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Abstract

A new aplproach to regularization methods for image processing is iltro(duced and
developed using as a. vehicle the problem of coml)uting dleilse optical flow fields in an
image sequence. Standard formulations of this problemi re(luire the computationally
intensive solution of an ellil)tic pa.rtial differential equation which arises froin the of-
ten used "smootlhness constraint' type regularization. We utilize the illterl)reta.tion

of' .he smoot.hness constraint as a. "fractal prior" to motivate regularization based on
a. recently introduced class of multiscale stochastic models. The solution of the new

l)robleln formulat.ion is computed with an efficient multiscale algorithm. Experiiments
on several ima.ge sequences (demonstrate the sutl)sta.nftial compult.a.tional savings tlia.t. canll

I)e achieved due to the fact tha.t the algorit.hm is non-iterative and in fact has a. per

pixel computational complexity which is independent. of imiage size. Tlie new a.pp)l)roach

also has a. numbler of other important. advantages. Specifically, nitltiresolution flow
field estimates are availabl)le, allowing grea.t. flexibility in dealing wvithl the t.radeoff b.)e-
t.ween resolution a.nd(l accuracy. NIultiscale error covariance information is also availabLle.
which is of considerable use inll assessing the accuracy of the estimates. Ini particular,

these error statistics calln be used as the b)asis for a rational procedure for dletermlining
the spatially-varying optimal reconstruction resolution. Furthermore, if there are coni-

pelling reasons to insist upon a standard smoothness constraint, our algorithm provides
an excellent initialization for the iterative algoritlhms associated with the smoot. ness
constraint l)roblemi formulation. Finally, the usefulness of otir appI)roach should extend
t-o a. wide variety of ill-posed inverse problems inll which variational techniques seeking

a. "smooth" solution are generally usedl.
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1 Introduction

In this paper we introduce and develop a new multiscale approach to regularization prob-
lems in image processing, using the computation of dense optical flow fields as the vehicle
for our development. Regularization is, of course, a widely-known and used concept in
image analysis. In some cases the introduction of a regularizing term is necessitated by
ill-posedness (also referred to as the "aperture problem" in computer vision), i.e. by the
insufficient information provided solely by the available data, or by a desire to reduce noise.
In other problems the so-called regularizing term represents substantive prior information
arising, for example, from physical constraints or laws or from information extracted from
previous image frames. The family of optical flow reconstruction algorithms stemming from
the work of Horn and Schunck [19], which forms the specific context for our development
and which has found success in a number of applications such as [32], is one example of a
formulation typically introduced to deal with ill-posedness. However, very similar formula-
tions arise in other contexts ranging from the problem of the temporal tracking of optical
flow [8] to large scale oceanographic data assimilation problems [36]. Thus, while we use the
problem of estimating optical flow at a single point in time as the focus for our development,
it is our strong belief that the ideas developed here have a far broader range of applicability.

Optical flow, the apparent velocity vector field corresponding to the observed motion of
intensity patterns in successive image frames, is an important quantity in a variety of prob-
lems. For example, in MRJ imaging of the heart [32, 30] this vector field provides diagnostic
information concerning cardiac muscle motion and differential strain. In oceanographic data
processing such information can be of use, for example, in tracking the meandering motion
of the Gulf Stream [25]. Also, in computational vision, optical flow is an important input
into higher level vision algorithms performing tasks such as segmentation, tracking, object
detection, robot guidance and recovery of shape information [1, 27, 33, 37, 43]. In addition,
methods for computing optical flow are an essential part of motion compensated coding
schemes [2, 50].

As we have indicated, our approach to optical flow estimation is motivated by, and
represents an alternative to, regularization methods such as that of Horn and Schunck [19]
which employs the often used "smoothness constraint" regularization term. In particular,
the starting point for this and many other approaches to optical flow estimation is the use
of a brightness constraint, i.e. the assumption that changes in image brightness are due only
to motion in the image frame. This leads to the so called brightness constraint equation2

[19]:
d 0

0= TtE(ziZ2, t) = E(zi, Z2 ,t) +VE(zi, Z2 t) X(Z, Z2,t) (1)

where E(zl,z 2 ,t) is the image intensity as a function of time t and space (zl, z 2), x(zl,z 2,t)
is the optical flow vector field, and:

x- =~~~ [-h-Zl~~ -~ ~(2)=aLt o~t
VE = E&E2 (3)

2 More generally, it is straightforward to adapt (1) to cases in which E has a known temporal variation.
See [32] for an example in the context of MRI imaging.
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The brightness constraint equation (1), however, does not completely specify the flow field
X(zl, z2 , t) since it provides only one linear constraint for the two unknowns at each point.
Thus, (1) by itself represents an under-determined or ill-posed set of constraints on optical
flow. In addition, in practice, only noisy measurements of the temporal and spatial intensity
derivatives will be available, meaning that we in fact have available only noisy constraints.
For both of these reasons one must regularize the problem of reconstructing x(zl, z2 , t), and
one commonly used way to do this is to assume some type of spatial coherence in the optical
flow field, for instance by assuming that x(zl, z2 , t) is constant over spatial patches or by
other methods for imposing coherence and achieving spatial noise averaging.

