors oper-
ate concurrently; thus, bids are often generated based on "old" information.
In contrast with the network simplex algorithms, the AHA algorithm uses
multiple bid processors, and does not fix a priori whether a processor is a
search or a bid processor. Rather, there is a task queue containing a set of
search and bid tasks which must be performed; these tasks are generated as
part of the auction process. Whenever a processor is available, it proceeds
to the queue and selects the next task.

Unlike the network simplex algorithms, the AHA algorithm does not need
to recompute the information provided by the search processors in order to
"validate" it (validation in the auction context would be very expensive, un-
like in the network simplex context); instead, the AHA algorithm is based on
the asynchronous convergence theory which guarantees that, if the informal
tion is outdated, the coordination mechanism in the auction algorithm will
reject it. When tested across a set of 1000 person assignment problems with
varying density, cost range [1,1000], the AHA algorithm was nearly twice
as fast as the corresponding hybrid synchronous algorithm for every prob-
lem tested, highlighting the advantages of the asynchronous algorithm. For
additional results on parallel auction algorithms, the reader should consult
[14].

Unlike the auction algorithm for assignment problems, sequential imple-
mentations of the E-relaxation method have been considerably slower than
state-of-the-art min-cost network flow codes [18]. Thus, there have been fewer
parallel implementations of the algorithm. A notable exception is the work
of Li and Zenios [83] on the Connection Machine CM-2. They developed a
modification of the e-relaxation algorithm which assigns flows in fractional
quantities, and implemented a parallel hybrid algorithm on the CM-2. Their

49



results indicate that, for some problems derived from military transporta-
tion, the CM-2 implementation of E-relaxation is substantially faster than
their network simplex implementation on the Cray Y-MP; for other classes
of problems, the network simplex code was faster [83].

2.4 Summary

In this section we have discussed results on parallel algorithms for min-cost
network flow problems. We have roughly characterized parallelization ap-
proaches into two types: single-node and multinode, depending on the level
of the function which is done in parallel. The experimental results indicate
that both approaches are limited in their ability to use parallelization to
reduce computation requirements.

The key limit in single-node approaches is imposed by the density of the
network; for sparse networks, the amount of work which can be performed in
parallel is a smaller part of the overall computation time. For network sim-
plex algorithms, sparse problems have fewer arcs which must be inspected
to find a desirable pivot, so that adding search processors beyond a point in
these algorithms actually slows down performance because of increased syn-
chronization requirements. Similarly, in sequential shortest path algorithms
and auction algorithms, sparsity limits the number of arcs which must be
examined per node, so that again the ratio of parallel work to total work is
reduced.

In contrast, the key limit in multinode approaches is imposed by the time-
varying load across iterations. For parallel dual cost improvement algorithms
and auction algorithms, our convergence theories [15, 14, 16] provide the
basis for medium scale parallelization. The effectiveness of these parallel
algorithms is not limited by sparsity, but rather by the fact that the number
of nodes with positive surplus decreases with each iteration, so that the total
amount of parallel work per iteration decreases. On average, the overall
speedup using this approach for sparse problems is limited to factors of 3-5.

The computation experiments also highlight several critical issues such as
the impact of parallel processor architectures and the choice of synchronous
versus asynchronous algorithms. For dense network problems, the best pro-
cessors are the massively parallel SIMD processors; however, these are limited
in their ability to effectively use sparse data structures. When the problem
density is below 1%, the best processors are shared-memory processors, which
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are best- suited for using multinode parallelism and sparse data structures.
The multinode parallelism is limited to using at most 10-12 processors in par-
allel; with these few processors, there is little contention for shared memory
and communications resources.

In terms of synchronous versus asynchronous algorithms, it is interesting
to find that, in many problems, asynchronous algorithms offer computational
advantages. This is particularly true of auction algorithms; indeed, the asyn-
chronous convergence theory allows for efficient combination of single-node
and multinode parallelism within the same algorithm. In contrast, the asyn-
chronous theory for dual cost improvement algorithms requires excessive data
integrity, and results in inefficient algorithms for sparse problems. Develop-
ment of a less restrictive asynchronous convergence theory remains a problem
for future research.

A class of parallel algorithms for linear network flow problems, men-
tioned here for completeness and discussed in greater detail in Section 3.2.2
and 3.3.2, combines nonlinear perturbations of the linear objective function
and then uses parallel algorithms for the resulting nonlinear program. The
solution of the min-cost network flow problem, combining the PMD algo-
rithm of [34] with the row-action algorithms of [30, 124] was suggested by
Censor and Zenios [33], and extensive computational studies were conducted
by Nielsen and Zenios [99, 100].

3 Nonlinear Network Optimization

3.1 Basic Algorithmic Ideas

In this section, we discuss three approaches to parallel solution of convex
nonlinear network optimization problems: primal truncated Newton meth-
ods, dual coordinate ascent methods, and alternating direction methods. To
handle problem for which the objective function is convex, but not strictly
convex, the dual coordinate ascent methods need to be embedded in some
sort of convexification scheme, such as the proximal minimization algorithm.
Therefore, we also include some discussion of proximal minimization and re-
lated methods. Other approaches to parallel nonlinear network optimization
are certainly worthy of study; for brevity, we restrict ourselves to methods
which have already been substantially investigated in the specific context of
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networks.

3.1.1 Primal Methods

One of the most efficient primal algorithms for solving the nonlinear net-
work optimization program (NLNW) is the primal truncated Newton (PTN)
algorithm [47], implemented within the active set framework [95]. The com-
bination of both techniques for pure network problems is given in [45] and for
generalized networks in [1]. PTN has received considerable attention both in
solving large scale problems, and in parallel computation. We describe the
algorithm in two steps: First we give a model Newton's algorithm for uncon-
strained optimization problems. Second, we discuss the active set method
which reduces a constrained optimization problem into a sequence of (locally)
unconstrained problems in lower dimensions. Our general reference for this
section is Gill et al. [66].

A Truncated Newton Algorithm for Unconstrained Optimization:
Consider the unconstrained problem

min F(x), (39)

where F(x) is convex and twice continuously differentiable. The primal
truncated Newton (PTN) algorithm starts from an arbitrary feasible point
X° E Rn and generates a sequence {xk}, k = 1, 2, 3,... such that

lirm k = x*,
k--moo

where x* belongs to the set of optimal solutions to (39) (i.e., x* E X* =

{xIF(x) < F(y),V y E Rn }). The iterative step of the algorithm is the
following:

xk+l = x k + akdk . (40)

{dk} is a sequence of descent directions computed by solving the system of
(Newton's) equations :

V 2F(xk)dk = -VF(xk). (41)

This system is solved inexactly (hence the term truncated), i.e., a solution dk
is obtained that satisfies

IIV2F(Xk)dk - VF(Xk)IIj _ r<k. (42)
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A scale independent measure of the residual error is :

rk I IV2F(xkL-)pk + VF(xk-)112 (43)
IIvF(xk-l)ll22

The step direction is computed from (41) such that the condition rk < E]k is
satisfied and the sequence {r7k} -, 0 as k - oo. {ak} is a sequence of step
sizes computed by solving

ak = argmin{F(xk + adk)}, (44)
a>O

(i.e., at iteration k the scalar a k is the step size that minimizes the function
F(x) along the direction pk starting from point xk). Computing a k from
equation (44) corresponds to an exact minimization calculation that may
be expensive for large scale problems. It is also possible to use an inexact
linesearch. The global convergence of the algorithm is preserved if the step
length computed by inexact solution of (44) produces a sufficient descent of
F(x), satisfying Goldstein-Armijo type conditions (see e.g. [9]).

