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Abstract after the photodiode. The non-linearity of the photo-
diode makes the problem non-classical [5, 4]. Similar

Intersymbol interference in direct detection optical sys- approaches have been presented in [6, 1]. The original-

tems can limit the channel spacing in frequency division ity of this work is to design optimal filters from basic

multiplexing systems, and limit data rates and trans- principles. Examples of a Fabry-Perot interferometer

mission distances in long distance transmission systems. for optical filtering in a FDM system and a rectangular

We present minimum mean-square-error electrical fil- pulse passing through a dispersive fiber in long-distance

ters to compensate for optical intersymbol interference. transmission are presented in Section 3. The perfor-

The performance of these filters is compared with a mance of these filters is discussed in Section 4.

matched filter and the performance of an electrical fil-

ter with a rectangular response, for M-ary amplitude 2 Model
modulation.

The receiver front-end is composed of an optical filter,

1 Introduction a photodetector and a low-pass electrical filter as shown
1 Introduction in Figure 1. The received signal after the optical filter

We consider direct detection optical systems where the

receiver front-end is composed of an optical filter, a x(t) = VRe akp(t - kT)ej2ft}, (1)

photodetector and a low-pass electrical filter. In fre- k

quency division multiplexing (FDM) systems, an opti-

cal filter is placed before the photodetector to suppress where p(t) is the complex envelope of the received pulse

adjacent channel interference. When the channel spac- taking into account the transmit pulse and the channel

ing gets small, the filter bandwidth needs to be nar- response, ak (taken as real here) is the kth transmit

row. This introduces intersymbol interference (ISI) for symbol, and fc is the carrier frequency. We assume

the desired signal. If this distortion is not equalized or pulse amplitude modulation without chirping, e.g., by

compensated for, it can be a limiting factor in spacing using an external modulator. The sampler after the

the channels. electrical filter operates at baud rate, 1/T. The square

In long distance transmission, the fiber itself plays

the role of an optical filter as it disperses the pulse.

The amount of dispersion is proportional to transmis- optical electrical
sion distance and to the square of the baud rate. This filter filter k T

impairment affects the system in scaling to higher data

rates and longer distances.
The system model is described in Section 2. In this Figure 1: The receiver front-end includes an optical

paper we are concerned with reducing the effect of inter- filter, a photodiode and a low-pass electrical filter fol-
symbol interference by using an electrical filter located lowed by a sampler.

*The authors gratefully acknowledge support for this research of the signal envelope appears at the output of the pho-
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as additive white Gaussian noise with spectral density Let r(t) pass through the electrical filter. The sam-
No at the input to the electrical filter. This models pled output at time t = O is2
the thermal noise from the electronics as the dominant

noise. The signal then passes through a low-pass elec- = E aiaj / pj(c) h(f)do + N, (5)
trical filter and is sampled at time kT where k is an i j

integer.
where h(t) is the time-reversed impulse response of the
electrical filter and N is the noise at the sampled out-

3 Filter construction put. We want the electrical filter to minimize the mean-

square-error at the sampled output. A filter response
We start with the signal at the detector output, which h(t) can be decomposed into a component in the signal
we write as r(t) = zx(t)12 + n(t), where n(t) is the ad- space and a component orthogonal to the signal space.

ditive white Gaussian noise. In taking the magnitude The orthogonal component allows only noise through,
square, we drop the double frequency terms since they so we set this component to zero, leaving the signal
do not appear at the photodetector output. We can space as the relevant space to consider in designing the

write the post-detection received signal as filter. We let the number of transmitted symbols be fi-

r(t) = E sJ aiajp(t - iT)p*(t - jT) + n(t), (2) nite, but large so that it approximates well the infinite

i j case as far as the reception of symbol ao is concerned.
The corresponding signal space is a finite dimensional

where p*(t) is the complex conjugate of p(t). Since the space, say, spanned by m pi,j(t)'s including po,o(t). Let
left hand side of the above equation is real, we can take n be the dimension of this space. We call this space Sn
the real part of the right hand side. We can rewrite the and reindex the pi j(t) into p (t). Let Ok(t)'s be a set
above equation as of linearly independent waveforms that span Sn. Then

r(t) = aiajpij(t) n(t), (3) the filter response can be written as

i j n

where pi,j(t) = Re{p(t - iT)p*(t - jT)}. h(t) = hkk(t). (6)k=1
Without loss in generality, we can design the elec-

trical filter for time t = 0, i.e., we consider po,o(t) as At time t = 0, the output of the filter is

the desired signal and the other waveforms pi,j(t)'s as
intersymbol interference waveforms. Y0 = Zbk(p '(t),h(t)) N, (7)

r(t) = aoaopoo(t) + ±Eaiapi~ (t )+ n(t) (4 ) where the aiaj's are reindexed as bk's and (x(t), y(t))

signal , noise f x(t)y(t)dt. Let the error be the difference between the
ISI filter output Yo and the desired output a2. The mean-