In particular, Horn and Schunck's approach [19], often referred to as imposing a smooth-
ness constraint, consists of constructing the optical flow field estimate as the solution of the
following optimization problem:

isc = arg min J R - 1 ( dtE) + IIVX11 2 dzdz2 (4)

The smoothness constraint is captured by the second term which penalizes large gradients
in the optical flow. The constant R allows one to tradeoff between the relative importance
in the cost function of the brightness and smoothness constraint terms. For example, in
some situations R - 1 is taken to be quite large to force the solution to match the constraints
(1), and in such a case the smoothness constraint serves merely to regularize the problem,
i.e. to ensure that (4) has a unique solution. In other cases, however, one might use a
more moderate value of R -1 either to account for the fact that the constraint (1) is noisy
or to reflect the fact that the smoothness constraint penalty represents a useful source of
information itself. For example, in [8] the smoothness constraint is replaced by an analogous
term reflecting both smoothness and prior information gleaned from preceding image frames.
We refer to the optical flow estimate obtained from (4) as the smoothness constraint (SC)
solution to the problem of computing optical flow.

One of the major problems associated with the formulation in (4) and with analogous
formulations for other regularized image processing problems is that they lead to compu-
tationally intensive algorithms. Specifically, one can show that the solution of (4) satisfies
an elliptic partial differential equation (PDE) [19]. Discretization of this PDE leads to a
sparse but extremely large set of linear equations which are typically solved using itera-
tive approaches. One of the first iterative approaches used was the Gauss-Seidel relaxation
algorithm [19, 40] which is extremely simple, but which converges very slowly. Terzopou-
los [45] proposed the use of multigrid approaches and reported a factor of 7 reduction in
computation over the Gauss-Seidel approach. Successive over-relaxation (SOR) algorithms
[21] also provide significant computational improvement over GS approaches and have been
successfully used in [32, 34, 35]. However, whatever numerical method is employed, compu-
tational complexity per pixel typically grows with image size, a fact that can make real-time
or in some cases even off-line implementation prohibitively complex. For example, while
computational complexity for such a problem may be severe for 512 x 512 images, especially
if real-time processing of image sequences is required, the computational demands in other
contexts, such as oceanographic data processing where one may consider problems as large
as 100,000,000 voxels (3-D pixels), are more than a serious problem: they are, in fact, the
major problem.
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One of the principal motivations for the method in this paper is to introduce an alter-
native regularization formulation in order to address the computational challenge discussed
above. To do this, we need to analyze the smoothness constraint in more detail. Note in
particular that the penalty associated with the smoothness constraint term in (4) is equal
to the integral of the squared norm of the field gradient over the image plane. In a one-
dimensional context, such a constraint would penalize each of the (one-dimensional) fields
in Figure 1 equally. Intuitively, the smoothness constraint has a fractal nature, and in fact
is often referred to as a "fractal prior" [44].

Moreover, as discussed in [34, 35] and as described in more detail in the next section,
the optical flow problem formulation in (4) has an equivalent formulation and precise inter-
pretation in an estimation-theoretic context. Roughly speaking, the optimization problem
(4) corresponds to a statistical model in which the noise or error in the brightness con-
straint is assumed to be spatially white and in which the two components of the optical
flow are modeled as independent random fields, each of which has a zero mean, spatially
white gradient. That is, as discussed in [8, 34, 35], the smoothness constraint essentially
corresponds to modeling each component of optical flow as a spatial Brownian motion, i.e.
as a statistically self-similar, fractal process with a 1/Iff 12 generalized spectrum [44].

