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ABSTRACT

We consider shortest path problems defined on graphs with random arc
costs. We assume that information on arc cost values is accumulated as the
graph is being traversed. The objective is to devise a policy that leads from
an origin to a destination node with minimal expected cost. We provide
dynamic programming algorithms, estimates for their complexity, negative
complexity results, and analysis of some possible heuristic algorithms.
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1 Introduction

The deterministic shortest path problem has been studied extensively and
has been found to be a very useful tool in a great variety of contexts. In
this problem, one looks for a path joining two given nodes of a graph while
minimizing the sum of the costs of the traversed arcs, assuming that these
arc costs are known. On the other hand, there are many application areas
in which it is natural to model arc costs as random variables. One example
is the problem of vessel routing in the presence of uncertain weather condi-
tions. Other examples concern the routing of automobiles in the presence of
partially known and stochastically changing road congestion levels. Indeed,
the recent interest in Intelligent Vehicle Highway Systems (IVHS) and in au-
tomated driver assistance technologies seems to lead naturally to variations
of the shortest path problem that involve random arc costs.

The shortest path problem with random arc costs admits a few different
formulations depending on the assumptions made regarding the time at which
the realized values of the arc costs are learned (for a more detailed discussion,
see [An87]). For example:

a) We may assume that the values of the arc costs are learned before the
graph is traversed, in which case a shortest path (with respect to the
realized values) should be followed. As the shortest path length is a
random variable, it can become an object of study, as in [Fr69, HZ85,
M76, L081].

b) At the other extreme, we may assume that the values of the arc costs
are never learned or become known after a path is chosen. In this case,
we should choose a path which is shortest with respect to the expected
values of the arc lengths. References [MS85, MS87] deal with the more
difficult problem of finding a path that minimizes the expectation of a
utility function that depends nonlinearly on the arc lengths.

c) In an intermediate formulation, which is the one adopted in this paper,
the realization of the arc costs is learned progressively, as the graph
is traversed. In particular, if learning occurs by direct observation, we
may postulate that the cost of an arc is learned at the first time that
an end-node of that arc is visited. This is the case, for example, for a
vehicle that learns the congestion level in a particular road by getting



to an intersection of that road. This framework is also suitable for
modeling a robot that attempts to find a path to a destination through
a random environment. For this class of problems, one should not be
looking for a best path, but rather for a best policy, that is, a rule
for deciding where to go next given currently available information.
Alternatively, the problem arises when we consider the set of decisions
facing a vehicle that starts moving towards the destination along a
certain path, with the recourse option of choosing a new path whenever
new information is obtained.

Reference [Cr78] appears to be the first to have studied a model of this
type, in a fairly restricted setting. Finally, [AR88] considers a model in
which arcs can be active or inactive. One starts along a "ground path"
which is followed until an inactive arc is encountered. At that point, an
alternative recourse path is chosen and followed until the destination
is reached. The model in the present paper is more general in several
of respects (for example, we allow for several recourse actions, each
time that new information is obtained). The dynamic programming
algorithms given in [AR88] and in this paper are based on similar ideas.

In all of the above cases, we have assumed that the value of the arc costs
is random but does not change with time. In an alternative set of models,
briefly discussed in the last section, we may assume that the arc costs can
change randomly with time, as in [PT93].

We also note that there is some related literature in which information is
obtained as the graph is traversed, and the arc costs are modeled as deter-
ministic but unknown [BaS91, PY89]. This formulation is natural in unstruc-
tured environments for which minimal prior information is available. On the
other hand, our probabilistic framework could more suitable for environments
that have some statistical regularity, e.g., street congestion levels.

Regarding the objectives of this paper, although this study has been mo-
tivated from certain practical contexts, we do not claim to be studying fully
realistic or complete models of real-world situations. Rather, in view of the
practical significance of routing problems under uncertainty, we are inter-
ested in understanding the assumptions necessary for such problems to be
computationally tractable. Knowing which formulations result to tractable
problems is often a key factor in deciding how to pose and approach practical
problems.
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The remainder of this paper is organized as follows. In Section 2, we
specify the details of the models to be employed; in particular, two alternative
models are proposed in which the arc costs are modelled as independent or
dependent, respectively, random variables. Sections 3 and 4 present dynamic
programming algorithms for these two models, together with upper bounds
on their complexity. Section 5 contains some negative complexity results
indicating that our algorithms cannot be improved much. Section 6 discusses
and analyzes a few natural heuristics and provides some bounds on the "value
of information." Section 7 contains a discussion of further variations of our
model.

2 The Model and Notation

We define a random network G = (N/, A, P), by a triple consisting of a set N
of nodes (IJlJ = n), a set A of arcs (AI41 = m), and a probability distribution
P describing the statistics of the arc costs. In particular, the cost Cij of
each arc (i,j) is assumed to be a random variable and P specifies the joint
probability distribution of these random variables. The arcs could be either
directed or undirected; in the undirected case, it is assumed that the cost is
the same for both directions of travel through an arc.

