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Abstract
We explore the simulation and computational capabilities of hybrid and con-

tinuous dynamical systems. The continuous dynamical systems considered are
ordinary differential equations (ODEs). For hybrid systems we concentrate on
models that combine ODEs and discrete dynamics (e.g., finite automata). We
review and compare four such models from the literature. Notions of simulation
of a discrete dynamical system by a continuous one are developed. We show that
hybrid systems whose equations can describe a precise binary timing pulse (ex-
act clock) can simulate arbitrary reversible discrete dynamical systems defined on
closed subsets of Rn . The simulations require continuous ODEs in IR2n with the
exact clock as input. All four hybrid systems models studied here can implement
exact clocks. We also prove that any discrete dynamical system in rn can be
simulated by continuous ODEs in Rt2n+1. We use this to show that smooth ODEs
in RI3 can simulate arbitrary Turing machines, and hence possess the power of
universal computation. We use the famous asynchronous arbiter problem to dis-
tinguish between hybrid and continuous dynamical systems. We prove that one
cannot build an arbiter with devices described by a system of Lipschitz ODEs. On
the other hand, all four hybrid systems models considered can implement arbiters
even if their ODEs are Lipschitz.

Key Words: hybrid systems, universal computation, asynchronous arbiter, simulation,
Turing machines, differential equations, dynamical systems

1 Introduction

Hybrid systems are systems that combine both discrete and continuous dynamics.
The continuous dynamics are usually represented by ordinary differential equations
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(ODEs). The discrete dynamics are generally governed by finite automata. The two
interact at "event times" determined by the hitting of certain prescribed sets in the
continuous state space.

In this paper, we explore the simulation and computational capabilities of hybrid
systems. We concentrate on four models of hybrid systems in the control and dynam-
ical systems literature [34, 3, 29, 12]. In each case, these models combine ODEs with
some form of discrete dynamics. This paper is a step towards the characterization of
these models in terms of the types of systems that can be described by, or "imple-
mented" with, their equations. By construction, however, each model can implement
ODEs with continuous vector fields (continuous ODEs). Thus, even with no discrete
dynamics, these models can describe a large variety of phenomena.

In addition to "implementing" ODEs, all four models can implement a precise
binary timing pulse or "exact clock" (defined later). Thus, we explore the capabilities
of systems with continuous ODEs and exact clocks. For instance, we show such systems
can simulate arbitrary reversible discrete dynamical systems defined on closed subsets
of Rn . These simulations require ODEs in [R2n which use an exact clock as input.

Later, we find that one can still simulate arbitrary discrete dynamical systems
defined on subsets of Zn without the capability of implementing an exact clock: one
can use an approximation to an exact clock. Such an "inexact clock" is implemented
with continuous functions of the state of a one-dimensional continuous ODE. As a
result, one can perform such simulations using continuous ODEs in [R2n+1. Turning
to computational abilities, we show that continuous ODEs in [R3 possess the ability
to simulate arbitrary Turing machines, pushdown automata, and finite automata.
By simulating a universal Turing machine, we conclude that there exist ODEs in [R3
with continuous vector fields possessing the power of universal computation. Further,
the ODEs simulating these machines may be taken smooth and do not require the
machines to be reversible (cf. [26]).

Finally, we show that hybrid dynamical systems are strictly more powerful than
Lipschitz ODEs in the types of systems they can implement. For this, we use a
nontrivial example: the famous asynchronous arbiter problem [8, 23, 36]. First we
quickly review the problem. Then we settle it in an ODE framework by showing that
one cannot build an arbiter out of devices modeled by Lipschitz ODEs. Next, we
examine the problem in a hybrid systems framework. We show that each of the four
hybrid systems models can implement an arbiter even if their continuous dynamics is
a system of Lipschitz ODEs.

The paper is organized as follows. In the next section we review some definitions
from dynamical systems and develop some notation. In Section 3 we review four
models of hybrid systems as presented in [34, 3, 29, 12]. We also briefly compare the
different models. In Section 4 notions of simulation are discussed. Here, we make
precise what we mean by "simulation" of discrete dynamical systems by continuous
dynamical systems. All our simulation results are collected in Section 5. Section 6
deals with the asynchronous arbiter problem. The Appendix collects some technical
lemmas.
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2 Preliminaries

Throughout, we assume familiarity with standard notions and notations of analysis
and topology [30, 28, 27]. Let R, R +, 7, and Z+ denote the reals, nonnegative reals,
integers, and nonnegative integers, respectively.

First, we review some standard definitions from dynamical systems [31, 17].

Definition (Dynamical system) A continuous (resp. discrete) dynamical system
defined on the topological space X over the semigroup IF+ (resp. Z +) is a function
f: X x R+ -- X (resp. f: X x Z + -- X) with the following three properties:

1. Initial condition: f (p, O) = p for any point p C X.

2. Continuity on both arguments.

3. Semigroup property:
f(f(p, tl), t 2) = f(p, t l + t 2),

for any point p C X and any tl and t2 in R + (resp. 7+).

Technically, such functions are referred to as semi-dynamical systems, with the
term dynamical system reserved for those which the semigroups R + , /+ above may
be replaced by the groups R, Z. However, the more "popular" notion of dynamical
system in math and engineering-and the one used here-requires only the semigroup
property [15, 21]. Thus, the term reversible dynamical system is used when it is
necessary to distinguish the group from semigroup case [22].

The shorthand [X, S, f] denotes the dynamical system f defined on X over the
semigroup S; X is referred to as its state space and points in X are called states. If a
dynamical system is defined on a subset of X, we say it is a dynamical system in X.

For every fixed value of the parameter s, the function f(., s) defines a mapping
of the space X into itself. Given [X, Z+, f], f(., 1) is its transition function. Thus
if [X, Z+, f] is reversible, its transition function is invertible, with inverse given by

f(.,-1).
The set f(p, S) = {f(p, i) ii E S} is called the orbit or trajectory of the point p.

A fixed point of [X, S, f] is a point p such that f (p, s) = p for all s C S. A set A C X
is invariant with respect to f, or simply invariant, if f (A, s) C A for all s e S.

The notions of equivalence and homomorphism are crucial. Two dynamical systems
[X, S, f], [Y, S, g] are said to be isomorphic (also topologically equivalent or simply
equivalent) if there exists a homeomorphism A : X -4 Y such that

l(f (p, s)) = g(lb(p), s),

for all p E X and s G S. If the mapping l is only continuous, then [X, S, f] is said to
be homomorphic to [Y, S, g]. Homomorphisms preserve trajectories, fixed points, and
invariant sets.

In this paper, the continuous dynamical systems dealt with are defined by the
solutions of ordinary differential equations (ODEs) [18]:

x(t)= f(x(t)), (2.1)

where x(t) E X C Rn. The function f: X -+ Rn is called a vector field on En. The
resulting dynamical system is then given by O(xo, t) = x(t) where x(-) is the solution
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to Equation (2.1) starting at xo at t = 0. (We assume existence and uniqueness
of solutions; see [18] for conditions.) A system of ODEs is called autonomous or
time-invariant if its vector field does not depend explicitly on time. Throughout, the
shorthand continuous (resp. Lipschitz) ODEs denotes ODEs with continuous (resp.
Lipschitz) vector fields.

An ODE with inputs and outputs [21, 33] is given by

xit) = f((t) = (t),u(t)),
(2.2)y(t) = h(x(t)),

where x(t) E X C Rn, u(t) G U C lRm, y C Y C Rp , f : Rn x I m -+ R n, and
h: Rn - RiP. The functions u(.) and y(.) are the inputs and outputs, respectively.

Other notation is common [30, 27]: X\U represents the complement of U in X; U
represents the closure of U, AU its boundary; f(t+), f(t-) denote the right-hand and
left-hand limits of the function f at t, respectively; a function is right-continuous if
f(t + ) = f(t) for all t; unless specified lxllx denotes an arbitrary norm of vector x, Ilxll 2
its Euclidean norm; the infinity norm of x C iR", denoted ]Jx1J , is maxn=l Ixil.

Finally, for x E RI, [xJ denotes the greatest integer less than or equal to x, and, in
an abuse of common notation, Fxl denotes the least integer greater than x; IAl, A a
set, denotes its cardinality; A _ {1,..., N} means A is a set with IAI = N.

3 Models of Hybrid Systems

This section summarizes four precise models of hybrid systems developed from the
control and dynamical systems point of view. For sure, there are many others and no
review is attempted here [1, 16]. These have been chosen as much for the clarity and
rigor of their presentation as for the mechanisms they use to combine discrete and
continuous dynamics. Specifically, in Sections 3.1-3.4 we review the following models
of hybrid systems, in order of (original) appearance of the cited papers:

1. Tavernini's model [34],

2. Back-Guckenheimer-Myers model [3],

3. Nerode-Kohn model [29],

4. Brockett's model [12].

Only the models are given here with minimal discussion. For further discussion and
examples, the reader is referred to the original papers.

Some models in the papers above allow time-varying vector fields, but we only
consider autonomous ones here. Also, we have sometimes changed notation from the
original papers to make the presentation more uniform.

