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EFFICIENT ALGORITHMS

FOR GLOBALLY OPTIMAL TRAJECTORIESt

John N. Tsitsiklist t

Abstract

We present serial and parallel algorithms for solving a system of equations that arises from

the discretization of the Hamilton-Jacobi equation associated to a trajectory optimization

problem of the following type. A vehicle starts at a prespecified point x0 and follows a unit

speed trajectory x(t) inside a region in Rm, until an unspecified time T that the region

is exited. A trajectory minimizing a cost function of the form foT r(x(t)) dt + q(x(T)) is

sought. The discretized Hamilton-Jacobi equation corresponding to this problem is usually

solved using iterative methods. Nevertheless, assuming that the function r is positive, we

are able to exploit the problem structure and develop one-pass algorithms for the discretized

problem. The first algorithm resembles Dijkstra's shortest path algorithm and runs in time

O(nlogn), where n is the number of grid points. The second algorithm uses a somewhat

different discretization and borrows some ideas from a variation of Dial's shortest path

algorithm that we develop here; it runs in time O(n), which is the best possible, under

some fairly mild assumptions. Finally, we show that the latter algorithm can be efficiently

parallelized: for two-dimensional problems, and with p processors, its running time becomes

O(n/p), provided that p = O(Vn / log n).
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1. INTRODUCTION

Consider a vehicle that is constrained to move in a subset G of J"m. The vehicle starts at

an initial point x0 and moves according to dx/dt = u(t), subject to the constraint Ilu(t)11 < 1,

where 11 I11 denotes the Euclidean norm. At some unspecified time T, the vehicle reaches

the boundary of G and incurs a terminal cost q(x(T)). We also associate a traveling cost

foT r(x(t)) dt to the trajectory followed by the vehicle. We are interested in a numerical

method for finding a trajectory that minimizes the sum of the traveling and the terminal

cost. We assume that infeEG r(x) > 0, which forces the vehicle to exit G in finite time.

This problem formulation allows us to enforce a desired destination zf: for example,

we may let G = R" - {xf } and q(x ) = 0. It can also incorporate "hard obstacles"; for

example, if a subset F of G corresponds to an obstacle, we can redefine G, by removing F

from G and by letting q(x) be very large at the boundary of F.

Although several numerical methods for trajectory optimization are available, their com-

putational complexity is not fully satisfactory, as will be discussed shortly. In contrast, we

devise serial and parallel algorithms with optimal running time.

Interest in algorithmic efficiency can be motivated from certain situations in which the

trajectory optimization problem has to be solved repeatedly and on-line; this is the case, for

example, if the terrain conditions are uncertain and the remaining trajectory is reoptimized

each time that new information becomes available. Of course, algorithmic efficiency is a

worthy objective even when computations are carried out off-line.

Related research

Problems of this type have been considered by several different research communities.

The robotics and theoretical computer science community has extensively studied the case

where r is identically equal to 1, G contains several obstacles, and there is a fixed destination.

Under the further assumption that the obstacles admit a finite description (in particular, if

they are polygons), the problem can be transformed to a shortest path problem on a graph

(the so-called "visibility graph"). Then, special shortest path algorithms can be developed

that exploit the structure of the problem and reduce algorithmic complexity [M]. A more

general version, the "weighted region problem", has been considered in [MP]. Here, the

region G is partitioned into a finite number of polygons, and r is assumed to be constant

in each polygon. The algorithms in [MP] are geared towards the case where the partition
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of G is fairly coarse. However, if we let the partition become arbitrarily fine, we are led to

our formulation, with the function r having an arbitrary functional form.

Our problem is also a special case of deterministic optimal control. As such, variational

techniques can be applied leading to a locally optimal trajectory [AF, FR]. However, in

the presence of obstacles, or if the cost function r is not convex, the problem acquires a

combinatorial flavor and can have several local minima that are far from being globally

optimal. For this reason, other methods, of the dynamic programming type, are required.

The solution to the problem is furnished, in principle, by the Hamilton-Jacobi (HJ) equation.

Since an exact solution of the HJ equation is usually impossible, the problem has to be

discretized and solved numerically. After discretization, one needs to solve a system of

nonlinear equations whose structure resembles the structure of the original HJ equation.

This approach raises two types of issues:

(a) Does the solution to the discretized problem provide a good approximation of the solution

to the original problem?

(b) How should the discretized problem be solved?

Questions of the first type have been studied extensively and in much greater generality

elsewhere - see, e.g. [KD, S] and references therein. We bypass such questions and focus on

the purely algorithmic issues.

The usual approaches for discretizing the HJ equation are finite-difference or, more gen-

erally, finite-element methods [CD, CDI, GR, KD, S]. Furthermore, solving the discretized

problem is equivalent to solving a stochastic optimal control problem for a finite state con-

trolled Markov chain; the number of states of the Markov chain is equal to the number

of grid points used in the discretization [KD]. Thus, the discretized problem can be solved

by standard methods such as successive approximation or policy iteration [B1]. This is

somewhat unfortunate: one would hope that the discretized version of an optimal trajec-

tory problem would be a deterministic shortest path problem on a finite graph, that can be

solved efficiently, say using Dijkstra's algorithm. In contrast, a method such as successive

approximation can require a fair number of iterations, does not have good guarantees on its

computational complexity (because the number of required iterations is not easy to bound),

and can be much more demanding than Dijkstra's algorithm. The contribution of this paper

is to show that, for the particular problem under consideration and for certain discretiza-
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tions, Dijkstra-like methods can be used, resulting to fast algorithms. In particular, we will

show under mild assumptions, that there is an algorithm whose complexity is proportional

to the number of grid-points.

We close by mentioning another approach to the discretization of trajectory optimization

problems. In [MK] the region G is discretized by using a regular rectangular grid, and

the vehicle is only allowed to move along the edges of the grid (horizontally or vertically).

