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Abstract

In this paper, the problem of asymptotic identification for fading memory systems in the
presence of bounded noise is studied. For any experiment, the worst-case error is characterized
in terms of the diameter of the worst-case uncertainty set. Optimal inputs that minimize
the radius of uncertainty are studied and characterized. Finally, a convergent algorithm that

does not require knowledge of the noise upper bound is furnished. The algorithm is based on
interpolating data with spline functions, which are shown to be well suited for identification in
the presence of bounded noise; more so than other basis functions such as polynomials.
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1 Introduction

Recently, there has been an increasing interest among the control community in the problerl of
identifying plants for control purposes. This generally means that the identified model should
approximate the plant in the operator topology, since this allows the immediate use of robust
control tools for designing controllers [2, 51. This problem is of special importance when the data
are corrupted with bounded noise. The case where the objective is to optimize prediction for a
fixed input was analyzed by many researchers (see [10] and the references therein). The problem
is more interesting when the objective is to approximate the original system as an operator. a
problem extensively discussed in [20], especially when the plant's order is not known a priori. For

linear time invariant plants, such approximation can be achieved by uniformly approximating the
frequency response (Ha-norm) or the impulse response (li norm). In Ha identification, it awas
shown that robustly convergent algorithms can be furnished, when the available data is in the form
of a corrupted frequency response, at a set of points dense on the unit circle ([8, 6, 7]). When the
topology is induced by the £1 norm, a complete study of asymptotic identification was furnished in
[18] for arbitrary inputs, and the question of optimal input design was addressed. Input design has
been addressed in stochastic settings (e.g. [11, 21] ), but not in worst-case settings. Related work
on the worst-case identification problem was also reported in [13, 14. 12, 15, 3. 9].

In this paper, the work of Tse et al [18] is extended to analyse the worst-case asymptotic
identification of nonlinear fading memory systems. As in [18], the study is done in two steps. The

first step is concerned with obtaining tight upper and lower bounds on the optimal achievable error
by any identification algorithm. The bounds are functions of the input used for the experiments,

and this can be arbitrary. The second step is then to study these bounds and characterize the
inputs that will minimize them. In particular, simple topological conditions are furnished that
guarantee the existence of an algorithm with a worst-case error within a factor of two from the
lower bound. An near optimal input is characterized so that the worst-case error is within a factor
of two of the bound on the noise.

It is noted that for the results on arbitrary experiments, the suggested optimal algorithms are
tuned to the knowledge of the bound on the noise. If however, the near optimal input is used, then
an untuned algorithm can be provided that results in a worst-case error equal to the noise bound,
6. Such an algorithm is based on interpolating data by spline functions of several variables.

The rest of the paper is organized as follows. Section 2 gives a formal definition of nonlinear
fading memory systems. Section 3 describes the identification set-up. Section 4 characterizes the
asymptotically optimal algorithms and the associated optimal worst-case errors for a given input.
The problem of optimal inputs is addressed in Section 5. An optimal untuned algorithm is developed
in Section 6. Section 7 contains our conclusions.

2 Fading Memory Systems

Let U be the set of one-sided infinite sequences whose e£ norm is bounded by 1. This can be
viewed as the input set which contains the possible inputs that can be used for performing the

identification experiments. We consider the set of models X as discrete-time, causal functions from
U to Ax; a plant h E X takes as input a sequence u = (uo, ul,...) to give an output sequence
(ho(u), h1(u),...). We assume that h C X further satisfies the following properties:

1. h,(u) depends continuously on u 0 ,..., u,_l.
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2. h has equilibrium-initial behavior:

h,+l(Ou) = h,(u) for all n,

where Ou is the input 0, uo, ul,.... (In general. we will use the notation vw for concatenation,
i.e. first apply the finite sequence v, then w. Since we are dealing with causal systems. we
shall slightly abuse the notation and write h,(w) to mean h,(u), where it is any infinite
sequence the first n elements of which are given by the finite sequence w.)

3. h has fading memory (FM): for each e > 0 there is some T = T(e) such that for every k,
every t > T and every finite sequences v c [-1, 1]k, w C [-1, l] t ,

Iht+k(vw) - ht(w)l < E

To measure the identification error, we shall consider the metric p to be the one corresponding
to the operator gain:

Ilhllx = sup Ilh(u)llIo.
uEU

It can be seen that systems in X satisfying the above property necessarily must have bounded
operator gain. This is a good norm to consider for robust control applications. However, it should
be noted that this norm is different from the standard definition of the gain of a nonlinear operator,
which is readily suitable for robust control applications. For the above induced norm to be useful,
an upper bound on the amplitudes of input signals has to be known apriori. In the above definition,
this bound is normalized to one.

