
August 1993 LIDS-TH-2188

Research Supported By:

National Science Foundation
Grant NCR 8802991

Defense Advanced Research Projects
Agency
Grant MDA972-92-J-1038

ATT Bell Laboratories

End-To-End Reliable Communication
in Data Networks

Jane Marie Simmons



August 1993 LIDS-TH-2188

Sponsor Acknowledgments

National Science Foundation
Grant NCR 8802991

Defense Advanced Research Projects
Agency
Grant MDA972-92-J-1038

ATT Bell Laboratories

End-To-End Reliable Communication
in Data Networks

Jane Marie Simmons

This report is based on the unaltered thesis of Jane Marie Simmons submitted to the Department of
Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree
of Doctor of Philosophy at the Massachusetts Institute of Technology in August 1993.

This research was conducted at the M.I.T. Laboratory for Information and Decision Systems
with research support gratefully acknowledged by the above mentioned sponsors.

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, MA 02139, USA



END-TO-END RELIABLE COMMUNICATION

IN DATA NETWORKS

by
JANE MARIE SIMMONS

B.S.E. EECS, Princeton University, 1985
M.S. EECS, Massachusetts Institute of Technology, 1990

Submitted to the Department of
Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the
Degree of

DOCTOR OF PHILOSOPHY

at the

Massachusetts Institute of Technology

August 1993

0 Jane Marie Simmons, 1993
All Rights Reserved

The author hereby grants to MIT permission to reproduce and to
distribute copies of this thesis document in whole or in part.

Signature of Author a o 
De ? ent of Electrical Engineering and

Computer Science, August, 1993

Certified by /( / Zs
Robert G. Gallager

Thesis Supervisor

Accepted by
Frederic R. Morgenthaler

Chairman, Departmental Committee on Graduate Studies



END-TO-END RELLABLE COMMUNICATION

IN DATA NETWORKS

by

JANE MARIE SIMMONS

Submitted to the Department of
Electrical Engineering and Computer Science in August, 1993

in Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

ABSTRACT

Reliable communication in data networks is defined as the ability to reproduce at the

receiver exactly what has been transmitted by the source, with very high probability. This

thesis establishes guidelines for designing network protocols that ensure reliable end-to-end

communication. The first section of the thesis focuses on error detection protocols; the

second section examines data retransmission schemes.

The ability to detect errors in a network, such as bit errors on the data line and lost data due

to buffer overflow, is obviously an important issue. Nevertheless, it appears there has

been little prior research done on the fundamental issues involved with designing an error

protection scheme. A five step methodology is presented that provides insight into, first,

the order in which errors should be considered when designing an error detection scheme,

second, which types of error detection mechanisms are most effective, and third, which

layer should be responsible for detecting a given type of error. The issues of overall

effectiveness, efficiency, and robustness of an error detection scheme are addressed.

Once an error has been detected, the system must be able to either correct the error or

retransmit the portion of data in error. Only retransmission options are explored in this

work. A delay criterion for evaluating the performance of general retransmission schemes

is presented. This is used to examine the tradeoffs involved with retransmission schemes

that are based on a polling mechanism and schemes that employ a timer mechanism. The

interplay between the requirements, resources, and error characteristics of a network and

the design of a retransmission scheme is discussed. Much of the analysis is devoted to

2



poll-based schemes since they have been proposed for several high speed networks

currently under development.

To provide perspective in examining these issues, the error detection and recovery schemes

of Asynchronous Transfer Mode (ATM) systems and Transport Control Protocol/Internet

Protocol (TCP/IP) systems are analyzed.

Keywords: Error Detection, Retransmission, Network Protocols, ATM, TCP/IP

Thesis Supervisor: Robert G. Gallager

Title: Fujitsu Professor of Electrical Engineering and Computer Science

3



ACKNOWLEDGEMENTS

I admire Bob Gallager for his deep understanding of so many different fields. I appreciate

his sense of humor and his willingness to adapt. I thank him for being my friend.

Dimitri Bertsekas very generously allowed me to use his computer for the past few years. I

thank Steve Finn for always being very enthusiastic about my research.

Dan Grossman of Codex Corp. first got me involved with the ATM retransmission

scheme, which led to a major portion of this thesis. He also kept me up-to-date with the

latest ATM standards.

Finally, I thank my friends for all the laughter.

This work was partially funded by the NSF, DARPA, and ATT Bell Laboratories.

4



TABLE OF CONTENTS

1. Introduction .... . ...... ... ....... ... ................................
1.1 O verview ..............................................................................
1.2 Layering Concepts .................................................................. 8
1.3 ATM ..... .... ... ........... .................................................10
1.4 TCP/IP ............................................ ...... 11
1.5 ATM vs. TCP/IP .................................................. 12
1.6 Networks of the Future .................................................. 12
1.7 Summary of Major Contributions .................................... 13

2. Cyclic Redundancy Checks and Checksums ................................................ 14
2.1 Cyclic Redundancy Check .................................................. 14
2.2 Checksum ............................................................................. 22
2.3 Implicit Error Checking .............................................. 24

3. Error Detection Schemes .................................................. 27
3.1 Overview ................................................. 27
3.2 Description of Layers ............................................................. 29
3.3 Degree of Difficulty in Detecting An Error ........................................ 36
3.4 Guidelines for Designing Error Detection Schemes .............................. 37
3.5 Summary .............................................................................. 53

4. Error Detection in ATM .......... ............... ......................... 55
4.1 ATM Overview ...... ............................................55
4.2 General Properties of ATM Networks ..... .............................56
4.3 Error Characteristics of ATM Networks .......................................... 57
4.4 Design of ATM Error Detection Scheme .........................................59
4.5 Summary of ATM Error Detection Scheme ....................................... 70
4.6 Implementation .......... 71.......... ........ ....................71
4.7 Alternative Schemes ....... ............. ............................71
4.8 SONET ................................................................ 76
4.9 Conclusions ................................................. 80

5. Error Detection in TCP/IP .. ....... ......................................... 82
5.1 TCP/IP Overview . . ....... ....................................... ............... 82
5.2 TCP/IP Description ......... ......... ........ ........................ 84
5.3 Assumptions .................................... .............. 88
5.4 Analysis of TCP/IP Error Detection Scheme ........... .......................... 89
5.5 Conclusions . . .....................103

6. Retransmission Schemes ... ...... 10......... .......... .................106
6.1 Introduction . . . ..... .. ...................................... ...................... 106
6.2 Poll-based Retransmission Schemes ... 1.............. 110
6.3 Timer-based Retransmission Schemes ............................................ 133
6.4 Poll-based Schemes vs. Timer-based Schemes ................... ............... 137
6.5 Combination of Poll-based and Timer-based Schemes ... .......................141
6.6 Selective Repeat vs. Go Back N ................................................. 145

7. Retransmission in ATM .................................................. 150
7.1 Introduction . ........... .....................................150
7.2 Description of Proposed Retransmission Scheme ................................ 151
7.3 Proof of Proper Operation ... ..... .. ...... ......... .......................155
7.4 Potential Problems ....... .................................................. 171
7.5 Poll-based Scheme in ATM Environment ......................................... 175

5



8. Retransmission in TCP/IP ................... .................................................. 181
8.1 Introduction ................... ... ........................ 181
8.2 Description of TCP Retransmission Scheme ..................................... 181
8.3 Retransmission Policy Analysis ......... .. ......... ...................185
8.4 Estimation of Round Trip Delay ................................................. 195
8.5 Poll-based Scheme in TCP/IP ................................................. 199
8.6 Conclusions ............... ....................................... 202

9. Conclusions ................................. .................. ... 203
9.1 Major Contributions ..................................................... ........ 203
9.2 Stabilization Properties of Retransmission Schemes .............................204

References ...................................... .................................................... 207
Biography ................................................................. 210

6



CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

All real-world data network systems are subject to errors. Thus, it is necessary to develop

network protocols that detect and recover from errors. This thesis focuses on establishing

guidelines for designing protocols that ensure reliable end-to-end communication, where

reliable communication is defined as the ability to duplicate at the receiver exactly what has

been transmitted by the source, with very high probability. Obviously the many data

networks currently in use include mechanisms for this purpose. However, there does not

appear to be an established systematic approach to dealing with errors. Many systems that

are currently being designed have taken a rather ad hoc approach to providing reliable

communication. The major contribution of our research is to identify the fundamental

issues involved with providing error protection and to specify guidelines for designing

protocols that effectively and efficiently handle errors.

There are two major facets of providing reliable data delivery: error detection and error

recovery. Error detection usually takes the form of including check fields along with the

data, such as parity checks or a field indicating the amount of data sent. Undetected errors

are inevitably going to occur in any system regardless of the number of error detection

fields included. We determine which error detection fields are appropriate to add, given the

characteristics of the network, in order to reduce the rate of undetected errors to a level

acceptable to users. In chapter two, we describe common techniques for detecting errors.

In chapter three, a step-by-step algorithm for designing effective and efficient error

detection schemes is presented. These guidelines are applied to actual systems in chapters

four and five.

7



Throughout our research we will be concerned with several different levels of errors. The

lowest level errors are due to physical properties of the network. For example, this

includes bit errors on the data line, burst errors due to equipment malfunction, and lost data

due to buffer overflow. These low-level errors may propagate up through the various

layers of the network. For instance, an undetected bit error in an address field may result

in data being routed to the wrong destination; if the stray data is not detected, extra data

may be delivered to the user at this wrong destination. Thus, the choice of error detection

fields at one layer impacts the probability of error at higher layers. This is explored in

detail in chapter three.

Once an error has been detected, the system must be able to either correct the error or

retransmit the portion of data in error. Our discussion focuses on the retransmission

option. We present a delay criterion for evaluating the performance of retransmission

schemes in general. This criterion is used to explore the tradeoffs involved with

retransmission schemes that are based on a polling mechanism and schemes that employ a

timer mechanism. Based on this analysis, we specify how the requirements, resources,

and error characteristics of a network should influence the design of a retransmission

scheme. These guidelines are applied to actual systems in chapters seven and eight.

To provide perspective in examining the issues of reliable communication, we analyze two

very different systems: Asynchronous Transfer Mode (ATM) systems, and Transport

Control Protocol/Internet Protocol (TCP/IP) systems. An overview of these systems is

given below in Sections 1.3 and 1.4; the details of the protocols will be described in later

chapters. The next section discusses layering issues in data networks to provide insight

into the functionality of ATM and TCP/IP.

1.2 LAYERING CONCEPTS

Most networking systems are designed with a layered architecture. Each layer has specific

functions that it must perform. A layer receives input from the layers immediately above or

below it, processes the input, and passes the result to a layer below or above it. The

adjoining layers are unaware of the specific processing details; they need only be concerned

with the interface. This modularity allows designers to work on one layer independently of

all other layers, allows new versions of a layer to be incorporated without affecting other

layers, and results in a number of interchangeable layers.

8



The lowest layer in a networking system is the communication link connecting the network

nodes. The layers above this are distributed i.e., modules of the same layer exist at both

ends of a link. Modules which operate at the same layer are referred to as peer modules.

We can consider two types of communication in which a module participates. First, there

is communication directly with the modules above or below it. Second, and more

important, there is indirect communication with peer modules at other network nodes. It is

the combination of these two types of communication that ultimately provides a meaningful

exchange of information among nodes in a network.

Peer modules can communicate on a node-by-node basis, or on an end-to-end basis. The

lower layers of a network generally operate on a node-by-node basis, and are involved with

the transfer of data at each node along the data path. The higher layers generally operate

end-to-end; only the source and destination process the data at these layers.

Different organizations have established different layering standards. Below, we give an

overview of the seven layers of the Open Systems Interconnection (OSI) architecture,

which was proposed by the International Standards Organization. First, we review the

conventions for describing data entities, as established in the OSI model[MeP82]. A

Service Data Unit (SDU) is the data unit that a layer receives from the next higher layer. A

Protocol Data Unit (PDU) is the data unit exchanged between peer modules. It is necessary

to distinguish between these different data units in order to maintain modularity of design.

Consider any given layer, which we refer to as layer N. It may interface with a variety of

layer N+1 entities (where we consider layer N+1 to be the layer above layer N). The layer

N SDU is the data passed down from a layer N+ 1 entity so that layer N can perform the

functions requested by layer N+ 1. Layer N must determine the correct Protocol Control

Information (PCI) to append to the SDU; the PCI is the information exchanged between the

layer N peer modules in order to co-ordinate their operation. The PCI will depend on the

services requested by layer N+l, and the peer modules with which layer N is interacting.

Thus, different PCI could be added to an SDU depending on the circumstances. The

combination of the layer N SDU and the layer N PCI is the layer N PDU.

The top three layers of the OSI model operate end-to-end. The highest layer is the

application layer. Below that is the presentation layer, which performs tasks such as data

compression and encryption. The next layer down is the session layer, which deals with

setting up connections. These three layers will not be discussed further.

9



The transport layer, which also operates end-to-end, is below the session layer. The SDU

at the transport layer is often referred to as a message. The functions of the transport layer

are: divide messages into smaller entities at the source and reassemble them at the

destination; multiplex sessions that have the same source and destination; and provide end-

to-end reliable data delivery. It is the functions of the transport layer with which we are

most concerned in this research.

Below the transport layer is the network layer, which operates network-wide and provides

routing and flow control services for network layer PDUs. PDUs at the network layer are

usually called packets for connection oriented sessions, and datagrams for connectionless

sessions. In connection oriented sessions, a data path is mapped out between source and

destination, and all packets from the session follow that path. In connectionless sessions,

there is no pre-established path; datagrams are routed independently of each other.

The next layer down is the data link control (DLC) layer, which provides reliable node-by-

node delivery of packets. The DLC PDU is usually called a frame. Much of the frame

overhead is for the purpose of error detection and recovery. The lowest layer of the OSI

model is the physical layer. Its function is to transmit bits over a physical communication

channel.

The ATM and TCP/IP protocols do not conform to specific OSI layers. Rather, they are

more an amalgamation of OSI layers.

1.3 ATM

ATM is a protocol being designed for use on Broadband Integrated Services Digital

Network (B-ISDN) systems. The goal of B-ISDN is to provide transmission services for

voice, data, and video at data rates of 150 Mb/sec and higher. ATM provides a common

format for transmitting these different traffic types. We deal specifically with reliability

issues for the connection oriented, variable bit rate service class of ATM.

ATM is comprised of the ATM layer protocol and the ATM Adaptation Layer (AAL)

protocol, which lies above the ATM layer. There is not a direct correspondence between

these two layers and the OSI layers. The ATM layer operates node-by-node and performs

some of the functions associated with the physical and network layers. The AAL operates

end-to-end and performs functions associated with the transport layer in providing

multiplexing and end-to-end reliable data delivery. It should be noted that the unit of data

10



the AAL receives from higher layers is called a frame, thus prompting some researchers to

consider both the ATM and AAL layers as part of the physical layer.

In general, when we refer to ATM we will be referring to ATM systems and not the ATM

layer protocol. ATM has not yet been finalized as a standard by the International Telegraph

and Telephone Consultative Committee (CCITT). In working on this thesis we have

attempted to keep up with the current status of the proposed standard. Also, we kept our

analysis as general as possible so that changes in the proposed standard will not

significantly affect our results.

ATM is to be run over fiber optic lines, a very reliable medium; thus, we expect a low bit

error rate on ATM data links. The chief source of low level errors is expected to be data

lost due to congestion. The error detection scheme originally proposed by the CCITT is

fully described in chapter four. However, we will show that by applying the error

detection design techniques outlined in chapter three, we can come up with a scheme that is

both more effective and efficient than the CCITT proposal. A scheme similar to ours has

been proposed by another researcher also, although without any analysis[Lyo91]. The

CCITT is currently considering adopting such a scheme as part of the ATM

standard[CCI92a].

The retransmission scheme proposed by the CCITT is based on a polling mechanism,

rather than on a traditional timing mechanism. In chapter seven, we show that the

characteristics of ATM systems actually favor the use of a timing mechanism.

1.4 TCP/IP

The second representative system we will examine is the Internet and its related protocols,

IP and TCP. The goal of the Internet is to provide data communication services between

thousands of diverse computer networks distributed worldwide. The speed, resources,

and capabilities of these interconnected networks are very different. Also, the transmission

speed and error characteristics of the lines connecting these networks span a wide range.

The various networks are connected by computers that serve as gateway nodes. IP

performs some of the functions of a network layer and provides a connectionless unreliable

datagram delivery service between the gateway nodes. Datagrams may be lost, duplicated,

misordered or damaged while in transit. TCP is a connection oriented transport protocol



that operates above the IP layer on an end-to-end basis. It provides connection

management, reliable data transport, and flow control services.

The TCP/IP protocol has been in use for about a decade. The error detection mechanisms

of TCP/IP are described in chapter five. We show that the TCP/IP error detection scheme

closely corresponds to the design guidelines presented in chapter three. TCP uses a timer-

based retransmission scheme. In chapter eight, we analyze why such a scheme performs

poorly in the TCP/IP environment.

1.5 ATM vs. TCP/IP

We chose to analyze ATM and TCP/IP due to the very different nature of these protocols.

The ATM environment is expected to be relatively uniform, i.e., high speed and reliable.

The networks over which TCP/IP is run, however, are very diverse in terms of speed and

error rates. ATM is purposely being designed to carry a wide range of traffic types.

TCP/IP was designed for a homogeneous traffic environment. The ATM packet delivery

service that we analyze is connection oriented; traffic at the IP layer is connectionless.

Despite these differences, we show that the guidelines we develop for the design of error

protection protocols are applicable to both systems.

1.6 NETWORKS OF THE FUTURE

The major goal of this thesis is to provide guidelines for the design of error protection

protocols for general network systems. These guidelines present a systematic approach to

designing systems of the future. Many of the networks that have been proposed for the

future, including ATM, are referred to as high speed networks, since the data rates are

expected to be very high. The fact that the data speed is high does not in itself imply that a

system is very different from a system where the data speed is low. For example, if the

data rate, packet size, and buffer size are all scaled by the same factor (and flow control is

equally effective), then transmission and queueing delays do not change.

From the point of view of designing an error protection scheme, a more significant

difference in these proposed networks of the future is that the high speeds will be

accompanied by the greater reliability of fiber optics. Another significant difference is that

many of the proposed networks are expected to carry a wide range of traffic types that have

very different requirements in terms of data rate, burstiness, and sensitivity to delay and

error. Thus, the protocols that are developed for these networks should be suitable for a

12



range of traffic types. Where appropriate, we discuss how these characteristics of future

networks affect the design process of error protection schemes.

1.7 SUMMARY OF MAJOR CONTRIBUTIONS

Our research makes several original contributions in the areas of error protection protocols

for data networks. The ability to detect errors in a network is obviously an important issue.

Nevertheless, it appears there has been little prior research done on the fundamental issues

involved with designing an error protection scheme. By addressing the fundamental

issues, we develop a logical and coherent approach to the problem. The methodology

presented in chapter three provides insight into, first, the order in which errors should be

considered when designing an error detection scheme, second, which types of error

detection mechanisms are most effective, and third, which layer should be responsible for

detecting a given type of error.

We have also made several contributions in the area of retransmission schemes. First, an

in-depth study of poll-based schemes is provided. Despite the fact that such schemes have

been in existence for over a decade, and have been proposed for networks currently being

designed, there has been little published on how such schemes perform. We analyze the

advantages and disadvantages of poll-based schemes, compare them with timer-based

schemes, and examine in which network environments a poll-based scheme and a timer-

based scheme are best suited. We formally prove the correctness of the proposed ATM

poll-based retransmission protocol, under certain conditions. As of the writing of this

thesis, such a proof had not been provided by the CCITT. Also, in analyzing the validity

of the ATM retransmission scheme, we further define the protocol.

13



CHAPTER 2

CYCLIC REDUNDANCY CHECKS
AND CHECKSUMS

Cyclic redundancy checks (CRCs) and checksums are both forms of redundancy checks

that are commonly used to detect errors in data. Since they play an important role in the

error protection schemes we will examine in chapters three through five, we review their

error detection properties below. Section 2.1 describes CRCs and Section 2.2 analyzes

checksums. In Section 2.3, we describe the technique of using a CRC or checksum to

implicitly check on other error detection fields. In some situations, this technique provides

an additional amount of error protection without any additional bits of overhead.

2.1 CYCLIC REDUNDANCY CHECK

A CRC code is a type of parity check code. Below, we describe how a CRC code is

generated and analyze its error detection properties.

Let D be the number of data bits we wish to check, and L be the number of check bits we

wish to add. The L check bits are referred to as the CRC. Denoting the data bits by

D-1, SD-2, ... , so, where sD-1 is the first bit of data, we can represent the data by the

polynomial:

s(X) = sDiXD- 1 + SD_2XD -2 + ... + so, where X is an indeterminate.

Similarly, we can represent the CRC by the polynomial:

c(X) = CL 4_XL- 1 + CL~2 XL-2 + ... + co.

Let g(X) be a polynomial of degree L, referred to as the generator polynomial. Then, for

each possible data string s(X), we generate the CRC as follows:

c(X) = Remainder[s(X)XL/g(X)] (using binary arithmetic).

We can represent the combination of data bits and check bits by:

14



q(X) = s(X)XL + c(X) (2.1)
We can think of q(X) as being a codeword in the code generated by g(X). It can be shown

(see [BeG92]) that any codeword q(X) is divisible by g(X), and that any polynomial

divisible by g(X) must be a valid codeword. If g(X) factors XL+D -1, then the code

generated by g(X) is a cyclic code i.e., any cyclic shift of a codeword is another codeword.

It will also be helpful sometimes to represent the jth bit of the CRC as follows:
D-1

cj = icj(i) O0< j<L (2.2)
i=o

where c(i) is the CRC that results from the data string with a single 1 in position i.[BeG92]

From this representation we see that a CRC is indeed a parity check.

Assume that the codeword q(X) representing the data and CRC is sent over a noisy

channel. Let e(X) be the polynomial representing the errors that occur in the transmission

of the codeword. The coefficient ei is 1 if a bit error occurs in position i of the transmitted

sequence; otherwise ei is 0. The received sequence can thus be represented by r(X) =

q(X) + e(X), where the addition is bitwise modulo 2. The decoding rule at the receiver is:

accept r(X) as error-free if and only if r(X) is divisible by g(X) (i.e., iff r(X) is a valid

codeword). Since q(X) is divisible by g(X), this acceptance rule is equivalent to requiring

e(X) to be divisible by g(X). Thus, if the error sequence is not all zeros, then the CRC

fails to detect an error if and only if the errored bits are located such that e(X) is divisible by

g(X) (i.e., iff e(X) is a valid codeword).

2.1.1 Extended Hamming Codes

The error detecting properties of the CRC depend on the choice of the generator

polynomial. If g(X) is chosen to be the product of the polynomial (X+1) and a primitive

polynomial of degree L-1, where
2L -1 - L > D+1 (2.3)

then the resulting code is called an Extended Hamming code. (For a discussion of

primitive polynomials see [Gal68].) The codewords of the Extended Hamming code

generated by g(X) are the even weight codewords of the Hamming code generated by

g(X+ ) (The weight is defined as the number of l's in the codeword.) Extended

Hamming codes are better than ordinary Hamming codes for error detection purposes; their

error detection properties are discussed below.

15



All codewords in an Extended Hamming code have even weight since (X+1) is a factor of

the generator polynomial and hence a factor of all codewords. It also can be shown (see

[BeG92]) that the codewords never have weight two. Since a CRC only fails to detect an

error if e(X) is a valid codeword, we conclude that an Extended Hamming code CRC can

detect all odd numbers of bit errors and all double bit errors. Furthermore, it can be shown

that such a CRC is capable of detecting all error bursts within a span of L bits.[BeG92]

Finally, the probability of the CRC failing to detect errors in a completely random string is:

2-L (2.4)

From the above discussion, we see that at least four bit errors must occur, in the

combination of the data and the CRC bits, in order for the CRC to fail to detect an error.

This is equivalent to stating that the minimum distance between codewords is four. The

distance between codewords refers to the number of bit positions where the codewords

differ. (In ordinary Hamming codes, the minimum distance is only three.) This does not

imply that all combinations of four or more errors result in an undetected error. Only those

error patterns that correspond to a valid codeword cause undetected errors.

Consider the Extended Hamming code produced by the degree L polynomial g(X) where L

is chosen such that equation (2.X) holds with equality. Thus, L+D = 2L-1 -1 and we refer

to the code as a full-length code. For a full-length Extended Hamming code, it is known

precisely how many error patterns will not be detected by the CRC. Let Ai be the number

of error patterns of weight i that will not be detected by the Hamming code of length 2L-1 -1

generated by (X+i)' Equivalently, Ai is the number of weight i codewords in the

Hamming code. Letting T = 2L-1 -1 (where T is referred to as the block length), Ai can be

shown to satisfy the following relation[VaV89]:

Ao = 1, Al= 0

(i+l)Ai+l + Ai + (T-i+l)Ai-l = (T) l<i <T, (2.5)

Let Bi equal the number of error patterns of weight i that will not be detected by the full-

length Extended Hamming code CRC. Then:

Bi = Ai i even

Bi=O iodd (2.6)

If bit errors occur randomly with probability PR, then the overall probability of a full-length

Extended Hamming code CRC failing to detect random bit errors is:
T

PE = Bi PRi (1-PR)T-i (2.7)
i=l

16



If PR is small, PE will be dominated by the term due to 4 bit errors. From equations (2.5)

and (2.6) we see that:

B4= (T) T(IT) (2.8)

Thus,

PE--B4PR4 = (T) 3 (2T) PR4 (2.9)

By examining the Hamming code of block length T we can show why B4 (and A 4) equals

4 ( _(T ) . First, we derive A3. The Hamming code is a perfect code: any

sequence of length T is either a codeword or at distance 1 from a codeword. We know that

there are no weight-i or weight-2 codewords in a Hamming code. Take any two bit

positions i and j and consider the sequence that has a 1 in these two positions and zeros

elsewhere. This sequence is not a codeword since it has weight 2. Thus, it must be at

distance 1 from a codeword. Since there are no weight-1 codewords, it must be at distance

1 from a weight-3 codeword. There can only be one such weight-3 codeword. If there

were more than one, then there would be a weight-3 codeword with l's in positions i, j, k

and a weight-3 codeword with l's in positions i, j, k', where k:k'. But these two weight-

3 codewords would be at distance 2 from each other which is impossible for a Hamming

code.

Thus, for each choice of i and j there is exactly one corresponding weight-3 codeword with

a 1 in positions i, j, and some k. There are (T) ways to choose 2 positions. However,

this includes choosing (i,j) and (i,k) and (j,k), all of which have the same corresponding

weight-3 codeword (otherwise there would be codewords at distance 2 from each other).

Thus, there must be exactly - (2) weight-3 codewords in the Hamming code.

We can use a similar argument to derive A4. Take any three bit positions, a, b, c, and

consider the sequence with a 1 in these three positions, and a 0 elsewhere. This sequence

is either a codeword itself or at distance 1 from a weight-4 codeword. (Recall there are no

weight-2 codewords in a Hamming code.) We know there are (T) possible (a, b, c)

combinations, and A 3 of them correspond to weight-3 codewords. The remaining

sequences must be at distance 1 from a weight-4 codeword. Using the same argument as

17



above, there is at most one weight-4 codeword at distance 1 from the sequence. (Let d be

the location of the fourth 1). Thus, A4 = B 4 = ((3) - A 3 ) . There is a factor of -

since the combinations of (a,b,c) and (a,b,d) and (b,c,d) and (a,c,d) are at distance 1 from

the same weight-4 codeword (otherwise there would be codewords at distance 2 from each

other).

2.1.2 Shortened Codes

If equation (2.3) holds with strict inequality then we have a shortened code, i.e.,

L+D < 2 L-1 -1. The codewords in a shortened code are related to codewords in the full-

length code. Let T= L+D. For any codeword co cl ... cT-1 in the shortened code, there is

a codeword co cl ... cT-1 0 0 ... 0 in the full-length code, and vice-versa. Since we are

truncating O's in order to generate the shortened codewords, it must be true that the

minimum weight of the shortened code is at least as great as the minimum weight of the

full-length code. It is possible that the minimum weight of the shortened code is greater

than the minimum weight of the full-length code. Consider a shortened Extended

Hamming code of length T. If there are no codewords in the full-length code that have

exactly four l's in the first T positions and all O's in the last 2 L-l -1 - T positions, then

there will be no weight-4 codewords in the shortened code. Thus, the minimum weight of

the shortened code will be at least 5.

In a shortened Extended Hamming code, the exact number of error patterns that will not be

detected by the CRC is not known in general. Assume PR is very small so that the

probability of error due to random bit errors is dominated by the term due to 4 bit errors.

We use the following argument to upper bound the number of four-bit error patterns that

will not be detected by the CRC. The error sequence e(X) must be a codeword in order for

the CRC to fail to detect the error. Choose any three distinct bit positions i, j, and k, and

let ei = ej = ek = 1. Given that errors have occurred in these three positions, there is at

most one position where the fourth bit error can occur to yield an e(X) that is a valid

codeword. Let's assume this were not true. Let e(X) represent errors in positions i, j, k

and z, and let e'(X) represent errors in positions i, j, k, and z', where z : z'. Since e(X)

and e'(X) must themselves be codewords, this implies that the minimum distance between

codewords is no more than two. This contradicts the fact that the minimum distance

between codewords in an Extended Hamming code is four. We conclude that given bit

errors in any three locations, there is at most one location where the fourth bit error can

18



occur to possibly cause the CRC to fail to detect the error. Thus, letting T represent the

total number of data and CRC bits, the number of possible four bit patterns that can cause

an undetected error can be upper bounded by:

(T) ? (2.10)

The factor of . is necessary since there are 4 ways of choosing 3 positions out of

(i, j, k, z). Equation (2.10) is only an upper bound; a shortened Hamming code is not a

perfect code, thus we can not use the same technique as in the previous section to derive the

exact number of error patterns. Note that this bound is valid for the case of a full-length

code also.

This bound might be very loose. As we discussed at the beginning of this section, it is

possible that if the code is shortened enough, it will contain zero weight-4 codewords.

Note that in the literature, the upper bound typically used is (T); thus, our bound is tighter

by a factor of T.

2.1.3 Error Correction

Since the minimum distance between codewords in an Extended Hamming code is four, the

CRC is capable of correcting all single bit errors. Using a CRC to correct errors is

described in [Gal68]. Here, we outline the process. Based on the generator polynomial

g(X), the receiver forms what is called a parity-check matrix H. The matrix H has the

property that for any sequence y of length T, yH=0 iff y is a valid codeword. Let q be the

transmitted sequence and r be the received sequence. The error sequence e can be

expressed as e = q + r, where the addition is bitwise modulo-2. We know q is a valid

codeword; thus qH = 0. The receiver calculates what is called the syndrome S, where S =

rH = (r + q) H = eH. If S equals 0, the receiver assumes no error has occurred. If S does

not equal 0, then the receiver uses a table to determine the minimum weight sequence e' that

produces such a syndrome and corrects the received sequence to r + e'. For an Extended

Hamming code, this allows us to correct all single bit errors i.e., all error sequences of

weight-1 appear in the syndrome table.

Using an Extended Hamming code CRC for correction rather than just detection increases

the probability an error will not be detected. In either mode, if an error sequence happens

to be a valid codeword, the error will go undetected. In the correction mode, however, it is

19



possible the CRC will 'correct' the received sequence to the wrong value, since three or

more bit errors may produce a syndrome that corresponds to a single bit error.

Assume that the weight-4 sequence with l's in positions a, b, c, and d corresponds to a

valid codeword. If an error sequence has l's in exactly three of these four positions, the

CRC will make a 'false' correction. Let B4 be the number of weight-4 sequences in the

CRC code. Then 4 B 4 is the number of weight-3 error sequences that lead to false

corrections. Assuming PR is small, we approximate the probability of undetected error due

to random bit errors by: 4 B 4 PR3. (Compare this to B 4 PR4 if the CRC is only used for

detection.) For a full-length code, using equation (2.8), this corresponds to:

(T) 1 (T) PR3 (2.11)

For a shortened code, we use the upper bound of equation (2.10), which leads to the upper

bound:

(T) PR3 (2.12)

If we wish to be able to correct single bit errors, but still want to be able to detect up to

three bit errors with certainty, then we can double the length of the CRC and use a BCH

code, as described in Section 2.1.6 below.

The probability that a burst error will not be detected by an L bit CRC in the correction

mode is the probability that a random sequence is a codeword or is at distance 1 from a

codeword. If D is the number of data bits being checked, then there are 2D possible

codewords (corresponding to each possible data string); there are T sequences that are at

distance one away from a given codeword, where T = D + L. After the burst error hits,

any given sequence will occur with probability 2 -T . Thus, the probability the CRC will not

detect the burst error is:
2 D + T 2D

2+T2T = (T + 1)2 -L (2.13)

For the full-length Extended Hamming code, this probability is .5. If we wish to perform

error correction but still want to provide about the same level of protection against burst

errors as a CRC of length L used in the detection mode, then we would need to double the

length of the CRC to 2L.

20



2.1.4 Summary of Extended Hamming Code CRC

In practice, we are usually dealing with shortened codes rather than full-length codes.

Thus, we will upper bound the probability of four random bit errors occurring and going

undetected by (3T) 4 PR4. For small values of PR, terms due to more than four random

bit errors will be insignificant in calculating the probability of undetected random bit errors.

Also, if the transmitted sequence is affected by an error burst such that the bits are

randomly 0 or 1, an L bit CRC fails to detect the error with probability 2-L. These

probabilities of undetected random bit errors and undetected burst errors are used

repeatedly throughout our research.

2.1.5 CRC-32

The standard 32 bit CRC used in practice is generated by:

g(X) = X 3 2 +X 2 6 +X 2 3+X 2 2 +X 16+X1 2 +xll +X+X X8+X7 +X 5 +X 4 +X 2 +X+ 1.

This g(X) is a primitive polynomial of degree 32; it does not have X+1 as a factor. Thus,

the resulting code is a ordinary Hamming code rather than an Extended Hamming code and

the minimum weight of the full-length code is 3. The full length of this code is 232 - 1.

However, in practice, the length of the data plus CRC is usually much smaller than this.

The effect of shortening the CRC-32 code has been studied in [FKL89]. If the length of

the shortened code is between 4096 and 121444 bits, then the minimum weight is 4. If the

length is less than 4096, then the minimum weight of the code is 5. The probability of

undetected error is smaller in the shortened code.

2.1.6 BCH Codes

Another type of effective CRC code is the Extended BCH code. From [Pet61], we know

that if we choose an appropriate generator polynomial of length L, where L is roughly

twice the minimum specified in equation (2.3) and (X+i) is a factor of the generator

polynomial, then the minimum distance of the code is at least 6. Thus, at least 6 bit errors

must occur before an error will go undetected.

For a shortened Extended BCH code, we can follow the proof given in Section 2.1.2 to

upper bound the number of weight-6 error sequences that are not detected by the CRC.

Given bit errors in any 4 positions, there is at most one set of locations where the fifth and

sixth bit errors can occur to possibly cause the CRC to fail to detect the error. If this were

not true, the minimum distance of the code could be no larger than 4. Thus, letting T be the

21



total number of data and check bits, the number of possible weight-6 error patterns that can

cause an undetected error can be upper bounded by:

(T)/(6) (2.14)

Compared to the Extended Hamming code, the Extended BCH code requires twice the

number of check bits but decreases the probability of undetected error by roughly a factor

of PR2 T.

Since the Extended BCH code has a minimum distance of six, it is capable of correcting all

single and double bit errors. However, in the correction mode, four bit errors are capable

of causing an undetected error.

2.2 CHECKSUM

In this section we look at the error detection properties of checksums. In general,

checksums are less effective than CRCs in detecting errors, but they are easier to implement

in software.

Assume the length of the checksum is L bits. There are different methods of calculating the

checksum; we will analyze the method used in TCP and IP. This method makes use of the

one's complement sum, which is defined as the L bit sum using an end around carry.

Thus, the arithmetic is performed modulo 2 L-1. For example, if L equals 3, the one's

complement sum of the binary numbers (100) and (101) is (010) (i.e., 4+5 = 2 mod7).

Note that the value zero is represented by both 2 L- 1 and 0.

The algorithm for calculating the checksum in TCP and IP is: partition the data being

checked into L-bit 'words' (each word can be thought of as being the binary representation

of some integer); calculate the one's complement sum of all L-bit words; the one's

complement of this sum becomes the checksum. (The one's complement inverts each bit.)

When the calculation is performed at the sender, O's are put in the position of the

checksum. At the receiver, the one's complement sum is performed over the data and the

checksum; if there are no errors, the one's complement sum at the receiver should yield all

l's i.e., 2 L- 1.

Again let's consider an example, where L equals 3. Let the data string be (100101). The

two 3-bit words are (100) and (101). The one's complement sum of these words is (010).

The checksum for this data is then the inverse of (010), which is (101); thus, the

22



transmitted string is (100101101). If there are no errors in transmission, the receiver

performs the one's complement sum of (100), (101) and (101), which is (111).

Below, we analyze the protection a checksum provides against random bit errors and burst

errors.

Let

L = Length of checksum

T = Total length of data being checked plus the length of the checksum

Assume data is padded with O's so that T is an integral multiple of L

N=T/L = Number of L bit 'words'

S = Sum of all L bit words in the transmitted sequence, including the checksum

PR = Probability of random bit error

2.2.1 Random Bit Errors

The receiver calculates the one's complement sum over the received sequence, including the

checksum. It decides that the received sequence is error-free if the one's complement sum

equals 2L- 1. Thus, an error will not be detected by the checksum if the error is such that

the one's complement sum at the receiver is still 2 L-1.

Consider the case of one random bit error. Let us assume the error is in position i in some

L bit word, where 0 < i < (L-1). If the error is such that a 0 is changed to a 1, the sum at

the receiver increases by 2i; if the error changes a 1 to a 0, the sum at the receiver

decreases by 2i. S is the sum of the error-free sequence. Thus, S+2i is the sum of the

errored sequence. In order for the error to go undetected at the receiver, we require:

(S±2i) mod (2L-1) = 2L-1. Since S mod (2L-1) equals 2L-1, this implies that 2i must be a

multiple of 2L -1, which is impossible. Thus, all single bit errors are detected.

Next, consider two bit errors. Assume the errors are in position i of a word, and in

position j of a word, possibly the same word, where 0 < i, j < (L-1). In order for the

errors to go undetected we need: (S + 2i ± 2J) mod (2L - 1) = 2L-1. If i = j, this equation

can be satisfied, as long as one bit error is from 0 to 1, and the other is from 1 to 0. If

i - j, we need (+2 i + 2i) to be a multiple of 2 L-1. This is impossible for

0 < i, j < (L-1).

We conclude that the only double bit errors that go undetected are when the errors are in the

same position in two different words, and the errors have opposite 'polarities'. There are L

23



choices for the position and (2) ways to choose two different words. Thus, the

probability of undetected error due to two random bit errors is:

L(N2) PR2 (1-PR)T-2 (2.15)

The 1/2 term is the probability that the two errors have opposite polarities.

The analysis for three bit errors is similar. For triple bit errors to go undetected, we need:
(S + 2 i + 2J+ 2k) mod (2L-1) = 2L-1 for 0 < i, j, k < (L-1). This is possible if two of the

errors occur in position i of two different words and have the same polarity, and one error

of the opposite polarity occurs in position (i+l)mod L, for 0 < i < L-1. There are L

choices for the position of the two errors of the same polarity, (N) ways to choose two

different words, and N possible words where the third error can occur. Thus, the

probability of undetected error due to three random bit errors is: L N (N) 4 PR3 ( 1 -PR)T 3 .:2 4 ' PR3(1-P R)T -3

The 1/4 term is the probability the bit errors have the necessary polarity.

In general, we will assume that terms due to three or more random bit errors are

insignificant in calculating the probability of undetected error when a checksum is used.

2.2.2 Burst errors

Now let's look at the effectiveness of a checksum in detecting burst errors. The checksum

can detect all bursts of length up to L-1 bits since such bursts cannot change the sum by a

multiple of 2 L- 1. If a longer burst error hits the data, it is reasonable to assume that the

probability the error will go undetected by the checksum is 2-L.

We see from the discussion above that in general a checksum is much worse at detecting

errors than a CRC. Checksums can fail due to the occurrence of just two bit errors. There

must be a minimum of four bit errors before an Extended Hamming code CRC fails to

detect an error. The reason a checksum is used in some applications rather than a CRC is

that a checksum is easier to implement in software.

2.3 IMPLICIT ERROR CHECKING

In the sections above, we described transmitting data along with a CRC or a checksum to

detect errors in the data. There are likely to be many parameters associated with the data

that we could use as further checks that the data has arrived at the correct destination with

no errors. One example is the length of the data block; a second example is the address of

24



the node to which the data is being sent. One option is to explicitly send these parameters

along with the data and compare the transmitted values to the values determined by the

destination. The drawback to this is it increases the number of overhead bits that need to be

transmitted. An alternative to explicitly sending these fields is to use the CRC or checksum

to implicitly check on these parameters. Implicit error checking, which is only helpful in

certain situations, is described below. We will specifically analyze the implicit error

checking properties of a CRC.

We use the term pseudoheader to refer to the set of error detection fields that are implicitly

checked by the CRC. At the transmitter, the CRC is calculated as if the correct values for

the pseudoheader fields preceded the data block. At the receiver, the data that has been

received is used to determine the value for these fields, and again the CRC is calculated as

if these fields preceded the data. If data has been received incorrectly, causing a

pseudoheader field to have a value at the destination that is different from its value at the

source, then the CRC may detect the error. This provides us with some degree of error

protection without any bits of overhead.

Consider the example of using the destination address to check that a block of data has

arrived at the correct location. The destination address may be quite long in terms of

number of bits, so it may not be desirable to explicitly transmit it along with the data. If it

is not explicitly included, then it makes sense to use the CRC to implicitly check the

address. If no errors occur in the block of data except that it ends up at the wrong receiver,

then an implicit check of the destination address may detect the error.

Note that the effectiveness of including a field in a pseudoheader depends on what happens

to the block of data at lower layers of the network. Again consider including the

destination address in the pseudoheader at some layer, say layer N. Assume layer N-1

(where we assume layer N-1 is below layer N) divides the layer N PDU into two smaller

PDUs. Assume one of the layer N- 1 PDUs is misdelivered, and is interpreted at the wrong

destination as comprising an entire layer N PDU. Having the destination address in the

pseudoheader does not help detect the misdirection in this case. To see this, assume an L

bit CRC is used to check on the layer N PDU, and assume the misdirected portion of the

layer N PDU does not contain the CRC bits. Then L random bits will be interpreted as

being the CRC, and the error will go undetected with probability 2-L, regardless of whether

or not the destination address is checked implicitly.

25



There are some error detection fields that never provide any benefit if included in a

pseudoheader. For example, if the CRC checks on the whole block of data, it does not

provide any benefit to have the CRC also implicitly check the data length. If the length of

the data received is incorrect, then we see from equation 2.2 that the CRC calculated from

the incorrect data will essentially be random. An L bit CRC will appear to be correct with

probability 2-L whether or not the data length is checked implicitly. Thus, the presence of

the data length field in the pseudoheader has no effect. In general, it only makes sense to

include a field in a pseudoheader if it is a field whose value can be determined by the

receiver, and if the purpose of the field is to detect errors that do not cause the CRC to be

random.

Including an error check implicitly does not provide as much protection against errors as

including it explicitly. Consider the example of transmitting a block of data with an L bit

Extended Hamming code CRC, where the destination address is included in a

pseudoheader. Assume that the whole block of data is sent to the wrong destination. If the

length of the destination address is longer than L bits, then it is possible that if the incorrect

address differs from the correct address in at least four bits, the misdirected data will go

undetected without there being any true bit errors (except for whatever error caused the data

to be misdirected). If the length of the destination address is L bits or shorter, then at least

one bit error must occur in transmission for the misdirection to go undetected, since the

CRC detects all burst errors of length less than or equal to L. If the destination address is

explicitly included and sent along with the data, then at least four actual bit errors must

occur before the misdirection could go undetected. Thus, including a check field implicitly

may not provide maximum protection, but it has almost no cost.

26



CHAPTER 3

ERROR DETECTION SCHEMES

3.1 OVERVIEW

Any real-world network system is subject to a variety of errors. The lowest level errors are

due to physical properties of the network. For example, this includes bit errors on the data

line, burst errors due to equipment malfunction, and lost data due to buffer overflow.

Failure to detect an error at one layer of a network may lead to the error propagating up to

the next highest layer. Error detection mechanisms may need to be implemented at one or

more of the network layers in order to prevent errored data from being accepted as error-

free by the destination. Undetected errors are inevitably going to occur in any system

regardless of the number of error detection fields included. The purpose of the error

detection scheme is to reduce the rate of undetected errors to a level acceptable to users. In

this chapter we establish guidelines for designing effective and efficient error detection

schemes.

In general, error detection is accomplished by transmitting redundant information along

with the data; the receiver checks for inconsistencies between the received data and this

redundant information. There are many fields that could potentially be transmitted along

with the data to help detect errors. For example, transmitting the destination address along

with the data helps detect data that has been sent to the wrong destination; transmitting a

length field helps detect lost data. It may be tempting to include a large number of error

detection fields along with the data since having a large number of check fields may give

the impression that errors will almost certainly be detected. However, as we show in this

chapter, many check fields are capable of detecting only certain types of errors. It is

important that there be protection against all likely error types. The effectiveness of an

error detection scheme is measured by the error scenario that results in the most undetected

errors. Adding a lot of overhead to greatly decrease the undetected error rate of one

27



particular error scenario may not be very helpful if there is another scenario that yields a

much higher rate of undetected error. In this chapter, we outline the design steps to follow

so that with high probability the resulting error detection scheme provides adequate overall

protection.