Note that the sets A/ and A are assumed to be the same under every real-
ization. On the other hand, the distribution of the arc costs can be chosen so
that under a particular realization, the cost of some arc is prohibitively large.
Thus, in effect, our model encompasses the situation where certain arcs are
absent with some probability, as in the model of [AR88]. The same comment
applies to the case where certain nodes are absent with some probability.

We propose two different ways of specifying the probability distribution
P. In the first model, we assume that there is a set R = {1,...,R} of
possible realizations of the vector of arc costs, with the rth realization having
probability pr. We use ci~ to denote the cost of arc (i,j) under the rth
realization. It is clear that under this model, the costs of different arcs will
be, in general, dependent random variables. The stochastic shortest path
problem that is obtained under this model will be referred to as R-SSPPR.

In the second model, we assume that the costs of different arcs are in-
dependent random variables. The probability distribution P can be then
determined by specifying the statistics of each arc cost Cij. We assume that
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the range of Cij is finite and of cardinality Kij. We are then given, for each
(i,j) E A, the possible values cj, r = 1, ... , Ki, of Cij, together with the
associated probabilities pi'. The stochastic shortest path problem that is
obtained under this model will be referred to as i-SSPPR.

We note that the i-SSPPR can be viewed as a special case of the R-
SSPPR, except that a large number R = fI(i,j)EA Kij of realizations is needed.
In practice, the different arc costs are usually dependent; for example, high
congestion on one arc (or road) might imply high congestion on other arcs
as well. For this reason, the R-SSPPR with a moderate value of R could
sometimes be a realistic formulation.

Besides the random network G, we are given an origin node s E X/ and a
destination node t E A/. We consider a vehicle that starts at node s, travels
through the network, and ends up at node t. In doing so, the vehicle incurs
a cost equal to the sum of the costs of the arcs that it traverses. The key
difference from the classical shortest path problem is that when the vehicle
starts traveling, it does not know the realized values of the arc costs; it
only knows their statistics, as summarized by the probability distribution
P. As the vehicle moves through the network, its information increases. In
particular, we assume that whenever the vehicle visits a new node i, it learns
(and remembers) the realization of Cij for every arc (i, j) emanating from i.

A policy of the vehicle is defined as a set of rules that, given the location
of the vehicle and the information it has collected, determines the arc that
should be traversed next. The cost of a policy is the sum of the costs of the
arcs traversed until the vehicle reaches the destination node t. As the cost of
a policy depends on the realization of the arc costs, it is a random variable.
Our objective is to find a policy that has the smallest possible expected cost.

The SSPPR is a stochastic problem, because of the randomness of the arc
costs, and dynamic, because the vehicle's information changes dynamically
and, in fact, the information acquired also depends on the vehicle's deci-
sions. The SSPPR can be viewed as a stochastic programming problem with
recourse; the readjustment of the vehicle's path based on any newly acquired
information can be viewed as a recourse action. It is more useful, however,
to view the SSPPR as a stochastic control problem with imperfect informa-
tion [Be87]. Such problems can be solved, in principle, using the dynamic
programming methodology, although the resulting algorithms typically have
prohibitively high complexity [PT87]. One of the objectives of this paper is
to study the extent to which the SSPPR is an intractable problem and to
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determine conditions under which it can be solved realistically.
We end this section with an assumption which will be in effect throughout

the remainder of the paper. This assumption is introduced in order to guar-
antee that the expected cost of an optimal policy is not equal to -oo and is a
natural generalization of the assumptions commonly made for deterministic
shortest path problems.
Assumption: Under every possible realization of the network, the cost of
every cycle is nonnegative.

3 A Dynamic Programming Algorithm for
the R-SSPPR

The R-SSPPR is a stochastic control problem with imperfect information
because the actual realization of the random network is not known by the
vehicle. On the other hand, as is customary with imperfect information
problems, it can be converted to a problem with perfect information by
suitably redefining the state vector. In particular, the state vector should
encompass whatever information is relevant to the future decisions of the
vehicle: its current location and the arc cost information collected thus far.
In this section, we describe how this can be accomplished and we bound the
complexity of the resulting algorithm.

Recall that 1R = {1,..., R} is the set of possible realizations of the net-
work. Any subset of T1 will be called an information set. Initially, the vehicle
may only know that the actual realization of the network belongs to R1. As
the vehicle travels through the network, it can eliminate those realizations
that are incompatibe with the observed values of the Cijs. In particular, at
any time, the vehicle possesses an infomation set I (or "has information I")
which is the set of all r E R such that Cirj is equal to the observed value
of Cij, for all arcs (i,j) such that the vehicle has visited node i. If I is
a singleton, then there is a single realization compatible with the vehicle's
observations which means that the vehicle knows (or can infer) the value of
Cij for every arc of the network. Initially, when I = 1, the probabilities of
the different elements of I are equal to the prior probabilities of the differ-
ent realizations. Later on, when some of the realizations are eliminated, the
probabilities of the remaining possibilities can be easily evaluated: if I is the
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current information set, then

pr
Pr (r I I) = EI Pq' (1)

Given a current information set I, the set A can be divided into two
subsets:
(a) The set A, of arcs for which the value of Cij can be inferred from the avail-
able infomation; formally, Ad = {(i,j) e A I cr1(i,j) = cr2(i,j), Vrl,r 2 E I}.
We call these arcs deterministic (given I).
(b) The set Au of arcs for which the value of Cij cannot be inferred from
the available information; formally, Au = {(i,j) E Al 3 rl,r2 E I,crl(i,j) $
cr2(i,j)}. We call these arcs uncertain (given I).

