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Abstract

We propose a new algorithm for the max-flow problem. It consists of a sequence of augmen-

tations along paths constructed by an auction-like algorithm. These paths are not necessarily

shortest, that is, they need not contain a minimum number of arcs. However, they typically can

be found with much less computation than the shortest augmenting paths used by competing

methods. Our algorithm outperforms these latter methods as well as state-of-the-art preflow-push

algorithms by a very large margin in tests with standard randomly generated problems.
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1. Introduction

1. INTRODUCTION

In this paper we propose a new algorithm for the classical max-flow problem, where we are

given a directed graph (A/, A), and we want to push a maximum amount of flow from a source

node 1 to a sink node N, subject to the constraint that the flow of each arc (i, j) E A should lie

in an interval [0, cij], where cij is a given positive scalar, called the capacity of (i, j). Here, the

number of nodes is N and the nodes are denoted 1, 2,..., N. The number of arcs is A and to

facilitate the presentation we assume that there is at most one arc (i, j) starting at i and ending

at j, so that we can unambiguously refer to an arc as (i,j). A flow vector x = {xij I (i,j) c A}

is said to be capacity feasible if 0 < xij < cij for all (i, j) c A. The associated surplus of each

node is defined by

gi= Xji - xij, V i E n. (1)
{jl(j,i)EA} {fjl(i,j)EA}

The flow vector is said to be feasible if it is capacity feasible and the node surpluses satisfy

gi = 0, ViJf, i 1, if N. (2)

The problem is to find a feasible flow such that gN is maximized.

The classical approach to the max-flow problem is the Ford-Fulkerson algorithm [FoF56],

which consists of successive augmentations; it sequentially moves flow from the source to the sink

along augmenting paths, until a saturated cut separating the source and the sink is created. In

its original form, this algorithm had two drawbacks:

(a) If the augmenting paths are arbitrarily constructed, the number of augmentations can be

very large. In fact if the arc capacities are irrational, the algorithm may fail to terminate

(see e.g. [FoF62], [PaS82], [Ber9la]).

(b) No mechanism is provided to pass helpful information from one augmenting path con-

struction to the next.

These two drawbacks have been addressed by much subsequent research. The traditional ap-

proach to keep the number of augmentations small is to ensure that the augmenting paths are

shortest, in the sense that they contain the smallest possible number of arcs. In fact all poly-

nomial augmenting path methods that we are aware of use this approach. The simplest way

to construct the shortest augmenting paths is to use a breadth-first search method, leading to

an O(NA 2 ) running time [EdK72]. In order to reuse information from one shortest augmenting
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1. Introduction

path construction to the next, the idea of a layered network implementation was also suggested

[Din70], and resulted in an O(N 2 A) running time.

The algorithm of this paper is of the Ford-Fulkerson type, but does not use shortest augmenting

paths. Instead it constructs (possibly nonshortest) augmenting paths using the ideas of the

auction algorithm for the assignment problem [Ber79], [Ber91la], [Ber92a]. In particular, our

path construction algorithm is obtained by converting the path construction problem to a special

type of unweighted matching problem, applying the auction algorithm, and streamlining the

computations. A key feature here is that the price mechanism of the auction algorithm is used

to pass valuable information from one augmenting path construction to the next.

Another relevant class of max-flow algorithms is the class of preflow-push methods, which

originated with the work of [Kar74], [ShV82], and has been the subject of much recent develop-

ment [Gol85], [GoT86], [AhO89], [AM089], [ChM89], [DeM89], [MPS91]. These methods move

flow along single-arc paths, and they share with the auction algorithm the idea of using a price

mechanism (within this context, prices are also called labels). This connection is not accidental,

and in fact it is shown in [Ber94] that a generic preflow-push method for the max-flow problem

[GoT86] can be derived as a special case of the auction algorithm for the assignment problem, us-

ing the reformulation of the max-flow problem as an assignment problem. Preflow-push methods

have excellent theoretical worst-case complexity [O(N 2 A1/ 2 ) with relatively simple implementa-

tion [ChM89], and even better through the use of sophisticated but somewhat impractical data

structures]. On the basis of some recent studies [DeM89], [MPS91], [AnS93], [NgV93], they are

reputed to be the fastest in practice, when appropriately implemented.

Our algorithm has an O(N 2 A) worst-case running time, but according to our experiments,

it is substantially faster than both shortest augmenting path and preflow-push methods. There

is a two-fold explanation for this. First, the auction algorithm solves simpler path construction

problems than the competing shortest augmenting path methods, while at the same time it passes

useful price information from one path construction to the next. Second, because flow changes

take place over multiple-arc paths, the phenomenon of ping-ponging of flow between pairs of

nodes that is characteristic of preflow-push methods is largely avoided. Indeed our experiments

show that the number of arc flow changes required to solve the problem is generally far smaller

in our method than in preflow-push methods.

The paper is organized as follows: In Section 2 we describe our auction algorithm for path

construction. In Section 3 we embed the path construction algorithm of Section 2 within a

sequential augmentation framework, to obtain our main max-flow algorithm. We establish the

validity of the algorithm, and we show that its running time is O (N2 A). Efficient implementation

is very important for the success of our algorithm, and in Section 4 we outline a number of
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2. Path Construction Algorithms

variations that can improve its performance. In Section 5 we present computational results with

standard randomly generated problems. These results show that our algorithm outperforms state-

of-the-art preflow-push methods by a very large margin under identical test conditions. Finally

in the appendix we briefly describe how our path construction method can be viewed as an

application of the auction algorithm for the assignment problem to a special type of unweighted

matching problem.

2. PATH CONSTRUCTION ALGORITHMS

In this section we describe a method for finding a path between two nodes of a graph. This

method lies at the heart of our max-flow algorithm, which will be presented in the next section.

We give two versions of the algorithm. The first is simple and easy to understand. The second

is a more complex variation of the first, but is apparently more efficient in practice. We first

introduce some terminology that is common to all sections of this paper.

Consider the directed graph (KJ, A) given in the introduction. The set of arcs outgoing from

node i is denoted by A(i) and the corresponding set of nodes {j I (i,j) E A(i)} is denoted by

N(i). A path P is a sequence of nodes (ni, n2,.. ., nt) with t > 2, and a corresponding sequence

of t - 1 arcs such that the ith arc in the sequence is either (ni, ni+l) (in which case it is called

a forward arc of the path) or (ni+l, ni) (in which case it is called a backward arc of the path).

Node nl is called the start node of P and node nt is called the terminal node of P. By slight

abuse of terminology, we consider P = (nl) to be a path, in which case nl is both the start and

the terminal node of P. For i = 2,..., t, the node ni-1 is called the predecessor of ni, and is

denoted by pred(ni). We denote by P+ and P- the sets of forward and backward arcs of P,

respectively. The path P is said to be forward if all its arcs are forward. The path P is said to be

simple if it contains no cycles, that is, if the nodes n1,..., nt are distinct. The length of a path

is the number of its arcs; all future references to shortest paths are with respect to this length.