An Active Set Algorithm for Constrained Optimization:
Consider now the transformation of (NLNW) into a locally unconstrained

problem. Following [95] we partition the matrix A into the form:

A = [B S N]. (45)

B is a non-singular matrix of dimension n x n whose columns form a basis.
For the case of network problems a basis can be constructed using a greedy
heuristic, as given in [46]. First-order estimates of the Lagrange multipli-
ers that correspond to this basis are obtained by solving for p the system
pTB = -VF(Xk). S is a matrix of dimension n x r. It corresponds to the su-
perbasic variables, i.e., variables at their lower bound with negative reduced
gradient, variables at their upper bound with positive reduced gradient, or
free variables. For the set of superbasic variables it is possible to take a
non-zero step that will reduce the objective function value. N is a matrix of
dimension n x (m - n - r). It corresponds to the non-basic variables, i.e.,
variables that have positive reduced gradient and are at their lower bound,
or have a negative reduced gradient and are at their upper bound.
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We use B, S and Jf to denote the sets of basic, superbasic and non-basic
variables respectively. The vector xk is partitioned into

xk = [xk XS xk 1. (46)

k WE Rm are the basic variables, xk E ~r are the superbasic variables and
xk E Rn-m-r denote non-basic variables. Non-basic variables - for a given
partitioning (45)-(46) - are kept fixed to one of their bounds. If we now
partition the step direction d as

dk=[ dkB d k] (47)

we require dk = 0 (i.e., non-basic variables remain fixed) and furthermore
dk should belong to the nullspace of A (i.e., Adk = 0), so that dk is a feasible
direction. Hence dk must satisfy

BdB + Sdk = 0 or dkB = -(B-1S)dk. (48)

If the superbasic variables are strictly between their bounds and the basis
B is maximal as defined in [46] (i.e., a non-zero step in the basic variables
XB is possible for any choice of direction (dB dA 0)), then the problem
is locally unconstrained with respect to the superbasic variables. Hence a
descent direction for dk can be obtained by solving the (projected) Newton's
equations:

(ZTV 2 F(xk)Z)dk = -ZTVF(xk) + 77ke, (49)
where Z is a basis for the nullspace of A defined as

Z = [ 1SI (50)

The primary computational requirement of the algorithm is in solving the
system of equations (49) of dimension r x r. This system is solved using a
conjugate gradient method with a preconditioner matrix equal to the inverse
of the diagonal of the reduced Hessian matrix ZTV 2F(x)Z. Calculation of
pk from (48) involves only a matrix-vector product and is in general an easy
computation. The partitioning of the variables and the matrix A into basic,
superbasic and non-basic elements is also in general very fast. For some of
the bigger problems reported in the literature the solution of system (49)
takes as much as 99% of the overall solution time. Efforts in parallelizing
the PTN algorithm have concentrated in the solution of projected Newton
equations.

54



3.1.2 Dual Coordinate Ascent Methods

Now consider a separable, nonlinear network optimization problem of the
form (NLNW). where the cost component functions fij: '? -3 are for
the moment assumed to be strictly convex and lower semicontinuous. For
any flow x E Rm, we let gi(x) denote the surplus at node i under the flow
x (we make the dependence on x explicit because some nonlinear network
algorithms manipulate several flow vectors simultaneously). Assume that
(NLNW) is feasible and has an optimal solution. Defining for each (i, j) E A,

fj(xs,) = {fjj(xij), ij < uij (51)
fi+j(x.){= otherwise (51)

the problem may be written

minimize f(x) - fij(xij)
(ij)E (52)

such that Ax = b.

Attaching a vector of Lagrange multipliers p E Rn to the equality constraints,
one obtains the Lagrangian

L(x,p) = j(xij) - p(Ax - b)
(i,j)EA

-= ZE (J.i(xij) - (Pi- pj)xij) - PTb.
(i,j)EA

Therefore, the dual functional of the problem is

q(p)= inf (L(x,p)}= E qij(pi-pj)-PTb, (53)
(ij)EA

where
qij(tij) = inE {fi(j) - tijxij} (54)

Thus, we may define a problem dual to (NLNW) and (52) to be

maximize q(p)
such that p E (55)

Now, each qij is the pointwise infimum of a set of affine (hence concave)
functions in tij, and is necessarily concave. Thus, q is concave. Basic nonlin-
ear programming duality theory implies that the optimal values of (NLNW)
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and (55) are equal. Readers familiar with aspects of convex analysis [109, 112]
will recognize that qij is the negative of the convex conjugate of fij. In simple
terms, the following equivalences therefore hold:

fij has a subgradient of slope tij at xij (56)
qij has a supergradient of slope - xij at tij (57)

'•= zxij attains the infimum in (54). (58)

The strict convexity of the fij implies strict convexity of the fij. This
means that at any two distinct points xi, A E [lii,uij], fij cannot have
subgradients with the same slope. It follows that for each argument tij, qij
has exactly one supergradient, that is, qij is differentiable. If follows that
(55) is a differentiable, unconstrained minimization problem. The key idea
in parallel dual methods for network optimization is to exploit this extremely
advantageous dual structure.

The differentiability and convexity of q imply that, from any non-maxi-
mizing p, it is possible to increase q by changing only a single component Pi
of p. This property suggests the following iteration for maximizing q(p):

(i) Given a price vector p(t), choose any node i E KA.

(ii) Compute p(t + 1) such that pj(t + 1) = pj(t) for all j 5 i, while pi(t + 1)
maximizes q(p) with respect to the i-coordinate, all other coordinates
being held fixed at pj(t).

It can be shown that, so long as each node i E J/ is selected an infinite
number of times, that the sequence of price vectors p(t) generated by this
iteration converges to an optimal solution of the dual problem (55) [22, Sec-
tion 5.5]. Algorithms of this general sort have been discussed in such diverse
sources as [21, 30, 41, 42, 74]. They are usually called relaxation methods,
because maximizing the dual cost with respect to the coordinate Pi is equiv-
alent to adjusting the primal solution x so that the flow constraint for node i
is satisfied while constraints for other nodes are relaxed. To understand this,
it is necessary to exploit the duality relationship between (NLNW)/(52) and
(55) encapsulated by (56)-(58).

The equivalent conditions (56)-(58) are known as complementary slack-
ness. Dual methods enforce these conditions at all times, where we define
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Figure 5: Example of the function Vqij.

the tension tij of arc (i, j) to be pi - pj. We denote by x(p) the unique flow
vector satisfying complementary slackness with the price vector p on all arcs,
whence

xij(P) = -Vqij(Pi -Pj)

Let c-. be the derivative of fij at lij, and c + be the derivative of fij at uij.
For values of tij = pi-pj below c., the infimum in (54) is attained for
xij = lij, so xij(p) must be at its lower bound of Iij. If Pi - pj > c+, then
the infimum is attained at xij = uij, and so xij(p) is set to its upper bound.