Then, the shortest path problem on the resulting grid-graph is solved using Dijkstra's

algorithm. The solution via Dijkstra's algorithm is certainly efficient, but the employed

discretization does not lead to an accurate approximation of the solution to the original

problem, no matter how fine a grid is used. The reason is that the set of allowed directions

of motion is discretized very coarsely: only 4 directions are allowed. The inadequacy of the

naive discretization is sometimes referred to as the digitization bias. It can be remedied by

allowing diagonal motion [MK], but only partially. Our results establish that the digitization

bias can be overcome without sacrificing the algorithmic efficiency of Dijkstra-like methods.

Summary of the paper

In Section 2, we state the HJ equation corresponding to our problem and define the

standard finite-difference discretization.

In Section 3, we exploit certain properties of the discretized HJ equation to show that it

can be solved in time O(nlogn), where n is the number of grid points. In particular, we

show that even though the discretized HJ equation does not correspond to a shortest path

problem, it is still possible to mimick Dijkstra's shortest path algorithm.

In Section 4, we present a variation of Dial's shortest path algorithm. We show that,

under certain assumptions on the arc costs, it has optimal computational complexity, and

has good parallelization potential.

In Section 5, we explain why the algorithmic ideas of Section 4 cannot be applied to the

discretized HJ equation of Section 2. We are thus led to the development of an alternative

discretization. With this new discretization, we show that the algorithmic ideas of Section

4 lead to an O(n) algorithm, which is the best possible.

In Section 6, we show that the algorithms of Sections 4 and 5 can be efficiently parallelized.

In particular, we show that linear speedup is obtained: the running time in a shared memory

parallel computer with p processors is only O(n/p), as long as the number of processors is
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not too excessive; e.g., for two-dimensional problems, if p = O(V/n/ log n). We compare our

results to those achievable by the successive approximation method.

Finally, in Section 7, we refer to some preliminary numerical experiments that strongly

support our results, provide some conclusions, and discuss some possibilities for extending

our results to more complex trajectory optimization problems.

II. PROBLEM FORMULATION AND A FINITE-DIFFERENCE

DISCRETIZATION

Let G be a bounded connected open subset of Rm and let aG be its boundary. We are

also given two cost functions r: G H- (0, oo) and q: aG + (0, oo). A trajectory starting

at x0 G G is a continuous function x : [0,T] R-m such that x(t) C G for all t G [0,T)

and x(T) E tG. A trajectory is called admissible if there exists a measurable function

u: [0, T] Si R such that x(t) = x(0) + fo u(s) ds and lIu(t)ll < 1 for all t E [0, T], where

11 I stands for the Euclidean norm. The cost of an admissible trajectory is defined to be

foT r(x(t)) dt + q(x(T)). The optimal cost-to-go function V*: G U dG F- 4R is defined as

follows: if x c OG, we let V' (x) = q(x); if x C G, we let V* (x) be the infimum of the costs

of all admissible trajectories that start at x.

A formal argument [FR] indicates that V* should satisfy the Hamilton-Jacobi equation

min {r(X) + (v, VV*(x))} = 0, x c G. (2.1)

Furthermore, for any x C 8G, V' should satisfy

lim sup V* (y) < VT '(), (2.2)
y--+

where the limit is taken with y approaching x from the interior of G. If the problem data

are smooth enough and if V* is differentiable, it can be argued rigorously that V* must

satisfy Eqs. (2.1)-(2.2). Furthermore, V' can be characterized as the maximal solution of

Eqs. (2.1)-(2.2). Unfortunately, the assumptions needed for VF to be differentiable are too

strong for many practical problems. The validity of these equations can be still justified,

under much weaker assumptions, if V* is interpreted as a "viscosity" solution of Eq. (2.1)

[CL, FS].

We now describe a discretized version of the HJ equation. While this discretization is a

special case of the discretizations described in [KD], we provide a self-contained motivation

based on Bellman's principle of optimality.
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Let h be a small positive scalar representing the fineness of the discretization (the dis-

cretization step). Let S and B be two disjoint finite subsets of ERm, all their elements being

of the form (ih, jh), where i and j are integers. The sets S and B are meant to represent a

discretization of the sets G and dG, respectively.

Let el,..., e, be the unit vectors in Rm. For any point x E S, we define the set N(x) of

its neighbors by letting N(x) = {x + haiei I i E {1,..., n, ai E {-1, 1}}. The assumption

that follows states that B contains the "boundary" of S, in keeping with the intended

meaning of these sets.

Assumption 2.1: For every x E S, we have N(x) C S U B.

Let ca be an element of A = (-1,1}m. To every ar = (ac,...,am) E A, we associate

a quadrant, namely, the cone generated by the vectors al el,...,am,em. Let 0 be the unit

simplex in Rm; that is, (01,..., O,) E 0 if and only if ix Oi = 1 and Oi > 0 for all i.

We assume that we have two functions f: B - (0, cc) and g: S - (0, oc) that represent

discretizations of the cost functions q and r in the original problem. The function g can

be usually defined by g(x) = r(x) for every x C S. The choice of f can be more delicate

because B can be disjoint from OG even if B is a good approximation of aG.