Another measure of an error detection scheme is the number of bits of overhead required by

the scheme. Ideally, the amount of overhead should not be very large. However, when

designing a scheme this issue is likely to be of secondary importance compared to the

effectiveness of the scheme. One should also consider the complexity involved in

implementing an error detection scheme. Again, this is not of prime importance, although

it may be a more significant factor when designing protocols for more primitive systems, or

for very high speed systems where processing time is critical.

Before designing an error detection scheme, it is important to enumerate the various errors

that can be expected in the system and estimate the likelihood of their occurrence. It is

important that the error detection scheme be robust. Since it is difficult to predict the

precise characteristics of the underlying network, it is desirable to design a scheme that

works well under a wide range of conditions. Thus, when estimating the frequency of

occurrence of the various errors, reasonable worst case scenarios should be considered.

We want our algorithm for designing an error detection scheme to work for general

networks. Our approach will be to look at three layers of a network, which we call layers

N, N-1, and N-2, where layer N is the highest layer of the three. These three layers need

not correspond to actual OSI layers. Rather, they are a natural way to divide up some of

the basic functions common to most networks. We look at the various error detection

options at each layer. For example, we will see that for some error types, we have the

option to correct the error if we deal with it at one layer, but we don't have the correction

option at another layer. Many of the design decisions depend on the underlying error

characteristics of the network. Throughout this chapter, we assume we have control over

the error detection scheme of all three layers.

In chapter four, we apply the general design approach presented in this chapter to ATM

systems; we produce an error detection scheme that is more effective and more efficient

than the error detection scheme originally proposed by the CCITT (referred to as AAL Type

3/4), but that is very similar to the new scheme that has been proposed by the CCITT

(referred to as AAL Type 5). In chapter five, we apply the error detection design method to

28



TCP/IP systems. We see that the resulting scheme is similar to the actual scheme used in

TCP/IP.

3.2 DESCRIPTION OF LAYERS

As stated above, our approach is to examine error detection at three layers of a network. In

this section, we describe the basic functions of each of the three layers. Refer to figures

3.1 and 3.2.

The highest of the three layers is layer N. We call the PDU at layer N a message. A

message is comprised of a data portion (the layer N SDU) and a control portion (the layer

N PCI). (The PDU/SDU terminology was described in chapter one.) We assume that

layer N operates end-to-end. Note that when we discuss ATM, we will see that the

Convergence Sublayer corresponds to layer N, and the layer N PDU is called a frame. In

TCP/IP, layer N corresponds to the TCP layer, and the layer N PDU is called a segment.

At the source, layer N passes the message down to layer N-1. Layer N- is responsible for

dividing the message up into smaller units; it may also add control information to each of

these units. We call the layer N- 1 PDU a packet. The initial fragmentation of the message

occurs at the source. However, further division of the packets into smaller packets might

be permitted at intermediate nodes along the data path. At the destination, layer N-1 is

responsible for merging the packets together to form a message, which is then passed up to

layer N. We assume reconstruction of the message only occurs at the destination. In

ATM, the Segmentation and Reassembly sublayer is analogous to layer N-1; the PDU is

called a segment. In TCP/IP, the IP layer performs the duties we associate with layer N-1;

the IP PDU is called a fragment.

We assume layer N-2 is responsible for routing the packets to the correct destination. (For

simplicity, we refer to the layer N-2 PDU as a packet also.) It may add further control

information to each packet in order to be able to perform the routing. Layer N-2 is

involved with the routing at each node along the data path. The ATM layer performs the

routing in ATM; the ATM layer PDU is called a cell. In TCP/IP systems, the IP layer

performs the routing.

29



SOURCE DESTINATION

VI
Layer Layer

N N

Layer Layer Layer

i :A A: A
I, II I I

Figure 3.1 The layers of interest along the data path. Layer N-1 is shown in dotted lines at the
intermediate nodes since it possibly may fragment the packets further at these nodes, but it does not put the
packets together to form a message until the destination.

Layer N Message MessageData
PDU Control

I I \ \
I I \ \I I \ \

Layer N-l Packet Packet Packet Packet
PDU Control Data IIControl DataLayer N Message Message Data

Layer N-2 Routing i Packet Packet Routing i Packet Packet
PDU Control Control Data . Control I Control Data

Figure 3.2 The PDUs at each of the three layers.

30



Error detection may take place at any of the three layers, but we will assume for the reasons

below that recovery from errors is performed end-to-end at layer N. The unit of

retransmission is a layer N SDU. Different control information may be added when the

SDU is retransmitted so that we cannot consider the unit of retransmission to be the

message.

Another option would have been to retransmit individual packets at layer N-2 or N-1 rather

than the entire layer N SDU. This obviously would be a more efficient use of bandwidth

since fewer packets would be retransmitted. However, it is very important to note that in

typical systems, the layers that deal with packets do not know what type of data is

contained in the packet. For example, if a packet contains video information, it is unlikely

that it should be retransmitted if it contains errors. The lower layers of the network,

however, would not be aware of this. Normally, the layer that deals with messages, i.e.,

layer N, is aware of which connections require retransmission of errored data. Thus, we

see that end-to-end error recovery at layer N is a reasonable assumption. Also, this is what

is implemented in ATM and TCP.

We assume that if errored data is not detected after being processed by layer N at the

destination, then the receiver will end up accepting errored data as error free. Our goal is to

have the combination of error detection techniques at all three layers result in a rate of

undetected errors at layer N that is below some acceptable threshold. In an actual system,

there may be layers above N or layers below N-2 that are also capable of detecting errors.

However, we will assume that we cannot rely on layers other than N-2, N-1, and N to

detect errors.

Below, we examine the various error scenarios that are relevant at each layer. We look at

the lowest layer, and then work our way up. Figure 3.3 at the end of the section provides

an overview of the errors at the various layers. Table 3.1 lists the specific error scenarios

that need to be dealt with when designing an error detection scheme.

3.2.1 Error Detection at Layer N-2

We assume that at some layer below N-2, transmissions are subject to random bit errors

and burst errors. Also, data can be lost. It is assumed that we have rough estimates of the

probabilities of these various events.

31



The four types of errors that are pertinent at layer N-2 and their ramifications are as
follows:

1) The packet addressing information has been corrupted due to bit errors or burst errors.

Since packets are routed by layer N-2, if an error in the packet address is not detected
by layer N-2, the packet may arrive at the wrong destination. We refer to this type of

error as misdirected data. It is important to note that layer N-2 does not have the

option of letting a layer above it take responsibility for preventing the misdirection

(although these higher layers may be able to detect that a packet has been sent to the
wrong destination). If layer N-2 detects a corrupt address, it can either attempt to
correct the error or it can drop the packet. These options are discussed in Section

3.4.1.

2) The packet data has been corrupted due to bit errors or burst errors.

As we will see, corrupted data is an error that can be dealt with at layer N-2, N-1, or

N. In order to detect bit errors in the data some sort of redundancy check on the data

needs to be added. If the errors are not detected at layer N-2, then layer N-2 passes a

packet that has bit errors in it up to layer N-1 .

3) A link on which layer N-2 would like to route a packet is down.

A link failure may cause packets to be lost. For connection oriented traffic, we

assume that if a link goes down, the connection is aborted and re-established along a
different path. For connectionless traffic, we assume the packets are re-routed

without the source and destination being notified about the link failure.

4) A buffer at an intermediate node is full.

If a buffer at an intermediate node is full, we assume packets are dropped. We

assume the node does not send notification to the source or to the destination

indicating which packets have been dropped.

3.2.2 Error Detection at Layer N-1

Next, we look at the possible errors at layer N-1. The design decisions at layer N-2 affect

the likelihood of these various errors occurring. Recall that the responsibility of layer N-1
is to reconstruct the message at the destination. Undetected errors at layer N-1 result in an

errored message being passed up to layer N.

1) Layer N-2 delivers to the destination a packet that does not belong there.

32



Layer N-1 can add control information to each packet to help detect this error. For

instance, it could add an ID field to identify which packets comprise one message. If

layer N- fails to detect the error, it delivers a message that has extra data in it to layer

N.

2) Layer N-2 delivers a duplicate copy of a packet to the destination .

Layer N-1 can add a packet sequence number to help detect a duplicate packet. If

layer N- fails to detect the error, it delivers a message that has extra data in it to layer

N.

3) Layer N-2 fails to deliver a packet to the destination.

Layer N-1 can add a packet sequence number to help detect a lost packet. It could

also add an ID field to identify packets belonging to one message, to help prevent the

case where lost packets result in packets from multiple messages being merged

together. (This results when the "message delimiting" packets are lost.)

4) Layer N-2 delivers a packet out-of-sequence. Note that this is not necessarily an error

event; a datagram delivery service is expected to deliver packets out-of-sequence.

Layer N-1 can add a packet sequence number to help detect out-of-sequence packets.

If layer N-1 fails to detect the error, it delivers to layer N a message with the correct

number of bits, but the bits are scrambled.

5) Layer N-2 delivers a packet that has bit errors in the packet data to the destination .

In order to detect bit errors in the packet data some sort of redundancy check on the

data needs to be added. If the bit errors are not detected, then layer N-1 passes a

message that has bit errors in it up to layer N.

6) Layer N-2 delivers a packet that has errors in the control information to the destination.

We can distinguish two types of control fields. Some control fields aid the

destination in reconstructing the message. For example, there is often a field that

indicates which packet is the last packet of a message. If there is an error in this field,

then the message may be reconstructed incorrectly. Redundancy checks on these

types of fields would help detect such errors. The check fields themselves are the

second type of control field. Bit errors in these fields may result in other error

scenarios going undetected.

33



It is important to note that layer N- 1 is capable of correcting some of the errors enumerated

above. If layer N-1 detects an extra packet (either a misdirected packet or a duplicate

packet) it can simply drop it. Or, if packets arrive out-of-sequence and some unique

ordering scheme is included in the packet control information, then layer N-1 can reorder

the packets correctly. In both of these cases, if layer N-1 does not fix the error, then it

passes an errored message up to layer N. Layer N may be able to detect the error, but it

likely will not be able to correct it. Thus, dealing with certain errors at layer N-1 rather

than at layer N may decrease the number of messages that are dropped.

Another possibility is to use a data redundancy check such as a CRC to correct errors in the

data. This is an option at any layer that includes a CRC. However, as shown in Section

3.4.2 below, this is unlikely to be implemented.

3.2.3 Error Detection at Layer N

Next, we look at the possible error scenarios at layer N. Again, the likelihood of these

scenarios depends upon the error detection methods used at layers below layer N.

1) Layer N-1 delivers a message to layer N that has the correct number of bits, but contains

at least one bit error.

2) Layer N-1 delivers a message to layer N that has too few bits.

3) Layer N-1 delivers a message to layer N that has too many bits.

4) Layer N- delivers a message to layer N, where the beginning of the message belongs to

one message that was actually sent, and the end of the message belongs to another message

that was actually sent.

5) Layer N-1 delivers a message to layer N that is correct except that the message was

meant for a different destination.

If any of these errors is not caught by Layer N, then we have an undetected error event.

Layer N has a few error detection options:

a) A redundancy check on the whole message would aid in detecting all of the scenarios.

b) A message length check would aid in detecting scenarios 2, 3, and possibly 4.

c) A message ID in the beginning and end of the message would help detect scenario 4.

d) Including the destination address as control information in the message would help

detect scenario 5. Or, as discussed in Section 2.3, the destination address could be

checked implicitly.

34



0~

- 0 ~ ~ ~ ~ ~ 4 r" ~~J-_4CD3'o B

CD r-L r.

CDc r C~

0~~~~~~~~~~~~~~~~~~~~~~~1

oilaP, M a as a~OM c

--

D~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C

0~~

:aCD Ldt- 0 ~ · n cc CD0~~o - 0CD C

0

0~~~~~~~~~~~~~~00C
ci.'cCD 0 CPD cn C

" - I - -I.ci~~ ~ ~ ~ ~ ~~.'0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~'
cn EnCD C

35



TABLE 3.1: List of Error Scenarios

1. Stray packets
Packets arrive at the wrong destination
Packets left over from an old connection

2. Out-of-sequence packets

3. Duplicate packets

4. Lost packets

5. Packets from more than one message are merged into one message

6. Bit errors in the data

7. Bit errors in the control information
Error in a flag
Error in a length field
Error in an ID field

3.3 DEGREE OF DIFFICULTY IN DETECTING AN ERROR
Before continuing our analysis, we define the notion of one error being easier to detect than

another. Essentially, the greater the diversity of options that can be used to detect an error,
the easier the error is to detect. Another way of looking at this is the more inconsistencies

produced by an error, the easier it is to detect the error.

Consider the following example. Assume we have a system where the beginning packet of

a message contains a BEGIN flag, and the final packet of a message contains an END flag.
Assume that packets are fixed length and are expected to arrive in-sequence. Consider the

following three scenarios involving an END packet arriving at the wrong destination.

a) Assume the stray END packet arrives immediately after an END packet that was meant
for the destination. Thus, the destination receives an END packet without a corresponding
BEGIN packet. In this scenario, the misdirection has occurred in such a way as to produce

an invalid message. Thus, the error should be easy to detect.

36



b) Now assume the END packet arrives immediately after a BEGIN packet. This error is

harder to detect than case (a) since a valid message is formed. Assume that the actual

message meant for this destination was comprised of more than two packets, so that the

message formed by the stray END packet is shorter than the message that was sent. The

fact that there is a difference in length provides a means of detecting the error e.g., if the

BEGIN packet contains a message length field, it could help detect the error.

c) In the third case, assume the misdirected END packet arrives immediately after a BEGIN

packet, and that the actual message meant for this destination was comprised of two

packets. The message will appear to be valid, and the message length will appear to be

correct. Thus, there are less options for detecting the error than there are in cases (a) and

(b). We can say that this scenario is the hardest of the three error scenarios to detect.

3.4 GUIDELINES FOR DESIGNING ERROR DETECTION SCHEMES

In this section we use the above discussion of the various error scenarios to provide

guidelines for designing effective and efficient error detection schemes.

3.4.1 Step 1: Reduce Level of Misdirected Data

The first step should be to deal with the error that causes the most serious problems. Of all

the errors diagrammed in Figure 3.3, misdirected data that arrives at the wrong destination

can be considered to be the most serious error scenario. Misdirected data is a potential

security threat whether or not it is detected. Thus, preventing data from being sent to the

wrong destination is important (as opposed to just detecting the stray data after it's reached

the incorrect destination). Since misdirection results in both lost data at the correct

destination and extra data at the incorrect destination, this error scenario can potentially

result in multiple undetected error events in addition to causing security problems. If the

addressing error is caught and the packet dropped, then there is only lost data to deal with.

Of the 3 layers discussed, only layer N-2 is capable of preventing data from being sent to

the wrong destination. In order to prevent misdirected data, a redundancy check on the

address field should be included in the layer N-2 packet control information. For example,

a CRC could be included. Each intermediate node along the data path would then check the

value of the CRC before allowing the packet to be forwarded.

Assume an Extended Hamming code CRC is used. If the length of the address field is A,

then we know from equation (2.3) that we should choose the length of the CRC, L, to

37



satisfy: 2 L- _ L > A+1. Let PR be the probability of random bit errors, and let PB be the

probability that the address field of a packet will be hit by a burst error. For a given L, we

can use equations (2.4) and (2.10) to upper bound the probability of misdirected data by:

(L+A) 14 PR4 + PB 2 -L. If this probability of misdirected data is not small enough to

satisfy the security concerns of network users, then a longer CRC could be used (if the

term due to burst errors is the dominant term) or a more powerful check, such as a BCH

CRC code, could be used.

From chapter two, we know that a CRC can also be used to correct single bit errors. Thus,

rather than dropping a packet when a single bit error is detected, a node can correct the

error. This reduces the number of dropped packets; at least two bit errors rather than one

must occur for the packet to be dropped. Thus, using the CRC in the correction mode

decreases the probability of dropped packets due to random bit errors in the address from

about (L+A)PR to about (L 2 A)PR2. However, as mentioned in chapter two, using a

CRC in the correction mode may result in more undetected errors. Using equations (2.12)

and (2.13), we see that the probability of misdirected data increases to: (L+A) PR3 +

(L+A+1) PB 2-L

Obviously, using the CRC in the correction mode involves a tradeoff. If the increase in

misdirected packets is greater than the decrease in lost packets, it does not make sense to

use the correction option. Or, if the higher probability of misdirection is unacceptable to

network users for security reasons, then the correction option should not be used. Also, it

is important to consider whether the decrease in probability of dropped packets is

significant. If there are other error scenarios that will result in a probability of dropped

packets higher than (L+A)PR, then the decrease will be insignificant, and the correction

option should not be used. These design decisions obviously depend on the value of PR

and PB.

This concludes our general discussion on the prevention of misdirected data. In chapter

four, we discuss more elaborate schemes, in the context of ATM systems. Note that a

CRC cannot totally eliminate the occurrence of misdirected data. Thus, our discussion

below of detecting errors at the various layers also considers the problem of detecting

misdirected packets.

38



3.4.2 Step 2: Add Check Fields to Detect Bit Errors in Data
The problems caused by the remaining errors can be considered to be equally serious.

However, the remaining errors can be differentiated on the basis of how easy they are to

detect. From the point of view of efficiency, the next logical step is to choose a mechanism

to detect the error scenario that is most difficult to detect. The mechanism chosen to detect

this error may also help detect other scenarios, but the converse is unlikely to be true.

Of all the errors shown in Figure 3.3, bit errors in the data is the most difficult error

scenario to detect. The only inconsistency produced by this error is that the value of one or

more data bits is incorrect; it does not affect the reconstruction of the message. All other

error scenarios pass through the box in the diagram at layer N-1 entitled "Message Put

Together Incorrectly". (Ignore the "Misdirected Message" box for now.) As discussed

above, there are many checks that can be added to help detect errors that affect the

reconstruction of the message (e.g., packet sequence numbers, packet IDs).

The packet data can be an arbitrary binary sequence. The only method of checking the

validity of the data is to add a redundancy check at one of the three layers. (As mentioned

previously, it is possible that the layers above layer N or below N-2 could perform error

detection also. However, since we cannot be sure what form of error protection these other

layers may employ, we assume that we cannot rely on these layers to detect errors.) We

must choose a redundancy check that is powerful enough to reduce the level of undetected

error due to bit errors in the data below the acceptable threshold, since no other error

detection fields will help detect this error. We assume a CRC will be chosen for this

purpose. The question remains at which layer or layers should the CRC be added. This is

a very critical decision. A CRC at layer N that checks on the integrity of the whole

message is capable of detecting most other error scenarios also, whereas a CRC at layer

N- or N-2 that just checks on the integrity of the packet is not. Thus, this decision likely

affects the mechanisms that will be chosen to detect other errors. Of course, it is possible

to add a CRC at multiple layers. However, it is most efficient to implement a CRC at just

one layer. Thus, given that we have control over the error detection schemes of layers N-2

through layer N, we should choose one of these three layers to perform the redundancy

check.

Checking on the data at layer N-2 entails including a CRC with each packet and checking

on the validity of the packet data at each node along the data path. If we choose to check on

the data at layer N-1, then a CRC is added to each packet, but the validity of the data is only

39



checked at the destination. Finally, if we choose the layer N option, then a CRC is added

to each message, and the data check is only performed at the destination.

The first issue is whether to check on the validity of the data at each node along the data

path, or whether to check it on an end-to-end basis only. The advantage of checking the

data on a node-by-node basis is that data that picks up an error along a data link can be

dropped at the next node, rather than being sent all the way to the destination. Also, it is

possible that some errors may be easier to detect if a check is performed node-by-node.

For example, recall that an Extended Hamming code CRC can detect with certainty all

single, double, and triple bit errors; however, it may fail to detect four or more bit errors.

Thus, if picking up a bit error on each link is expected to be a common occurrence, it

would be easier to detect the bit errors if the packets were checked at each node. The

disadvantage of node-by-node checking is that the CRC has to be calculated at each

intermediate node, which may add to the packet delay.

In general, the only reason to perform the node-by-node check would be if it is likely an

error will be discovered on a link. We will assume that the data links are reliable enough

not to warrant node-by-node checking. We will not consider the case where the links are

very error-prone.

The next section compares performing the data check at layer N-1 versus layer N. In both

cases, the check is performed on an end-to-end basis; the only difference is whether the

CRC is included per-packet (layer N-1) or per-message (layer N). Recall that we assume

retransmissions are done on a per-message basis. If retransmissions were done on a per-

packet basis, then a per-packet redundancy check would allow the system to determine

which packets need to be retransmitted. A per-message check necessitates the

retransmission of the entire message even if just one packet in the message is lost or

contains errors. (Of course, if errors are very bursty, then the entire message would need

to be retransmitted anyway.) Since we assume retransmissions are done on a per-message

basis, this issue does not affect whether we include the redundancy check at layer N-1 or

layer N.

40



3.4.2.1 Per-Packet CRC vs. Per-Message CRC
We want to compare the effectiveness and efficiency of a per-packet CRC to that of a per-

message CRC. Assume packets and messages are fixed length. Let M be the length of a

message, and let K be the length of a packet. Assume M = N K.

From equation (2.3) we know that in general the length of a CRC, L, should satisfy

2 L-1 - L > D + 1, where D is the amount of data being checked by the CRC. For the per-

packet CRC, the data to be checked has length K-L. Thus, the length of the per-packet

CRC should satisfy: 2L- 1 - L > (K-L) + 1. We assume the minimum length CRC is used;

thus, the per-packet CRC is roughly of length log K. (Logs are taken base 2.) Similarly,

the per-message CRC checks data of length M-L. Again we assume the minimum length

CRC is used; thus the per-message CRC is roughly of length log M.

3.4.2.1.1 Overhead

Let's get rough estimates for the percent overhead involved in these two options. We

assume N is much smaller than K.

Overhead with the per-packet CRC option = log K

Overhead with the per-message CRC opti log M log K + log N log KOverhead with the per-message CRC option = g M log K + KM NK =NK

Thus, the per-packet CRC requires roughly N times more overhead than the per-message

CRC.

3.4.2.1.2 Random Bit Errors

Now let's compare the effectiveness of the two methods in detecting random bit errors.

Assume the probability of random bit errors is PR. As shown in chapter two, we can

upper bound the probability of four random bit errors causing an undetected error by:

(T) 1 PR4 (3.1)

where T equals the length of the data being checked plus the length of the CRC. We

assume that PR is small enough that terms due to more than four bit errors are insignificant

compared to this.

Since we assume we are using the minimum length CRCs, we are dealing with full-length

codes. Thus, we actually know the precise probability of four random bit errors causing an

41



undetected error. However, the bound in (3.1) is valid, and is fairly tight, for full-length

codes; using this bound simplifies our calculations and will not significantly affect the

results below.

If a per-packet CRC is used, the probability a message will contain undetected random bit

errors is upper bounded by:

N (K)- PR4 2 NK 3 4-PR4 (3.2)

The factor of N is necessary since the probability of a message containing an undetected

error equals the probability that at least one of the packets contains an undetected error.

If a per-message CRC is used, the probability a message will contain undetected random bit

errors is upper bounded by:
M I 4 M3 1 N3K3
f(3 )4 PR 4 3 24 PR4 N3 K3 2 PR4 (3.3)

Thus, if we are comparing the effectiveness of a per-packet CRC and a per-message CRC

where the length of the CRC is roughly log K and log M, respectively, then undetected bit

errors due to random bit errors are roughly N2 more likely with the per-message CRC.

However, as stated above, a per-message CRC of length log M will result in much less

overhead than a per-packet CRC of length log K. Thus, for a fair comparison of the

effectiveness of the two methods, we should examine the case where the length of the per-

message CRC is increased. If we increase the length of the per-message CRC to roughly

2log M and use an Extended BCH code rather than an Extended Hamming code, then the

minimum distance of the code is six. (BCH codes were discussed in Section 2.1.6.)

Then, using equation (2.14), the probability of a message containing undetected random bit

errors in the data can be upper bounded by:
M 1 PR6 _ N4 K4 1(4) 15 PR6 = N4 K4 360 PR6 (3.4)

If (N 3 K PR2) < 15, which is likely for reasonable values of these parameters, then this

probability is smaller than the probability given by (3.2) for the per-packet CRC option.

Or, rather than using an Extended BCH code, an Extended Hamming code CRC of length

greater than log M can be used to provide greater protection. If we increase the length of

the per-message CRC while keeping the length of the message data the same, the result is a

shortened code. As discussed in Section 2.1.2, if the degree of shortening is very high,

42



then the minimum distance of the code likely becomes five, so that at least five bit errors are

necessary to cause an undetected error. Thus, if the length of the per-message CRC is

increased, the probability of undetected errors will likely be significantly smaller than

indicated in equation (3.3) (although it likely will not be as small as equation (3.4), where

an Extended BCH code is used).

We conclude that if the probability of undetected error using a per-message CRC as given

in equation (3.3) is not satisfactory, then the probability can be significantly reduced by

increasing the length of the per-message CRC, and using either an Extended BCH code

CRC or a shortened Extended Hamming code CRC. If random bit errors are a significant

problem, and some design specification prohibits us from using a per-message CRC longer

than log M, then the per-packet CRC would be the preferred option. Otherwise, as far as

random bit errors are concerned, there is not a significant difference whether a per-packet

CRC or a per-message CRC is used.

3.4.2.1.3 Random Burst Errors

In this section we compare the effectiveness of the two types of CRCs in detecting random

burst errors. Let PB represent the probability of a random burst error. As stated in the

introduction of this chapter, it is important that the error detection scheme be robust. Since

it is difficult to predict the precise characteristics of the underlying network, it is desirable

to design a scheme that works well under a wide range of conditions. Our analysis should

therefore focus on reasonable worst case scenarios. Thus, when looking at random burst

errors, we are more concerned with the problem of detecting short burst errors rather than

long burst errors. Long burst errors are likely to affect packet control information, and

thus cause problems in reconstructing the message. Short burst errors are more likely to

affect only the packet data and are thus harder to detect. Below we assume packets are hit

randomly by a short burst error with probability PB.

First, we note that a CRC of length L can detect with certainty burst errors of length less

than or equal to L bits. Thus, since the per-message CRC is longer than the per-packet

CRC, there are more burst errors that will be caught with certainty by the per-message

CRC than the per-packet CRC. For burst errors longer than this but shorter than the length

of a packet, we have:

If we use the per-packet CRC option, the probability a message will have an undetected

error due to a burst error is:

43



NPB 2-L - N PB 2-(lOg K) = N PB (35)

If we use the per-message CRC option, the probability a message will have an undetected

error due to a burst error is:

N PB 2-L -N P M N2- PB= NPB PB
M K (3.6)

The per message CRC is N times more effective in detecting short burst errors. Also, as

mentioned in the previous section, it is likely that a per-message CRC of length longer than

log M would be used. Assume the length is about 21og M. Then the probability of

undetected burst errors is:

N PB 2-L = N PB 2-(2 log M)= NPB = PB (37)
M2 NK2

Thus, with this doubling of the CRC length, the per-message CRC option is N 2K more

effective in detecting burst errors than the per-packet CRC option.

3.4.2.1.4 Implementation

We can also compare the two CRC methods in terms of difficulty of implementation. It is

probably easier to implement the per-packet CRC. The CRC can be calculated as soon as

the packet arrives. If a per-message CRC is used, the CRC can be fully calculated only

after the whole message has arrived. If partial calculation of the per-message CRC is done

as the packets arrive, then these partial results need to be stored.[DCS91] Packets from

different connections are likely to be intermixed, so there will need to be storage for all

active connections at the destination.

From the standpoint of implementation, the drawback of the per-packet CRC lies in its

inability to detect several error scenarios. It can only check on the integrity of the packet,

not the whole message. For example, a per-packet CRC can not detect the case of a lost

packet. The limited error detection power of a per-packet CRC forces the need for

additional error detection fields. These extra fields will have to be checked at the

destination, which adds to the complexity of the scheme.

3.4.2.1.5 Conclusion

Above, we compared the performance of a per-packet CRC of length roughly log K, and a

per-message CRC of length roughly log M. We showed that, given these minimum length

CRCs, the per-packet CRC performs better in terms of detecting random bit errors and the

per-message CRC performs better in terms of detecting burst errors. If the length of the

44



per-message CRC is doubled to 21og M, then the per-message CRC is greatly superior in

detecting burst errors, and likely to be superior in detecting random bit errors. Even with

this doubling of length, the per-message CRC option requires less overhead than the per-

packet CRC option. The per-packet CRC is probably a little easier to implement than a per-

message CRC. However, due to the inability of the per-packet CRC to detect certain types

of errors, schemes that employ a per-packet CRC are likely to include many other error

detection fields. Thus, the implementation of the overall scheme is likely to be equally

complex.

We conclude that if random bit errors are a significant problem and we are forced to use a

per-message CRC of length log M, then a per-packet CRC option should be used.

Otherwise, a per-message CRC is preferable.

3.4.2.2 Correction of Errored Data

As discussed in chapter two, it is possible to use a CRC to correct single bit errors. The

advantage of correction is that fewer messages are dropped. The drawback is that three or

more bit errors may appear to be a single bit error and the error will be 'corrected' to the

wrong thing. The tradeoffs are similar to what was discussed in Section 3.4.1, where we

considered using the packet address CRC to correct errors. For example, if a per-message

CRC is used and the length of the message is M (including an L bit CRC), then operating

in the correction mode decreases the probability of dropped messages due to random bit

errors in the data from M*PR to (2 ) PR2. However, the probability of undetected error

due to bit errors or burst errors in the data increases from ( 4 PR 4 + PB 2-L to

(M) PR3 + (M + 1) PB 2-L.

The first consideration is whether the decrease in message loss rate is significant. If there

are other errors that cause the loss rate to be above M°PR then using the CRC to correct

errors has little impact on the overall message loss rate. The second consideration is

whether the resulting increase in undetected errors is tolerable. If it is not, then an

Extended BCH code CRC of length 2L can be used rather than an Extended Hamming code

CRC of length L. The Extended BCH code CRC can be used to correct all single and

double bit errors (see Section 2.1.6). If it is used in the correction mode, then the

probability of dropped messages is reduced to (M) PR3. The probability of undetected

error due to bit errors or burst errors in the data is: (M4 PR4 + (M+ 1) PB 2-2L.

45



However, for applications where the integrity of the data is very important, it might be

preferred that this extra L bits of overhead be used to further reduce the level of undetected

error rather than to provide the ability to correct single and double bit errors (i.e., use the

CRC of length 2L in the detection-only mode). Also, if it is not that important to have

error-free data (e.g., a video application), then using a CRC to correct single or double bit

errors would probably not be worthwhile.

We conclude that for applications that are extremely sensitive to undetected errors, or

applications that are relatively insensitive to errors, using a CRC to correct errors does not

make sense. Also, if the overall level of dropped messages is not significantly reduced by

using the CRC to correct errors (which is likely to be the case if congestion losses are

significant), then the correction option should not be used. Finally, if the increase in

undetected error rate cannot be tolerated, and it is desired that the length of the CRC not be

increased to 2L, then the correction option should not be used. Thus, using a CRC to

correct bit errors is appropriate for only certain connections.

3.4.3 Step 3: Consider Additional Correction Options at Layer N-1

The next step is to look at the errors, other than bit errors in the packet data, that can be

'corrected' if dealt with at layer N-1. As stated in Section 3.2.2.1, stray packets, out-of-

sequence packets, and duplicate packets are all scenarios that layer N-1 is capable of

correcting: stray and duplicate packets can be dropped, and out-of-order packets can be

resequenced. One needs an estimate of the likelihood of these scenarios to decide if the

decrease in the number of retransmissions that will be accomplished by correcting these

scenarios at layer N- justifies the overhead that must be added per packet to perform the

corrections. In general, if layer N- does not handle these errors, it will pass up an errored

message to layer N. Layer N may be able to detect the error, but it likely will not be able

to correct the error. For example, if packets are put together in the wrong order, layer N

will likely detect the error if it uses a per-message CRC, but it would not be capable of

correctly resequencing the data. Thus, the message would be dropped. Also note that in

general, layer N-2 is not capable of correcting errors involving reconstruction of the

message since layer N-2 deals with packets on an individual basis.

Including the destination address or a message ID in the packet are ways of detecting stray

packets. Once a stray packet is detected by layer N-1, it can simply be dropped. However,

46



if the method of preventing misdirected packets is effective enough, it may not be

worthwhile to include extra check fields for the purpose of discarding stray packets.

If it is expected that a large number of packets will arrive at the destination out-of-sequence,

then it makes sense to include a mechanism at layer N- to properly resequence the packets.

Especially for a datagram system, where out-of-sequence packets are expected, it is very

worthwhile to include some type of packet numbering scheme. Several methods of

numbering packets are discussed in the next section. We assume that in addition to the

numbering scheme, each packet also contains an ID field to identify which message it

belongs to. The combination of the numbering scheme and message ID field can also be

used to help identify duplicate packets.

3.4.3.1 Methods for Numbering Packets

3.4.3.1.1 Fixed Size Packets

First, we consider options for numbering packets when the packet size is fixed. The most

straightforward method is to sequentially number the packets 1, 2, 3, etc. If there is a

maximum of N packets per message, then the sequence number field should be Flog Ni

bits long. In order for there to be resequencing errors, there must be errors in the sequence

number of at least two packets. The sequence number field should also help detect lost

packets.

Another option would be to sequentially number the packets modulo M, where M is less

than N. This does not make sense for re-ordering packets since the ordering cannot be

uniquely determined if a message contains more than M packets. Also, such a mechanism

is unable to detect the case where a multiple of M consecutive packets is lost.

We conclude that the simple consecutive numbering scheme is the better option.

3.4.3.1.2 Variable Length Packets

In this section we consider the case where packets can be variable length, and where

segmentation may occur at the intermediate nodes. Since all the segmentation does not

occur at the source, we do not have the option of numbering the packets sequentially.

One option, which we refer to as Packet Offset Numbering, is to number the packets

according to their offset position within the message. We assume each packet contains a

field indicating the packet length, and the last packet in the message contains an END flag.

47



For example, if we have a message comprised of four packets, of length 20, 10, 10, and 5,

then the packets will have sequence number 0, 20, 30, and 40, as shown below:

0 ] Length20

[20 z Length 10

130 | Length 10

[40 | Length 5

In the packet offset scheme a minimum of two packets must be in error before the order of

two packets is interchanged in the message reconstruction. In the example above, if the

second packet has an error that changes its sequence number to 30, and the third packet has

an error that changes its sequence number to 20, then the errors would not be detected and

the order of these two packets would be interchanged. This was possible because these

two packets have the same length. Two packets that do not have the same length will not

be interchanged unless there is also an error in their length fields.

Errors in the last packet can cause other types of faulty reconstruction. In the example

above, if the last packet arrives before the third packet, and the last packet has an error that

changes its sequence number to 30, then the last packet will be accepted as the third packet.

Since the last packet contains an END flag, it will appear that the message is comprised of

only three packets.

The sequence numbers help detect most lost packet scenarios. In order for the lost packet

not to be detected, the next packet in the message would have to have an error in its offset

and length fields in order to fill in the gap left by the lost packet. (There are other

possibilities but they involve errors in more packets.) The sequence numbers, however, do

not help detect the case where the last packet is dropped. However, there are other means

of detecting such a scenario (e.g., the lack of an END packet).

The packet offset numbering scheme also helps detect errors in the packet length field of a

packet. Assume the length of a packet has an error such that its value is increased by L. In

order for the error to go undetected, the next packet in the message would have to have an

48



error such that its offset is increased by L and its length is decreased by L. (There are other

possibilities but they involve errors in more packets.) Of course, it does not help detect the

case where the last packet has a packet length error; a message length field would be needed

to detect this case.

An alternative to packet offset numbering is a Tree Sequencing scheme. In a tree

sequencing scheme, rather than using a sequential counter to number each packet, we use

the location of the packet on a 'segmentation tree'. Consider splitting a packet into two

smaller (not necessarily equally sized) packets. The original packet is referred to as the

parent, and the two packets produced are the offspring. The segmentation field of the

parent is passed down to both of the offspring. In addition, one of the offspring packets

has a 'O' appended to its segmentation field and the other offspring packet has a '1'

appended to its field. The root of this tree is the original message, with an empty

segmentation field. (Since the sequencing field will be variable length, there will also have

to be a means of indicating the end of the field.) We assume that the length of each packet

is explicitly included in the packet.

Consider an example. Assume the original message is divided into 2 packets, which we

call packet A and packet B. Now, assume packet B is further divided into packets C and

D. Finally, assume packet C is divided into packets E and F. This produces the tree

shown in Figure 3.4.

Packet A Packet B
seg=0 / eg=l 1

Packet C \ Packet D
seg= 10 A seg= 11

Packet E Packet F
seg = 100 ' seg = 101

Figure 3.4 Packet segmentation fields in an example of a tree sequencing scheme.

49



The leaves of the tree, packets A, D, E, and F, are the packets that are expected to arrive at

the destination.

Note that even though segmentation may occur at intermediate nodes along the data path,

the segmentation field of the parent completely determines the segmentation field of the

offspring. Thus, the sequencing can be performed in a distributed fashion.

All intermediate nodes in the segmentation tree (i.e., all nodes except the leaves) should

have two children. The destination can check for this property to determine when it has

received all packets belonging to the message.

In order to properly resequence the packets at the destination, we can use the following

algorithm: at each step, the leaves at the deepest depth of the tree should be combined to

form their parent, and then these leaves should be removed from the tree. Eventually we

will end up with the root of the tree, which is the original message.

In this scheme, there must be errors in at least two packets before the order of two packets

can be interchanged. However, assume a packet has an error in its segmentation field such

that it contains the segmentation field of its parent. Assume this packet arrives before its

sibling (or before any offspring of its sibling). Then, the tree will have been 'pruned' and

too few packets will be used to reconstruct the message.

In order for a lost packet to go undetected, another packet must have an error in it. For

instance, in the example above, if packet F is lost and packet E has an error in it that

changes its segmentation field to '10', the error will not be detected. Also, with this

scheme, errors in the packet length field are not detected.

Let's compare the packet offset scheme and the tree scheme. In general, in both schemes,

the order of two packets can be interchanged only if both packets contain an error; thus,

both schemes should perform well in resequencing packets. Also, in both schemes, in

order for a lost packet to go undetected, there has to be an error in at least one other packet.

The major performance difference between the schemes is that the tree method does not

detect errors in the packet length field, whereas the packet offset method does. Also, the

tree scheme is vulnerable to errors in the segmentation field that result in a pruned tree; the

50



packet offset method is vulnerable if the last packet in the message contains an error in its

offset field.

The packet offset scheme requires more bits of overhead, although the more packets there

are for a given size message, the less the difference in overhead per packet. It may be

easier to perform resequencing when the packet offset is present, since the destination will

know where the packet belongs within the message as soon as it arrives. Another

difference is that the presence of the packet offset makes it easier for stray cells to be

caught. If the packet lengths on the network are highly variable, then it is not likely a

packet will have the precise packet offset value needed in order for it to 'fit in' with the

wrong message.

Overall, there is probably a slight advantage to using the packet offset method. The tree

scheme may require less overhead than the packet offset method, but it is not quite as

robust and may be slightly more difficult to implement.

3.4.4 Step 4: Add Check Fields to Detect Remaining Errors

Refer back to the error diagram in Figure 3.3. Thus far we have dealt with preventing

misdirected packets, detecting bit errors in the data, and possibly correcting out-of-

sequence or stray packets. The next step is to deal with any remaining error scenarios that

have not already been sufficiently handled by the error detection fields chosen in the above

steps. Any of the other remaining errors involve problems in reconstructing a message.

(The one exception is "Misdirected Message" which is discussed in the next section.) We

can deal with these remaining scenarios at either layer N or N-1. In general, we do not

have the option of detecting these scenarios at layer N-2, since this layer deals with packets

on an individual basis; it does not view a packet in terms of belonging to a message. For

example, consider the problem of detecting a lost packet. The only way a lost packet is

detected is to view the packet as being one in a sequence of packets or as being one piece of

a larger entity, and realize that the lost packet has resulted in a gap. If packets are looked at

on strictly an individual basis, as they are in layer N-2, the absence of a packet will go

unnoticed.

Error detection at layer N-1 usually involves adding control information to each packet.

The effectiveness of this form of error detection greatly depends on the specific

circumstances of the error scenario. For example, consider adding a sequence number to

each packet to help detect lost packets. Assume packets are expected to travel in sequence.

51



If a message consists of ten packets, and it is the second packet in the message that is lost,

then all eight packets after that in the message would have to have an error in the sequence

number field in order for the lost packet to go undetected. However, if it is the last packet

in the message that is lost, then the sequence number does not help at all in detecting the

error. Thus, the effectiveness of adding error detection fields to each packet may be highly

variable. In the best case, there must be a bit error in several packets before the error could

go undetected. In the worst case, no bit errors are required for the error to go undetected,

which likely necessitates the addition of other error detecting fields.

It would be very tedious to run through all the possible error detection fields that can be

added at layer N-1, and analyze how each one performs for a particular error scenario. It

makes more sense to look at such fields in the context of individual network systems. We

will see specific examples of adding detection fields at layer N-1 in chapter four when we

look at the error detection scheme originally proposed by the CCITT for ATM, and in

chapter five when we examine error detection in TCP/IP.

Error detection at layer N usually involves a CRC that checks on the integrity of the whole

message. A CRC of a given length (say L) is very consistent in its ability to detect errors.

Errors involving the reconstruction of a message usually result in the data appearing to be

completely random compared to what was originally sent or result in a random set of L bits

being interpreted as the CRC. In both cases, we model the CRC as failing to detect the

error with probability 2
-L

Based on these observations, it is likely that error detection at layer N should be used.

When examining error detection schemes, it is important to consider reasonable worst case

scenarios. As we stated in the introduction of this chapter, it is much better to design a

scheme that provides sufficient protection against all (or almost all) possible error scenarios

than to design a scheme that provides enormous protection against some errors and little

protection against others.

3.4.5 Step 5: Consider Single Packet Messages
One test of the effectiveness of an error detection scheme is the rate of undetected error for

average sized messages. However, considering just average sized messages may not

provide a good measure of the overall effectiveness of the scheme. As we show below, it

is easier to detect packet control errors in multi-packet messages than in single packet

52



messages. Thus, more error protection may be needed to guard against undetected errors

in single packet messages.

Consider the case of one packet of a multi-packet message having an error in its control

information. It is likely that an inconsistency will occur when the destination attempts to

join this packet together with the other packets in the message. Or, if a packet is

misdirected, the fact that it is misdirected is more likely to be detected if the 'new'

destination attempts to fit this stray packet together with packets that do belong at that

destination. Essentially, errors in the control information of one packet of a message may

be detected by the other packets in the message.

Single packet messages are more vulnerable to packet control errors. In order to protect

single packet messages against these types of errors it is necessary to add information to the

message (perhaps implicitly as described in Section 2.3) that can be verified based on the

single packet. For example, including the destination address in the message would help

detect the case of a single packet message being misdirected. This will be discussed further

in the context of ATM and TCP/IP.

3.5 SUMMARY

We summarize the steps for designing an error detection scheme:

Step 1: Reduce Level of Misdirected Data. This usually takes the form of adding a CRC to

check on the packet address field.

Step 2: Add Check Fields to Detect Bit Errors in the Data. In most circumstances, adding a

CRC to check on the whole message is the most effective way of detecting errors in the

data.

Step 3: Consider Additional Correction Options at Layer N-1. The most important

consideration is whether to deal with resequencing out-of-sequence packets. We proposed

several numbering schemes to accomplish this.

Step 4: Add Check Fields to Detect Remaining Errors. Using a CRC at layer N to detect

errors rather than adding many fields at layer N-1 will likely provide more robust error

detection.

53



Step 5: Consider Single Packet Messages. Packet control errors are more difficult to detect

in single packet messages; thus more error detection may be needed to handle this special

case.

We will apply these design steps to ATM systems in chapter four and TCP/IP systems in

chapter five.

54



CHAPTER 4

ERROR DETECTION IN ATM

4.1 ATM OVERVIEW

Asynchronous Transfer Mode (ATM) is a network protocol currently being designed for

use on Broadband Integrated Services Digital Network (B-ISDN) systems. ATM provides

a common format for transmitting voice, data, and video over B-ISDN systems. These

traffic types have very different requirements in terms of data rate, burstiness, and

sensitivity to delay and error. To provide flexibility in handling this wide range of

services, the unit of transfer in ATM is a very small, fixed length packet, known as a cell.

Users are assigned cells on an as-needed basis. This allows a high degree of multiplexing,

without the potential wasted bandwidth associated with synchronous multiplexing schemes

such as Time Division Multiplexing (TDM).

There is a natural correspondence between the layers of ATM and the three generic layers

discussed in chapter three. The ATM protocol is comprised of the ATM layer and the ATM

Adaptation Layer (AAL). The ATM AAL is itself comprised of two sublayers: the

Convergence Sublayer (CS) and the Segmentation and Reassembly Sublayer (SAR). The

CS is the higher of the two sublayers and operates end-to-end. It corresponds to layer N

described in chapter three, except that its PDU is called a frame rather than a message. The

SAR layer, which also operates end-to-end, corresponds to Layer N-1. It is responsible

for dividing frames into smaller data units at the transmitter; these data units are called

segments. At the receiver, the SAR merges the segments together to reconstruct the frame.