In Section 3.5, we briefly compare the four models.

3.1 Tavernini's Model

Tavernini discusses so-called differential automata in [34]. He was motivated to study
such systems as a means of modeling phenomena with hysteresis.
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A differential automaton, A, is a triple (S, f, v) where S is the state space of A,
S = En x Q, Q -{1,..., N} is the discrete state space of A, and Rn is the continuous
state space of A; f is a finite family f(., q) RWn -4 Rn, q C Q, of vector fields, the
continuous dynamics of A; and v : S -* Q is the discrete transition function of A.

Let vq _ v(., q), q E Q. Define I(q) = vq(R)\ {q}, that is, the set of discrete states
"reachable in one step" from q. We require that for each q E Q and each p E I(q)
there exist closed sets

Mq,p - Vql (p).

The sets oMq,p are called the switching boundaries of the automaton A. Define Mq =

UpEI(q) Mq,p and define the domain of capture of state q by

C(q) =- n\Mq = {x E Rn I v(x, q) = q}.

The equations of motion are

x (t) = f(x(t),q(t)),

q(t) = v(z(t),q(t-)),

with initial condition [xo, qo] E UqEQ C(q) x {q}. The notation t- indicates that the
discrete state is piecewise right-continuous. Thus, starting at [xo,i], the continuous
state trajectory x(.) evolves according to x = f(x, i). If x(.) hits some aMi,j at time
t1, then the state becomes [x(ti), j], from which the process continues.

Tavernini places restrictions on the model above. First, for each q G Q and p G
I(q), the set Mq,p is required to be connected and there must exist a smooth function
gq,p :n _- R with 0 in its image a regular value such that

Mq,p = {x E En g9q,p(X) > 0}.

Thus, v-l (p) is an n-submanifold of Rn with boundary

aMq,p {X C I gq,p(x) = 0},

which is an (n - 1)-submanifold of Rn.

Also, Tavernini places the following three key restrictions on differential automata:

1. Define Oaq = min{dist(Mq,p, Mq,p,) I p,p' C I(q),p h p'}. We require that

a(A)_ min q > 0
qEQ

be satisfied. That is, the distance between any two sets with different discrete
transitions is bounded away from zero.

2. Define 3q,p = min{dist(OMq,p, aMp,p,) I (p)}. We require that the inequal-
ity

/3(A) _ in min (q,p > 0
qEQ pEI(q)

be satisfied. That is, after a discrete transition, the next set from which another
discrete transition takes place is at least a fixed distance away.

5



3. The assumption on ac(A) is such that C(q) is an open set with boundary AC(q)
dMq = UpCI(q) &Mq,p. We require that the inclusions

aMq,p C C(p), p E I(q), q C Q,

be satisfied. That is, after a discrete transition the continuous state is in an
open set on which the dynamics are well-defined.

We refer to the above as the TDA model, for Tavernini's differential automata.
In [34], Tavernini uses the above assumptions to prove results about the trajectories

of differential automata and the numerical computation of their trajectories.

3.2 Back-Guckenheimer-Myers Model

The framework proposed by Back, Guckenheimer, and Myers in [3] is similar in spirit
to the TDA model. The model is more general, however, in allowing "jumps" in the
continuous state-space and setting of parameters when a switching boundary is hit.
This is done through transition functions defined on the switching boundaries. Also,
the model allows a more general state space.

More specifically, the model consists of a state space

S= J Sq, Q {1,., N},
qEQ

where each Sq is a connected, open set of IFn. Notice that the sets Sq are not required
to be disjoint.

The continuous dynamics are given by vector fields fq: Sq X- Rn. Also, one has
open sets Uq such that Uq C Sq and OUq is piecewise smooth. For q E Q, the transition
functions

Gq: Sq --+ S x Q

govern the jumps that take place when the state in Sq hits dUq. They must satisfy
7li(Gq(X)) C UV 2(Gq(x)), where 7rk is the kth coordinate projection function. Thus,
Wl(Gq(x)) is the "continuous part" and 1r2 (Gq(x)) is the "discrete part" of the transi-
tion function.

The dynamics are as follows. The state starts at point x0 in Ui. It evolves according
to x = fi(x). If x(.) hits some dUi at time tl, then the state instantaneously jumps
to state I in Uj, where G(x(ti)) = (5,j). From there, the process continues.

It is assumed that the switching boundaries OUq have a concrete representation in
terms of the zeros of

hq _ min{hq,l,..., hq,Nq).

where the hq,i : Sq -- R are smooth. The convention then is such that hq > 0 on Uq.
We refer to the above model (simplified from the one in [3]) as the BGM model.
The paper [3] presents computer tools that have been developed by its authors for

the simulation of such hybrid systems.

3.3 Nerode-Kohn Model

In [29], Nerode and Kohn take an automata-theoretic approach to systems composed
of interacting ODEs and finite automata (FA). They develop many models from this
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approach, but to keep the discussion germane to that so far, we discuss only the so-
called "event-driven, autonomous sequential deterministic model" [29, p. 331]. The
model consists of three basic parts: plant, digital control automaton, and interface.
In turn, the interface is comprised of an analog-to-digital (AD) converter and digital-
to-analog (DA) converter. We refer to it as the NKSD (for sequential deterministic)
model.

The plant is modeled as Equation (2.2). It is considered to be an input/output
automaton as follows. The states of the system are merely the usual plant states,
members of IRn [29, p. 333]. The input alphabet is formally taken to be the set of
members of (u(.), Sk) where 6k is a positive scalar and u(.) is a member of the set
of piecewise right-continuous functions mapping [R+ to U. Let PU, for piecewise U,
denote the latter set. Suppose the plant is in state Xk at time tk. The "next state"
of the transition function from this state with input symbol (u(.), k) is given by
Xk+1 - (tk + ak), where x(.) is the solution on [tk, tk + Jk] of

x(t) = f((t), U(t - tk)), X(tk) = Xk-

Setting tk+l = tk + 3 k, the process is continued.
The digital control automaton is a quintuple (Q, I, 0, ir, ), consisting of the state

space, input alphabet, output alphabet, transition function, and output function,
respectively. In general, Q, I, and O may be arbitrary subsets of ;Z+. However, the
interesting case is when these sets are finite and the equations represent a FA with
output, which is discussed below. In any case, the functions involved are v: Q x I -- Q
and I: Q x I -* 0. The FA may be thought of as operating in "continuous time" by the
convention that the state, input, and output symbols are piecewise right-continuous
functions:

q(t) = v(q(t-),i(t)),

o(t) = qr(q(t),i(t)).

Here, the state q(t) changes only when the input symbol i(t) changes.
It remains to couple these two "automata." This is done through the interface by

introducing maps AD : Y x Q -* I and DA: 0 -+ PU. The AD symbols are deter-
mined by (FA-state-dependent) partitions of the output space Y. These partitions are
not allowed to be arbitrary, but are the "essential parts" of small topologies placed on
Y for each q C Q. We explain this later. To each o C O is associated an open set of
PU. The DA signal corresponding to output symbol o is chosen from this open set
of plant inputs. The scalar 3 k is a formal construct, denoting the time until the next
"event."

Briefly, the combined dynamics is as follows. Assume the continuous state is
evolving according to Equation (2.2) and that the FA is in state q. Then AD(., q)
assigns to output y(t) a symbol from the input alphabet of the FA. When this symbol
changes, the FA makes the associated state transition, causing a corresponding change
in its output symbol o. Associated with this symbol is a control input, DA(o), which
is applied as input to the differential equation until the input symbol of the FA again
changes.

Now, we explain what is meant by the "small topologies" mentioned above, con-
centrating on the AD map. Nerode and Kohn introduce topologies that make each
mapping ADq - AD(., q), q E Q, continuous as follows:
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1. First, take any finite open cover of the output space: Y = Udi=1Ai, where the
Ai are open in the given topology of Y.

2. Next, find the so-called small topology, 7Ty, generated by the subbasis Ai. This
topology is finite and its open sets can be enumerated, say, as B 1, ... ,3K.

3. Next, find all the non-empty join irreducibles in the collection of the Bi (that is,
all non-empty sets I3j such that if Bj = Bk U B1, then either Bj = Bk or Bj = B1).
There are a finite number of such join irreducibles, denoted C1,..., CM.

4. Without loss of generality, let the set of symbols be I = {1,..., M} and define
the ADq(y) = i if Ci is the smallest open set containing y.

5. Create a topology, T7, on I as follows. For each i E I, declare Di = {j I Cj C Ci}
to be open. Let Ti be the topology generated by the Di.

The sets ADq1 l(i), i C I are the essential parts mentioned above. For a verification
that ADq is continuous, as well as other results on AD and DA maps, see [7].

The Nerode-Kohn paper develops the underpinning of a theoretical framework for
the hybrid continuous/rule-based controllers used by Kohn in applications. Continuity
in the small topologies associated with the AD and DA maps above plays a vital role
in the theory of those controllers. See [29] and the references therein for details.