All paths in this section will be forward paths. The paths to be considered in the context of the

max-flow problem, starting with the next section, may contain both forward and backward arcs.

The following algorithm aims at finding a simple forward path that starts at a given node ni

and ends at node N. It maintains a simple forward path P = (ni,..., nt) and a set of integer

node prices satisfying

p(i) < p(j) + 1, V (i,j) E A, (3)

p(nl) < N, p(N) = 0, (4)
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2. Path Construction Algorithms

p(i) > p(j), V (i,j) E P. (5)

The conditions (3) and (5) are related to the e-complementary slackness conditions of the auction

algorithm (see the appendix; here e = 1).

The algorithm is motivated by the max-flow context, where the objective is not to find a

single path, but rather to find a sequence of paths each in a graph that differs slightly from

its predecessor. Within this context, prices are helpful in guiding the search for new paths.

Loosely speaking, prices are modified by the algorithm in a way that the desired paths have an

approximate downhill direction, that is, they proceed from high price nodes to low price nodes.

Thus, if a set of prices is roughly appropriate for guiding the search for a path in a given graph,

it is also roughly appropriate for guiding the search for a path in a slightly different graph.

At the start of the algorithm, we require that P = (ni), and that p is such that Eqs. (3) and

(4) hold. The path P is modified repeatedly using the following two operations:

(a) A contractionof P, which deletes the last arc of P, that is, replaces the path P = (nl,..., nt)

by the path P = (ni,..., nt-1). [In the degenerate case where P = (ni), a contraction leaves

P unchanged.]

(b) An extension of P, which adds to P an arc outgoing from its terminal node, that is, replaces

the path P = (ni,..., nt) by a path P = (ni,...,nt, nt+1), where (nt, nt+l) is an arc.

The prices p(i) may also be increased in the course of the algorithm so that, together with P,

they satisfy the conditions (3)-(5). A contraction always involves a price increase of the terminal

node nt. An extension may or may not involve such a price increase. An extension of P is always

done to a neighbor node of nt that has minimal price. The algorithm terminates if either node

N becomes the terminal node of P (then P is the desired path), or else p(ni) > N [in view of

p(N) = 0 and p(i) < p(j) + 1 for all arcs (i,j) as per Eqs. (3) and (4), this means that there is

no forward path from ni to N].

Path Construction Algorithm

Set P = (ni), and select p such that Eqs. (3) and (4) hold.

Step 1 (Check for contraction or extension): Let nt be the terminal node of P. If the

set N(nt) is empty, set p(nt) = N and go to Step 3. Otherwise, find a node in N(nt) with

minimal price and denote it succ(nt),

succ(nt) = arg min p(j). (6)
jEN(nt)

Set

p(nt) = p(succ(nt)) + 1. (7)
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2. Path Construction Algorithms

If nt = ni, or if

nt 7 ni and p(pred(nt)) > p(succ(nt)), (8)

go to Step 2; otherwise go to Step 3.

Step 2 (Extend path): Extend P by node succ(nt) and the corresponding arc of A(nt). If

succ(nt) = N, terminate the algorithm; otherwise go to Step 1.

Step 3 (Contract path): If P = (ni) and p(nl) > N, terminate the algorithm; otherwise,

contract P and go to Step 1.

We note, that maintaining a path that is extended or contracted at each iteration, while

maintaining a price vector that satisfies complementary slackness conditions, is a central feature

of the auction algorithm for shortest paths [Ber91la], [Ber91lb], and its embedding in a sequential

shortest path algorithm for the minimum cost flow problem [Ber92b]. However, as mentioned

earlier, our path construction algorithm does not necessarily generate a shortest path. Instead,

we show in the appendix that it just solves a special type of unweighted matching problem by

means of the auction algorithm.

In the special case where all initial prices are zero and there is a path from each node to N, by

tracing the steps, it can be seen that the algorithm will work like depth-first search, raising to 1

the prices of the nodes of some path from nl to N in a sequence of extensions with no intervening

contractions. More generally, the algorithm terminates without performing any contractions if

the initial prices satisfy p(i) > p(j) for all arcs (i, j) and there is a path from each node to N.

We make the following observations:

(1) The prices remain integer throughout the algorithm [cf. Eq. (7)].

(2) The conditions (3)-(5) are satisfied each time Step 1 is entered. The proof is by induction.

These conditions hold initially by assumption. Condition (4) is maintained by the algorithm,

since we have termination as soon as p(nl) > N. To verify conditions (3) and (5), we note

that only the price of nt can change in Step 1, and by Eqs. (6) and (7), this price change

maintains condition (3) for all arcs, and condition (5) for all arcs of P, except possibly for the

arc (pred(nt), nt) in the case of an extension with the condition p(pred(nt)) > p(succ(nt))

holding. In the latter case, we must have p(pred(nt)) > p(succ(nt)) + 1 because the prices

are integer, so by Eq. (7), we have p(pred(nt)) > p(nt) at the next entry to Step 1. This

completes the induction.

(3) A contraction is always accompanied by a price increase. Indeed by Eq. (5), which was just

established, upon entering Step 1 with nt $ ni, we have p(nt) < p(pred(nt)), and to per-

form a contraction, we must have p(pred(nt)) < p(succ(nt)). Hence p(nt) < p(succ(nt)),
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2. Path Construction Algorithms

implying by Eq. (7) that p(nt) must be increased to the level p(succ(nt)) + 1. It can be

seen, however, by example, that an extension may or may not be accompanied by a price

increase.

(4) Upon return to Step 1 following an extension, the terminal node nt satisfies [cf. Eq. (7)]

p(pred(nt)) = p(nt) + 1. (9)

This, together with the condition p(i) > p(j) for all (i, j) E P [cf. Eq. (5)], implies that the

path P will not be extended to a node that already belongs to P. Thus P remains a simple

path throughout the algorithm.

To facilitate the presentation, let us introduce some additional terminology. For a given integer

price vector p, we say that an arc (i, j) is uphill if p(i) < p(j), downhill if p(i) > p(j), and strictly

downhill if p(i) = p(j) + 1. The following proposition summarizes the conclusions of the preceding

discussion and establishes the termination properties of the algorithm.

throughout the algorithm, p(N) = d and the condition p(i) < p(j) t 1 holds for all arcs (i,j),

th e existence of a forward path starting t N the and ending at N implies that p(nl) < N

throughout the algorithm. Therefore, if termination occurs via Step 3, there cannot exist a pathfrom nd to N. ..E.D. Proof: Part (a) was established above, so we prove part (b). We first note that the prices of
the nodes of P are upper bounded by N in view of Eqs. (4) and (5). Next we observe that there

is a price change of at least one unit with each contraction, and since the prices of the nodes of P

are upper bounded by N, there can be only a finite number of contractions. Since there can be

at most N of1 successive extensions without a contraction, the algorithm must terminate. Since,

throughout the algorithm, p(N) of0 and the condition p(i) < p(j) + 1 holds for all arcs (i, j)

the existence of a forward path starting at a node ni and ending at N implies that p(ni) < N

throughout the algorithm. Therefore, if termination occurs via Step 3, there cannot exist a path

from ni to N. Q.E.D.