We finally introduce a function V: SUB - R which is meant to provide an approximation

of the optimal cost-to-go function V*. The discretized HJ equation is the following system

of equations in the unknown V:

V(x) = minmin [hg(x)r(O) + OiV( + haiei)] xE S, (2.3)

V(x) = f(x), x E B, (2.4)

where

-(0) =I = i\ , E c . (2.5)
i--l

We now explain the form of Eqs. (2.3)-(2.4). Suppose that the vehicle starts at some

x E S and that it moves, at unit speed, along a direction d. This direction is determined

by specifying the quadrant a to which d belongs and by then specifying the relative weights

Oi of the different vectors aoiei that generate this quadrant. Assume that the vehicle moves

along the direction d until it hits the convex hull of the points x + haciei, i = 1,..., m. At

6



that time, the vehicle has reached point x + h Oj=l iaiei. Since the vehicle travels at unit

speed, the amount of time it takes is equal to

|h jai ei= hr(9);
i=l

see Fig. 2.1. Since g(x) represents travel costs per unit time (in the vicinity of x), the

traveling cost is equal to hg(x)r(O). To the traveling cost we must also add the cost-to-go

from point x + h i=l 9icaiei and, invoking the principle of optimality, we obtain

V* (x) minmin [hg(x)r(O) + V (x +hZ E iaiej)] (2.6)
aEA OE®

i=1

We approximate V' by a linear function on the convex hull of the points x + hai ei, to obtain

Vo (x + hZ Oiaiei) EOiV* (x + haiei) (2.7)
i=l i=L1

Using the approximation (2.7) in Eq. (2.6), we are led to Eq. (2.3).

d

x+he

x-he x+he

x-he
2

Figure 2.1. Illustration of the discretization of the HJ equation. Here, the vehicle moves

along the direction d, in the quadrant defined by -el and e2.

The above discussion gives some plausibility to the claim that the solution V of Eqs.

(2.3)-(2.4) can provide a good approximation of the function V* and serves to motivate our

objective: providing an efficient algorithmic solution of Eqs. (2.3)-(2.4).
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As pointed out in [KD], Eqs. (2.3)-(2.4) are the Dynamic Programming equations for the
following Markov Decision Problem: if we are at state x E S and a decision (a, 0) E A x O
is made, the cost hg(x)r(O) is incurred and the next state is x + haiei, with probability
Oi; if we enter a state x C B, the terminal cost f(x) is incurred and the process stops.
Since the cost per stage is bounded below by the positive constant hminres g(x), standard
results of Markovian Decision theory [B1, BT] imply that Eqs. (2.3)-(2.4) have a unique
solution which is equal to the optimal expected cost. Furthermore, either the successive
approximation or the policy iteration algorithm will converge to the solution of (2.3)-(2.4).

References [GR] and [KD] suggest the use of the successive approximation method, pos-
sibly an accelerated version. The computational complexity of each iteration is proportional
to the number of grid-points. However, even for deterministic shortest path problems, the
number of iterations is proportional to the diameter of the grid-graph, which is usually of
the order of 1/h. The number of iterations can be reduced using Gauss-Seidel relaxation
(as in [GR], for example), but no theoretical guarantees are available. This is in contrast to
Dijkstra-like algorithms that solve deterministic shortest path problems with essentially a
single pass through the grid points.

In the next section, we show that even though Eqs. (2.3)-(2.4) correspond to a Markovian
Decision Problem, they still have enough structure for the basic ideas of Dijkstra's algorithm
to be applicable, leading to an efficient algorithm.

III. A DIJKSTRA-LIKE ALGORITHM

Dijkstra's algorithm is a classical method for solving the shortest path problem on a finite
graph. Its running time, for bounded degree graphs, is O(nlogn), where n is the number of
nodes, provided that it is implemented with suitable data structures [B2]. The key idea in
Dijkstra's algorithm is to generate the nodes in order of increasing value of the cost-to-go
function. This is done in n stages (one node is generated at each stage) and the O(logn)
factor is due to the overhead of deciding which node is to be generated next. We will now
show that a similar idea can be applied to the solution of Eqs. (2.3)-(2.4) and that the
elements of S U B can be generated in order of increasing values of V(z).

Throughout this section, we reserve the notation V(z) to indicate the unique solution of
Eqs. (2.3)-(2.4). The key to the algorithm is provided by the following lemma that states
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that the cost-to-go V(z) from any node x can be determined from knowledge of V(y) for

those nodes y with smaller cost-to-go.

Lemma 3.1: Let x E S, and let a E A, 0 G O, be such that V(z) = hg(z)r(O) +

Z=, 9OiV(x + hacie). Let I = {i |I i > 0}. Then, V(x + hajie) < V(z) for all i E Z.

Proof: To simplify notation, and for the purposes of this proof only, let A = hg(x) and

Vi = V(x + hacei). The assumptions of the lemma and Eq. (2.3) yield

m m

V(x) = Ar(0) + E OiV = min{Ar(C) + E (jV}. (3.1)
i=1 j=1

Notice that the function minimized in Eq. (3.1) is convex and continuously differentiable.

We associate a Lagrange multiplier to the constraint t=l (i = 1. Then, the Kuhn-Tucker

conditions show that there exists a real number A such that

A 40 + Vi = A, (3.2)

for all i E 2. Using the functional form of r(O), we obtain

A9,( V) + Vi = A, Vi C I. (3.3)
r(9)

We solve Eq. (3.3) for Vi and substitute in Eq. (3.1), to obtain

V(z) = A(0) + A- AiE T(0)

Thus, it remains to show that

A 2O AO,
AT(O) + A- _ E( e > - A- - Vi E Z,

or, equivalently, that

T(0) - E I 9) 7,- O. (3.4)
r()> -r()'

Using the definition of r(9), we see that the left hand side of Eq. (3.4) is equal to zero. On

the other hand, for i CE , we have 9i > 0 and the right hand side of Eq. (3.4) is negative,

thus establishing the desired result. Q.E.D.

We now proceed to the description of the algorithm. Let x1 be an element of B at which

f(x) is minimized. Using the Markov Decision Problem interpretation of Eqs. (2.3)-(2.4), it
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is evident that V(z) > f(xz) = V(xz), for all a C S U B. Thus, xl is a point with a smallest

value of V(x), and this starts the algorithm.

We now proceed to a recursive description of a general stage of the algorithm. Sup-

pose that during the first k stages (1 < k < n) we have generated a set of points Pk =

{xl,...,Zk} C S U B with the property

V(l) < V( 2 ) < ... < V(2X) < V(x), VX2 Pk.