3.4 Brockett's Model

Several models of hybrid systems are described in [12]. We only discuss those that
combine ODEs and discrete phenomena since that is our focus here.

Brockett introduces a "type D hybrid system" as follows:

x(t) = f(z(t),u(t),zLpJ),

p(t) = r(x(t),u(t),zLpJ),

zrpl = v(xLtpJ,zLPJ,vLpJ),

where x(t) G X C Rn, u(t) C U C R m , p(t) C RI, vLpJ E V, z[Lp E Z, f : [WnxW m xZ -
Rn , r: Rn x ERm x Z -+ R, and v: On x Z x V -- Z. Here, X and U are open subsets
of nW and Wm, respectively. In general, V and Z may be arbitrary subsets of Z+, but
we deal with the case where they are finite. The notation LpJ denotes the greatest
integer less than or equal to p and LtpJ denotes the value of t at which p most recently
became an integer; zLpJ, e.g., is short for z(Lp(t)J). The "rate equation" r is required
to be nonnegative for all arguments, but need have no upper bound imposed on it.
We denote such a system as BD, for Brockett's type D model.

The first equation represents the continuous dynamics and the last equation the
"symbolic processing" done by the system. The input u(t) is the continuous control
exercised at time t; the input vLpj is the pth symbolic or discrete control, which
is exercised at the times when p passes through integer values. Thus, Brockett has
combined continuous and discrete dynamics by the inclusion of the special "timer"
variable p, the two interacting whenever p takes on an integer value.

In general, one may also introduce continuous and symbolic output maps

y(t) = c(x(t),zLpJ),

o pJ = l(y[tpJ,zLpJ).
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In this case, one may limit f or r by allowing them to depend only on y instead of the
full state x.

Brockett also has a simpler "type B hybrid system" in which the v equation does
not appear and the symbolic control v[pJ replaces z [pJ in the first two equations.
Finally, he generalizes BD to the case of "hybrid system with vector triggering" in
which one replaces the single rate and symbolic equations with a finite number of such
equations.

In [12], Brockett gives many examples of devices modeled with these systems of
equations, including buffers, stepper motors, and transmissions.

3.5 Discussion

In the sequel, we explore the capabilities of the four hybrid systems models, TDA,
BGM, NKSD, and BD, described above. Clearly, these models were developed for dif-
ferent purposes with assumptions arising accordingly. Nevertheless-and for expediency-
we note some containment relations among these models.

Here, A contains B means that every system described by the equations of model
B can be described by the equations of model A. When the equations of a model
describe a system, we say that the model implements that system.

First, since we are not interested in control in this paper, we develop autonomous
versions of the models NKSD and BD above, in which the control inputs are replaced
by fixed functions of state. (The reader interested in control of hybrid systems should
consult [9, 12, 16].)

For instance, here is an autonomous version of NKSD, which we refer to as
NKAUT:

x(t) = f(x(t),q(t)),
q(t) = v(q(t-),AD(x(t), q(t-))),

where x(t) E Rn, q(t) E Q-_ {1,...,N}. Here, f: n x Q - Rn, v: Q x I -+ Q,
and AD: En x Q -X I _{1,..., M}. Note that we have incorporated the output
equations into the f, v, and AD functions. The AD map is restricted as discussed in
Section 3.3.

Here is an autonomous version of the BD model, which we refer to as BAUT:

x(t) = f(x(t), zLp),

p(t) = r(x(t),zLpj),
Z p] = (X [tpJ,zpJ, [pJ),

where x(t) E Rn , p(t) E R, z LpJ E Z 1, . . ., N), f: Rn x Z - Rn, r: Rn x Z -+ R,
and v: xn x Z x Z -4 Z. As in BD, r is restricted to be nonnegative.

By construction, NKSD contains NKAUT and BD contains BAUT. Note also that
BAUT is distinct from the TDA and NKAUT models since, for instance, it allows
arbitrary dependence of the discrete dynamics v on x LtpJ, which can lead to partitions
not permitted by the other two models. We have other containment relations as
follows.

Remark BGM contains TDA.
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Proof Given an arbitrary TDA equation, choose, in the BGM model, Sq = E n,
Uq = C(q) = RWn\ Mq, fq = f(., q), Gq(x) = (x,p) if x C Mq,p, and hq,p - -gq,p for all
q E Q, pE I(q). Lo

Remark NKA UT contains TDA.

Proof Suppose we are given an arbitrary TDA equation (i.e., a differential automaton
A). Let primed symbols denote those in the NKAUT model with the same notation
as those for the differential automaton. Set Q' = Q, f'(., q) = f(., q), q c Q'. This
duplicates the continuous dynamics.

Now, for each q C Q', choose the small topology on R n

Tq = C(q) U U Mq ,p,

pEI(q)

where 0 < e < a(A)/3 and

Mq,p - {x C Rnldist(x, Mq,p) < e}.

The non-empty join irreducibles are C(q) and Mqp, A,p C I(q), where

Aq, = Mqp\Mq,p.

Let iq,p, jq,p, kq denote the symbols associated with the join irreducibles Mq"p, Aq,p,
and C(q), respectively. Defining

v'(q,iq,p) = p,

v'(q,jq,p) = q,

v'(q,kq) = q,

duplicates the discrete dynamics. El

Remark BGM contains BA UT.

Proof Given an arbitrary BAUT equation, choose, in the BGM model,

S1 = R x R x R x ,

U1 = R x (- , 1) x R x R,

fl(x,q,P,z) = [f(x,z), r(x,z), 0, 0],
Gl(x,q,p,z) = (, 0,p+ l,v(x,z,p),l),

hi(x,q,p,z) = 1-q.

Notice the last proof shows that in the BGM model, setting parameters on hitting
switching boundaries can be implemented with the transition functions. Note also that
unlike the first two proofs, the last construction uses a different (but equivalent) state
space for BGM and BAUT. In any case, we do not use the fact that BGM contains
BAUT in further results. Also, we do not compare among BGM, NKSD, and BD here.

Summarizing results needed later, the BGM and NKSD models contain the TDA
model; BD contains BAUT. In the sequel, then, the presentation concentrates on the
TDA and BAUT models since all capabilities possessed by these models will auto-
matically be possessed by the four hybrid systems models reviewed above. Extra
capabilities of the BGM model are noted as warrants.
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4 Notions of Simulation

In dynamical systems, simulation is captured by the notions of topological equivalence
and homomorphism [31, 17, 15]. One can extend these notions to systems with inputs
and outputs by also allowing memoryless, continuous encoding of inputs, outputs, and
initial conditions.

In computer science, simulation is based on the notion of "machines that perform
the same computation." This can be made more precise, but is not reviewed here
[5, 24].

Other notions of simulation (for discrete dynamical systems) appear in [20]. All
these notions, however, are "homogeneous," comparing continuous systems with con-
tinuous ones or discrete with discrete. One that encompasses simulation of a discrete
dynamical system by a continuous dynamical system is required here.

One notion that associates discrete and continuous dynamical systems is global
section [31]. The set Sx C X is a global section of the continuous dynamical system
[X, R+ , f] if there exists a to E [R+ such that

Sx = {f(P, kto) I k E Z+},

where P is a set containing precisely one point from each of the trajectories f(p, R+),
p C X. Using this for guidance, we define

Definition (S-simulation) A continuous dynamical system [X, j+, f] simulates via
section or S-simulates a discrete dynamical system [Y, Z+ , F] if there exist a continuous
surjective partial function p : X -+ Y and to E I+ such that for all x CE -l(y) and
all k C Z+

0b(f(x, kto)) = F(4(x), k).

Note that surjectivity implies that for each y G Y there exists x CE - 1(y) such that
the equation holds. Here, continuous partial function means the map from +-l(Y)
(as a subspace of X) to Y is continuous.

Intuitively, the set V -+-l(Y) may be thought of as the set of "valid" states;
the set X\V as the "don't care" states. In dynamical systems, V may be a Poincar6
section; X\V the set of points for which the corresponding Poincar6 map is not defined
[17, 18]. In computer science and electrical engineering, V may be the set of circuit
voltages corresponding to a logical 0 or 1; X\V the voltages for which the logical
output is not defined.