An Improved Version of the Algorithm

Most of the calculation in the preceding algorithm is needed to determine the nodes succ(nt)

attaining the minimum in Eq. (6) of Step 1. On the other hand, typically some of these nodes and
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2. Path Construction Algorithms

the corresponding arcs do not change frequently during the algorithm. Thus it makes sense to

save them in a data structure and try to reuse them as much as is possible without affecting the

essential properties of the algorithm [maintaining conditions (3)-(5) and precluding the formation

of a cycle within the path P]. This leads to a modification of the algorithm, where in addition

to the price p, we maintain for each node i : N, a subset of outgoing arcs of i denoted Cand(i),

and called the candidate set of arcs of node i. The set of end nodes of arcs in Cand(i) which are

opposite to i is denoted Succ(i).

The sets of arcs Cand(i) together with the set of prices p(i), define a graph, called the admis-

sible graph, whose node set is K/ = {1,..., N} and arc set is

{(i,j) I j E Succ(i), p(i) > p(j), i= 1, . . . ,N}.

As the sets Succ(i) and the prices p(i) change in the course of the algorithm, the admissible

graph also changes. We require that the initial sets Cand(i) and prices p(i) are such that the

admissible graph is acyclic. This condition is satisfied in particular if we select the sets Cand(i)

to be empty. The algorithm is as follows:

Path Construction Algorithm: Second Version

Set P = (ni), and select p such that Eqs. (3) and (4) hold.

Step 1 (Check for contraction or extension): Let nt be the terminal node of P. If there

is a node j E Succ(nt) such that

p(nt) > p(j), (10)

select such a node j and go to Step 2. Otherwise, if the set N(nt) is empty, set p(nt) = N

and go to Step 3; otherwise set

Succ(nt) = {j|p() = r min p (j) }

Cand(nt) = {(nt,j) E A(nt) I j E Succ(nt)}, (12)

and select a node j E Succ(nt). Set

p(nt) = p(j) + 1. (13)

If nt = nl, or if

nt 4 ni and p(pred(nt)) > p(7), (14)

go to Step 2; otherwise go to Step 3.

Step 2 (Extend path): Extend P by node j and the corresponding arc of Cand(nt). If

j = N, terminate the algorithm, and otherwise go to Step 1.
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2. Path Construction Algorithms

Step 3 (Contract path): If P = (ni) and p(nl) > N, terminate the algorithm; otherwise,

contract P and go to Step 1.

Note that, similar to the first version of the algorithm, each contraction is accompanied by an

increase of the price p(nt), while each extension may or may not be accompanied by an increase

of p(nt). Note also that if the "downhill test" p(nt) > p(A) of Eq. (10) were to be replaced

by the "strictly downhill test" p(nt) = p(s) + 1, the two versions of the algorithm would have

been essentially identical [the sets Cand(i) would just provide a specific implementation of the

successor node selection of Eq. (6)]. However, because of the difference in the test for making

an extension to a node of Succ(nt), the two versions of the algorithm are not mathematically

equivalent. In particular, in the second version we perform an extension when upon entering Step

1, we have p(nt) = p(j) for some j E Succ(nt), in which case the last arc of the path P is not

strictly downhill following the extension. For this reason it is not obvious that an extension will

not create a cycle in P with an attendant breakdown of the algorithm.

It turns out, however, that such a cycle cannot be closed because it can be proved that

throughout the algorithm:

(a) The arcs of P belong to the admissible graph.

(b) The admissible graph remains acyclic.

Both of these properties can be shown by induction. In particular, property (a) is maintained

because a contraction that deletes the terminal arc of P does not affect the prices of the end nodes

of the other arcs of P. Furthermore, each extension is done along an arc of Cand(nt) and whether

the test (10) is passed or p(nt) is set via Eq. (13), this arc is downhill and its predecessor arc

continues to be downhill following the extension. Also, to show that property (b) is maintained,

suppose that property (b) holds at the start of Step 1, and consider the two cases where a node

j E Cand(nt) satisfying the downhill test (10) can be found, and cannot be found. In the first

case, the admissible graph remains unchanged. In the second case, the only potentially new arcs

of the admissible graph are the arcs of the set Cand(nt), after this set is recalculated. However,

following the price setting of Eq. (13), all the arcs of Cand(nt) are strictly downhill, so these arcs

cannot be part of a cycle of the admissible graph, all the arcs of which are downhill by definition.

Thus the admissible graph remains acyclic following Step 2 or 3, which shows that P remains a

simple path at all times. We have the following proposition.
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3. The Auction/Max-Flow Algorithm

rughu the ao rith- ap mins 

ing parts of Prop. 1. Q.E.D.

3. THE AUCTION/MAX-FLOW ALGORITHM

We now consider the max-flow problem as described in Section 1. We introduce some additional

terminology.

Given a capacity feasible flow vector z, for each node i, we introduce the set of eligible arcs of

A(i,x) = {(i,j) I xzj < cij} U {(j,i) I ° < xji}, (15)

and the corresponding set of eligible neighbors of i

N(i,x) = {j (ij) c A(i,x) or (ji) E A(i,x)}. (16)

The reduced graph is the graph with node set Af which contains an arc (i, j) if and only if j is an

eligible neighbor of i. Thus eligible arcs of a node i in the original graph correspond to outgoing

arcs from i in the reduced graph. For a given capacity feasible x, a path P in the original graph is

said to be unblocked if it corresponds to a forward path of the reduced graph, that is, if xij < cij

for all forward arcs (i,j) E P+ and 0 < xij for all backward arcs (i, j) E P-. An unblocked path

is said to be augmenting if its start node has positive surplus and its terminal node is the sink

N. If P is an augmenting path, an augmentation is an operation that increases the flow of all

arcs (i,j) E P+ and decreases the flow of asll arcs (i, j) E P- by a common increment 6 > 0.

Following standard terminology, a cut is a partition (J+, A-) of the set of nodes AF into two

subsets Af+ and N- with 1 E Af+ and N E A-. The capacity of this cut is the sum of the

capacities of all arcs (i,j) with i E s/f+ and j E o-. The max flow-min cut theorem states

that the maximum flow is equal to the maximum flow is equal to the minimal cut capacity. For a given flow vector x, a cut
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3. The Auction/Max-Flow Algorithm

(JA+,AF-) is said to be saturated if xij = cij for all arcs (i,j) with i E Pf + and j E A-, and

xij = 0 for all arcs (i, j) with i E N- and j E J/+. The algorithm of this section terminates

with a capacity feasible flow vector x and a cut (J±+, KJ-) that is saturated and is such that the

surpluses gi, given by Eq. (1), satisfy

gi < 0, gi > O0, V i 1, gi = 0, V i EA-, i N. (17)

It is well known that such a cut is a minimum cut, and we will show how it can be used together

with x to obtain a maximum flow (see the remarks following the proof of Prop. 3, which also

prove that the cut obtained upon termination is minimum).