The ATM layer, which corresponds to layer N-2 and operates node-by-node, is below the

SAR layer. It adds routing information to each segment to form the data unit referred to as

a cell.

55



In ATM, we define an undetected error event as occurring when a frame that contains any

type of error is accepted by the CS at the receiver as error-free. A realistic goal is to

provide enough error checks so that the expected frequency of such an event on any given

data line is no more than once per year. To provide some margin in achieving this goal,

and to ensure a low rate of error even in the case of multiple lines feeding into a receiver,

we use 10-3 as our desired maximum annual undetected error frequency per line. We

assume that the data rate on a line is 150 Mb/sec.

There are four ATM service classes. We deal specifically with error detection schemes for

Class C. This class of service is connection oriented and is characterized by a variable bit

rate and no required timing between the source and the destination. Using the error

detection design techniques of chapter three, we produce a scheme that is both effective and

efficient. We propose to add five bytes of overhead to each frame, including one 34 bit

frame CRC.

The CCITT has proposed two error detection schemes for Class C service. One proposal,

referred to as AAL Type 3/4 [CCI92c], is quite cumbersome and is weak in detecting

certain error scenarios. The other proposed scheme, referred to as AAL Type 5 [CCI92a],

is similar to our proposed scheme.

In Section 4.2, we discuss the general properties of ATM networks. Only a few

characteristics of ATM networks are relevant to our analysis; the specific details of the

protocol are not important. In Section 4.3, we examine the probability of the lowest level

errors in ATM networks. In Section 4.4, we step through the design algorithm of chapter

three to produce an error detection scheme for ATM systems. This is followed by a

discussion of some of the shortcomings of the error protection scheme included in AAL

3/4. Finally, we comment on Synchronous Optical Network (SONET), which serves as an

interface between the ATM layer and the actual fiber optic link.

AAL 3/4 is also used for ATM class D traffic which is connectionless. We do not

specifically address error detection issues related to connectionless traffic, although much

of our analysis is applicable. The main differences are that routing cells and identifying

cells that belong to a frame are handled differently for connectionless traffic, so that

different mechanisms may be needed to handle routing and identification errors.

56



4.2 GENERAL PROPERTIES OF ATM NETWORKS
ATM frames can be variable in length, with the maximum length being 65,536

bytes. [Bel90] Frames are broken up at the transmitter into segments; the total length of the

segment, including any control information, has been fixed by the CCITT to be 48 bytes.

(See Figure 4.1.) A 5 byte header is added to each segment to form a 53 byte cell. The cell

header contains a 24 bit virtual channel identifier/virtual path identifier (VCI/VPI) field that

is used to route the cell to its destination. The cell header is the only portion of the cell that

is examined at intermediate nodes in the network; the frame is only reconstructed at the

destination. All cells contain a fixed amount of data, with the possible exception of the last

cell in the frame. It is expected that all cells of a frame will follow the same path, and will

arrive at the receiver in the same order in which they were sent. Duplicate cells are not

expected to occur.

Frame Header Frame Data ! Frame Trailer
I I

Cell Cell
Header 48 bytes Header 48 bytes
5b te 5 bytes

Figure 4.1 The frame, including the frame header and trailer, is partitioned into 48 byte units that are
contained in each segment (the last segment of the frame may contain less than 48 bytes). A five byte
header is added to each segment to form a cell. In the AAL 3/4 proposal, each segment contains a segment
header and trailer, so that only 44 bytes of the frame can be carried in each segment.

There needs to be some method of indicating the last cell of a frame so that the frame can be

reconstructed correctly at the destination. It seems natural to address this issue at the SAR

layer since it involves the reconstruction of the frame. Indeed, in the proposed AAL 3/4

scheme, there are two bits in the segment that are used to indicate whether a cell is the first

cell, one of the middle cells, or the last cell of the frame. As we will see, however,

including these bits in the segment is not advantageous from the point of view of error

detection. It is better if we include an END flag in the cell header, despite the fact that the

ATM layer does not make use of the flag. We will see why this is true in a later section.

Unless stated otherwise, we will assume in the analysis below that there is a one bit END

flag in the cell header to indicate the last cell of a frame.

57



4.3 ERROR CHARACTERISTICS OF ATM NETWORKS

In this section we examine the lowest level error characteristics that are the result of

physical properties of the network. We assume the ATM network is to be run over fiber

optic lines. The three factors of concern are random bit errors, burst errors, and

congestion, each of which is discussed below.

4.3.1 Random Bit Errors

We assume independent random bit errors occur on a fiber optic line with probability 10-8.

This is probably an overestimate of such bit errors by two or three orders of magnitude.

However, our calculations show that even with this conservative estimate, random bit

errors are not expected to be the dominant cause of most error scenarios in ATM systems.

The notation PR will be used to represent the probability of random bit errors.

As is noted in the next sub-section, when we consider burst errors, we make reasonable

worst case assumptions as to which bits of the cell are actually affected by the burst. Thus,

we cover the case where bit errors are correlated rather than independent.

4.3.2 Burst Errors

In one study of a fiber optic system, it was found that the chief cause of burst errors is

protection switching.[DCS91] This occurs when a failed repeater causes the data to be

switched from the original line to a protection line. During the switching process, the line

is essentially open, resulting in a bit error rate (BER) of .5. The study showed that the

mean time between these events is approximately four days, and each event results in error

bursts of duration 20 to 40 msec. Assuming an average burst length of 30 msec., the

fraction of time spent in such bursts is 9x10-8 . The notation PB will be used to represent

this probability of burst errors. At a data rate of 150 Mb/sec, about 10600 cells will be

affected by a 30 msec. burst.

It is unlikely that this is the only type of burst error we need to consider. In calculating the

probability of various error scenarios, we will use PB as the probability of a cell being hit

by a burst error, but we will generally make reasonable worst case assumptions as to which

bits of the cell are actually affected by the burst. This should ensure that our proposed

error detection scheme is robust.

58



4.3.3 Congestion

It is very difficult to estimate statistics on the expected congestion in ATM systems due to

the highly variable nature of the traffic in the network. However, in general, the design

objective is to limit the end-to-end cell loss rate to 10- 6.[DCS91] Therefore, we will use

10-6 as the probability a cell is dropped due to congestion. This probability will be denoted

by Pc.

4.4 DESIGN OF ATM ERROR DETECTION SCHEME

Our goal in this section is to step through the design of an error detection scheme for ATM

following the guidelines provided in the previous chapter. Our unit of measure for

evaluating the error detection scheme is the expected number of frames, out of those

transmitted on a line per year, for which errors are not detected by the combination of the

ATM and AAL layers. Our desired maximum annual undetected error frequency per line is

10-3. At a data rate of 150 Mb/sec, about 1013 cells can travel over a data line per year.
1013

For simplicity, we will assume there are N cells per frame and that about N frames are

transmitted per year, per line.

Our calculations assume the random bit error rate, PR, equals 10-8, the burst error rate, PB,

equals 9x10-8, and the cell loss rate due to congestion, Pc, equals 10-6. As stated earlier,

we will generally try to look at reasonable worst case error scenarios.

4.4.1 Step 1: Reduce Level of Misdirected Data

When a connection is first established in an ATM network, all the intermediate nodes

through which the cells will travel assign the connection a virtual channel number that is

entered in the node's routing table. When a cell arrives at one of the nodes, the node

checks the VCI/VPI field in the cell header. If the VCI/VPI value is found in the node's

routing table, the cell is forwarded; otherwise, the cell is dropped. A cell will be

misdirected if an error occurs in the VCI/VPI field, and the 'new' VCI/VPI matches another

entry in the routing table.

Misdirection can be prevented by detecting errors that occur in the VCI/VPI field. Only the

cell header is examined at the intermediate nodes; thus any error prevention mechanism

must be included per cell, in the cell header. As we saw in Section 3.4.1, a reasonable

option is to include a CRC in the cell header that checks on the contents of the header. The

number of bits in the header, excluding the CRC, is 32. (There are flow control and

59



priority bits in addition to the VCI/VPI field.) From equation (2.3), in order for the CRC

to be effective, the length of the CRC must be at least 7 bits. The CCITT has chosen the

length to be 8 bits, which is a reasonable choice since it results in a cell header of size

exactly 5 bytes. For the remainder of our analysis, we assume an 8 bit CRC is present in

the cell header. We assume the CRC is an Extended Hamming code CRC, which is

capable of detecting all single, double, and triple bit errors, and capable of correcting any

single bit error. This provides several options for the operation of the intermediate nodes:

Detection-only option: The CRC is used only to detect errors; if an error is detected in the

cell header, the cell is dropped.

Two-state correction/detection option: The default state is that the node uses the CRC to

correct any single bit error it detects. The advantage of correcting a single error is that

fewer cells will be dropped. The drawback is that three or more bit errors may appear to be

a single bit error, in which case the cell header is 'corrected' to the wrong value. The

possibility of this occurring is greatest when a burst error has occurred. To counteract this,

once the intermediate node detects that a cell has an error in its header (even if it corrects the

error), it goes into a detection-only state. It returns to the correction state only after it has

received a cell that it perceives as having an error-free header. The state diagram is shown

in Figure 4.2. The CCITT has chosen this two-state operation mode for its proposed

standard. [CCI90]

2 1 errors
(correct if 1)
(drop if > 1)

O errors orrec Only 1 errors
(drop cell)

O errors

Figure 4.2 State Diagram for 2 state correction/detection option for CRC.

Four-state correction/detection option: This works similarly to the two-state option, except

that after two or more errors have been detected in a cell header, or after errors have been

detected in two consecutive cell headers, the intermediate node will drop all cells until it

receives two consecutive cells that it perceives as having error-free headers. The rationale

60



for this is that during a burst error, it forces the CRC of two consecutive cells to fail before

a cell is accepted. The state diagram is shown in Figure 4.3.

In the next sub-section, we examine the probability of misdirected cells due to burst errors

and random bit errors, under these three modes of operation. We make the worst case

assumption that all possible VCI/VPI values are in the nodes' routing tables; thus any

undetected errors in the VCTIVPI field will cause the cell to be misdirected.

1 error 
(Correct) Only errors

Only(droldrop cell)

O errors O errors ,
4 Correct Detect c 21 errors

r 2 errors Only ) (dropcell)
(drop cell)

\ dr 21Cerrors7

Oerrors (drop cell) 

c[Detect \,. I0.O errors
Only ~ (drop cell)

Figure 4.3 State diagram for 4 state correction/detection option for CRC.

4.4.1.1 Burst Errors

First we examine the effectiveness of the three options in detecting burst errors.

Misdirection occurs when a cell is hit by a burst error and the CRC does not detect the

error. We assume the entire cell header is hit by the burst, resulting in a completely random

string. Recall that for a random string, a CRC fails with probability 2
-L, where L is the

length of the CRC (L equals 8 in this case). We take PB, the probability a cell is hit by a

burst error, to be 9x10-8. We expect about 10600 cells to be hit by the average error burst.

With the detection only option, the probability a cell will be misdirected due to a burst error

is about: PB 2-8 = 3x10-10.

61



In the two-state CRC option, when the first cell affected by the error burst arrives at the

node, the node is likely to be in the correcting state. Using equation (2.13), the first cell in

the error burst will be misdirected with probability 41-2-8. After the first cell in the error

burst, the node is likely to be in the detect-only state, so the other cells affected by the burst

will be misdirected with probability 2-8. Thus, the probability of any given cell being

misdirected is about: PB 10600 + 2- 8) PB 2-8 = 3x10- 10.

In the four-state CRC option, the first cell affected by the burst is misdirected with

probability 41-2-8. The second cell in the burst is misdirected with probability (41-2-16 +

40.2-16). The remaining cells affected by the burst are misdirected with probability about

2-16. Thus, the probability of any given cell being misdirected is about:
(41.2-8 81.2-16PB410600 +2-16 + 16 1) PB2-1 5 = 2x10-1 2 (4.1)

4.4.1.2 Random Bit Errors

Random bit errors are less likely to cause misdirected cells. Even in the correction state,

where just three bit errors are capable of causing a misdirected cell, the probability can be

approximated by:

(40) PR3 lx X10-20 (4.2)

This is negligible compared to the misdirection probabilities due to burst errors.

4.4.1.3 Summary

We expect burst errors to be the chief cause of misdirected cells. The four-state CRC

option is the most effective of the three methods in dealing with this error event. Compared

with the other two options, the four-state option provides us with a factor of 2-7 benefit

while incurring only a small penalty in term of complexity.

It is true that the four-state option results in a slightly higher rate of cell loss due to random

bit errors than the two-state method, but the difference is insignificant. With the four-state

method, a cell will be dropped if there are two or more bit errors in either its header or the

previous cell's header, or if there is at least one bit error in both its header and the previous

cell's header. The probability of this occurring is on the order of:
((2)(40)) PR2 3x10-13 (4.3)

This probability of losing a cell due to random bit errors is negligible compared to the 10-6

probability of losing a cell due to congestion.

62



We will assume for the remainder of our analysis that an 8 bit CRC is present in the cell

header, and operates in a four-state correction/detection mode. Thus, the probability of a

cell being misdirected is PB 2-15 = 2x10- 12 . At a data rate of 150 Mb/sec, about 1013 cells

can travel over a data line per year. Thus, roughly 20 misdirected cells are expected per

year, per line. As will be discussed below, these misdirected cells will be detected with

high probability.

4.4.2 Step 2: Add Check Fields to Detect Bit Errors in Data

As discussed in chapter three, the error scenario with the least number of options for error

detection is that of bit errors in the data. The only means of detecting the error is to include

a redundancy check on the data. Errors in the data can be the result of a burst error or

random bit errors.

4.4.2.1 Burst Errors

In Section 4.3.2, we stated that burst errors in ATM are expected to be long; the average

burst error is expected to affect about 10600 consecutive cells. However, as we stated in

Section 3.4.2.1.3, short error bursts are more difficult to detect since they are likely to

produce fewer inconsistencies. Since we can not be sure exactly what type of burst errors

to expect, and since robustness is very important in designing an error detection scheme,

we will make the worst case assumption that burst errors are short i.e., shorter than the

length of a cell. In this section, we will also make the worst case assumption that the burst

error does not affect any of the control information in the cell, such as the VCI/VPI field.

With these assumptions, the probability a frame will contain data that has been corrupted by

a burst error is about NPB. Thus, the number of frames at the receiver that we expect to
1013

contain errored data due to a burst error is 1 NPB = 9x10 5 per data line per year.

4.4.2.2 Random Bit Errors

The probability a frame of N cells contains a random bit error in the data portion is about

(N)(48)(8)PR. The expected number of frames at the receiver containing errored data due
1013

to random bit errors is then: - (N)(48)(8)PR ; 4x10 7, per data line per year.

We assume that we will use a CRC to detect errors in the data. We want a CRC that is

powerful enough to reduce the expected annual frequency of frames with undetected bit

errors in the data to no more than 10-3 per data line. In Section 3.4.2.1, we compared

63



adding the CRC at layer N- to adding the CRC at layer N. In ATM this corresponds to a

comparison between a per-segment CRC and a per-frame CRC. In Section 3.4.4, we

showed that in general adding the CRC at layer N is preferable; this turns out to be the case

for ATM.

4.4.2.3 Per-Segment CRC

The overall size of a segment is 384 bits. Thus, the size of the per-segment CRC must be

at least 10 bits in order to satisfy the inequality in (2.3). With a 10 bit per-segment CRC,

the expected annual frequency of frames with undetected random bit errors in the data, per

line, is about: (from equation (3.2)) ° N 3843 24PR4 = 2x10-1 3 . The expected

annual frequency of frames with undetected bit errors in the data due to burst errors, per
1013

line, is about: (from equation (3.5)) N NPB 2-10 = 9x10 2. Even if just 10% of the

bursts are short, the expected number of undetected errors in the data due to burst errors is

90. This does not meet our goal of 10-3. One option is to increase the length of the CRC.

We would need to increase the length to 30 bits to meet our goal, which would add a lot of

overhead to each segment. We realize, of course, that one reason for this seemingly poor

performance of the per-segment CRC is that we are looking at the worst case burst error

scenario. However, as we see below, even with this worst case assumption, a per-frame

CRC can meet the goal of 10-3 without a lot of overhead.

4.4.2.4 Per-Frame CRC

The maximum size of a frame is 65,536 bytes (or 524,288 bits). Thus, the size of the per-

frame CRC must be at least 21 bits in order to satisfy the inequality in (2.3). With a 21 bit

per-frame CRC, the expected annual frequency of frames with undetected random bit errors

in the data, per line, is about: (from equation (3.3)) 1 N3 3843 2 PR4 .

Letting N equal 1366, which is the maximum number of cells per frame, this frequency

equals 4x10 -7, which easily satisfies the goal of 10-3.

The expected annual frequency of frames with undetected bit errors in the data due to burst
1013

errors, per line, is about: (from equation (3.6)) N NPB 2-21 = .4.

This does not meet our goal of 10-3. However, if we increase the length of the per frame

CRC to 30 bits, we can meet our goal. 30 bits per frame is still not a lot of overhead; thus,

this option is feasible.

64



4.4.2.5 Summary

We conclude that a per-frame CRC of length at least 30 bits should be included as part of

the ATM error detection scheme. (Note that this CRC is in addition to the 8 bit CRC in the

cell header.) It allows us to meet our undetected error goal of 10-3 , even when worst case

scenarios are considered. Thus, it should provide very robust error detection capabilities.

4.4.3 Step 3: Consider Correction Options at SAR Layer

Due to the presence of the 8 bit CRC in the cell header, misdirected cells are not expected to

occur very frequently. Also, as we are dealing with connection oriented traffic, the cells

are expected to arrive at the receiver in the same order in which they are transmitted.

Duplicate cells are not expected to occur. Thus, adding special fields to the segment for the

purpose of detecting stray or duplicate cells or re-sequencing out-of-order data is not

worthwhile.

4.4.4 Step 4: Add Check Fields to Detect Remaining Errors

In this section, we consider the problem of detecting the remaining error scenarios: lost

cells, errors in the END flag, and misdirected cells (in Section 4.4.1 we discussed reducing

the likelihood of misdirected cells but we did not address the problem of detecting the error

if it does occur). We assume a frame CRC of length at least 30 bits is present.

4.4.4.1 Lost Cells

Recall that we assume there is a one-bit flag in the cell header that indicates whether a cell is

the last cell in the frame. This leads to two different lost cell scenarios. First, we look at

the case where a non-END cell is lost, so that the frame has too few cells. Secondly, we

look at the case where an END cell is lost, so that the cells of one frame are merged with

the cells of a subsequent frame.

4.4.4.1.1 Non-END Cell Lost

We evaluate the number of frames we expect to arrive at the destination missing at least one

non-END cell. We assume the END cell is received intact so that frames are not merged

together. Congestion, burst errors, and random bit errors all can cause lost cells, but

congestion is the dominant cause.

It is likely that congestion will occur in a burst and will result in entire frames being

dropped; it is not likely to affect the non-END cells of a frame without affecting the END

65



cell. Nevertheless, we use the union bound, which shows that the probability of losing at

least one non-END cell from a frame of N cells is at most (N-1)PC = (N-1)10-6.

As with congestion, we expect burst errors to affect entire frames. However, if we make

the worst case assumption that burst errors are very short (i.e., shorter than the length of

one cell) then the probability a frame will lose a non-END cell due to a burst error is about

(N-1)PB = (N-1)9x10- 8.

Random bit errors in the cell header may also cause a cell to be dropped. The probability of

this occurring was approximated in equation (4.3). Thus, a frame loses a non-END cell

due to random bit errors with probability (N-l) ( 8 0 )PR2 = (N-l) 3x10-13 .

We conclude that the overall probability that a frame at the receiver is missing at least one of

its non-END cells is about (N-1)10- 6, and the dominant cause is congestion. The expected
1013

annual frequency of this event per line is thus: N (N-1) 10-6 t 107.

Next, we test the ability of the 30 bit CRC to detect this error event. We assume the CRC

is in the last cell of a frame. If a non-END cell is lost, we see from equation (2.2) that the

CRC calculated by the receiver will essentially be random bits. Thus, the CRC will fail to

detect the lost cell with probability 2-30. The expected annual frequency of frames with

undetected lost non-END cells, per line, is then: 107 2-30 - 9x10-3 . This does not quite

meet our goal of 10-3. Increasing the length of the CRC to 34 bits, however, does provide

sufficient protection.

4.4.4.1.2 End Cell Lost

In general, if the END cells of X consecutive frames are lost, then the cells of as many as

X+1 frames are merged together. We will consider the simplest case where X equals 1.

Using the above assumptions, an END cell is lost with probability: Pc + PB + (80)PR2

- 10-6. The expected annual frequency of frames per line losing the END cell is then:
1013

10-6. The CRC of the latter of the two frames will be used to check the merged

frame (assuming the CRC is contained in the last cell of a frame). It essentially will be

checking random data, so a frame CRC of length L will fail to detect the error with

probability 2-L. In the worst case, when N is 2 (if N is 1 the whole frame is lost), the

length of the frame CRC must be at least 32 bits to meet our goal of 10-3.

66



Instead of relying solely on the CRC to detect lost cells, we could consider adding a frame

length field. However, a frame length field does not detect all lost cell scenarios. Assume

that the length field is placed in the last cell of the frame. Then, if the beginning of frame A

is merged with the end of frame B, and the resulting merged frame contains the same

number of cells as frame B originally contained, then the length field will not help detect the

error. We can derive an upper bound for the probability of this occurring as follows.

Assume frame A originally contains M cells and frame B originally contains N cells.

Assume a burst of congestion hits frames A and B such that the last cell of frame A is lost,

and with probability M 1 the number of remaining cells in A is i, where i ranges from 1 to

M- , and with probability - the number of cells in B is j, where j ranges from 1 to N (ifj

equals N then frame B is unaffected by the congestion). We assume the last cell of B is not

lost, so that frames A and B are merged together to form a frame. If M < N, then the

merged frame will contain exactly N cells if there are i cells remaining in frame A and N-i

cells remaining in frame B, for 1 < i < M- 1. If M > N, then the merged frame will contain

N cells if there are j cells remaining in frame B and N-j cells remaining in frame A, for

1 < j < N-1. Thus, the probability the merged frame will contain precisely N cells is:

if M<N: (M-1)( M-1 . if M>N: (N-l) M-1 < N

Thus, we can upper bound this probability by N. This represents the approximate fraction

of lost END cell scenarios that can not be detected by a frame length field.

4.4.4.2 Errors in the END Flag

Next, we consider the scenario where a cell arrives at the correct destination but contains an

error in its END flag field. The END flag is a one bit flag in the cell header and is thus

protected by the cell header CRC. Gaining the protection of the cell header CRC is the

major reason we prefer to include the flag as part of the cell header rather than as part of the

segment, despite the fact that the flag is used at the SAR layer and not at the ATM layer.

In order for an error in the END flag to go undetected, the cell header CRC must fail to

detect the error. At least three bit errors must occur before the error will go undetected by

the CRC, assuming the CRC is in the correction mode. (It is not necessary that one of the

three bit errors be in the END flag; the node could make a false 'correction' that results in

67



an errored END flag.) Thus, the probability the error occurs due to random bit errors and

is not caught by the cell header CRC is upper bounded by: (40) PR3 = 10-20.

A burst error hitting the cell header could also cause an error in the END flag. We make the

worst case assumption that the address field in the header is unaffected by the burst error so

that the cell is not misdirected. Assuming the CRC is in the correction mode, the

probability the error occurs due to a burst error and is not caught by the cell header CRC is

about: PB 41 2-8 = 10-8. Thus, burst errors are the dominant cause.

First consider the scenario where an END flag is changed to a non-END flag. The errored

frame will be merged with the following frame, and the CRC of the next frame will be used

to check the resulting frame. It will essentially be checking random bits, and, assuming it

is 30 bits long, will fail to detect the error with probability 2-30. Thus, the expected annual

frequency of frames with undetected END cell to non-END cell transitions, per line, is:

N 10-8 2-30. This equals 9x10 -5 for the worst case where N equals 1.

If a non-END cell is changed into an END cell, then the frame is essentially split into two

frames. Random bits in the 'false' END cell will be interpreted as the frame CRC for the

'first' frame, and thus will appear to be correct with probability 2-30. The frame CRC in

the true END cell will only be checking the latter half of the original frame. Thus, this

CRC will also fail with probability about 2-30. Thus, overall, the expected annual

frequency of frames with undetected non-END cell to END cell transitions per line is:

1013
N (N-1) 10-8 (2)2-30 = 2x10 -4.

For either scenario we meet our goal of 10-3.

4.4.4.3 Misdirected Cells

Lastly, we consider the error scenario where a frame contains a stray cell. As shown in

Section 4.4.1, the most probable cause of a misdirected cell is a burst error. Due to the

presence of the cell header CRC in the four state correction/detection mode, the probability

of a cell being misdirected is PB 2-15. We make the worst case assumption that every

misdirected cell results in one errored frame at the incorrect destination. (Of course, a

misdirected cell also results in an errored frame at the correct destination, but we already

discussed the lost cell scenario in a previous section.)

68



If a frame contains a stray non-END cell, the frame CRC will essentially be checking

random bits. A 30 bit CRC will fail to detect the error with probability 2-30. The expected

annual frequency of frames containing undetected stray non-END cells, per line, is:

1013 PB 2-15 2-1 2-30 = 1x10-8 . The 2-1 term is the probability that a stray cell will not

have its END flag set after its header is hit by a burst error.

If a frame contains a stray END cell, then the frame is essentially split into two frames.

The frame CRC in the stray END cell will be used to check the 'first' frame. The frame

CRC in the true END cell will check the 'second' frame. Either CRC will fail with

probability about 2-30. Thus, overall, the expected annual frequency of frames containing

undetected stray END cells, per line, is: 1013 PB 2-15 2-1(2) 2-30 = 3x10 -8.

For either scenario we meet our goal of 10-3.

Consider adding a frame length field to the end of a frame to help detect the scenario where

a stray cell is accepted as part of a frame at the wrong destination. Assume the stray cell is

really an END cell of a frame that has N cells. If it arrives at the wrong destination such

that it is accepted as the Nth and final cell of a frame, then the length field in the stray cell

would fail to detect this scenario (assuming it was not affected by the error that caused the

misdirection). We can approximate the likelihood of this event as follows. Assume the

misdirected cell belongs to a connection where all frames are comprised of N cells. Thus,

with probability 1/N the stray cell is an END cell; assume the burst error does not affect the

END flag. Assume it is misdirected to a destination where the frames are comprised of M

cells. There is a 1/M chance that the stray cell will arrive before the ith cell of a frame, for

1< i <M. If N < M, then the stray END cell will be accepted as the Nth cell with

probability l/M. If N > M, then it can't be accepted as the Nth cell. Thus, with these

assumptions, the fraction of misdirected cell scenarios that can't be detected by a frame

length field can be loosely upper bounded by MN'

4.4.4.4 Summary

In summary, we see that a 30 bit frame CRC provides sufficient protection against

misdirected cells and errors in the END flag. However, a 34 bit frame CRC is needed to

provide sufficient protection against lost cells. This a only a small increase in overhead.

69



We conclude that a 34 bit frame CRC should be included in the error detection scheme for

ATM.

4.4.5 Step 5: Consider Single Cell Frames

Finally, assume a frame is comprised of just a single cell, and assume the header of this cell

is hit by a burst error and misdirected. We make the worst case assumption that only the

cell header is affected by the burst error; the remainder of the cell is intact. Assume that the

cell arrives at the wrong destination immediately after an END cell, and that its own END

flag is still set. The receiver will interpret it as being a single cell frame. The frame CRC

does not help detect that this frame has been misdirected since the frame information is

intact (note that the frame CRC does not check on the cell header). Thus, the frame will be

accepted at the wrong destination. In the worst case, every frame is a single cell frame; in

this case, the expected annual frequency of this event per line is 1013 PB 2-15 = 20.

Obviously, not all frames will be single cell frames. However, it is worth noting that

control frames (e.g., the frames used to set up calls) often consist of just one cell.

To add greater protection against this error, we can implicitly include the destination

address in the frame when calculating the frame CRC. At the transmitter, the frame CRC is

calculated as if the address of the desired destination preceded the frame data. At the

receiver, the frame CRC is calculated as if the address of the receiver preceded the frame

data. If the destination address is less than or equal to 34 bits (the size of the frame CRC),

then the error will be detected with certainty. If the address is longer, the frame CRC will

fail to detect the error with probability 2-34 . (We assume that the incorrect destination

address is uncorrelated with the correct destination address; thus, the effect of the

misdirection is similar to a burst error hitting the destination field.) Thus, the expected

annual frequency of undetected misdirected single cell frames, per line, can be upper

bounded by: 1013 PB 2-152 -34 = 2x10 -9 . This bound is also valid for the case where the

burst error that causes the misdirection carries over into the frame data.

4.5 SUMMARY OF ATM ERROR DETECTION SCHEME

From the discussion above, we conclude that the error detection scheme should consist of:

8 bit cell header CRC in four-state correction/detection mode

34 bit frame CRC

Destination address implicitly checked by the frame CRC

70



The performance of this scheme is summarized in Table 4.1. We arbitrarily chose N to be

10 for those frequencies that depend on the number of cells per frame. The contrast with

AAL 5 is discussed in section 4.7.

TABLE 4.1 Expected Expected Annual Freq. of Undetected Error
Chief Annual Freq

Error Type Cause of Occurrence Our Scheme AAL 5
Bit Errors Burst error 9x10 5 5x10-5 2x 10-4

in Data Random bit errors 4x10 7 2x10-1l 2x10-1 1

Lost non-END Congestion 107 6x10-4 2x10- 11

Cell

Lost END Cell Congestion
Length Change 1x10 6 6x 10 -5 2x10-1 2

No Length Change 1x10 5 6x10-6 2x10-5

Error in END Burst Error 5x10 5 10-5 7x10-1 0

Flag

Misdirected Cell Burst Error
Length Change 20 2x10-9 4x10-14
No Length Change .2 2x10-11 5x10-1 1

4.6 IMPLEMENTATION

We assume an Extended Hamming code CRC is used for the frame CRC. The 34 bit frame

CRC should be placed at the very end of the last cell of the frame. The last cell or both the

last cell and the second to last cell of the frame may contain less than a complete 48 bytes of

information. Thus, there needs to be a pad length field immediately preceding the frame

CRC to indicate the number of bytes between the end of the frame data and the beginning

of this pad length field. The pad length field should be 6 bits long since the pad length is

no longer than the length of one segment (i.e., 48 bytes). The frame format is shown in

Figure 4.4 below.

Frame Data i Pad I Pad I Frame
i I Length i CRC

Figure 4.4 Format of frame with one per-frame CRC.

The frame CRC should be calculated over the entire frame, including the pad field and the

pad length field. This ensures that up to three bit errors in the pad length field are caught

71



with certainty, assuming there are no other errors in the frame. Also, as discussed in

Section 4.4.5, the destination address should be included as a pseudoheader.

4.7 ALTERNATIVE SCHEMES

In the scheme proposed above, we rely on the frame CRC to detect most errors. One

drawback to relying solely on a frame CRC is that if the CRC fails to detect a congestion

loss, then an undetected error event occurs without there being any type of bit error. A

variety of fields could be added to reduce the probability of such an event. However, as

we discuss below, even with the addition of these fields, we cannot totally eliminate the

possibility of this occurring.

Also, the analysis presented above largely depends on our estimates of the underlying

errors in ATM systems. Our estimates of random bit errors and burst errors are probably

conservative. However, we are unsure of whether 10-6 is a realistic estimate of the cell

loss rate due to congestion; thus, it may be desirable to provide greater protection against

cell loss. One option is to increase the length of the frame CRC. However, this does not

solve the problem of an undetected error occurring without there being any type of bit

error.

An alternative is to add other fields to detect the scenarios that involve cell loss. For

example, we can take advantage of the fact that most scenarios involving cell loss also

result in the length of the frame being changed. Thus, we can replace the pad length field

by a 16 bit frame length field, and reduce the frame CRC to 32 bits. (The CRC needed to

be 34 bits long to protect against lost cells; however, with the addition of the frame length

field, the CRC can be reduced to 32 bits.) This increases the amount of overhead by 8 bits

per frame. Note that the CCITT AAL 5 error detection scheme consists of a 16 bit frame

length field and a 32 bit frame CRC. The performance of this scheme was shown in Table

4.1.

The overall expected annual frequency of undetected error per line in our proposed scheme

and in AAL 5 is approximately the same (7x10-4 vs. 2x10-4 ). The chief cause of

undetected error in our scheme is congestion resulting in non-END cells being dropped.

Recall that when calculating the frequency of this error, we assumed cells are lost

independently due to congestion, which is an extreme worst case assumption. The chief

cause of undetected error in AAL 5 is burst errors resulting in bit errors in the data. In

calculating the frequency of this error, we assumed cells are hit independently by short

72



burst errors, which is also an unlikely assumption. Thus, we cannot state definitively

which scheme performs better since the performance is tied to the precise nature of the

congestion and burst errors.

Note that although AAL 5 provides greater protection against the lost cell scenarios where a

length change is involved, it provides less protection against the lost cell scenario where a

length change is not involved (i.e., the merged frame scenario discussed in Section

4.4.4.1.2). Only the frame CRC, which is shorter by 2 bits in AAL 5, provides protection

against this latter scenario. Thus, this scheme is really not a safeguard against increases in

the congestion rate.

One way to provide greater protection against the merged frame scenario is to include a

frame ID field in both the first and last cells of a frame. Assume the length of the frame ID

field is F bits. Under most circumstances, there would have to be a bit error in one of the

ID fields before a merged frame could go undetected. However, if frames A and B are

separated by 2 F frames (i.e., they have the same frame ID), and congestion hits resulting in

frames A and B being merged, then the frame ID field does not help detect the error. Also,

if the merged frame contains the same number of cells that frame B originally contained,

then the frame length field does not help detect the error. Again, we have the situation

where we totally rely on the frame CRC to detect the error. Thus, we cannot totally

eliminate scenarios where an undetected error event occurs without there being a bit error

(unless the frame ID field is large enough that it never wraps around).

Note that the frame length field and frame ID fields do not help detect bit errors in the data.

Only the frame CRC helps detect this error. Thus, the extra bits in these alternate schemes

could be added to the length of the CRC to decrease the frequency of all undetected errors.

4.7.1 AAL 3/4 Proposal

Next, we summarize the error protection scheme originally proposed by the CCITT as part

of AAL Type 3/4. Figure 4.5 shows the format of the frame, segment, and cell in this

proposal. A 32 bit frame header and frame trailer is added to each frame. Also, each

segment contains a header and a trailer as part of the 48 bytes of the segment. There is also

a 5 byte cell header.

73



4- Frame Header - " Frame Trailer -

I 'l .. .. .. I I I I

Reserved:BETagl Length Frame Data Length BE Tag Reserved

I I

ICRC Seg I Seq I MID I Lth ICR
I Typd # I I

4- Cell Segment Segment
Header Header Header

ICRC Seg I Seq I MIDi I Lth ICRC
Typei # I 

Cell _ Segment Segment
Header Header Trailer

Figure 4.5 Format of frame and cells in the CCITT AAL Type 3/4 proposal.

There is a 16 bit frame length field in both the frame header and trailer to protect against lost

cells. (The length field in the frame header is also referred to as the buffer allocation field

since it can be used to allocate buffer space at the receiver.) There is an 8 bit frame

sequence number, referred to as the Begin/End Tag (BE_Tag), in both the frame header

and trailer. This helps protect against merged frames.

The cell header contains the VCI/VPI field, some miscellaneous bits related to routing, and

an 8 bit CRC. It is identical to the cell header of our proposal except it does not contain a

flag indicating the last cell of a frame. Also, in both AAL Type 3/4 and Type 5, the cell

header CRC operates in a two state correction/detection mode rather than a four state mode.

The segment header contains a 2 bit segment type field that indicates whether the cell is the

first cell, one of the middle cells, or last cell of the frame. A 4 bit sequence number in the

segment header helps protect against lost cells. There is a 10 bit message identifier (MID)

field in the segment header that is used for connectionless traffic. This field is not

necessary for connection oriented data transfer but the CCITT has assumed it is present in

AAL 3/4.

AAL 3/4 also includes a 6 bit field in the segment trailer to indicate the number of bytes

contained in each cell. Each cell, except the last cell in the frame, is expected to contain 48

74



bytes in the information section of the cell. Thus, including a cell length field in each cell is

unnecessary. Finally, there is a 10 bit CRC in the segment trailer that protects the contents

of the segment.

4.7.1.1 Analysis of AAL 3/4

The major problem with AAL 3/4 is that a per-segment CRC is used rather than a per-frame

CRC. A per-segment CRC does not help in detecting lost cells, misdirected cells, or

merged frames. This necessitated the addition of fields such as the per-segment sequence

number, the frame length field, and the Begin/End Tag. The performance of this scheme

very much depends on the characteristics of burst errors in the system. If we assume that

burst errors always affect a large number of cells, and that all cells that are hit by the burst

will contain completely random bits, then AAL 3/4 provides sufficient protection. If we

make the same worst case assumptions that we did in Section 4.4.2, where bursts are very

short, then we find that we have a probability of 2-10 of not detecting burst errors that

affect only the data in the frame. As shown in Section 4.4.2.3, this does not provide

sufficient protection. Since we can not be sure exactly what type of burst errors to expect,

it makes more sense to use an error detection scheme that is powerful over a wider range of

errors. Thus, a per-frame CRC is preferred over a per-segment CRC.

There are some other scenarios that point out the weakness of not having a CRC that

checks on the frame as a whole. For example, consider the scenario where a cell is

misdirected and is accepted as the END cell of a frame in place of the correct END cell.

Assume the misdirection is caused by a burst error and the burst is short enough so that

only the cell header is affected. The AAL 3/4 scheme relies totally on the 4 bit cell

sequence number and 8 bit BE_TAG to catch the error. In fact, if the cell header CRC is

used in a two-state mode as proposed in AAL 3/4, then the expected annual frequency of

this error going undetected is about 9x10-3 (assuming 10 cells per frame).

Also, consider the scenario where a 'middle' cell is lost from a frame due to congestion and

another middle cell is misdirected and becomes part of that same frame. If the misdirection

is caused by a short error burst, then only the 4 bit cell sequence number offers protection

against this error. If a two-state cell header CRC is used, the probability of this error going

undetected is about 2x10-4.

Although neither of these two error scenarios poses major problems, it points out how little

protection there is against some of the error scenarios when a per-frame CRC is not

75



present. (We did not include the performance of the AAL 3/4 scheme in Table 4.1 since
there are many additional error scenarios that arise due to errors in the control fields (e.g.,

errors in the segment type).)

The AAL 3/4 scheme is obviously less efficient than our proposed scheme and the scheme

proposed in AAL 5. Assume a frame is comprised of 10 cells. The amount of overhead in
the various schemes is:

Our Proposed Scheme AAL 5 Proposal AAL 3/4 Proposal

Cell header CRCs: 10 x 8 bits Cell header CRCs: 10 x 8 bits Cell header CRCs: 10 x 8 bits

Frame CRC: 34 bits Frame CRC: 32 bits Frame header: 32 bits

Pad Field: 6 bits Frame length field: 16 bits Frame trailer: 32 bits

TOTAL: 120 bits TOTAL: 128 bits Segment header: 10 x 16 bits

Segment trailer: 10 x 16 bits

TOTAL: 464 bits

Since much of the overhead in AAL 3/4 is included on a per-cell basis, the difference in
overhead between AAL 3/4 and the other two schemes increases as the size of the frame

increases. In general, if the number of cells per frame is large, then the overhead per cell is

roughly 8 bits in our proposed scheme and in AAL 5, and 40 bits per cell in AAL 3/4.

Note that a large portion of the traffic on ATM is expected to consist of video and still

images; these applications typically involve very large frames.

We conclude that the AAL 3/4 scheme requires more overhead and provides less protection

than our proposed scheme and AAL 5.

4.8 SONET

SONET serves as an interface between the ATM layer and the actual fiber optic link. It
includes several parity checks so that the level of bit errors seen by the ATM and AAL

layers may be lower than what was assumed above.

From the standpoint of error detection, one of the most important aspects of SONET is the
inclusion of a self synchronous scrambler to provide security. If a user transmits the
scrambler bit pattern continuously, the output of the scrambler will be a string of zeroes,

76



which will cause the failure of the SONET system.[DrD91] To counteract this, a second

scrambler is added. Let x[n] represent the nth information bit and let y[n] represent the nth

bit actually transmitted. The operation of the second scrambler at the transmitter is such

that y[n] = x[n] + y[n-43]. The inverse operation is performed at the receiver: x'[n] = y'[n]

+ y'[n-43]. Thus, if there is one actual transmission error, it will appear at the destination

as two bit errors separated by 43 bits.

As shown below, this second scrambler does not significantly affect the ability of the cell

header CRC or frame CRC to detect errors. First consider the cell header CRC. The cell

header is 40 bits long; thus, if a true bit error hits the cell header, the 'extra' bit error occurs

after the cell header. However, any true bit errors that occur in the last 43 bits of the

previous cell affect the cell header, as shown in Figure 4.6.

HDR 43 bits HDR

K Cell header of 2nd |
packet is vulnerable I
to errors that hit in
this range

Figure 4.6 True bit errors that occur in the last 43 bits of a cell will result in a second bit error
occurring in the next cell header due to the SONET scrambler.

Thus, when calculating the probability of dropped cells and misdirected cells due to random

bit errors (either true or 'extra' bit errors) in the cell header, the effective size of the cell

header is 83 bits rather than 40 bits. Thus, in equations (4.2) and (4.3), which respectively

represent the probability of misdirected cells and lost cells due to random bit errors, 40

should be replaced by 83. This does not significantly affect the results.

Now consider the effect of the scrambler on the error detecting properties of the frame

CRC. The length of the frame is greater than 43 bits. Thus, a true bit error that hits a

frame may result in two bit errors in the frame. We need to consider whether two true bit

errors that hit the frame could possibly go undetected by the frame CRC (the two true bit

errors can result in four actual errors in the frame, and the CRC is not guaranteed to detect

all four bit error patterns). Much of the terminology used below was described in chapter

two.

77



We assume we are using an Extended Hamming code CRC of length 34 bits. Thus, all

valid frames can be considered to be codewords generated by a generator polynomial that is

the product of (X + 1) and a primitive polynomial of order 33. Using finite field theory,

there exists an element (referred to as a primitive element in the finite field of size 233) that

is a root of the primitive polynomial but that is not a root of (XW + 1) for any w < 233-1.

(Refer to [Gal68] for a more thorough discussion of primitive polynomials and primitive

elements.) All valid codewords have the generator polynomial as a factor. Thus, the

primitive element must be a root of all valid codewords.

Assume that two true bit errors occur in positions q and s of a frame, where q - s = d. The

maximum size of a frame is 219 bits; thus, d must be less than 219. There are four cases
that we need to consider:

1) Assume that the two true bit errors are not in the last 43 bits of any segment (i.e., the

extra bit errors occur in the same segment as the corresponding true bit errors), so that there

are four bit errors in the frame at positions q, q+43, s, and s+43. The error can be

represented by the polynomial:
xq + Xq+43 + Xs + Xs +43 = Xs (1 + Xd) (1 + X4 3) (4.4)

In order for an error not to be detected, the error polynomial must represent a valid

codeword. From the property of primitive elements discussed above, we know the
primitive element is not a root of (1 + Xd) or (1 + X43 ) (since d is less than 233-1); thus,

it is not a root of the error polynomial given in equation (4.4). Thus, the error polynomial

is not a valid codeword, and the error will be detected.

2) Assume that both of the two true bit errors occur in the last 3 bits of two, not necessarily

distinct, segments. Then the corresponding extra errors will occur in the beginning of the

next segments, as shown in Figure 4.7. When the segments are joined together to form a

frame, each true bit error and its corresponding extra bit error will be separated by three bit

positions (the cell headers, which are 40 bits long, are not part of the frame). Thus, the

four bit errors in the frame can be represented by the polynomial: Xq + Xq+3 + Xs + Xs+3

= XS(l+Xd)(l+X 3 )

Using the reasoning given for the previous case, a polynomial of this form can not be a

codeword; thus, the error will be detected.

78



/ ,

.RSg n Sge2 H Sge% 3 S m

HDR Segment 1 HDR Segment 2 HD Segment 3 HDR Segment 4
of Frame of Frame X of Frame

43 bits 43 bits

Figure 4.7 If a true bit error occurs in the last 3 bits of a segment, then the extra bit error occurs in the
beginning of the next segment. When the segments are put together to form a frame, the true bit error and
the extra bit error will be 3 bits apart.

3) If one or both of the two true bit errors occurs in the final 43 bits of a segment, but not

in the final 3 bits of the segment, then the extra bit error(s) will occur in the cell header of

the next segment. This will result in less than four bit errors in the actual frame, so that the

CRC will detect the error.

4) Assume one of the true bit errors occurs in the final 3 bits of a segment, and the second

true bit error occurs in the first (384 - 43) bits of a segment. Then one pair of errors in the

frame will be separated by 3 bits and the other pair by 43 bits. The error can be represented

by the polynomial:

Xq + Xq+ 3 + Xs + Xs+ 4 3 (4.5)

In order for such an error to go undetected, this polynomial must represent a valid

codeword. If the degree 34 generator polynomial is taken to be (X 34 + X 33 + X 1 4 + X13 +

X + 1) (obtained from [Pet61]), then by exhaustive search it can be shown that there are

no codewords of the form given by (4.5).

Overall, we conclude that two true bit errors are not sufficient to cause the frame CRC to
fail to detect the error.

At least three true bit errors must occur before bit errors in the frame will not be detected.

