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Abstract

A class of multiscale stochastic models based on scale-recursive dynamics on trees has recently

been introduced. These models are interesting because they can be used to represent a broad

class of physical phenomena and because they lead to efficient algorithms for estimation and

likelihood calculation. In this paper, we provide a complete statistical characterization of the

error associated with smoothed estimates of the multiscale stochastic processes described by

these models. In particular, we show that the smoothing error is itself a multiscale stochastic

process with parameters which can be explicitly calculated.
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1 Introduction

A class of multiscale models describing stochastic processes indexed by the nodes of a tree has

recently been introduced in [1, 2]. These models can be used to capture a surprisingly rich class

of physical phenomena. For instance, experimental results in [2] illustrate that they can be used

to model the statistical self-similarity exhibited by stochastic processes with generalized power

spectra of the form l/f3, and in [3] we describe how they can be used to represent any 1-D Markov

process or 2-D Markov random field. Moreover, this class of models leads to efficient algorithms

for estimation and likelihood calculation and as a result provides a useful framework for a variety

of signal and image processing problems [1, 2, 4, 5, 6].

Knowledge of the error statistics of smoothed estimates of such processes is essential for the

development of a number of important new applications, including for instance so-called mapping

problems [7J, the multiscale counterpart to the model validation problem in [8], and certain oceano-

graphic problems [9]. Several such applications have been developed in the context of 1-D Gauss-

Markov models by exploiting relatively recent results which show that the smoothing error processes

associated with Gauss-Markov models are themselves Gauss-Markov processes (7, 8, 10, 11]4. In

this paper, we derive a dynamic model for the smoothing error process associated with multiscale

stochastic models. In particular, we show that the smoothing error is itself a multiscale stochas-

tic process with parameters which can be explicitly computed. These results generalize previous

results for Gauss-Markov processes, since these processes correspond to a degenerate form of the

multiscale models, and provide the necessary framework for applications such as those mentioned

above.

This paper is organized as follows. In Section 2 we briefly review the class of multiscale stochastic

4More generally, Levy et al. [12] have recently shown that the smoothing error processes associated with the
class of Gaussian reciprocal processes, which contains the class of Gauss-Markov processes, are themselves Gaussian
reciprocal. See also [131 for similar results corresponding to 2-D .Gauss-Markov random fields.
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models of interest here and the scale-recursive estimation algorithm associated with them. In

Section 3 we derive a multiscale model for the smoothing error process.

2 Multiscale Stochastic Modeling and Optimal Estimation

The models presented in this section describe multiscale Gaussian stochastic processes indexed by

nodes on a tree. A qth order tree is a pyramidal structure of nodes connected such that each node

of the tree has q offspring (see Figure 1). We denote nodes on the tree with an abstract index s,

and define an upward (fine-to-coarse) shift operator 7 such that si is the parent of node s. We also

define a corresponding set of downward shift operators al, c . , aq such that sal, , -,saq are the

offspring of node s. In addition, we denote the set of nodes on the tree as T and the set of nodes

which includes node s and all of its descendants as T,, i.e. T, = {o(a = s or or is a descendant of s}.

Also, the complement of T, is denoted TIC. The statistical characterization of model state x(s) E R7Z

is then given by:

z(s) = A(s)z(sj) + B(s)t(s)

under the assumptions that x(O) - Af(O,P(O)), w(s) - A[(O,I), A(s) and B(s) are matrices of

appropriate size, and s = 0 is the root node at the top of the tree. The driving noise w(s) E Rpm is

white, i.e. w(s) and w(a) are independent if s r a, and independent of the initial condition a:(O).