A capacity feasible flow vector x together with a price vector p = {p(i) I i E Jf} are said to be

a valid pair if

p(i) < p(j) + 1, V j that are eligible neighbors of i. (18)

Our algorithm starts with and maintains a valid flow-price pair (x, p) such that

gli<O, gi>O, Vi l, (19)

p(l) = N, p(N) = O, p(i) > O, V i $ 1, N. (20)

A possible initial choice is the flow vector x given by

ij = if 1 (21a)

j= 0 if i1 (21a)

together with the price vector p given by

p N if i= 1

p(i) = length of a shortest unblocked path from i to N if i 1 21b

which can be obtained by a breadth-first search starting from N. (If there is no forward path of

the original graph from i to N, the above length is taken to be equal to N.)

Our algorithm maintains a flow-price pair (x,p) satisfying the conditions (18)-(20), performs

a sequence of iterations, and terminates with a minimum cut. At the start of each iteration, a

node ni with nl 7 N, p(nl) < N, and gmn > 0 is selected. The iteration tries to construct an

augmenting path starting at nl by using the second path construction algorithm of the preceding

section, applied to the reduced graph and using the price vector p. If an augmenting path is found,

the iteration concludes with a corresponding augmentation. If an augmenting path cannot be

found, the path construction algorithm terminates with p(nl) > N, so that node nl will not

be chosen as the starting node at any subsequent iteration. Consistently with the second path

construction algorithm of Section 2, we maintain for each node i, a set of incident arcs of i
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3. The Auction/Max-Flow Algorithm

denoted Cand(i). The set Cand(i) is empty for i = 1, i = N, and all i with p(i) = N. The set

of end nodes of Cand(i) which are opposite to i is denoted Succ(i).

We require that initially, we have

p(i) = p(j) + 1, if j E Succ(i),

which will be true if all sets Cand(i) are empty, or for all i we have

Cand(i)= ((i,j) E A(i, x) I p(i) = p(j) + 1 ) U {(j, i) E A(i, x) I p(i) = p(j) + 1}, (22)

where (x, p) is the initial flow-price pair. If the shortest path initialization of Eqs. (21a) and

(21b) is used, then Cand(i) as given by Eq. (22), is the set of arcs outgoing from i in a shortest

augmenting path from i. The typical iteration is as follows:

Typical Iteration of the Auction/Max-Flow Algorithm

Select a node ni with nl =A N, p(nl) < N, and gni > 0 (if no such node exists, the algorithm

terminates). Set P = (ni).

Step 1 (Check for contraction or extension): Let nt be the terminal node of P. If there

is a node j E Succ(nt) n N(nt, x) such that

p(nt) > p(j), (23)

select such a node j and go to Step 2. Otherwise, if the set N(nt, x) is empty, set p(nt) = N

and go to Step 3; otherwise set

succ(nt) I P(j) jENm(nt,) (24)

Cand(nt) = {(nt, j) E A(nt,x) I j E Succ(nt)} U {(j, nt) E A(nt,x) j E Succ(nt)}, (25)

and select a node j E Succ(nt). Set

p(nt) = p(Y) + 1. (26)

If nt = nl, or if

nt :4 nl and p(pred(nt)) > p(y),

go to Step 2; otherwise go to Step 3.

Step 2 (Extend path): Extend P by the node j and the corresponding arc of Cand(nt). If

j is the sink N, go to Step 4, and otherwise go to Step 1.

Step 3 (Contract path): If P = (ni) and p(nl) > N, terminate the iteration; otherwise,

contract P and go to Step 1.
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3. The Auction/Max-Flow Algorithm

Step 4 (Augmentation): Perform an augmentation along P with flow increment

6 = min{gn1, {cij - xij I (i,j) C P+}, {xij I (i, j) E P-}}, (27)

and terminate the iteration.

Note that, except for the at most N- 2 contractions in which p(nt) is set to N, all contractions

involve an increase of the price p(nt) and a recalculation of the set Succ(nt). Extensions can

either occur through a discovery of a node j E Succ(nt) n N(nt,x) such that p(nt) > p(J), or

through a recalculation of the set Succ(nt), in which case an increase of p(nt) may or may not

occur.

We assume that the search through the set Succ(nt) n N(nt, x) for a node j such that p(nt) >

p(j) is organized as follows: When a set Cand(i) is initially calculated, via for example Eq. (22),

or is recalculated via Eq. (25), it is organized as a queue, which allows the deletion of its top

element with 0(1) work. Each iteration is started by sequentially retrieving arcs from the top of

Cand(nt) and checking to see if these arcs are eligible and their endnode j opposite to nt satisfies

p(nt) > p(A). Each arc not passing these tests is deleted from Cand(nt), and the checking is

stopped when either a node j with the required properties is found or the set Cand(nt) becomes

empty. To simplify the following complexity accounting, the work for checking and deleting

the arcs of Cand(nt) is lumped into the work for calculating Cand(nt). With this convention,

the work involved in an extension for which we recalculate the set Cand(nt) via Eq. (25) is

proportional to the degree of nt, while the work involved in an extension where after checking

and possibly deleting enough arcs of Cand(nt), we find an eligible neighbor node j that passes

the test p(nt) > p(j) is 0(1). Similarly, the work involved in a contraction is proportional to the

degree of nt.

The next proposition establishes the basic properties of the algorithm:
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Proof: (a) By comparing the descriptions of the second path construction algorithm and the

iteration of the max-flow algorithm, we see that the condition (3) that is maintained by the path

construction algorithm is equivalent to the condition (18) for the pair (x, p) to be valid, the price

change (13) corresponds to the price change (26), and the downhill test (10) for an extension

corresponds to the downhill test (23). Let us define the admissible graph of the max-flow algorithm

as the graph whose node set is Af = {1,..., N} and arc set is

{(i,j) I J E Succ(i) n N(i,x), p(i) > p(j), i = 1,...,N}.

Then the sets Succ(i) and the admissible graph of the path construction algorithm correspond

to the sets Succ(i) n N(i, x) and the admissible graph in the max-flow algorithm, respectively.

Based on the preceding associations, it is seen that if at the start of an iteration of the max-flow

algorithm the admissible graph is acyclic, then the iteration up to the discovery of an augmenting

path is equivalent to the application of the path construction algorithm to the reduced graph.

Thus, to prove the result we must show that the admissible graph of the max-flow algorithm

remains acyclic throughout the algorithm.