There are two different scenarios to consider. First, all three true bit errors could hit in the

frame such that the three extra errors also occur in the frame. There would then be a total

of 6 bit errors in the frame. Once the position of two of the true bit errors is chosen, there

is only one possible position where the third true bit error can occur to result in an

79



undetected error. If this were not the case, then by the linearity of the code, there would be

a codeword with 2 pairs of errors, where the errors are separated by 3 or 43 bits. This was

shown above to be impossible. Thus, we can upper bound the expected annual frequency
1013 (N (488 -40))

of frames per line where such an error is undetected by: N ( (48 - 40)) PR3 . If

N is 1366, which is the maximum number of cells per frame, then this frequency is 8x10-4 ,

which satisfies our goal.

A second scenario is where only one of the three true bit errors occurs in the frame such

that its corresponding extra error also hits the frame. (Note that if exactly two of the three

true bit errors result in pairs of errors in the frame, there would be a total of 5 bit errors in

the frame, which can be detected with certainty by the Extended Hamming code CRC.)

Once the position of this error pair and one of the other true bit errors is chosen, there is

only one possible position where the third true bit error can occur to result in an undetected

error. If this were not the case, then by linearity of the code, there would be a codeword of

weight 2, which is impossible (refer to Section 2.1.2). In order for a true bit error to hit

such that it only results in one error in the frame, it must occur in the last 43 bits of one of

the frame's segments or in the 43 bits prior to the start of the segment, as shown in Figure

4.8. Thus, we can upper bound the expected annual frequency of frames per line where
1013

such an error is undetected by: N (N(48.8 - 40)) (N)(2)(43) PR3 . If N is 1366, which

is the maximum number of cells per frame, then this frequency is 4x10-4, which satisfies

our goal.

43 bits 43 bits

Cell Segment not Cel Segment in
header in Framer Frame

Figure 4.8 In order for a true bit error to only result in one error in the frame, it must hit in the shaded
region. This assumes that cells of the frame are interleaved with cells of other frames.

Thus, the scrambler increases the rate of undetected error, but the rate is still acceptable.

4.9 CONCLUSIONS

For the ATM network, a 34 bit frame CRC should provide sufficient protection in attaining

our goal of no more than one undetected errored frame per receiver per year. This solution

80



should be very robust. We also showed that a four-state correction/detection option for the

cell header CRC is a simple method of reducing the probability of misdirected data. Our

proposed scheme is more effective and efficient than the CCITT AAL Type 3/4 proposal,

but is similar to the CCITT AAL Type 5 proposal.

81



CHAPTER 5

ERROR DETECTION IN TCP/IP

5.1 TCP/IP OVERVIEW

TCP (Transmission Control Protocol) and IP (Internet Protocol) are a set of standards

designed for interconnecting computer networks. TCP/IP is the standard communications

protocol used by computers connected to the Internet. The Internet is an entity established

in the early 1980's by the Defense Advanced Research Projects Agency (DARPA) to

provide data communication services between diverse networks distributed worldwide. As

of January, 1993, there were an estimated 1.3 million computers on about 8,000 networks

interconnected by the Internet.[Con93]

Our reasons for studying TCP/IP are threefold. First, we want to show that the design

guidelines presented in chapter three are applicable to TCP/IP as well as ATM, despite the

numerous differences between these systems. Second, we use these guidelines as a basis

for evaluating the effectiveness of the error detection scheme that is currently used in

TCP/IP. Third, we want to determine if the scheme can be made more effective and

efficient.

We examine TCP/IP in the context of the Internet. As can be seen in Figure 5.1, the

interconnected networks are referred to as subnetworks. The various subnetworks are

connected by computers that are called gateway nodes. From the standpoint of TCP/IP,

these gateways are the intermediate nodes along the data path. Thus, when considering the

low layer errors that occur in TCP/IP, we are actually considering errors that occur within

the underlying subnetworks.

Note th~at although TCP and IP are often referred to as a single unit (i.e., TCP/IP), these

two protocols can be implemented independently of each other. For example, TCP can be

82



used as the transport layer on a single network such as Ethernet[Com91]. IP can be used

with the User Datagram Protocol, the Internet Control Message Protocol, or the Exterior

Gateway Protocol rather than with TCP (see [Com91] for a description of these other

protocols). However, we focus only on the TCP/IP combination in this chapter.

Source Destination

TCP TCP

Layer Layer
Gateway Gateway
Node Node

iP IP IP IP
Layer Layer Layer Layer

I I I

Figur e 5.1 Diagram of TCP and IP layers on thene t.

Figure 5.1 Diagram of TCP and IP layers on the Internet.

We can relate the functions performed by TCP and IP to the functions performed by the

three layers analyzed in chapter three. The TCP layer corresponds to layer N, although its

PDU is called a segment rather than a message. TCP operates on an end-to-end basis, and

is responsible for any necessary data retransmission. IP lies below TCP at the source and

destination, and is the highest layer at the gateway nodes. It is responsible for dividing a

segment up into data units called fragments (rather than packets). Fragmentation can take

place at the source as well as at gateway nodes along the data path. The segment, however,

is reconstructed only at the destination. IP also handles the routing of fragments from one

gateway node to another. Thus, IP can be considered to be a combination of layers N-1

and N-2.

In TCP/IP, we define an undetected error event as occurring when a segment that contains

any type of error is accepted by the TCP layer at the destination as error-free. In ATM, we

set our goal to be a maximum of one undetected error event per year, per line. The TCP/IP

83



system is in general much less reliable than ATM, but the lower data rate of TCP/IP results

in less transmitted data. Thus, it is reasonable to expect that the annual rate of undetected

error can be reduced to this same level in TCP/IP. However, as shown below, the current

TCP/IP implementation does not meet this goal. The error detection scheme could be

modified so that the goal is met, but at the expense of complexity.

In Section 5.2, we discuss the general properties of TCP/IP and describe the error detection

scheme that is currently implemented in TCP/IP. In Section 5.3, we discuss our

assumptions about the various low level errors expected in TCP/IP systems. In Section

5.4, we analyze the TCP/IP error detection scheme using the algorithm of chapter three as a

guideline. Where appropriate, we suggest improvements to the scheme.

A large portion of the TCP protocol is involved with establishing the connection between

the source and destination nodes i.e., sending and acknowledging synchronization

messages. We will not analyze the potential problems that arise with this aspect of TCP.

(Reference [Hes88] describes some examples of the source and destination becoming

unsynchronized.) We will assume the connection has been successfully established and

focus on detecting errors that occur in the transmission of data.

5.2 TCP/IP DESCRIPTION

The following description of the TCP/IP protocol was obtained from references [DOD85]

and [Com91]. The format of a TCP segment and an IP fragment is shown in Figures 5.2

and 5.3, respectively.

TCP segments can be variable in length, with the maximum length being 65,536 bytes. The

segments are divided up into fragments by the IP layer. The size of the fragment depends

on the maximum sized datagram that the various encountered subnetworks can

accommodate. Fragmentation must be done on 8 byte boundaries. A 16 bit fragment

length field in the fragment header indicates the size of the fragment, including the header.

The length of the fragment header depends on which options have been set. The length

must be a multiple of four bytes, and can range from 20 bytes to 60 bytes. A 4 bit field

near the beginning of the fragment header indicates the length of the header, in units of 4

bytes.

84



32 bits 32 bits

Source Port Destination Port Vers. Hdr. Type of Svc. Length
Lth.

Sequence Number ID Flags Offset

Acknowledgment Number Time to Live Protocol Checksum

Lthdr. Resvd. Flags Window Size Source Address

Checksum Urgent Pointer Destination Address

Options Options

Data Data

Figure 5.2 TCP Segment. Figure 5.3 IP Fragment.

Fragments are routed on an individual basis. Each one contains the 32 bit Internet address

of the destination, along with the Internet address of the source. There is no guarantee that

all fragments belonging to one segment will follow the same path. It is possible that the

fragments may arrive at the destination in a different order from which they were sent.

This is handled in IP by including a 13 bit offset field in the fragment header that indicates

the offset of the fragment within the original TCP segment, in units of 8 bytes. It is also

possible that fragments from one segment may arrive intermixed with fragments from

another segment. Thus, each fragment includes a 16 bit identification field that identifies

the segment to which that fragment belongs. IP also might deliver duplicate fragments. A

retransmitted segment may be fragmented differently from the original transmission, but the

retransmitted fragments will contain a different 16 bit ID.

Another potential difficulty in reconstructing the segment correctly is that fragments may

circulate throughout the network for a long time, so that fragments from a torn-down

85



connection may be confused with fragments from a current connection. There is an 8 bit

Time To Live (TTL) field in each fragment header to help prevent this problem. The field

is decremented by one each time a fragment is routed through a gateway. A fragment is

discarded if the TTL field becomes 0. This field is more appropriately thought of as a 'Max

Gateways to Cross' field, since it does not necessarily have any correlation with time.

The actual length of the original TCP segment is not explicitly contained anywhere.

Instead, each fragment has a one bit flag in its header indicating whether the fragment is the

last one in the segment or not. The total length of the segment can then be determined as

the fragment offset plus the length of the data portion of the final fragment.

The entire fragment header is checked by a 16 bit checksum in the IP header.

TCP also includes two error detecting fields in its header. Each byte of data to be sent in a

TCP connection can be thought of as being numbered modulo 232. The number of the first

byte of the segment is contained as a 32 bit sequence number in the header of each

segment. This aids in determining when segments are missing at the destination, and also

helps to detect segments belonging to torn-down connections. We discuss this further in

chapter eight when we analyze the TCP retransmission scheme.

The TCP header also contains a 16 bit checksum, which checks on the entire TCP segment.

The checksum also checks on a pseudoheader comprised of the destination address, source

address, segment length, and protocol indicator (which should be set to TCP). IP

determines the values for these fields based on what it has received, and passes these

values to TCP. The TCP checksum is calculated as if these fields were part of the TCP

segment. (See chapter two for a discussion of pseudoheaders.)

The length of the segment header depends on which options have been set. The length

must be a multiple of four bytes, and can range from 20 bytes to 60 bytes. A 4 bit field

near the beginning of the segment header indicates the length of the header, in units of 4

bytes.

Table 5.1 compares the characteristics of TCP/IP to those of ATM Service Class C. TCP

corresponds to the Convergence Sublayer of the AAL, and IP corresponds to a

86



combination of the Segmentation and Reassembly Sublayer and the ATM Layer. Below,

when we use the term message, we are referring to a segment in TCP/IP systems and a

frame in ATM systems. Table 5.2 compares the mechanisms included for error detection

and reconstruction of messages in TCP/IP, the CCITT AAL 3/4 Proposal, and our ATM

proposal. TCP/IP and our proposed ATM scheme are similar in that both schemes include

a redundancy check on the whole message. However, our scheme overall has many fewer

checks than TCP/IP, which is reasonable since ATM systems are expected to be much

more reliable than TCP/IP systems. Many of the checks that are included in TCP/IP are

also included in the AAL 3/4 proposal. In TCP/IP these checks are needed due to the

unreliable nature of IP; in the AAL 3/4 proposal, these checks are needed since there is no

redundancy check on the frame as a whole.

Table 5.1 Characteristics of TCP/IP vs. ATM

TCP/IP ATM (Service Class C)

Variable length segments Variable length frames

Max length of segment is 216 bytes Max length of frame is 216 bytes

Variable length segment header Fixed length frame header and trailer

Variable length fragments Fixed length cells

Variable length fragment header Fixed length cell header

Fragments are not expected to travel in order; Cells expected to travel in order; duplicate cells
duplicate fragments are expected not expected

Reassembly generally only done at destination. Reassembly generally only done at destination.
Fragmentation can occur at any gateway along the Segmentation of frames occurs only at the
data path. source.

87



Table 5.2 Mechanisms for Error Detection and Reconstruction of Messages

TCP/IP AAL 3/4 Proposal Our ATM Proposal

1 bit flag in fragment header to 2 bit field in cell payload indicates 1 bit flag in cell header to indicate
indicate last fragment of segment BOM, MOM, EOM last cell of frame

2 byte fragment ID to identify 10 bit message ID (MID) in cell. No ID field in cells
which fragments belong to the Set to a default value for
same segment connection-oriented traffic.

Checksum on whole segment No check on whole frame CRC on whole frame

No per-fragment check on fragment CRC on cell payload No per-cell check on cell data
data

Checksum on fragment header CRC on cell header CRC on cell header

Fragment length field included in Cell length field included in all No cell length field; pad length field
all fragments cells at end of frame

Offset within segment included in Cells are numbered mod-16 Cells not numbered
each fragment

Segment length field is not Length field in both frame header No length field in segment
explicitly included in the segment. and trailer
It is part of the pseudoheader
checked by the segment checksum.

32 bit sequence number for TCP 8 bit frame ID in both frame header No frame ID field
segment; increases by the number and trailer
of bytes in the segment.

Destination address of segment Destination address not checked Destination address of frame
checked implicitly by segment implicitly checked by frame CRC
checksum.

5.3 ASSUMPTIONS

5.3.1 Error Characteristics of TCP/IP

TCP/IP is run over a wide variety of systems, with very different error characteristics. We

can expect random bit errors, burst errors, and congestion. We use the variables PR, PB,

and PC to represent the random bit error rate, burst error rate, and congestion drop rate,

respectively. It is difficult to come up with meaningful estimates of the likelihood of these

different events since the underlying subnetworks may have very different characteristics.

However, it is likely that the TCP/IP system will be less reliable than the ATM system. In

ATM, we assume PR equals 10-8, PB equals 9x10-8, and PC equals 10-6. Our approach

will be to use probabilities that are about 100 times more likely than this, which is

obviously somewhat arbitrary. Thus, we use PR = 10-6, PB = 10-5, and PC = 10-4.

88



Throughout our analysis, we comment on when these assumptions significantly affect our

results.

Note that systems that require high reliability are likely to have additional error checks in

addition to the checks included in TCP/IP. For example, the subnets could be local area

networks that are likely to include CRCs that check on the validity of the data. Thus, the

bit error rate seen at the TCP/IP level is likely to be smaller than the value we are using.

5.3.2 Annual Traffic

The central network of the Internet is the NSF backbone net, which is made up of T1 lines

running at 1.5 Mb/sec[Com91]. (This is being updated to T3 lines running at 45 Mb/sec.)

Local data links are likely to be running at 56 Kb/sec. However, we will use 1.5 Mb/sec as

the data rate for the whole data path since that will provide some margin in attaining our

goal of no more than one undetected error event per year per line.

The size of a fragment can be variable, but we will perform our analysis using the default

fragment size of 576 bytes. If our calculations call for a segment size, we will arbitrarily

use 1024 bytes as the size. Both the IP header and the TCP header can range in size from

20 to 60 bytes, but we will assume the size is 20 bytes, which is the typical size in practice.

Using these assumptions, we estimate that about 1010 fragments and 5x10 9 segments travel

per line, per year.

5.4 ANALYSIS OF TCP/IP ERROR PROTECTION SCHEME

We use the five step algorithm presented in chapter three to analyze the error protection

provided in the current implementation of TCP/IP. TCP and IP both make use of a 16 bit

checksum rather than a CRC, since a checksum is easier to implement in software. It is

worthwhile to review the error detecting properties of a checksum. If N is the number of

16 bit words being checked by the checksum, then the probability of two random bit errors

occurring and going undetected by the checksum is given by equation (2.15):

16( N) 1 PR2. In the analysis below, we are frequently concerned with the case where

a random bit error occurs in a particular M bit field. If M is less than or equal to 16, then

the probability of the error occurring and not being detected is:

M (N-1) -P R 2 (5.1)

89



We can also use equation (5.1) to upper bound the probability of the error occurring and

not being detected for the case where M is greater than 16. Throughout the analysis, we

assume the probability of undetected errors due to more than two random bit errors is

negligible.

Referring back to Table 3.1, the errors that need to be handled in TCP/IP are:

TABLE 5.3: List of Error Scenarios in TCP/IP

1. Stray fragments
Fragments arrive at the wrong destination
Fragments remain from an old connection

2. Out-of-sequence fragments

3. Duplicate fragments

4. Lost fragments

5. Fragments from more than one segment are merged into one segment
Error in ID field
END fragment lost

6. Bit errors in the data

7. Bit errors in the control information
Error in END field
Error in offset field
Error in fragment length field
Error in fragment header length field
Error in segment header length field

For completeness, we will examine each of these error scenarios, using the guidelines of

chapter three. Our analysis will show that bit errors in the data is by far the most common

type of undetected error event that can be expected. The results of the analysis are

summarized in Table 5.4 at the end of the section.

5.4.1 Step 1: Prevention of Misdirected Fragments

In IP, routing of the fragments is performed based on the value of the 32 bit destination

address in the IP fragment header. Undetected errors in the address field can result in

misdirected data. To protect against stray data, IP includes a 16 bit checksum that checks

on the fragment header.

90



Let's calculate the protection that is provided by the IP header checksum. We make the

worst case assumption that any undetected errors in the address field will result in a

misdirected fragment. First, consider undetected random bit errors. At least 2 bit errors

must occur in the 20 byte header before the error could go undetected, and at least one of

the bit errors must occur somewhere in the 32 bit address. Using equation (5.1), the

probability of this is roughly: (32)(10-1) PR2 = 10-10. Thus, the number of misdirected

fragments due to random bit errors per year, per line is about 1. If PR were 10-5 rather

than 10-6, the frequency of stray fragments per year, per line would be about 100. Note

that in ATM, with a cell header CRC for protection, we expect about 20 misdirected cells

per year, per line.

Next we look at the probability of undetected error if the fragment is hit by a burst error.

We assume the header checksum fails to detect the error with probability 2-16. Thus, with

PB equal to 10-5, the probability of stray fragments due to burst errors is: PB 2-16 = 10-10.

Again, this leads to about 1 misdirected fragment per year, per line.

We conclude that a 16 bit checksum provides sufficient protection against misdirected

fragments. It provides less protection against random bit errors than a CRC, but the

protection is still sufficient. As for burst errors, the length of the redundancy check is the

key factor. Thus, the 16 bit checksum is actually more effective than an 8 bit CRC against

burst errors.

For the remainder of the analysis, we assume that the probability of a fragment being

misdirected is about 2xl0- 10 .

5.4.2 Step 2: Detection of Bit Errors in Data

The only protection against bit errors in the data is the 16 bit checksum in the TCP

segment. First, consider random bit errors. Assuming the segment size is 1024 bytes

(i.e., 512 16-bit words), the expected annual frequency of undetected random bit errors in

the data, per line is about: (5x109) 16 (5 2) 1PR2 = 5x103 . This does not come close to

meeting the goal of no more than one undetected error per year, per line. If the underlying

system happens to be very reliable (e.g., the underlying media is reliable or the subnets

include their own error protection mechanisms), and PR is on the order of 10-8 rather than

10-6, then the annual frequency of undetected error would be .5. Thus, under very good

91



conditions, the checksum provides sufficient protection. However, it is desirable that the

error detection scheme of TCP/IP provide enough protection over a range of systems.

One improvement would be to increase the length of the checksum. For every doubling of

the length of the checksum, the rate of undetected error decreases by a factor of 2. This is

not an efficient means of decreasing the undetected error rate. Another option would be to

use a different type of checksum. There has been some research done on alternate ways of

calculating a checksum so that undetected errors are less likely. For example, in [Fle82] a

checksum is described that is capable of detecting more two bit error patterns than the

checksum used in TCP.

Ideally a CRC would be used instead of a checksum. A CRC provides better error

protection than a checksum, but it is more complex to implement in software. However, it

is currently possible to implement a CRC in inexpensive hardware; thus, it would not be

unreasonable to include a CRC as part of the protocol. Assume a 32 bit Extended

Hamming code CRC were used. Then, using equation (2.10), the rate of undetected bit

errors per year, per line would be: (5x10 9) (8192) 4PR4 = 10-4.

Next, consider the protection the 16 bit segment checksum provides against burst errors.

We make the worst case assumption that only the data portions of the fragments are

affected by the burst error. If fragments are independently hit by a burst error with

probability PB, then the expected number of segments containing undetected bit errors in

the data due to burst errors, per year per line, is: (1010) PB 2-16 = 1. To provide some

margin in attaining the goal of no more than one undetected error per year, per line, it

would be preferable to have a redundancy check of length 32 bits.

Thus, we see that a 16 bit segment checksum is barely adequate in detecting burst errors

and is inadequate in detecting random bit errors in the data (assuming the random bit error

rate is 10-6). A CRC of length at least 32 bits should be used. For the remainder of our

analysis, however, we will continue to assume a 16 bit checksum is present since that is

what is specified in the TCP protocol. We will see that undetected random bit errors in the

data dominates all other undetected error events.

92



5.4.3 Step 3: Correction Options at the IP Layer

There are four types of problems that, if dealt with at the IP layer, can result in fewer

dropped segments. Misdirected, duplicate, or old fragments can be detected and discarded,

and out-of-sequence fragments can be reordered. The goal of this section is to determine

the likelihood of these four error events, and to determine if it is worthwhile to add fields at

the IP layer for the purpose of 'correcting' these errors.

5.4.3.1 Misdirected Fragments

Due to the presence of the fragment header checksum, the number of misdirected fragments

is expected to be small. Furthermore, each fragment contains a source address and

destination address field so that the destination can identify to which connection the

fragment belongs. (Recall that IP is a connectionless layer, so that virtual channels are not

established as they are in the connection-oriented service class of ATM.) When IP attempts

to merge fragments together to form a segment, it checks to make sure that each of the

fragments contains the same source address and destination address. It is likely the source

address of a misdirected fragment will not be acceptable, so that the fragment will be

dropped. Also, each fragment contains a 16 bit ID field that identifies the segment to which

it belongs. It is unlikely that the ID field of a misdirected fragment would match the ID

field of fragments at the incorrect destination (this is discussed further in Section 5.4.3.4).

Due to the presence of these mechanisms, it is not worthwhile to add additional fields

specifically for the purpose of detecting misdirected fragments at the IP layer.

5.4.3.2 Out-of-Sequence Fragments

Out-of-sequence fragments are common in IP; thus, it is worthwhile to include a

sequencing mechanism so the fragments can be properly reordered by the destination. The

sequencing mechanism also helps detect duplicate and old fragments.

Fragments are variable length, and fragmentation can occur at gateway nodes along the data

path. Section 3.4.3.1.2 described two sequencing mechanisms that would be appropriate

for IP: offset numbering and tree sequencing. Offset numbering is more robust, but tree

sequencing requires less overhead. IP makes use of the offset numbering scheme; there is

a 13 bit field in the fragment header that indicates the offset of the fragment within the TCP

segment, in units of 8 bytes. (Segments have a maximum size of 216 bytes.) The choice

of the offset numbering scheme makes sense. Using the tree sequencing method would

reduce the average amount of fragment header overhead by about 1 byte, but this is a

93



relatively small savings considering the fragment header can be anywhere from 20 bytes to

60 bytes long.

The offset field by itself is not sufficient to reorder fragments, since fragments belonging to

different segments may be interleaved. For example, assume segment A and segment B are

comprised of two fragments, both of size 512 bytes. If the fragments arrived in the

following order the IP layer would not know how to properly resequence them: Segment

B fragment, offset 512; Segment A fragment, offset 512; Segment B fragment, offset 0;

Segment A fragment, offset 0. Thus, it is necessary to include a field that identifies which

segment the fragment has come from. IP includes a 16 bit ID field for this purpose. The

ID field is also helpful in detecting out-of-date fragments, as will be discussed in Section

5.4.4.

In addition to the offset field and ID field, IP also includes a fragment length field in each

fragment. As described in Section 3.4.3.1, given the presence of these three fields, the

worst case resequencing scenario occurs when the last fragment arrives before the second-

to-last fragment, and the last fragment contains an error in its offset field so that its offset

equals the offset of the second-to-last fragment. The last fragment would in effect take the

place of the second-to-last fragment, and the second-to-last fragment would be ignored.

The expected annual frequency of such an error occurring due to random bit errors in the

13 bit offset field and going undetected at the IP layer can be upper bounded by:

(5x10 9) 13 (10 - 1) 2 PR2 = .3.

We can also consider a burst error hitting the header of the last fragment and changing the

offset field and the checksum field (but leaving the other fields intact). (Note that if the

offset field were the only field affected by the burst error, then the error would be detected

with certainty, since the 16 bit checksum can detect error bursts up to 15 bits.) After being

hit by a burst error, the offset field will equal the offset of the second-to-last fragment with

probability 2-13. The IP checksum will not detect the error with probability 2-16. Thus, the

expected annual frequency of this error occurring due to burst errors and going undetected

at the IP layer is: (5x109) PB 2-13 2-16 = 9x10- 5.

Thus, the expected rate of resequencing errors at the IP layer is .3 per year, per line. As

will be discussed below, the segment checksum helps detect resequencing errors that do

94



occur. Thus, we conclude that it is not worthwhile to add further fields at the IP layer for

the purpose of resequencing fragments.

5.4.3.3 Duplicate Fragments

Duplicate fragments should be detected by the combination of the fragment offset field and

the ID field. There is not a need to add further checks to detect duplicate fragments .. . .

Note that when segments are retransmitted, a new ID is used for the fragments. This is

necessary since segments may be fragmented differently when they are retransmitted, and

the fragments from earlier transmissions may still be present in the system.

5.4.3.4 Old Fragments

Routing errors may occur such that a fragment circulates throughout the network for a long

time before being delivered to the destination. This can lead to errors if the out-of-date

fragment is not distinguishable from current fragments. One weak form of protection

against this scenario is the Time To Live field in the fragment header. As described in

Section 5.2, this field upper bounds the number of gateway nodes a fragment can cross.

However, it does not necessarily limit the amount of time a fragment can spend in the

network. For instance, a fragment can circulate through one subnetwork for a long time;

during this time it does not cross any gateway nodes.

Thus, it can be expected that out-of-date fragments will arrive at a destination. The 16 bit

ID field included in the fragment can be used by IP to detect old fragments. When a

fragment that is not a complete segment arrives at the destination, the destination checks to

see if the ID field matches the ID of any other fragments it is currently processing. If it

does not match, the destination sets a reassembly timer corresponding to this new ID. If

another fragment with this ID is not received by the expiration time of the reassembly timer,

the fragment is dropped. Thus, the likelihood of the old fragment appearing to be part of a

current segment depends on the length of the timer. The longer the timer is, the more likely

the old fragment will be accepted. If the data rate of a connection is 1.5Mb/sec and

segments are 1024 bytes long, then the connection cycles through the 16 bit ID field in

about 9 minutes. Thus, the timer should be set for a time significantly less than this in

order for the ID field to be effective in detecting old fragments. In [DOD85] the suggested

timer setting is 15 seconds. Also, in order for the old fragment to be accepted, it would

have to contain the proper offset and length field to fit in with fragments at the destination.

95



Thus, we conclude that it is not worthwhile to add further checks at the IP layer for the

purpose of detecting old segments.

5.4.4 Step 4: Examine Remaining Error Scenarios

Thus far, we have demonstrated the usefulness of the following error detection fields: a

checksum on the fragment header, a fragment offset field, a fragment length field, a

fragment ID field, and a redundancy check on the segment data. Ideally, the redundancy

check on the segment data would be a CRC. However, TCP specifies that a checksum be

used rather than a CRC. This is a very critical decision. As discussed in chapter three,

only the data redundancy check is capable of detecting bit errors in the data. As shown in

Section 5.4.2, the TCP checksum does not provide a lot of protection against random bit

errors; the expected annual undetected error rate per line due to random bit errors in the data

is 5x103 (assuming PR equals 10-6). Thus, given that no additional data redundancy

checks are used, the overall rate of expected undetected errors per year per line can be no

smaller that 5x10 3.

In this section, we run through the remaining error scenarios and show that with the current

TCP/IP error protection scheme, the undetected error rate due to these other errors is

negligible compared to 5x103 . Thus, it does not make sense to include additional fields to

detect these scenarios, since the overall performance of the scheme will not improve. The

data redundancy check field essentially establishes a lower bound to the undetected error

rate.

The error scenarios below involve fragments being put together incorrectly to form a

segment. In most of these scenarios, in order for the error not to be detected by the IP

layer, some M bit field in one of the fragment headers must contain an error such that after

the error it contains some specific value, say V. We will make the worse case assumption

that just one bit error changes the field in such a way that it will contain the value V. Since

the fragment header is protected by a checksum, a second bit error must occur somewhere

else in the header in order for the checksum not to detect the error. Thus, if random bit

errors cause the error in the M bit field, then the probability of the two bit errors occurring

and not being detected by the checksum is (using equation 5.1):

M (10-1) -PR 2 = M(5x10-1 2 ).

96



The error in the M bit field could also be caused by a burst error. We will assume that a

burst error hits such that only this M bit field and the header checksum are affected by the

error. (If only the M bit field were affected, and M is less than 16, then the error would be

detected with certainty by the checksum; if fields other than the M bit field and the

checksum were affected by the error, then other inconsistencies would likely be produced).

After the burst error, we assume the M bit field contains the value V with probability 2-M.

The error will not be detected by the header checksum with probability 2-16. Thus, if a

burst error causes the error in the M bit field, then the probability of the burst error

occurring and not being detected by the checksum is PB 2-M 2-16 = 2x10-1 0 2-M.

Thus, in general, the overall probability of the error in the M bit field occurring and not

being detected is:

M (10-1) 2 PR2 + PB 2-M 2-16 (5.2)

For M greater than 5, the term due to random bit errors dominates.

Throughout this section, we assume segments are comprised of multiple fragments, and

that 1010 fragments comprising 5x10 9 segments are transmitted per year, per line.

5.4.4.1 Stray Fragments

As shown in Section 5.4.1, the fragment header checksum reduces the probability that a

fragment will be misdirected to 2x10-10. If a fragment is misdirected, it could be accepted

as part of a segment at the wrong destination. In order for the misdirected fragment to be

accepted as part of a segment, its source address must match the source address of the other

fragments in the segment. We'll make the worst case assumption that it does match. Also,

the ID of the misdirected fragment must match the ID of the other fragments in the segment.

It will match with probability about 2-16. (There might be more than one segment being

constructed for a given connection so the probability of the ID of the misdirected fragment

matching one of them will be higher than 2-16. As mentioned in Section 5.4.3.4, this will

depend on the length of the reassembly timer. We will ignore this.) In addition, the offset

and length of the misdirected fragment must be precisely the right values in order for the

stray fragment to fit in with the other fragments of the segment. We will make the worst

case assumption that it does fit in. (Note that stray fragments are more likely to appear

acceptable if the fragment size throughout the network is the same; errors are more likely to

be detected if the fragment size is highly variable.) If the IP layer fails to detect the

misdirected fragment, it will pass up to TCP a segment that has incorrect data in it. The

97



segment checksum will fail to detect the error with probability 2-16. Assuming each

misdirected fragment results in one errored segment, then the expected annual frequency of

segments containing undetected misdirected fragments per line is: 1010 2x10-1 0 2-16 2-16 =

5x10-1 0. This is negligible compared to the expected frequency of undetected bit errors in

the segment data.

Note that the problem of old fragments circulating in the network most likely results from a

routing error. Thus, we assume the calculation above for misdirected fragments also takes

into account the scenario of old fragments arriving at a destination

5.4.4.2 Out-of-Sequence Fragments

As discussed in Section 5.4.3.2, IP includes many mechanisms for the purpose of

correctly resequencing fragments that arrive out-of-order. Each fragment includes a

fragment offset field, a fragment length field, and an ID field; these fields are all protected

by the fragment header checksum. The expected number of undetected sequencing errors

at the IP layer is 3x10-1, per year, per line. The TCP checksum will fail to detect the error

with probability 2-16. Thus, the overall expected number of segments containing

undetected out-of-sequence fragments per year, per line is 3x10-1 2-16 = 5x10-6 . This is

negligible compared to the 5x103 rate of undetected errors due to bit errors in the data.

5.4.4.3 Lost Fragments

Congestion, burst errors, and random bit errors can all cause lost fragments. We make the

worst case assumption that fragments are dropped independently due to congestion with

probability PC. We also assume fragments are independently hit by a burst error and

dropped with probability about PB. One random bit error in the fragment header will result

in the fragment being dropped. The overall probability a fragment will be lost is then:

PC + PB + (20)(8)PR = 3x10 -4 .

There is a one bit flag in the fragment header that indicates whether a fragment is the last

fragment of the segment. We look at the case where a non-END fragment is lost, so that

the segment has too few fragments. If an END fragment is lost, fragments from multiple

segments are merged together. Merged segments are discussed in the next section.

Each fragment contains a fragment offset field and a length field. The destination can use

these fields to determine if there are any gaps in reconstructing the segment. Assume a

segment is comprised of two fragments and assume the first one is dropped. There must

98



be a bit error in the 13 bit fragment offset field of the second fragment in order for the lost

fragment not to be detected by IP. Using equation 5.2, the probability of the error

occurring in the fragment offset field and not being detected by the fragment header

checksum is: 13 (10-1) 2 PR2 + PB 2-13 2-16

If the IP layer does not detect the lost fragment, an incorrect segment will be passed up to

TCP. In general, lost fragments will result in the calculation of the TCP checksum

essentially being random. Thus, the segment checksum will fail to detect the error with

probability 2-16. Overall, the expected annual frequency of segments containing undetected

lost non-END fragments per line is about:

5x109 (3x10-4)(13 (10-1) 2 PR2 + PB 2-13 216) 216 = 110-9. This is negligible

compared to 5x103.

Notice that including the segment length in the pseudoheader does not help detect the error.

The segment checksum fails to detect the error with probability 2-16 whether or not the

segment length is included in the pseudoheader.

5.4.4.4 Merged Segments

There are many error scenarios that could result in the fragments of multiple segments

being merged together at the destination. The most likely scenario is described here.

Consider two segments, which we refer to as A and B, that are each comprised of two

fragments. Assume all four fragments are the same size. Assume the first fragment of

segment B arrives, followed by the second fragment of segment A. If the 16 bit ID field of

the B fragment has an error in it such that it matches the ID of the A fragment, then the two

fragments will be merged together to form a segment.

Using equation (5.2), the probability of the error occurring in the ID field and not being

detected by the header checksum is: (16 (10-1) 2 PR2 + PB 2-16 2-16). If the error is not

detected by the IP layer, then the segment checksum (which will come from the B

fragment) will essentially be checking random bits; it will fail to detect the error with

probability 2-1 6. Thus, the expected annual frequency of undetected merged segments per

line, is: 5x10 9 16 (10 -1) -PR 2 + PB 2-1 6 2 - 1 6 2-16 = 5x10- 6. Again, we see that

99



the undetected error rate of this error is negligible compared to the undetected error rate of

random bit errors in the data.

5.4.4.5 Errors in the END Flag

There is a one bit flag in the fragment header that indicates whether the fragment is the last

fragment of the segment. The flag is protected by the header checksum so that at least one

other bit error must occur in the header in order for an error in the END flag not to be

detected. Since the flag is only one bit, the probability of the error occurring and not being

detected by the header checksum is: (10-1) PR2 + PB 2-1 2-16 = 8x10 -1 1.

If a bit error occurs such that the END fragment of a segment is changed to a non-END

fragment, then the fragments of this segment will be merged with the fragments of the next

segment. Merged segments were already discussed in the previous section, so there is no

need to discuss this scenario further.

If a bit error changes a non-END fragment to an END fragment, then the resulting segment

will be too short. (The portion of the original segment that follows the errored fragment

should be recognized by the receiver as an invalid segment since there will not be a

fragment with segment offset 0.) The segment checksum will fail to detect the error with

probability 2-16. Thus, the expected annual frequency of segments containing undetected

non-END to END transitions per line is: 5x109((10-1) PR2 + PB 2-1 2 -16 2-16 =

6x10-6 . This is negligible compared to 5x103.

5.4.4.6 Offset Errors

Consider two consecutive fragments belonging to the same segment; call them fragment 1

and fragment 2. In order for the destination to join these two fragments together, the offset

of fragment 2 must precisely equal the offset of fragment 1 plus the data length of fragment

1. (The length of the data portion of a fragment is determined by the fragment length field

minus the fragment header length field.) Thus, in order for an error in the 13 bit offset

field of fragment 2 to go undetected, there must also be errors in the header of fragment 1

(in either the 4 bit header length field or the 16 bit fragment length field). The fragment

headers are each protected by a checksum; thus, overall at least two errors must occur in

both fragments 1 and 2. If the error is not detected by IP, then an incorrectly reconstructed

segment will be passed up to TCP. The segment checksum will fail to detect the error with

100



probability 2-16. Thus, the expected annual frequency of segments containing undetected

fragment offset errors per line is upper bounded by:

2 25x109 (13 (10-1) PR2 + PB2-132- 1 6X(16+4)(10-1) PR2 + PB (2-16+24)216 2 -1 6

= 4x10-16

This is negligible compared to 5x103.

5.4.4.7 Fragment Length Errors

Errors in the fragment length field or fragment header length field are least likely to be

detected if they occur in the last fragment of a segment. In order for such an error not to be

detected, there must be at least two bit errors in the header of the last fragment; errors are

not needed in any other fragment header. If the header checksum fails to detect the error, a

segment of incorrect length will be passed up to TCP. The segment checksum will fail to

detect the error with probability 2-16. Thus, the expected annual frequency of segments

containing undetected length errors, per line, is about:

5x109 (16+4) (10-1) 2 PR2 + PB (2-16 + 2-4) 2 -1 6 2-1 6 = 7x10-6. This is negligible

compared to the expected frequency of undetected bit errors in the segment data.

5.4.4.8 Errors in Segment Header Length Field

The segment header is variable length. There is a 4 bit field in a fixed location in the

segment header that indicates the size of the header. The length of the data portion of the

segment is the length of the entire segment, as passed up to TCP by IP, minus the length of

the header, as specified in the 4 bit field. If there is an undetected error in the header length

field, the wrong amount of data will be accepted by the destination.

The segment checksum checks the entire segment, including the segment header. (The

location of the checksum in the header is fixed, and is thus unaffected by an error in the

header length field.) In order for the error in the segment header length not to be detected,

there must be at least one other bit error in the segment. If the segment length is 1024

bytes, the probability of an error in the header length occurring and not being detected by

the segment checksum is: (4) (512 -1) - PR 2 + PB 2-16 = 10-9 . The expected annual

frequency of segments with undetected segment header length errors per line is then:

5x10 9 10-9 = 5.

101



Note that the pseudoheader plays no role in this error scenario. The length field included in

the pseudoheader is the length of the entire segment [Com9 1]; thus, it is unaffected by the

value of the header length field.

This scenario is very similar to the scenario where bit errors in the data are not detected by

the checksum. In both cases, the segment checksum is not powerful enough to detect

random bit errors in the segment. As stated earlier, a more powerful checksum or a CRC

should be used.

5.4.4.9 Summary

In the sections above, we showed that bit errors in the data is the dominant cause of

undetected errors. The expected annual frequency of segments containing undetected bit

errors in the data is 5x103 , per line. All other error scenarios yield an expected annual

frequency of undetected error of less than 10-5. (We consider undetected bit errors in the

segment header length field to fall under the same category as bit errors in the data.) Thus,

the weak segment checksum severely affects the performance of the error detection scheme.

5.4.5 Step 5: Examine Single Fragment Segments

The last step in analyzing the error detection scheme is to examine error scenarios involving

segments comprised of only one fragment. Specifically, we need to consider the case

where the single fragment is misdirected or where it contains an error in its length field or

its header length field.

5.4.5.1 Misdirected Fragment

If a single fragment segment is misdirected, the 16 bit ID field does not help in detecting the

misdirection. The only mechanism for detecting the misdirected segment is the 32 bit

destination address included in the pseudoheader. The pseudoheader is checked by the

segment checksum. Thus, if the segment is misdirected, the checksum will essentially be

checking random bits for the destination address. Thus, the segment checksum fails to

detect the error with probability 2-16.

Due to the fragment header checksum, however, misdirection is not a frequent occurrence.

As shown in Section 5.4.1, we expect no more than two misdirected fragments per year,

per line. Thus, we can upper bound the annual frequency of undetected misdirected single
fragment segments by: (2) 2-16 = 3x10- 5. This may be a very loose upper bound

depending on the number of segments that are comprised of just one fragment.

102



Regardless, this undetected error rate is negligible compared to the expected frequency of

undetected bit errors in the segment data.

5.4.5.2 Error in Length Field

Consider a bit error in the length field or header length field of the single fragment. Since

the fragment is not being merged together with other fragments, IP can not rely on the

offset fields of other fragments to help detect this error. If the error is not caught by the

header checksum, the wrong sized segment will be passed up to TCP. Actually, this

scenario is no different from the scenario considered in Section 5.4.4.7, where the last
fragment of a segment has an error in its length field or header length field. As shown

there, the fragment header checksum and segment checksum provide enough protection

against this error scenario.

5.4.6 Summary of Error Protection in TCP/IP
Table 5.4 summarizes the above analysis of the current TCP/IP implementation. The

figures in the table assume the following: data rate of 1.5 Mb/sec, segment length of 1024

bytes, fragment length of 576 bytes, segment header length and fragment header length of

20 bytes each. The probability of the underlying errors is assumed to be: PR = 10-6,

PB = 10-5 , and Pc = 10-4.

5.5 CONCLUSIONS

Overall, the TCP/IP scheme follows most of the principles laid out in chapter three. A

fragment checksum is used to prevent misdirection, a redundancy check is placed on the

segment rather than on individual fragments, and fragment offset and ID fields are included

so that fragments can be properly resequenced and stray fragments can be dropped.

However, the choice of a 16 bit checksum as a redundancy check on the segment is not

effective; it does not provide satisfactory protection against bit errors in the data. With our

assumption that the random bit error rate is 10-6, the current TCP/IP implementation does

not succeed in reducing the number of undetected error events per year, per line to one or

less. Rather, 5x103 undetected error events can be expected per year, per line. A more

powerful segment checksum should be used or a segment CRC should be used. We
showed that a 32 bit CRC would provide sufficient protection. The drawback of the CRC

is its software implementation complexity.

Another way of looking at this is if reliability is an important issue, then there needs to be

more error protection than what TCP/IP provides. In practice, the subnetworks over which

103



Table 5.4

Expected Expected Annual Freq. of

Chief Annual Freq. Undetected Error Using Current

Error Type Cause of Occurrence TCP/IP Error Detection Scheme
Bit Errors Burst error 105 1
in Data

Random Bit Errors 4x10 7 5x10 3

Misdirected Burst Error, 2 5x10- 10

Fragment Random Bit Error

Out-of-sequence Random Bit Error .3 5x10-6

Fragments
(after IP attempts
to resequence)

Lost non-END Congestion, 2x106 10-9

Fragment Random Bit Error,
Burst Error

Merged Random Bit Error 8x104 5x10 -6

Segments

Error in END Random Bit Error, 3x104 6x10-6

Flag Burst Error

Error in Random Bit Error 105 4x10-16
Fragment Offset

Error in Random Bit Error 2x10 5 7x 10-6
Frag. Length
or Hdr. Length

Error in Random Bit Error, 7x10 4 5
Segment Header Burst Error
Length

the TCP/IP connection is run may provide their own error detection mechanisms that
effectively reduce the bit error rate at the TCP/IP level. For example, local area networks,
which often serve as a subnet in a TCP/IP connection, typically include a CRC as a

104



redundancy check. If the random bit error rate were 10-8 rather than 10-6, then the goal of

no more than undetected error event per year, per line is met.

Random bit errors play a more important role in TCP/IP than they do in ATM for two

reasons. First, ATM systems are expected to be run over fiber optic systems, where the

random bit error probability is very small. TCP/IP is designed to run on any type of

network, so the bit error rate can be much higher. Secondly, in ATM, Extended Hamming

code CRCs are used for redundancy checks on the cell header and the frame data; four bit

errors must occur before the CRC will fail to detect the error. In TCP/IP, checksums are

used for redundancy checks on the fragment header and segment data; just two bit errors

can result in an undetected error. As is shown in Table 5.4 the chief cause of most errors

in TCP/IP is random bit errors.

The TCP/IP scheme provides very good protection against all errors except bit errors in the

data. Thus, if the TCP/IP scheme were modified to include a segment CRC, it would

provide sufficient protection over a wide range of systems.

105



CHAPTER 6

RETRANSMISSION SCHEMES

6.1 INTRODUCTION

The previous three chapters dealt with designing effective error detection schemes. We

specifically examined error detection at three layers of a network, which we call layers N,

N-1, and N-2. Layer N operates end-to-end and is concerned with the integrity of the

message as a whole. Layer N-1 also operates end-to-end but deals with errors on a packet

level; it is responsible for dividing a message into packets at the source, and reconstructing

the message at the destination. Layer N-2 is involved with routing packets on a node-by-

node basis and deals with preventing routing errors. Using the error detection techniques

discussed in these chapters, we assume that any message that is accepted by layer N at the

destination will with very high probability be error-free.

In addition to error detection, a network protocol must provide a means of recovering from

errors. Error recovery is the subject of the remaining chapters. This chapter analyzes

retransmission schemes, where the source retransmits data that has not been successfully

received by the destination. The overall goal of this chapter is to determine how the

characteristics and resources of a network should affect the choice of retransmission

schemes. Chapters seven and eight apply this analysis to ATM and TCP/IP systems,

respectively.

It should be noted that not all connections require recovery from errors. For example, if a

connection carries video or voice, it is not crucial that all messages be received intact.

However, if a connection carries critical data, such as bank transactions, it is important that

the destination be able to reproduce exactly what was sent by the source with very high

probability.

106



Throughout this chapter, it is assumed that error recovery is performed only at layer N.