For some more terminology, if i is a node and at least one of its outgoing
arcs (i,j) is uncertain given I, we say that node i is an information collection
node (given I); let Vf' be the set of such nodes. The rationale behind this
definition is the following. If the vehicle has information I and visits next a
node i which is not an information collection node, then the values of Cij are
already known for all arcs emanating from i, no new information is provided
to the vehicle, and the information set I remains the same. If on the other
hand, i is an information collection node, then the vehicle will learn the
realization of Cij for some uncertain arc and will be able to eliminate at least
one of the realizations. Thus, the cardinality of the information set decreases
each time that an information collection node is visited.

We now describe the "dynamics" of the changes of the information set.
Suppose that the vehicle has information I and visits next a node i E A/IV.
The new information set, after i is visited, is some proper subset I' of I.
Given the value of I and i, I' is a random variable because it depends on
the random (and uncertain) costs of some of the arcs emanating from i. In
particular, I' can be expressed as a function h(i, I, r) of i, I, and the actual
realization r of the network. This functional dependence can provide us with
the statistics of I' given I and i.

We are now ready to present a dynamic programming algorithm for the
R-SSPPR. Let V(i, I) be the expected cost-to-go (until the vehicle reaches
the destination node t), under an optimal policy, assuming that the vehicle
starts at node i and has information I. If I is a singleton, then V(i, I) is the
shortest path length from i to t in a graph without any arc cost uncertainty,
and can be determined by running a shortest path algorithm. Suppose now
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that we have already determined V(i, I) for all i and all I of cardinality k- 1
or less. Consider some node i and some I of cardinality k. We will show
how V(i, I) can be evaluated. The cost of the vehicle starting at node i with
information I and until it reaches node t can be broken up as follows: the
vehicle goes to an information collection node j E AI/, acquires a new (and
smaller) information set I' and then, starting from node j with information
I', goes to node t. The only other possibility is that the vehicle goes directly
from i to t without passing through an information collection node. Using
the principle of optimality, once the vehicle reaches node j and acquires
information I', its expected cost-to-go should be the optimal cost-to-go
V(j, I'). This is equivalent to deleting all arcs emanating from j (for every
information collection node j) and replacing them with a single arc (j, t) with
cost E[V(j, I')]. Having done so, V(i, I) is simply the shortest path length
from i to t in this newly defined graph. A few remarks are in order regarding
the arc costs in this new graph. If j is not an information collection node
given I, the costs of all arcs emanating from j are uniquely determined by I.
If on the other hand j E AVI/, we only need to know the value of E[V(j, I')].
We note that I' has cardinality smaller than that of I and according to our
earlier assumption, that V(j, I') is available for every relevant value of I'.
The expectation is necessary because, as discussed earlier, I' is a random
variable whose statistics are determined from j and I.

We now estimate the complexity of this algorithm. Since there are R
realizations, there are 2R - 1 choices for I and we have to solve 2 R - 1
all-origin single-destination shortest path problems. This can be done in
time 0(2Rn3) or, if all arc costs are nonnegative, in time 0(2Rn2). There is
some additional work required in order to determine the values of E[V(j, I')].
For each I, there are O(n) information collection nodes j that need to be
considered. Given I and j, the probability of I' can computed using the
formula

Pr(I' I j,I) = c p, (2)
{rElZjh(j,I,r)= I'}

where c is a normalizing factor so that EIp Pr(I' I j, I) = 1. We note that
the union of all information sets I' that can result from a given I and j, has
cardinality III, which is bounded by R. In particular, the summations in (2)
can be carried out for all relevant values of I' in O(R) time. We conclude
that this additional work is of the order of O(R2Rn).
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We also note that once V(i, I) has been computed for every i and I, an
optimal policy is easily determined.

We summarize this discussion in the following:

Theorem 1 The R-SSPPR can be solved in time 0(2R(Rn + n3 )), in gen-
eral, and in time 0(2R(Rn + n2 )) if all arc costs are nonnegative.

Remarks:
1. A path followed under an optimal policy might contain a cycle even

if the arc costs are positive under every realization, as can be demonstrated
by simple examples [AR88, Po92]. This is because information gathering
could be an important feature of an optimal policy. For example, it might
be profitable in the expected value sense, to find out the realization of a
certain arc and if its realization is not what was hoped for, to backtrack to
the origin node and try an alternate path. Let us now assume that every
cycle has positive length under every realization. Then, it is easily seen
that any cycle resulting from an optimal policy is traversed only once. The
reason is the following. The path resulting from an optimal policy consists
of a sequence of shortest paths obtained from certain deterministic shortest
path problems. One such shortest path ends and another starts when an
information collection node is reached. Since shortest paths in deterministic
networks (under the positive cost cycle assumption) do not contain cycles,
any cycle must contain an information collection node. But if a cycle has
been traversed once, its nodes cease to be information collection nodes and
therefore the same cycle will not be traversed again.