To this end, we note that, in view of the initial restriction p(i) = p(j) + 1 for all j E Succ(i),

the admissible graph is acyclic at the start of the algorithm. Furthermore, if the admissible graph

is acyclic at the start of an iteration, the same is true during the iteration up to the discovery

of the augmenting path, since the path construction algorithm maintains the acyclicity of the

admissible graph. We claim that an augmentation does not add any new arcs to the admissible

graph, and thus maintains its acyclicity. Indeed, suppose that an augmentation occurs along

the path (i1 , i2,..., ik, N), and that one of the arcs (im, im-1), m = 2,..., k, is added to the

reduced graph and to the admissible graph as a result of the augmentation. Then, we must

have p(im) > p(im-i), im-1 E Succ(im) [by the definition of the admissible graph], and also

p(im-1) > p(im), im E Succ(im-1) [since the arc (im-i, im) belongs to the augmenting path], so

that p(im_l) = p(im). This implies that p(im_l) and p(im) have been increased at least once

since the start of the algorithm [since we have p(i) = p(j) + 1 for all j E Succ(i) at the start of the

algorithm and also following each recalculation of the set Succ(i)]. Furthermore, the conditions

p(im-i) < p(im) + 1 and im E Succ(im-1) imply that the last increase of p(im) occured after the

last recalculation of Succ(im-l) [since following a recalculation of Succ(i) at a node i, we have

p(i) = p(j) + 1 for all j c Succ(i)]. Therefore the last increase of p(im) occured after the last

increase of p(im-1) [since each increase of p(i) involves a recalculation of Succ(i)]. Similarly, the

conditions p(im) < p(im-i) + 1 and im-1 E Succ(im) imply that the opposite is true. We thus

reach a contradiction.

(b) From part (a) and Prop. 2, it follows that each iteration terminates. At the end of an

14
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iteration, either we have p(nl) > N, indicating that there is no augmenting path starting at ni,

or we have an augmentation. In the former case the number of nodes i with p(i) > N increases

strictly, so there can be at most N - 2 iterations of this type. To show that the number of

augmentations is finite, we first note that there are at most N price increases per node, since

prices take nonnegative integer values, and once the price of a node exceeds N- 1, it increases no

further. We next observe that each augmentation either exhausts the surplus of ni, or saturates

at least one arc (that is, it drives the flow of the arc to zero or its upper bound). When an

arc with end nodes i and j is saturated in the direction from i to j, there are two possibilities:

(1) p(i) = p(j) + 1, or (2) p(i) = p(j), in which case in view of j E Succ(i), we cannot have

i E Succ(j), since this would violate the acyclicity of the admissible graph. In either case (1)

or case (2), we see that one of the at most N increases of p(j) must occur before this arc can

become unsaturated and then saturated again in the direction from i to j. Thus the number of

arc saturations is O(N) per arc, and the total number of arc saturations is O(NA), leading to

an O(NA) bound in the number of iterations and the number of augmentations.

We thus see that the algorithm terminates, and since augmentations preserve the condition

gi > 0 for all i 7 1, upon termination, we must have gi > 0 for all i : 1, p(l) = N, p(i) > N for

all i f N with gi > 0, and p(N) = 0. It follows that there can be no augmenting path starting

at node 1 or at a node i with gi > 0, implying that there is a saturated cut (NJ+, f-) such that

1 cE A+, N C A-, gi > 0 for all i # 1, and gi = 0 for all i = N with i C A-. As discussed

earlier, this is a minimum cut.

(c) We first note that as shown in the proof of part (b):

(1) There are at most N price increases per node.

(2) There are at most O(NA) iterations and at most O(NA) augmentations.

In view of (1) above, there can be at most N contractions and extensions that involve a price

increase at each node, and the work for each is proportional to the degree of nt. Thus the work

for these contractions and extensions is O(NA). Also, since each augmentation involves a flow

change for each of at most N - 1 arcs, the work for augmentations is O(N 2 A).

There remains to bound the work for extensions that do not involve a price increase. We

argue by contradiction that each such extension does not involve the recalculation of the set

Succ(nt), that is, either it involves the first calculation of Succ(nt) or the downhill test (23) is

failed for all j E Succ(nt) n N(nt, x). Indeed suppose that the set Succ(nt) is recalculated via

Eq. (24) and we find that p(nt) = p(j) + 1 for all j E Succ(nt), so that an extension is performed

without an increase of p(nt). Then, every j E Succ(nt) must have been an eligible neighbor of nt
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and its price must have remained unchanged continuously since the preceding time Succ(nt) was

calculated [and p(nt) was set to p(j) + 1]. But this is a contradiction, since in order for Succ(nt)

to be recalculated, all nodes j in the set Succ(nt) n N(nt, x) must satisfy p(nt) < p(j). Thus

if an extension at nt does not involve a price increase, it also does not involve a recalculation

of Succ(nt), and therefore (using the accounting method described in the paragraph preceding

Prop. 3) it requires only 0(1) work, unless it involves the calculation of Succ(nt) for the first

time. Now the total number of extensions is O(N 2 A) because in each iteration, the number of

extensions exceeds the number of contractions by at most N - 1, the total number of contractions

in the entire algorithm is O(N2 ), while the total number of iterations is O(NA). Thus the total

work for extensions that do not involve a price increase is O(N2 A). Q.E.D.

Given the cut (A±+, /-) and the flow vector x obtained upon termination of the algorithm,

we can obtain a maximum flow by applying the same algorithm to a certain feasibility problem,

that aims to return to the source the excess flow that has entered the graph from the source and

has accumulated at the other nodes of AJ+. In particular, we delete all nodes in Ar- and all arcs

with at least one endnode in Kf-, and for each node i :L 1 with i E Ar+ and

cij > >O, (28)
{(ij)jiEJV- }

we introduce an arc (i, 1) with flow and capacity

xii = cil = E cij (29)
{(ij)lijeA- }

[if the arc (i, 1) already exists, we just change its capacity and flow to the above value]. In

the resulting graph, call it G, we pose the problem of finding a flow vector x such that the

corresponding surpluses are all zero. It can be seen that the surpluses corresponding to the flow

vector x restricted to G are equal to the nonnegative surpluses gi obtained upon termination for

all i = 1. We can thus apply the max-flow algorithm of this section starting with this flow vector,

and the prices

0Oif i= i1,

pi length of a shortest unblocked path from i to 1 if i # 1,

which together with x form a valid pair for the graph 5. It can be shown then that each iteration

of the algorithm will terminate with an augmentation from some node i with gi > 0 to the source

1. [Given any capacity feasible flow vector in a graph with arc capacities, and a node i with

positive surplus, there is always an augmenting path starting at i and ending at some node with

negative surplus; this follows from the conformal realization theorem (see e.g. [Ber91la], p. 7).
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Here node 1 is the only node with negative surplus.] Thus the algorithm will terminate when

the surpluses of all the nodes i 4 1 will be reduced to 0, while upon termination the flows of

the arcs (i, 1) will still be equal to their initial values given by Eq. (29), since these arcs cannot

participate in an augmenting path. If /ij is the final flow of each arc (i, j) of G, it can be seen,

using also the fact gi = 0 for all i E JA- with i # N, that the flow vector x* defined for each arc

(i,j) E A by

Xij if i ¢A-, j A-,{3 xij otherwise,

will have surpluses g* satisfying g* = 0 for all i 5 1, N, g* < 0, g* > 0, while saturating the cut

(Hf+,fj-). Thus, by the max flow-min cut theorem, x* must be a maximum flow and (JA/+,j-)

must be a minimum cut.

Note from the proof of Prop. 3 that the complexity bottleneck is the O(N2 A) bound for aug-

mentations and for extensions that do not involve a price increase. Our computational experience,

however, indicates that the O(NA) work for price increases is at least as much of a bottleneck.