Examples of FM Systems:

Stable L TI systems.
For each h E tl consider the input/output map u F-+ u * h. It is clear that these systems satisfy the
above conditions. The operator-induced norm in this case is just the fl norm.

Hammerstein systems.
These are systems which are formed by composition of a stable LTI system followed by a memoryless
nonlinear element:

yn = g((u * h)n)

for some h GE t and some continuous function g : R -, R. It is easily to verify that these systems
satisfy the first two conditions above. If we assume further that g is uniformly continuous, then it

can be seen that the system also has fading memory.

For further details on fading memory operators, see [1, 16].

3 Identification Setup

The plant to be identified is known to be in a model set M C X. An input u is selected from the

set U. We assume that the observed output y is corrupted by some additive disturbance d which

is unknown but magnitude-bounded, lIdJlJ <- 6, i.e. if h is the system, then

y = h(u) + d.
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An identification algorithm is a sequence of mappings 6 -{ {n} generating at each time
an estimate 0n(Pnu,Py) E X of the unknown plant. Here, Pn(uo, u1,...,, u+l... =
(uO,..., Un, 0, 0,...) is the truncation operator.

Given an identification algorithm and a chosen input, we would like to consider the limiting
situation when longer and longer of the output sequences are observed. To this end, the worst case
asymptotic error, e0 0 (b, u, 6), of an algorithm b is defined as the smallest number r such that for
all plants h E M and for all disturbances d with Idlldl <_ 6,

limsup fll(Pu, P,,(u *h + d))- h]lx < r

Equivalently,
e,0 (¢, u, 6) = sup sup lim sup Ilc(Pnu, P(u * h + d))- hIx

heM ]dll 0oo< n• -

The interpretation of this definition is that no matter what the true plant and the disturbances
are, the plant can be eventually approximated to within e(O(q$, u, 6), using the estimates generated
by the identification algorithm. The convergence rate may depend on the plant and noise, i.e. for
a given e there exists some N(d, h, e) so that

Il0n(Y) - hllx < e.(, u, 6) + E

whenever n > N. We say that the convergence is uniform if N(y, h. E) depends only on E. For nmre
motivations and discussions on these definitions, see [181.

The optimal worst-case asymptotic error Eoo(u, 6) is defined as the smallest error achievable by
any algorithm:

E0o(u, 6) Einf eo, (, u. 6)

Any algorithm for which the infimum is attained is said to be asymptotically optimal. We will obtain
a general characterization of the asympotically optimal algorithms and the resulting optimal error,
for any given input u. We will then find conditions on the input u to make this optimal worst-case
asymptotic error small.

4 Asymptotically Optimal Identification

The characterization of asymptotically optimal algorithms and optimal asymptotic errors is in
terms of the uncertainty set, an important notion in information-based complexity theory. The
uncertainty set S,(u, y, 6) at time n is the set of all systems in the given model set M which are
consistent with the observed data up until time n:

Sn(u,y, 6) = h C M : IIP(y - h(u))ll0 < •}

These are the plants which can give rise to the observed output for some valid disturbance sequence.
The infinite-horizon uncertainty set is

S,(u,,y,6) = {h E M : IIy - h(u)110. < 6}

For a given set A C X, define the diameter of the set as:

diam(A) = sup Ilg - hIlx
g,hEA
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and let D(u, 6) be the diameter of the worst-case infinite-horizon uncertainty set:

D(u, 6)= sup sup diam(S,(u, u * h + d, 6))
hEM lidljl<6

Under appropriate topological conditions on the model set. this quantity characterizes 'he
optimal asymptotic worst-case error. The following result is a generalization of Proposition :.K3,
Theorem 3.4 and Proposition 3.9 in the LTI case ([18]) to our present setting.

Theorem 4.1 If the model set M C X is or-compact (i.e. M is a countable union of compact
sets), then

D(u, 6) < E((U, 6) < D(u, 6)
2 -

Furthermore, if M4 is compact, then the convergence can be made uniform.