2. Using the observations in the preceding remark, and assuming that
cycle costs are positive, under a path followed by an optimal policy there
must be a visit to an information collection node between any two visits
to the same node. Since visits to information collection nodes result to a
reduction in the cardinality of the information set and to a reduction of the
number of information collection nodes, we conclude that no node can be
visited more than min(n, R) times. In particular, the number of arcs in the
path followed by an optimal policy is bounded by n min(n, R) under every
realization. If the positive cost cycle is relaxed and we only require cycle
costs to be nonnegative, the same reasoning shows that there still exists an
optimal policy under which no more than n min(n,R) arcs are traversed.
(However, not all optimal policies need to have this property.) This upper
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bound on the number of arcs that may have to be traversed turns out to be
tight within a constant factor, as shown by an example in p. 58 of [Po92], for
the case of directed networks.

3. When actually solving an instance of R-SSPPR, many of the informa-
tion sets I might never be reached and the computation of the corresponding
V(i, I) might be unnecessary. One way of exploiting this, in order to reduce
the computational burden, is to use a forward implementation of the algo-
rithm: when trying to compute some V(i, I), if the value of some V(j, I')
with II'I < II] is needed, pause to compute V(j, I'), using the same method
(recursively). This variation of the basic algorithm can reduce substantially
the run time in practice; however, its theoretical worst-case performance is
the same.

4. The R-SSPPR belongs to the class of "stochastic shortest path prob-
lems", in the terminology of [BT91]. That is, it is a controlled Markov chain
(in our case, the state is (i, I)) and the objective is to reach a terminal state
(in our case, any state of the form (t, I)), with minimal total (undiscounted)
expected cost. While there are general purpose dynamic programming algo-
rithms for stochastic shortest path problems, their complexity is substantially
larger than the complexity of the algorithm proposed here (cf. Theorem 1).
The reason for our better complexity estimate is the special structure of the
R-SSPPR: its state space consists of a sequence of R layers (with successive
layers associated with a smaller cardinality of the set I); the state can only
move from one layer to a random state in a next layer or it can move to
another state in the same layer; in the latter case, the next state is a de-
terministic function of the decision variable. It is not hard to see that any
Markov decision problem with such a structure can be solved by computing
the cost-to-go function in one layer at a time using a deterministic shortest
path algorithm at each layer.

5. This algorithm is easily amenable to parallel implementation, with
different processors in charge of computing V(i, I) for different choices of I.
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4 A Dynamic Programming Algorithm for
the i-SSPPR

In this section, we present an algorithm for the i-SSPPR, similar to the one
proposed for the R-SSPPR. The main difference between the two algorithms
is in the manner in which the information component of the state vector is
defined.

Note that our algorithm for the R-SSPPR can be applied to the i-SSPPR
since the latter is a special case of the former. However, we would need to
let R = O(Km ), where K is a bound on the cardinality of the range of each
Cij and m is the number of arcs. Since the algorithm for the R-SSPPR is
exponential in R, we would obtain an algorithm for the i-SSPPR which is
doubly exponential in m. We will show shortly that a singly exponential
algorithm is possible.

As the state vector in our dynamic programming algorithm for the i-
SSPPR, we take the present location of the vehicle together with an infor-
mation component I which for every arc provides the value of its cost, if
its cost has been already learned by the vehicle, or an indication that this
particular arc has not been observed yet. With m arcs, a typical state vec-
tor will be an (m + 1)-tuple; there are n choices for the first entry in the
state vector and at most K + 1 choices for each one of the remaining entries.
(There are up to K possible realizations of Cij and an additional possibility
that the realization has not been learned yet.) We conclude that the size of
the state space is O(n(K + 1)m).

Once the state space has been defined as above, an algorithm is obtained
in pretty much the same way as for the R-SSPPR. We say that an arc (i,j)
is deterministic, given information I, if its cost is uniquely determined from
I; otherwise, the arc is said to be uncertain. We say that a node is an
information collection node if at least one of the arcs emanating from that
node is uncertain. When an information collection node is reached (and only
then), I changes and the number of uncertain arcs strictly decreases. If I'
is the new information, it includes the costs of the newly observed arcs, and
these costs are selected randomly (according to their prescribed probability
distributions) and independently of everything else.