Furthermore, we assume that the value of V(x) has been computed for every x C Pk. (The

set Pk is like the set of permanently labeled nodes in Dijkstra's algorithm.)

We define Vk (z) by letting Vk (z) = V(x) for x E Pk U B, and Vk (z) = oo, otherwise. We

then compute an estimate Vk of the function V by essentially performing one iteration of

the successive approximation algorithm, starting from V . More precisely, let Vk (2) = V(z)

for x E B and
m

Vk(x) = minmin [hg(x)r(0) + E OiVA(x + haiei)], E S. (3.5)
aEA OE®

i=l

In this equation, and throughout the rest of the paper, we use the interpretation 0. oo. Since

Vk(x) > V(x), a comparison of Eqs. (3.5) and (2.3) shows that

V(x) >_ V(z) Vx E B U S. (3.6)

The variable i'k (x), for x ~ Pk is similar to the temporary labels in Dijkstra's algorithm.

We now choose a node with the smallest temporary label to be labeled permanently.

Formally, we choose some xk+1 that minimizes Vk(x) over all z ~ Pk. The following lemma

asserts that this choice of xk+l is sound.

Lemma 3.2: (a) V(x,+l) = Vk(xk+l).

(b) For every x ¢ Pk, we have V(xk+l) < V(x).

Proof: Let y 4 Pk be such that V(y) = min p,, V(x). We will show that V(y) = ;k(y). If

y E B, this is automatically true. Assume now that y E S. Let a E A and 0 C 0 be such

that V(y) = hg(y)r(O) + "i=l OiV(y + haiei). Let Z = {i I O > O}. Lemma 3.1 asserts

that V(y + haiei) < V(y) for every i E 2. In particular, y + haiei E Pk for every i E I.

Therefore, V(y + haiei) = Vk(y + haiei), for every i E I. Consequently,

m m

V(y) < V1k(y) < hg(y)-r(0) + ~ OiVk(y + haiei) = hg(y)r(0) + E OiV(y + haiei) = V(y).
i=1 i=1
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(The first inequality follows from Eq. (3.6); the second from Eq. (3.5); the last one from the

definition of a and 0.) The conclusion V(y) = Vk(y) follows.

This, together with the fact V(x) < Vk(x), for all x, shows that xk+l which mimimizes

Vk(x) over all x C Pk also minimizes V(z) over all x = Pk and V(xk+l) = V(x+,)

Q.E.D.

The description of the algorithm is now complete. The algorithm terminates after n

stages and produces the values of V(x) for all x E S U B, in nondecreasing order. In order to

determine the complexity of the algorithm, we will bound the complexity of a typical stage.

Throughout this analysis, we view the dimension m of the problem as a constant, and we

investigate the dependence of the complexity on n.

Let us first consider what it takes to compute Vk (x). There are 0(1) different elements

a of A to consider and for each one of them, we have to solve, after some normalization, a

convex optimization problem of the form

[mie·n I : Ee + E *VJi (3.7)

No matter what method is used to solve the problem (3.7), the computational effort is

independent of the number n of grid points; it depends, of course, on the dimension m,

but we are viewing this as a constant. Thus, we can estimate the complexity of computing

Vk(x), for any fixed x, according to Eq. (3.5), to be 0(1).

How would we solve (3.7) in practice? We can use an iterative method, such as a gradient

projection method or a projected Newton method. For small dimensions m (which is the

practically interesting case), such a method would produce an excellent approximation of

the optimal solution after very few iterations. Furthermore, it is not difficult to show that

small errors in intermediate computations only lead to small errors in the final output of

our overall algorithm. Finally, for theoretical reasons, it is useful to notice that the problem

(3.7) can be solved exactly with a finite number of operations, if the computation of a square

root counts as a single operation; the details are provided in the appendix.

We now notice that Vk (x) = Vk+1 (x) for every x 4 zxk+l. This means that if x is not a

neighbor of xk+1, then rk (x) = 1k+l (x). Thus, Vk+l (x) only needs to be computed for the

0(1) neighbors of xk+l. We conclude that once 1 k is computed, the evaluation of Vh+l, at

the next stage of the algorithm, only requires 0(1) computations.



At each stage, we must also determine the next point xk+l, by minimizing zk(x ) over

all x < Pk. Comparing O(n) numbers takes O(n) time, which leads to O(n) time for each

stage, and a total O(n 2) running time. In a better implementation, the values Vk(x) can be

maintained in a binary heap, in which case xk+ 1 can be determined in O(log n) time; see [B2,

CLR] for the use of binary heaps in shortest path algorithms. We conclude that each stage

of the algorithm can be implemented with O(logn) computations. We now summarize:

Theorem 3.1: The algorithm of this section solves the system of equations (2.3)-(2.4).

Assuming that square roots can be evaluated in unit time, it can be implemented so that it

runs in time O(n log n).

Some more comments are in order. We have been using a uniform grid. If we were to

use a nonuniform grid instead, there would be some minor changes in the form of Eq. (2.3).

The general structure would still be the same. However, Lemma 3.1 would cease to hold.

Similarly, if the cost function g(x) were to become direction dependent, e.g., of the form

g(x, a, 0), Lemma 3.1 would again fail to hold.

Finally, we note that the algorithm of this section is inherently serial. This is because the

elements of S are generated one at a time, in order of increasing values of V(x). To obtain a

parallelizable algorithm, we should be able to generate the values of V(x) for several points

x simultaneously. To gain some insight into how this might be done, we first consider, in

the next section, an algorithm for the classical shortest path problem.

IV. A VARIATION OF DIAL'S SHORTEST PATH ALGORITHM

We are given a directed graph G = (N, A). Here, N = {1,..., n} is the set of nodes, and

A is the set of directed arcs. For each arc (i, j) E A, we are given a positive arc length aij.