S-simulation is a strong notion of simulation. For instance, compare it with topo-
logical equivalence. Typically, though, the homogeneous notions of simulation do not
expect time to be parameterized the same (up to a constant) for both systems. For
example, a universal Turing machine, U, may take several steps to simulate a sin-
gle step of any given Turing machine, M. Moreover, the number of such U steps to
simulate an M step may change from AM step to M step. Some of the notions of sim-
ulation defined in [20] also allow this generality. Further, the definition of topological
equivalence of vector fields (different than for dynamical systems, see [17]) is such that
parameterization of time need not be preserved. Thus, following the definitions in [20]
one formulates

Definition (P-simulation) A continuous dynamical system [X, R +, f] simulates via
points or P-simulates a discrete dynamical system [Y, Z+, F] if there exists a contin-
uous surjective partial function 4 : X -+ Y such that for all x C -l1(Y) there is a
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sequence of times 0 = to < tl < t 2 < '.., limk,, tk = oo, such that

/(f(x, tk)) = F()(x), k)

One readily checks that S-simulation implies P-simulation. This is a weak notion. For
instance, consider the case where Y is finite, IYI = N. Suppose [X, [R+, f] has a point
p such that If (p, R+)l > N and p = f(p, to) for some to > 0. That is, the orbit at point
p is periodic and contains more than N points. Clearly, one may associate N distinct
points in f (p, R+) with the points in Y, so that [X, R + , f] P-simulates [Y, P+, F]. This
weakness persists even if Y is infinite. For example, the simple harmonic oscillator
defined on the unit circle, X = S:l

Xl1 = X2,

X2 = -X 1 ,

along with +b(x) = xl P-simulates every [[-1, 1], Z+, F]. These arguments also show
the weakness of some of the definitions in [20]. Finally, this same example shows
P-simulation does not imply S-simulation: the harmonic oscillator above cannot S-
simulate any [[-1, 1], E+, F] for which 0 is a fixed point and 1 is not a fixed point.

Thus, P-simulation need not correspond to an intuitive notion of simulation. The
reason is that one wants, roughly, homeomorphisms from orbits to orbits, not from
points to points. As mentioned in Section 2, this is achieved with continuous dynamical
systems. However, this is not possible with nontrivial nonhomogeneous systems since
a discrete orbit with more than one point is a (countable) disconnected set and any
non-constant continuous orbit is an (uncountable) connected set. Thus, there exist
homeomorphisms between discrete and continuous orbits only when both are constant.

If X is connected and Y is a discrete topological space, this situation exists even
with points, i.e., the only continuous functions from X to Y are constant functions
[27]. One way to remedy this is simply to place topologies on X and Y other than their
usual topologies, so that continuous maps are possible (cf. Section 3.3). There are
several ways to accomplish this. One approach is to use so-called small topologies on
X. Another is to append a single element {I} to Y, which stands for "don't care" or
"continue," and topologize Y' = Y U {I}. For more information and other approaches
see [7, 29].

Here-and with a view towards simulating systems defined on discrete topological
spaces-we strengthen the definition of P-simulation in two ways. First, we require
that the "simulated state" be valid on some neighborhood and for at least some min-
imal time period. Physically, this allows one to use "imprecise sampling" to obtain
discrete data, providing a robustness that is lacking in the definition of P-simulation.
Second, we require that the "readout times" are exactly those for which x(t) E -1(Y).

Definition (I-simulation) A continuous dynamical system [X, R+, f] simulates via
intervals or I-simulates a discrete dynamical system [Y, 7+, F] if there exist a contin-
uous surjective partial function 4 : X -+ Y and e > 0 such that V - '- 1'(Y) is open
and for all x C V the set T = {t C [+ I f(x, t) C V} is a union of intervals (Tk, Tk),

0 = To < To < T < rT <' T', -T-Tk > e, with

4'(f(x, tk)) = F(4(x), k),

for all tk E (7k, Tk)
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Clearly I-simulation implies P-simulation. S-simulation and I-simulation, however, are
independent notions.

The extra requirement that 86-l(Y) be open implies that the inverse images of
open sets in Y are open in X (and not just in 4- 1 (y) as before). This is probably
too strong a requirement in the case of a general topological space Y. However, in the
case of Y a discrete topological space, it has the desirable effect that 4-l(y) is open
for all y C Y.

One might also have required an output map that is zero (or any distinguished
output value) on the complement of T and non-zero otherwise. This amounts to, in
the case of a universal Turing machine simulating a machine M, the existence of a
distinguished state meaning "a step of the simulated machine is not yet completed."
Here, it is related to the appending of a symbol {_L) to Y as above and extending
¢: X - Y, = Y U {I} by defining +(x) = {I} if x G X\b-1 (Y) [7, 29, 2]. In this
case, the requirements on b may be replaced by requiring 46 to be continuous from X
to Y' (in a suitable topology) after extension. Finally, if X is a metric space one could
introduce a "robust" version of I-simulation by requiring the inverse image of y E Y
to contain a ball with at least some minimum diameter.

Below, "simulation" is a generic term, meaning I-simulation, S-simulation, or both.
SI-simulation denotes S-simulation and I-simulation. If a machine is equivalent, or
simulates one that is equivalent, to a universal Turing machine, one says it has the
power of universal computation.

5 Simulation with Hybrid Systems and Continuous ODEs

In this section we concentrate on general simulation results and the capabilities of
hybrid systems and continuous ODEs.

We first construct low-dimensional discrete dynamical systems in Z7 that are
equivalent to finite automata (FA), pushdown automata (PDA), and Turing machines
(TMs). Later, we give some general results for continuous ODEs in R 2n+ 1 simulating
discrete dynamical systems in Zn. Combining allows us to conclude simulation of ar-
bitrary FA, PDA, and TMs. By simulating a universal TM, one obtains continuous
ODEs with the power of universal computation. In the process, we also discuss the
simulation and computational capabilities of hybrid systems.

5.1 Discrete Dynamical Systems Equivalent to FA, PDA, and TMs

We start by showing that every TM is equivalent to a discrete dynamical system in 22
and then consider systems equivalent to PDA and FA. Later, we refine these results
to discrete dynamical systems in Z equivalent to TMs, PDA, and FA.

The FA, PDA, and TMs considered here are deterministic. Thus their transition
functions naturally give rise to discrete dynamical systems. These are defined on state
spaces of input strings and states; input strings, states, and stacks; and states, tape
head positions, and tapes, respectively.

Here, the states, input strings, stacks, and tape configurations of automata and
Turing machines are taken in the discrete topology; Zn as a topological or normed
space is considered as a subspace of Rn (in particular, it has the discrete topology).

An inputless FA (resp. PDA) is one whose input alphabet is empty, i.e., one whose
transition function depends solely on its state (resp. state and top stack symbol). See
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[19] for precise definitions of FA, PDA, and TM.

Proposition 5.1 1. Every TM is equivalent to a discrete dynamical system in 22.

2. There is a discrete dynamical system in /2 with the power of universal compu-
tation.

3. Every FA and inputless PDA is equivalent to a discrete dynamical system in Z.
Every PDA is equivalent to a discrete dynamical system in Z2.

Proof

1. Assume the tape alphabet is r = {0yo, -1,... Ym-2}, m > 2, with 0yo the blank
symbol; and that the set of states is Q = {qo,...,q_-), n > 1. Define p
max{m, n).

As is customary, the one-sided infinite tape is stored in two stacks, with the state
stored on the top of the right stack. The coding used is p-ary. In particular,
suppose the TM is in configuration C, with tape

T = *yil I IN-1 t %YiN Y1N+1, * 

head positioned at cell N, and internal state qj. Encode the configuration C in
the integers

N-1 00

TL = fl(C) = pkiN- +pN(m-1), TR = f 2 (C) = j + piN+
k=0 k=l

The second sum is finite since only finitely many tape cells are non-blank. The
integer (m - 1) is an end-of-tape marker. The TM is assumed to halt on moving
off the left of the tape, so that (m - 1, TR) in Z2 is a fixed point for all valid TR.
On all other valid configurations, C, define transition function G in Z2 by

G(fl(C), f 2 (C)) = (fl(C'), f 2 (C')),

where C' is the configuration resulting when the next move function of the TM
is applied to configuration C.

2. Use part 1 with any universal TM.

3. The inputless cases are immediate from part 1. For the cases with input, note
that we encode the input string in an integer like the left part of the tape of a
TM above, the results following.

Note that one can perform the above encodings of TMs, FA, and PDA with [0,p]
replacing Z. Merely replace p by p-1 in the formulas. The important thing added
is compactness, and other encodings, e.g., with [0, 1] replacing Z, follow similarly.
There is a problem using these encodings since two distinct tapes may have the same
encoding, e.g., 3, 2, o0 and 3, 1W. One can get around this by "separating" each tape
encoding by replacing p with 2p and using 2i for the ith symbol. Namely, the tape of
length N, T = ,..., i, is encoded as N0=o(2p)-k2ik. Such "Cantor encodings"
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were used in [32]. We still do not use such encodings here, however, since later we
want to ensure a minimum distance between any two tape encodings.

Finally, a wholly different approach is to use encodings inspired by those in [13].
Suppose we are given an arbitrary TM, T. Let q, h, 1, and r be integer codings of its
state, position of its read-write head, the parts of the tape on the left and on the right
of its head, respectively. A configuration of T is encoded in the integer 2 q3h517r .

More generally, any discrete dynamical system in Zn is equivalent to one in Z by
using such encodings, viz., by associating (il,i2,... ,in) with plp2 .. .p', where pi is
the ith prime.

We could have used such constructions instead of those in Proposition 5.1. How-
ever, we retain them since their transition functions have properties which those arising
from the "prime encodings" do not (cf. Section 5.3). In any case, we conclude

Proposition 5.2 Every TM, PDA, inputless PDA, FA, and inputless FA is equivalent
to a discrete dynamical system in 7. There is a discrete dynamical system in Z with
the power of universal computation.