In the 0o-compact case, an algorithm achieving an asymptotic error within the above bounds can
be realized using the principle of Occam's razor. Let M = UiMi, where the Mi's are compact and
increasing. This decomposition gives a complexity index to each plant in M. as the index of ihe

smallest Mi containing the plant. At each time n, the algorithm simply returns as an estimate Pny
plant in the uncertainty set S, with the smallest complexity index. Note that since the disturbance
bound 6 is required to compute the uncertainty set, this algorithm is tuned to this information. On
the other hand, if M is compact, one can use an algorithm which simply returns the plant in .M
which fits best the input/output data observed so far. This algorithm attains an asymptotic error
within the above bounds with a uniform rate of convergence. It is also untuned to the disturbance
bound 6.

A slight extension of the above result yields essentially the same bounds for the case when M
is separable. The proof is along the same lines as the proofs of Lemma 4.5 and Proposition 4.6 in
[18]. The optimal algorithm has roughly the same structure as that for the a-compact case.

Theorem 4.2 If M is separable, then

( ) < E (u, 6) < limD(u, x)
2 -16

To apply the above results, we now look at the topological structure of some classes of fading
memory systems under the operator-induced norm.

Consider first the class of stable LTI systems. Since this corresponds to the space ti, which is
separable, Theorem 4.2 is applicable in this case. More generally, we can in fact prove:

Theorem 4.3 The class of all fading memory systems is separable.

Proof. Define the class of pth-order memory systems. Mp, to be the set of all f such that for
every k and for every t > p and every finite sequences v E i-1, 1]k,w E [-1, 1i t , ft+l(vw) = ft(w).

It is clear that any fading memory system can be approximated (in the operator-induced norm)
arbitrarily closely by a pth-order memory system for sufficiently large p. Hence it suffices to prove

that Mp is separable for all p.

Now given any f E Mp we can find some continuous function g : [-1, 1]P X-* R such that for all
time n, and all input u,

fn(u)= g(Un-p, ... Un-1)
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We call g the memory function for f. Hence we have that !f 11 = -Igll]o, where the infinity norm is
taken over [-1, 1]P. But the space of continuous functions with the uniform topology induced by
the T£-norm, denoted by C([-1, 1]P), is separable, and hence so is Mp.

This means that when we look at fading memory system, we can apply Theorem 4.2, and
reduce the analysis of the asymptotic optimal error to the analysis of the worst-case infinite-horizon
diameter.

5 Optimal Inputs

We now turn to the question of optimal inputs, i.e. inputs u that minimize the worst-case infinite-
horizon diameter D(u, 6). First we state a simple lower bound. Let

p(M) := sup{r I ° < 6 < r 3 g, h E M with jlg-h h = r .

Note that if AM is path connected, then p(M) = diam(M).

Lemma 5.1 If 26 < p(M), then D(u, 6) > 26 for all u E U.

Proof. See [18]

Since p(M) > 26 for most of the reasonable model sets, the above result gives a general lower
bound. We now investigate how to choose an input which achieves this bound.

Recall that M is balanced if h E M implies -h C M. For balanced and convex model sets. it
is well known from information-based complexity theory [17] that the worst case diameter is equal
to the diameter of the uncertainty set when the output is identically equal to zero. The following
lemma summarizes this.

Lemma 5.2 Assume that M is balanced and convex. Then, for all u C U, 6 > 0,

D(u, 6) = diam(So(u, 0, 6))

Call an input u E U persistently exciting for M if the following property holds:

llh(u)11o = Ilhllx V h E M.

The following result says that persistently exciting inputs are optimal.

Theorem 5.1 Assume M is balanced and convex.

1. If the input u is persistently exciting, then D(u, 6) < 26 for all 6 > 0.

2. If u is persistently exciting then D(u, 6) = 26 for each 0 < 6 < diam(M)-- 2

Proof. (1): By Lemma 5.2, for all 6 > 0,

D(u,6) = 2 sup{llhll I h C M, llh(u)loo I< 6}.
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Pick any h E M such that ljh(u)lloo < 6. If u is persistently exciting, this means that also ltllllx < 6.
so D(u,6) < 26.

(2) From Lemma 5.1, D(u, 6) > 26 for such 6. The result follows from (1) above. l

It follows from Theorem 4.2, Theorem 4.3, Lemma 5.1 and the above theorem that one can

achieve nearly optimal asymptotic identification for the entire class of fading memory systems if

we use a persistently exciting input.