The reasons for recovering from errors at layer N were enumerated in Section 3.2. For

simplicity, we will consider a message to be the unit of retransmission. The actual unit of

retransmission is a layer N SDU (a message is the layer N PDU), since different control

information may be added when data is retransmitted. Unless otherwise noted, we use the

term 'message' to refer to data messages, not control messages.

There are three specific scenarios that layer N needs to handle. First, a message may never

reach layer N at the destination. This may be due to the message being lost during

transmission, or due to layer N-1 dropping the message after detecting an error in

reconstructing the message. Second, layer N itself may detect an error in a message.

Third, messages may be passed up to layer N in a different order from which they were

sent by the source.

If a message is not received by layer N, then the destination must inform the source of this

so that the data can be retransmitted. The destination can send a control message indicating

the message is lost; this is known as a negative acknowledgement (NACK). Or, the

destination can implicitly indicate to the source that the message has been lost; for example,

the lack of a positive acknowledgement (ACK) can be interpreted as a NACK. A large

portion of this chapter focuses on various NACK and ACK strategies.

If layer N at the destination detects that a message contains an error, it has two options. It

can drop the message and request that layer N at the source retransmit the data.

Alternatively, layer N could attempt to correct the error. For example, it could use a CRC

to correct bit errors in the data. However, as discussed in Section 3.4.2.2, using a CRC to

correct errors results in a higher expected rate of undetected error. Correction of errors

may be a viable alternative for certain applications, but we will not consider this option

further.

There are two options commonly used to deal with messages delivered out-of-sequence. In

one option, known as Go Back N, the receiver drops out-of-sequence messages, thereby

necessitating their retransmission. In the selective repeat option, out-of-sequence messages

are buffered at the receiver. When the missing messages arrive, the messages are properly

resequenced before layer N delivers them to a higher layer. In Section 6.6 we discuss the

tradeoffs involved in using Go Back N and selective repeat.

107



Throughout this chapter we assume that messages contain a sequence number so that lost

or out-of-sequence messages can be detected. Also, ACKs contain the sequence numbers

of the messages that are being acknowledged, and NACKs contain the sequence numbers

of the messages that need to be retransmitted. Throughout this chapter, it is assumed that.

undetected errors will not occur in the sequence number of a message or the sequence

numbers contained in ACKs or NACKs. Chapter nine briefly discusses the consequences

if such undetected errors do occur.

6.1.1 Overview of Retransmission Schemes

There are two broad classes of retransmission schemes that we consider in this chapter:

timer-based schemes and poll-based schemes. Such a classification is perhaps somewhat

artificial since there are schemes that have aspects of both classes, as will be discussed in

Section 6.5. Nevertheless, it is helpful to define this dichotomy so that we have a basis for

comparing and contrasting many of the retransmission schemes that are currently in use or

that have been proposed for future systems.

In timer-based schemes, the only information that the destination uses to determine if a

message has been received properly is the message itself. The receiver does not use the

arrival of one message to determine the status of any other message. Also, the receiver

does not use control messages sent by the source to determine the status of data messages.

In the most simple implementation of this type of scheme, the receiver sends an ACK to the

source whenever it receives a message that is acceptable i.e., error-free, and in the case of

Go Back N, in sequence. The source maintains a timer that indicates when it expects to

receive an ACK for a particular message. If the timer expires without an ACK having been

received, the source assumes the message has been dropped, and retransmits the message.

In poll-based schemes, information other than the message itself can be used to determine

the status of the message. As with timer-based schemes, the arrival of message X may be

used to generate an ACK of message X. In addition, however, message X may be used to

determine the status of other messages. For example, assume we have a system where

messages are expected to arrive in order. If message X arrives without message X-1

having arrived, the receiver can send a NACK of message X-1 since it is likely that

message X-1 has been lost. In some sense, message X can be considered by the receiver

to be a poll questioning the arrival of all messages with sequence number less than X.

Another characteristic of poll-based schemes is that the source may send a control message

108



(i.e., an explicit poll message) indicating which messages it has sent and requesting that the

receiver send a status message indicating which messages it has received.

High speed protocols currently under development, such as ATM and Xpress Transport

Protocol (XTP), have chosen to use poll-based schemes.[CCI92b],[Pro89],[Saw90]

Despite these proposals, very little analysis of the performance of these schemes has been

done (or at least little has been published). We present a detailed analysis of poll-based

retransmission schemes in Section 6.2. The main advantage of these schemes is that the

source and receiver are more in synch with each other. The control messages exchanged

between the source and destination can be used to eliminate some ambiguity as to what has

been sent and what has been received. In some systems, it is possible to use this

information to prevent unnecessary retransmissions. The disadvantages are the overhead

involved with sending the control messages, and the delay in waiting for the control

messages to arrive.

In Section 6.3, we present an analysis of timer-based schemes. These schemes are more

commonplace, and have been analyzed more thoroughly in the literature.[Sch87], [Zha86]

Thus, our analysis will be more qualitative, and will focus on comparisons with the poll-

based schemes. The advantage of timer-based schemes is that they potentially may result in

low delay. The disadvantage is that their performance depends on the source having a

good estimate of the round trip delay between the source and destination; an overestimate

may lead to increased delay and an underestimate may lead to an avalanche of unnecessary

retransmissions.

6.1.2 Evaluation Criteria

The major evaluation criteria for retransmission schemes are delay and overhead. In the

sections below, we use these criteria to evaluate poll-based schemes and timer-based

schemes.

6.1.2.1 Delay

Given that a message is transmitted error-free, it incurs a delay consisting of the

transmission delay in sending the message and the propagation delay from source to

receiver. If the message is not received error-free and it needs to be retransmitted, then it

also incurs a retransmission delay. The minimum retransmission delay consists of: the

transmission delay in sending a control message (e.g., a NACK) from the receiver back to

the source, the propagation delay from receiver to source, the transmission delay in

109



retransmitting the message, and the propagation delay from source to receiver. Given the

assumption of end-to-end retransmissions, any retransmitted message will experience at

least this much delay. Note that if the application is such that the data will be useless after

this much delay, then there is no sense in trying to retransmit it.

In addition to this minimum retransmission delay, the actual retransmission delay also

depends on the time it takes for the receiver to determine whether or not a data message

needs to be retransmitted, and the time until the receiver sends a control message to the

source indicating the status of the data message. As will be shown in the sections below,

this additional delay, which we refer to as the excess delay, greatly depends on our choice

of retransmission scheme.

6.1.2.2 Overhead

The second criterion we use to evaluate the various retransmission schemes is overhead.

Again, this is comprised of several components. First, there is the overhead involved with

sending control messages e.g., ACKs, poll messages, etc.. Second, there is the overhead

due to unnecessary retransmissions. Third, there is the processing overhead at the source

and destination. For example, there is the processing involved with maintaining timers, or

involved with maintaining a resequencing buffer.

6.2 POLL-BASED RETRANSMISSION SCHEMES

In this section, we analyze retransmission schemes based on a polling mechanism. In the

basic polling scheme, the source periodically sends poll messages to the receiver. The

receiver responds to the polls by transmitting a status message indicating which data

messages it has received. The source, in turn, uses the status message to determine which

data messages can be released from the retransmission buffer and which data messages

need to be retransmitted. We start off by analyzing this simple scheme, and then later on

consider adding various options.

6.2.1 Analysis of Simple Polling Scheme

6.2.1.1 Assumptions

We look at the transmission of data messages from one source to one destination and

consider the problem of retransmitting data that does not arrive correctly at the destination.

We consider the round trip delay (RTD) of the connection to be the total propagation delay,

queueing delay, and processing delay from source to destination and back. (It does not

include delays due to the retransmission protocol; these will be discussed below.) In high

110



speed systems such as ATM, the RTD is expected to be almost constant. However, in low

speed systems such as TCP/IP, the RTD may be highly variable. (This is discussed further

in Section 6.3.1 below.) However, for our initial analysis, we will assume the RTD is

fixed and that the delay from source to receiver is the same as from receiver to source.

We assume that the data rate of the connection is constant, and that the source always has

data to send. Let R be the data rate of the connection, in terms of the number of packets

transmitted per RTD. For example, a data rate of 100 Kb/sec, an RTD of 50 msec., and a

packet size of 500 bits correspond to an R of 10. We assume data messages and control

messages are transmitted at the same speed, and arrive at the destination in the same order

in which they were sent by the source. As a point of reference, we refer to networks with

an R of about 1 or smaller as low speed networks; networks with an R on the order of 100

or higher can be considered to be high speed networks.

We assume all data messages in the connection are comprised of N packets and that polls

and status messages are comprised of one packet. We assume that the destination must

wait until all packets of a data message have been received before it can decide whether the

message is valid. Finally, we assume that once a poll is received, the receiver immediately

responds with a status message.

6.2.1.2 Overhead and Delay of Polling Scheme

We let I equal the number of data messages that are sent in between sending polls. The I

messages can be original transmissions or retransmissions. We examine how various

choices of I affect the overhead and delay involved with the polling scheme.

A poll is comprised of one packet and one poll is sent after every NI data packets. Letting

V equal the fraction of traffic from source to destination that is dedicated to polling, we see

that:

V= NI + 1 (6.1)

(We ignore the overhead in the reverse direction, but for each poll arriving at the destination

there is a status message sent back to the source.)

Alternatively, we could look at the efficiency of the system, where efficiency is defined as

1-V. It is important to consider efficiency since this represents an upper limit on

throughput. Thus, even if there are no losses in the system, the fraction of packets sent by

the source that are ultimately delivered to the user as data can be no more than 1-V.

111



From the point of view of efficiency, we see that for a given N, we would like I to be as

large as possible. The tradeoff, of course, is that the larger I is, the longer the delay until a

lost message is retransmitted. Below, we further analyze the tradeoff between delay and

efficiency.

In our analysis, the unit of time is the amount of time it takes to transmit one packet.
Consider any data message and assume the transmission of the message starts at time T

Since we assume the transmission rate and RTD are fixed, we know that the complete
message is not expected to arrive at the destination until time T+ N + .5R. (N is the

transmission delay in sending the N packets of the message, and .5R is the delay from

source to destination.) Since we assume that the destination cannot make a decision as to

whether or not a message needs to be retransmitted until it receives the entire message, we
see that T+ N + .5R represents the earliest time it could make such a decision. (Since data

is assumed to travel at a fixed rate, a lost message can actually be detected earlier than time
T+ N + .5R; for simplicity, we assume that the receiver must always wait until this time

before deciding the message needs to be retransmitted.)

Let E be the delay from time T+ N + .5R until the time a status message is sent from the

receiver to the source indicating the status of this data message. For the simple polling

scheme we described above, a status message will not be sent until a poll is received. E is

not the same for all data messages; it depends on how soon a poll is sent after the particular

data message. Figure 6.1 depicts E for an arbitrary data message.

Time T T+N+.5R

I I

DestinationSource| I Message 1 | Message2 M message3 1 Message4 P oll

Figure 6.1 E represents the delay from the arrival time of message 2 to the time the destination begins
to transmit a status message indicating the status of message 2.

112



The expected value of E for the simple polling scheme, assuming that poll messages are

never dropped, is:

E = Expected Value of E 2 +1 (6.2)

The '1' term represents the transmission delay of sending the poll message.

Now let's specifically consider the case where the data message needs to be retransmitted.
At time T+ N + .5R + E, a status message is sent NACKing the errored data message.

Due to the transmission delay of the status message and the delay from receiver to source,
the NACK arrives at the source at time T+ N + R + IE + 1. We assume the source

retransmits the data message as soon as it receives the NACK. (If more than one message

is NACKed in the status message then obviously only one of them can be retransmitted

immediately; the others will incur greater delay. We discuss this further in the section on

burst losses.) The retransmitted message is expected to arrive at the destination at time
T+ 2N + 1.5R + E + 1. If the original transmission of the message had not been

dropped, it would have arrived at the destination at time T+ N + .5R. Thus, we see that

the total delay due to retransmission is:
(T+ 2N + 1.5R + E + 1) - (T+ N + .5R) = N + R + + 1.

We refer to this as the retransmission delay.

Given that the transmission rate and RTD are fixed, then the minimum possible

retransmission delay is: N + R + 1 i.e., E equals 0. This could potentially be achieved,

for example, by a timer-based scheme if the source knows the RTD precisely: when

transmission of a message begins, a timer is initialized to 0; if an ACK of the message has

not been received after N + R + 1 time units (the '1' term is due to the transmission of the

ACK) the message is retransmitted.

In the polling scheme, E is not 0. E can be viewed as the excess retransmission delay.

The actual value of E is not the crucial factor to consider, but rather the relative value of E

compared to the minimum retransmission delay. Thus, we define the relative excess delay

D to be:

= N + R + 1 (6.3)

113



Before proceeding, we discuss why the relative excess delay is what is important. First,

consider a high speed network. High speed networks such as ATM and XTP are likely to

use a selective repeat scheme, thus necessitating a resequencing buffer at the destination.

The retransmission delay affects how large the buffer should be. The relative excess delay

D affects the relative extra buffer space that is needed. Consider a simplistic example

where if Dl were 0, the buffer space would need to be 10 Mb. and if D were 10%, the

buffer space would need to be 11Mb. Even though the size of the increment, 1Mb., is

large, there is not that much difference in requiring a 11Mb. buffer over a 10Mb. buffer.

From equation (6.3), we see that as the data rate increases, D tends toward . Thus, at

very high speeds, we are essentially looking at the excess delay relative to the round trip

delay.

Next, consider a low speed network. Typically, on low speed networks, Go Back N is

used rather than selective repeat. One of the chief concerns on a low speed network is the

amount of bandwidth that is used. If a data message is lost and Go Back N is used, then

the minimum amount of wasted bandwidth will be N + R + 1 packet transmissions. D

represents the relative additional amount of wasted bandwidth. We see from equation (6.3)

that if R is very small compared to N, then D is close to N. Thus, at very low speeds, we

are essentially looking at the excess delay compared to the transmission delay of one

message.

By looking at the relative excess delay, we favor schemes where E is small compared to

the minimum retransmission delay. This may not be the most important criterion,

however, for connections carrying delay sensitive traffic. For these connections, overall

delay is the primary concern; how the delay is apportioned between the minimum

retransmission delay and the excess delay is of secondary importance. For example, a

scheme where the excess delay and the minimum retransmission delay are equal and small

in magnitude may be appropriate for delay sensitive traffic. However, it would not appear

to be a good scheme using the relative excess delay criterion. Nevertheless, for many

connections, the relative excess delay criterion is a meaningful measure of performance.

Returning to our analysis, we combine equations (6.2) and (6.3) to derive the expected

relative excess delay for the polling scheme:

114



D= Expected Value of = (I- 1)N + 2 (6.4)

In practice, it makes sense to use only integral values of I. A poll sent in the middle of a

data message generates the same status information as a poll sent at the beginning of the

data message, but generates it at a later time. Thus, only those values of D that correspond

to integral values of I can be attained. The minimum possible relative excess delay is

attained when I equals 1, which corresponds to sending a poll after every message.

To see the tradeoff between expected relative excess delay and overhead as a function of N

and R, we combine equations (6.1) and (6.4) to get:

V= +2R+2) + N-1 (6.5)

This tradeoff is plotted in Graphs 6.1, 6.2, and 6.3 for three values of R. As stated above,

only certain values of D can be attained due to the integer constraint on I. For R equal to .1

and R equal to 10, we plotted the discrete points that correspond to integral values of I.

For R equal to 1000, the discrete points were close enough together that we plotted a

continuous curve.

For R equal to .1 and N equal to 1, the minimum expected relative excess delay attainable is

roughly 50%. (If the RTD is 50 msec, and the packet size is 50 bytes, then an R of .1

corresponds to a data rate of 850 bits/sec.) This is not surprising since for these

parameters, the size of the poll and the size of the data message are the same, and the RTD

is relatively negligible. For R equal to .1 and N equal to 10, we can achieve no better than

about a 10% expected relative excess delay. We see that if N is as large as 100, then it is

possible to attain a small expected relative excess delay. Based on Graph 6. 1, we conclude

that for very low speed networks, and very small messages, a polling scheme probably will

not provide good delay performance during times of retransmission.

For R equal to 10, we can attain reasonable expected values of relative excess delay (i.e.,

10% or less) for any value of N. The overhead for the case of N equal to 1 is still high.

1As R gets larger, the overhead V tends towards 2 l and is thus independent of N. This is

illustrated on Graph 6.3 where R equals 1000. For this value of R, we see that we can

115



attain a 5% expected relative excess delay with less than 1% overhead, regardless of the

size of the message.

Graph 6.1 Percent Overhead vs. Percent Expected Relative Excess Delay
R=.1

50--

N=1
Percent Overhead 2

~~1 13~~~~~~~~ N=10

O-K I I I I X [ I X N=100
0 10 20 30 40 50 60

Percent Delay

Graph 6.2 Percent Overhead vs. Percent Expected Relative Excess Delay
R=10

3 I · N=1
Percent Overhead

l20-- 0 3 * * U O 0 N=10

-X I I I I -- I -I X N=100
0 10 20 30 40 50 60

Percent Delay

Graph 6.3 Percent Overhead vs. Percent Expected Relative Excess Delay
R=1000

4- 3 ~~~~~~~~N =1

Percent Overhead N =10

1 -- N= 100

1 5 9 13 17 21 25 29

Percent Delay

116



Note that the polling overhead may not be a critical factor, since, as will be discussed in

section 6.2.3, it may be possible to piggyback the polls on data messages so that the

overhead is reduced to almost zero.

6.2.1.3 Choosing Polling Parameters

Assume a data connection requires that the expected relative excess delay be no more than

some Dmax. Rearranging equation (6.4), the source can calculate the appropriate value for

I by:

Dmax (2N + 2R + 2) + N - 2 (6.6)
I= L N j ~ (6.6)

(where L · J indicates the integer portion)

Some of the polling scheme proposals refer to sending a certain number of polls per RTD

rather than sending a poll after every I data messages. Given the target value Dmax, and

letting the number of polls that should be sent per RTD be F, then:

F = R (6.7)
NLDmax (2N + 2R +2) + N -2j +

2Dmax RAs R increases for a fixed N, we see that I increases toward N and F increases

toward 2Dm. Thus, as R gets large, more data messages are sent in between poll

transmissions but more polls are sent per RTD. Also, the polling rate in terms of polls per

RTD becomes independent of N.

If the connection is such that the total delay in terms of seconds is the important criterion,

then the target value for the expected relative excess delay would change as R varies. The

expected relative excess delay can be expressed as:

D = RTD Mesage Expected Excess Delay
RTD + Message Transmission Time + Packet Transmission Time

117



where the unit of time is seconds. (In equation 6.3, all times were expressed in units of

'time to transmit one packet'.) If the data rate of the connection increases, then the

transmission time of a packet (and of a message) decreases. Thus, a larger expected excess

delay can be tolerated without an increase in the overall retransmission delay (we assume

the RTD is fixed.) We conclude that for delay sensitive connections, as R increases the

maximum allowable D also increases.

6.2.1.4 Worst Case vs. Average Case

Above we considered the average excess delay; we should also consider the worst case

excess delay. Let E equal the expected excess delay as defined in equation (6.2).

Assuming polls and status messages are not lost, then the worst case scenario in terms of

delay is when the message transmitted immediately after a poll is lost. In this case, the

delay is approximately double that of the average case. This is shown in Figure 6.2.

about2E No

_~ I Message 1 Message 2 Message 3 Message 4 Message 5

Average case occurs if this message is lost

Worst case occurs if this message is lost

Figure 6.2 Average and worst case delay if poll and status message are not lost.

We should also consider the possibility of polls and status messages being dropped.

Again, let E equal the expected excess delay as defined in equation (6.2). Define a cycle to

be the time between poll transmissions; thus, a cycle is approximately equal to 2E. If either

a poll or status message is lost, then the source needs to wait an extra cycle before it can

determine the status of the receiver. The average delay (where the average is taken over the

cycle before the lost poll or status message) increases to about 3E, and the worst case delay

(given that just 1 poll or status message is lost) increases to about 4E. This is depicted in

Figure 6.3. Obviously, the delay increases even more if two or more consecutive poll or

status message are lost.

118



[ about 4E Do|

|[i- - about 3E |

Messagel Message M 3 Message Message Message [3Message IMessage M a

Assume this poll is lost

Figure 6.3 Average and worst case delay if one poll or status message is lost.

6.2.1.5 Burst Losses

In the above analysis, we assumed that the loss statistics were such that a status message

never generated more than one retransmission. Thus, when the status message is received

at the source, any NACKed message can be immediately retransmitted. In this section, we

consider burst losses, where many consecutive messages are lost. First, consider the case

where message X and message X+1 are both NACKed in the same status message.

Message X+1 will not be retransmitted immediately; it will be delayed by an extra N time

units while message X is retransmitted before it.

In the worst case, all I data messages that are sent in between poll transmissions are

dropped. Refer to Figure 6.4, where we assume I equals 3. Assume the poll that follows

the dropped messages is received correctly, and the corresponding status message is

received at the source. This status message will NACK all I messages. From the figure,

we see that for all I messages, there will be a delay of NI + R + 2 time units from the time

the message is originally transmitted until the time it is retransmitted. Since the minimum

possible retransmission delay is N + R + 1, each message suffers an excess delay of

(I-1)N + 1. Above, where we assumed only one of the I messages is lost, the expected

excess delay is 2 + 1.

119



Retransmissions
NNN N NN

- .5 R - 1 . R .5R

| NI + R + 2 -| Time until 1st Message
Retransmission

NI + R + 2 - | Time until 2nd Message
Retransmission

Assume I = 3

Figure 6.4 Delay if all I data messages are lost.

If the burst loss is due to a burst error along the data path, then it is likely the poll messages

will be lost also. Or, if the burst loss is due to congestion, and polls do not have a higher

priority than data, then it is likely that polls will be dropped. If no polls or data messages

arrive at the receiver, then no status messages will be sent. The source cannot determine

which messages have been lost until a status message arrives. Thus, the lack of status

messages will delay the retransmission process.

Assume a burst loss starts at time T and ends at time T+ B, where B is less than

R + N + 1, i.e., all transmissions from time Tto T+ B are dropped. Define a successful

poll as one that arrives successfully at the receiver and whose corresponding status

messages arrives successfully at the source. Assume the first successful poll after the burst

ends is sent at time T+ B + 8, as shown in Figure 6.5. The first retransmission occurs at

time T+ B + 5 + R + 2 (the '2' term is due to the transmission time of the poll and of the

status message). If the excess delay had been 0, the first retransmission would have been

sent at time T+ R + N + 1. Thus, in this scenario, the polling scheme results in an excess

delay of:

B+ + 1 -N (6.8)

120



and a relative excess delay of:
B++1(-N

R+N+1 - N(6.9)

If the first poll sent after the burst ends is successful, then 6 lies between 0 and NI.

We see that the excess delay in this scenario has two main components: the delay until the

burst error ends (i.e., B) and the delay until a poll is sent (i.e., 8). In Section 6.2.1.2,

where we discussed the scenario of just a single message being dropped (as opposed to a

burst of messages being lost), the excess delay was composed of the delay until a poll is

sent. Thus, when burst errors occur, and the length of the burst error is shorter than

R + N + 1, the excess delay essentially increases by the length of the burst error. (The

actual amount of the increase in excess delay will depend on where in the polling 'cycle' the

burst error starts and ends.)

First successful poll after burst

Source
T T+B T+B+5 T+R+N+1 T+B+8+R+2

1 2 P 3 4 P 5 6 1

Destination S

Figure 6.5 Ideally, message 1 would be retransmitted at time T+ R + N + 1. However, message 1 will
not be retransmitted until a poll sent after it reaches the destination successfully and triggers a successful
status message. Thus, the retransmission mechanism is susceptible to error in either direction.

Next, consider the case where B is greater than R + N + 1. It would not be desirable to

retransmit the first lost message at time T+ R + N + 1, since it would be lost again as part

of the burst loss. Ideally the first retransmission would be sent at time T+ B; thus, the

minimum retransmission delay is B time units. (Of course, it would be difficult to attain

this minimum delay since the source would have to know precisely when the burst error is

going to end, and start retransmitting at that time.) Refer to Figure 6.6. Assume that the

121



first successful poll after the burst ends is sent at time T+ B + 5. The first retransmission

will occur at time T+ B + 5 + R + 2 rather than at time T+ B. Thus, in this scenario, the

excess delay is:

8+R+ 2 (6.10)

and the relative excess delay, according to the modified definition, is:
6+R+2

B + R + 2 (6.11)

If the first poll sent after the burst ends is successful, then 6 lies between 0 and NI.

First successful poll after burst

Source
T T+R+N+l T+B T+B+5 T+B+5+R+2

1 2 PI3 4 5 6 P 7 8 1

Destination S

Figure 6.6 It is not desirable to retransmit message 1 at time T+ R + N + 1, since it would be dropped
again. Ideally, it would be retransmitted at time T+ B. However, the retransmission will not occur until a
poll reaches the destination and its corresponding status message reaches the source.

The excess delay in this scenario has two main components: the delay until a poll is sent

(i.e., 6) and the round trip delay until the corresponding status message is received (i.e.,

R). In all of the other scenarios discussed thus far, the delay in waiting for the status

message to arrive was part of the minimum retransmission delay and not the excess delay

(i.e., in other scenarios the source needed to wait a minimum of one round trip delay in

order to allow feedback from the destination time to arrive; in this scenario, we assume that

the duration of the burst error provides enough time for any feedback to reach the source so

that ideally the source would start to retransmit as soon as the burst error ends.) Thus,

compared to the scenario where single messages are lost, the excess delay for the long

burst error scenario essentially increases by the amount of one round trip delay. (The

122



actual amount of the increase in excess delay will depend on where in the polling 'cycle' the

burst error starts and ends.)

As we can see from these examples, burst losses result in an increase in the excess delay.

This increase in excess delay is desirable in the following situation: assume the burst loss

is due to congestion and assume window-based flow control is used. Window-based flow

control does not exercise control over retransmissions; the source dumps a retransmission

into the network whenever a NACK arrives. If status messages are not triggered in the

polling scheme, then NACKs will not be received by the source. This provides more time

for the congestion to dissipate.

If rate-based flow control is used, however, the increase in excess delay is not desirable.

In rate-based flow control, the source sends cc messages per second, for some tX, whether

the messages are original transmissions or retransmissions. Thus, the lack of status

messages will not decrease the traffic being sent into the network. It just means that until

status messages arrive NACKing the lost data, the data messages that are sent by the source

will be original transmissions rather than the necessary retransmissions. Of course, it is

possible the source will decrease its data rate to 3 messages per second after it has not

received a status message for a long time. But given that it is sending , messages per

second, it would be preferable from the standpoint of delay that these be the necessary

retransmissions rather than new transmissions (since layer N at the receiver must deliver

the messages in proper sequence). Thus, the fact that status messages are not being sent by

the receiver is undesirable in this scenario. (However, note that a rate-based scheme would

likely be implemented with some sort of restriction on the transmission window so that the

lack of NACKs in the polling scheme would eventually lead to the end of the send window

being reached; at this point the polling scheme would be beneficial if congestion is still

present in the network.)

If the burst loss is due to a burst error along the data path, then the long delay until a status

message is sent is undesirable.

6.2.1.6 Adjusting the Polling Rate

In the analysis above, we assumed that the data traffic was steady. Now let's consider the

case where the data traffic is bursty. It seems reasonable to send a poll at the end of the

data burst rather than waiting for the poll timer to expire. After sending the end-of-burst

123



poll, subsequent polls should probably be sent at a lower frequency until data starts to be

sent again. If the end-of-burst poll is lost and subsequent polls are sent infrequently, then

the excess retransmission delay will increase. However, since no new data messages are

being sent, the increased delay will not lead to an overflow of the resequencing buffer in

the case of selective repeat or wasted packet transmissions in the case of Go Back N. If the

connection is delay sensitive, then the poll frequency probably should not be decreased.

Once all data messages have been ACKed and delivered at the destination, no further polls

need to be sent until more data is transmitted.

6.2.1.7 Preventing Unnecessary Retransmissions

As mentioned in the introduction of the chapter, one of the chief advantages of using a

polling scheme is that unnecessary retransmissions can be prevented. This is only possible

if messages arrive at the receiver in the same order in which they are transmitted. The

general idea is that if a poll is sent immediately after message number X, then by the time

the poll arrives at the destination, all messages with sequence number less than or equal to

X should have arrived already. Thus, the receiver knows that if any of these messages

have not arrived, they need to be retransmitted. (It is assumed the poll contains some

indication that all messages up to sequence number X have been transmitted.)

Of course, a second poll could arrive at the destination before the retransmissions have

been received. This would cause a second NACK of the lost messages, which could lead

to unnecessary retransmissions. To avoid this, there must be some way of associating a

NACK with the poll that generated it, and there must be some way of determining whether

a retransmission has been sent before or after the poll. Poll sequence numbers can be used

to accomplish this. In the next chapter when we discuss the proposed ATM poll-based

scheme, we will provide the full details of how poll sequence numbers can be used to

prevent unnecessary retransmissions.

6.2.1.8 Estimating the RTD

From equation (6.7), we see that in order to determine the frequency of polls, the source

needs to know the value of R, where R is defined as the number of packets transmitted in

one RTD. Above, we assumed that the RTD remains constant throughout the connection.

In reality, the RTD will change due to varying queueing delays along the data path. Thus,

the source needs to monitor the delay between sending a poll and receiving an associated

status message in order to estimate the RTD. (Note that for high speed networks such as

124



ATM, queueing delays are expected to be small relative to the propagation delay so that the

RTD is approximately constant.)

If the estimate of the RTD is too high, the excess delay will be higher than intended. If the

estimate is too low, the overhead will be higher than necessary. It is important to note that

even if the source incorrectly estimates the RTD, unnecessary retransmissions can be

prevented assuming data travels in sequence. As will be shown in Section 6.3, this is not

the case for timer-based schemes.

6.2.2 Unsolicited Status Messages

One feature that has been included with several of the proposed polling schemes (e.g.,

ATM and Xpress Transport Protocol) is that in addition to sending status messages in

response to polls, the receiver is permitted to send a status message whenever it determines

that a data message has been lost. We will adopt the terminology of ATM and refer to these

additional status messages as unsolicited STATs. From this point on, we will refer to

status messages sent in response to polls as solicited STATs.

The following example demonstrates why unsolicited STATs may be desirable. Consider a

network where data is expected to travel in order. If message number 2 arrives and

message number 1 has not arrived, the receiver can assume message number 1 has been

lost. With the unsolicited STAT option, the receiver can immediately send a status message

requesting the retransmission of message number 1 rather than waiting for a poll to arrive.

Another situation in which an unsolicited STAT potentially could be sent is if a message

arrives at the destination and layer N detects an error in the message (or layer N-1 detects

an error and informs layer N). The destination could conceivably send an unsolicited

STAT NACKing this errored message. However, since the message is in error, we

assume that the destination cannot reliably determine the correct message sequence number;

thus, it may NACK the wrong message. Thus, we assume that the destination does not

send an unsolicited STAT in this situation. It must wait for the next correctly received

message or poll before sending a STAT.

6.2.2.1 Expected Delay When Using Unsolicited Status Messages

In this section we calculate the average value of E for a lost message when unsolicited

STATs are implemented, where E is the excess retransmission delay as defined in Section

6.2.1.2 above. We make the following assumptions: the data message following the lost

125



message arrives correctly at the receiver, data is being sent at a steady rate, and polls and

status messages are not lost. The value of E depends on which message has been lost (see

Figure 6.7). If the lost data message is immediately followed by a poll, then the lost

message is NACKed in a solicited STAT and E equals one (the unit of time is the time to

transmit one packet). In all other cases, the lost data message will be initially NACKed in

an unsolicited STAT. The unsolicited STAT is sent after the destination receives and

reassembles the next data message; thus, E equals N.

M I [ Message2 I [ Messge3 \ a~ge |Message 2 Message3 Ms

Figure 6.7 Excess retransmission delay when unsolicited STATs are used. If message 1 is lost, it will
be NACKed in an unsolicited STAT; if message 4 is lost, it will be NACKed in a solicited STAT.

The expected value of E is thus:

E = Expected Value ofE + (6.12)

Again, we are interested in the expected relative excess delay, D. Combining equations

(6.3) and (6.12), we get:

D= (I-1)N + 113)I(N + R + 1) (6.13)

6.2.2.2 Benefit of Using Unsolicited Status Messages

The two potential benefits of using unsolicited STATs are decrease in retransmission delay

and decrease in polling overhead. These are discussed below.

6.2.2.2.1 Decrease in Delay

First, we examine using unsolicited STATs to decrease the excess retransmission delay.

Assume polls are sent after every I data messages. Comparing equations (6.4) and (6.13),

we see that the delay benefit in using unsolicited STATs is greater the larger the value of I.

This can be seen on Graphs 6.4 and 6.5.

126



If I equals 1, a poll arrives after each data message; thus, the unsolicited STAT option

would be unnecessary (unless a poll were lost). For some low to medium speed

connections, I may need to be 1 in order to meet a certain delay goal. For example, assume

it is desired that the expected relative excess delay be no more than 20%, and assume R is

10 and N is 10. From Graph 6.4, we see that I needs to be 1 in order to keep the expected

relative excess delay below 20%. There would be no need to implement unsolicited

STATs. In general, given the desired maximum expected relative excess delay Dmax, and

the size of the message N, we can determine how high R must be before unsolicited STATs

are beneficial. Setting I equal to 2 and solving for R in equation (6.13) yields:

R > (N+1) 2Dmax 1 (6.14)

The larger N is, the larger R needs to be in order for unsolicited STATs to provide a delay

benefit. This is expected: as N increases, the transmission delay in sending a message

increases (for a fixed R); thus, the delay in waiting for message X+1 to arrive in order to

determine that message X has been lost increases.

At high speeds, even as I increases the relative excess delay remains small (see Graph 6.5);

thus, it is likely the polling mechanism would be implemented with I greater than 1. Thus,

unsolicited STATs would provide a delay benefit for such connections. However, the

reduction may be very small, e.g., on Graph 6.5, if I equals 6, the reduction in delay is

less than 2%.

Note that our calculations are based on the assumption that the message following the lost

message arrives intact. The larger N is, the higher the probability a data message will be

lost. Thus, this assumption is less likely to hold as N increases, thereby mitigating some

of the delay benefit when N is large.

Also, note that equations (6.12) and (6.13) pertain to the case where random losses occur.

If a burst of messages is lost, the excess delay will increase, as was described in Section

6.2.1.5. A retransmission will not occur until either a data or poll message gets through to

the destination and its corresponding status message arrives at the source.

If unsolicited STATs are added to a scheme and the polling frequency is not decreased,

then the overhead will be higher compared to a solicited STAT-only scheme since more

STATs will be sent. In the worst case, every other data message is lost and a STAT would

127



be sent after each received data message. In most cases, however, we expect the overhead

increase to be small.

Graph 6.4
Percent Expected Relative Excess Delay vs. Interval Between Polls

Percent Delay R = 10 N = 10
80 

60
X With uSTAT

20x 24 , |'" WithoutuSTAT

tI I I
1 2 3 4

Number of Data Messages in Between Polls

Graph 6.5
Percent Expected Relative Excess Delay vs. Interval Between Polls

Percent Delay R = 1000 N = 10

- X X X X- X With uSTAT

Without uSTAT
x X X X

t I I I I I
1 2 3 4 5 6

Number of Data Messages in Between Polls

6.2.2.2.2 Decrease in Overhead

Unsolicited STATs can also be viewed as a means of reducing the polling overhead. For

example, assume R is 10 and N is 10 and assume the desired maximum expected relative

excess delay is 40%. Then, as shown on Graph 6.4, the interval between polls can be

increased from 2 to 4 messages if unsolicited STATs are used.

However, there are problems with reducing the polling frequency too much. We assume

that unsolicited STATs only NACK messages that have not been NACKed previously (this

is how they work in ATM). Thus, if an unsolicited STAT is lost, the messages it NACKed

128



will not be NACKed again until a solicited STAT is sent. Thus, we cannot increase I by

too much or else the relative excess delay will be very large if an unsolicited STAT is lost.

To determine how much to decrease the polling frequency, we could use the following

criterion: if an unsolicited STAT is lost, we want the expected excess delay to be no larger

than the expected excess delay if a solicited STAT is lost in a solicited STAT-only scheme.

Refer to Figure 6.8. Let F be the polling frequency in the solicited STAT-only scheme,

and let E be the expected excess delay if no polls or status messages are lost. If a solicited

STAT is lost in the solicited STAT-only scheme, the expected delay becomes about 3E

(this was discussed in Section 6.2.1.4.). In order for the unsolicited STAT scheme to

achieve this same expected excess delay in the case of an unsolicited STAT being lost, we

need the polling frequency in the unsolicited STAT scheme to be at least about -. Thus,

we can expect no more than a threefold decrease in polling overhead when using

unsolicited STATs.

a) Solicited STAT-only _ _

scheme Ii IMl essage 2 i IMessage 3 1Message 4I"' Message 5 lMessage 61I
Polling frequency F

If poll or solicited STAT lost
about 3E 

b) Unsolicited STAT
scheme Messagell IMessage \Me 3l Message 4 essage 51Messageq~ ]

Polling frequency F/3 +

If unsolicited STAT lost

|4 about 3E - _

Figure 6.8 Excess delay if: (a) a solicited STAT is lost in a solicited STAT-only scheme, and (b) an
unsolicited STAT is lost in an unsolicited STAT scheme.

Another drawback to decreasing the rate of polls and relying on unsolicited STATs is that

the traffic may be bursty. If the last message in a burst is lost, it may be a long time before

the next data message reaches the destination. Thus, for bursty traffic, polls should be sent

at the end of the bursts, regardless of whether or not unsolicited STATs are implemented.

129



A third drawback to decreasing the rate of polling is that in many schemes the status

messages are also used to ACK data so that the source can release ACKed messages.

Since unsolicited STATs are only sent when a message is lost, they cannot be relied upon

for releasing data at the source. A lower polling rate would therefore necessitate larger

buffers at the source.

We conclude that it is not worth implementing unsolicited STATs for the purpose of

decreasing overhead - the benefits are likely to be small.

6.2.2.3 Conclusions on Using Unsolicited STATs

If unsolicited STATs are used, they should be used as a means of reducing delay and not as

a method of reducing polling overhead. Unsolicited STATs will result in decreased delay

only for certain values of R and N. The larger N is, the larger R should be before an

unsolicited STAT scheme is implemented. The drawback of using unsolicited STATs is

the increased complexity of the polling scheme. The receiver must send two different types

of status messages; these two types of status messages may need to be processed

differently by the source (as is the case in ATM).

6.2.3 Piggybacked Polls

In this section we consider a solicited STAT-only scheme where the polls are

'piggybacked' on data messages. It is assumed each data message contains a field that

indicates whether the message also serves as a poll. The advantage of this option is that

separate poll messages may not have to be sent, thus reducing the polling overhead.

Before discussing the drawbacks, we should comment on the implementation of

piggybacked polls. The poll indicator field could be included in any packet of the data

message. Nevertheless, we assume that the entire message must be received and

reassembled at the destination before the poll can generate a status message. From the

point of view of delay, it would be better if the poll could generate a status message as soon

as the packet that contains it arrives. However, this violates the principle of isolating layers

within the network, since we assume retransmissions are handled only at the layer that

deals with messages. Also, if, as discussed in chapter three, a per-message CRC is

included rather than a per-packet CRC, then the integrity of the poll-carrying packet can

only be checked once the whole message has been reassembled.

130



One drawback of using piggybacked polls is that they may lead to greater delay. Consider

the scenario where a data message is lost but the following message is received intact. If

we are using a piggybacked poll scheme, and each data message is marked as a poll, then

the excess retransmission delay is N time units, i.e., the time for the data message

following the lost one to arrive. In a scheme where explicit poll messages are sent after

every data message, the excess delay is only 1 time unit.

In fact, the difference in delay may be even greater. The longer a message is, the greater

the probability it will be lost; thus, a poll piggybacked onto a long data message is more

likely to be dropped than a one packet explicit poll message. In general, we see that the

larger N is, the greater the increase in expected excess delay when using piggybacked

polls.

The third drawback of using piggybacked polls is that it may not be possible to totally rely

on them as the sole means of polling. If there is no more data to be sent or if the data traffic

is very bursty then explicit polls may need to be sent. This adds slightly to the complexity

of the scheme, since the source has to monitor whether or not explicit poll messages are

needed.

6.2.3.1 Conclusions on using Piggybacked Polls

Using piggybacked polls makes the most sense when N is relatively small. With N small,

the savings in overhead can potentially be large and the delay penalty relatively small. For

example, from Graph 6.2, we see that for R equal to 10 and N equal to 1, attaining a 10%

relative excess delay requires that the overhead be close to 50%. Using piggybacked polls,

we can decrease the overhead (if the data traffic is steady the polling overhead can be

reduced to zero) without affecting the delay.

6.2.4 Receiver Generated Status Messages

In the poll-based schemes discussed thus far, the source sends polls to the receiver

(perhaps piggybacked on data messages) and the receiver immediately responds to the poll

by sending a status message. Another option is to have the receiver control when status

messages are sent. In this section, we assume that the receiver relies solely on receiving a

message with sequence number greater than X in order to determine that message X has

been lost; we assume that neither the receiver nor the source maintains a timer for the

purpose of generating retransmissions. This is similar to the unsolicited status message

option discussed earlier except that the receiver controls when it sends the status message

131



(i.e., it can batch the NACKs). As with the schemes discussed above, it is possible to

eliminate unnecessary retransmissions in receiver-controlled schemes, assuming that data

travels in sequence. An example of such a scheme is the Checkpoint Mode Protocol

[BKK88] (this is actually a node-by-node retransmission protocol at the Data Link Control

layer; nevertheless the same technique can be used on an end-to-end basis to eliminate

unnecessary retransmissions).

There are several potential problems in relying on the receiver to generate status messages if

the receiver does not also maintain a timer. For example, if the last message of a burst is

lost, the receiver will have no way of knowing the message was ever sent, and thus will

not send a status message NACKing it until data transmission resumes. The other problem

scenarios are tied in with window-based flow control.[BKK88] Assume that the window

size is W; if the oldest unacknowledged message is X, then the source can't send messages

past X+W-1. If W consecutive messages are lost, the protocol will deadlock. In another

scenario, assume the first message is lost, the next W-1 messages are received correctly,

and the retransmission of the first message is lost. Again, the protocol will deadlock.

There are several solutions to these problems, all of which add to the complexity of the

protocol. The solution proposed in [BKK88] is to send 'empty' data messages that are not

subject to flow control restrictions. Empty messages could be sent if the source has no

more data to send or if it has reached the end of its send window. Alternatively, the source

could send a poll message rather than an empty data message. The poll would indicate the

highest message number transmitted thus far.

Another possible solution is that once the source runs out of data to send or reaches the end

of its send window, it keeps retransmitting the oldest unacknowledged message. (If

selective repeat is being used it probably makes more sense to send the oldest message,

followed by the second oldest, etc., rather than continually sending the oldest message.)

The advantage of this method is that if this particular message has been lost, the source

does not have to wait for a NACK to arrive before retransmitting the message. The

disadvantage is it will produce unnecessary retransmissions.

Note that in general timers can be used to avoid the deadlock problems enumerated above.

For example, the source can maintain a timer to indicate when it expects to receive an ACK

for a given message. If an ACK is not received by this time, the source retransmits the

message. Alternatively, the receiver can maintain a timer indicating when it expects to

132



receive a message. If the message is not received by this time, a NACK is sent to the

source. The drawback of timers is that unnecessary retransmissions may occur. Schemes

that combine both a polling mechanism and a timer will be discussed more thoroughly in

Section 6.5.

6.2.4.1 Comparisons with Source-Controlled Schemes

Now let's compare the performance of receiver-controlled schemes (without any timers) to

schemes where polls trigger the status messages from the receiver. Overhead should be

less in receiver-based schemes. The receiver does not have to send a status message until it

has something to NACK, or until it needs to free up space in the retransmission buffer at

the source. Thus, fewer status messages would be sent in a system where the message

loss rate is not high. Also, explicit poll messages do not have to be sent, except for the

situations enumerated above.

The minimum delay before a lost message is NACKed is N time units, i.e., the time for the

next message to arrive. Thus, as N gets larger, the excess delay in receiver-controlled

schemes increases.

The receiver-controlled scheme provides greater flexibility by allowing the receiver to send

status messages when it wants. Other than that, it is not significantly different from a

polling scheme where piggybacked polls and unsolicited STATs are allowed.

6.3 TIMER-BASED RETRANSMISSION SCHEMES

In this section, we examine schemes where retransmissions are triggered by a timer. In

general, if a timer expires before an ACK has been received for a particular message, then

the message is retransmitted. Timer-based schemes are used in both TCP and ISO

TP4.[DOD85], [Sch87], [DDK90]

We make similar assumptions as in Section 6.2: packets are fixed size, messages are

comprised of N packets, and the data rate is fixed. The unit of time is the time to transmit

one packet. The RTD is assumed to be R time units.

6.3.1. Delay Analysis

Assume a timer is maintained for each message that has been transmitted but not

acknowledged. Only one timer is actually needed - we discuss the implementation of the

133



timer in Section 6.3.2. Also, assume the receiver sends an ACK after each successful

arrival.

First, consider the ideal case where R is known precisely. If a message is initially

transmitted at time T, then it is expected to arrive at the receiver at time I+ N + .5R. If the

message arrives error-free and is accepted by the receiver, a one packet ACK is sent

immediately (the transmission of ACKs is discussed in more detail below). The ACK

should arrive at the source at time T+ N + R + 1. (The '1' term is due to the transmission

delay in sending the ACK.) Thus, the timer for the message should be set to expire at time

T+ N + R + 1. If an ACK has not been received by this time, the source assumes the

message did not reach the destination successfully and retransmits the message.