It is important to note that one can extend the transition functions in Zn above
to functions taking Rn to Rn. We may extend any function f : A C Z n - I Rm in
such a manner, by first extending arbitrarily to domain Zn and then using linear
interpolation. Here is an example, used below:

Example A continuous mod function may be defined as follows:

x d mod m ([xi modm) + x - LiJ, 0 < LxJ mod m < m -1,
m (m-1) ([Lx + 1-x), [xJ mod m = m-1.

Later results require extensions that are robust to small input errors. That is,
one would like to obtain the integer-valued result on a neighborhood of each integer
in the domain. For instance, one may define a continuous nearest integer function,
[]c : OR -- R, that is robust in this manner as follows:

[IC f i, i - 1/3 < x < i + 1/3,
[] 3x-2i-1, i+1/3 < x< i +2/3.

More generally, define II: Rn -+ Rn, by

I(x) = [[Xl]c,. , [Xn]c]

Then given any function f : Rn -+ R m , with f(Zn) C Zm, we can define a "robust
version" by using the function f o II.

Thus, given [A, Z+,F], A C Zn , its transition function may be extended to a
continuous function from Rn to Rn which is constant in a neighborhood of each point
in A. Such a remark is actually a byproduct of a more general result needed below
[27, p. 216]:

Fact Any continuous function f : A -+ Rm, A a closed subset of Rn , may be extended
to a continuous map f : Rn - Rm .

Throughout the rest of this section we use continuous extensions as in the fact
above, the notation f always denoting such an extension of f.
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5.2 The Power of Exact Clocks

Later, we find that the ability to implement precise timing pulses is a strong system
characteristic, enabling one to implement equations with powerful simulation capabil-
ities. To this end, define

Definition (Exact Clock) A function S : R+ - Z7 is an exact m-ary clock with
pulse-width T or simply (m, T)-clock if

1. It is piecewise continuous with finite image Q = {0,..., m - 1}, m > 2.

2. For all t E (kT, (k + 1)T), S(t) = i if k - i (mod m).

All four hybrid systems models, TDA, BGM, NKSD, and BD, can implement
(m, T)-clocks, as the results of Section 3.5 and the following shows.

Example 1. The BA UT model implements (m, T)-clocks: Choose Z = {0,..., m-
1) and

p = 1/T, p(O) = 0,
zrpl = (z pJ + 1)mod m, z [J = 0.

Then S(t) = zLp(t)J is an (m,T)-clock.

2. The TDA model implements (m, T)-clocks: Set p = m if m even, p = m + 1 if
m odd. Choose state space R x Q, Q = {0,...,p - 1}. Define the continuous
dynamics as

f(x, q)= Cq(-1)q,

q E Q. Set cq = 1 for all q if m is even; set cq = 1 for q E {0,...,m-2}, cq = 2
for q E {m - 1, m}, if m odd. In each case define the switching manifolds by

g2k,2k+1( ) = x--T,

g2k+l,(2k+2)mod p( X) = -X.

Setting x(0) = 0, S(t) = q(t) and

S(t) = q(t) - (m - 1)[q(t)/3(m - 1)]c

are (m, T)-clocks when m is even and odd, respectively.

As an example of the simulation power one obtains with access to an exact clock,
consider the following:

Theorem 5.3 Every reversible discrete dynamical system F defined on a closed subset
of RW can be S-simulated by a system of continuous ODEs in R2n with a (2, T)-clock,
S, as input.

Proof

x(t) = T-l[G(z) - z](1 - S(t)),
;(t) = T-l[x- H(x)]S(t),

where G and fH are continuous extensions of G = F(., 1) and H = F(.,-1), respec-
tively. Starting this system at t = 0 with x(O) = z(O) = xo, xo E domain G, one sees
that x(2kT) = z(2kT) = Gk(xo). Here, 6(x, z) = x for x = z, x E domain G. O
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This theorem shows that exact clocks allow one to S-simulate arbitrary reversible
discrete dynamical systems on closed subsets of Rn with a system of ODEs in 2n

.

The idea of turning on and off separate systems of differential equations is key to the
simulation. The effect of the simulation is that on alternating segments of time one
"computes" the next state, then copies it, respectively. Then, the process is repeated.

One readily sees that the exact way the continuous extensions in the proof are
performed is not important.

As seen above each of the four hybrid systems models can implement (2, T)-clocks.
In particular, they can implement a (2, T)-clock with just a single ODE. Thus the
simulations of the theorem can be performed with continuous state space RA2n+1 in
each of these cases. Further, they each require only 2 discrete states.

The generality of Theorem 5.3 allows us to conclude

Corollary 5.4 Using S-simulation, any hybrid systems model that implements con-
tinuous ODEs and a (2, T)-clock has the power of universal computation.

Proof Using constructions as in Proposition 5.1, construct a reversible discrete
dynamical system in Zn equivalent to a universal, reversible TM (one whose transition
function is invertible) [4, 35]. In turn, simulate it using the theorem. D

However, we want to explore simulation of non-reversible finite and infinite com-
putational machines with hybrid and continuous dynamical systems. First, we show
that the ability to set parameters on clock edges is strong.

Theorem 5.5 Every discrete dynamical system F defined on a closed subset of Rn can
be S-simulated by a system of continuous ODEs on R2n (resp. E

n ) with a (2,T)-clock,
S, as input and the ability to set parameters on clock edges.

Proof Define G - F(., 1). Both systems are initialized at t = 0 with c = x(0) = x0,
x0 E domain G.

1. Initialize z(O) = xo.

(t) = T-1[(z)- z](1 - S(t))
i(t) = T- 1 [x-c]S(t)

The constant c is set to z when t = kT, k odd. One sees that x(2kT) = z(2kT) =
Gk(zo). Choose +?(x, z) = x for x = z, x C domain G.

x(t) = T-l[G(c) - c](1 - S(t))

The constant c is set to x when t = kT, k even. One sees that x(2kT) = Gk(xo).
Choose 4(x) = x, x E domain G.

[1

Note that if F is not reversible, forward trajectories of the above systems of equa-
tions may merge. This situation is allowed by our definitions. The simplest example
of this is [{0, 1}, Z+, F] with F(0, 1) = F(1, 1) = 0.

Corollary 5.6 Any hybrid systems model that implements continuous ODEs, a (2, T)-
clock, and setting parameters on clock edges, can S-simulate any TM, PDA, or FA;
and, using S-simulation, has the power of universal computation.
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Proof Combine the theorem and Proposition 5.1. D

In particular, the BGM model has this power (by defining the appropriate transi-
tion functions on the switching boundaries of the TDA (2, T)-clock given above).

5.3 Simulation Without Exact Clocks

Without an exact clock, one's simulation power is limited. However, one can still
simulate discrete dynamical systems defined on arbitrary subsets of Z'. Next, we
proceed to explicitly show that all four hybrid systems models can simulate any discrete
dynamical system on Zn. Indeed, we show that continuous ODEs can simulate them.

In the previous section we used an exact (2, T)-clock to precisely switch between
two different vector fields in order to simulate discrete dynamical systems in R'. Again,
the essential idea behind the simulations in this section is to alternately switch between
two different vector fields. However, since we are simulating systems in Zn, using
"robust versions" of their transition functions, and choosing well-behaved ODEs, it is
not necessary to precisely time these switches using an exact clock. Indeed, we can
use continuous functions to switch among vector fields.

It is still convenient to ensure, however, that only one vector field is active (non-
zero) at any given time. Thus, we would like

Definition (Inexact Clock) An inexact (m, T)-clock, m > 2, is a continuous func-
tion S: R+ -4 [0, l]m such that on each interval t C [kT, (k+l)T] with k _ i (mod m)
the following hold: Sj+l(t) = 0, 0 < j < m - 1, j i; Si+ (t) _ I on a sub-interval
of length greater than or equal to T/2.

It is also reasonable to require that transitions between 0 and i take place quickly
or that there be some minimum separation between the times when Si > 0, Sj > 0,
i ~ j. Below, we need an inexact (2, T)-clock with the latter property.

What is key is that such inexact clocks do not require discontinuous vector fields,
discontinuous functions, or discrete dynamics. They can be implemented as follows.

Example (Inexact (2,T)-clock) Define #(t) = 1/T, initialized at 7(0) = O. Now,
define

S1, 2 (T) = h±[sin(7Tr)],

where
0, r < d/2,

h+(r) = 2r/5, /2 < r< <,
1, a < r,

h_(r) = h+(-r), and 0 < 6 < /2/2.

Thus, one can switch between two different systems of ODEs with (Lipschitz) continu-
ous functions of the state of another (Lipschitz) ODE. This is why 2n + 1 dimensional
ODEs are used below to simulate an n-dimensional discrete dynamical system.

We also need the following technical definitions:

Definition (Non-degeneracy, finite gain) A function f : -Rn - R'n, is non-degenerate
(resp. finite gain) if there exist constants p > 0, M > O, such that

lx[i _< Mllf(x) 11 + ,3, (resp. Ilf(x) 11 < Milixl + 13),

for all x E X.
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Now we are ready for our main simulation result:

Theorem 5.7 Every discrete dynamical system F defined on Y C Zn

1. can be SI-simulated by a system of continuous ODEs in R2n+ 1.