For pi -pj E [c, , cti], xij(p) = -Vqij(pi - pj), by the concavity of qij, is a
nondecreasing function of pi-pj. Thus, Vqij is constant at -lij for arguments
below c.j, constant at -uij for arguments above c+ , and nonincreasing in
between, as shown in Figure 5. Accordingly, qij itself is linear with slope -lij
for arguments below ci~, linear with slope -uij for arguments above c +, and
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Figure 6: Example of the function qij.

concave in between, as depicted in Figure 6. Now let us consider the partial
derivative of the entire dual functional q with respect to the variable Pi:

ap9q(p) = [ (Pk - l-) ] + [PTb]

-= Z Vqij(pi- pj) - E Vqji(pj-Pi) + bi
j:(i,j)EA j:(j,i)EA

= - E X xij(p) + E Xji(p) + bi,,
j:(i,j)EA j:(j,i)EA

which is just the surplus gi(x(p)) at node i under the flow x(p). Thus, the
coordinate ascent algorithm may be restated

(i') Given p(t), choose any node i E A.
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(ii') Compute p(t + 1), equal to p(t) in all but the ith coordinate, such that
x(p(t + 1) meets the flow balance constraint gi(x(p(t + 1))) = 0 at node
i.

In the parlance of solving systems of nonlinear equations, we are "relax-
ing" flow balance equation i at each iteration (although "enforcing" might
be a more appropriate word). Below, we will use the phrase "relaxing node
i" to denote applying the operation (ii') at node i. Note that if gi(x(p)) is
positive, one must raise Pi in order to "drive away" flow from i; raising pi
increases flow on the outgoing arcs of i, and reduces flow on i's incoming
arcs. Conversely, if gi(x(p)) < 0, then Pi must be reduced in order to attract
flow to i.

A number of variations on the basic iteration are possible. For instance,
instead of exactly maximizing q with respect to Pi, one may elect only to
reduce the magnitude of its gradient by some factor 6 E [0, 1), as follows; see
[22, Section 5] and [21]:

(i") Given p(t), choose any node i E A.

(ii") If gi(x(p(t))) = 0, do nothing. Otherwise, compute p(t + 1), equal to
p(t) in all but the ith coordinate, such that

0 < gi(x(p(t + 1))) < 6gi(x(p(t))) if gi(x(p(t))) > 0

6gi(x(p(t))) < gi(x(p(t + 1))) < 0 if gi(x(p(t))) < 0.

Another possibility is to compute a maximizing value Pi for Pi, but then
set

pi(t + 1) = (1 - 7)pi(t) + yPi,

where y E (0, 1) is some stepsize.
Algorithms in the dual relaxation family are also known as "row-action"

methods [28], in that, at each iteration, they select a single row of the con-
straint system Ax = b, and satisfy it at the expense of the other rows. In
the case that the fij are differentiable, the flow x(p(t + 1)) obtained by max-
imizing the dual cost along the pi coordinate is equivalent to the projection
of x(p(t)) onto the hyperplane given by the ith flow balance constraint with
respect to a special distance measure, or "D-function" derived from the fij.
When the fij have certain special properties, and flow bound constraints are
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absent, it is actually possible to prove convergence of the method without
any appeal to the dual problem; see [24].

However, the main contribution of the row-action literature, from our
perspective, is not in the handling of the equality constraints Ax = b, but
in treatment of the inequality constraints x > I and x < u, for which some
use of duality is required [24, 30]. Specifically, one may dualize the interval
constraints lij < xij < uij by attaching multipliers vii < 0 and wij > 0,
respectively. This yields a new dual functional

v(p, v, w) =

inf {E fij(xij)-(pi - pj)xij - vij(x - lij) - ij(ij - xi)
xEi

m }j)E
to be maximized with respect to v < 0, w > 0, and p E Rn. It is possible to
construct an algorithm that successively maximizes the functional q(p, v, w)
along not only the individual Pi coordinates, but also the individual vij and
wij coordinates. Furthermore, for any optimal solution, the Karush-Kuhn-
Tucker conditions guarantee that at most one of vij and wij will be nonzero
for any (i,j), so the two variables may be condensed into a single quantity
zij via vii = (zij)- and wij = (zij)+. Censor and Lent [30] give a procedure
for handling such combined dual variables. When Zij > 0, this procedure
is equivalent to a dual-objective-maximizing step along the wij coordinate,
followed by a maximizing step along the vij coordinate. When zij < 0, the
roles of vij and wij are reversed.

The row action literature also suggests, for certain specific forms of the
objective function, a special "MART" step, which is an easily computed
secant approximation to the true relaxation step [31].

3.1.3 Proximal Point Methods

We now consider the problem (NLNW) with the assumption that the fij
are convex, but not necessarily strictly convex. The dual coordinate meth-
ods described above rely on the differentiability of the dual problem (55),
and hence on the strict convexity of the primal objective. When applied to
problems whose objective functions are not strictly convex, including linear
programs, such dual coordinate methods may "jam" at a primal-infeasible
(dual-suboptimal) point, due to the absence of dual smoothness. For purely
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linear problems, one may attempt to overcome this difficulty by using the
special techniques of Section 2.1.3; however, it may be difficult to maintain
much parallelism in the later stages of such methods. To address these deffi-
ciencies, and also to handle general (non-strictly) convex objectives, renewed
attention has turned to the solution of non-strictly-convex problems via a se-
quence of strictly convex ones. So far, attention has centered on the proximal
mininization algorithm (PMA) [87, 110] and variants thereof [34]. There are
several ways to motivate the PMA, but the simplest, perhaps, is to consider
the following problem equivalent to (NLNW) [22, pp. 232-243]:

minimize [( fij(xij)] + 2 x - y112

such that Ax = b (59)
I < x < u

x,y E Rm.

Here, A is a positive scalar. This problem is equivalent to (NLNW), the
optimum being attained for x = y = x*, where x* solves (NLNW). One can
imagine solving (59) by a block Gauss-Seidel method [22, Section 3.3.5] by
which one repeatedly minimizes the objective with respect to x, holding y
fixed, and then minimizes with respect to y, holding x fixed. The latter
operation just sets y = x, so one obtains the algorithm

x(t + 1) = arg min { fij(xij) +-(xij _ ij)2
I<xzt (ij)EA 2 

y(t + 1) = x(t + 1),

or simply

x(t+ 1) = argmin fi1(xi) + (Xi - xj(t)) (60)

Each of the successive subproblems in the method (60) is strictly convex due
to the strong convexity of the terms 2 (xij - xij(t))2 . Therefore, x(t + 1) is
unique.