This is similar to preflow-push methods where the O(NA) work for price increases usually dom-

inates the computation, even though the worst case complexity bound is worse than O(NA). It

thus appears that the practical computation bottlenecks are comparable for preflow-push methods

and our method.

We finally note two variants of the max-flow algorithm. In the first variant, we use the first

version of the path construction algorithm, given in Section 2, in place of the second version. The

statement of the typical iteration of this algorithm is identical with the one given above, except

that the downhill test p(nt) > p(j) of Eq. (23) is replaced by the strictly downhill p(nt) = p() + 1.

Proposition 3 can also be proved for this variant of the algorithm using a similar (in fact simpler)

proof.

In the second variant of the max-flow algorithm, instead of maintaining the entire set Cand(i),

we maintain just one arc of Cand(i). The iteration of the algorithm is modified so that if the

unique arc of Cand(nt) passes the downhill test of Eq. (23), it is used as earlier. Otherwise

[assuming N(nt,x) is nonempty] the set Succ(nt) is computed and a single arc of Cand(nt) is

retained. This variant can be shown to terminate with a minimum cut as stated in Prop. 3. Its

complexity analysis is similar to the one given in the proof of Prop. 3(c), except that the work for

extensions that do not involve a price increase can be estimated as O(NA2 ) rather than O(N2 A),

raising the complexity bound to O(NA 2 ). However, when combined with the second best data

structure given in the next section, this second variant of the max-flow algorithm proved the

most effective in our computational results.
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4. Efficient Implementation

4. EFFICIENT IMPLEMENTATION

In this section we describe a number of variations of the auction/max-flow algorithm of the

preceding section, which we have empirically found to improve performance.

Tests for a Saturated Cut

It has been observed that for some problems (particularly those involving a sparse graph), our

method can create a saturated cut very quickly and may then spend a great deal of additional

time to raise to the level N the prices of the nodes that are left with positive surplus. This

characteristic is shared with preflow-push methods. Computational studies [DeM89], [MPS91],

[AnS93], [NgV93] of preflow-push methods have shown that it is extremely important to use a

procedure that detects early the presence of a saturated cut. Several schemes have been suggested

in the literature.

One possibility is to test periodically for a saturated cut by an O(A) breadth-first search from

the sink, which tries to find the set S of nodes from which there is an unblocked path to the

sink. If all nodes in S have zero surplus, then S defines a minimum cut. Note that once a node

of S with positive surplus is found, the breadth-first search can be terminated. However, in an

alternative version of this scheme, one can also perform global repricing, whereby all the nodes

in S are obtained, and their prices are recalculated and are set to their shortest distances from

the sink. Furthermore, all the nodes not in S can effectively be purged from the computation by

setting their price equal to N. While global repricing can be costly, it is known to be beneficial

for several problem types [MPS91], [AnS93], [NgV93]. It is important to use an appropriate

heuristic scheme that ensures that global repricing is not too frequent, in view of the associated

overhead. In practice, repeating the test after a number of contractions, which is of the order of

N, seems to work well.

Another possibility, suggested in the context of preflow-push methods in [DeM89], is to main-

tain in a suitable data structure, for each integer k in the range [1, N - 1], the number of nodes

m(k) whose price is equal to k. If for some k we have m(k) = 0 (this is called a gap at price

k), then there is a saturated cut separating all nodes with price greater than k from all nodes

whose price is less than k. All the nodes with price greater than k can effectively be purged

from the computation by setting their price equal to N. Furthermore, if all nodes with price less

than k have zero surplus, the separating saturated cut is a minimum cut. In our experiments, we

have found this second procedure in conjunction with the highest price selection rule to be more

effective than the first. Note an advantage of both of these procedures: they can purge from the
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computation a significant number of nodes before finding a minimum cut.

Method for Selecting the Starting Node of the Path

Our algorithm leaves unspecified the choice of the positive surplus node used as the starting

node of the path P. One possibility is to select a node with the highest price among all positive

surplus nodes i with p(i) < N. Each time the path P degenerates to its start node, following a

contraction, it is possible to make a new start node selection based on the highest price criterion

without affecting the termination properties of the algorithm.

An alternative is to maintain all nodes i with positive surplus and p(i) < N in a FIFO queue,

and use as starting node the first node in the queue. Note that the preflow-push method that uses

a highest price scheme is superior to the method that uses a FIFO scheme in terms of worst-case

complexity [O(N 2A1 / 2 ) versus O(N3 )].

Greedy Augmentations

Once an augmenting path is constructed, instead of pushing the same amount of flow along

each arc of the path, it is possible to push along each arc (i, j) the maximum possible amount

of flow, that is, max{gi, cij - xij} if (i,j) is a forward arc of the path, or max{gj,xij} if (i,j)

is a backward arc of the path. We call this a greedy augmentation. For an example where such

augmentations are helpful, see Fig. 1.

Source Sink

O- .. N

Capacity: Large Capacity = 1

Figure 1: An example where greedy augmentations are helpful. When the

augmentations are done as in the preceding section [cf. Eq. (27)], flow moves in
single units along the long path from node 2 to node N, and the number of arc

flow changes is m(N - 2), where m is the number of arcs joining nodes N - 1

and N. If greedy augmentations are used instead, the first augmentation moves

a large amount of flow to node N - 1, and all subsequent augmentations involve

a single-arc path from N - 1 to N. The number of arc flow changes is m + N - 3.

There is a possible weakness of our algorithm that cannot be corrected via greedy augmenta-

tions. This arises when many augmentations involve small increments along long paths. For an

example, see Fig. 2. In the implementation used in our tests, we have employed a heuristic that

identifies situations of this type, and appropriately compensates for it by occasionally moving
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flow along shorter portions of very long paths. However, even without this heuristic, our method

substantially outperforms preflow-push methods in the experiments reported in the next section.

Source Sink

Capacity = 1 Capacity: Large

Figure 2: A potential weakness of the auction/max-flow algorithm that cannot

be corrected through greedy augmentations. In this example, flow moves in single

units along the long paths from node 2 to node N.

Using a Second Best Candidate

Consider the variant of the algorithm, where only one node of the set Succ(i), call it jl(i),

is maintained for each i, together with a corresponding arc of Cand(i). Suppose that for the

terminal node nt of the current path P we have available a lower bound /(nt) on the prices of

all the nodes in N(nt, x) except for the price of node jl(nt). Suppose also that in Step 1, the

downhill test p(nt) > p(jl(nt)) of Eq. (23) for an extension is failed. Then we can check to see

whether we have

p(jil(nt)) < (nt),

and if this is so, we know that p(jl(nt)) is still less or equal to the prices of all nodes in N(x, nt),

thereby making the computation of this minimum as per Eq. (24) unnecessary. A lower bound of

this type can be obtained by calculating, together with jl(nt), the second best node in N(nt, x),

that is, a node j2(nt) given by

j2(nt) = arg min p(j).
jEN(nt, x), jJl (nt)

Then, as long as jl(nt) remains unchanged and no new node is added to N(nt, x), we can use

3(nt) = p(j2(nt))

as a suitable lower bound [if a new node is added to N(nt, x) due to an augmentation, we must

suitably modify P(nt) and j2(nt)]. This idea can be further strengthened by checking to see if

j2(nt) still belongs to N(nt,x) and whether its price is still /3(nt), in the case where the test

p(jl(nt)) < p(j2(nt)) is failed. If this is so, we can set jl(nt) to j2(nt), thereby obviating again

the calculation of the minimum in Eq. (24).