Corollary 5.3 Let M = X, the class of all fading memory systems. Then for any identification

algorithm q and any input u, the worst-case asymptotic error e0, (q, u, 6) is lower bounded by 6. If

u is persistently exciting, then there is an algorithm which can achieve an asymptotic error of less
than 26.

A natural question which arises at this point is whether persistently exciting inputs exist. In

the stable LTI case, this was shown to be the case [18]. The next theorem shows that they also

exist when the model set consists of nonlinear fading memory systems.

Theorem 5.2 Let the model set M be some subset of the set of fading memory systems. Let W

be any countable dense subset of [-1, 1] and consider any input Wo E [-1, 1] which contains all

possible finite sequences of elements of W. Then, w0 is persistently exciting.

Proof. Assume that h E M, [lhil = K < oo. Pick any E > 0. Let T = T(E) as in the definition of

FM. By definition of the sup norm, there is some w and some T1 so that

sup Iht(w)l > Kh-.
o<t<Tl

Using the equilibrium-initial assumption and replacing w by OTw and T1 by T + T1, we may assume

that
sup lht(w)l > K-.

T<t<Tl

By density of W and continuity of ht(w) on past values of w, we may further assume that

w(O),..., w(Ti - 1) take values in W. From the construction of wo, there is some k so that

wo(k) = w(O), wo(k + 1) = w(1), ... , wo(k + T1 - 1) = w(T1 - 1) .

Let v be the finite sequence wo(O),wo(l),..., wo(k - 1) and w be the finite sequence

c(0), co( T-1),...(T- ),

which is equal to wo(k),wo(k + 1),...,wo(k + T1 - 1). So vw is the same as the first T1 + k - 1

elements of wo.

By the FM property applied to these inputs, we have that

lht+k(vw) - ht(w)l < E for each t > T

(using the notational convention mentioned above for h,(w) if the length of w is larger than s).

Then for such t,
lht+k(wo)l = lht+k(vw)l > Iht(w)I - ,

so

lih(o)llI > sup Ihr(wo)l > K - 2 
T+k<r<Tl +k

Thus, we conclude that K = 1lhil > l[h(wo)ll > K - 2E for all E > 0, so Ilh(wo)ll = K as wanted. P
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6 An Untuned Algorithm

As remarked earlier, the asymptotically optimal algorithms for a-compact and separable model
sets are tuned to the knowledge of 6, the bound on the disturbance. It will be shown that for
fading memory systems, one can achieve asymptotically optimal identification without knowing 6,
provided that we use a persistently exciting input. This is in fact a generalization of a result by
Makila [13], which was proved in the context of stable LTI systems.

We shall make use of multivariate piecewise linear spline functions to interpolate between the
measured data to form an approximation to the unknown plant. This is a generalization of the
univariate linear spline, but because in higher dimension there is no natural ordering of the data
points, the description of the interpolant is more complicated.

Consider the cube I = [-1, 1]P C JRP. Let z 1 , 2 , . .. ,z,, , m > p be m points in the interior
of the cube. We wish to construct a continuous, piecewise linear function f : I -- such that
f(xi) = yi, i = 1, 2, ... , m, where the yi's are given data values to interpolate.

To facilitate the discussion, we need to first define several basic geometric concepts. A p-
dimensional simplez S in RP is the convex hull of p + 1 affinely independent points. Each of these
points is a vertex of S. The convex hull F of any subset of these p + 1 points form a face of ?' if
there exists a hyperplane H such that S lies entirely on one side of H and S 0 H = F. If F is the
convex hull of p points, it is called a facet. A point v outside S is said to be separated from S' by
a face F if v and S lie on the opposite sides of the p - 1 dimensional hyperplane containing F.

The first step is to find a set of simplices {Sj} such that (1) their combined vertex set is
{xl,..., x,m, (2) the simplices only intersect at common faces (3) their union gives the convex hull
of the vertex set. This can be done inductively as follows: for m = p + 1, the set simply consists of
one simplex which is the convex hull of the p + 1 points. Suppose now we obtain a set of simplices
S 1,S 2 ,..., Sd to cover m > p points, and consider one additional point zm+l. If xm+l E Sk for
some k, then we can simply replace Sk with the p + 1 simplices formed by Zm+l with each of the
faces of Sk. It is easy to see that these p + 1 simplices only intersect at common faces and their
union is Sk, so that the updated set of simplices now covers the m + 1 points. On the other hand, if
Xm+l lies outside P = U= Si, then for each facet F of some Sk which separates Xm+l from P. we
add a simplex formed by z,+l with F to the set. It can also be proved that these added simplices
together with the original ones satisfy the three conditions.