The convergence of the PMA can be proven even if A is replaced by
some A(t) that varies with t, so long as inft>0 {A(t)} > 0. This can be
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shown from first principles [22, pp. 232-243], or by appeal to the general
theory of the proximal point algorithm [111, 110]. The latter body of theory
establishes that approximate calculation of each iterate x(t+ 1) is permissible,
an important practical consideration. Heuristically, one may think of (60) as
an "implicit" gradient method for (NLNW) in which the step x(t + 1) - x(t)
is codirectional with the negative gradient of the objective not at x(t), as is
the case in most gradient methods, but at x(t + 1). Similar results using even
weaker assumptions on {A(t)} are possible [25].

Without the background of established proximal point theory [111, 110],
the choice of 1 IIx - Yll 2 as the strictly convexifying term in (59) seems
somewhat arbitrary. For example, 2 Ilx - Yll 3 might in principle have served
just as well. Recent theoretical advances [34] indicate that any "D-function"
D(x, y) of the form described in [30] may take the place of II - Y11ll2 in the
analysis. Among the properties of such D-functions are

D(x, y) > 0 Vx, y
D(x,y)=0O ' x=y

D(x, y) strictly convex in x.

Of particular interest is the choice of D(x, y) to be

-(iA [ij log ) - (xii - Yij)]
(ij)EA L k Yij ]

sometimes referred to as the Kullback-Leibler divergence of x and y. For
additional information on the theory of such methods, see [118, 53, 120].

3.1.4 Alternating Direction Methods

Alternating direction methods are another class of parallelizable algorithms
that do not require strict convexity of the objective. Consider a general
optimization problem of the form

mininize hi(x) + h 2(z)
such that z= Mx,

where hi : - (-oo, oo] and h2 -v (-oo, oo] are convex, and M is a
r x s matrix. A standard augmented Lagrangian approach to this problem,

62



the method of multipliers (see [9] for a comprehensive survey), is, for some
scalar A > 0,

(x(t + 1), z(t + 1))=

argmin {hi(x) + h2 (z) + (r(t),Mx - z) + Mx - z2 (61)

r(t + 1) = r(t) + (Mx(t + 1)-z(t + 1)). (62)

Here, {ir(t)} C Rq is a sequence of Lagrange multiplier estimates for the the
constraint system Mx - z = 0. The minimization in (61) is complicated
by the presence of the nonseparable zTMx term in IIM - z112. However,
one conceivable way to solve for x(t + 1) and z(t + 1) in (61) might be to
minimize the augmented Lagrangian alternately with respect to x, with z
held fixed, and then with respect to z with x held constant, repeating the
process until both x and z converge to limiting values. Interestingly, it turns
out to be possible to proceed directly to the multiplier update (62) after a
single cycle through this procedure, without truly minimizing the augmented
Lagrangian. The resulting method may be written

x(t + 1) = argmin hi.(x) + (r(t),Mx) + IIMx - z(t)112}
Z 2

z(t+l) = argmin {h2(z) - (7r(t),z) -+ IIMx(t + 1)- z112}

ir(t + 1) = ir(t) + A (Mx(t + 1)- z(t + 1)),

and is called the alternating direction method of multipliers. It was intro-
duced in [69, 64, 62]; see also [22, pp. 253-261]. Note that the problem of
nonseparability of x and z in (61) has been removed, and also that h1 and h2
do not appear in the same minimization. In [63], Gabay made a connection
between the alternating direction method of multipliers and a generalization
of an alternating direction method for solving discretized differential equa-
tions [84]; see [51, 55] for comprehensive treatments.

One way to apply this method to a separable, convex-cost network prob-
lem of the form (NLNW) (without any assumption of strict convexity) is to

63



let

r = m

s = 2m

Z = (rl, ) E Rm X Rm

=
hi(x) = E fij(xij) (as defined in (51))

(ij)EA

0 ij - E ji = bi Vi E 
h2() +oo otherwise .

The idea here is to let z = (r7, () E 3m x am, where r7ij is the flow on (i, j)
as perceived by node i, while Cij is the flow on (i, j) as perceived by node j.
The objective functon term h2(r7, () essentially enforces the constraint that
the perceived flows be in balance at each node, while the constraint z = Mx
requires that each rij and 5ij take a common value xij, that is, that flow be
conserved along arcs. The function h1 plays the role of the original objective
function of (NLNW), and also enforces the flow bound constraints. Applying
the alternating direction method of multipliers to this setup reduces, after
considerable algebra [54, 51], to the algorithm

) = xi(t) + gi((t)) _ g((t))
d(i) d(j)

xij(t + 1) = argmin {fi(xij) - (Pi-pj)xj (xij(t)) 2+

Pi(t + l) = pi(t)+ gi((t + 1)),

where d(i) denotes the degree of node i in the network. This iteration is
basic form of the alternating step method; see also [22, p. 254]. The initial
flow vector x(O) and node prices p(O) are arbitrary, and need fulfill neither
feasibility nor complementary slackness conditions. For linear or quadratic
fij, the one-dimensional minimization required to compute the xij(t + 1) can
be done analytically. An "overrelaxed" version of the method is also possible;
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letting {p(t)})l 1 be a sequence of scalars such that

0 < inf {p(t)} < sup {p(t)} < 2,
t>1 t>_l

one can derive the more general alternating step method [54]

,ij(t) = yij(t) + i(y(t)) _ (()) (63)
d(i) d(j)

1Ij< Tj<Uij 2xj(t±+1) = argmin fi(xi)(i - (64)

pi(t+1) = pi(t)+ d gi(X(t +1)) (65)

yij(t + 1) = (1 - p(t))yij(t) + p(t)xij(t + 1). (66)

Here, the initial flow vector y(O) and node prices p(O) are again arbitrary.
Approximate calculation of the xij(t + 1) is possible [55, 54].

For convex-cost transportation problems, a different application of the
alternating direction method of multipliers is given in [22, Exercise 5.3.10],
[51, Section 7.3], and [56]. This approach decomposes the problem network
somewhat less aggressively than (63)-(66).

3.2 Parallelization Ideas

3.2.1 Primal Methods

Parallelization of the primal truncated Newton algorithm has concentrated
on the linear algebra calculations required in solving Newton's equations (49).
The first approach, proposed in [130], views the matrix ZTV 2 F(xk)Z as a
general, sparse matrix without any special structure. The conjugate gradient
method is used to solve this system. In order to implement this method
we need to form the products Zv, Hv and ZTv, where v is a vector of
the conjugate directions. On shared memory systems these products can
be parallelized very efficiently by distributing the Hessian matrix row-wise
across multiple processors, while distributing the Z matrix column-wise.

Another important feature of this algorithm is that it can be implemented
efficiently on systems with vector features. To this end we need data struc-
tures that allow the algorithm to form compact, dense, vectors from the
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sparse matrix representations of Z and H. Details on implementation de-
signs for PTN on a vector architecture are rather technical. See [128] for a
description of the data structures and a complete discussion of implementa-
tions.

Similar parallelization ideas for PTN have been proposed in [82] for cases
when the objective function is partially separable, i.e., it is of the form F(x) =
Efi(x) where each element function fi(x) has a Hessian matrix of lower
rank than the original problem. These proposals have been very efficient
in solving some large unconstrained optimization problems. However, they
do not offer any real advantage over the methods discussed above for the
network problems that are, usually, separable.