Given that the smoothness constraint corresponds precisely to a prior model with fractal
characteristics, a natural idea is that of using alternate prior statistical models - corre-
sponding to alternate penalty terms to that in (4) - that possess the same type of fractal
characteristics but that lead to computationally more attractive problem formulations. In
this paper, we do just that as we introduce an approach based on substituting a fractal-like
class of prior models recently introduced in [11, 9, 10, 13] for the smoothness constraint
prior. The key idea behind this approach is that instead of the Brownian motion fractal
prior that describes the optical flow field as one that has independent increments in space,
we use a statistical model for optical flow that has independent increments in scale. That
is, as described in the next section, we make use of a new class of statistical models for
random fields that describe these fields in a scale-recursive manner, with detail added as we
move from coarse-to-fine scales. The model can be interpreted as a smoothness constraint
that provides individual penalties on each scale of detail or as providing a multiscale prob-
abilistic model in which the variances of the detail components vary from scale to scale in
a fractal, self-similar fashion. For this reason, we say that our formulation corresponds to a
multiscale regularization (MR) of the optical flow problem, and we refer below to the MR
algorithm and solution.

One of the most important consequences of this alternate smoothness constraint is that it
allows us to make use of the extremely efficient scale-recursive optimal estimation algorithm
that this statistical model admits [11, 9, 10]. In particular, the resulting algorithm is
not iterative and in fact requires a fixed number of floating point operations per pixel
independent of image size. Thus, since methods for solving the smoothness constraint
problem formulation have per pixel computational complexities that typically grow with
image size, the computational savings associated with the new approach increases as the
image size grows and, as we will see, can be considerable even for modest-sized problems.

Moreover, while computational efficiency did serve as the original motivation for this
new formulation and in many problems may be its most important asset, there are several
other potential advantages that the new approach has. First, the scale-recursive nature
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of our algorithm directly yields estimates of the optical flow field at multiple resolutions,
providing us with considerable flexibility in dealing with the tradeoff between accuracy and
resolution. Specifically, one can expect to obtain higher accuracy at coarser resolutions,
and thus one can imagine trading off resolution versus accuracy in a data-adaptive way.
For example, in regions with substantial local intensity variations one would expect to be
able to estimate optical flow at a finer spatial resolution than in regions in which intensity
varies more smoothly and contrast is low. The question, of course, is how such an intuitive
concept can be realized in an algorithm. As we will demonstrate, our multiscale algorithm
provides us with all of the information required to do this with essentially no additional
computation, leading to the designation of the preferred resolution for estimating optical
flow at every point in the image frame.

Secondly, an important consequence of employing an estimation-theoretic interpretation
is that it offers the possibility of evaluating a quantitative measure of the quality of our
optical flow estimate, namely the estimation error covariance. This idea, of course, also
applies to the original smoothness constraint formulation (4). However, in that case, the
computation of the error covariance must be done in addition to solving the partial dif-
ferential equations for the optimal flow estimates, and in fact, the computation of these
error statistics has complexity at least as great as that for calculating the estimates. In
contrast, for our formulation, error covariances can be calculated with essentially no in-
crease in computational complexity. Furthermore, our algorithm provides error covariance
statistics at multiple resolutions, providing information that is essential to addressing the
tradeoff between resolution and accuracy as discussed in the previous paragraph, and that
may also be useful to higher level vision algorithms which need to combine information in
a rational way from a variety of sources [38].

As we have indicated, the new algorithm we develop is based on a formulation that is
similar but not identical to that given by (4), and there are several implications of this
fact. The first is that while the estimates produced by our algorithms are not identical
to those based on (4), they are similar and have comparable root-mean-square (rms) error
characteristics, as the experimental evidence in Section 3 illustrates. Moreover, these results
also show that the difference between the SC and MR flow estimates consists of mostly high
spatial frequency components, which are precisely the components which can be quickly
removed by the iterative algorithms computing a smoothness constraint solution. Thus,
even in situations in which a solution to the original smoothness constraint formulation is
required (for instance, if the smoothness constraint corresponds to physically-based prior
information) there may be considerable computational advantages in using the MR solution
as an initial estimate of the optical flow, i.e. as an initial estimate for an iterative algorithm
which computes the solution of the partial differential equation characterizing (4). Indeed,
given the promise suggested by results presented here, we conjecture that another potential
application of the approach we introduce is in providing easily computed, accurate initial
conditions for the solution of partial differential equations arising in contexts other than
image processing.