The objective is to find, for every node i, a shortest path from node i to node 1. We will

use the following assumptions:

Assumption 4.1: (a) For every i, there exists a path from i to node 1.

(b) For every (i, j) E A, we have aij > 1.

Let V(i) be the length of a shortest path from node i to node 1. For notational conve-

nience, we let V(1) = 0 and aij = oo if (i, j) ~ A. For k = 1,2,..., let Qk = {i I k-1 <

V(i) < k} and Rk = Ui=oQi = {i I V(i) < k}.
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The algorithm starts with R 1 = Q1 = {1}. Suppose that after k stages of the algorithm,

we have determined the sets Qh and Rk, and have computed V(i) for every i E Rk. We

may call the nodes in Rk permanently labeled. We then define temporary labels by letting

k (i)= min{aai + V(j) . (4.1)
jERk1

Notice that V(i) = minj{aij + V(j)}, which implies that V(i) < Vk(i) for all i.

Lemma 4.1: Suppose that V(i) > k, i.e., i ~ Rk.

(a) If V(i) < k + 1, then Vk(i) = V(i).

(b) If V(i) > k + 1, then Vk (i) > k + 1.

(c) We have i G Rk+1 if and only if rk (i) < k + 1 and, if this is the case, then Vk (i) = V(i).

Proof: (a) Let e be the first node on a shortest path from i to 1. Then, V(i) = ail + V(e).

If V(i) < k + 1, then V(t) < k and e E Rk. Thus, fVk(i) < ail + V(£) = V(i). On the other

hand, we have already noted that V(i) < Vk (i), which shows that V(i) = Vk(i).

(b) This is trivial because V(i) < Vh(i).

(c) This is just a restatement of (a) and (b). Q.E.D.

Lemma 4.1 shows that Qk+l = {i ~ Rk I Vk(i) < k + 1}, from which the set Qk+1 can

be determined and this completes the description of a typical stage of the algorithm. The

algorithm terminates after at most L + 1 stages, where L = Fmaxi V(i)]. We now describe

an efficient implementation.

As in Dial's shortest path algorithm, we store the temporary labels Vk(i) in "buckets".

(As is well known [B2], buckets can be implemented so that insertion and deletion of an item

takes 0(1) computations.) We will use L buckets and at the kth stage of the algorithm, the

jth bucket will contain a list of all nodes i such that j - 1 < Vk(i) < j. On the side, we

will also maintain an array whose ith entry will contain the value of T k (i). The algorithm

is initialized by computing V1 (i) for all i, and by placing each i in the appropriate bucket.

Suppose that VIk has been computed, and each i is stored in the appropriate bucket. Note

that Eq. (4.1) can be written as

Vk+l (i) = min{k(i), min {aij + V(j)}}. (4.2)

Let us consider a typical node i. If there exists no j E Qk+1 such that (i, j) E A, then Eq.

(4.2) shows that Vk+, (i) = Vk(i), i stays in the same bucket and nothing needs to be done.
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If on the other hand, there exists some j E Qk+l such that (i, j) E A, then Vk+l (i) has to

be evaluated according to Eq. (4.2). Let Zk+l be the total number of arcs leading into some

element of Qkh+. (Note that El=1 Zk = IAl.) Then, the computation required to evaluate

Vk+l(i) for all i, is O(Zk+,). This leads to a total of O(IAI) computations throughout the

course of the algorithm. For every i for which Vk+l (i) $/ Vk (i), we also need to move i to a

new bucket and this takes 0(1) time. By a similar argument, the total amount of work is

still O(IAI).

We now summarize:

Theorem 4.1: Let Assumption 4.1 hold and suppose that V(i) < L for all i. Then, the

above described algorithm computes V(i) for all i in time O(L + IAl).

Remarks:

1. If all aij are integer, the algorithm of this section is identical with Dial's algorithm. Our

development here shows that the assumption aij > 1, rather than the integrality assumption,

is the essential one.

2. If L = O(IAI), the running time of the algorithm is simply O(IAl), which is the best

possible. Suppose that the graph G is a square mesh in m-dimensional space, with a total

of n points. We then have JAl = O(mn). Suppose that aij < K for some constant K. Then,

the length L of any shortest path is bounded by K times the diameter of the graph. Thus,

we can let L = Kmnl/m. Recall that we have an optimal algorithm if L = O(I Al). This will

happen if Kmnl/m = O(mn), or, equivalently, if K = O(n(m- )/m ). Even in two dimensions

(m = 2), we obtain an O(n) algorithm while allowing a fairly large amount of variability

of the arc lengths (a factor of n' /2 ). Notice that this is exactly the type of shortest path

problems that one obtains from the naive discretization of trajectory optimization problems

mentioned in the end of Section 1.

3. The algorithm has excellent parallelization potential. At each stage, we can let a different

processor compute 1 k (i) for a different node i. Thus, the parallel time seems to be limited

only by the number L of stages in the algorithm. If L is much smaller than the number n

of nodes, then we can hope that parallelism leads to a substantial speedup. So, for the case

of a two-dimensional mesh (see remark 2), if we have L = O(nl/2 ) and K = 0(1), we can

hope for O(n1 / 2) parallel running time. We will see in Section 6 that we can come fairly

close to this optimistic estimate.
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V. AN ALGORITHM WITH OPTIMAL COMPLEXITY

The algorithm of Section 3 achieved O(nlogn) running time by mimicking Dijkstra's

shortest path algorithm. In order to reduce the complexity to O(n), we will mimick the

algorithm of Section 4. The key to that algorithm was the following elementary fact: if V(i)

depends on V(e), in the sense that V(i) = ait + V(t), then V(i) > V(t) + 1. An analogous

property that would lead to a fast solution of Eqs. (2.3)-(2.4) is the following:

Property P: There exists a constant 6 > 0 such that if V(x) = hg(x)?r(G)+ , 1 OiVi(z +

haiei) and Oi > 0, then V(x) > Vi(x + haiei) + 6.