One sees that the signal and ISI terms lie in the space square-error is M = E(Yo - a) 2 ]. Using the above
spanned by the Pi,j(t)'s. As the noise is white, a suf- values for Yo and h(t),

ficient statistics is obtained by projecting r(t) on that n m

space, by using correlators or matched filters. In ef- M = E[( Ehi((i(t),p'(t))bj-a
fect, we transform the one dimensional non-linear sys- i=1 j=i

tem into a multi-dimensional linear system. For a fixed No n n

value of k, the Pi,i+k(t)'s are time-translations of each + 2 E E hi('i (t), '/j(t))hj, (8)
other, i.e., pi,j(t) = po,j-i(t - iT). It follows that the i=1j=1
number of matched filters needed is no more than the(h(t), h(t)). Using matrix notation,
dimension of the space spanned by the po,k(t)'s. Weht), ht)). Using matrix notation,
define the ISI space, I, as the space spanned by pi,j(t)'s M = E[(hTWb - a)(bTWTh - a)
without po,0(t), the desired signal. We define the sig- N0
nal space to be the space spanned by I and po,o(t). In + N°hTAh, (9)
this work we limit ourselves to least-mean-square linear
structures. Zero-forcing, decision-feedback and maxi- where Wij = (bi (t),pj(t)), Ai,j = (4i(t), V$j(t)), hi =
mum likelihood structures will be reported elsewhere. hi and bi = bi. The bold face letters are matrices or
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column vectors. We rearrange the above quantities
2 a (b)

T T W T N - .................. .................... . ... ..........M = hT(WbbTWT+ 2A)h 0 

-2hTWba+ aO, (10) 0.4 
-1 0 .2.- .................

where x denotes the expectation of x. Let B = 5 -5 0 5 10

2(WbbTWT + -NA). time (T) frequency (/T)

In Appendix A, we show that B is a positive definite (c)

matrix even when No = 0. The minimum of the mean- 12
square-error occurs at

ho= B-'c, (11) 
-0.5"

where c = 2Wba 2. Substitute ho into M, the mean- -1 -0.8 -0.2 0 0.2 0. 0.6 0.8 1
time (T)

square-error at the minimum is

- 1 Figure 2: The optical filter is a Fabry-Perot interferom-
°M = ao - cTB-c. (12) eter. The plots show the impulse response (a) and the

magnitude of the frequency response (b) of the optimal
If a zero-forcing filter exists, it satisfies hTWb = a2 for electrical filter when r = 1. The eye diagram is shown
all b and it clearly minimizes M when No = 0. Thus in (c).
ho is the zero-forcing filter (if it exists) when No = 0.

A is the carrier wavelength, c is the speed of light, and
3.1 Fabry-Perot interferometer L is the length of the fiber. The transmit pulse is a

From [2, 3], the complex envelope of the impulse re- rectangular pulse equal to 1 for t in [0, T] and zero oth-
sponse of the Fabry-Perot interferometer is well approx- erwise. In Figure 3, we plot the impulse and frequency

imated by 1 e-<T for t > 0, and rT = ! where F is responses of the electrical filter when SNR = 20 dB and-rT irF
the 3 dB bandwidth of the filter. Letting the transmit ac = 1, as well as the eye diagram.

pulse equal to 1 in the interval [0,T] and 0 otherwise,

the received pulse envelope is
4 Performance evaluation

1 - e T 0 < t < T 1
p(t) = (e )e- t > T (13) In the following we consider four different performance

curves for situations in Sections 3.1 and 3.2. Extension

The pi,j(t)'s can be expressed as linear combinations to multilevel signaling is considered for four and eight

of time translations of only po,o(t) and po,-l(t), due level signaling. The bit rate is the same. The baud

to their exponential tails. In Figure 2, we plot the rate is decreased by log 2 M as compared to the two

impulse and frequency responses of the electrical fil- level case, where M is the number of signaling levels.

ter when SNR = 20 dB and r = 1, as well as the eye The transmit symbols so,..., sl- are si = for

diagram. We let SNR = .(Po')'. Note the relatively i between 0 and M- 1. The si's have equal probability
- (h,h)'
low2 of being transmitted. With these choices, the average

energy per bit and power level stay constant with M.