Let V(i, I) be the expected cost-to-go starting from state (i, I). Simi-
larly with the R-SSPPR, V(i, I) can be computed recursively for all (i, I) by
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solving O((K + 1)m) deterministic single-destination shortest path problems.
(In this recursion, we start by computing V(i, I) for those I for which all arc
costs are known and proceed to the computation of V(i, I) with fewer known
arc costs.) Finally, for every I and every information collection node j (un-
der I), we need to compute E[V(j, I') I j, I], where I' is the new information
after j is reached. We note that given I and j, there are O(Kn) possible val-
ues for I' (we have O(n) arcs outgoing from j and K possibilities for each).
The probability of each possibility for I' is determined by multiplying the
probability of each choice for every particular arc (the independence assump-
tion is used here). These latter multiplications need only be done once for
each node j; so, the total work spent for such multiplications (summed over
all nodes in the network) is O(nKn). Once these probabilities are available,
each expectation E[V(j, I') I j, I] can be computed in time O(K n). Thus,
the amount of computation needed besides running shortest path algorithms,
is O(n(K + 1)m Knn).

We summarize our discussion of the i-SSPPR in the following theorem:

Theorem 2 The i-SSPPR can be solved in time O((K+ -1)m(nKn+n3 )), in
general, and in time O((K+ -1)m(nK n+n 2)) if the arc costs are nonnegative.

5 Complexity Results

Theorem 1 shows that the R-SSPPR can be solved in time polynomial in
n, if R is held fixed. On the other hand, our algorithm is exponential in R.
Similarly, for the i-SSPPR, our algorithm is exponential in the number of
arcs. In this section, we show that polynomial time algorithm for these prob-
lems are unlikely to exist. Some indication of the difficulty of these problems
has been provided in [An87] where it is observed that a full description of
an optimal policy may involve an exponentially long table. Our results go
beyond this observation and establish that the problem is difficult even if
such a description in the form of a table is not required.

We now state formally the recognition version of the R-SSPPR.
INSTANCE: A graph (/, A); two nodes s, t E Af; a positive integer R; pos-
itive integers Cirj, for (i,j) E A and r = 1,... , R; positive rational numbers
pl,..., pR that sum to 1; a positive rational number B.
QUESTION: Does there exist a policy whose expected cost is less than or
equal to B?

· , --- ----- -- --- -- -- - -------11



Theorem 3 The recognition version of the R-SSPPR is NP-complete, for
both directed and undirected networks.

Proof: We first show that R-SSPPR E NP. Suppose that we have a "YES"
instance of R-SSPPR and let y* be an optimal policy. Such a policy can be
described by specifying the R paths that are followed by the vehicle under
each possible realization of the network; let xr* be the path followed under
the rth realization. We claim that a policy described as above is a certificate
that can be used to verify in polynomial time that we are dealing with a
"YES" instance.

We first note that (see Remark 2 in Section 3) each path need not involve
more than n min{n, R} arc traversals; thus, this description of a policy is
of polynomial length. The next step is to verify that the given paths do
correspond to an admissible policy. In particular, we must check that two
paths 7r* and ir*, separate only after an information collection node is reached
at which the vehicle realizations r and r' lead to observable differences. Given
the bound on the number of arcs in each path, this can be also checked in
polynomial time. Finally, we need to evaluate the cost Lr of each path wrr
(with respect to the arc costs Cirj) and then compute the expected cost of
the policy which is ERl prLr. All of these computations can be done in
polynomial time, which establishes that the problem belongs to NP.

We will now reduce the undirected Hamiltonian path problem to the R-
SSPPR for undirected networks. In the undirected Hamiltonian path prob-
lem, we are given an undirected graph G' = (v', A') and we are asked
whether there exists a path which visits every node exactly once. This prob-
lem is known to be NP-complete (see p. 199 of [GJ79]).

Assume that we are given an instance G' = (iv', A') of the Hamiltonian
path problem and that i' = {1,...,n}. We construct from G', a graph
G = (JV, A), as follows: we let XV = V' U {s, t} and A = A' U {(s, i),(i, t) I
i = 1,..., n}. We assume that there are R = n possible realizations for the
arc costs and R1 = {1,..., R}. The arc costs in G take the following values
under the corresponding realizations:

ci5 = 1, (i,j) E A', r E ,

cri = 0, iEK', r E ,

{0,0 if r = i,
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Let B = (R - 1)/2 and let Pr(r[lZ) = 1/R for all r E R. This completes the
construction of an instance of R-SSPPR.

Assume that we have a "YES" instance of the Hamiltonian path problem.
Based on a Hamiltonian path for G, we construct the following policy it*:
starting from node s, go to the first node of the Hamiltonian path and then
follow that path. When at node r, if crt = 0, we can conclude that the
realization of the network is r and that node t should be reached following
arc (r, t), otherwise continue to the next node in the Hamiltonian path. We
notice that policy A* ensures that t is reached, and since G t is a "YES"
instance for the Hamiltonian path problem, and c/. = 1 for all r E 1Z and all
(i,j) E A', the expected cost of this policy is

1 R-1 R-1

R i=O

This shows that we have a "YES" instance of R-SSPPR.
Suppose now that we have a "NO" instance of the Hamiltonian path

problem. We observe that any policy with finite expected cost visits the
nodes of G' in some order and when a node r E A/' is visited with crt = 0,
the vehicle reaches t by traversing arc (r, t). Since no Hamiltonian path exists,
and since all nodes have to be visited under the worst possible realization,
some node will have to be visited twice with positive probability. This results
in the expected cost of the policy being strictly larger than (R - 1)/2 and
we have a "NO" instance of the R-SSPPR.