An alternative procedure for parallelizing the primal truncated Newton
algorithm exploits the sparsity structure of the network basis and partitions
Newton's equations in independent blocks. The blocks can then be dis-
tributed among multiple processors for solution using again the conjugate
gradient solver. The block-partitioned truncated Newton method was devel-
oped in [125]. To describe this algorithm, we need to impose an ordering of
the arcs (i,j). We will use t ~ (i,j) to denote the lexicographic order of arc
(i, j), and hence xt is the t-th variable that corresponds to flow xij on arc

(i,j).

Block-partitioning of Newton's Equations:
We return now to equation (49), and try to identify a partitioning of the

matrix (ZTV 2F(xk)Z) into a block-diagonal form. Recall that

Z = I (67)
0

and that the function F(x) = [=~ Ft(xt) is separable, so that the Hessian
matrix is diagonal. If we ignore momentarily the dense submatrix (B-1S)
and assume that

Z= = [ 0(68)

(the identity I and null matrix 0 chosen such that Z is conformable to
V 2F(xk)) then the product

2TV F(xk)2
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is a matrix of the form diag[ HI 0 ], where HI is a diagonal matrix with the t-
th diagonal element given by 2Fk . Hence, the complication in partitioning

(49) is the presence of the submatrix (B - 1S). The structure of this submatrix
is examined next.

The structure of (B - 1S):
The matrix B is a basis for the network flows of problem (NLNW). It

is well-known - see, e.g., Dantzig [44], Kennington and Helgason [80] or
Glover et al. [68, 67] - that the basis of a pure network problem is a lower
triangular matrix. The graph associated with this basis matrix is a rooted
tree. The basis of a generalized network is characterized by the following
theorem (see, e.g., [44, p.421]).

Theorem 1 Any basis B of a generalized network problem can be put in the
form

B 1

B 2

B =~Be

BL

where each square submatrix Be is lower triangular with at most one element
above the diagonal.

The graph associated with each submatrix Be is a tree with one additional
arc, making it either a rooted tree or a tree with exactly one cycle, and
is called a quasi-tree (abbreviated: q-tree). The graph associated with a
generalized network basis is a forest of q-trees.

To describe the structure of (B-1S) we first define the basic-equivalent-
paths (BEP) for a superbasic variable xt with incident nodes (i, j). For pure
network problems it is the set of arcs on the basis tree that lead from node j
to node i. The arcs on BEP together with arc t ~ (i,j) create a loop. In the
case of a generalized network, it is the set of arcs that lead from nodes i and j
to either the root of the tree or the cycle of a q-tree; the BEP includes all arcs
on the cycle. The t-th column of (B-1S) has non-zero entries corresponding
to the BEP of the t-th superbasic variable. The numerical values of (B-1S)
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are ±1 for pure network problems and arbitrary real numbers for generalized
networks; the numerical values are of no consequence to our development.

To illustrate the preceding discussion we show in Figure 7 the basis of a
pure network problem together with the BEP for a superbasic arc and the
corresponding column of (B-1S). Figure 8 illustrates the same definitions
for generalized network problems.

The matrix (B-1S) can be partitioned into submatrices without overlap-
ping rows if the columns of each submatrix have BEP with no basic arcs in
common with the columns of any other submatrix.

Partitioning of (B- 1S) for Pure Networks:
Let /t denote an ordered set of binary indices such that (/t)l = 1 if the

l-th arc (i,j) E 13 is in the BEP of the t-th arc (i',j') E S , and (Pt)l = 0
otherwise. We seek a partitioning of the set S into K disjoint independent
subsets, say Sk, k E K; = {1, 2,..., K} such that

K

S= USk (69)
k=l

andtESkl and uES k2 iff ItA3uP =0Vk5ik 2 E1C (70)

(i.e., the sets /t and pu have no overlapping non-zeroes, and hence there is
no common basic arc in the BEP of t-th and u-th superbasic arcs).

Escudero [59] was the first one to propose the partitioning of S into inde-
pendent superbasic subsets Sk according to equation (69)-(70), for replicated
pure networks. Replicated networks consist of subnetworks with identical
structure and are connected by linking arcs. (These linking arcs represent
inventory flow for his problems that are multiperiod networks.) In the same
reference Escudero gives a procedure for identifying the independent super-
basic sets 5 k.

The problem of identifying independent superbasic sets can be formu-
lated as a problems from graph theory (i.e., finding connected components
or articulation points of the adjacency graph of the matrix ZTZ). It can be
solved efficiently using algorithms developed in [117]. For additional details
see [125].

Partitioning of (B-1S) for Generalized Networks: The graph parti-
tioning schemes discussed above for pure network problems can also be ap-
plied in the case of generalized networks. It is, however, possible to develop
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Basis of Pure Network Problem

Basic-Equivalent-Path (BEP) for arc with incident nodes (1, 2):

{(2, 6), (6,9), (9,10), (10, 10), (10,8), (8,4), (4, 1)}.

Sparsity pattern of (B - 1 S) corresponding to superbasic (1,2):

Row no. Corresponding Basic Arc
1 * (1,4)
2 * (2,6)
3 0
4 * (4,8)
5 0
6 * (6,9)
7 0
8 * (8,10)
9 * (9,10)

10 * (10,10)

Figure 7: Pure network basis: matrix and graph representation, and an
example of a basic equivalent path.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 *
2 *
3 *
4 * *
5 * *
6 *
7 * * *

* * *

10 * *

11 * *

12 * *
13 * *
14 *
15 * *
16 *
17 * * *
18 * *

19 * *19
20 *

Basis of Generalized Network Problem

Baic-Equivalent-Path (BEP) for arc (9,14):

{(9, 10),(10. 11),(11, 12),(12, 13),(13,9),(14. 15),(15, 17),(17, 17)}.

Sparsity pattern of B-'S corresponding to superbasic arc (9.14):

Row No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 0 0 0 0 0 0 * * * * * 0 0 0 0

Figure 8: Generalized network basis: matrix and graph representation, and
an example of a basic equivalent graph.
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alternative - and much simpler - techniques to partition the superbasic set
of generalized network problems that take advantage of the block structure
of the generalized network basis.

Previously, we observed that the graph associated with the basis of a
generalized network problem is a collection of quasi-trees. Suppose the
basis matrix B consists of submatrices Be, f = 1,... ,L. We denote the
graph(quasi-tree) associated with Be by Ge = (Ne, Ee). The superbasic set
S can be partitioned in subsets Sk defined by

Se = {(i, j) E Sli, j E Ne} V e = 1, 2,..., L (71)

with Ue=lSe C S. This partitioning scheme will ignore any superbasic vari-
ables that connect basis submatrices. A partitioning scheme that includes
additional superbasic variables is the following: Given indices k, p(k) < L
and q(k) < L, p(k) $ q(k) choose BP(k) and B q(k) and define

SPkqk = (i,j) E Sli E Np(k),j E Nq(k)} (72)

SPk = {(i,j) e Sli,j E Np(k)} (73)

Sqk = (i,j) E Sli,j E Nq(k)} (74)

and finally Sk = SPkqk U SPk U Sqk. To ensure that two set Sk,, Sk2 are
independent we require

BP(ki) B p( k2) ~ B q( k2)

Bq(k1) 5 Bp(k2) ~ Bq(k2)

A procedure, that was found to work well in practice, to identify these
independent subsets Sk of superbasic arcs is described in [105]. Finally, we
point out that the partitioning techniques described in this section can be
extended to handle non-separable problems as explained in the same refer-
ence.