2. such that F(., 1) is finite gain and non-degenerate can be I-simulated by a system
of continuous ODEs in 2n+ l

3. such that Y is bounded can be SI-simulated by a system of Lipschitz ODEs in
R2n+1

Proof Let G - F(., 1) and 0 < e < 1/3. S1,2 and 6 are as in the preceding example.
For each y C Y, define the set

Hy = {(x, z, T) I Ix - yloo < e, z - ylloo < e, sin(7rr) < 6/2, T modc2 < 1/2},

Set +(x, z, T) = II(z) = y if (x, z, -) C Hy. Note that the '-l(y) = Hy are open and
disjoint.

Initialize x(0), z(O), T(0) in b-1(y), y e Y.

1. Choose

x= -e-2[X- G(I(z))] 3 S 1(T),

= 1.

It is straightforward to verify HI(z(2k)) = Gk(y), k C Z +, and the interval
constraint.

2. Let ao and L be the finite gain, and : and M the non-degeneracy constants of
G under norm I1 Ifoo . Choose

x = -2e-1 [x- G(n(Z))]S1(T),
2 = -2e-1[z-1I(x)1S2 (T), (5.1)
* = 1/[1 + (L + 1)Izll[oo + ± + (M + 1)|IxllIo + ].

It is straightforward to verify I1(z(t)) = Gk(y) on an interval about the time tk
where T(tk) = 2k, k C Z+.

3. Let p = max{ Ii -jllfoo [ i,j E Y}. Choose

x = -2,3e-1[x - G((z))]S1(T),
i = -2,3e-1[z- I(Z)1S2 (T), (5.2)
- = 1.

It is straightforward to verify IH(z(2k)) = Gk(y), k C 7+, and the interval
constraint.

Note that non-degeneracy and finite gain of the extension G need not hold for
points not in Y. Note also that the simulations above are "robust" in the sense that
there is a neighborhood of initial conditions leading to the correct simulations. The
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import of part 2 of the theorem is that if G - F(., 1) is non-degenerate and may be
extended to a Lipschitz function, then the ODEs used in the I-simulation are also
Lipschitz.

Note also that the theorem continues to hold for any discrete dynamical system
defined on Y C En such that there is some minimum separation between any two
distinct points of Y.

The discrete dynamical systems equivalent to TMs given by Proposition 5.1 have
transition functions that are both finite gain and non-degenerate. Unfortunately,
the transition functions of systems equivalent even to PDA need not be Lipschitz.
Consider a PDA which pushes a tape symbol ay on input symbol il and pops -y on
input symbol i 2 and test with inputs of the form 0i + l , i i2. One may check that the
"prime encodings" mentioned earlier lead to transition functions that are neither finite
gain nor non-degenerate.

Thus, relating the theorem back to simulation of TMs, PDA, and FA, we have
many results, the most striking of which are:

Corollary 5.8 Every TM, PDA, and FA can be SI-simulated by a system of contin-
uous ODEs in 3.

Every FA (resp. inputless FA) can be I-simulated (resp. SI-simulated) by a system
of Lipschitz continuous ODEs in 3.

Using SI-simulation, there is a system of continuous ODEs in R3 with the power
of universal computation.

Proof Everything is immediate from the theorem and Propositions 5.1 and 5.2
except that the FA transition function is Lipschitz, which is readily checked. cl

Of course, any hybrid systems model that implements continuous (resp. Lipschitz)
ODEs has similar powers. In particular, the four reviewed here do.

Finally, all the simulation results for discrete dynamical systems on Z can be
extended from continuous to smooth vector fields by using C' interpolation (with
so-called "bump" functions [15]) rather than linear interpolation in extending their
transition functions and the functions [']c and h+, and by replacing 11' II, with 11' 112

in Equation (5.1).

6 Implementing Arbiters

In this section, we contrast the capabilities of hybrid and continuous dynamical sys-
tems by using the famous asynchronous arbiter problem [8, 23, 36].

We begin in the first subsection with a discussion of the arbiter problem. Next, we
prove that one cannot implement an asynchronous arbiter using a system of Lipschitz
ODEs continuous in inputs and outputs, i.e., a system of the form of Equation (2.2)
with f Lipschitz in x, continuous in u and h continuous [18, p. 297]. Finally, we
show that all four hybrid systems models can implement arbiters, even when their
continuous dynamics is a system of Lipschitz ODEs continuous in inputs and outputs.

6.1 The Arbiter Problem

The definition and technical specifications of an (asynchronous) arbiter below are
adapted from [36].
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An arbiter is a device that can be used to decide the winner of two-person races.
It is housed in a box with two input buttons, labeled B 1 and B 2, and two output lines,
W1 and W 2, that can each be either 0 or 1. For ease of exposition, let the vectors

B = (B1, B 2 ), W = (W 1 , W 2 )

denote the button states and outputs, respectively. There is also a reset button, R.
Below, the buttons Bi, R are taken to be 1 when they are pressed, 0 when they are
unpressed.

After the system has been reset, the output should be (1, 0) if B 1 is pressed before
B 2; it should be (0, 1) if B 2 is pressed before B 1. Let Ti denote the time that button
Bi is pressed. Then, the function of the arbiter is to make a binary choice based on
the value of the continuous variable T 1 - T2 . If the difference is negative, the output
should be (1, 0); if it is positive, the output should be (0, 1). Upon reset, the output
is set to (0, 0).

Here are the arbiter's technical specifications:

S1. Pressing the reset button, R, causes the output to become (0,0), perhaps after
waiting for some specified time, denoted TR, where it remains until one or both
buttons are pressed.

S2. The pressing of either or both buttons Bi causes, after an interval of at most Td
units, the output to be either (0, 1) or (1, 0); the output level persists until the
next reset input.

S3. If B1 is pressed Ta seconds or more before B 2 is pressed, then the output will be
(1, 0), indicating that B1 was pressed first. Similarly, if B 2 is pressed Ta seconds
or more before B1 is pressed, then the output will be (0, 1), indicating that B 2
was pressed first.

S4. If B1 and B 2 are pressed within Ta seconds of each other, then the output is
either (1, 0) or (0, 1)-one does not care which-after the Td-second interval.

The arbiter problem is

Problem (Asynchronous arbiter problem) Build a device that meets the speci-
fications S1-S4.

6.2 You Can't Implement an Arbiter with Lipschitz ODEs

In this section, we show that it is impossible to build a device, described as a system
of Lipschitz ODEs continuous in the required inputs and outputs, that implements
the arbiter specifications.

First we give a generic system of Lipschitz ODEs with the required properties:

i(t) = f(x(t), B(t)), (6.1)
w(t) = h(x(t)),

where x(t) C [nt ) t) E R2, B(t) C {0, 1}2, with B(-) piecewise continuous. Each
f(.,B), B E {0,1}2, is Lipschitz. Thus, each vector field f(-,B) defines a con-
tinuous dynamical system O(B ,B2), with O(B 1,B 2)(xO,T) the solution at time T of
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x(t) = f(x(t),B1,B 2) starting at x(O) = xo. Further, h : R -* R2 is continuous.
Note that the action of the reset button is unmodeled; it is not necessary to the proof,
which assumes it remains unpressed on the interval of interest.

Since h is continuous, there exists a constant CURB > 0 such that

llh(x) - h(x')112 < VX whenever Ilx - x'l < O,'e (6.2)

Define Lw = v/2/S.
Now, we are ready to settle the arbiter problem in this framework:

Theorem 6.1 For no choice of the values for Ta and Td is it possible to build a device
described by Equation (6.1) that meets the arbiter specifications S1-S4.

Proof The proof is by contradiction, assuming there is a device described by Equation
(6.1) which satisfies the specifications.

Assume that the arbiter has been reset, is in state x(0) = xo at time t = 0 with
h(xo) = (0, 0), and that one of the buttons is pressed at time t = 0. (This is without
loss of generality as the equations are autonomous.) Also, assume that the reset button
is not pressed until some time TR > Ta + Td.

The behavior of the device from t = 0 to t = TR is completely determined by
which button was pressed first and at what time the second button is pressed (if
ever). Therefore, let xp(t) denote the solution at time t of Equation (6.1) starting at
time t = 0 at state x(0) = x0 with fixed parameter p _ T1 - T2 . Thus, p represents
the difference between the times when B1 and B2 are pressed. If B1 is pressed but B 2
is never pressed, set p = -oo. If B 2 is pressed but B1 is never pressed, set p = oo.

The arbiter specifications require that for Ta + Td < t < TR,

f (1,0), < -Ta,
h(xp(t)) = (0,1), p > Ta,

(1,0) or (0,1), otherwise.

These specifications and Lemma A.1 (in the Appendix) are such that for any a > 0,
one can find -Ta < r < r < Ta, with r - a < 3, and with one of h(x,(Ta + Td)),
h(xT(Ta + Td)) equal to (1, 0) and the other equal to (0, 1).