A similar reduction also works for the case of directed networks, since
the Hamiltonian path problem is NP-complete for directed graphs as well.
Q.E.D.

We now provide a formal definition of the i-SSPPR and a corresponding
complexity result.
INSTANCE: A graph (J/, A); two nodes s, t E K/; a positive integer R; pos-
itive integers C[j, for (i,j) E A and r = 1,..., K; positive rational numbers

p ... , such that K pk = 1; a positive rational number B.
QUESTION: Does there exist a policy whose expected cost is less than or
equal to B, assuming that the costs of the different arcs are independent
random variables?

Theorem 4 The i-SSPPR is #P-hard, and can be solved in polynomial
space, for both directed and undirected networks.
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Proof: We first discuss membership in PSPACE. Reference [Pa85] defines
a class of decision making problems under uncertainty which is called SAP-
TIME (Stochastic Alternating Polynomial Time). In this class of problems
one deals with a controlled Markov chain. The goal is to minimize the expec-
tation of some functional depending on the history of states and decisions.
The problem i-SSPPR can be viewed as such a controlled Markov chain
with state (i, I), where the information vector I is as defined in the proof
of Theorem 2. For this reason, i-SSPPR belongs to SAPTIME and [Pa85]
establishes that SAPTIME=PSPACE. In fact, the definition of SAPTIME
given in [Pa85] is more precise; for a problem to belong to SAPTIME there
must be certain bounds on the time horizon, the size of the state space, the
size of the control space, and the size of the numbers involved. It is not hard
to show that instances of i-SSPPR do satisfy all of these requirements, after
a minor reformulation; the details can be found in [Po92].

We now present a polynomial-time reduction of the Reliability problem
to i-SSPPR. Reliability, which is #P-hard [V79], for both cases of directed
and undirected graphs is formally defined as follows:
INSTANCE: A graph G' = (Af', A') in which arcs fail independently with
rational probability p E [0, 1] and two nodes s, t E Af'.
OUTPUT: The probability f(G',s,t;p) that there is a path from s to t
without failed edges.

We will first consider the undirected case, and then extend the reduction
to the case of directed networks. Given an instance (KJ', A', s, t, p) of the
Reliability problem, we construct an instance of i-SSPPR with node set
NA = A' and arc set A = A' U {(s, t)}. Regarding the arc costs, we assume
that Ct = 1 with probability 1 and

C = { 0, with probability 1 - p,
=o i 1, with probability p, V(i

The following policy is easily seen to be optimal: while using only zero-
cost arcs, explore as much of the graph as possible. (Given that the graph
is undirected, the vehicle can always backtrack and therefore the exploratin
strategy is immaterial). If the destination t is reached, stop. If the destination
t cannot be reached, backtrack to node s and traverse arc (s, t). The expected
cost of this policy is equal to the probability that there exists no path from s
to t consisting of zero-cost arcs, which is 1 - f(G', s, t; p). As a consequence,
i-SSPPR is #P-hard, for the undirected case.
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The reduction given for the directed the case does not work for the di-
rected case because the vehicle may be unable to backtrack. This can be
remedied by introducing additional arcs of the form (i,s), i E /, whose
cost is zero with probability 1. With this modification, our reduction goes
through and establishes that i-SSPPR is #P-hard for the directed case as
well. Q.E.D.

We note that the proof of Theorem 4 shows that the i-SSPPR remains
#P-hard even for the case where each arc cost can take at most two different
values.

6 Heuristics and Bounds on the Optimal
Cost

In this section, we compare the cost of an optimal policy for the SSPPR with
the cost resulting from the application of a heuristic policy (that is, an easily
computable but nonoptimal policy). A few different heuristic policies are
considered and a set of results (mostly negative) are derived. Our results are
presented separately for the R-SSPPR and the i-SSPPR, and we also distin-
guish between directed and undirected networks for each case. Throughout
this section, we assume that arc costs are nonnegative with probability 1.

Before proceeding to the detailed development, we introduce some nota-
tion. We use CH to denote the expected cost corresponding to some heuristic
policy H, and COPT to denote the expected cost of an optimal policy. We
also define CFI (for "full information") as the expected cost had the realiza-
tion of all arc costs been known when at s. (The expectation is taken again
with respect to the probabilities of the different realizations.) It is clear that
the following inequalities hold for every instance of SSPPR and for every
heuristic policy H:

CFI • COPT • CH. (3)

We will be interested in the ratio CHICOPT which characterizes the quality
of a heuristic and in the ratio COPT/CFI which measures the value of infor-
mation. (We also note that the ratio CH/CFI is similar to the ratio that was
studied in [PY89] and which is sometimes called the "competitive ratio.")
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6.1 The Certainty Equivalent Heuristic

An easy way of obtaining a policy is to replace the arc costs by their expecta-
tions, obtain a shortest path under these new (deterministic) arc costs, and
let the vehicle follow such a shortest path no matter what information it ac-
quires along the way. We call this heuristic the certainty equivalent heuristic
and we denote the cost of the resulting policy by CCE. A main drawback
of this heuristic is that it makes no use of available information and for this
reason, its cost can be quite high compared to the optimal cost, as we now
demonstrate.