There is another implication of the relationship of our approach to the formulation in
(4). Specifically, there are of course, problems of practical importance in which the basic
assumptions underlying the Horn and Schunck formalism are violated, for instance if there
is substantial temporal aliasing (so that the data implied by (1) are not available), if there
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are discontinuities in the motion field due to object boundaries and occlusion or if there
are multiple motions. In such cases, the Horn and Schunck formulation may fail to give
adequate results, and, due to the similarity of the approaches, our method would likely fail
as well. In such contexts algorithms developed to deal explicitly with such issues, such as
those in [15, 18], may be more appropriate. On the other hand, for the not insignificant class
of problems for which the Horn and Schunck formulation is well-suited, such as [32] and
the many ill-posed and variational problems arising in fields ranging from image processing
and tomography to meteorology, seismology and oceanography [5, 31, 47, 22, 46, 26], our
method will also work well and also provides the advantages described previously: compu-
tational efficiency, multiresolution estimates and multiscale error covariance information.
Moreover, even in cases in which Horn and Schunck-type global smoothness constraints are
inappropriate, there are reasons to believe that algorithms based on our formulation may
provide the basis for promising new solutions. While it is beyond the scope of this paper
to develop such methods in detail, we provide an example suggesting this promise and also
indicate how the statistical interpretation and flexible structure of our formalism might be
used to advantage.

This paper is organized as follows. In Section 2 we discuss in more detail an estimation-
theoretic interpretation of the optical flow formulation in (4) and develop our new approach
to the computation of optical flow. Section 3 presents experimental results on several real
and synthetic image sequences. Section 4 provides further discussion and conclusions.

2 Multiscale Regularization

In the first part of this section we develop a discrete formulation of the optical flow problem,
and discuss in more detail the estimation-theoretic interpretation of it. We then illustrate
precisely how the smoothness constraint can be interpreted as a prior model for the flow
field, and how it can be replaced by another, similar prior model which leads to a more
computationally attractive problem formulation. The general class of prior models we use
is then introduced along with an algorithm for finding the solution of the new optical flow
problem formulation.

2.1 An Estimation-Theoretic Interpretation of the Optical Flow Problem

Estimation-theoretic formulations and interpretations of optical flow problems have been
introduced and studied by a number of authors. For instance, in [20, 49] Markov random
field (MRF) models are proposed along with a maximum a-posteriori criterion for estimat-
ing optical flow. MRF models are also used in [18] to address problems of occlusion and
flow field discontinuity. Kalman filtering approaches which allow for temporal as well as
spatial smoothness constraints have been discussed in [8, 39, 17, 42]. In addition, in [38] a
Bayesian formulation which provides optical flow estimates and confidence measures based
on a local window of data is proposed. In addition there is the interpretation by Rougee et
al. [34, 35] of the Horn and Schunck smoothness constraint formulation (4) as an equivalent
estimation problem with a Brownian motion, fractal prior for the flow field. The distin-
guishing feature of the Brownian motion model implied by (4), the Markov random field
models, and the spatio-temporal models used in the Kalman filtering approaches, is that
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they all provide models in terms of local relationships (typically nearest neighbor) of the
flow field components at a single, finest level of resolution. This leads naturally to spatially
local, iterative algorithms for computing the optimal optical flow estimates (such as those
needed to solve the partial differential equation resulting from (4) or simulated annealing
algorithms for MRF models). In contrast, the probabilistic model for optical flow proposed
in this paper describes the flow field in terms of probabilistic variations from scale to scale
and leads naturally to the efficient scale recursive algorithms described in [11, 9, 10].

As we have indicated, our approach is motivated by the probabilistic interpretations
of Horn and Schunck's formulation, which we now discuss briefly. The reader referred to
[7, 8, 34, 35] for a more extensive discussion of this and related probabilistic models. We
start by introducing the following notation. Define:

Y(Z1, Z2) - - (at E(zl, Z2, t) (5)y( zl, z2) -=5
C(z, Z2 ) -VE(zi, Z2 , t) (6)

The brightness constraint equation (1) can then be written:

y(z 1 ,Z 2 ) = C(Z,,Z2 ) . X(Z1 ,Z 2 ) (7)

where the time dependence of the equations has been suppressed.
In practice, brightness measurements are only available over a discrete set of points

in space and time. Thus, the temporal and spatial derivative terms in the brightness
constraint equation (7) must be approximated by a finite difference scheme in time and
space, and the optical flow is only estimated on a discrete space-time grid. There are a
number of important issues which arise due to the discretization, such as the use of spatial
and/or temporal smoothing prior to discretization, the use of more than two image frames
in the computation of temporal derivatives, etc., and we refer the reader to [7, 3, 15] for
further discussion. We assume here that the optical flow is to be estimated on the set
{(z1,z 2)Iz1 = ih,z 2 = jh;i,j E {1, --- ,2 M}} where h is the grid spacing and M is an
integer. The assumption that the lattice is square and that the number of rows is equal to
a power of two simplifies the notation in the subsequent development, but is not essential
as we discuss in Appendix A. In order to simplify the notation further, we let y(i,j), z(i,j),
and C(i, j) denote the measured temporal brightness derivative, the optical flow, and the
spatial gradient of the image brightness, respectively, at grid point (ih, jh). The brightness
constraints at all grid points can then be grouped into one large set of linear equations to
capture the optical flow information contained in the image sequence. Defining x as the
vector of optical flow vectors z(i, j) at all grid points (using, say, a lexicographic ordering),
C as the matrix containing the corresponding spatial gradient terms C(i, j), and y as the
vector of temporal gradients y(i, j), we can write:

y=Cx (8)