Lemma 3.1 established that property P holds with 6 = 0. Unfortunately, property P

is not true for Eqs. (2.3)-(2.4) when we let 6 be positive. In this section, we show that

property P becomes true if a somewhat different discretization is used. Then, based on this

property, we mimick the algorithm of Section 4, to solve the trajectory optimization problem

in O(n) time. Unfortunately, the discretization that we introduce is more cumbersome and

is unlikely to be useful when the dimension is higher than 3. For this reason, we will only

describe our method when the dimension m is 2 or 3. The reader should have no difficulty

in generalizing to higher dimensions.

Let us first consider 2-dimensional problems. Let H be the boundary of a square centered

at the origin and whose edge length is equal to 2h. We define the vectors wl,..., w8 as shown

in Fig. 5.1. We use x + H to denote the translation of H so that it is centered at x.

W
3

W a _ .

2

w 0 w
5 0!

6W W
w

7

Figure 5.1. A square of size 2h x 2h centered at the origin and the definition of the vectors w,,..., w8.
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As in Section 2, let S and B be two disjoint finite subsets of Em, all of their elements

being of the form (ih, jh), where i and j are integers. We assume that we are given functions

f : S - (0, oo) and g: B -+ (0, oo). For any point x E S, let N(x), the set of its be neighbors,

be N(x) = {x + w~i i = 1,..., 8}. As in Assumption 2.1, we assume that for every x E S,

we have N(x) C S U B.

We now motivate the discretization of the HJ equation that will be used in this section.

Suppose that the vehicle starts at some x E S and moves along a direction d, for some

time r, until it hits the set x + H. The direction d is in the cone generated by wa and

w±+l for some suitable choice of a. The point at which the vehicle meets H is of the form

(1 - O)w, + Ow,,+l, for some 0 E [0, 1]. We will thus parametrize the choice of direction

d by a parameter a E {1, ... , 8} that specifies a particular cone and then by a parameter

0 E [0, 1] that picks a particular element of that cone. Let h' (09) be the travel time along

the direction determined by a and 0, until the set x + H is reached. It is easily seen that

a(09) =11(1 - 0)Wa + Ow+i ) 1-+ (1- 0)2, if a is even,
+ 1092, ifaisodd.

Using the principle of optimality, as in Section 2, and by approximating V by a linear

function on the segment joining w,e and wa,+1, we obtain the following system of equations:

V(x) = min min [hg(x)ra(O) + (1 - O)V(x + w,,) + OV(x + -w+i)], x E S, (5.1)
a= ....s oE[O,11

V(X) = f(x), x E B. (5.2)

Equations (5.1)-(5.2) are again a special case of the finite element discretizations studied

in [KD]. Once more, they admit a Markov Decision Process interpretation, have a unique

solution, and we reserve the notation V(x) to denote such a solution.

Recall that the cost per stage g in the discretized problem has been assumed to be

positive. In the following, we assume a lower bound of unity for g and proceed to establish

property P.

Assumption 5.1: For every x E S, we have g(x) > 1.

Lemma 5.1: Let ca and 0 be such that

V(x) = hg(x)',(0) + (1 - O)V(x + w,e) + OV(x + w,+l ).
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If 0 < 1, then V(x) > V(z + w,) + (h/v/2). If 0 > O, then V(x) > V(x + wv+l) + (h/v2).

Proof: We only consider the case where ao = 1. The argument for other choices of a is

identical. Suppose that 0 = 0. Then, V(x) = hg(x) + V(x + wl) > (h/v/) + V(x + wl ), as

desired. Suppose that 0 = 1. Once more, V(x) = hg(x)v2/+V(x+w2) > (h/v2)+V(x+w 2).

Suppose now that 0 < 0 < 1. The first order optimality condition for 0 yields

hg(x +V(x + W2) - V(x + W) = 0.

Therefore,

V(x) - V(x + W2) > V(x)- V(x + w 1)

= hg(x)V/ 0 + +(V(x + w 2)- V(x + wI))

= hg(z) 1 _0 hg(z )0 2

=1 +I02

1 + 02 - 02

=hg(x) +

h

Q.E.D.

Figure 5.2. A triangulation of each face of the cube H.

We now continue with the 3-dimensional case. Let H be the boundary of a cube centered

at the origin and with edge-length equal to 2h. We triangulate each face of H as shown in

Fig. 5.2. We use a similar triangulation for every face of x + H. The rest is very similar

to the two-dimensional case. A direction of motion can be parametrized by specifying a
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triangle on some face of the cube, and by then specifying a particular point in that triangle.

Let a be a parameter indicating the chosen triangle. (There are six faces with 8 triangles

each; thus, a runs from 1 to 48.) For a given triangle a, let Ya,li Ya,2, Ya,3 be its vertices.

In particular, let Ya,l be the point closest to the center of the cube, and let Ya,3 be the

one furthest away. We define the set N(x) of neighbors of x, as the set of all points in the

set x + H whoe coordinates are integer multiples of h. As in the two-dimensional case, we

require that N(x) C S U B for all x E S.

Let 0 = (01, 02, 03) 1 Oi > 0, E i=_ i = 1}. Every point in the triangle corresponding to

some a is of the form 3i-1 0iya,i, where 0 E O. Let hr(O) be the distance from the center

of the cube to the point determined by a and 0. It is easily seen that

r(0) = I1(90 + 02 + 03, 02 + 03)11 = + (1 - 01)2 + 03

Once more, the principle of optimality yields

V(x) = minmin [hg(x)r(O) + OiV(x + a,i )], EC 5, (5.3)
a BEO

V(x) = f(x), x E B. (5.4)

We reserve again the notation V(z) to indicate the unique solution of Eqs. (5.3)-(5.4). The

following is the 3-dimensional analog of Lemma 5.1.