Thus, in this ideal case where R is known, the excess delay (as defined in Section 6.2.1.2)

is 0. Realistically, R is not known precisely. Let RT be the true RTD and let RE be the

estimate of the RTD. If RE > RT, then the excess delay equals RE - RT. However, if

RE < RT, then the timer will expire before the ACK could possibly have reached the

source; this may result in an unnecessary retransmission.

Compared to the poll-based scheme, the excess delay of the timer-based scheme is less

'quantized'. For example, consider the piggyback poll scheme where polls are included as

part of the data messages. If data messages consist of N packets, then the excess delay for

any lost message is some multiple of N. In the timer scheme, the excess delay depends on

the value of RE - RT.

In contrast to poll-based schemes, the performance of the timer-based scheme heavily relies

on how well the source can estimate the RTD. If the RTD is not highly variable then the

source should have a good estimate of the RTD, so that there is little excess delay. If the

RTD does vary a lot, the inability of the source to accurately estimate the RTD may lead to

large excess delay, or a large number of unnecessary retransmissions. The variability of

the RTD depends largely on the queueing delays along the data path. Queueing delays are

caused by packets arriving at an intermediate node faster than the node can process them, or

by many packets at a node contending for the same output line. In either case, the packets

must wait in a buffer until the node can process them (or if the buffer is full, the packets

will be dropped). The time spent waiting in a buffer constitutes queueing delay and

increases the effective RTD. For a given packet size and buffer size, queueing delays are

potentially longer the lower the data rate of the network (assuming flow control is equally

134



effective in both cases). Thus, the variability of the RTD is expected to be larger with low

speed networks than with high speed networks.

Using relative excess delay as a performance criterion, we see that the performance of

timer-based schemes improves with larger propagation delay. Let Rp denote the

propagation delay portion of the RTD; assume the source knows Rp exactly. Let RQT

denote the true queueing delay along the data path and let RQE be the source's estimate of

the queueing delay. Then the relative excess delay, assuming RQE > RQT, is:
ROE - ROT (6.15)

N + Rp + RQT + 1

If Rp is large, then an overestimate of the queueing delay will not significantly affect the

performance of the scheme. Thus, the source can be more conservative in estimating the

RTD (i.e., use a larger estimate) and thus reduce the number of unnecessary

retransmissions.

If the connection is delay sensitive, then the larger the propagation delay, the smaller the

excess delay should be. The source would be less likely to pad its estimate of the RTD. If

the RTD is highly variable this could lead to many unnecessary retransmissions.

6.3.2 Overhead Analysis

Now let's consider processing overhead. In general, only one retransmission timer is

necessary; an actual timer does not need to be maintained for each outstanding message.

After a message is transmitted, the time of transmission should be stored along with the

message in the retransmission buffer. As ACKs arrive, the source should continually

update its estimate of the RTD. If the estimate of the RTD added to the timestamp of the

oldest unacknowledged message is less than the current time, then the message should be

retransmitted. Thus, the processing overhead involves maintaining one timer, estimating

the RTD, and performing time comparisons with the oldest message on the retransmission

buffer.

As for traffic overhead, in the source to receiver direction, the only overhead is due to

unnecessary retransmissions. The number of unnecessary retransmissions will depend on

how conservative an estimate of the RTD is used by the source. Thus, as with poll-based

schemes where polls are not piggybacked, there is a tradeoff between delay and overhead,

but the tradeoff is more difficult to quantify in the timer-based scheme.

135



In the receiver to source direction, there is the overhead due to the transmission of ACKs.

If an ACK is sent immediately after each successful arrival, then the overhead in the reverse

direction is N + 1 (this assumes the data rate is the same in both directions). If N is

small, the overhead will be very large.

We should make a few comments about the transmission of ACKs. Our calculations have

implicitly assumed that an ACK is sent immediately upon the successful arrival of a

message, i.e., the ACK pre-empts any reverse data traffic going from receiver to source.

(We made this same assumption for status messages in poll-based schemes.) Another

option is that the ACK be piggybacked onto the tail-end of a message traveling in the

reverse direction (an ACK is simply a message number). This would reduce the amount of

overhead due to sending ACKs, but it would increase the delay. If the ACKs are

piggybacked, then the timer should be set to expire at time T+ N + R + NR, where NR is

the size of messages in the reverse direction. If NR is small, it makes a lot of sense to

piggyback the ACKs: the overhead due to ACKs is reduced to 0 (or near 0) and the delay is

only increased a small amount (i.e., NR-1 time units). Also, if NR is small, then the

probability of the data message carrying the ACK being dropped is not much greater than

the probability of a one packet ACK message being dropped.

6.3.3 Burst Losses

In Section 6.2.1.5, it was shown that in poll-based schemes, excess delay increases when

a burst of messages is lost. In timer-based schemes, however, retransmissions are not

delayed when burst losses occur. The key difference is that in poll-based schemes, the

retransmission mechanism depends on a message getting through to the receiver (either data

or a poll) and a status message getting through to the source. Timer-based schemes rely on

a timer rather than on a message reception to trigger a retransmission.

Assume the first message lost in the burst is originally transmitted at time T, and assume

messages are lost for the next B time units. First, consider the case where B is less than

R + N + 1. Assuming the source knows the RTD precisely, it will begin to retransmit the

lost messages at time T+ R + N + 1; thus, the relative excess delay will be 0. Thus, timer-

based schemes are relatively unaffected by burst errors shorter than one round trip delay.

As shown in Section 6.2.1.5, if a poll-based scheme is used, the expected excess delay

increases by approximately the length of the burst as is shown in equation (6.8).

136



Next, consider the scenario where B satisfies: K (R + N + 1) < B < (K+1) (R + N + 1)

for some K > 1. The first lost message will be retransmitted at times T+ i(R + N + 1) for

1 < i < (K+1). The first K retransmissions will be lost as part of the burst; we assume the

(K+l)st retransmission is successful. The excess delay will be (K+1)(R + N + 1) - B and

the relative excess delay will be (K+ )(R+N+ ) -B Thus, the relative excess delay can

be bounded by:
(K+1)(R + N + 1) - B <R + N + 1

0• B < <100% (6.16)

Of course, this depends on the source having an accurate estimate of the RTD. For the

poll-based scheme, the relative excess delay is given in (6.11):
6+R+2

B

where 6 lies between 0 and NI, assuming the first poll sent after the burst ends is

successful.

The drawback of the timer-based scheme during a long error burst is that the lost messages

are unnecessarily retransmitted K times. This could be detrimental if the burst loss is due

to congestion and window-based flow control is used (refer back to the discussion in

Section 6.2.1.5).

6.4 POLL-BASED SCHEMES VS. TIMER-BASED SCHEMES

In this section we examine whether a timer-based scheme or a poll-based scheme is more

appropriate for a given network. (In Section 6.5, we discuss schemes that include both a

poll mechanism and a timer.) Throughout this section it is assumed that packets travel in

order. Recall that we defined R to be the number of packets that are sent per RTD; thus, R

increases as the data speed of the network increases. Recall from Section 6.2.1.1 that we

refer to networks with an R of about 1 or smaller as low speed networks and networks

with an R on the order of 100 or higher as high speed networks.

6.4.1 Comparison of Poll-Based and Timer-Based Schemes

In the sections above, we showed that using relative excess delay as a delay criterion, the

performance of both poll-based and timer-based schemes improves as R increases,

assuming random messages are lost. If bursts of messages are lost, however, the two

schemes perform quite differently. If the burst loss is shorter than one round trip delay,

then the excess delay in the poll-based scheme increases by about the duration of the burst;

137



the excess delay in the timer-based scheme is relatively unaffected. If the burst loss is

longer than one round trip delay, then the excess delay increases in both schemes, although

the increase in poll-based schemes is likely to be greater; however, timer-based schemes

trigger retransmissions too quickly in this scenario so that some retransmissions will be lost

as part of the burst loss.

The increase in excess delay that accompanies poll-based schemes is advantageous during

bursts of congestion if window-based flow control is used and if the congestion is

persistent; under these same conditions, the fact that timer-based schemes trigger

retransmissions too quickly is detrimental. In other situations, the greater expediency in

timer-based schemes is preferable. Note that window-based flow control is often used on

systems with small R and rate-based flow control is likely to be used on systems with large

R (since window-based schemes depend more on timely feedback from the receiver to the

source).

The amount of processing necessary in the two types of schemes is likely to be about the

same. Both poll-based and timer-based schemes require one timer to be maintained at the

source. Timer-based schemes are characterized by the receiver sending ACKs and the

source checking whether the ACK timer has expired. Poll-based schemes require that the

source periodically send polls, that the receiver respond to polls with status messages, and

that the source perform some type of sequence number comparison upon receiving a

NACK to guarantee the property of no unnecessary retransmissions.

Both schemes need to maintain an estimate of the RTD. An overestimate of the RTD in

either type of scheme results in greater delay. An underestimate of the RTD in poll-based

schemes results in smaller delay, but more overhead per RTD. An underestimate of the

RTD in timer-based schemes results in unnecessary retransmissions.

The key difference between the schemes is that timer-based schemes are capable of low

excess delay, but at the expense of unnecessary retransmissions. Poll-based schemes do

not produce unnecessary retransmissions (assuming some sort of sequencing scheme is

used), but may result in a large excess delay. Below, we compare the performance of the

two types of schemes on low speed and high speed networks.

138



6.4.2 Low Speed Networks

First, let's consider a low speed system where the message size is small. Neither type of

scheme performs well in this environment. In poll-based schemes, the transmission time

of the poll (whether or not it is piggybacked) represents a significant portion of the total

retransmission time. In timer-based schemes, the low speed of the network may result in

highly variable queueing delays; the inability to properly estimate the RTD could potentially

result in large delay or in many unnecessary retransmissions.

Since efficient bandwidth usage is likely to be a major concern on low speed networks,

poll-based schemes are preferred since they do not produce unnecessary retransmissions.

Note that if a poll-based scheme is used, the polls should be piggybacked to reduce the

polling overhead; it is not worthwhile to implement unsolicited status messages since the

data speed is low.

One could argue that if buffers at the intermediate nodes are kept very small, then the

queueing delays would be less variable, enabling a timer-based scheme to perform better.

However, small buffers would likely lead to bursts of messages being dropped due to

congestion. Assuming window-based flow control is used, the extra retransmission delay

in poll-based schemes during times of congestion would be desirable. Thus, even in this

situation, we see that poll-based schemes are preferred.

For low speed networks where the message size is large, poll-based schemes provide small

relative excess delay (for random losses) and low overhead, in addition to being able to

prevent unnecessary retransmissions. Thus, their advantage over timer-based schemes is

even more pronounced in this environment. Note that in such an environment, polls

should not be piggybacked and unsolicited status messages should not be implemented.

In general, we conclude that for low speed systems, poll-based schemes are preferable to

timer-based schemes.

6.4.3 High Speed Networks

First, we can consider the case where all speeds in a network are scaled up by the same

factor, while the packet size and buffer size remain fixed. As shown in Section 6.2 on

Graph 6.3, poll-based schemes perform well at high data rates (assuming bursts of

messages are not lost). Also, as the data rates increase, queueing delays decrease,

assuming flow control remains equally effective. Thus, timer-based schemes also perform

139



well. In general, both types of schemes should provide low relative excess delay for the

scenario where all connections are running at high speed.

High speed networks, however, are likely to carry a wide range of traffic types; the data

rates and burstiness of the various connections may span a wide range. Thus, despite the

fact that the data links are running at high speed, some of the individual connections may be

running at low speed. This mix of traffic favors the use of timer-based schemes. The high

speed of the links will result in low queueing delay. Thus, the estimates of the RTD should

be fairly accurate. For the low speed connections in the system, the delay in waiting for a

poll to arrive may be relatively large (due to the transmission delay in sending a poll); thus,

these connections may suffer a large relative excess delay if poll-based schemes are used.

Some type of rate-based flow control is likely to be used on these integrated service

systems, which again favors the use of timer-based schemes. In rate-based flow control, a

certain number of messages will be sent in a given time period, regardless of whether the

messages are new transmissions or retransmissions. Thus, if the system is congested,

delaying retransmissions does not help alleviate the congestion (unless an upper limit on the

send window is reached). Thus, from the standpoint of delay, the retransmissions should

be sent as quickly as possible, which favors the use of timer-based schemes.

One strategy that might be used on high speed networks is to make the buffers at the

intermediate nodes very large. Memory is supposedly very cheap, so that large buffers are

not costly. Flow control would still be implemented with the goal of keeping queueing

delays small. However, if severe congestion develops, packets will be queued in buffers at

the intermediate nodes rather than being dropped. The rationale for this is that queueing a

message in a buffer will probably result in less overall delay than dropping the message and

retransmitting it. (Delay sensitive traffic would be given priority in the buffers so that the

queueing delay of such traffic would not be large.) In such a scheme, losses due to

congestion would be less likely; also, the queueing delays may be more variable, especially

if the flow-control mechanism is not effective. Thus, the performance difference between

timer-based and poll-based schemes would be less significant in such an environment.

However, if long burst errors are expected, then again the increase in excess delay which

accompanies burst losses in poll-based schemes would be undesirable.

Overall, timer-based schemes are better able to provide low delay in a high speed,

integrated service environment.

140



6.4.4 Conclusions on Poll-Based vs. Timer-Based Schemes

Timer-based schemes have traditionally been used on low-speed networks, such as

TCP/IP. Such schemes have not performed well, as our analysis predicts. They lead to

many unnecessary retransmissions, which is a serious problem on low speed networks

where efficient bandwidth usage is desirable. Poll-based schemes essentially eliminate

unnecessary retransmissions, but do so at the expense of increased retransmission delay.

In a high speed, integrated service environment, where low delay is more critical than

efficient bandwidth usage, timer-based schemes are generally better than poll-based

schemes. In the next section, we discuss schemes that combine polling and timers.

6.5 COMBINATION OF POLL-BASED AND TIMER-BASED SCHEMES

6.5.1 Overview of Poll/Timer Scheme

It is possible to use both a polling mechanism and a timer to generate retransmissions. The

advantage of a poll-based scheme is that it can eliminate unnecessary retransmissions; the

drawback is that the excess delay increases when bursts of messages are lost. The

advantage of a timer-based scheme is it imposes a firm upper bound on the excess delay;

the disadvantage is the performance of the scheme heavily relies on the source's ability to

estimate the round trip delay. The two types of schemes potentially can be combined so as

to take advantage of their best features. The polling mechanism should be relied upon as

the primary means of generating retransmissions since it will not produce spurious

retransmissions. The timer mechanism should be used to provide an upper limit to the

excess delay.

Consider implementing the following scheme on a network where we assume data travels

in sequence. (Another scheme that combines timers and polls is described in [NRS90].)

The polling portion of the scheme is similar to the scheme described in Section 6.2.

Periodically, the source sends a poll to the receiver indicating which messages it has sent.

The receiver responds with a status message. Any NACKed messages are retransmitted by

the source, subject to whatever criterion ensures the retransmission is necessary. As in a

normal timer scheme, whenever a message is received successfully at the destination, the

destination sends an ACK of the message back to the source. However, the source sets its

retransmission timer based on the transmission time of a poll, rather than on the

transmission time of a message. Assume poll P is transmitted at time X, and assume the

source's estimate of the RTD is RE. The timer corresponding to poll P should be set to

expire at time T+ 2 + [ RE, where [ > 1 permits some error in estimating RE and where 2

141



represents the transmission time of the poll and the corresponding status message. If the

timer corresponding to poll P expires without the source receiving a status message

corresponding to poll P or corresponding to a poll sent after poll P, the source retransmits

all unacknowledged messages sent prior to poll P.

6.5.2 Performance of Poll/Timer Scheme

Let's analyze how such a scheme performs. Consider some data message X; assume poll

P is the next poll transmission after this message. First, assume message X is transmitted

successfully. An ACK of message X will be sent by the destination. Poll P should trigger

a status message that also ACKs the message. Thus, assuming the source's estimate of the

RTD is accurate, there should be at least two opportunities for the data message to be

ACKed before the retransmission timer corresponding to poll P expires. If PB is chosen

large enough, then there will be time for additional status messages to arrive at the source

prior to the expiration of the timer. This increases the likelihood that an ACK of the data

message will arrive successfully at the source. Also, a large P is helpful if the source has

underestimated the RTD. As in a typical timer scheme, the larger P3 is, the smaller the

probability of an unnecessary retransmission. However, the larger [3 is, the larger the

maximum allowable excess delay.

Next, assume message X is lost. Poll P will generate a NACK of the message. If the

status message corresponding to poll P arrives at the source, message X will be

retransmitted approximately one RTD after poll P was sent. If poll P or its corresponding

status message is lost, the retransmission will be delayed. If 3 is close to 1 and RE is an

accurate estimate of the RTD, then the expiration of the timer will trigger the

retransmission; if 3 is large or RE is an overestimate, then a status message corresponding

to a poll sent after poll P will likely generate the retransmission.

Finally, consider a burst of data messages and polls being dropped. If a poll-based scheme

were used without a timer, then no retransmissions would occur until a poll successfully

arrived at the destination, and its corresponding status message arrived at the source. In the

combined poll/timer scheme, the expiration of the timer can also trigger the retransmission.

The presence of the timer puts a firm upper bound on the maximum delay until a lost

message is retransmitted (assuming polls are sent regularly).

142



The drawback of a combination polling/timer scheme is the added complexity. The source

has to deal with sending polls and setting timers. The destination has to send ACKs as

well as status messages.

In the next sections, we analyze in what environments a combined poll/timer scheme would

be appropriate.

6.5.2.1 Low Speed Networks

On a low speed network, the source is likely to have difficulty estimating the RTD due to

the highly varying queueing delays. Thus, to reduce the number of unnecessary

retransmissions, the source will use a large [3 when setting the retransmission timer. In

effect, the scheme will be a pure polling scheme with the timer mechanism only coming

into play during very long burst losses. If the burst losses are due to congestion, it is

preferable to delay the retransmissions; thus, having the timer mechanism is not

worthwhile.

6.5.2.1 High Speed Networks

On a high speed network, the source is likely to have very accurate estimates of the RTD.

Thus, with the timer scheme alone, the excess delay should be small and the number of

unnecessary retransmissions should be small. There really is not a reason to implement the

polling mechanism in addition to the timer.

6.5.2.1 Intermediate Networks

A combination poll/timer scheme is more appropriate for a network that has characteristics

that are somewhere 'in between' low speed and high speed. The RTD should be somewhat

varying such that relying on a timer scheme alone would produce too many

retransmissions. However, the RTD should not be so difficult to estimate that [3 needs to

be set very high in order to avoid many retransmissions (which essentially renders the timer

mechanism almost useless). Low retransmission delay should be somewhat of a concern,

to make it worthwhile to implement the timer scheme in order to upper bound the excess

delay. Bandwidth efficiency should be somewhat of an important issue, otherwise there

would be no need to implement polls.

The more closely the characteristics of the system resemble those of a high speed network,

i.e., the better the source can estimate the RTD and the more important low delay is, the

smaller D should be. The smaller 3 is, the larger role the timer mechanism plays.

143



Conversely, the lower the speed of the system, the larger D should be; this increases the

role of the polls and status messages.

6.5.3 Receiver Controlled Poll/Timer Schemes

In Section 6.2.4, we discussed retransmission schemes where the receiver controls when ...

status messages are sent without the use of timers. If data is expected to travel in order,

then if message X arrives at the destination before message X-1 arrives, the destination

assumes that message X-1 has been lost. The destination periodically will send a status

message to the source indicating which messages need to be retransmitted. However, as

discussed in Section 6.2.4, the scheme potentially deadlocks when the source has no more

data to send or when the end of the 'send window' is reached. We discussed several

solutions to this problem, one of which was to include a timer mechanism. Thus, if the

message at the end of a burst is dropped, the expiration of the timer will trigger the

retransmission. The advantage of such a scheme is that the source does not have to

transmit polls, and the receiver has more control over when status messages are sent. Of

course, the receiver can not delay too long in sending a status message since the timer

might unnecessarily expire (also status messages are used to free up space in the

retransmission buffer at the source).

The delay performance of such a scheme is probably not that different from a source-

controlled polling scheme. The advantage of the receiver controlled scheme is that possibly

fewer status messages might be sent. Using a timer mechanism limits the excess delay in

case several consecutive data messages or status messages are lost.

It is interesting to note that a scheme similar to this can be used in X.25 at the Data Link

Control Layer.[CCI81],[Tan88] Whenever a frame arrives correctly at a node, it is

ACKed. If frame X arrives before frame X-1 arrives, a REJECT message can be sent by

the destination. However, only one REJECT message can be sent for a given frame. A

retransmission timer is maintained by the source in case a REJECT message is lost. If the

timer expires without a message being ACKed, it is retransmitted. In some

implementations, a node is allowed to send explicit poll message in order to generate status

messages.

6.5.4 Summary of Poll/Timer Schemes

Retransmission schemes that combine polls and timers are useful in certain situations.

Implementing both mechanisms allows the source a lot of flexibility in establishing the

144



tradeoff between low delay and bandwidth efficiency. Implementing timers is also a simple

way of fixing the deadlock problems of receiver controlled polling schemes.

6.6 SELECTIVE REPEAT VS. GO BACK N

As mentioned in the introduction of this chapter, there are two commonly used options to

deal with messages that arrive at the destination out-of-sequence. In Go Back N (GBN),

the receiver drops out-of-sequence messages. GBN is simple to implement. The receiver

only needs to keep track of which message number it expects to receive next. Typically,

the receiver indicates this next_to_receive number in control messages sent to the source.

The source then knows that all messages up to but not including this message number have

been successfully received, but that messages with sequence number greater than or equal

to next_to_receive have not been received (or at least not by the time the control message

was sent by the receiver). If the source retransmits a particular message, then it makes

sense that it also retransmit all messages that follow it. Essentially, the source 'goes back'

to the message indicated by next_to_receive, and starts transmitting from that point

forward.

The second option is referred to as selective repeat (SR). In SR, the receiver maintains a

resequencing buffer for messages that arrive out-of-sequence. A message is kept in the

buffer until all messages with earlier sequence numbers arrive. The receiver indicates to the

source which message numbers are missing and which have successfully arrived. The

source then only needs to retransmit those messages that are missing.

SR will generally result in fewer retransmissions. One drawback to SR, however, is the

need for a resequencing buffer at the destination. In general, if the oldest outstanding

message is lost K times, the resequencing buffer must be able to hold all the data

transmitted in K RTDs, or else the efficiency of the SR scheme decreases. At the very

minimum, the buffer should be large enough to hold one RTD worth of data. A second

and more important drawback is the complexity of implementing an SR scheme. The

receiver must keep track of the status of all messages it receives, and must deal with

resequencing messages it receives out of order.

The performance of GBN and SR have been studied in detail (for example, see [RoS89],

[Kon80], [AnP86], [Sch87], [BeG92]). Here, we review the results from [BeG92] on

bandwidth efficiency in the two schemes. We also briefly discuss the effect of burst losses

in GBN and SR systems, and the expected delay in the two schemes. This provides some

145



insight into which scheme is better suited for a particular system. One of the motivations

for comparing the two systems is the ongoing debate of whether ATM should implement

GBN or SR. This will be examined in more detail in chapter seven.

6.6.1 Efficiency Analysis
We define y as the expected number of transmitted messages from source to destination per

successfully accepted message at the destination. Efficiency, which we represent by rI, is

then defined as 1/y.

We make the following assumptions: messages are fixed length and comprised of N

packets; the RTD is fixed and R packets are transmitted per RTD; the source always has

data to send. If a message is initially sent at time T, the source learns the status of the

message at time T+ N + R + 1 (i.e., throughout this section we assume the excess delay is

0). When a NACK arrives at the source indicating a message needs to be retransmitted, the

source finishes transmitting the message it is currently sending, and then performs the

retransmission. Thus, the source sends r messages in between the original

transmission of a message and the retransmission of a message. We assume that packets

are dropped randomly with probability QR.

In the SR system, we assume that the resequencing buffer is large enough that it never

overflows. In an actual SR system, overflows are possible; thus, our calculations for the

efficiency of an SR system are actually upper bounds. An SR system performs no worse

than a GBN system in terms of efficiency, so the GBN results are loose lower bounds for

the SR system.

6.6.1.1 Random Losses

If packets are dropped independently with probability QR, then a message is dropped with

probability 1 - (1 - QR)N, which is approximately equal to N QR. Following the derivation

in [BeG92], we see that for a GBN system:

1 - N QR (6.17)

I+N QR R+i 1rN1

146



For an SR system:
rI= 1 -NQR (6.18)

We see that GBN becomes relatively worse as QR or R increases. This can be seen on

Graphs 6.6. and 6.7. (The plots do not significantly change if N is varied.) SR systems

are often proposed for satellite systems, where QR is relatively high, and the RTD is long.

Graph 6.6 Efficiency of GBN and SR
(N =10 and Packet Loss Rate = 1E-6)

0.998

0.996 - GBN Efficiency
Efficiency

0.994 - - SR Efficiency

0.992

0.99 I I I I R
0.1 1 10 100 1000

Graph 6.7 Efficiency of GBN and SR
(N =10 and Packet Loss Rate = 1E-3)

0.9

0.8 G- \ GBN Efficiency

Efficiency 0.7--

0.6 --\ SR Efficiency

0.5

0.4 'I I I R
0.1 1 10 100 1000

6.6.1.2 Burst Losses

Consider the case where packets are dropped in bursts, rather than independently. A GBN

system performs better if losses occur in bursts rather than independently. This is because

after a packet is dropped, the GBN system will end up dropping a whole RTD worth of

packets anyway. Thus, ideally, the packets losses would occur in bursts of size R+1 (or a

multiple of R+1). If this were the case, there would be no loss of efficiency due to the

147



need for the source to 'go back' and retransmit a whole RTD worth of packets. An SR

system is relatively unaffected by the burstiness of the losses, as long as the resequencing

buffer is very large.

We conclude that the performance gap between GBN and SR systems narrows on systems

where packet losses tend to occur in bursts.

6.6.2 Delay Analysis

A lost message also affects the next RTD worth of messages. In an SR scheme, these

messages must wait in the resequencing buffer before being delivered to a higher layer; in

GBN, these messages are dropped and must be retransmitted. In this section, we analyze

the minimum delay that these RTD worth of messages must suffer in GBN and SR

schemes.

First, consider the case of no losses in the system. If a message starts to be transmitted at

time X, then it should arrive at the destination at time T+ .5R + N. It should be delivered

to the higher layer at this time. Thus, the total delay is .5R + N.

Now let's assume one message is lost. We assume the message is originally transmitted at

time Z and at time T+ N + R + 1 the source is informed the message has been lost. In a

GBN scheme, if a message is lost, the next RTD worth of messages is dropped also. The

source will begin to retransmit the messages at time T+ N + R + 1, beginning with the first

one that was lost. Assuming there are no additional losses, then each one of the

retransmitted messages will arrive at the destination 1.5R + 2N + 1 time units after it is

originally sent. The retransmitted messages should arrive in sequence so they can be

delivered to the higher layer upon arrival at the destination. Thus, the lost message causes

an extra delay of R + N + 1 for a whole RTD worth of messages.

In an SR scheme, after a message is lost, the messages that follow it will be accepted at the

destination, but they cannot be delivered until the lost message is retransmitted and arrives.

These messages must wait in the resequencing buffer while the lost message is

retransmitted. The amount of time spent in the resequencing buffer is not the same for all

affected messages, as shown in Figure 6.9. The time ranges from R+1 time units for the

first message affected after the lost one, to N time units, for the last message affected. The

average time in the resequencing buffer is about .5 (R + N + 1) time units. In GBN, all

affected messages suffer an extra delay of R + N + 1. In either scheme, note that the initial

148



lost message is delayed the same amount, i.e., R + N + 1 time units. Thus, for the

assumptions we have made, the average extra delay is smaller by a factor of 2 in SR, but

the worst case delay is the same.

All 7 Messages can be delivered
to higher layer at this time

1~, 1.5R + N + 1

[-41, .5R +2N

1 2 3 4 5 6 7 1
Source

Destination

Figure 6.9 Time spent in resequencing buffer at the destination for one RTD worth of messages. All
messages can be delivered to the higher layer as soon as the missing message is retransmitted and arrives.

6.6.3 Conclusions

For small R and low packet loss rate (QR), the performance difference between GBN and

SR is not likely to be significant. As R or QR increases, the SR scheme becomes relatively

more efficient. The chief drawback of SR is the additional complexity of buffering and

resequencing messages at the destination. Thus, for systems with large R or QR, which

scheme to use depends on whether bandwidth efficiency or complexity is the more

important issue.

149



CHAPTER 7

RETRANSMISSION IN ATM

7.1 INTRODUCTION

Chapter six presented a general analysis of poll-based and timer-based retransmission

schemes. In this chapter, we focus on the poll-based scheme that has been proposed by the

ATM Standards Committee. The basic scheme consists of the source periodically sending

polls to the destination indicating which frames have been sent, and the destination

responding with a status message indicating which of these frames have not been received.

However, many additional features, such as unsolicited status messages, have been

included in the proposed scheme. Also, a major design goal was to ensure that the scheme

does not produce any unnecessary retransmissions. In order to accomplish this, the source

and destination must maintain several variables. With the added complexity of these

features, it is not readily apparent whether the scheme generates the necessary

retransmissions.

Further details of the scheme are provided in Section 7.2. In Section 7.3, we formally

prove that the scheme does eventually generate a retransmission of any lost frame without

producing any unnecessary retransmissions, assuming that certain reasonable conditions

hold. In proving the correctness of the scheme, we also further define the protocol. In

Section 7.4, we examine how the protocol can fail if the conditions for proper operation are

not met. Finally, in Section 7.5 we analyze whether a poll-based scheme is appropriate for

the ATM environment.

As described in chapter four, ATM uses different terminology than we have adopted in our

general analysis. The Convergence Sublayer (CS) of the ATM Adaptation Layer (AAL)

corresponds to layer N; the PDU at this layer is referred to as a frame rather than a

150



message. Frames are variable length, with the maximum length being 65,536 bytes.

Retransmissions in ATM are performed end-to-end at the CS layer, and a frame is the unit

of retransmission. The CS layer at the source is responsible for sending poll messages

and the CS layer at the destination is responsible for sending status messages. (Note that

the term 'message' rather than 'frame' is used for poll and status messages.) The

Segmentation and Reassembly Sublayer of the AAL is analogous to layer N- 1; the PDU at

this layer is a 48 byte data unit called a segment. The ATM layer corresponds to layer

N-2. The ATM layer PDU is referred to as a cell rather than a packet, and consists of 53

bytes (i.e., a segment plus a 5 byte header).

7.2 DESCRIPTION OF PROPOSED RETRANSMISSION SCHEME

The following description of the proposed ATM retransmission scheme was obtained from

references [T1S92],[CCI92b], and [CCI93]. In Section 7.2.5, an example is given that

illustrates many of the details of the protocol.

The protocol allows both selective repeat and Go Back N options. (For a description of

these options, refer back to Section 6.6.) The standards committee assumes selective

repeat will be used in almost all connections, and, in general, our discussion assumes that

selective repeat is implemented. Go Back N operation is summarized in Section 7.2.6. In

Section 7.5.3, we analyze whether selective repeat makes sense in an ATM environment.

7.2.1 Sequence Numbers

Each data frame in a connection is numbered sequentially modulo 256. (There is also an

option to number frames modulo 224 [T1S91].) Also, each poll message is numbered

sequentially, independently of the data frames. Frames and poll messages are expected to

arrive at the destination in the order in which they are sent.

The source maintains the variable SEQ to indicate that all data frames up to but not

including SEQ have been transmitted at least once, and the variable PSEQ to indicate the

sequence number of the last poll message transmitted. SEQ and PSEQ are maintained

independently of one another. After a data frame is transmitted, the frame is stored in a

retransmission buffer, along with the current value of PSEQ.

The destination maintains the variable SEQR to indicate that all frames up to but not

including SEQR have been received. It also maintains the variable SEQH to keep track of

one higher than the highest numbered frame that it knows the source has transmitted. Thus,

151



if frame number X arrives, and X is greater than or equal to SEQH, then SEQH is updated

to equal X+1. Polls also cause the value of SEQH to be updated, as described in the next

section.

7.2.2 Poll Messages

The frequency with which poll messages are sent is determined by the transmitter. At this

time, the standards committee has not yet specified guidelines for determining the polling

frequency. PSEQ is incremented just before a poll is sent. A poll contains the current

value of both PSEQ and SEQ. If the value of SEQ contained in a poll is greater than

SEQH, the destination updates SEQH to equal SEQ. Rather than sending explicit poll

messages, the source can piggyback the polling information on a data frame.

7.2.3 Status Messages

There are two types of status messages sent by the receiver: solicited and unsolicited.

These are referred to in the protocol description as solicited STATs and unsolicited STATs.

A solicited STAT is sent in response to a poll message. A solicited STAT indicates the

value of SEQR and provides the status of all frames between the value of SEQR and

SEQ-1, inclusive, where SEQ is indicated in the poll message. It also includes the value of

PSEQ contained in the incoming poll message.

The receiver sends an unsolicited STAT whenever it receives a frame with sequence

number X greater than SEQH which shows that there are missing frames with sequence

numbers greater than or equal to SEQH and less than X. (Note that the check for missing

frames is performed before updating SEQH to the value of X+1.) An unsolicited STAT

only NACKs frames with sequence numbers that fall within this range. Due to the rules

for updating SEQH, this guarantees that any frame NACKed in an unsolicited STAT has

not previously been NACKed in another status message. The one exception to this is that

the protocol provides the option for the receiver to send two identical unsolicited STATs

rather than just one. This provides some protection against the STAT being lost.

A poll can optionally be used to generate an unsolicited STAT in addition to a solicited

STAT. If a poll arrives with SEQ equal to X and the receiver determines that there are

missing frames with sequence numbers greater than or equal to SEQH and less than X, the

receiver has the option of sending an unsolicited STAT that NACKs only those frames that

fall within this range. (Note that the check for missing frames is performed before

updating SEQH to the value of SEQ contained in the poll.) Even if the receiver sends an

152



unsolicited STAT in response to a poll, it also sends a solicited STAT that provides the

complete status of the receiver. As we see in the next section, unsolicited STATs are easier

to process; thus, NACKing a frame with an unsolicited STAT before sending a solicited

STAT may result in the lost frame being retransmitted slightly sooner. It also provides

some redundancy.

7.2.4 Retransmission

When the source receives a solicited status message, it retransmits all NACKed frames as

long as the value of PSEQ stored along with the frame in the retransmission buffer is less

than the value of PSEQ indicated in the status message. The value of PSEQ in the status

message is the sequence number of the poll that generated the status message. The

comparison of PSEQ values is done to prevent unnecessary retransmissions. Essentially

the retransmission criterion is: retransmit any NACKed frames that were sent before the

poll that triggered the NACK. This is discussed further in Section 7.3. When a data frame

is retransmitted, the current value of PSEQ is stored in the retransmission buffer along with

the frame.

There is a logical variable stored with each transmitted data frame, called RTS. This is set

to FALSE when a frame is first transmitted. When the source receives an unsolicited status

message, it retransmits all NACKed frames as long as the corresponding RTS value is

FALSE. No comparisons of PSEQ are done. Once a frame is retransmitted due to an

unsolicited STAT, RTS is set to TRUE. The purpose of the RTS variable is to prevent

duplicate retransmissions when the receiver sends two identical unsolicited STATs.

With either type of status message, the source removes from the buffer all frames up to but

not including SEQR, as indicated in the status message.

7.2.5 Example of Selective Repeat Operation

An example of the polling scheme operation is shown in Figure 7.1. The important points

are described below.

Frames 1 and 2 are delivered successfully. Frame 3 is lost, and Poll 1 generates a solicited

STAT that NACKs frame 3. (We assume the receiver chooses not to also send an

unsolicited STAT in response to the poll.) Note that the arrival of the poll also causes

SEQH to be updated to 4 (i.e., due to the poll, the destination knows that all frames

through 3 have been sent at least once).

153



Frame 4 is lost; frame 5 is received successfully and triggers an unsolicited STAT that

NACKs frame 4.

The PSEQ value stored with frame 3 is 0; thus, solicited STAT 1 triggers the

retransmission of frame 3 (since 0 < 1). The unsolicited STAT of frame 4 automatically

triggers the retransmission of frame 4 without any PSEQ comparisons being necessary.

Before the retransmissions of frames 3 and 4 are sent, Poll 2 is sent, which generates a

solicited STAT that NACKs both frames 3 and 4. Solicited STAT 2 triggers no

retransmissions since the PSEQ value stored with frames 3 and 4 is now 2.

The retransmission of frame 3 is lost, but the retransmission of frame 4 is successful.

Even though the destination receives frame 4 and not frame 3, it does not send an

unsolicited STAT, since SEQH is 6.

Finally, Poll 3 generates solicited STAT 3 that NACKs frame 3. This triggers the

successful retransmission of frame 3.

7.2.6 Go Back N Operation

If a connection is operating in the Go Back N (GBN) mode, only frames that arrive in

sequential order are accepted. If a frame arrives out-of-sequence, the frame is dropped and

an unsolicited status message is sent. The status message only needs to indicate SEQR.

No further unsolicited status messages are sent until after the frame with sequence number

SEQR arrives.

When a source in the GBN mode receives an unsolicited status message, the source

retransmits all frames beginning with the frame numbered SEQR. When a solicited status

message is received, the source compares the PSEQ value of the incoming status message

to the PSEQ value associated with the frame numbered SEQR. If the PSEQ value

associated with frame SEQR is smaller than the value of PSEQ contained in the status

message, then all frames in the retransmission buffer from SEQR onward are retransmitted.

Of course, if SEQR is equal to SEQ then no retransmissions are necessary.

154



SOURCE RECEIVER

PSEQ Value Frame Number SEQH

0 1 _- 2

0 2 --

0 3 A

1 Poll 1 _- sSTAT 1 (NACKs 3) 4

4

1 ----
/1 5 -- uSTAT (NACKs 4) 6

sSTAT 2 (NACKs 3,4)

2 3

2 4

2 6 7

3 Poll 3 __ sSTAT 3 (NACKs 3)

3 7 8

33 3

Figure 7.1 Operation of ATM retransmission scheme, under selective repeat.

7.3 PROOF OF PROPER OPERATION

As can be seen from the previous section, the proposed ATM retransmission algorithm

requires the maintenance of several variables, and involves many special cases and ad hoc

additions. Thus far, the standards committee has not formally proved that the

retransmission scheme works. The goal of this section is to prove the correctness of the

protocol. We must show that the source can continue forever to accept frames for

transmission from the higher layer, and that all frames are eventually delivered in proper

sequence at the destination. We also need to show that the claim of no unnecessary

retransmissions is true.

155



7.3.1 Conditions of Normal Operation

It is easy to come up with special circumstances where the proposed ATM retransmission

scheme does not work correctly. Thus, we first must define the conditions of "normal

operation". Under these conditions, we can prove the correctness of the protocol. The

conditions of normal operation are:

1) Frames (data or control) travel in order on the links.

2) Undetected errors do not occur.

3) State information at the source and receiver is not lost.

4) The connection does not go down.

5) There is some q > 0 such that each frame (data or control) is received error-free

with probability at least q.

6) All transmission and propagation delays are finite.

7) If polls are numbered modulo Mp, then no more than Mp-2 consecutive poll/status

message combinations are lost (i.e., one out of every Mp- 1 consecutive polls arrives

successfully at the destination, and the corresponding status message arrives

successfully at the source).

8) If frames are numbered modulo MF, and the oldest unacknowledged frame at the

source is SEQA, then the source does not transmit past frame SEQA + MF - 2.

(Due to the flow control window, the upper limit of the send window may be much

smaller than this.)

9) If polls are numbered modulo Mp, and the solicited STAT most recently received

by the source contained a poll sequence number of PSEQL, then the source does not

transmit past poll number PSEQL + Mp - 1.

The first seven conditions deal with properties of the network that must hold to guarantee

proper operation. The last two conditions should really be specified as part of the protocol.

Also, we make the obvious assumption that a frame cannot be received before it is sent.

We also assume that in the initial state of the system, there are no frames on any of the

links.

156



Below, we prove the proper operation of the protocol given the above conditions. We first

prove the protocol works if all sequence numbers are integers that can increase without

bound. In Section 7.3.6, we consider the case where frame sequence numbers are integers

modulo MF and poll sequence numbers are integers modulo Mp. The methodology of the

proof closely follows that used in [BeG92] to prove the correctness of general Go Back N

schemes.

7.3.2 Source and Destination Algorithms

First, let's review the definitions of the various variables, and precisely state the algorithms

at the source and destination. In this section, we assume all variables and sequence

numbers are ordinary integers.

SEQA = oldest unacknowledged frame at source

SEQ = one greater than highest numbered frame transmitted by source

PSEQ = sequence number of poll most recently sent by source

PSEQL = poll sequence number contained in solicited STAT most recently received by

source

RTS = logical variable associated with each frame transmitted by source. It is initialized to

FALSE, and set to TRUE if the frame is retransmitted due to an unsolicited STAT

SEQR = lowest consecutive frame that the destination hasn't correctly received

SEQH = one greater than the highest numbered frame that the destination knows the source

has sent

We also use the following conventions:

PSEQp = PSEQ number sent in a poll

SEQp = SEQ number sent in a poll

PSEQS = PSEQ number contained in a solicited STAT

SEQRS = SEQR number contained in a STAT (either solicited or unsolicited STAT)

Px = PSEQ stamp of frame number X (stored in retransmission buffer)

Algorithm at Source

1. Initialize SEQA, SEQ, PSEQ, and PSEQL to 0. The first transmitted data frame

contains sequence number 0. The first transmitted poll contains poll sequence number 1.

157



2. Do steps 3 through 8 repeatedly. Steps 5 through 8 are performed whenever the

conditions are met. Steps 3 and 4 are done repeatedly within finite intervals chosen by the

source.

3. If SEQ < SEQA + MF - 1, and a frame is available from the higher layer, assign frame

number SEQ to the frame, and increment SEQ by one (again, this may not be possible due

to the flow control window). Transmit frame, and store frame in retransmission buffer

with current value of PSEQ, and set the corresponding RTS variable to FALSE.

4. If PSEQ < PSEQL + Mp -1, increment PSEQ by one. Transmit a poll containing poll

number PSEQ and the current value of SEQ.

5. If a STAT is received with SEQRS > SEQA, increase SEQA to SEQRS.

6. When a solicited STAT is received, set PSEQL to PSEQS.

7. If a NACK of frame number X is received in a solicited STAT containing PSEQS, then

retransmit frame X if Px < PSEQS. If frame X is retransmitted, update Px to current value

of PSEQ.

8. If a NACK of frame number X is received in an unsolicited STAT, retransmit X if the

corresponding RTS variable equals FALSE. If frame X is retransmitted, set Px to current

value of PSEQ, and set RTS to TRUE.

Algorithm at Destination

1. Initialize SEQR and SEQH to 0. Do steps 2, 3, and 4 repeatedly.

2. If receive a frame with sequence number X equal to SEQR, accept the frame, and

increment SEQR. Perform the following loop:

While (SEQR equals the sequence number of a frame already in resequencing buffer) {

increment SEQR

Pass up to the higher layer all frames from X through the new value of SEQR- 1 (in proper

sequence). If X > SEQH, update SEQH to X + 1.

158



3. If receive a frame with sequence number X such that SEQR < X < SEQR + MF - 2,

store the frame in the resequencing buffer. (The receive window may actually be smaller

due to flow control restrictions.) If X > SEQH, NACK all missing frames between

SEQH and X-1, inclusive (if any), in an unsolicited STAT. Set SEQRs in the STAT to the

current value of SEQR. As an option, two identical unsolicited STATs can be sent. If

X > SEQH, update SEQH to X + 1.

4. If receive a poll with SEQp > SEQH, optionally NACK all missing frames between

SEQH and SEQp - 1, inclusive (if any), in an unsolicited STAT. Set SEQRS in the STAT

to the current value of SEQR. Also, if SEQp > SEQH, update SEQH to SEQp.

Regardless of whether the unsolicited STAT is sent, send a solicited STAT containing

PSEQS equal to PSEQp, containing SEQRs equal to the current value of SEQR, and

NACKing all missing frames with sequence number less than SEQp.

Throughout our discussion, it is assumed that each of the steps in the above algorithms at

the source and destination can be viewed as an indivisible operation i.e., once a given step

is started, no other operations are performed until the entire step is finished. When we

refer to transmissions at the source and destination, we assume the frame or control

message is passed down to a transmit queue at a lower layer, which is served in First In

First Out order.

To prove the correctness of this protocol, we must show safety and liveness.[BeG92] We

also need to show that the algorithm does not produce unnecessary retransmissions.

7.3.3 Safety Condition

The algorithm is safe if it never delivers an out-of-sequence frame to the higher layer at the

destination. From step 2 of the algorithm at the destination, we see that frames must be

passed up in sequence, so that the algorithm is safe.

7.3.4 Liveness Condition

The algorithm is live if the source can continue forever to accept packets from the higher

layer, and the destination continues to deliver them to the higher layer.

Let SEQA(t), SEQ(t), PSEQ(t), SEQR(t), and SEQH(t) represent the value of these five

variables at time t. From the algorithm statement, it can be seen that all five must be non-

159



decreasing in t. Define a successful poll as a poll that gets to the destination error-free,

and whose corresponding solicited STAT gets to the source error-free.