Given these simplices, we can now define our interpolating linear spline f as follows. First
define f(xi) = yi at the given data points. For other x C [-1, l]P, if x E Sj for some j, let
f(z) _ Ei aif(ui), where ui's are the vertices of Sj and x = i aciui. It is easy to check that
because of the above three conditions on the simplices, f is well-defined and continuous. To extend
f continuously outside P = UjSj, define f(x) to be equal to the value of f at the nearest point in
P to x. Since P is convex, this nearest point is unique, and this guarantees the continuity of this
extension.

If we view this interpolating process as an operator Tm mapping the data vector y =
(Yl,Y2, .. , Ym) to the piecewise linear interpolating function (Tm(y))(z), then we can see that
this operator is linear and its gain defined as:

ITmll- sup ITm(y)IIcl (1)
IlylY=l

is equal to one. This simple fact ensures that no matter how many data are obtained, noise in the
data will not be amplified in the interpolating process. This property of linear splines, which is not

shared by methods such as global polynomial interpolation, turns out to be the key to guarantee
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the consistency of the estimates. A similar situation is encountered in linear system identification

from frequency response data [8], where 1 dimensional splines are used instead of polynomials to

interpolate the noisy data to guarantee robustness of the identification procedure.

With the above basic discussions on multivariate linear splines, we may now state the main
result of this section.

Theorem 6.1 Let the model set M = X, the set of all fading memory systems. If the input v is

persistently ezciting, then there is an algorithm which can achieve an optimal worst-case asymptotic

error eoo(q, u, 6) = 6. This algorithm does not require the knowledge of 6 in computing the estimates.

Proof. The structure of the algorithm is as follows. We view the model set M as the closure of the

finite-memory systems Mp, p = 0, 1, 2,.... We start by assuming that the true system is in Mo.

Data is observed until time n(0), after which the algorithm comes up with an estimate h(O) E M 0 .

Then it moves onto the next model set M 1 , and waits until time n(l) before coming up with an

estimate h(1 ) E M 1 . The algorithm continues to move onto the model set of one higher order, to

produce a new estimate. It will be shown below how the time n(p) is specified and the estimate

h(P) is computed for each p.

Let h be the true system. Let (6p} be any sequence which monotonically goes to zero.

Fix p, and let the time n G [n(p - 1), n(p)]. (This is when the algorithm is collecting data to

compute an estimate in Mp.) Consider all the blocks

(Un-p+l ... Un-l, Un), Vn = n(p - ),...,n(p)

in the input as data points in the cube [-1, 1]P. We maintain a simplex structure in [-1, 1]P with

these data points as vertex set, and the structure is incrementally modified more or less according

to the procedure discussed earlier, with a slight twist. Let Cn = UjSj be the union of the simplices

at time n, and d, be the distance between C, and the corner of [-1, 1]P farthest away from C(,,.

At time n + 1, one more data point is obtained. If dn < 6p and the new data point lies outside (,,

then discard the new point. Otherwise update the simplex structure as described earlier.

Let n(p) be the earliest time such that dn(p) < 6p and the diameter of the largest simplex in

C, is less than 6p. At this time, the algorithm returns an estimate h(p) -_ $,(p)(h(u) + d) to be the

p-th order system with memory function as the piecewise linear spline interpolant of the current

simplex structure.

We now claim that n(p) < oo for every p. First we see that because the input is persistently

exciting, the p-blocks in u are dense in [-1, 1]P (Otherwise, there is a ball in [-1, 1]P which does

not contain any blocks in u, and we can construct a p-step finite memory system with a continuous

memory function f : RP R to be positive at the centre of the ball and zero outside. Then

applying the input u to the system will give a zero output while the gain of the system is non-

zero, thus contradicting the persistent excitedness of u.) Hence there exists a time m(p) such that

d,(p) < 6p. After this time, the convex hull C, no longer expands. All the changes consist of

further partitioning of the simplices inside C,~ due to the new data points. Because the data points

are dense, it can seen that the diameter of the largest simplex must go to zero. Hence, n(p) is

finite.