Lemma 5.2: Let a and 0 E 0 be such that

3

V(x) = hg(x)r(0) + E 0iV(x + Y,,i).
i=1

If ,i > 0, then V(x) > V(x + y,,i) + h/v/3.

Proof: Suppose that a corresponds to the triangle whose vertices are the points y,,l =

x + (h, 0,0), Ya,2 = x + (h, h, 0), Ya,3 = x + (h, h, h). The proof for any other choice of a is

identical, due to the symmetry of the triangulation we are using. Let Vi = V(ya,i ). Using

the formula for -(0), we have

3

V(x) hg(x) 1 + (1- 01)2 + 02 + 0iV
ti~~~=l~~~ ~(5.5)

min [hg(x) o+(1 , _o l)2 +C <i]
Ci ŽQ~s ŽO,(, +18(~ ~i=l
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Suppose that 0i > 0 for all i. Then, the first-order optimality conditions yield

hg(z) It =- V1 - V2 (5.6)

and

hg(z) = V2 -V 3 . (5.7)
r(0)

In particular, we have V3 < V2 < V1 and it suffices to find a positive lower bound for

V(x) - V1. We use Eqs. (5.6) and (5.7) to eliminate V1 and V3, respectively, from Eq. (5.5)

and obtain

V(x) = hg(x)r(O) + 01V2 + hg() ( + 02V2 + 03V2 - hg(Z) -)

We then subtract Eq. (5.6) to obtain, after some algebra,

-- 02 - (1 - 01 ) g(x) h
V(x) - V1 = hg(x)r(O) + hg(x)( - -(1) () 

r(=) (0-)- 

The argument for the case where some component of 0 is zero is similar and is omitted.

Q.E.D.

Having established an analog of property P for two- and three-dimensional problems,

we discuss how it leads to efficient algorithms and estimate their complexity. The basic

ideas are the same as for the shortest path algorithm of Section 4 and we only discuss the

three-dimensional case.

Let 6 = h/v/3. Let Qk = {x I(k - 1)6 < V(x) < k6} and Rk = Ui =0Qi = {x I V(x) <

k6}. Suppose that at some stage of the algorithm, we have computed V(x) for all x E Rk.

We define Vk (x) to be equal to V(x) if x E Rh and infinity otherwise. Let

k(z=) = minmin [hg(xz)r() + OiV(x + Ya,i)], x E S, (5.8)
i=1

where we are again following the convention 0 . oo = 0. We then argue as in Lemma 4.1.

If V(x) > (k + 1)6, then fV(x) > V(x) > (k + 1)6. If on the other hand V(x) < (k + 1)6,

Lemma 5.2 shows that for every i such that Oi > 0 we must also have V(x + ya,i) < k6

and therefore V(x + y~,i) = Vk(z + Ya,i). This implies that /Vk(x) = V(z). Thus, we

have computed V(x) for every x C Rk+l, and we are ready to start the next stage of the

algorithm.
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We implement the algorithm by using buckets, exactly as in Section 4, except that the

"width" of each bucket is 6 = h/v/3 instead of unity. The complexity estimate is essentially

the same as in Section 4, because the underlying algorithmic structure is almost the same.

Since each x has a bounded number of "neighboring points" x + hy,i,, a point x may move

from one bucket to another and the value of fVk(x) may need to be recomputed only 0(1)

times. Each time that Izk(x) is recomputed, we need to solve the optimization problem

in Eq. (5.8). Following an approach similar to the one in the Appendix, this can be done

with a finite number of operations, provided that square root computations are counted as

single operations. Thus, the complexity estimate becomes O(n) plus the number of buckets

employed. The number of buckets can be bounded in turn by O(L/6) = O(L/h), where L

is an upper bound on maxIes V(x).

For the two-dimensional case, there are no essential differences, except that the bucket

"width" should be h/x2. We summarize below.

Theorem 5.1: Let Assumption 5.1 hold and assume that square roots can be evaluated in

unit time. Then, a solution of Eqs. (5.1)-(5.2) in the two-dimensional case, or Eqs. (5.3)-

(5.4) in the three-dimensional case, can be computed in time O(n + L/h), where L is an

upper bound for maxIEs V(x).

We now interpret the complexity estimate of Theorem 5.1 in terms of the original contin-

uous trajectory optimization problem. We assume that the underlying cost function r (cf.

Section 1) is bounded below by some positive constant. For a problem involving trajectories

in "m, the number of grid-points is n = O(h-m ), where h is the grid-spacing. On the other

hand V(x) should converge to V* (x), the cost-to-go for the original continuous problem,

which is independent of h. In particular, the factor L in Theorem 5.1 can be taken inde-

pendent of h. For m > 1, the term O(n) is the doiminant one in the complexity estimate

O(n + L/h). We conclude that, as long as the problem data in a trajectory optimization

problem are regular enough for our discretizations to be justified, we have algorithms whose

complexity is proportional to the number of grid-points involved, which is the best possible.

VI. PARALLEL IMPLEMENTATION

In this section, we comment on the parallelization potential of the algorithm of Section 5

and compare it with the parallel implementation of relaxation methods. In order to avoid

20



discussing the effects of architecture-dependent features, we frame our discussion in the

context of an idealized shared memory parallel computer; similar results are possible for

some message-passing architectures like hypercubes.

Let us concentrate on the computations required during a typical stage of the algorithm.

Suppose, for example, that /k7(x) is available for all points x, so that Qk+l can be deter-

mined. Let Nk+l be the set of points that have a neighbor belonging to Qk+l. For every

x ~ Nk+1, we have Vk+l(x) = Ik(x) and no computation is required to obtain k+rl(x).