3.2 Dispersive channel We define the eye opening to be the minimum vertical
opening in an eye diagram at the sampling time. When

Let the optical filter model a dispersive channel with the filter is normalized to have unit energy, we refer

frequency response e- jaf , where to the eye opening as normalized eye opening. When

there is only a single pulse transmission, the optimal
ac = 2A .L(14) filter is a filter matched to the electrical pulse po,o(t).

c The normalized eye opening for this case appears in the

R is the bit rate and f is normalized to the bit rate. D matched filter curve (curve M).

is the dispersion of the fiber in units of (ps/km. nm), With the mean-square-error formulation, the eye
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Figure 3: Dispersive channel and rectangular transmit Figure 4: The optical filter is a Fabry-Perot interferom-
pulse: plots (a) and (b) show the impulse and frequency eter. The plots have the following labels: (M) matched
responses of the optimal electrical filter when SNR = filter curve, (Z) LMS filter with no noise and (MS) LMS
20 dB and a = 1, along with the eye diagram in plot filter with maximum eye opening, (R) rectangular filter

(c). and (2,4,8) signaling levels.

lar filter for large values of r'. There is no advantage to
opening depends on the amount of noise present. When multilevel signaling for the rectangular filter, same con-
the noise is set to zero (curve Z), the filter is also a zero- clusion as in [2]. On the other hand, with equalization
forcing filter, if it exists. As the noise spectral density such as using the zero-forcing filter, the performance
increases, the normalized eye opening is observed to in- is much better than the rectangular filter. In terms
crease and then to decrease. There is a noise level that of multilevel signaling, there is advantage to change to
corresponds to the maximum normalized eye opening four level signaling from two level signaling in the case
(curve MS). In the case of M-ary signaling with M = 4 of the zero-forcing filter for large values of r'.
and M = 8, this noise level is very small, and the MS In Figure 5, we plot curves for the dispersive channel
curves almost coincide with the Z curves. We also con- case (Section 3.2). The vertical axis shows the normal-
sider rectangular filters where the impulse response is ized eye opening in dB. The parameter a for the hori-
equal to T in the interval [0, T] and zero otherwise zontal axis is a dispersion parameter (14). Although the

for the Fabry-Perot case, and shifted by -T for the optical channel is lossless, the matched filter curve de-
dispersion case (curve R). creases with ao, because dispersion reduces the electrical

In Figure 4, we plot curves for the case of Fabry- energy of the pulse. We see that multilevel signaling is
Perot interferometer (Section 3.1). For the verti- advantageous at high bit rates when a zero-forcing filter

cal axis, the units are in dB using the definition is used.
10log1 0 (normalized eye opening). The zero dB point
is the eye opening for the binary case without ISI. Let A Appendix
r' = rT where T' is the inverse of the bit rate. From

Section 3.1, the quantity rT is inversely proportional to We show that the two matrices in B = 2(WbbTWT +
the filter bandwidth and has units of (1/Hz). Thus the -LA) are positive definite. Since bi(t)'s are linearly

i n dTAx efp ( XendefOnt waveform(i (t)dt)2 > 0
bandwidth efficiency (in a s) increases with r'. The independent waveforms, xTAx = (i xipi(t)dt)2 > O

for any non-zero x, and A is positive definite. Next we
vertical offset when r' = 0 is due to a M-1 factor show that xTWbbTWTx > 0 for x 0. For a given b
to keep the bit rate and average energy per bit con- and x
stant for different M. As r' increases the filter band-

width becomes smaller and there is more intersymbol xTWb = J(E xi'i(t))( bj (t))dt (15)
interference. The eye openings close for the rectangu- i j
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Figure 5: Dispersive channel with rectangular trans-
mit pulses. The plots have the following labels: (M)
matched filter curve, (Z) LMS filter with no noise and
(MS) LMS filter with maximum eye opening, (R) rect-
angular filter and (2,4) signaling levels.

where izi xib(t) is in S,,. We will show that S,, is
spanned by the set {Ejbjp['(t)}, and thus the right
hand side of (15) is non-zero for at least one b. For one
symbol transmission, the pi,i(t)'s are clearly spanned
by >j bjpj(t)'s. We need to check that the pi,j(t)'s are
spanned as well for i / j. For two symbol transmis-
sions, the output is aiaipi,i(t) + 2aiajpi,j(t) + ajajpj,j(t)
and the new component pi,j(t) is spanned. Hence
xTWb is non-zero for some b when x $ 0, and

xWbbTWTx > 0 for x =: 0 as desired.
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