We now claim that:

lim sup lIk,(p)(h(u) + d) - hi <_ 6
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for all d, Ildlloo < 6. Note also that the algorithm defined above does not use the value of 6 in

computing the estimate.

Take any e > 0. There exists some q such that Mq contains a system he with

Ih - hell <I (2)

Let ge be the (q-step) memory function for he. For p > q, n,(p)(h(u) +d) is the spline interpolant
that approximates the unknown memory function, and y = h(u) + d is the output. We can also
extend gE to a function on [-1, 1]P which depends only on the last q coordinates. Now,

Iln(p)(h(u) + d) - g'Ell

-= Ikn(p)(h(u)) + n.(p)(d) - gcll o by linearity of the interpolation operator

< 11 n(p)(h(u)) - gEoo + 110n(p)(d)llo
< Ilkn(p)(h(u)) - gEl1t + 6 by eq. 1.

The first term is the interpolation error when the data is noiseless, whereas the second term is
the error due to the noise. We now show that the first term can be made arbitrarily small for large

p.

Since ge is continuous, ge is a uniformly continuous function on [-1, 1 ]q. Choose el such that

IIX1 - X2112 < El => 19 I(x) - g'(X 2)112 < E. (3)

Now pick p sufficiently large such that 6p < el and p > q. Let gP(x) =- 0,(pE(h(u)).

Now for any x C Cn(p), the convex hull, let x = "i axixi, where ai are the vertices of the simplex
containing x. Since gP agreees with the noiseless output data at the vertices, by Eqn. 2, for each i,

IgP(xi) - gE(xi)l < e. (4)

We have:

IgP(x) - ge(x)l

= I EaiP(xi)- g'(x)I

< I E igE(xi) - g'(x)l + e by Eqn. 4
i

< Eai g'(Xi) - gE(x)l + e

< 2e

by Eqn. 2, since Ilxi - xll is less than the diameter of the simplex, which is smaller than e1.

Now for x outside C,(p), let x' be the point in C,(p) which is closest to x. By definition of n( p),
the distance of x' from x is at most 6, < el. Hence:

IgP(x) - gE(x)l

= g(x') - gE(x)l by definition of the interpolant

< IgP(x ') - gE(x')l + e by Eqn. 2

< 3e from above.
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Therefore, if hp is the finite-memory system with memory function ,k(p)(h(u) + d), then

Ilh - hll
< IlgP- gEtl + e

< 6 + 4e.

Since this is true for all E, it follows that

lim sup 11 hP - hll < 6
p-*00

as desired.

We would like to make a comment about the time complexity of this identification problem. It
can be easily seen that in general, the time needed to identify a system to a prescribed accuracy
grows exponentially as the order of the system, even when there is no noise. For example, if we
assume a certain Lipschitz condition on the order p memory function g, such as Ig(z)- g(y)l <
MlII - Yll, then to identify the function up to accuracy e (in the 110 IIoo norm), the number of data
points needed is at least the minimum number of e-balls to cover [-1, 1]p . Since the volume of an
e-ball is proportional to EP, it is clear that this minimum number is at least proportional to (f)P,
and hence so is the experiment length. This means that if p is large, the experiment length will be
very long if we make no further assumption on the unknown plant.

It is interesting to compare this situation with the problem of identifying linear finite impulse
response systems. For nonlinear systems the time complexity is exponential of the order, whether
or not there is noise. For the linear case, while it takes only linear time to identify a FIR system
exactly when there is no noise, it has been shown [3, 15] that the time complexity immediately
becomes exponential once we introduce any worst-case noise. Moreover, it has been demonstrated
that if we are willing to put a probability distribution on the noise, polynomial time complexity
can often be obtained [19]. These facts show that while in the nonlinear case, the plant uncertainty
determines the time complexity of the identification, in the linear case, the complexity is sensitive
to how the noise is modelled.

7 Conclusions

A framework for the analysis of asymptotic worst-case identification of LTI systems has been
extended to the setting of nonlinear fading memory systems. For model sets that are either a-
compact or separable, and for any experiment, the optimal worst-case error is always bounded by
twice the lower bound, which is the diameter of a certain uncertainty set. Optimal inputs which
minimize this diameter are characterized. It is also shown that accurate asymptotic identification
can be achieved by an optimal input, using an untuned algorithm based on spline interpolation.
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