The class of models (1) has a statistical structure that can be exploited to develop efficient

signal processing algorithms. In particular, note that any given node on the qth-order tree can be

viewed as a boundary between q + 1 subsets of nodes (q corresponding to paths leading towards

offspring and one corresponding to a path leading towards a parent). An important property of

the model (1) is that, conditioned on the value of the state at any node, the values of the state

corresponding to the q + 1 corresponding subsets of nodes are independent. This fact is the basis
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for the development in [1, 2] of an algorithm for computing smoothed estimates of x(s) based on

noisy measurements y(s) E 1RP of the form:

y(s) = C(s)z(s) + v(s) (2)

where v(s) Vf(O0, R(s)), and is independent of both w(s) and x(O). The algorithm for computing

the smoothed estimates of z(s) is a generalization to qth-order trees of the well-known Rauch-Tung-

Striebel algorithm for smoothing 1-D Gauss-Markov processes. We briefly review this algorithm

next, and then derive a generalmodIelTfor the eiror asso6ciat-ed-with the smoothed estimates.

We denote the set of states defined at nodes in 1T as X,, i.e. X, = {z(a)},ET, and similarly

Y, = {y(a))}OE,. The set of measurements in the subtree strictly below s is denoted YaQ', i.e.

Y.°q = {y(o)Ia is a descendant of s}. We also define /(slY) as the expected value of z(s) given

measurements in the set Y and the corresponding error covariance as P(slY).

The upward sweep of the smoothing algorithm begins with the initialization of /(slY,ar) and

P(slY8
2?) at the finest level. In particular, for every s at this finest scale we set :(slY,' q) to zero

and P(slYa ) to the solution at the finest level of the tree of the Lyapunov equation:

P(s) = A(s)P(sf)AT (s) + B(s)B T (s) (3)

where P(s) denotes the covariance of the process z(s) at node s. Suppose then that we have

i(SjYJ'Q) and P( 1sY q) at a given node s. This estimate is updated to incorporate the measurement

y(s) according to the following:

i(slY,) = i(s2Yq) + K(s)[y(s) - C(s)I(slY2a)] (4)

P(sIY,) = [I - K(s)C(s)]P(sIYQ) (5)

where K(ss) + R(s)]- '

Suppose next that we have the updated estimates i(sai Y..a ) at all of the immediate descendants

of node s. The next step involves the use of these estimates to predict x(s) at the next coarser
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scale, i.e. to compute i(sIY,,,j). Using the following upward model for the multiscale process [1, 2]:

x(5s) = F(s)x(s) + ti(s) (6)

with the measurement equation again given by (2), and where F(s) = P(sj)AT(s)P(s)- l and

E[i(s)fT(s)] = P(sj) - P(sf)AT(s)P(s)-lA(s)P(sj) - Q(s), we compute the fine-to-coarse

predicted estimates:

z(slY.aj) = F(saxi)Z(sailY.ai) (7)

P(sly,,i) = F(sai)P(sailY,.,)FT (sa) + Q(sai) (8)

The estimates i(slYa,), i = 1, q are then merged to obtain

q

:(slY'a) = P(slY-Q)E P-,(.SYa;)x(siY,,, ) (9)
i=l

p(5lya,) = [(1-q)P(s)- l + E P-l(slYJ;)]- 1 (10)

The recursion proceeds up the tree until one obtains the smoothed estimate of the root node,

:(0lYo). This estimate initializes a downward sweep in which i(slYo) is computed according to

r(slYo) = i(slY,) + J(s)[j(sqjYo) - ;(sitY,)] (11)

P(slYo) = P(slY) + J(s)[P(sjjYo) - P(sIYj)]JT (s) (12)

J(s) = P(slY.)F T (s)P-F(s.lYo) (13)

Note that (12) characterizes the smoothing error covariance at any given lattice site s, but does

not provide information about the correlation structure of the error process. The goal in the next

section is to provide a multiscale model for the smoothing error process, i.e. to show that the error

satisfies a recursion of the form (1), and to calculate the associated model parameters. This then

provides the complete statistical characterization of the smoothing error that we seek.
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3 Multiscale Smoothing Error Models

Given two nodes s and Cr E TC on the tree, we can always represent z(o) in terms of z(sj) and an

additive noise term p,io:

Xz(o) = ,4tz(S7) + ao,, (14)

by tracing a path from a to sl and using the upward dynamics (6) and downward dynamics (1) to

eliminate state variables along the way. The state transition matrix J,s, is a function of the upward

and downward prediction matrices A and F along the path, whereas Ta,J, is a linear function of the

upward and downward driving noises w and ri. For instance, the state z(saj) at the ith offspring

of s can be written in terms of the state z(saj) at the jth offspring as:

z(sac) = [A(sai)F(sa1 )]z(saj) + [A(saj)fv(saj) + B(sai)w(sai)] (15)

By construction, Tp,or is independent of the set of states z(s/) UX,, as well as the corresponding set

of measurements y(sf) U Y 5. This implies that :(lIY,.) = ,,, (sflY') which, using (14), implies

that:

(o-jY,) = a,,,.:(siY, ) + Wp,,, .J (16)

where we have defined the error in ;(sIY) as 2(sIY) z-(s) - z(slY). As a result, we see that

i(slY,) has the following Markov property:

E{i(stY.)i:(alYo), o E .o} = E{i(slYo)li(sj/Yo), {p,., J E T.C}}

= E{i(sIY.)IZ(sgiY.)} + E{i(sIY.)l{s,i,; , E GT.C}}

= E{i(sIY.)Ii(sljY.)} (17)

The first equality in (17) follows from (16), the second from the orthogonality of T~,a, to z(sl) and

Y,, and the last from the orthogonality of Tp,, to z(s) and Y,. Now, using the upward dynamics

(6), the upward sweep prediction equation (7) and standard linear least squares formulae we can
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write:

:(SIlY) = J(s)((SIYJ,) + bW(s) (18)

where J(s) is given by (13) and where, from (17), tb(s) is independent of {:(rls))}Ef, and has

covariance:

P(slY,) - P(slY,)F T(s)P-l(slIYo)F(s)P(sIlY) (19)

Next, note that the independence of tb(s) and {(O.(lY.))I}Ee implies that tb(s) is also independent

of the residual information about x(s) which is contained in the set of all available measurements

Yo, but not contained in Y,. In particular, at each node in 1T a residual component v,(o-) which is

orthogonal to the measurements in the set Y, can be defined as:

v.(oa) = y(o)- E{y(o)IY.}

- C(O)(olY,) + v(O) (20)

Denoting v, - {Iva(O)}IET, it is clear that span Yo = span {Y,,vl}, that v, I Y, and that v, I1

tb(s). Taking the expected value of both sides of (18) conditioned on v , , we obtain:

E({(sIY.,)Iv) = J(s)E{((sjiY,)lv,} (21)

Finally, noting that

i(siYo) = i(sIYo) + E{i(siY,)lv,} (22)

and then subtracting (21) from (18) results in:

(SlYo) = J(s)i(s jYo) + tw(s) (23)

which is a multiscale model for the smoothing error of precisely the same form as (1).

This model is, of course, consistent with the error covariance computation in (12). In particular,

using the Lyapunov equation for (23) we obtain:

P(sIYo) = J(s)P(srlYo)JT (s) + P(slY.) - P(slY 5)F
T (s)P-'(sjlY.)F(s)P(slY,)
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= p(slY.)+ J(s)[P(sjYo)- P(sIY)] JT (s) (24)

In addition, on first-order trees, the model (1) reduces to a standard Gauss-Markov model, and

hence (23) generalizes to qth-order trees the corresponding 1-D time-series result. The derivation

here is related to, but is in fact substantially simpler than, the derivation based on backwards

prediction error models in [8].
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List of Figures

1 Multiscale stochastic processes are indexed by the qth-order tree. The parent of a

node s on the tree is denoted sy, and its q offspring are denoted sa,, saq. . . . 11

S

Figure 1: Multiscale stochastic processes are indexed by the qth-order tree. The parent of a node
s on the tree is denoted sj, and its q offspring are denoted sal,. ., saq.