Consider any transmitted frame with sequence number X. Refer to Figure 7.2. Let tTi

equal the transmission time of the ith copy of frame X. Polls are sent periodically within

finite intervals. Due to condition (5), some poll sent after time tTi must be successful. Let

tpi be the transmission time of the first successful poll sent after time tTi. Let tRi be the

time this poll arrives at the destination. Let tsi equal the time the STAT corresponding to

this poll arrives at the source. Thus, tTi < tpi < tRi < tsi. Since we assume finite delays,

and because of condition 5, tRi, and tsi are finite.

Copy i of Frame X | Po**

tTi \ tpi tSi

May or may not
be received

STA]

tRi
Figure 7.2 Copy i of frame X is transmitted at time tTi. Some poll that it is transmitted after time tTi
will be successful. We assume such a poll is sent at time tpi and received at the destination at time tRi.
The corresponding solicited status message is received at the source at time tsi.

Let PX(t) represent the PSEQ stamp of frame X at time t. Then:

Px(t) = PSEQ(tTi) for tTi < t < tT(i+l) (7.1)

where we take tT(i+l) to be oo if X is not transmitted for the (i+l)th time. Also, since SEQ

is one greater than any transmitted frame:

SEQ(t) > X for t > tTi (7.2)

We want to show that if the ith copy of frame X has been transmitted, either this copy will

be received successfully at the destination, or copy i+1 of frame X will be transmitted. (In

the next section, we show that both events do not occur.)

160



The successful poll sent at time tpi contains PSEQp = PSEQ(tpi-) + 1 and SEQp =

SEQ(tpi-), where tpi- represents the start of the poll transmission operation, before PSEQ is

updated. Since tpi- > tTi, from (7.2), we have:

SEQp > X (7.3)

Also, the nondecreasing property of PSEQ(t) implies that:

PSEQp > PSEQ(tTi) (7.4)

At time tRi, one of the following 2 conditions must hold:

a) Frame X has been received by the destination. Since tRi is finite, this implies frame X

has been received in finite time.

b) Frame X has not been received by the destination. Since the poll was sent after frame

X, and it arrives before frame X, it means frame X is lost (since frames travel in order).

The poll triggers a solicited STAT NACKing frame X since, as shown above, SEQp > X.

The solicited STAT, with PSEQs equal to PSEQp, arrives at the source at time tsi. It is

possible an unsolicited STAT NACKing copy i of frame X has already been received by

the source prior to tsi, in which case copy i+1 may already have been sent. If not, then,

from equation (1), Px(tsi) = PSEQ(tTi). Combining this with equation (7.4) yields:

Px(tsi) = PSEQ(tTi) < PSEQp = PSEQs

Thus, since Px(tsi) < PSEQs, the condition of step 7 in the algorithm at the source is

satisfied, and frame X is retransmitted.

We conclude that, given copy i of frame X has been sent, either copy i will be successfully

received, or copy i+1 will be transmitted. From condition 5, we assume that frames are

successfully received with probability greater than some non-zero q. Thus, eventually

frame X will be received successfully. (Note that even without unsolicited STATs, frame

X is eventually received successfully; only solicited STATs are needed to satisfy liveness.)

Now, let Y be the value of SEQA at any time t. We know that all frames before Y have

been received at the destination and have been ACKed; thus, frame Y must fall within the

receive window. From what was shown above, frame Y will eventually be received at the

destination in finite time. At the time Y is accepted at the destination, SEQR will be

incremented beyond Y. The destination will be able to deliver to the higher layer all frames

through at least frame Y. The next successful poll sent after the successful transmission of

Y will generate a solicited STAT with SEQRS > Y. Thus, at the time this STAT arrives at

the source, SEQA will be incremented beyond Y.

161



We conclude that the value of SEQA is always incremented after some finite time

(assuming there is data to send). This allows the higher layer at the source to continue to

submit frames.

We have shown that the algorithm is live: the higher layer at the source can continue to

submit frames, and the destination will continue to deliver them. Next, we need to show

the algorithm does not produce any unnecessary retransmissions.

7.3.5 No Unnecessary Retransmissions

We define an unnecessary retransmission as occurring when copy j of a frame is sent even

though copy i, for some i < j, is not lost. If copy i+1 is not sent unless copy i is lost, then

we know that copy j, for all j > i, will not be sent unless copy i is lost. Thus, we just need

to consider copies i and i+1.

In the discussion below, we examine whether copy i+1 of an arbitrary frame, say frame X,

could ever be unnecessarily sent. In order for copy i+l to be unnecessary it must be true

that copy i of frame X does arrive (and is accepted) at the destination.

There are 3 possible ways a NACK of frame X can be generated (for simplicity, SEQH is

used rather than SEQH(t)):

1) Frame Y arrives at the destination, and at the time of its arrival X has not arrived and

been accepted, and the following holds: Y > X > SEQH. An unsolicited NACK of frame

X is sent and SEQH is updated to Y+1.

2) A poll arrives at the destination, and at the time of its arrival X has not arrived and been

accepted, and the following holds: SEQp > X > SEQH. An unsolicited NACK of frame X

is optionally sent. A solicited NACK of frame X must be sent. After the NACKs are sent,

SEQH is updated to SEQp.

3) A poll arrives at the destination, and at the time of its arrival X has not arrived and been

accepted, and the following holds: SEQp > X and SEQH > X. A solicited NACK of frame

X is sent. If SEQp > SEQH, then after the NACK is sent, SEQH is updated to SEQp.

First, consider the case where i = 1. Assume copy 1 of frame X arrives (and is accepted) at

the destination. Copy 1 of frame X must be sent before any copy of frame Y, where Y >

162



X, and must be sent before a poll with SEQp, where SEQp > X. Given that frames travel

in order, such a frame Y or such a poll cannot arrive before frame X. Thus, the conditions

in the three procedures above are not satisfied; copy 1 of frame X will not be NACKed, so

no further copies of frame X will be sent.

Next, consider the case where i > 1. Since frame X has been sent more than once, and

since frames are only retransmitted in response to NACKs, it must be true that frame X

was NACKed at least once. From statements 1, 2, and 3 above, it must be true that after

frame X is NACKed, SEQH is updated to a value greater than X. (In statement 3, SEQH

is already greater than X.) SEQH is nondecreasing. Thus, after frame X has been

NACKed once, statements 1 and 2 above can never be satisfied, since they require X 2>

SEQH (i.e., an unsolicited STAT can only NACK copy 1 of a frame.) (For now, ignore

the case where two identical unsolicited STATs are sent.)

Thus, we only need to consider statement 3 above. Let ti be the time that copy i of frame X

is transmitted. Let Pxi be the PSEQ stamp associated with copy i of frame X. Then

Pxi = PSEQ(ti). We assume that copy i is received and accepted by the destination. We

consider whether any poll can trigger an unnecessary transmission of copy i+l1 of frame X.

a) First, consider a poll sent before ti. Its poll sequence number, PSEQp, satisfies

PSEQp < PSEQ(ti). Thus, the corresponding solicited STAT would contain

PSEQs < PSEQ(ti) = Pxi. Thus, copy i+l of frame X would not be transmitted since

Pxi is not less than PSEQs.

b) Next, consider a poll sent after ti. If copy i of frame X gets to the destination, then it

must arrive before such a poll (since frames travel in sequence). Thus, this poll will not

NACK frame X.

Thus, a poll will not trigger an unnecessary retransmission of frame X.

The last case we need to consider is where copy 1 of frame X is lost, and frame X is

retransmitted due to an unsolicited STAT. The destination has the option of sending two

identical unsolicited STATs. However, if frame X is retransmitted due to an unsolicited

STAT, the variable RTSx is set to TRUE, so that all future NACKs of frame X contained

in unsolicited STATs are ignored. Thus, if both unsolicited STATs arrive at the source, the

second one will be ignored.

163



Overall, we see that given copy i of frame X is received, copy i+l will not be sent. Thus,

no unnecessary retransmissions are produced.

7.3.6 Sequence Numbers with Modulus

In the sections above, we showed that the protocol works correctly if sequence numbers

can increase without bound. In this section, we show that the protocol continues to work if

frame sequence numbers are treated modulo MF, and poll sequence numbers are treated

modulo Mp.

7.3.6.1 Received Frame Sequence Numbers

First, continue to assume that sequence numbers are integers increasing without bound.

Consider the successful transmission of an arbitrary frame sent by the source. Assume it is

transmitted at time t1 and received at the destination at time t 2. Obviously, t2 > t1. The

sequence number of the frame, say X, must lie in the source's send window at time tl.

Thus:

SEQA(tl) < X < SEQA(tl) + MF -2 (7.5)

From step 5 of the algorithm at the source, it must be true that SEQA(t) < SEQR(t) for all t.

(If SEQA(t) > SEQR(t), it would mean the source received an ACK for a frame that was

not received by the destination.) Thus, for any t1 < t 2,

SEQA(tl) < SEQR(tl) < SEQR(t2) (7.6)

We showed above that the protocol does not produce unnecessary retransmissions. Thus,

the transmission of frame X must be necessary. Thus, SEQR(t 2) < X. (If SEQR(t 2) were

greater than X, it would mean frame X has already been received by time t 2.) Combining

this with equations (7.5) and (7.6), yields:

SEQA(tl) < SEQR(t2) < X < SEQA(tl) + MF -2 (7.7)

The destination accepts frames in the range from SEQR(t 2) to SEQR(t 2) + MF - 2. (The

acceptance window may actually be smaller for flow control purposes.) We have:

o < (X - SEQR(t2)) < MF -2. Thus, X falling in the range SEQR(t 2) to SEQR(t 2) + MF -

2 is equivalent to X mod MF falling in the range SEQR(t 2) mod MF to (SEQR(t 2) + MF -

164



2) mod MF. Thus, treating the sequence numbers as integers modulo MF does not affect

the acceptance policy at the destination.

Note that we need to define what it means to "fall in the range" of A and B, where A and B

are numbers modulo MF. One can envision the numbers from 0 to MF-1 on a circle,

increasing clockwise. Then for any two numbers A and B, we define the region that

extends clockwise from A to B as representing the numbers that fall between A and B.

This is shown in Figure 7.3.

MF-1 0
A 

2

Figure 7.3 The shaded region represents the numbers that fall between A and B.

Note that the property of no unnecessary retransmissions is important in the above

argument. In general selective repeat systems, where unnecessary retransmissions can

occur, if the modulus is MF, then ambiguity can occur if the source transmits past

SEQA+MF/2 - 1 (as opposed to SEQA + MF - 2 for the ATM scheme). [BeG92]

7.3.6.2 Generating Solicited Status Messages

Again, assume increasing integers are used for sequence numbers. Assume a poll is

transmitted at time tl, and arrives at the destination at time t2. Obviously, tl < t2 . Assume

the poll contains SEQp, where SEQp = SEQ(tl). Thus, at time tl, all frames through

SEQp - 1 have been transmitted. Due to the restriction on the send window, we know that:

SEQp - 1 < SEQA(tl) + MF -2 (7.8)

Since SEQ(t) > SEQA(t) for all t, we have:

165



SEQA(t1) < SEQ(t1) = SEQp < SEQA(tl) + MF -1 (7.9)

In equation (7.6), we showed SEQA(tl) < SEQR(t 2) for any tl < t 2. The value of

SEQR(t 2) indicates that the source must have sent the frame with sequence number

SEQR(t 2) -1 at some time prior to tl, say at time to. (If the frame were sent after tl, it could

not have arrived prior to the poll that was sent at tl.) Using the restriction on the send

window at the source, SEQR(t 2 ) -1 < SEQA(to) + MF -2. Since SEQA(t) is non-

decreasing in t, we arrive at:

SEQA(tl) < SEQR(t2) < SEQA(tl) + MF-1 (7.10)

We have shown that both SEQp and SEQR(t2 ) lie between SEQA(tl) and SEQA(tl) + MF -

1. A poll arriving at time t2 generates NACKs of frames between SEQR(t2) and SEQp - 1,

inclusive. Thus, the sequence numbers can be treated modulo MF without causing

ambiguity with NACKing frames in solicited STATs.

7.3.6.3 Generating Unsolicited Status Messages

Again, assume increasing integers are used for sequence numbers. Unsolicited STATs can

be generated by the arrival of a frame or a poll. An unsolicited STAT is always sent if a

frame with sequence number X arrives at time t before a frame with sequence number

between SEQH(t) and X-1, inclusive (where SEQH(t) is the value of SEQH before it is

updated due to the arrival at time t). An unsolicited STAT is optionally sent if a poll

containing SEQp arrives at time t before a frame with sequence number between SEQH(t)

and SEQp -1, inclusive. Let tl be the transmission time at the source of the frame or poll

that generates the unsolicited STAT, and let t2 be the arrival time of the frame or poll at the

destination.

From the definition of the protocol, it must be true that SEQR(t) < SEQH(t) for all t. Thus,

using equation (7.6), we know SEQA(tl) < SEQR(t 2) < SEQH(t 2). The value of

SEQH(t 2) indicates that the source must have sent the frame with sequence number

SEQH(t 2) -1 at some time prior to tl, say at time to. Using the restriction on the send

window at the source, SEQH(t 2) - 1 < SEQA(to) + MF -2. Since SEQA(t) is non-

decreasing in t, we arrive at:

SEQA(tl) < SEQH(t2) < SEQA(tl) + MF -1 (7.11)

166



From the restriction on the send window, we know that if frame X is sent at time tl, then

X < SEQA(tl) + MF -2. Or, if a poll with SEQp is sent at time tl, then

SEQp -1 < SEQA(tl) + MF -2. Thus, using the rule for generating NACKs, any frame Y

NACKed in an unsolicited STAT satisfies:

SEQA(tl) < SEQH(t 2) < Y < SEQA(tl) + MF -2 (7.12)

Therefore, sequence numbers can be treated modulo MF without causing ambiguity with

frames NACKed by unsolicited STATs.

7.3.6.4 Receiving Status Messages at Source

Again, assume increasing integers are used for sequence numbers. Let tl be the time a

STAT (either solicited or unsolicited) is sent by the destination, and let t2 be the time the

STAT arrives at the source. Let SEQRs be the value of SEQR contained in the STAT. Let

SEQA(t 2) be the value of SEQA at the time the STAT arrives (i.e., before SEQA is updated

to SEQRS). Thus, all frames through SEQRs - 1 are being ACKed by this STAT.

A STAT ACKing frame SEQRS cannot be received before a STAT that ACKs only through

SEQRs - 1 (since SEQR(t) is non-decreasing in t and frames travel in sequence). Thus,

SEQA(t 2 ) < SEQRs. (If SEQA(t2) were greater than SEQRS, it would mean that SEQRs

had been ACKed by time t2 .) Also, a STAT cannot ACK a frame that has not been sent.

Due to the restriction on the send window, SEQRS -1 < SEQA(t2 ) + MF - 2. Thus:

SEQA(t 2 ) < SEQRs < SEQA(t2) + MF - 1 (7.13)

Thus, SEQA can be updated to SEQRS without ambiguity.

Now consider any NACKs contained in the STATs, and consider the sequence numbers as

ordinary integers again. Let Y equal the sequence number of a NACKed frame in the

STAT. By definition of the protocol, we know Y > SEQRS.

First, consider the case where the STAT is an unsolicited STAT triggered by the arrival at

the destination of a frame with sequence number X. By definition of the protocol, Y < X.

We assumed the STAT is generated at time tl; thus, we know that frame X has been sent

by the source prior to tl, say at time to. Due to the restriction on the send window, we

167



know that: X < SEQA(to) + MF - 2. Thus, using the fact that SEQA(t) is non-decreasing

in t:

Y < X < SEQA(to) + MF - 2 < SEQA(t 2) + MF - 2 (7.14)

Combining this with equation (7.13) and the fact that Y > SEQRS yields:

SEQA(t2 ) < Y < SEQA(t2) + MF - 2 (7.15)

Next, consider the case where the STAT is triggered by a poll containing SEQp (the STAT

can be solicited or unsolicited). By definition of the protocol, Y < SEQp. The STAT is

generated at time tl; thus, we know that a poll containing SEQp has been sent by the source

prior to tl. Thus, we also know that frame SEQp -1 must have been sent by the source

before tl, say at time to. Due to the restriction on the send window, we know that:

SEQp - 1 < SEQA(to) + MF - 2. Thus, using the fact that SEQA(t) is non-decreasing in

Y < SEQp - 1 < SEQA(to) + MF - 2 < SEQA(t2) + MF - 2 (7.16)

Combining this with equation (7.13) and the fact that Y > SEQRs yields:

SEQA(t2 ) < Y < SEQA(t2 ) + MF - 2 (7.17)

Thus, at the arrival time t2 of any STAT, SEQRS and any NACK contained in the STAT

fall between SEQA(t2 ) and SEQA(t2 ) + MF - 2.

Combining the last four sections, we see that for any time t, any STAT that arrives at the

source at time t will contain NACKs and SEQRS that lie in the region SEQA(t) to

SEQA(t) + MF -1. Also, SEQ(t) lies in this region due to the restriction on the send

window. Also, consider any frame or poll that is transmitted at time tl and received at the

destination at time t2. Then, at t2, the sequence number contained in the frame lies in the

region SEQA(tl) to SEQA(tl) + MF -1; or, if it's a poll that is received, the value of SEQp

contained in the poll lies in this region. We also showed SEQR(t2) and SEQH(t2 ) lie in this

region.

168



Thus, all frame sequence numbers and SEQA, SEQ, SEQR, and SEQH can be kept

modulo MF without affecting the operation of the protocol.

7.3.6.5 Poll Sequence Numbers

First consider poll sequence numbers as ordinary increasing integers. Let tl be the time a

poll is transmitted by the source. Assume the poll contains PSEQp. Let t 2 be the time the

corresponding solicited STAT gets back to the source (if it does). The STAT carries

PSEQs equal to PSEQp. PSEQL(t) represents the poll sequence number contained in the

last received solicited STAT as a function of time. PSEQL(t) is non-decreasing in t. Since

the STAT carrying sequence number PSEQS does not arrive until time t2, and since frames

travel in sequence, PSEQL(t2) < PSEQs (we assume PSEQL(t2) represents the value of

PSEQL at the arrival time of the STAT, before it is updated to PSEQs). At time tl, PSEQp

must fall within the send window for polls. Thus, PSEQp < PSEQL(tl) + Mp -1. Since

PSEQL(t) is non-decreasing in t, PSEQp < PSEQL(t2) + Mp -1. Thus, overall, we have:

PSEQL(t2) < PSEQs = PSEQp < PSEQL(t 2) + Mp -1 (7.18)

Thus, any solicited STAT that arrives at the source at time t contains a PSEQ value that is

within the range from PSEQL(t)+ 1 to PSEQL(t) + Mp -1, inclusive.

Now, let's consider the PSEQ stamps in the retransmission buffer. Consider any time t 2

when a solicited STAT arrives at the source. Obviously, the poll with PSEQp equal to

PSEQS was sent before time t 2. Thus, PSEQ(t2) 2 PSEQp = PSEQS.

At time t 2, the source examines each frame in the retransmission buffer:

* if a frame is ACKed by the STAT, the source removes it from the buffer

* if a frame is NACKed by the STAT and it is retransmitted then the PSEQ stamp of

the frame is updated to PSEQ(t 2).

* if a frame is NACKed by the STAT but it is not retransmitted, then the PSEQ

stamp of the frame must have been greater than or equal to PSEQS.

* if a frame is in the buffer but not ACKed or NACKed by the STAT, then it must

have been sent after the poll carrying PSEQp. Thus, the PSEQ stamp must be

greater than or equal to PSEQs.

After the source finishes servicing the STAT, PSEQL is updated to PSEQS. From the

above discussion we see that all frames in the retransmission buffer at this time will have a

169



stamp greater than or equal to PSEQs. Thus, due to the restriction on the poll send

window, after the STAT is serviced, all PSEQ stamps in the retransmission buffer lie

between PSEQL and PSEQL+ Mp- 1, inclusive.

Thus, the poll sequence numbers can be treated modulo Mp without ambiguity problems.

7.3.7 Out-of-Sequence Retransmissions

From the discussion above, it would seem that for any two frames, X and X+1, copy i of

frame X+1 is never sent before copy i of frame X. However, this is not true even if the

conditions stated in Section 7.3.1 hold. Consider the following example, which is depicted

in Figure 7.4 Assume the destination sends a solicited STAT NACKing frame X, and later

sends an unsolicited STAT NACKing frame X+ 1. The unsolicited STAT will not NACK

frame X since unsolicited STATs can only NACK frames that have not been NACKed

previously. Assume the solicited STAT is lost. When the unsolicited STAT arrives,

frames X+1 will be retransmitted before frame X is retransmitted. The protocol still

functions properly as shown by our proof (e.g., this scenario does not produce

unnecessary retransmissions), but it is a peculiar feature. It arises because unsolicited

status messages do not contain the full status of the receiver.

Source Receiver
Frame X

POLL

Frame X+ 1
sSTAT NACK X

Frame X+2

uSTAT NACK X+1

Frame X+ 1

POLL

sSTAT NACK X
Frame X

Figure 7.4 An unsolicited STAT NACKing frame X+1 arrives at the source before a solicited STAT
NACKing frame X. Thus the second copy of frame X+1 is sent before the second copy of frame X.

170



7.4 POTENTIAL PROBLEMS

In the previous section, we examined the proposed ATM retransmission scheme under

normal operating conditions. Here, we consider the problems that can arise if some of the

conditions enumerated in Section 7.3.1 do not hold.

7.4.1 Limit on Outstanding Number of Frames

If SEQA is the oldest unacknowledged frame in the retransmission buffer, then the source

is not permitted to transmit past frame (SEQA + MF - 2)mod MF, where we assume the

frames are numbered modulo MF. This was condition (8) in Section 7.3.1.

Assume there are no outstanding frames in a connection, and SEQA, SEQ, SEQR, and

SEQH all equal S. Assume the source then violates the restriction on the number of

outstanding frames, and transmits MF frames. After sending precisely MF frames, SEQ

will again equal S. Assume all MF frames are lost. If a poll is sent out after the MF

frames, it will contain SEQ equal to S. Upon receiving this poll, the destination responds

with a status message containing SEQR equal to S. The source could interpret this as an

ACK of all MF frames. Thus, these MF frames would not be retransmitted and would

never be delivered to the destination.

7.4.2 Limit on Outstanding Number of Polls

If the solicited STAT most recently received by the source contained a poll sequence

number of PSEQL, then the source is not permitted to transmit past poll number

(PSEQL + Mp - 1)mod Mp. This was condition (9) in Section 7.3.1.

In Section 7.3.6.5, we showed that the stamp of any frame in the retransmission buffer

must correspond to poll PSEQL or to a poll that was sent after poll PSEQL. Thus, due to

condition (7), stamps in the retransmission buffer correspond to no more than Mp polls. If

the source were to transmit poll number (PSEQL + Mp)mod Mp (which obviously carries

sequence number PSEQL), then both the oldest frames in the buffer and the newest frames

in the buffer could be stamped with PSEQL. This could lead to unnecessary

retransmissions, as shown in Figure 7.5. In this example, frame 1 is lost and

retransmitted. When it is retransmitted, the value of PSEQ has wrapped around to 0 again.

Thus, the status message corresponding to poll 1 causes the unnecessary retransmission of

frame 1. This is a serious problem since the correctness of the protocol relies on the fact

that there are no unnecessary retransmissions.

171



SOURCE 
RECEIVER

PSEQ Value Frame Number

o Poll 0 
sSTAT 0

0 1

0 2 - uSTAT (NACKs 1)

o 3

1 Poll 1 _T , sSTAT 1 (NACKs 1,3)

O Poll 0

O 1 

o 1

0 3

Figure 7.5 Unnecessary retransmission caused by the source violating the restriction on the number of

outstanding polls.

7.4.3 Consecutive Lost Polls

Condition (7) in Section 7.3.1 stated that no more than Mp-2 consecutive poll/status

message combinations are lost. If this condition does not hold, and the source adheres to

condition (9), then the source would be unable to send any more polls. The source may be

able to partially rely on unsolicited STATs for NACKs. However, if the last frames of a

connection are lost, or if an unsolicited STAT is lost, then some frames will never be

retransmitted. Or, if MF-1 consecutive frames are successfully transmitted, the destination

will not be able to ACK these frames due to the lack of polls. Due to the restriction of

condition (8), the source will be unable to transmit any more frames. The protocol will be

deadlocked.

172

__ ~~~~~~~~~~~~~~~~~------~~ ~ ~ ~~~~~~~~~~~-- ----



To deal with this situation, the proposed scheme includes a variable

Timer_NO_RESPONSE. If this timer expires without the source receiving a solicited

STAT, the connection is terminated.

7.4.4 Out-of-Sequence Traffic

In this section, we consider problems that can arise if frames (either data frames or control

frames) arrive out-of-sequence. As in typical systems, if a frame, say frame X, arrives

out-of-sequence and very much delayed, it may be interpreted by the destination as being

frame X+MF. In addition, in the ATM scheme, out-of-sequence frames can result in

unnecessary retransmissions, which in turn may lead to serious failures of the protocol. In

Section 7.3, where we proved that the retransmission protocol works properly, it was

assumed that unnecessary retransmissions do not occur. With this assumption, the

destination was guaranteed not to receive frames prior to SEQR, since SEQR indicates the

destination has received all frames through SEQR- 1. Without this assumption, the protocol

will likely fail, as is demonstrated in the following example.

Assume SEQA equals 0 and SEQ equals 100. Assume frames 0 through 50 have been

received by the destination. Thus, SEQR and SEQH equal 51. Next, assume frame

number 5 is retransmitted unnecessarily. This extra copy of frame 5 will be stored in the

resequencing buffer at the destination, and will be treated as frame 5 in the 'next cycle' of

224 frames. Thus, an incorrect frame will be passed up to the higher layer at the

destination. Also, when frame 5 arrives at the destination, the receiver will interpret this as

being a frame 'greater than' SEQH. Thus, it will send an unsolicited STAT NACKing

frames 'between' 51 and 4, inclusive, and it will set SEQH to 5. This erroneous NACK

could result in more unnecessary retransmissions (although if the source realizes that the

status message does not make sense, it would ignore it). The value of SEQH will be

incorrect so that the unsolicited STAT mechanism will be corrupt.

Below we consider the various scenarios where frames travel out-of-sequence.

Scenario 1: Copy 1 of frame X+ 1 is transmitted after copy 1 of frame X, but arrives before

it. An unsolicited STAT will be sent NACKing frame X, and frame X will be

unnecessarily retransmitted.

173



Source Receiver

Frame X

Frame X+ 1

uSTAT NACK X

Frame X

Figure 7.6 Frame X+1 arrives before frame X, triggering an unsolicited STAT of frame X.

Scenario 2: A poll message containing SEQ equal to X+1 (indicating frames up to and

including sequence number X have been sent before this poll) arrives before frame X. The

solicited STAT will NACK frame X and will result in an unnecessary retransmission.

Source Receiver

Frame X

Poll
(SEQ = X+1)

sSTAT NACK X

Frame X

Figure 7.7 The poll arrives before a frame that was sent before it.

Scenario 3: Poll P-1 arrives at the destination before poll P, but the solicited STAT in

response to poll P arrives at the source before the solicited STAT in response to poll P-1.

After STAT P is serviced, PSEQL will be updated to P. There are several situations that

can cause problems; we'll consider just one. Assume frame X is NACKed in STAT P-1.

If frame X was also NACKed by STAT P and was retransmitted, then the PSEQ stamp of

X must have been updated to a value that lies 'between' P and P-2. Since PSEQL will be

updated to P, P-1 will be treated as if it is greater than the PSEQ stamp of X. Thus, frame

X will be retransmitted unnecessarily due to STAT P-1.

174



Scenario 4: A solicited STAT arrives at the source before an unsolicited STAT that was

sent earlier by the receiver. (Refer to Figure 7.8 below.) If the solicited STAT NACKs a

frame that is also NACKed by the unsolicited STAT, then an unnecessary retransmission

will result.

Source Receiver

Frame X

Frame X+1

POLL

uSTAT NACK X

sSTAT NACK X

Frame X

Frame X

Figure 7.8 The solicited STAT arrives before the unsolicited STAT that was sent before it. No PSEQ
comparisons are done when the unsolicited STAT arrives, so that frame X is unnecessarily retransmitted.

Scenario 5: An unsolicited STAT arrives at the source before a solicited STAT that was

sent earlier by the receiver. The solicited STAT will not NACK anything NACKed by the

unsolicited STAT (an unsolicited STAT cannot NACK a frame that has been previously

NACKed). Thus, no problems are caused by this scenario.

To summarize, scenarios 1, 2, 3, and 4 may result in unnecessary retransmissions, which

can cause serious problems with the protocol as indicated in the beginning of this section.

7.5 POLL-BASED SCHEME IN ATM ENVIRONMENT

In the previous sections, we analyzed the operation of the proposed ATM retransmission

scheme. Here, we consider whether such a poll-based scheme is appropriate for the ATM

environment.

175



7.5.1 Burst Losses

ATM is a high speed, integrated service network. The potential for low delay is one of the

important advertised features of ATM. However, the analysis of chapter six showed that

the weakness of poll-based schemes is that the retransmission delay may be quite large.

The most serious problem is that poll-based schemes perform poorly when burst losses

occur. If all frames sent in between poll transmissions are lost (but the polls are not), the

expected excess retransmission delay doubles as compared to the expected delay if just a

single frame is lost between polls (see Section 6.2.1.4). If the polls or status messages are

lost also, then the expected excess retransmission delay can increase significantly more as

shown in Section 6.2.1.5.

7.5.2 Unsolicited STATs

The proposed ATM protocol makes use of unsolicited STATs. If frames are comprised of

N cells, and Dmax is the desired maximum expected relative excess delay (assuming non-

burst losses), then from equation 6.14 unsolicited STATs provide a delay benefit if:

R _ (N+1) (2Dmax 1)

Assume Dmax is 5% and the RTD is 50 msec. If the number of cells per frame, N, is 1,

then unsolicited STATs provide a delay benefit if the data rate is greater than about 150

Kb/sec; if N is 100, then they are beneficial if the data rate is greater than about 8Mb/sec.

It obviously depends on the specific parameters of the connection whether unsolicited

STATs are beneficial. Even if they do decrease the delay, it is not clear that this feature

should be implemented. For example, as shown in Graph 6.5, at high speeds, low excess

delay can be achieved even without the use of unsolicited STATs. Second, as we saw in

Section 7.3, unsolicited STATs add a lot of complexity to the protocol. Thus, the protocol

is more vulnerable to failure.

7.5.3 Selective Repeat vs. Go Back N

As discussed in Section 7.2, the proposed ATM retransmission protocol provides two

options when a frame is received out-of-sequence. In the selective repeat (SR) option, the

receiver stores out-of-sequence frames in a resequencing buffer, and requests that the

source retransmit the missing frames. In the Go Back N (GBN) option, the receiver drops

out-of-sequence frames.

176



The designers of ATM assume that almost all connections will use the SR option[T1S92].

In this section we analyze whether SR is a sensible option. As discussed in Section 6.6,

the chief advantage of SR over GBN is greater bandwidth efficiency. The main

disadvantage of SR is that the receiver must keep track of the status of each message it

receives, and must resequence frames that arrive out of order.

Efficiency, is defined as 1/y, where y is the expected number of transmitted data frames

from source to destination per successfully accepted data frame at the destination. If cells

are dropped independently with probability QR, and frames are comprised of N cells, and

R cells are sent per RTD, then, from equation 6.17 and 6.18:

GBN efficiency = - N QR
1+N QRFR+i]

N

SR efficiency = 1 - N QR

In ATM, however, we expect burst cell losses as well as random cell losses. As discussed

in Section 6.6.1.2, the performance of GBN improves if cells are dropped in bursts rather

than randomly, whereas the performance of SR is relatively unaffected by the burstiness of

the losses (assuming the resequencing buffer is large).

Our goal is to determine whether the greater efficiency of SR is significant enough to justify

the additional complexity. We will consider the case which produces the largest efficiency

difference between SR and GBN, i.e., the case where cells are dropped randomly. We

make the worst case assumption that any cell affected by a random bit error or a burst error

is dropped. As usual, let PR be the probability of a random bit error, PB be the probability

of a cell being hit by a burst error, and Pc be the probability a cell is dropped due to

congestion. Then QR equals ((53)(8) PR + PB + PC). If PR equals 10-8, PB equals 10-7,

and PC equals 10-6, as assumed in chapter four, then QR equals 5x10-6 . Graph 7.1 plots

the efficiency of SR and GBN for this value of QR. The difference in performance is very

small. (The graphs change very little if N is varied.)

As stated in chapter four, the congestion loss rate may be greater than 10-6, depending on

how well the flow control works. Graph 7.2 plots the efficiency if Pc increases to 10-4

(QR would also increase to 10-4). Again, the difference is not significant. Recall that the

177



difference will be even less if the cells are dropped in bursts, which is likely to be the case

if the congestion drop rate is high.

As an extreme case, we could consider PC (and QR) equal to 10-3 . The efficiency of SR

and GBN for this value of QR is shown on Graph 7.3. The efficiency difference between

SR and GBN is significant only for R greater than 100. If the RTD is 50 msec, an R of

100 corresponds to a data rate of 850 Kb/sec.

Thus, only at this extremely high rate of cell loss does SR provide a significant

improvement over GBN. Certainly, a cell loss rate of 10-3 is not expected. Thus, it does

not appear that SR is warranted.

Graph 7.1 Efficiency of GBN and SR
(N =10 and Cell Loss Rate = 5E-6)

0.998

0.996 \ - GBN Efficiency
Efficiency

0.994 - - SR Efficiency

0.992

0.99 I I I I R
0.1 1 10 100 1000

Graph 7.2 Efficiency of GBN and SR
(N =10 and Cell Loss Rate = 1E-4)

0.98

0.96 - GBN Efficiency
Efficiency

0.94 - - SR Efficiency

0.92

0.9 A I I R
0.1 1 10 100 1000

178



Graph 7.3 Efficiency of GBN and SR
(N =10 and Cell Loss Rate = 1E-3)

0.9

0.8 - GBN Efficiency

Efficiency 0.7

0.6 - - SR Efficiency

0.5

0.4 I I I I R
0.1 1 10 100 1000

7.5.4 Timer-Based Schemes

As discussed above, the chief problem with a poll-based scheme in an ATM environment is

the poor performance during burst losses. Here, we consider whether timer-based

schemes are a better option. In timer-based schemes, the source virtually maintains a timer

for each transmitted frame. If an ACK of a frame is not received by the time its associated

timer expires, the frame is retransmitted. The source needs to estimate the RTD in order to

determine how to set the timer.

The high speed of the data links in ATM means that queueing delays should be small

relative to propagation delay. Thus, the RTD should not vary much, allowing the source to

accurately set its timers. As discussed in Section 6.3.1, this will result in low excess

retransmission delay.

The retransmission process in timer-based schemes is generally unaffected by burst losses.

The key difference is that timer-based schemes produce retransmissions if an ACK is not

received; poll-based schemes rely on a poll or a data frame getting through to the

destination, and a status message getting through to the source in order to generate a

retransmission. If the system is in a state where it is dropping many frames, it is not

expedient to rely on a successful transmission in order to generate retransmissions. The

tradeoff of using a timer based scheme, of course, is that unnecessary retransmissions may

occur. Given that delay is more important than bandwidth efficiency in ATM systems, this

is a sensible tradeoff.

179



7.6 Conclusions
In this chapter, we have analyzed the proposed ATM retransmission scheme. We have

proved that under reasonable conditions, it will generate retransmissions of lost frames

without producing unnecessary retransmissions. However, if frames travel out-of-order,

which is not expected in ATM, the protocol will fail. Also, if many consecutive poll/status

messages are lost, the protocol will deadlock, or the connection will be declared dead.

We showed that poll-based retransmission schemes are not the best choice for ATM.

Dropped frames in ATM are likely to occur in bursts, due to burst errors and congestion.

With poll-based schemes, the retransmission delay may significantly increase when burst

losses occur. Timer-based schemes are more effective at providing low excess

retransmission delay. Given the importance of being able to provide low delay in ATM,

timer-based schemes are more appropriate.

Also, as discussed in Section 6.3.1, delay in poll-based schemes is very quantized. One of

the reasons the transmission method in ATM is asynchronous is to provide the flexibility to

deal with a wide range of traffic types. Poll-based schemes are inherently quantized which

removes some of this flexibility. Timer-based schemes allow a much more continuous

form of control. The source can be flexible in adjusting its estimate of the RTD to achieve

the right balance between delay and unnecessary retransmissions.

180



CHAPTER 8

RETRANSMISSION IN TCP/IP

8.1 INTRODUCTION
In this chapter, we analyze the TCP timer-based retransmission scheme. As indicated in

chapter six, the performance of timer-based schemes relies heavily on how well the source

can estimate the round trip delay from source to destination and back to the source.

Obtaining an accurate estimate of the round trip delay is quite difficult in a TCP/IP

environment. A large portion of this chapter is devoted to analyzing why the estimation of

the round trip delay is difficult, and what modifications can be made to the TCP scheme to

improve its performance.

In Section 8.2, we describe the TCP retransmission scheme. The protocol provides several

retransmission options; in Section 8.3, we examine the advantages and disadvantages of

the various options. In Section 8.4, we discuss the difficulties involved with estimating the

round trip delay; we also suggest some improvements that could be implemented. Finally,

in Section 8.5, we analyze how a poll-based scheme might perform in a TCP/IP

environment.

As described in chapter five, TCP/IP uses different terminology than we have adopted in

our general analysis. The TCP layer corresponds to layer N; the PDU at this layer is

referred to as a segment rather than a message. Segments are variable length, with the

maximum length being 65,536 bytes. Retransmissions are performed end-to-end at the

TCP layer, and a segment is the unit of retransmission. The IP layer performs the

functions of both layers N-1 and N-2. The IP PDU is variable length and is called a

fragment.

181



8.2 DESCRIPTION OF TCP RETRANSMISSION SCHEME
8.2.1 Sequence Numbers
Each byte of data in a TCP connection can be thought of as being numbered sequentially

modulo 232. There is a 32 bit field in the segment header that indicates the sequence

number of the first byte of data in the segment.

The sequence number for the very first byte of data for a connection is obtained from the

current value of a sequence number counter. The counter, incremented every 4 [psec,

cycles through all 232 sequence numbers in about 4.5 hours. The counter runs

independently of the data being sent. The purpose of the counter is to prevent old data

which may still be circulating in the network from having a sequence number that overlaps

with the current connection. If the sequence numbers of old data and current data overlap,

then it is possible that the receiver may not be able to distinguish which segments are

current. Obviously, the counter is not guaranteed to prevent this problem. For example,

data may circulate within a subnetwork for more than 4.5 hours, so that its sequence

number appears current. (Note that IP fragments have a 'Time To Live' field, but this is

only decremented when a gateway is crossed.) The counter is tied to an external clock, so

even if the source node fails, the counter keeps running.

8.2.2 Acceptance Policies
The receiver keeps track of which bytes of data have been received. It maintains the

variable RECV_NEXT to indicate that all bytes up to but not including RECV_NEXT have

been received successfully. The receive window extends from RECV_NEXT to

RECV_NEXT + WND_SIZE -1, where WND_SIZE is the size of the window as specified

by the layer above TCP. A receiver may only accept data that falls within the receive

window.

There are two possible acceptance policies that a receiver may implement. The in-order

acceptance policy specifies that a segment will only be accepted if its sequence number

precisely matches RECV_NEXT. This is similar to the acceptance policy of a Go Back N

scheme. If the segment extends past the end of the receive window, only that portion of

the segment that falls within the window is accepted. In the in-window acceptance policy,

any portion of a segment that falls within the receive window will be accepted. This is

similar to the acceptance policy of a selective repeat scheme. Note that with either policy, it

is possible that only portions of a segment may lie within the receive window and be

accepted.

182



8.2.3 ACK Policies

TCP segments also serve as ACK messages. There is a one bit flag in the segment header

that indicates whether or not the segment contains a valid ACK. There is a 32 bit field in

the header to indicate the ACK number. Regardless of the acceptance policy used, the

receiver sets the ACK field to RECV_NEXT. There are two acceptable policies for

sending ACKs. In one option, the receiver sends an ACK as soon as it receives a valid

segment. If the receiver has no data to send in the reverse direction, it sends an empty data

segment with the ACK flag set to TRUE. In the second option, the receiver can wait until

it needs to send a data segment in the reverse direction and piggyback the ACK on that

segment. With this option, the receiver must maintain a timer so that if no data is sent in

the reverse direction, the ACK will eventually be sent.

The receiver never sends NACKs. Even if the receiver determines a segment is in error

and drops it, it does not send a NACK.

8.2.4 Round Trip Delay Estimate and Timer Implementation

The retransmission options that will be described in the next section rely on maintaining

retransmission timers for the transmitted segments. In practice, however, there is no need

to maintain an actual timer for a segment. The source just needs to keep track of the current

time. We assume that whenever a segment is transmitted, it is placed at the end of the

retransmission buffer and 'stamped' with the current time. Checking whether the timer for

a segment has expired means that the current timeout value is added to the timestamp of the

segment, and the result is compared to the current time. If the calculated time is greater

than the current time, then the timer has expired. Resetting the timer refers to updating the

timestamp to the current time.

In general, the source sets the timeout value to f3 R, where R is the current estimate of the

round trip delay (RTD), and 3 is chosen to be greater than 1. The RTD estimate includes

all propagation delays, queueing delays, and processing delays from the source to the

destination and back to the source. The RTD for a segment is typically calculated by noting

the time difference between the timestamp of a segment and the arrival time of the ACK for

that segment. (There are many problems with such a calculation, as will be discussed in

Section 8.4.) Based on this RTD sample, the source updates its estimate of the RTD as

follows:

New RTD Estimate -= (1- o) RTD Estimate + x RTD Sample (8.1)

183



The factor X is chosen to be between 0 and 1. The larger oa is, the heavier the new RTD

sample is weighted.

The timeout value is then set for P times the RTD estimate. 3 is typically chosen to be 2,

although some implementations of TCP allow [ to be adjusted dynamically [Com91]. The

larger 5 is, the less likely underestimates of the RTD will lead to unnecessary

retransmissions.

8.2.5 Retransmission Policies

After a segment has been sent, it is placed at the end of a retransmission buffer. A segment

is removed from the buffer when an ACK is received with an ACK number greater than the

sequence number of the segment's last byte of data. There are three possible

retransmission policies at the source. When a connection is established, any of the three

retransmission policies can be chosen to be used with either the in-order or in-window

acceptance policy at the receiver, but only certain combinations make sense.

In one retransmission policy, which we refer to as Method A, a timer is kept for the

segment at the head of the retransmission buffer. If this segment has not been ACKed

before the timer expires, the entire buffer is retransmitted and the timer restarted. This

option is compatible with the in-order acceptance policy at the receiver. The combination of

this retransmission policy and the in-order acceptance policy is effectively a Go Back N

scheme.

In the second option, which we refer to as Method B, a timer is kept for the segment at the

head of the buffer. If this segment has not been ACKed before the timer expires, this one

segment is retransmitted and the timer is restarted i.e., the timestamp of this segment is

updated to the current time. (We assume that the retransmitted segment remains at the head

of the buffer although the protocol specification is ambiguous as to whether this is the

case.) This scheme will be more fully explained in Section 8.3.2. Method B, combined

with the in-window acceptance policy, is similar to a selective repeat scheme.

In the third option, which we refer to as Method C, a timer is kept for the segment at the

head of the buffer. If this segment has not been ACKed before the timer expires, this one

segment is retransmitted and then placed at the end of buffer (again, it is ambiguous at to

whether this is how the protocol is actually implemented). The timer of the new segment at

184



the head of the buffer is not restarted, which necessitates that a timer backoff strategy such

as Karn's Algorithm be used. This will be described more fully in Section 8.3.3.

8.2.5.1 Repackaging Option

Another option at the source involves whether the data in the retransmission buffer is

repackaged into different sized segments when it is retransmitted. When the source sends a

segment, it can only send as much data as the receiver allows (incoming segments indicate

the maximum number of bytes that can be sent in the reverse direction). Thus, the source

may be forced to send very small segments during times of congestion. When

retransmissions are necessary, the source has the option of dividing up the data into

different sized segments. Thus, a retransmission of a segment may actually mean that only

part of the segment is being retransmitted, or that it is being retransmitted along with data

from one of the adjacent segments in the buffer.

8.3 RETRANSMISSION POLICY ANALYSIS

8.3.1 Selective Repeat vs. Go Back N

The combination of retransmission Method A and the in-order acceptance policy is

effectively a Go Back N (GBN) scheme. Retransmission Method B, combined with the in-

window acceptance policy, is similar to a selective repeat (SR) system. In this section, we

compare the efficiency of GBN and SR in a TCP/IP environment. Efficiency is defined as

1/y, where y is the expected number of transmitted segments from source to destination per

successfully accepted segment at the destination. Assume fragments are dropped

independently with probability QR, and segments are comprised of N fragments. Assume

the timeout value at the source is PR. If a timer expires and a retransmission is necessary,

the source finishes transmitting the message it is currently sending, and then performs the

retransmission. Thus, the source sends r 4 segments in between the original

transmission of a segment and the retransmission of the segment. Then, from equations

6.17 and 6.18:

GBN efficiency = 1 - N QR (8.2)

1 +N QR rFR+I1
SR efficiency = 1 - N QR (8.3)

185



Assume that fragments are dropped independently due to random bit errors, burst errors,

and congestion. As usual, let PR be the probability of a random bit error, PB be the

probability of a fragment being hit by a burst error, and Pc be the probability a fragment is

dropped due to congestion. Assume the size of a fragment is 576 bytes (this is the default

size). Then QR equals ((576)(8) PR + PB + PC). If PR equals 10-6, PB equals 10-5, and

Pc equals 10-4 , as assumed in chapter five, then QR equals 5x10-3 . Note that QR is

dominated by the term due to random bit errors. (However, as pointed out in chapter five,

on connections where reliability is important, it is likely that there are additional checks at

other layers so that the bit error rate is lower than what we assumed.)