Considering an instance of the R-SSPPR, involving an undirected graph.
Assume that there exist only two paths from s to t (an "upper" path and
a "lower" path) and two equally likely realizations. All arc costs are zero
except that under the first (respectively, the second) realization, the lower
(respectively, the upper) path has an arc with a cost of 1. The certainty
equivalent heuristic (as any other policy that does not use the available in-
formation) results in an expected cost of 1/2 , whereas the optimal cost is
zero. Essentially the same example would lead to the same conclusion for
the case of directed graphs as well.

The cost CCE can be arbitrarily worse than the optimal for the i-SSPPR
as well (for both directed and undirected networks), as we now show. Con-
sider the undirected graph in Figure 1. Let the arcs of the form (s, i) have
zero length. The length of each arc of the form (i, t) is equal to 1 with proba-
bility p and equal to 0 with probability 1 - p. Then, the cost CCE is equal to
p and the optimal cost COPT is pk. As a consequence, the ratio CCE/COPT
can become arbitrarily large if we keep p constant and we increase k or if
we keep k constant and decrease p. An example involving directed graphs
leading to the same conclusion is be obtained if we take the same instance,
assign a direction from left to right to all arcs, and add zero-cost arcs of the
form (i,j), i,j = 1,...,n.

Having obtained these negative results for the certainty equivalent heuris-
tic, we now turn our attention to heuristics that try to make some use of new
information when it becomes available.

6.2 Heuristics for the R-SSPPR

A naive adaptive heuristic
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Figure 1: An undirected graph.

We start by considering the following "naive adaptive heuristic" HN for
the R-SSPPR. Let L, be the shortest path length from s to t, under the
rth realization of the network, and let 7rr be a corresponding shortest path.
Assume that the realizations have been indexed so that L 1 < L 2 < ... <

LR. The heuristic proceeds as follows: the vehicle first behaves as if the
realization of the network is 1 and follows irl. More generally, it behaves
as if the realization is r and follows rr. If, along the way, it finds out that
the realization is not r, it returns to s and assumes that the realization is
the lowest indexed realization compatible with the information collected thus
far. The vehicle will eventually reach t because once it guesses the correct
realization r, it will follow the path 7rr to the end.

Theorem 5 Consider the R-SSPPR for undirected networks. For every in-
stance, we have:

a) CHN/CFI < 2min{n,R}.
b) CHN/COPT < 2min{n,R}.
c) COPT/CFI < 2 min{n, R}.
Furthermore, there exist instances for which:
d) CHN /CFI = min{n, R}.
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e) CHN/CCPT = min(n, R}.

f) COPT/CFI = min{n, R).

Proof: Assume first that R < n. Suppose that the true realization is some
r*. (In particular, CFI is the expectation of Lr*.) Whenever the vehicle
assumes that r is the true realization and tries the path err, we must have r <
r*. Thus, the total length traversed by the vehicle, including backtracking
to S, is bounded by 2 r*l*- Lr + Lr* < 2RLr*, from which we obtain CHN <
2RCFI. Notice that the vehicle can make incorrect assumptions on the true
value of r at most n times, because the assumption on the true value of r can
only change when the vehicle visits a new information collection node. For
this reason, the bound of 2RLr* can be improved to 2 min{n, R}Lr*, which
establishes part (a) of the result . Parts (b) and (c) follow immediately.

To prove part (f), we construct an instance for which COPT/CFI = R.
The underlying graph is the one shown in Figure 1. There are R = k possible
realizations which are equally likely. Arcs of the form (s, i) have unit length.
Arcs of the form (i,t) have length M, with M > 2R, except that under
realization r, arc (r, t) has zero length. Clearly, CFI = 1. For this instance,
the naive adaptive heuristic behaves as follows: go to node 1; if clt = 0 then
go to node t; otherwise, go back to node s and then to node 2, etc. The
expected cost of this policy is

1 R
COPT = (1 + 2(i- 1))= R,

i=l

which establishes part (d). It is easily seen that, for this instance, the heuris-
tic HN is also an optimal policy which establishes part (f) as well.

To prove part (e), we modify the instance of Figure 1 as in Figure 2.
Here the cost of arc (a, b) is random, takes one of R different values, and
its value provides full information on the actual realization. (The statistics
of the arcs (i, t) are the same as before.) The same calculation as in the
preceding paragraph shows that CHN = R. On the other hand, an optimal
policy would first visit node a, learn the true realization, and then follow a
shortest path to the destination t, for a total cost of 1.

Q.E.D.
It should be clear that parts (c) and (f) of this theorem are not related to

the particular heuristic being study. Instead they establish that information
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Figure 2: An instance of R-SSPPR for the proof of part (e) of Theorem 5.

is valuable in that it can improve costs by a factor of R but no more than
2R.