Pick 3 < min{Ta, Td, 1/L}, where L > 0 is a finite bound of the maximum of the
four Lipschitz constants corresponding to each of the f (, B). Define

c = max {llf(xo, 1, 0)11, If(xo, , 1)11, Ilf(xo, 1, 1)11 .

Note c > 0, for otherwise h(x,(t)) = h(xT(t)) = h(xo) for all 0 < t < TR, a contradic-
tion.

For ease of notation, let Ft, Gt, Ht denote the fundamental solutions q(0, 1)(' , t),
O(1,0)(', t), and 0(1, 1) (, t), respectively. Also, let Xt = x(t) and Yt = XT(t). Note that

Xo = Yo = xo.
The proof splits into three cases:

1. 0<0<T<Ta.

2. -Ta < _< < 0.< 

3. -Ta < - < O < 0 < Ta.
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Case 1. In this case,

Ft(xo), O<t< -,
Xt = Ht-a(Fa(xo)), a < t < TR,

Yt = Ft(xo), O< t < T,
Ht-_,(Fr(xo)), T < t < TR.

Thus, X, = Y,. Now, by Corollary A.3

IIYT - Yrj < cL l(eLT - eLo).

Thus, Lemma A.4 gives

IIX+T, - Y+TdlI < cL-l(eL(T-a) - l)e L a eLTd,

< cL-l(eL _- l)eL(Ta+Td),

< c6(e - l)eL(Ta+ Td),

where the last line follows from LS < 1. But by assumption,

v2 = Ilh (Xa+Td) - h (Y7+Td)[2 ,

so that Equation (6.2) yields

K 1
- v2/[cLw(e - l)eL(Ta+T d) ] < .

Case 2. The argument is similar to Case 1 and yields the same inequality on J.

Case 3. In this case,

t = Gt(xo), O < t < l,
Xt l Htljl(Glal(xo)), rr] < t < TR,

Ft(xo), O < t < 7,
Yt 1 Ht-,(FT(xo)), T <t <TR.

Note that max{lIl, I1T} < 6. This and Lemma A.2 give

XIlY - Y < XI, 1- xO1 + IIY -xOl < 2cL- (eL - 1)

Thus, Lemma A.4 gives

IXII+Td - Y+Td < 2cL 1(eL_ 1)eLTd,

< 2ceLTd(e-1)3,

where the last line follows from L5 < 1. But by assumption,

V/ = 11h (XlI+Td) -h (YT+Td) 11 2

so that Equation (6.2) yields

K 3 1/[ 2cLw(e - )eLd] < .
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Thus, choosing a < min{Ta, Td, 1/L, K 1, K 3 }, would have achieved a contradiction
in all three cases. O

The basic argument used above is that one cannot have a continuous map from
a connected space (e.g., fR containing p) to a disconnected space (e.g., {(1,0), (0,1)})
[27]. Nevertheless, one must prove that the map given by the device is indeed contin-
uous before one makes such an appeal. Above, we have explicitly demonstrated the
continuity of the system of switched differential equations describing the arbiter.

6.3 Implementing Arbiters with Hybrid Systems

In this section it is shown that each of the hybrid systems models can implement an
arbiter. Given the results of Section 3.5, it is enough to implement one using the
BAUT and TDA models. However, the problem is such that we must add inputs and
outputs to these models, which is done in an obvious way.

In each case, the continuous dynamics is a system of Lipschitz ODEs continuous
in inputs and outputs, the essential "resolving power" coming from the mechanisms
implementing the discrete dynamics.

We first implement an arbiter with a hybrid system a la Brockett:

Proposition 6.2 There exists a system of equations in the BA UT model with inputs
and outputs that meets the arbiter specifications S1-S4.

Proof We design for Ta = Td/2 = Tm.

5: = [2(4z[pJ - 1) max(B1, B 2)T(x)/Tm] (1 -R) -(2x/TR) R,

p = [2BI(B1 -B 2 )(1 - z[pJ)/Tm](1-R) + (z[pJ/TR)R,

z Fp = (z[pJ + 1) mod 2,
W = h(z),

where
(0,1), x < -3,
(0, Ix -2), -3 < x < -2,

h(x) = (0, ), -2 < x < 2,
(x- 2,0), 2 < x < 3,
(1,0), 3 < x,

1, IxI < 4,
T(x) = 5-Ixl, 4 < _l < 5,

0, 5 < jxl.

Let's examine these equations when B 2 is pressed at time t = 0. Let T1 > 0 denote
the time at which B1 is pressed. The equations are assumed to be properly reset so
that without loss of generality, we assume that Ix(0)1 < 1 and p(O) C [2k, 2k + 1),
for some k E Z+, and zLp(0)J = 0. Also, we assume that the reset button is inactive
(R = 0) from t = 0 to t = tR > 2Tm. In this case, the two equations are simply (no
matter when B 1 is pressed)

x = -2T(x)/T,,

15 = 0,

so that x(t) < -3 and hence W(t) = (0,1) for t C [2T,, tR].
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Now, we look at these equations under the same assumptions, excepting B 1 is
pressed at t = 0 and B 2 is pressed at t = T 2 > 0. Now there are two cases: T2 < tz
and T 2 > tz, where tz = [1 - (p - LpJ)]Tm/2 < Tm/2 is the time when z([p(t)J)
would first equal 1 if B 2 were not pressed before it. In the second case, by time tz the
equations are

= 6T(x)/Tm,

= 0,

so that x(t) > 4 and hence W(t) (1, 0) for t E [tz + Tm, tR] D [2Tm, tR]. In the first
case, the second equation remains

X= -2T(x)/Tm,

so that x(t) < -3 and hence W(t) = (0,1) for t C [2Tm, tR].
The reset behavior is readily verified. O
Now, we implement an arbiter with TDA:

Proposition 6.3 There exists a system of equations in the TDA model with inputs
and outputs that meets the arbiter specifications S1-S4.

Proof For convenience, define Tm = min{Td, Ta}. Define the continuous dynamics,
f(x,q, B1,B 2, R), which depends on states x C R[2, q C {1,2,3}, and inputs B 1, B 2,
and R, each in {0, 1}, as follows:

f(x, 1;B 1,B 2,0) = (B 1 [B 1 - B 2 ],B 2 ),

f(2x,2;-,.,0) = (0,0),

f(x,3; ,-,0) = (0,0),
Tm

- ETR

with switching boundaries defined as follows:

91,2(2) = 2- (T,O )

91,3(2) = 2- Tn,

92,1 (x) = = 3 ,1 (x) = 2 _ 

where 0 < e < Tm/4. Finally, define the output W = h(x) where

(1, 0), X2 < Tm/2,
h(x) = (I -4(212/Tm - 1/2), 4(X2/Tm - 1/2)), Tm/2 < 22 < 3Tm/4,

hAx) =I((0, 1), 3Tm/4 <2 2.

One readily verifies that it behaves correctly.

7 Conclusions

We explored the simulation and computational capabilities of hybrid systems, which
combine continuous dynamics (modeled by ODEs) and discrete dynamics (modeled by
finite automata). We concentrated on four hybrid systems models from the control and
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dynamical systems literature [34, 3, 29, 12]. The four hybrid systems models, denoted
TDA, BGM, NKSD, and BD, were reviewed, compared, and examined throughout.
Since we were not interested in control in this paper, autonomous versions of the
NKSD and BD models were developed. (The reader interested in control of hybrid
systems should consult [9, 12, 16].)

We defined notions of simulation of a discrete dynamical system by a continuous
dynamical system. S-simulation, or simulation via section, was motivated by the
definition of global section in dynamical systems [31]. Relaxing this to allow different
parameterizations of time we considered P-simulation, which was seen to be weak. To
remedy this, we defined I-simulation, or simulation via intervals. Both S-simulation
and I-simulation imply P-simulation. S-simulation and I-simulation are independent
notions.

We then showed that hybrid systems models with the ability to implement an ex-
act clock can simulate fairly general discrete dynamical systems. Namely, we demon-
strated that such systems can S-simulate arbitrary reversible discrete dynamical sys-
tems defined on closed subsets of Rn. These simulations require ODEs in R 2n with the
exact clock as input. Each of the four hybrid systems models can implement exact
clocks.

Later, we found that one can simulate arbitrary discrete dynamical systems defined
on subsets of Zn without the capability of implementing an exact clock. Instead, one
can use an approximation to an exact clock, implemented with a one-dimensional
Lipschitz ODE. The result is that we can perform SI-simulations (resp. I-simulations)
using continuous (resp. Lipschitz) ODEs in R2n+l.

Turning to computational abilities, we saw that there are systems of continuous
ODEs possessing the ability to SI-simulate arbitrary pushdown automata and Turing
machines. Finite automata may be SI-simulated with continuous, Lipschitz ODEs. By
SI-simulating a universal Turing machine, we concluded that there are ODEs in l3
with continuous vector fields possessing the power of universal computation. Further,
the ODEs simulating these machines may be taken smooth and do not require the
machines to be reversible (cf. [26, p. 228]).