Thus, a high-level description of a typical stage of the algorithm of Section 5 is as follows:

1. Use the values of Vk(x) to determine the set Qk+l.

2. Determine the set Nk+l.

3. For every x E Nk+l, compute, in parallel, the value of Vk+1 (x).

If a different processor were assigned to every point x E S, then step 3 would be carried

out in 0(1) parallel time. However, such an implementation would be wasteful because the

processors associated to points x ~ Nk+l would be idle; for most stages, the majority of

the processors would be idle and the parallelization would be inefficient. In order to obtain

an efficient implementation, it is important to use a smaller number, say p, of processors,

certainly no more than the average size of Nk+l. Then, at each stage, we need to allocate

more or less the same number of elements of Nk+l to each processor. Such load balancing

can be accomplished by running a parallel prefix algorithm at each stage [L].t The running

time of a parallel prefix algorithm is O(logp). Once the load of the different processors is

balanced, the parallel time for that stage is O(INk+l [) = O(IQk+l I).

Putting everything together, the total parallel running time is O((L/S) logp+ E k IQk I /p)

= O((L/6) logp + n/p). By the argument in the end of the preceding section, L should be

viewed as a constant independent of n. Then, for two-dimensional problems, the parallel

complexity becomes O(n1/2 logp + n/p). With p = O(n1/ 2 /logn), the running time is

0 (n1 /2 log n). A similar calculation shows that, for three-dimensional problems, the parallel

running time is O(n1/3 log n), using O(n 2/3 /log n) processors.

Note that no parallel implementation of the algorithm of Section 5 could have much

better running time. This is because we have to deal with one bucket after the other and in

t The details of how to do this are somewhat uninteresting and fairly common in the

parallel algorithms field; we therefore choose to omit them.
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two (respectively, three) dimensions there will be 0(n'/ 2 ) (respectively, O(nl/3)) buckets.

In addition, the proposed implementation is efficient, in the sense that the processor-time

product is of the same order of magnitude as the serial running time.

It could be argued that the successive approximation algorithm is more suitable for

parallelization because all points can be simultaneously iterated: using O(n) processors,

the parallel time is of the order of the number of iterations. However, the number of

iterations cannot be less than O(nl/2 ) or O(nl/3 ) for two- or three-dimensional problems,

respectively. We conclude that parallel successive approximation cannot be much faster than,

the algorithm described here in terms of running time, even though it uses a much larger

number of processors. The number of iterations in the successive approximation algorithm

can be reduced by using the Gauss-Seidel technique, maybe with some heuristics guiding

the choice of the next point to be iterated, but the resulting methods are usually much less

parallelizable.

VI. DISCUSSION

The Dial-like algorithm of Section 5 has the best possible order of magnitude of running

time, namely O(n). On the other hand, the constant factor is likely to be larger than the

constant factor in the O(n log n) estimate for the Dijkstra-like algorithm of Section 3. Thus,

it is not clear which algorithm would be better in practice. We expect that the Dial-like

algorithm could be better for two-dimensional problems and fairly fine discretizations.

We also expect that the Dijkstra-like algorithm would significantly outperform the classi-

cal successive approximation algorithm. Successive approximation is likely to be competitive

only if its Gauss-Seidel variant is used and if the points are sweeped in more or less the

same order as they appear on optimal trajectories. In other words, successive approximation

becomes competitive only if it manages to mimick the Dijkstra-like method.

We report here on some preliminary numerical experiments carried out by L. C. Poly-

menakos. The Dijkstra-like algorithm was compared with a reasonable implementation of

the Gauss-Seidel (GS) successive approximation algorithm, in which states were scanned

row-by-row. Test runs involved a square 100x100 grid. The costs per stage g(x), x E S,

were chosen either at random or as quadratic functions of x. For problems involving no

obstacles, the ordering of the states used by the Gauss-Seidel algorithm was reasonably well
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aligned with the general direction of optimal trajectories; still, the GS algorithm was slower

by about a factor of 10-15. When several obstacles were introduced, forcing the optimal

trajectories to go back and forth several times, the Dijkstra-like algorithm was faster by

a factor of 50-300. Even though more extensive testing with a larger variety of problems

is needed, these preliminary results suggest that the suggested algorithms are fast both in

theory and in practice.

In this paper, we have not addressed the more general trajectory optimization problems

in which the cost r(z) also depends on the control variable u and is of the form r(x, u).

One-pass algorithms do not seem possible and genuinely iterative methods, like successive

approximation, seem to be necesseary. Nevertheless, there are reasons to believe that similar

methods that try to propagate "wavefronts" (or level sets) of the function V will be much

better than naive iterative methods.
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APPENDIX

We explain here how the problem (3.7) can be solved with a finite number of operations,

if the evaluation of a square root is counted as a single operation.

Let us frst assume, without loss of generality, that V1 > V2 ... > V,,. Suppose that the

optimal value of 01 is positive. It is then apparent from the structure of the problem (3.6)

that the optimal value of 0i is positive for all i. Then, by the Kuhn-Tucker conditions, there

exists a scalar A such that

(O) + Vi = A, Vi.(A.1)

We thus have

I = 0()2 -1=E (0)2 1: (A - V ) (A.2)
i=l i=l

We can solve this quadratic equation to determine A (this requires a square root computa-

tion). Furthermore, the relation

n n

l = E Oi = r(0) (A - Vi) (A.3)
i=l i=l

can be used to determine the value of r(0). The value of each Oi can be then computed from

Eq. (A.1). If after doing all these calculations, we find that Oi > 0 for all i, then we have

an optimal solution of the problem (3.7). If some Oi is negative or zero, or if (A.2) has no

real roots, then our assumption 01 > 0 was erroneous. In that case, we can let 01 = 0 and

optimize with respect to the remaining variables. This is a problem with the same structure,

but in one dimension less, and the same procedure can be used. By repeating these steps

at most m times, the optimal solution of (3.7) will have been determined.
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