A further improvement to the heuristic is obtained as follows. Once an
assumed value of r is invalidated and a new value of r is assumed, instead of
returning to s and following Tr,y find a shortest path from the current node
to node t (with respect to the arc costs under the newly assumed realization)
and follow it until the new assumption about r is invalidated. We might
expect this modification to lead to better performance, although the results
of Theorem 5 would not be changed.

The naive adaptive heuristic is not useful in the case of directed networks
because, once the vehicle leaves the origin s along a certain path, it might be
impossible to return. For this reason, both CHN/COPT and COPT/CFI are
unbounded above, for the directed case.

An Open Loop Feedback Heuristic

The "open loop feedback" heuristic is a general purpose heuristic for
stochastic problems. The idea is to start by following a path which is shortest
with respect to the expected values of the arc costs, as in the certainty
equivalent heuristic. However, as soon as the vehicle acquires some new
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information, the probability distribution of the arc costs is replaced by the
conditional distribution given the new information; then, a new path with
least expected cost is computed and followed, and so on. This procedure is
repeated until node t is reached. We notice that the amount of computation
needed to implement this heuristic is polynomial in R and n. (We basically
need to solve at most min{R, n} deterministic shortest path problems, for
each particular realization.)

Unfortunately, this heuristic does not enjoy any favorable performance
guarantees. As for the certainty equivalent heuristic, it is not hard to con-
struct examples for which the optimal cost is zero and the cost of this heuristic
is positive.

6.3 Heuristics for the i-SSPPR

We restrict our discussion to the undirected case. Since the i-SSPPR is a spe-
cial case of the R-SSPPR, it follows from Theorem 5 that the naive adaptive
heuristic satisfies CHN/CFI < 2n. It might appear that implementing this
heuristic could require an exponential amount of computation, since we need
to find a shortest path under each realization and then sort these shortest
paths in order of increasing lengths. However, a more efficient implementa-
tion is possible which we now describe. At any point in time, assume that
all arc lengths are equal to the lowest possible values, given the information
observed so far, and follow a path to node t that would be shortest if this
assumption were true. Thus, implementation of this heuristic only requires
that we solve a new shortest path problem each time that we encounter
an arc whose value is larger than the value that was assumed. Therefore, at
most n shortest path problems need to be solved and the total computational
requirements are polynomial. (On the other hand, evaluating the expected
cost CHN associated with this heuristic appears to be much more difficult,
because the expectation is the sum of an exponential amount of terms. In
fact, it can be shown that the evaluation of CHN is a #P-complete problem.
The proof is fairly similar to the proof of Theorem 4.)

Using Theorem 5(c), we obtain COPTICFI < 2n. We conjecture that
this bound is pretty tight; that is, there are instances of i-SSPPR for which
COPT/CFI = Q(n)
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7 Extension and Conclusions

We discuss here a few variations of our model.
There are several possible variations of the mechanism whereby new in-

formation on arc costs is acquired. For example, we could have assumed that
the length of an arc is learned only after traversing it. Under this variation,
the certainty equivalent solution is optimal when arc costs are independent
random variables (i-SSPPR); for the R-SSPPR, a dynamic programming al-
gorithm similar to the one in Section 3 is possible.

In a more complicated variant, we can allow for an option of obtaining
information on the costs of remote arcs, except that a price has to be paid
whenever such information is to be obtained. (This could represent an "intel-
ligence gathering" activity.) The dynamic programming methodology easily
extends to this setting [Po92].

In another variant, we may assume that global information on the real-
ization of the arc costs is obtained at some time r, after the vehicle starts its
journey. (The time r could be either a deterministic constant, or an exponen-
tially distributed random variable.) For the model to be complete, we need
to specify the relation, if any, between arc costs and travel times. For exam-
ple, we may assume that each arc traversal takes unit time and that there
is a penalty for waiting in place. Alternatively, we may assume that travel
times are proportional to arc costs. Both alternatives can be approached via
dynamic programming [Po92], similarly with Section 3.

Another possible direction involves the case in which arc costs change with
time, according to a stochastic process. As in the R-SSPPR, we can assume
that there are R possible realizations and that the actual realization r changes
according to a Markov chain. If the value of r is observed perfectly, we obtain
a Markov decision problem with state (i, r), where i is the current location
of the vehicle. In the case where r is not perfectly known, but we attempt to
infer r from the observed arc costs and knowledge of underlying statistics, the
problem can be still handled, in principle, through dynamic programming,
but its computational requirements are much more substantial.

In a model similar to the i-SSPPR, we can assume that each arc evolves
independently as a Markov chain. This problem can be solved in polynomial
time for the case of directed acyclic graphs [PT93], but seems to be quite
difficult for general graphs.

Overall, this paper has analyzed and discussed a number of stochastic
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shortest path problems in the absence of full arc cost information. Our main
interest was in understanding the conditions under which problems of this
type can be considered to be solvable. The distinction between the R-SSPPR
and the i-SSPPR and the results obtained for these problems highlight the
fact that modeling uncertainty is crucial for problems of this type and that
there may be a significant tradeoff between modeling accuracy and solvabil-
ity; for example, the R-SSPPR with a small value of R is easiest to solve but
could be a poor model in some settings.
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