The import of S-simulation here is that such simulations take only "linear time"
[13]. The import of I-simulation is that the readout times for which the state/tape is
valid are non-empty intervals. Indeed, the intervals are at least some minimum length.
Also, the simulations were "robust" in the sense that they can tolerate small errors
in the coding of the initial conditions. Though not required by our definitions, these
contained balls of at least some minimum diameter.

Finally, we showed that hybrid systems are strictly more powerful than Lipschitz
ODEs in the types of systems they can implement. For this, we used a nontrivial
example: the famous asynchronous arbiter problem. First, we settled the problem in
an ODE framework by showing one cannot build an arbiter with devices modeled by
Lipschitz ODEs continuous in inputs and outputs. Then, we showed that each of the
four models of hybrid systems can implement arbiters, even when their continuous
dynamics are modeled by Lipschitz ODEs continuous in inputs and outputs.

We now turn to some discussion. Our simulation of arbitrary Turing machines
was announced in [6]. It is now a special case of the current results. These results
imply that, in general, questions regarding the dynamical behavior of hybrid systems
with continuous ODEs-and even well-behaved ODEs themselves-are computation-
ally undecidable. See [25, 26] for a discussion of such questions.
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The explicit formulation and solution of the asynchronous arbiter problem in an
ODE framework appears to be new. It is excerpted from [8], which also discusses
bounds on the performance of systems approximating arbiter behavior, arising from
the explicit proof. Specifically, while the proof prohibits the construction of an arbiter
with Td = 0(1), it does not prohibit an arbitration device with Td = O(ln(1/p)).
Such a device is given in [8]. Finally, note that in our ODE model, the inputs Bi
were assumed to be ideal in the sense that they switch from 0 to 1 instantaneously.
Imposing continuity assumptions on B as signals in [0, 1]2 leads to a similar result.

To demonstrate the computational capabilities of hybrid and continuous dynam-
ical systems summarized above, we constructed low-dimensional discrete dynamical
systems in Zn equivalent to Turing machines (TMs), pushdown automata (PDA),
and finite automata (FA). It is well-known that certain discrete dynamical systems
are equivalent to TMs and possess the power of universal computation (see, e.g.,
[25, 32, 13]). Our systems were constructed with the goal of simulation by continu-
ous/Lipschitz ODEs in mind. One notes that while it is perhaps a trivial observation
that there are systems of (Lipschitz) ODEs with the power of universal computation-
just write down the ODEs modeling your personal computer-this requires a system
of ODEs with a potentially infinite number of states.

The best definition of "simulation" is not apparent. While stated in terms of our
definitions of simulation, the simulation results of Section 5 are intuitive and would
probably continue to hold under alternate definitions of simulation.

Related to our general simulation results is a theorem by N. P. Zhidkov [37] (see
also [31, p. 135]), that states if a reversible discrete dynamical system is defined on a
compact subset K C Rn, then there exists on a subset of R2n+1 a reversible continuous
dynamical system that is defined by ODEs and has K as a global section.

It is possible to take a different approach than the one in Section 5 and construct
smooth systems of ODEs with inputs that "simulate" finite automata. For instance,
in [10] Brockett used a system of his so-called double-bracket equations (also see [11])
to "simulate" the step-by-step behavior of a FA. This was done by coding the input
symbols of the FA in a function of time that is the "control input" to a system of
double-bracket equations. Specifically, if the input alphabet is I = ful,...,un},
the input string Uio, uil, Ui2,... is encoded in a time function, u(t), that is ik on the
intervals [2kT, (2k + 1)T] and zero otherwise. In this paper, we encoded the full input
string in the initial condition of our simulations.

In [10], Brockett was interested in the capabilities of his double-bracket equations.
However, the resulting "simulations" of FA happen to behave poorly with respect to
our definitions of simulation. Nevertheless, the key idea of his simulations of FA is that
the input coding, u(t), is used in such a way that it alternately switches between two
different systems of double-bracket equations. This idea is critical in our simulations
of discrete dynamical systems with ODEs.

It is not hard to see that one could use the same approach as that in [10] but more
well-behaved systems of ODEs to simulate the step-by-step behavior of FA. Consider a
FA with transition function 6, states Q = {ql,. .. , qn}, and input alphabet I as above.
Code state qi as i and consider the first two equations of Equation (5.2). Choose 3 = n
and replace, respectively, S 1, S2, and G with h+(u(t)), h_(u(t) - 1), and

D: {1,... ,n} x {1,. .. ,m} -+ {1,. . . n},

defined by D(i,j) = k if 6(q~, uj) = qk. The result is that any FA may be SI-simulated
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by a system of ODEs in Rl2 with input. This was also announced in [6].
In [2], it is shown that so-called piecewise-constant derivative systems (PCDs) in

3 can "simulate" arbitrary inputless FA, inputless PDA, and TMs. Briefly, the notion
of simulation used is that of I-simulation excepting as follows. First, the intervals in
T can be open, closed, or half-closed; '<' may replace '<' in the constraints on Tk,

-k; and there is no e constraint. Also, there is no continuity constraint on % and for
each y E Y there need exist only one point in -l1(y) for which the equation holds.
However, there is the constraint that each 0-l(y) is convex and relatively-open (i.e.,
open in the subspace of its affine hull). For convenience, we refer to this notion as
AM-simulation. Since our I-simulations in Theorem 5.7 had %- 1(y) open and convex,
they are AM-simulations.

Convexity of +-l(y) may be a desirable property. For instance, it excludes simu-
lation of FA by "unraveling" their transition diagrams into trees, a simple example of
which is recounted in [2]. On the other hand, consider the case of a universal TM, U,
simulating an inputless FA, A. Certainly, there could be many distinct configurations
of U in which the current state of A is written on, say, its first tape cell. Then, even
if the inverse images of the configurations of U are convex, the inverse images of the
valid configurations with, say, q in the first tape cell need not be, preventing indirect
AM-simulation of A through AM-simulation of U. In any case, we could have added
the constraint that each -l(y) be convex to our definitions of simulation with no
change in any of our results.

Finally, in [2] Asarin and Maler use three-dimensional PCDs to AM-simulate in-
putless FA. They also point out that three dimensions are necessary in order to AM-
simulate, with autonomous ODEs, inputless FA whose transition graphs are not pla-
nar. While their argument is fine, the transition graphs of deterministic inputless FA
are always planar and it is straightforward to construct PCDs (and continuous ODEs)
in two dimensions that AM-simulate such FA. Moreover, even though the transition
graphs of FA (with inputs) need not be planar, their argument does not contradict
the result in R2 derived in this section, since it uses non-autonomous ODEs.
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Appendix

Lemma A.1 If X is a connected metric space, Y is a discrete topological space with
two points, and f : X -X Y is surjective, then for every 6 > 0 one can find x, z C X
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such that d(x, z) < 3 and f(x) : f(z).

Proof Assume the contrary. Then for all x C X, f(Bs(x)) = {f(x)} C V, where
Bs(x) denotes the ball of radius 3 about x and V is any open set about f(x) in Y.
Thus, f is continuous [27]. But f continuous and X connected implies f(X) = Y is
connected [27], a contradiction. Lo

Lemma A.2 Suppose sxi(t) = f(x(t)) with f globally Lipschitz continuous in x with
constant Lf > 0. Then, for any L such that L > Lf and L > 0, and any t2 > t1,

IIXt 2 - Xtl < lf (xt)lIfL-l(eL(t2- t1) - 1).

Proof Note that for t > t1,

Xt -Xt 1 = f (Xtl )ds + [/f (x) -f (xtl)] ds.

So that

t-xt - xt1 < ] If (xtl)llds + ]1 f(xs) - f(xt) 11 ds

< (t- tl) f(xtl)lI + j LIx, - xtl ds.

Now, substituting r = t - tl and a = s - tl, this becomes

jx-r-+t1 -Xt 11 < TIllf (xt 1 ) 1 + j/ Lx+tl-xl 1l d-

Finally, defining u(r) = IIXT+tl - xt I, this becomes

u(T) •< rf (xtl) l + fTLu(ou) du.

The result now follows from the well-known Bellman-Gronwall inequality [14, p. 252].

Corollary A.3 Under the same assumptions plus the fact that the system was in state
Xto at time to < t1 < t 2,

IIXt 2 - Xtl l < Ilf (xfto) l-l (eL(t2 - to) - eL(tl-to)).

Proof Note that Lipschitz continuity gives

Ilf (xtl) _ < Llfxtl - xto || + I|f(Xto)I1.

But, the lemma gives in turn

ixtl - Xto | < Il f(xto) IL-l (eL(tl - t o) - 1).

So that the result follows. [
The following lemma is well-known (see, e.g., [18, p. 169]).

Lemma A.4 Let y(t), z(t) be solutions to x(t) = f(x(t)) where f has global Lipschitz
constant L > O. Then for all t > to,

Ily(t) - Z(t)ll < il(to) - z(to)lleL(t-to)
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