3.2.2 Dual and Proximal Methods

Dual coordinate methods are amenable to both synchronous and asynchron-
ous parallel implementation. In general, the basic idea is to perform the
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relaxation iterations for many nodes concurrently. On coarse-grain multipro-
cessors, each processor may be assigned to multiple nodes, whereas on ex-
tremely fine-grain machines, a cluster of processors might handle each node
of the problem network.

The simplest synchronous approach involves the idea of a coloring scheme
[22, pp. 21-27]; see also [129]. In a serial environment, one of the most natural
implementations of dual relaxation is the Gauss-Seidel method, in which one
lists the nodes of A/ in some fixed order, and cycles repeatedly through this
list, relaxing each node in sequence. A coloring of the network graph (KA, A)
is some partition of the node set KA into subsets (colors) such that no two
nodes of the same color are adjacent in the network. Suppose now that one
adopts a Gauss-Seidel node ordering in which all nodes of a given color are
consecutive in the list.

From the form of (53), the maximizing value of Pi in each relaxation it-
eration depends only on the prices of the adjacent nodes pj (for which there
exists (i, j) E ,A or (j, i) E A). and hence does not directly depend on the
prices of any nodes having the same color as i. It follows that the price up-
dates for all nodes of a given color may be performed simultaneously without
altering the course of the algorithm. Such procedures work particularly well
on transportation problems, for which only two colors suffice, one for the
origin nodes, and one for the destination nodes. On more general networks,
coloring is not guaranteed to be effective, but may still manage to employ a
fairly large number of processors efficiently. For example, Zenios and Mulvey
[129] present simulator-based results for up to 200 processors, using a greedy
heuristic to color arbitrary problem networks. We also note that any network
can be made bipartite by introducing an artificial node into the middle of
each arc. Two colors will always suffice for the resulting expanded network.

The theory of synchronous dual methods other than those based on col-
oring schemes is subsumed in that of asynchronous methods, which we now
summarize. We consider first a totally asynchronous environment in which
there are no bounds on computational latency or communication delays.
Each processor is associated with a single node i, and at time t stores the
current price of i, pi(t), and also prices pj(i, t) = pj(rij(t)) for each neighbor
j of i. These neighbor prices may be out of date, that is, rij(t) < t. As
the algorithm progresses, the neighboring processors send messages carrying
their prices to i, causing the pj(i, t) to be updated. As for the timing of the
algorithm, one assumes only that for each time T and node i,
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1. Node i is selected for relaxation at an infinite number of times after T.

2. All neighbors of i receive an infinite number of messages communicating
the price pi(t) for some time t > T.

3. There exists some time T' > T such that all messages carrying prices
from before time T are no longer in transit at time T'.

Here, assumptions 1 and 2 intuitively say that processors never stop com-
puting, nor do they ever cease successfully communicating their results to
their neighbors. Assumption 3 says that outdated information is eventually
purged from the communication system. The last two assumptions together
imply rij(t) -- oo as t -- oo. To obtain convergence results in this general
framework, one must take the (non-restrictive) step of fixing one node price
Pi in each connected component of (Af, A). In the following, we assume that
the problem network is connected, and set P1 = 0. Under these conditions,
it still does not follow that {p(t)} converges to an optimal solution. Instead,
one can assert only that every limit point pi of each coordinate sequence
{pi(t)} is such that there exists an optimal solution p* of (55) with p* = 0
and pi = pi. To obtain true convergence, one must assume

1. The set P* = argmax {q(p) I pi = 0} is bounded above in all coordi-
nates.

2. When node i is relaxed, pi(t + 1) is set to the largest value maximizing
q(p) with respect to the i th coordinate.

3. p(O) > p* (componentwise) for all p* E P*.

There is an analogous set of assumptions that gives convergence if P* is
bounded below in all coordinates, and pi(t + 1) is set as small as possible
when relaxing node i. For a complete analysis, see [19] or [22, Section 6.6].

We now consider partially asynchronous implementations, in which we
assume a certain maximum time interval B between updates of each Pi, and
that the prices of neighboring nodes used in each update are no more than B
time units out of date, that is, rij(t) > t - B for all i, j, and t. In this case,
it is not necessary to fix the price of any node. Instead, convergence may be
proven [22, Section 7.2] under the assumption that, when relaxing node i,

pi(t + 1) = (1 - 7)pi(t) + P,7
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where -y (0,1) is fixed throughout the algorithm, and Pi is, among all
values maximizing q(p) along the ith coordinate, the farthest from pi(t). This
result can be applied, for instance, to a synchronous Jacobi implementation
in which all nodes simultaneously perform an update based on p(t), and then
exchange price information with their neighbors.

The main difficulty with all synchronous parallel dual methods is the
complexity of the line search needed to maximize q(p) along a given coordi-
nate. Even when the fij have a simple functional form, q(p) tends to have a
large number of "breakpoints" along each coordinate, as the various arc flows
Xij(p) = -Vqij(Pi-pj) and xji(p) = -Vqji(pj-pi) attain or leave their upper
or lower bounds. If pi must be moved across many such breakpoints, relaxing
node i may be very time-consuming, possibly causing processors responsible
for simultaneously relaxing other nodes be kept idle while waiting for the
computation at i to be completed. To address this difficulty, Tseng [119] has
proposed a line search that is itself parallelizable, although it may result in
small steps; see also [22, pp. 413-414]. Several other stepsize procedures are
proposed in [131].

For row-action methods in which inequality constraints are explicitly du-
alized, practical computational research has concentrated on the use of col-
oring schemes: once the nodes have been partitioned into colors, one can add
one more color to handle the interval constraints [124]. More general "block
iterative" parallel implementations have also been proposed; see [32] and the
comprehensive survey in [29].

There are no parallelization ideas specific to proximal minimization meth-
ods; however, if dual coordinate methods are used to solve the sequence of
strictly convex subproblems (60) generated by proximal minimization, any
of the above parallelization approaches may be applicable.

3.2.3 Alternating Direction Methods

Alternating direction optimization methods are designed with massive, syn-
chronous parallelism in mind. In the alternating step method, the primal
update (63)-(64) for each arc (i, j) is completely independent of that for
all other arcs; therefore, all such updates may be performed concurrently.
Likewise, (66) may also be processed simultaneously for all arcs. The dual
update (65) can be done concurrently for all nodes i. The simplicity of both
the primal and dual calculations implies that they can be performed with
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little or no synchronization penalty. In fact, the most challenging part of
(63)-(66) to parallelize efficiently is the computation of the surpluses gi(y(t))
and gi(x(t+ 1)) It turns out that, of these, only the gi(x(t+ 1)) requires much
effort, as the gi(y(t)) can be found quickly and in parallel via the identity

gi(y(t + 1)) = (1 - p(t))gi(y(t)) + p(t)gi(x(t + 1)).