20



5. Computational Results

The idea of using a second best candidate arc and node is known to be very effective in auction

algorithms for the assignment problem ([Ber91la], p. 176, [Cas93]) and the shortest path problem

[Ber91lb], [BPS92]. It similarly improves the performance of our max-flow algorithm.

5. COMPUTATIONAL RESULTS

To test the ideas of this paper, we have developed a FORTRAN code, called AUCTION-MF,

which is based on the variant of the algorithm that maintains just a single element of each set

Cand(i). The code uses some of the implementation ideas of Section 4 as follows:

(a) Greedy augmentations.

(b) Choice of the highest price node with positive surplus as the starting node, and use of a

gap scheme for saturated cut detection.

(c) The second best candidate data structure.

These implementation ideas gave the best results for the problems tested. We have experi-

mented with several other versions of the code, which differ in the way they select the starting

node of the path, and in the way they detect the presence of a saturated cut. For example, we

have tested a code that instead of (b) above, maintains the positive surplus nodes in a cyclic

queue, chooses the top node of the queue as the starting node, and uses periodic breadth-first

search for saturated cut detection and global repricing. This version performed quite well relative

to preflow-push methods, but was uniformly slower than AUCTION-MF.

Random Problem Generators

We have used for experimentation test problems obtained with a variety of standard random

problem generators. Max-flow problems generated by several types of random problem generators

tend to be easy and can be solved very quickly by state-of-the-art codes soon after initialization.

Since all the codes we tested use very similar initialization, based on breadth-first search [cf. Eqs.

(21), (22)], we have focused our experimentation on problems that are quite difficult and require

considerable computation beyond initialization. These problems are typically characterized by

large differences between the initial and the final price vectors, as well as a large number of price

changes.

(a) RMFGEN: This code generates three-dimensional grid graphs, as described in [GoG88].

The problem is specified by two parameters a and b, called the side and the height, respec-
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tively. The grid has b frames numbered consecutively, each consisting of a two-dimensional

grid of a2 nodes. Node 1 of frame 1 is the source, and node a2 of frame b is the sink. Within

a frame, each pair of neighbor nodes is connected with an arc of capacity 10 3 a2 . Between

two successive frames, say k and k + 1, there are 2a2 arcs; a2 arcs that start at nodes of

frame k and end at nodes of frame k + 1, and another a2 arcs that start at nodes of frame

k + 1 and end at nodes of frame k. These arcs have capacity randomly chosen from the

integer range [1, 103]. Furthermore, the end nodes of these arcs are determined by a random

permutation rule, that is, for each node of a frame there must be exactly one arc incoming

from, and exactly one arc outgoing to each of the neighboring frames. There are several

possible permutation rules. The one we used for our experiments works as follows. The

nodes of each frame are sequentially numbered from 1 to a2 , that is, the first row consists

of nodes 1 to a, the second row consists of nodes a + 1 to a2 , etc. For each ordered pair of

neighboring frames, an integer r is randomly chosen from the range [1, a2 ]. Then for each

node i of the first frame, an arc is created that starts at i and ends at node r + i modulo a2

of the second frame. This random permutation rule apparently results in more challenging

problems than those obtained using other permutation rules, such as a2 successive random

interchanges of node pairs.

(b) GRID-SQ: This code generates a two-dimensional square grid problem. The source is

connected to all nodes of the bottom row of the grid with arcs of very large capacity. All

nodes of the top row of the grid are connected to the sink with arcs of very large capacity.

Also, each node of the grid is connected to all its immediate neighbors with an arc of

capacity randomly chosen from the integer range [1,106].

(c) NETGEN: This is a standard generator due to [KNS74], which generates random graphs

with given number of nodes and arcs, and with capacities chosen from a given range. A

tree of arcs of high capacity, whose value is specified by the user, connects all nodes.

Codes used for Comparison

Extensive computational studies (e.g. [DeM89], [MPS91], [AnS93], [NgV93]) have established

that preflow-push algorithms are the fastest of the presently available max-flow methods. We

have accordingly compared our auction code with two state-of-the-art preflow-push codes. These

are:

(a) PFP-AO: This is a FORTRAN code due to Ahuja and Orlin. It is an efficient implemen-

tation of the preflow-push method with the highest price selection rule and the gap scheme

for saturated cut detection.

22



5. Computational Results

(b) PFP-DM: This is a FORTRAN code due to Derigs and Meier [DeM89]. It is a preflow-

push method that is similar to PFP-AO in that it also uses the highest price selection rule

and the gap scheme for saturated cut detection. However, the implementations of PFP-AO

and PFP-DM are somewhat different.

AUCTION-MF, PFP-AO, and PFP-DM were tested under identical conditions on two ma-

chines:

(1) A Macintosh IIci with 32 Megabytes of memory using the Absoft FORTRAN compiler.

(2) A DECStation 5025 with 128 Megabytes of memory using the FORTRAN compiler under

UNIX.

We have also performed some experimentation on the NeXTStation 68040 running UNIX

with the code of Anderson and Setubal [AnS93]. This is an efficient implementation in C of

the preflow-push method that uses a FIFO node selection rule, periodic breadth-first tests for a

saturated cut, and global repricing. The results of this experimentation were consistent with the

results given here for the other two preflow-push codes, and can be found in an earlier report

[Ber93]. However, in our experience, comparisons between C and FORTRAN codes tend to be

highly unreliable because of the compiler differences, 1 and for this reason we will not present

these results.

Summary of Results

We have found that the auction code outperforms substantially the preflow-push codes for all

problem classes tested. The closest competitor depends on the problem class. Our algorithm is

faster than the closest competitor by at least two to three times for all problem classes. Signif-

icantly, it consistently outperforms (sometimes by an order of magnitude) the Ahuja and Orlin,

and Derigs and Meier codes, which use a similar node selection rule (highest price) and the same

termination scheme (gap detection).

The comparison of the computation times is corroborated by other statistics, which are inde-

pendent of the computer and the compiler used. In particular, we have recorded for each code

the average number of flow changes per arc and the average number of price changes per node.

Generally, the auction algorithm performs substantially (and often dramatically) fewer price and

arc flow changes relative to the preflow-push algorithms. Note, however, that the ratios between

1 A line-by-line translation into C of RELAXTII (the FORTRAN code given in [BeT88] that

implements the relaxation method for minimum cost flow) runs consistently about three times

faster than the FORTRAN version on a UNIX workstation [CCG94].
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the number of flow and price changes do not faithfully correspond to the ratios of run times

because the different codes involve different data structures and varying amounts of overhead.