Equations 8.2 and 8.3 assume that retransmissions occur only when a segment has been

dropped. However, in TCP/IP, unnecessary retransmissions are also likely to occur due to

the inability of the source to accurately track the RTD. Unnecessary retransmissions result

in lower efficiency for both GBN and SR schemes. For simplicity, however, we will

ignore this.

On Graph 8.1, we plot the efficiency of SR and GBN as OR varies, for QR equal to 5x10-3

and N equal to 5. There is not a significant difference between the curves until OR

increases past 10. Given the size of the fragment (i.e., 576 bytes), the value of R depends

on the speed of the connection and the length of the RTD. The maximum connection speed

in TCP/IP was limited to 1.5 Mb/sec, although 45 Mb lines are being introduced. At 1.5

Mb/sec, with f equal to 2, a OR of 10 corresponds to an RTD of 15 msec. If the

connection speed is only 56Kb/sec, then a 1R of 10 corresponds to an RTD of 400 msec.

The RTDs in TCP/IP span a very wide range. They are likely to fall within the range of 50

msec. to 10 sec. Thus, it depends on the parameters of the connection whether SR

provides a significant benefit in terms of efficiency.

The drawback of SR is that the destination must maintain a resequencing buffer. Given

that some of the computers in the TCP/IP environment are quite primitive, re-ordering

segments at the destination may pose a significant processing burden. Also, in deriving the

equation for the efficiency of an SR system, we assumed that the buffer at the destination

never overflows. If the destination is unable to allocate a buffer size large enough to hold

two or three RTDs worth of data, then the efficiency of the SR system will be less than that

shown on the graph. Thus, the decision of whether to use GBN or SR depends not only

on the parameters of the connections, but also on the capabilities of the receiver.

186



Note that the efficiency of both a GBN and an SR system is relatively unaffected by the

fragment size, assuming the size of the segment is unchanged and assuming that 3R is

much larger than 1. This is because QR is approximately proportional to the size of the

fragment, and N and R are inversely proportional to the fragment size. Thus, equations

8.2 and 8.3 are close to constant as the fragment size changes. If the segment size were to

increase, then both efficiency curves would be shifted downward.

Graph 8.1 Efficiency of GBN and SR
(N =5 and Fragment Loss Rate = 5E-3)

0.8\

0.6 - - GBN Efficiency
Efficiency

0.4- - SR Efficiency

0.2

0 PI I I I OR
0.1 1 10 100 1000

8.3.2 Analysis of Retransmission Method B

The combination of retransmission method A and the in-order acceptance policy is a typical

GBN scheme. (However, most GBN schemes are implemented on systems where data is

expected to arrive in order; in TCP/IP segments can arrive out-of-sequence. A very old

segment can confuse the GBN system i.e., the old segment may contain a sequence

number that makes it appear to be a current segment.) We will not analyze retransmission

method A further. In this section, we analyze the combination of retransmission method B

and the in-window acceptance policy.

Let the unit of time be the time to transmit one fragment (assume fragments are fixed size),

and let the source's estimate of the RTD be R time units. Assume the source is transmitting

data at a steady rate, and assume segments are 1000 bytes long and comprised of N

fragments. Thus, one segment is transmitted every N time units.

We will use the convention that a segment is timestamped and placed at the end of the

retransmission buffer after it has been completely transmitted, and that its timer is set to
expire fR time units later. Assume that segment 1000 is at the head of the retransmission

buffer, and assume it has a timestamp of T Assume that an ACK for segment 1000 is not

187



received by the expiration time (i.e., T+ PR) , and the segment is retransmitted. The timer

for segment 1000 is now set to expire at time T+ N + 2fR.

In this scheme, the source cannot possibly retransmit segment 2000 until segment 1000 is

ACKed. This makes sense from the point of view of reducing the number of unnecessary y

retransmissions. ACKs only indicate the value of RECV_NEXT at the receiver. Thus, a

segment cannot be ACKed until all previous segments have been ACKed. Thus, in the

example above, if segment 1000 is really lost, then the source must wait an additional RTD

after it is retransmitted before it could possibly receive an ACK for segment 1000 or for

any segments after it.

For simplicity, assume that 3R accurately represents the total delay from source to

destination and back. Then, assuming the first transmission of segment 1000 is lost but the

retransmission is successful, the ACK for segment 1000 arrives at time T+ N + 2PR.

Then, assuming segment 2000 has also been lost, segment 2000 will be retransmitted at

this time. In general, if i consecutive segments are lost (but the retransmissions are not

lost), then the i+lst segment will be retransmitted at time T+ iN + (i+l)PR, under

Method B. If the policy at the destination was to send ACKs whenever a segment was

successfully received and to indicate in the ACK which segment it was that triggered the

ACK, then the timers could be set such the i+lst segment would be retransmitted at time

T+ iN + PR (i.e., the timers could be set to expire one round trip delay after the segment

is transmitted). Thus, because of the lack of information in the ACK, Method B increases

the expiration time of the i+lSt segment by i PR time units.

We see that Method B slows down the retransmission process. In the case where the

losses are due to burst errors, slowing down retransmissions would only be advantageous

if the burst error were still affecting segments even after one RTD. If the losses are due to

congestion, then there are two reasons why slowing down the retransmission process

could be beneficial. First, it would give the congestion more time to dissipate. Second,

consider the case where congestion causes the RTD to increase but does not cause the

segments to be dropped. In this case, segment 1000 will be retransmitted since its timer

will expire (the estimate of the RTD will be too small). However, segment 2000 will not

be retransmitted immediately after segment 1000. This gives more time for the ACK of

segment 2000 to arrive (i.e., it has until time T+ N + 213R rather than T+ N + OR).

This will prevent the unnecessary retransmission of segment 2000. This possibly could

prevent the 'retransmission avalanche' that often accompanies congestion.

188



8.3.3 Analysis of Retransmission Method C

In retransmission Method C, one timer is kept for the segment at the head of the

retransmission buffer. If this timer expires, the segment is retransmitted and placed at the

end of the retransmission buffer. Again refer to the example given in the previous section.

Assume segment 1000 is lost, and then retransmitted at time T+ 3R. The timer for

segment 2000 (the new head of the buffer) will be set to expire at time T+ N + PR. As

discussed above, an ACK for segment 2000 cannot be sent by the receiver until both

segment 1000 and segment 2000 are received. Thus, the earliest an ACK for segment
2000 could be received is T+ N + 2f3R (assuming 3R accurately represents the total

RTD). Using this scheme, the timer for segment 2000 will expire, and segment 2000 will

be retransmitted. In fact, one whole RTD worth of segments will be retransmitted. If

Method C is used with the in-order acceptance policy, then the scheme is similar to GBN -

whenever the segment at the head of the buffer is lost, one RTD worth of segments will be

retransmitted. If Method C is used with the in-window acceptance policy, then this RTD

worth of retransmissions may be unnecessary, unless there has been a burst loss.

This does not appear to be a very effective scheme. However, in practice, Method C is

used with a timer backoff scheme. A commonly used scheme is Karn's

Algorithm[Com91], [KaP87]. The source starts out by using its estimate of the RTD to

determine the timeout value for the retransmission timers. However, whenever a segment

is retransmitted, the source increases the timeout value as follows:

new_timeout = y * timeout

Typically, y is chosen to be 2. Thus, the timeout value is doubled each time there is a

retransmission. In practice, the timeout value is not increased past some maximum value.

Whenever the source successfully receives an ACK for a segment that has only been

transmitted once, it reverts back to using its RTD estimate for the timeout value.

In general, if i consecutive segments are lost and retransmitted, the timer of the i+l s t

segment will expire at time T+ iN + yi[,R. As shown in the previous section, under

Method B, if i consecutive segments are lost, the timer of the i+ 1 st segment will effectively

expire at time T+ iN + (i+l)3R. Thus, under Karn's algorithm, the increase in timeout

value is exponential. Under Method B, the effective increase in timeout value is linear.

Karn's Algorithm is more flexible than Method B. In some TCP implementations, the
value of y can be changed with each retransmission. Also, since Karn's algorithm is a

189



timeout policy rather than a retransmission policy, it can also be used with retransmission

Method A.

As with Method B, the tradeoff in Karn's Algorithm is between excess delay and

unnecessary retransmissions. Assume a segment is lost. If the next segment is also lost

and needs to be retransmitted, these methods will slow down that retransmission. This

may be advantageous for congestion losses, but not for losses due to random errors or

burst errors (unless the burst error lasts for more than one RTD). If the next segment does

not need to be retransmitted and the estimate of the RTD is equal to or greater than the true

RTD, then the increase in timeout value essentially has no effect. If the next segment does

not need to be retransmitted but the source's current estimate of the RTD is too small, then

both Method B and Karn's Algorithm provide extra time for the ACK to arrive, so that

unnecessary retransmissions can be avoided.

8.3.3.1 Timer Backoff and Congestion Avoidance

As shown above, under Karn's Algorithm, if i consecutive segments are lost and

retransmitted, the timer of the i+1st segment will expire at time T+ iN + YPR. Thus, the

timeout value grows exponentially. After an ACK is successfully received for a segment

that has been transmitted only once, the RTD is calculated, the source updates its estimate

of the RTD, and the timeout value reverts back to 3 times the RTD estimate. Thus, the

timeout value jumps back down at this point. (Note that the current version of TCP ties the

value of j3 to the estimated variance; thus, the larger the increase in the RTD estimate, the

larger the value of P3.[COM91])

Retransmissions also affect the flow control mechanism in TCP. Segments traveling from

the destination to the source indicate the size of the receive window at the destination. The

source uses this to determine the size of its send window. However, whenever a timer

expires and a segment is retransmitted, the source cuts the size of its send window in half.

If the send window is smaller than the receive window, then whenever a segment is

received successfully, the source increases the send window by the size of one segment.

When the send window reaches half of its original size, the source only increases the

window when an ACK is received for the segment at the end of the current send window.

Thus, the cutback in the flow control window is exponential; this is similar to Karn's

Algorithm, where the increase in timeout value is exponential. Under Karn's Algorithm,

however, the timeout value may suddenly decrease. The increase of the flow control

window is more gradual. However, the increase in the flow control window occurs

190



whenever an ACK is received. Karn's Algorithm decreases the timeout value only after an

ACK is received for a segment that has never been retransmitted.

Let's examine the interaction between these two mechanisms. Refer to Figure 8.1.

Assume the original timeout value is PR and the original size of the send window is 8

segments. Assume 4 segments can be sent in one RTD. Assume the first four segments

are lost. At time T+ PR, the retransmission timer for segment #1 expires, and the segment

is retransmitted. The increase in the timeout value to 213R throttles the retransmission

process (i.e., segment #2 isn't sent until T+ 20R+N), and the decrease in the send

window to 4 segments throttles the transmission of new segments (i.e., segment #5 cannot

be sent after the retransmission of segment #1 since the window has been decreased to 4

segments).

After the retransmission of segment #2 at time T+ 2fR+N, the send window (which is

now halved to 2 segments long) is smaller than the number of outstanding segments.

Thus, despite the fact that the timer for segment #3 expires at time T+ 4fR+2N, the send

window of size 2 segments prevents its retransmission. Note that, according to [Com91],

the timeout value isn't increased unless the segment is actually retransmitted; thus, even

though the timer for segment #3 expires, the timeout value is not changed at that time.

Segment #1 is retransmitted again at time T+ 5fR; the send window is halved to 1

segment. Assume this retransmission is successful and the ACK for segment #1 is
received. We assume the actual RTD for segment #1 is 4f3R. When the ACK arrives, the

window is increased to 2 segments, so that segment #3 can be retransmitted (i.e., the send
window now consists of segment #2 and segment #3). The timeout value of 8fR prevents

segment #2 from being retransmitted again until time lO3R+N.

The ACK of segment #2 also ACKs segment #3. We assume that the send window is

increased by 2 segments when this ACK arrives. Finally, segment #5 can be sent. After
segment #5 is successfully ACKed, the timeout value will be set to 1*R*, where 1* and R*

take into account the RTD estimate for segment #5. (Note that cX in equation 8.1 is often

taken to be 1/8 [Com91 ], which does not weight the new RTD sample very heavily.) The

send window will be 4 segments, so that several segments can be transmitted immediately

after one another. If other sources begin dumping segments into the network, the
congestion may start to build up again. The timeout value of t*R* may not be high

enough, leading to unnecessary retransmissions. This would trigger the timeout backoff

191



and window cutback mechanism again. A more gradual decrease of the timeout value

might be more appropriate.

8.3.4 Problems With Resized Segments

TCP allows the source to repackage data into different sized segments when the data is

retransmitted. This potentially could lead to confusion at the receiver, as shown in the

following example. Assume the receiver is implementing an in-window acceptance policy,

and assume the receive window extends from sequence number 100 to 200. Assume a

segment (call it segment B) with sequence number 150 and length 50 arrives at the receiver.

The whole segment falls within the receive window, so it will be accepted in its entirety by

the receiver. Now assume that another segment (call it segment A) with sequence number

100 and length 75 arrives at the receiver. Thus, segments A and B overlap. It is not

specified in the protocol what the acceptance policy is in this situation.

It is possible that this situation can arise from normal, error-free operation. For example,

assume the initial segments were each 50 bytes long, and had sequence numbers 100 and

150. Assume the source does not receive an ACK for segment 100 before its

retransmission timer expires. Now, at the time of retransmission, assume that the flow

control mechanism allows the source to send a segment of length 75 bytes. The source

might repackage the data in the retransmission buffer, and send segment 100 of length 75

bytes. If the original segment with sequence number 150 arrives at the receiver, followed

by the retransmitted segment numbered 100, we arrive at the situation described above.

It is also possible that undetected errors could lead to this situation. Segment B could be

correct, and segment A could have been affected by an undetected error event that resulted

in it having the wrong length. Alternatively, segment A could be correct, and segment B

could have an undetected error in its sequence number field. (A third option is that either

segment A or B is a stray segment from an old connection that happens to have a sequence

number that overlaps with the current connection. We will assume this scenario is less

likely than the other two scenarios.)

192



-I o

0D0

>o g r~'~~~~~~~~~~~~~~~~~~~~~~~~~~c

C-

CD ;o~~~~~~~~~~~~~~~~~~~~o
1w CD (

-t CD+

CD CD 00

0 0 ,j'o))

CD~s
+1

O~CD \Dr ao 00,.,

+~ , ~.C
~.~ - 00

c - ,' r~ t 0000 

CD CD.

CD vCD'
~,-,, 3· x...mo d

-t CD .-

cn ~~~~~~~~~~~~~~~~-c~ 0 0f -

C· CD

CDD tQO

CD CD ~.o~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o

00

-proo

CD 001lC

·. .ov, oo C1~~~~~~~~~~~~~~~4o
\o 8~~~~~~~~~~~~~~~~~~c~~~~~~~- ~ ~ ~ ~ ,~· · .< 3.C,.'~~~~~~~~~~~~~~~~~~~~~~~~~~~~C

193

193



In this situation the receiver has five different options:

i) Accept segment A and drop segment B

ii) Accept segment B and drop segment A

iii) Drop segments A and B

iv) Accept all of segment B and the first portion of segment A

v) Accept all of segment A and the final portion of segment B

Since it is possible that undetected errors have led to this situation, the safest alternative is

to drop both segments A and B. However, as described above, this situation could arise

from normal, error-free operation. Thus, dropping both segments could unnecessarily

decrease the throughput of the system. The best policy to choose depends on the expected

rate of undetected errors.

First consider the possibility that segment A has an undetected error that results in it having

the wrong length. The most likely scenario is that the segment header length field of

segment A has an undetected error in it. The destination subtracts the header length from

the overall segment length (which is passed up by IP) to determine the size of the data

portion of the segment. The segment header can be anywhere from 20 bytes to 60 bytes

long; thus, errors in the header length field can account for differences in data length up to

40 bytes. The header length field is a four bit field that is only protected by the segment

checksum. From the analysis in Section 5.4.4.8, the expected annual frequency of

undetected header length errors per line is 5.

Next consider the scenario where segment B has an error in its sequence number field. The

sequence number field is a 32 bit field in the segment header that is also only protected by

the segment checksum. The expected annual frequency of undetected sequence number

errors per line is about 40.

Thus, the expected frequency of these undetected errors is not negligible. Assume that the

receiver's policy is to treat segments A and B as if they are error-free (i.e., the receiver

assumes the sequence number overlap has occurred due to resegmentation of the data).

Then the expected frequency with which this policy will result in the receiver accepting

incorrect data is approximately 45 times per year per line. However, in Section 5.4.2, we

showed that the expected annual frequency of undetected bit errors in the data portion of a

segment is 5x103 per line. (This assumed that the random bit error rate was 10-6. It is

194



likely that additional error detection mechanisms will be used within the various sublayers

so that the effective error rate at the TCP/IP layer would be smaller.) Thus, bit errors in the

data is still more likely to result in the destination accepting incorrect data. Given this fact,

the reliability of the system is not significantly affected if the receiver assumes that

segments A and B overlap due to proper operation.

Note that the segment checksum is the only means of detecting errors in the segment header

length and in the segment sequence number, as well as the only means of detecting errors

in the data. As discussed in Section 5.4.2, a checksum is not a powerful error detection

mechanism. If a segment CRC were used, the expected frequency of these undetected

errors would be reduced by several orders of magnitude.

8.4 ESTIMATION OF ROUND TRIP DELAY

The performance of a timer-based retransmission scheme heavily depends on the ability of

the source to estimate the RTD. We discuss this further in Section 8.4.1. Unfortunately,

the TCP/IP environment and the TCP protocol make it very difficult for the source to

accurately estimate the RTD. We discuss the reasons for this, as well as suggest

improvements to the scheme, in Section 8.4.2.

8.4.1 Performance

Throughout this section, let the unit of time be the time to transmit one fragment. Let RT be

the actual RTD for a given segment, including propagation. queueing, and processing

delays. Let RE be the source's current estimate of the RTD. Consider the situation where

the source finishes transmitting a segment at time T, and sets the segment's retransmission

timer to expire at time T+ ORE. If PRE < RT, then the timer will expire too soon. Even

if the segment is received successfully, the ACK will not be received by the source before

the expiration time. Thus, an unnecessary retransmission can occur. Note that this is most

detrimental for retransmission Method A, which is essentially a GBN scheme. If the timer

of the segment at the head of the buffer expires, the whole buffer is retransmitted. Thus,

underestimating the RTD can lead to a burst of unnecessary retransmissions. (Of course, it

is possible that if the ACK is received before all the segments are retransmitted, then the

source need not retransmit these remaining segments. However, this option is not

explicitly included as part of the protocol description in [DOD85].) In Methods B and C

(which are similar to SR schemes), the one segment will be unnecessarily retransmitted,

but the timeout value increases after this to prevent (or at least reduce the probability of)

more unnecessary retransmissions.

195



If 3RE > RT, then the source gives adequate time for the ACK to be received. However, if

the segment is lost, then 3RE - RT represents the excess retransmission delay (refer to

Section 6.3). If one of the SR schemes is implemented, then an overestimate of the RTD

leads to greater delay in delivering segments under error conditions to the higher layer at the

destination, and may lead to the resequencing buffer filling up. In the GBN scheme, an

overestimate of the RTD also leads to a delay in delivering segments at the destination; in

addition, it results in greater inefficiency in delivering fragments. Recall that the formula

for efficiency in the GBN system is:

GBN efficiency = - N QR

+N QR [R+I

The 3R in the denominator represents how many fragments are sent in between the

transmission of a segment and the expiration of the segment's timer. Thus, this is actually
PRE. The larger 3RE is, the lower the efficiency of the GBN system. Thus, overestimates

of the RTD degrade the efficiency of a GBN system.

We conclude that the performance of the GBN system (i.e., Method A) is more sensitive to

how well the source can estimate the RTD. In any of the retransmission schemes,

underestimates of the RTD can degrade the performance of the system when segments have

been received successfully; overestimates are harmful if segments need to be retransmitted.

Thus, the expected loss statistics of the system should influence the policy the source uses

to estimate the RTD.

8.4.2 Problems Estimating the RTD

8.4.2.1 Queueing Delays

The TCP/IP environment makes it very difficult to estimate the RTD. One problem is that

the queueing delays along a given path can be highly variable. Since the data rate of the

links may be low, congestion at a node may result in fragments being buffered for a long

time before being serviced. Thus, queueing delays can be appreciable relative to the overall

RTD.

196



8.4.2.2 Multiple Data Paths

A second problem arises from the fact that fragments are routed individually at the IP layer.

Thus, two consecutive segments may travel over different paths. The RTD can potentially

be very different over the two data paths.

8.4.2.3 Updating RTD Estimate

In general, when the source receives an ACK for a segment, it calculates the RTD for that

segment. There are problems with calculating the RTD for a segment as discussed below,

but for now, assume it is accurate. As mentioned in Section 8.2.4, the source uses the

RTD sample to update its estimate of the RTD:

New RTD Estimate = (1- xo) RTD Estimate + x RTD Sample

The factor cx is chosen to be between 0 and 1. The larger oa is, the heavier the new RTD

sample is weighted. Assume the most recent RTD sample is very different from the old

estimate of the RTD. The source has no way of knowing whether this is an anomaly or

whether the RTD will remain at this new value for a long time. Thus, it is difficult for the

source to know how to choose x. In general, the source sets the timeout value of the

retransmissions timers to , times the current estimate of the RTD, for f > 1, to provide

some leeway in its estimate of the RTD.

8.4.2.4 Inaccurate RTD Samples

The RTD sample itself may not be very accurate due to the way ACKs are sent in TCP.

Whenever a segment is received at the destination, an ACK is sent indicating the value of

RECV_NEXT. Thus, if the in-window acceptance policy is used, the ACK may not

actually be acknowledging the segment that triggered the ACK. Consider the following

example. Assume all segments have length 50. Assume segments with sequence number

100, 150, 200, 250, and 300 are transmitted. Assume the transmission of segment 300 is

completed at time T300. Assume segment 100 travels over one path where the delay is D,

and assume the other four segments travel over another path where the delay is D'.

Assume that D' << D, so that the four latter segments arrive before segment 100. When

segments 150 through 300 arrive, the destination will send an ACK with RECV_NEXT set

to 100. After the arrival of segment 100, the destination will send an ACK with

RECV_NEXT equal to 350. Assume the source receives this ACK at time TA. The RTD

sample for segment 300 will be calculated to be TA - T300. However, the RTD sample

corresponding to segment 300 should really be much smaller than this. Thus, the RTD

samples calculated by the source may not be very accurate.

197



One possible improvement that could be implemented is that the ACK should also indicate

which segment number triggered the ACK. (This was also suggested in [Zha86].) In the

example above, this would allow the source to obtain five accurate samples of the RTD.

8.4.2.5 Ambiguous ACKs

Another problem arises when a segment has been transmitted multiple times. When an

ACK is received for the segment, the source does not know which copy of the segment is

being ACKed. This is referred to in [Com91] as the 'ambiguous ACK' problem. First,

assume that the source's policy is to associate the ACK with the earliest copy of the

segment that has been sent. Assume copies 1 and 2 of a segment have been transmitted,

and assume an ACK is received for the segment. If the original transmission were lost and

the ACK was actually sent in response to the retransmission, the source's policy would

result in an overestimate of the RTD. As described in [COM91], if every segment were

lost at least once, this policy would result in the RTD estimate growing without bound.

Next, assume that the source's policy is to associate the ACK with the latest copy of the

segment that has been transmitted. Assume the RTD increases so that the ACK for the first

copy of a segment is not received before the timer expires, forcing there to be a

retransmission. When the ACK for the first copy does arrive, it will be interpreted as being

the ACK of the second copy. Thus, the source's estimate of the RTD for this segment will

be too small. In fact, this problem will persist; the source will continue to underestimate

the RTD so that each segment will end up being retransmitted.

We see that neither policy will work for all cases. The solution adopted in TCP is to not

calculate RTD samples for ACKs that are received for segments that have been transmitted

more than once. Of course, this in itself is not an acceptable solution. If the RTD

increases, and segments are retransmitted because their timers expire, the source would not

generate RTD samples for these segments. Thus, it would never increase its estimate of the

RTD to the proper level, resulting in more unnecessary retransmissions. To take care of

this scenario, the source must increase its effective timeout value after a retransmission, so

that eventually an ACK will be received before the timer expires. After this ACK is

received, the source can increase its estimate of the RTD (assuming the ACK is for a

segment that was never retransmitted). Note that increasing the effective timeout value is

precisely what occurs in both Karn's Algorithm and retransmission Method B. (This also

implies that Karn's algorithm, or a similar type of timeout backoff strategy, must be used

with retransmission Methods A and C to handle this scenario of increasing RTD.)

198



Another possible solution to the ambiguous ACK problem would be to associate an ID

number with each transmission of a segment. Thus, the first transmission of a segment

would contain one ID, the retransmission of the segment would contain a different ID.

This ID number would be carried in the segment, so that the destination can include it in the

ACK. The source would then be able to associate the ACK with the correct transmission,

so that the ACK would not be ambiguous. There is already a method in place in TCP/IP to

implement this. When TCP requests that the IP layer transmit a segment, it has the option

of passing down a 16 bit ID number. This ID number is then used as the ID field in each

of the fragments comprising the segment. (If TCP does not pass an ID number down, IP

generates one using a counter.) This ID field could be passed up to the TCP layer at the

destination so that it could be included in the ACK. The drawback is that this method adds

16 bits to the length of the ACK field, for a total of 48 bits. The ACK field is part of the

segment header, which currently ranges in size from 20 bytes to 60 bytes. (If the

suggestion presented in Section 8.4.2.4 is used, where the sequence number of the

segment triggering the ACK is also included in the ACK, the length of the ACK field

would be 96 bits.) An alternative would be to have a 'copy number' field included in the

segment header and in the ACK field. This would probably only need to be about 4 bits

long.

8.5 POLL-BASED SCHEME IN TCP/IP

Poll-based retransmission schemes were analyzed in detail in chapter six. The analysis

showed that one of the main advantages of poll-based schemes is that if data travels in

order, then it is possible to implement the scheme such that there are no unnecessary

retransmissions. This was demonstrated in the context of ATM in chapter seven. The

major disadvantage is that poll-based schemes may result in large excess retransmission

delay when bursts of data are lost. In TCP/IP systems, bandwidth efficiency is of greater

concern than low delay. Thus, the ability to eliminate unnecessary retransmissions would

be desirable. Of course, data does not travel in sequence in TCP/IP systems, nor is the

delivery time of a segment bounded. Thus, a polling scheme can not eliminate unnecessary

retransmissions. Nevertheless, as we show below, such a scheme may perform favorably

compared to the current TCP timer-based scheme.

Assume that the TCP layer at the source sends out polls periodically. As discussed in

chapter six, the poll could actually be piggybacked on a data segment that is being

transmitted. The poll contains a poll sequence number and the value of SEQ, which we

199



define to be one higher than the highest data byte thus far sent by the source. Note that
polls are numbered independently of segments. As in the proposed ATM scheme, the

source would maintain the variable PSEQ to indicate the most recent poll that has been sent.
Whenever a segment is transmitted or retransmitted, it is stored in the retransmission buffer
and 'stamped' with the current value of PSEQ. As described in detail in chapter seven, this

allows the source to determine whether a data segment was sent before or after a poll.

Since segments may be resized or only a portions of a segment may be accepted at the
destination, the PSEQ stamp should be associated with all bytes of the segment. If only a

portion of a segment is retransmitted, then only that portion has its PSEQ stamp updated.

A status message is sent by the TCP layer at the destination in response to a poll. The
status message contains the poll sequence number of the poll that triggered it, the current

value of RECV_NEXT (let RECV_NEXTS represent this value), and the status of all

segments from RECV_NEXT through SEQ, where SEQ is indicated in the poll.

When the source receives a status message, it removes from the retransmission buffer all

data through RECV_NEXTs-1. If GBN is being implemented, it checks whether the

PSEQ stamp of the byte numbered RECV_NEXTS is less than the poll sequence number
indicated in the status message. If so, it begins to retransmit from sequence number

RECV_NEXTS onward. If SR is being implemented, then any NACKed segment that has

a PSEQ stamp less than the poll sequence number contained in the status message is
retransmitted.

Essentially the retransmission criterion is: if the poll arrives at the destination before data

that was sent prior to the poll, then retransmit the data. In a system where data travels in
order, such as ATM, this guarantees that there are no unnecessary retransmissions.

Below, we analyze how this scheme would work in a TCP/IP environment, where data
does not travel in sequence. (Note that since unnecessary retransmissions can occur, the

send window must be half the size it was in the ATM scheme; refer to section 7.3.6.1).

8.5.1 Poll-Based Schemes vs. Timer-Based Schemes in TCP/IP
First, let's review the problems enumerated in Section 8.4 in timer-based schemes. One
major problem was estimating the RTD based on the ACKs that were received. There are
many situations where it is ambiguous which segment triggered the ACK, thus resulting in
inaccurate RTD calculations. In poll-based schemes, having an estimate of the RTD is not
crucial. It is only needed to get an idea of how often to send polls. The source can

200



estimate the RTD as the time between the transmission of a poll and the reception of the

status message corresponding to that poll. Due to the poll sequence number, there should

be no ambiguity as to which poll a status messages corresponds.

A second problem in timer-based schemes is that when queueing delays increase, the RTD

increases, so that the retransmission timer of a segment may expire prematurely. In a poll-

based scheme, the poll is delayed in the queue as well as the data. Thus, an increase in the

queueing delay would not cause the poll to unnecessarily NACK a segment, assuming the

data and poll travel over the same route.

The RTD may also fluctuate due to segments being transmitted over different routes,

although this is not a common occurrence. Consider the case where a poll is transmitted

over a path that takes longer than the path taken by segments that were sent before it. If

any of these segments need to be retransmitted, then the extra delay along the poll's route

would increase the excess retransmission delay, but it would not trigger unnecessary

retransmissions. If a poll is transmitted over a path that is shorter than the path taken by

segments transmitted before it, then unnecessary retransmissions may occur. This is

opposite to what happens in timer-based schemes: increases in the RTD tend to result in

unnecessary retransmissions; decreases in RTD result in increases in the excess

retransmission delay (since the source's estimate of the RTD is too high).

As described in Section 6.2.1.5, the excess retransmission delay may greatly increase

when burst losses occur in poll-based schemes, since the polls also might be lost.

However, this increase in delay happens to some degree in the current implementation of

TCP/IP regardless of the retransmission scheme, due to the fact that ACKs only contain the

value of RECV_NEXT. Assume an SR scheme is implemented, and assume segments 100

and 200 are transmitted and lost. Segment 200 cannot possibly be ACKed until segment

100 is ACKed. Thus, after segment 100 is retransmitted, the source must wait one whole

RTD before retransmitting segment 200, to give the ACK of segment 100 a chance to

arrive. Thus, there is a minimum excess retransmission delay of about one RTD.

We conclude that poll-based schemes cure some of the problems inherent in a timer-based

scheme: there is no need to accurately estimate the RTD, and increases in queueing delay

do not result in unnecessary retransmissions. Neither type of scheme deals well with the

scenario where the RTD fluctuates due to segments traveling over different paths. During

burst losses, a poll-based scheme results in an increase in the excess delay, as does the

201



TCP timer-based schemes. Overall, the performance of a poll-based scheme should be

superior to that of a timer-based scheme.

8.6 CONCLUSIONS

In this chapter, we reviewed the operation of the retransmission scheme included in the

TCP protocol. We focused on the more unusual facets of the protocol, such as the option

at the source to resize the data segments when they are retransmitted. We analyzed the

difficulties involved with estimating the RTD in a TCP/IP environment, and suggested

methods to improve the scheme. Finally, we showed that a poll-based scheme would

eliminate some of the problems resulting from the varying nature of the RTD.

202



CHAPTER 9

CONCLUSIONS

9.1 MAJOR CONTRIBUTIONS

We have demonstrated that it is possible to approach the design of error protection

protocols in a systematic fashion. In chapter three, we presented a five step algorithm for

designing effective and efficient error detection schemes. We brought out the following

points: certain errors can be prevented if dealt with at one layer rather than another layer;

certain errors can be fixed if detected at one layer as opposed to another layer; certain

errors are much harder to detect than others; given that a message is the unit of

retransmission, it is often more effective and efficient to include error detection mechanisms

on a per-message basis, rather than on a per-packet basis.

In chapter four, we applied these techniques to the correction oriented services of ATM.

We developed an error protection scheme that is more effective and efficient than the AAL

Type 3/4 scheme proposed by the ATM Standards Committee. The chief difference is that

our proposed scheme includes a per-frame CRC, while the AAL Type 3/4 proposal

includes a per-cell CRC. The per-cell CRC is weak in detecting burst errors; also its

inability to detect many other errors necessitated the addition of several other error detection

fields. Our proposal is very similar to the AAL Type 5 proposal.

In chapter five, we showed that the major weakness in the error detection scheme of

TCP/IP is the use of a checksum as a redundancy check on the segment data, rather than a

CRC. This results in a high expected rate of undetected bit errors in the data. All other

types of errors have an expected undetected error rate that is several orders of magnitude

lower. Thus, the weak data redundancy check significantly impairs the overall

performance of the TCP/IP error detection scheme. This reinforces the notion that the

effectiveness of an error detection scheme is measured by the error scenario that results in

203



the most undetected errors. It also points out that if reliability is an important issue, then

there needs to be more error protection than what TCP/IP provides.

In addition to examining error protection protocols, we also analyzed data retransmission

schemes. To gain insight into the performance of various retransmission schemes, we

developed a delay criterion that we referred to as relative excess delay. We used this

criterion as one means of evaluating poll-based retransmission schemes. Our

comprehensive analysis of poll-based schemes showed that the major advantage of such

schemes is that they can be implemented such that there are no unnecessary

retransmissions, assuming that data travels in sequence. The chief drawback of poll-based

schemes is that they lead to an increase in the excess retransmission delay when bursts of

messages are lost. We showed that timer-based schemes can potentially lead to low delay.

However, the performance of timer-based schemes heavily relies on how well the source

can estimate the round trip delay (RTD) from source to destination and back.

Underestimates of the RTD can lead to many unnecessary retransmissions. The higher the

speed of the data links, the smaller the queueing delays should be relative to the

propagation delay; this should enable the source to better estimate the RTD. Based on our

analysis, we showed that poll-based schemes are best suited for systems where bandwidth

efficiency is more important than low delay. Timer-based systems are more appropriate for

high speed networks than they are for low speed networks.

In chapter seven, we analyzed the poll-based retransmission scheme that has been proposed

for ATM. We formally proved the correctness of the protocol, given certain reasonable

conditions. We also showed that a timer-based scheme is probably more appropriate than a

poll-based scheme in the high speed, integrated service environment of ATM.

In chapter eight, we discussed some of the interesting features of the TCP timer-based

retransmission scheme. We analyzed why such a scheme performs poorly in the TCP/IP

environment. Our analysis showed that a poll-based scheme would likely perform better.

One topic which we did not explore is the stabilization properties of retransmission

schemes. We briefly outline this topic in the next section. This is an area for future

research.

204



9.2 STABILIZATION PROPERTIES OF RETRANSMISSION SCHEMES

We use the term self stabilizing to describe a retransmission scheme that eventually returns

to proper operation regardless of the encountered error (unless the severity of the error

causes the connection to be terminated). Proper operation refers to the source, the

destination, and the path between them being in a valid state, where validity depends on the

specific scheme.

There are many different failures that can cause a retransmission scheme to perform

incorrectly. We can divide them into three broad categories. First, there are undetected

errors, which occur when the error detection scheme fails. Second, there are node failures,

which can lead to the inability to deliver some data or can cause the loss of state

information. Third, there can be failures of the underlying network system. For example,

we could design a scheme around the assumption that data arrives at the receiver in the

same order in which it is sent; a network failure could result in this not being the case.

Whenever any of these failures causes the destination to deliver incorrect or out-of-

sequence data or causes data transmission to halt due to the protocol being deadlocked, we

can say the connection is in an error phase. We might say a scheme is self stabilizing if it is

capable of eventually terminating the error phase, and, if no other failures were to occur,

the connection would not enter another error phase. However, as the examples below

show, this definition of self stabilization may not be acceptable.

9.2.1 Examples

Consider the following example. Assume packets are numbered modulo M. Assume that

the RTD becomes abnormally large so that the source sends a burst of over M packets

within one RTD. Assume packet 1 arrives at the destination, but the next M packets are

lost. All packets after this are received correctly. Assume the ACK of packet

(X+M) mod M is interpreted by the source as ACKing packet X. Thus, the missing M

packets will never be retransmitted, and the destination will not realize that they are

missing. It is unclear whether we should consider such behavior as self-synchronizing.

Although M packets are lost and the loss is not detected by the receiver, all packets after

this are delivered correctly in sequence (assuming no other errors occur). However, the

situation persists that packet X+M is interpreted at the receiver as being packet X. From an

absolute numbering point of view, every packet is incorrect and we may not want to

describe the protocol as having stabilized.

205



The following example points out further ambiguities in defining self stabilization. Assume

we are dealing with a scheme that is designed not to produce any unnecessary

retransmissions. Assume a failure occurs that results in a persistent problem that produces

unnecessary retransmissions. Assume it does not interfere with data being delivered

correctly and in sequence at the destination. However, the scheme has not resumed normal

operation. If our goal is to produce schemes that return to proper operation, and not just

correct operation from the point of view of the end user, then we need to broaden our

interpretation of self stabilization.

In the third example, assume a source sends packets 1 and 2, but the destination only

receives packet 2. Assume the destination has an in-window acceptance policy so that

packet 2 is accepted. An ACK of packet 2 is transmitted back to the source. Assume an

undetected error occurs in the ACK so that it appears to the source to be an ACK of packet

1. The source releases packet 1 from its retransmission buffer. Assume the size of the

receive window is 2, so that the destination cannot accept any more packets until packet 1

arrives. However, the source has already released packet 1 so it is unable to retransmit it.

The connection will be deadlocked. We need to provide the retransmission scheme a

means of breaking the deadlock.

In the fourth example, assume the destination node fails in such a way that the data in its

receive buffer is lost and status information, such as the next packet number it is expecting,

is arbitrarily set to some value. Assume the destination node is unaware that this has

happened so does not try to reinitialize the connection. We need to provide the

retransmission scheme with a means of resynchronizing its status information based on the

incoming data. For a detailed study of this, refer to [Var92].

9.2.2 Future Study

The scenarios listed above do not exhaust the possible problems that may occur. One goal

of our future research is to develop more structured representations of the various possible

errored states. A second goal is to develop a more precise definition of self-stabilization.

Using this, hopefully we will be able to generalize the properties a retransmission scheme

must possess in order to be self stabilizing.

206



REFERENCES

[AnP86] Anagnostou, M. and Protonotarios, E., "Performance Analysis of the Selective
Repeat ARQ Protocol", IEEE Transactions on Communications, 34:127-135, 1986.

[BeG92] Bertsekas, D. and Gallager, R., Data Networks, Second Edition, Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1992.

[Bel90] Bellcore, "Preliminary Report on Broadband ISDN Transfer Protocols," SR-
NWT-001763, Issue 1, December 1990.

[BKK88] Bux, W., Kermani, P., and Kleinoeder, W., "Performance of an improved data
link control protocol," Proceedings ICCC'88, Tel Aviv, Oct. 30-Nov. 3, 1988, pp. 251-
257.

[CCI81] CCITT VIIth Plenary Assembly, "Data Communications Networks:
Recommendations X. 1-X.29, Volume VIII, Fascicle VIII.2, Geneva, 1981.

[CCI90] CCITT Recommendation 1.432, "B-ISDN User-Network Interface - Physical
Layer Specification", Matsuyama, December, 1990.

[CCI92a] CCITT Study Group XVIII/8-5, "AAL Type 5, Draft Recommendation Text For
Section 6 of 1.363," Copenhagen, October, 1992.

[CCI92b] CCITT Study Group XI Temporary Document XI/2-24, "Results of September
1992 XI/2 discussions on Q.SAAL," Geneva, September, 1992.

[CCI92c] CCITT Recommendation 1.363, "B-ISDN ATM Adaptation Layer (AAL)
Specification, Geneva, 1992.

[CCI93] CCITT Study Group XI Document DT/11/3-28, "Service specific connection
oriented (SSCOP) specification," May 23, 1993.

[Com91] Comer, D., Internetworking with TCP/IP Volume I, Second Edition, Prentice-
Hall, New Jersey, 1991.

[Con93] "Internet Domain Survey - January 1993," ConneXions, 7:44-45, March, 1993.

[DCS91] Dravida, S., Cheng, Y., and Saksena, V.R., "Error performance of broadband
ISDN networks," submitted to IEEE Transactions on Communications, 1991.

[DDK90] Doeringer, W., Dykeman, D., Kaiserwerth, M., Meister, B., Rudin, H., and
Williamson, R., "A survey of light-weight transport protocols for high-speed networks,"
IEEE Transactions on Communications, 38:2025-2039, 1990.

[DOD85] DDN Protocol Handbook, Volume 1, DOD Military Standard Protocols,
December, 1985.

207

------- I -- -*131 -*··11 - - -~- I-·I-----W,, MR--.-



[DrD91] Dravida, S. and Damodaram, R., "Error detection and correction options for data
services in B-ISDN," IEEE Journal on Selected Areas in Communication, 9:1484-1495,
1991.

[Dra90] Dravida, S., "Error control aspects of high speed networks," Int. Teletraffic Cong.
Symp. Broadband Technologies, Oct. 9-11, 1990.

[FKL89] Fujiwara, T., Kasami, T., and Lin, S., "Error detecting capabilities of the
shortened Hamming codes adopted for error detection in IEEE Standard 802.3," IEEE
Transactions on Communications, 37:986-989, 1989.

[Fle82] Fletcher, J., "An arithmetic checksum for serial transmission," IEEE Transactions
on Communications, 30: 247-251, 1982.

[Gal68] Gallager, R., Information Theory and Reliable Communication, John Wiley &
Sons, New York, 1968.

[Hes88] Hess, R., "TCP and Error Detection and Correction", Bachelors Thesis, MIT,
Department of Electrical Engineering and Computer Science, Cambridge, MA, 1988.

[KaP87] Karn, P. and Partridge, C., "Improving round-trip time estimates in reliable
transport protocols", Proceedings of ACM SIGCOMM '87, Stowe, VT, August 11-13,
1987, pp. 2-7.

[Kon80] Konheim, A., "A queueing analysis of two ARQ Protocols," IEEE Transactions
on Communications, 28: 1004-1014, 1980.

[LaM91] LaPorta, T, and Schwartz, M., "Architectures, Features, and Implementation of
High-Speed Transport Protocols," IEEE Network Magazine, May, 1991.

[Lyo91] Lyon, T., "Simple and Efficient Adaptation Layer (SEAL)," TJS1 Contribution
No. T]S1.5/91-292, August, 1991.

[MeP82] Meijer, A. and Peeters, P., Computer Network Architectures, Computer Science
Press, 1982.

[NRS90] Netravali, A., Roome, W., and Sabnani, K., "Design and implementation of a
high-speed transport protocol," IEEE Transactions on Communications, 38:2010-2024,
1990.

[Pet61] Peterson, W., Error Correcting Codes, MIT Press and John Wiley & Sons, Inc,
1961.

[Pro89] Protocol Engines, Inc., "XTP Protocol Definition," Revision 3.4, 1989.

[RoS89] Rosberg, Z., and Shacham, N., "Resequencing delay and buffer occupancy
under the selective-repeat ARQ," IEEE Transactions on Information Theory, 35:166-173,
1989.

[Sch87] Schwartz, M., Telecommunication Networks, Addison-Wesley Publishing Co.,
Reading, MA, 1987.

[Tan88] Tanenbaum, A., Computer Networks, Second Edition, Prentice-Hall, Inc.,
Englewood Cliffs, 1988.

208



[T1S91] "A proposed convergence protocol to serve class C and D users," TISI
Contribution No. TJS1.5/91-188, May, 1991.

[T1S92] "Description of service specific connection oriented protocol (SSCOP)," TJS1
Contribution No. TJS1.5/92-237, June, 1992.

[Var92] Varghese, G., Self-Stabilization by Local Checking and Correction, PhD Thesis,
MIT, October, 1992.

[VaV89] Vanstone, S., and van Oorschoot, P., An Introduction to Error Correcting Codes
with Applications, Kluwer Academic Publishers, Boston, 1989.

[Zha86] Zhang, L., "Why TCP Timers Don't Work Well," ACM SIGCOMM '86
Symposium, Stowe, VT, Aug. 5-7, 1986, pp. 397-405.

209



BIOGRAPHY

The author was born in Middletown, NJ, on September 24, 1963. In 1981, she was

named a US Presidential Scholar and the NJ Female Scholar-Athlete. In 1985, she was

graduated summa cum laude from Princeton University with a BSE in EECS. At

Princeton, she was a National Merit Scholar and a participant in the Bell Labs Engineering

Scholarship Program, and was awarded the G. David Forney Award for excellence in

electrical engineering. After Princeton, she worked three years at a software development

company. While at MIT, she has been an NSF Fellow and a DARPA Fellow.

210