This identity follows from (66) because gi(x) is an affine function of x [54, 51].
Implementating the more "aggregated" alternating direction method of

[56] for nonlinear transportation problems is more complicated. For every
origin node i, each iteration requires an (approximate) optimization over a
simplex of dimension d(i). All these optimizations are independent, and can
be performed concurrently. Every destination node j requires a d(j)-element
averaging operation at each iteration. Again, all these calculations can be
performed at the same time.

3.3 Computational Experiences

3.3.1 Primal Methods

There have been substantial experiences with vector and parallel computing
using the truncated Newton algorithm and its parallel block variant. Experi-
ments with the vectorization of truncated Newton on a CRAY X-MP/48 are
reported in [128], which used test problems derived from several applications:
water distribution systems, matrix balancing and stick percolation. The per-
formance of the vectorized algorithm was on average a factor of 5 faster than
the scalar implementation. It is worth pointing out that a version of the
program that was vectorized automatically by the compiler was only 15%
faster than the scalar code. Substantial improvements in performance were
achieved when appropriate data structures and a re-design of the implemen-
tation were developed.

A subsequent paper [130] reports on the performance of the parallel trun-
cated Newton implementation on the CRAY X-MP/48 system. The algo-
rithm achieved speedups of approximately 2.5 when executing on three pro-
cessors. The observed speedup was very close to the upper bound provided
by Amdhal's law, given that a fraction of the PTN algorithm was not paral-
lelized.
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The block-truncated Newton method was also tested empirically in [125].
The block-partitioning techniques have been tested on both pure and general-
ized network problems. For two sets of pure network test problems (i.e., water
distribution and stick percolation models) it was observed that the superbasic
sets did not yield good partitionings. While the partitioning methods used
are very efficient, poor partitioning resulted in insignificant improvements
in performance. For the generalized network test problems, however, very
good partitionings were obtained. In this case even a serial implementation
of the block-partitioned algorithm was superior to the non-partitioned code.
Improvements varied from a factor of 1.5 to 5.3 with average improvement
across all problems of 2.6. As expected, better performance was observed for
the larger test problems.

Parallel implementations were carried out on a 4 processor Alliant FX/4
and the CRAY X-MP/48. In both cases some modest speedups in perfor-
mance were observed, in the range of 2 to 3. This is far from the linear
speedup of 4. The discrepancy is due to a load balancing effect: the blocks
of independent superbasic sets are not of equal size. Hence some processors
need more time to complete their calculations than others. Overall, how-
ever, the parallel block-partitioned algorithm was shown to be much faster
than the serial non-partitioned algorithm. The larger test problems have
15K nodes and 37K arcs, and the projected Newton equations in the neigh-
borhood of the optimal solution are of dimension 22K x 22K. This problem
required approximately 1 hour on a 4-processor Alliant FX/4 and 15 min.
on the CRAY X-MP/48 using the block-partitioned algorithm. The (non-
partitioned) algorithm executing on a single processor of the Alliant required
7 hours.

Figure 9 illustrates the performance of the PTN algorithm when imple-
mented without the block-partitioning ideas on a VAX 8700 mainframe, then
implemented with block-partitioning on the same (serial) architecture, and
finally implemented with parallelization of the block-partitioned algorithm
on the Alliant FX/4.

3.3.2 Dual and Proximal Methods

Computational experience with dual methods has been fairly extensive. Re-
sults for serial workstations have been reported by Tseng (see, for example,
[124]). A group of quadratic-cost test problems, known as TSENG1 through

76



100000

* GENOS on VAX

[ PCG on VAX
80000 - PCG on Alliant

60000

E

o 40000

0

20000

8022 15039 18000 20047 27571 37588

No. of arcs

Figure 9: Performance of Primal Truncated Newton and block-partitioned
Truncated Newton on serial and parallel architectures.

TSENG16, and especially TSENG1 through TSENG8, have become de facto
standard test problems. These problems were generated using a version of
NETGEN [81] altered to supply quadratic cost functions. TSENG1-TSENG8
are moderately ill-conditioned, positive definite, separable transportation
problems ranging in size from 500 x 500 to 1250 x 1250. In TSENG1-TSENG4,
the average node degree is about 10, whereas in TSENG5-TSENG8, the av-
erage node degree is about 20.

On parallel machines, early computational testing has focused primarily
on the Alliant FX/8, a high-performance 8-processor, shared-memory system,
and the CM-2 ([129] also gives some early, simulator-based results).

For the Alliant FX/8, [35] gives a lengthy account of the details of im-
plementing dual relaxation, both synchronously using a coloring scheme,
and with various degrees of asynchronism. The algorithm seems to work
faster the more asynchronism is allowed; the fully asynchronous, 8-processor
version requiring between 3 and 15 seconds to solve each of the problems
TSENG1-TSENG8. The speedups over a one-processor implementation av-
eraged around 6 (75% efficiency), but were as low as 3 for TSENG2, which
appears to be a hard problem for dual relaxation. These runs were done at
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an accuracy of 10-3 , meaning that the algorithm was terminated when the
absolute value of the flow imbalance at all nodes was less than

n EN

In other words,
ljr(X(p(t)))11. < (10-3) Ilblll/n.

Runs for the same Alliant FX/8 implementation at an accuracy of 10-6 given
in [126] are longer by about an order of magnitude (and considerably more on
the troublesome TSENG2). This phenomemon illustrates one drawback of
dual coordinate methods - a "tailing" effect by which final convergence near
the optimum may be slow. At an accuracy of 10-8, which is more standard in
mathematical programming, tailing effects would be even more pronounced.

Another architecture on which dual methods have been extensively tested
is the Connection Machine, starting with [127] on the CM-1, and continuing
with [89, 124, 131] on the CM-2. The work in [127] introduced the fundamen-
tal "segmented scan" representation of sparse networks for the Connection
Machine architecture, but studied only specialized cost functions conducive
to efficient line search, with encouraging preliminary results. The Connec-
tion Machine, having a SIMD architecture, cannot be truly asynchronous in
a hardware sense, but [127] established that, under such an architecture, it
seems best to iterate on all nodes simultaneously, using price information
possibly outdated by one time unit, rather than to use a coloring scheme. To
prove convergence of such a method, one must appeal to the partially asyn-
chronous convergence analysis of [22, Section 7.2]. Still another architecture
in which dual methods have been tested is a network of transputers [58].

A Connection Machine dual relaxation implementation for general sep-
arable positive definite quadratic cost functions is discussed in [131], which
examines four different line searches: an iterative procedure based on the
row-action literature, an exhaustive exact search method based on [73], a
small-step procedure like that of Tseng [119], and an original, Newton-like
step. Of these, the small-step and Newton-like procedures seemed to give
the most consistently good results. Solution times for the 16K-processor
CM-2 appeared to be comparable to those for the Alliant FX/8 (e.g., using
the Tseng-type line search, 12.4 seconds for TSENG8, versus 11.4 seconds
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for asynchronous relaxation of the FX/8). With twice as many processors,
CM-2 solution times decreased by about 30%.