The results are given in five tables. In particular:

Tables 1 and 2 compare AUCTION-MF with PFP-AO and PFP-DM on RMFGEN prob-

lems.

Table 3 compares AUCTION-MF with PFP-AO and PFP-DM on GRID-SQ problems.

Table 4 compares AUCTION-MF with PFP-AO and PFP-DM on NETGEN problems.

Note that a "*" in these tables indicates that the corresponding problem was not run due to

limited memory of the corresponding machine. Figures 3-5 show the factor of superiority of

AUCTION-MF over the preflow-push codes on RMFGEN and GRID-SQ problems in terms of

computation time. The figures indicate that this factor tends to increase with problem dimension,

particularly for the square grid problems.

6. CONCLUSIONS

There are two main methodological conclusions of this paper:

(1) Using shortest path augmentations within the Ford-Fulkerson framework is not essen-

tial for good worst-case or practical performance. Instead, it is important to transfer

efficiently useful information from one augmenting path construction to the next. The

prices of the auction algorithm provide an effective mechanism for such a transfer.

(2) The augmenting path approach, when properly implemented through the use of a path

construction algorithm based on price adjustment and auction ideas, can substantially

outperform the preflow-push approach. This contradicts the current mainstream think-

ing in the field, which following extensive recent numerical experimentation, considers

preflow-push methods as superior to augmenting path methods.

The new max-flow algorithm given in this paper is supported by strong computational ev-

idence. It is substantially faster than preflow-push methods on standard randomly generated

problems, and tends to perform far fewer flow changes and price changes. What is happening

here is that in our method, arc flows change only after the node prices have risen to the proper

level for an augmentation, whereas in preflow-push methods flows change simultaneously (and

often unnecessarily) with the prices. Deferring flow changes until an augmentation can be per-
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formed has an additional side effect: it does not disturb the reduced graph unnecessarily, thereby

confusing the search for an augmenting path. This, together with some additional special features

of our method, such as performing extensions along arcs of Cand(i) which are not strictly down-

hill, explains the experimentally observed large reduction in the number of price changes over

preflow-push methods. It is generally thought that the larger flow increments resulting from the

use of single-arc (versus multiple-arc) paths in preflow-push methods is a significant advantage.

However, it appears that the use of greedy augmentations nullifies to a large extent this perceived

advantage. Furthermore, the inferiority of the worst-case running time of our method relative to

the one of the best preflow-push methods is of little practical significance, because the practical

computational bottleneck is the work for price increases, which is comparable [O(NA)] for both

methods.

The ideas of the present paper admit extension to minimum cost flow problems along the

lines of the auction/sequential shortest path algorithm developed in [Ber92b]. One may simply

substitute the auction algorithm for constructing shortest augmenting paths of [Ber92b] with the

simpler path construction algorithms used here. Results using this approach will be reported

elsewhere.
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Figure 3: Speedup factor of AUCTION-MF over the PFP-AO and PFP-DM

codes for RMFGEN problems with constant side (=15). Compare with Table 1.
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Side Height AUCTION-MF PFP-AO PFP-DM

15 40 12.57/2.659 78.09/13.04 68.27/9.720

1.375/6.455 7.292/29.40 6.340/27.46

15 80 19.49/4.286 199.5/36.22 179.7/25.55

1.119/4.303 8.944/39.35 7.914/36.62

15 120 26.18/5.815 283.7/49.67 262.1/36.88

1.023/3.469 10.96/50.83 7.641/35.62

15 160 33.55/7.623 435.4/77.87 369.8/52.18

0.993/3.280 9.570/44.20 7.998/37.82

15 200 41.24/9.442 493.4/95.36 378.3/53.34

0.985/3.198 11.00/52.04 6.550/30.85

15 240 45.89/10.61 611.1/109.8 483.5/68.15

0.934/2.7480 9.942/46.84 6.920/33.00

15 280 */12.27 */161.2 */85.82

0.928/2.679 11.66/55.85 7.427/35.46

15 320 */13.96 */162.9 */87.54

0.912/2.552 10.57/50.67 6.650/31.70

15 360 */15.28 */177.1 */94.98

0.890/2.411 10.07/48.19 6.343/30.34

Table 1: Experiments with constant side RMFGEN problems. Each entry corresponds to an average over 5

problems. The entry in each box gives:

Running time in seconds on a MacIIci / Running time in seconds on a DECStation 5025

Average number of flow changes per arc / Average number of price changes per node
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Appendix: Relation of the Path Construction Algorithm with the Auction Algorithm

Assuming that the reader is familiar with the auction algorithm for the assignment problem, as

given for example in [Ber91la] or [Ber92a], we will draw the connection of the auction algorithm,

with the first path construction algorithm of Section 2. To this end we note that the path

construction problem can be converted into a pure (unweighted) matching problem as shown in

Fig. 6. In particular, a forward path of a directed graph g that starts at a node nl and ends

at a node N corresponds to a feasible solution of the matching problem described in Fig. 6, and

conversely. A set of valid prices for the nodes of G defines the prices of the objects of the matching

problem by

rij = p(i), V (i,j) E A,

and

rN = p(N).

These prices together with the incomplete matching that pairs a person corresponding to node j

with some arc (i, j) incoming to j, satisfy the e-complementary slackness condition of the auction

algorithm with c = 1. In such a matching, the only unassigned person is the one corresponding

to node nl, and the only unassigned object is the one corresponding to node N. If we apply

the auction algorithm with e = 1, starting from this matching-price pair, it can be verified that

the sequence of generated prices and matchings correspond to the sequence of prices and paths

generated by the first path construction algorithm of Section 2.
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PERSONS OBJECTS
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Start Node Sink

Reduced Graph Equivalent Unweighted Matching Problem

Figure 6: Converting the augmenting path construction problem into an equiv-

alent problem of (unweighted) matching of "persons" to "objects". Each arc (i, j)

of the reduced graph 5, with i i nl, N, is replaced by an object labeled (i, j).

Each node i Z N is replaced by R(i) persons, where R(i) is the number of arcs

of 5 that are incoming to node i (for example node 2 is replaced by the two per-

sons 2 and 2'). Finally, there is one person corresponding to node n1 , and one

object corresponding to node N. For every arc (i, j) of 5, with i : N, there are

R(i) + R(j) incoming arcs from the persons corresponding to i and j. For every

arc (i, N) of 5, there are R(i) incoming arcs from the persons corresponding to i.

Each path that starts at nl and ends at N can be associated with a feasible

matching. For example, in the figure, the path (ni, 3, 2, N), corresponds to the

feasible matching

(nl, (ni,3)), (3, (3,2)), (2, (2, N)), (2', (ni,2)),

or the same pairs with the roles of 2 and 2' interchanged. Conversely, given a fea-

sible matching, one can construct an alternating path (a sequence of alternatively

assigned and unassigned pairs) starting at nl and ending at N, which defines a

path from nl to N. For example, in the figure, the feasible matching comprising

the pairs

(ni, (ni, 3)), (3, (3, N), (2, (ni, 2)), (2', (3, 2))

corresponds to the path (nI, 3, N).
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