Row-action dual methods designed specifically for transportation prob-
lems with quadratic or entropy (fij(xij) = xijj[log(xij/aiij)-1]) cost structures
are described in [124]. The constraints are partitioned into three sets, the ori-
gin node flow balance equations, the destination node flow balance equations,
and the arc flow bounds; a coloring scheme is used to alternate between the
three sets. A simple grid data structure is used in place of the more general
segmented scan representation of [127, 131]. At the fairly low accuracy level
of 10-3 , a 32K-processor CM-2 gave very low run times, between 0.1 and 4.2
seconds, on TSENG1-TSENG8. Similar run times are given for test prob-
lems with an entropy cost structure, but at higher (10-6) accuracy. For the
quadratic case, [89] gives an even more efficient, microcoded implementation
of the same algorithm.

A direct comparison of dual methods on the FX/8 and CM-2 appears in
[126]. Here, the asynchronous FX/8 implementation of [35] is pitted against
the row-action CM-2 method of [124] at 10-6 accuracy on the quadratic
TSENG1-TSENG8 test set. On average, a 32K-processor Connnection Ma-
chine was about three times as fast as the (much cheaper) FX/8, but was
actually significantly slower on two of the eight problems.

Comprehensive quantitative comparisons between the results of [35, 89,
124, 126, 127, 131] are difficult because of the varying precision levels, pro-
gramming environments, hardware configurations, and test problems. Table
4 gives a partial summary for TSENG1-TSENG8. It is taken from [52], and
therefore also includes data for an alternating direction method.

3.3.3 Alternating Direction Methods

Alternating direction methods have been tested less exhaustively than dual
relaxation approaches, the main results appearing in [52]. This paper tests
the alternating step method on quadratic and linear cost networks. The algo-
rithm is implemented on the CM-2 using two data structures, one resembling
that of [127], and one similar to the simple transportation grid approach of
[124]. In agreement with preliminary results in [51, Chapter 7], performance
on purely linear-cost problems proved to be very disappointing. On the
other hand, the results compare favorably with the dual relaxation imple-
mentations of [131] on the purely quadratic TSENG1-TSENG8 problems, at
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Run Time (Seconds)
Dual Row Alternating

Relaxation Action Direction
Problem [131] [124] [52]
TSENG1 6.77 1.55 2.11
TSENG2 N/A 2.45 4.32
TSENG3 9.75 2.03 3.50
TSENG4 13.92 2.06 4.68
TSENG5 3.34 1.63 2.95
TSENG6 5.56 3.43 3.91
TSENG7 15.90 3.45 5.17
TSENG8 9.68 2.85 4.64

Table 4: 16K-processor CM-2 Computational results for TSENG1-TSENG8,
with with accuracy 10- 3 , double precision arithmetic, and C/PARIS imple-
mentation. The dual relaxation method uses the Newton-like linesearch,
which appeared to be the most efficient.

similar (low) levels of accuracy. Performance was not quite as good as the
row-action approach of [124], which was specialized to transportation prob-
lems. Furthermore, the alternating step method was able to handle mixed
linear-quadratic problems with as many as 20% linear-cost arcs without ma-
jor degradation in performance, confirming the theoretical result that strict
convexity is not necessary for its convergence. [52] also derives and tests a
version of (63)-(66) for networks with gains, finding performance similar to
that obtained for pure networks.

Alternating direction methods seem to exhibit a similar "tailing" be-
haviour to that of dual methods, in that convergence near the solution can
sometimes be extremely slow. However, the phenomenon does not appear
to operate identically in the two cases. For instance, the alternating step
method has little difficulty with TSENG2, which produces a prolonged tail-
ing effect under dual relaxation, but converges slowly near the optimum of
TSENG1, which dual relaxation solves easily.

Recent results from [56] show that the amount of tailing in alternating di-
rection methods depends strongly on the way the problem has been split. On
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transportation problems similar to TSENG1-TSENG8, an alternating direc-
tion method slightly different from that [52] converged without discernable
tailing effects to considerably higher accuracy (10-6).

The combination of PMD (proximal minimization with D-functions) with
row-action algorithms for the parallel solution of min-cost network flow prob-
lems has been tested by Nielsen and Zenios [99]. They use both quadratic
and entropic nonlinear purturbations, and report numerical results for a set
of test problems with up to 16 million arcs on the Connection Machine CM-
2. In general they find that for the smaller test problems - up to 20,000 arcs
- the GENOS [93] implementation of network simplex on a CRAY Y-MP
is faster than the parallel code on a 16K CM-2. As problems get larger the
difference in performance between the two codes is reduced. GENOS could
not solve the extremely large test problems, with 0.5 to 16 million arcs. The
parallel code solved these problems in times that range from 20 minutes to 1.5
hours. The same reference provides details on implementation of the PMD
algorithm on the massively parallel machine, with particular discussion of
termination criteria and the use of internal tactics that improve the perfor-
mance of the algorithm. It also compares the quadratic with the entropic
proximal algorithms. Experiences with the massively parallel implementa-
tion of PMD algorithms for problems with embedded network structures,
i.e. two-stage and multi-stage stochastic network programs, are reported
in [98, 100]

4 Conclusions

Research activities in parallel optimization can be traced back to the early
days of linear programming: Dantzig-Wolfe decomposition can be viewed as
a parallel optimization algorithm. However, it was not until the mid-eighties
that parallel computer architectures became practical. This prompted the
current research in parallel optimization. Several new algorithms have been
developed for the parallel solution of network optimization problems: linear
and nonlinear problems, assignment problems, transportation problems and
problems with embedded network structures like the multicommodity net-
work flow problem and the stochastic programming problem with network
recourse.

On the theoretical front this research has produced a broad body of the-
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ory on asynchronous algorithms. Furthermore, the insights obtained from
looking into the parallel decompositions of network problems has occasion-
ally produced algorithms that are very efficient even without the advantage
of parallelism. In the domain of computational investigation, we have seen
the design of general procedures and data structures that facilitate the paral-
lel implementation of mathematical algorithms on a broad range of parallel
architectures: from coarse-grain parallel vector computers, like the CRAY
series of supercomputers, to massively parallel systems with thousands of
processing elements, like the Connection Machines. The results is that prob-
lems with millions of variables can now be solved very efficiently.

The rapid progress towards the parallel solution of "building-block" algo-
rithms for network problems has motivated research in more complex problem
structures that arise in several areas of application. For example, multicom-
modity network flow problems that arise in military logistics applications are
now solvable within minutes of computer time on a parallel supercomputer.
A few years ago these applications required multi-day runs with state-of-the-
art interior point algorithms [115, 106]. A new area of investigation, that has
been prompted by development of parallel algorithms, deals with planning
under uncertainty. The field of stochastic programming again goes back to
the early days of linear programming [43]. However, the size of these op-
timization problems grows exponentially with the number of scenarios and
time-periods. Decomposition algorithms involving network subproblems, and
implemented on suitable parallel architectures, are now being used to solve
problems with thousands of scenarios and millions of variables [92, 971.
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