Then, the discrete counterpart of (4) is:

Xsc - arg min IIy - Cx) -y + IILxII9

arg min (y - Cx)T R-(y - Cx) + XTLTLx (9)
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where the matrix L is a discrete approximation of the gradient operator in (4) and R = RI,
where I is the identity matrix. The regularization term xTLTLx makes the optimization
problem (9) well-posed. In particular, the solution of (13) satisfies the so-called normal
equations [41]:

(CTR-1C + LTL)sc = CTR-ly (10)

-and the invertibility of (CTR-1C + LTL) guarantees that xsc is unique. The normal
equations (10) are the discrete counterpart of the partial differential equation that arises
from (4).

An estimation-theoretic formulation of the optimization problem in (9) can now be
developed. Specifically, suppose that we wish to estimate x based on the measurements

y = Cx + v (11)

O = Lx+w (12)

where v and w are uncorrelated random vectors with 3 v A f/(O, R) and w -A(O, I).
Then the measurement vector : [yTIO]T is conditionally Gaussian, and the maximum
likelihood estimate [48] of x is:

XML- argmaxp(ylx)

= arg min - logp(ylx)

= arg min (y - Cx)TRl(y - Cx) + xTLTLx (13)

- XSC

Thus, the maximum likelihood problem formulation results in the same solution as the
smoothness constraint formulation when L is used to define an additional set of noisy
measurements.

The main point here is that by formulating the problem in this estimation-theoretic
framework, we can use (12) to interpret the smoothness constraint as a prior probabilistic
model for the flow field. Specifically, we can rewrite (12) as:

Lx = -w (14)

Recalling that L is an approximation to the gradient operator, we see that (14) is nothing
more than a spatial difference equation model for x driven by the spatial white noise field
w.

To some extent the precise form of this prior model is arbitrary, and thus we are led to
the idea of introducing a new prior model which is similar in nature, but which leads to
a computationally more attractive problem formulation. That is, we want to change the
smoothness constraint term xTLTLx in (13) to something similar, say, xTSx Z xTLTLx
(where S is a symmetric positive semi-definite matrix) such that the resulting optimization
problem is easy to solve. If we factor S as S = LTL then we can interpret the new constraint
as a prior probabilistic model just as we did with the smoothness constraint. In addition,

3 The notation z - A/'(m, A) means that z has a Gaussian distribution, with mean m and variance A.
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there is a precise interpretation of what we have done as a Bayesian estimation problem.
Specifically, if S is invertible, then the use of this new constraint in place of the smoothness
constraint is equivalent to modeling the flow field probabilistically as x - Af(0, S-1), since
in this case the Bayes' least squares estimate of the flow field x, given this prior model and
the measurements in (11) is given by:

XBLSE = arg min (y - Cx)TRl-(y - Cx) + xTSx (15)x

which corresponds to (13) with a different prior model term. The normal equations corre-
sponding to (15) are given by:

(CTR-lC + S)RBLSE = CTR-ly (16)

Comparison of the problem formulations (9) and (15), or of the normal equations (10)
and (16), makes it apparent how the two problem formulations are related. Note that an
analogous Bayesian interpretation can apparently be given to the smoothness constraint
formulation (9), (10), with the corresponding prior model for optical flow given by x
P1(0, (LTL)-1). Recall, however, that L is an approximation to the spatial gradient operator
and thus is not invertible since operating on constants with this operator yields zero. The
probabilistic interpretation of this is that the model (14) places probabilistic constraints on
the spatial differences of the optical flow, but not on its DC value. Indeed, it is not difficult
to check that if we model optical flow instead as x ' A/(0, (LTL + EI)-), where e is any
arbitrarily small positive number, then LTL + El is indeed invertible and the DC value of x
has a prior covariance Po on the order of 1/e, so that P0 -* oo as E -+ 0. Thus, the original
smoothness constraint formulation in essence assumes an infinite prior covariance on the
DC value of optical flow. The alternate model developed in the next section has a similar
parameter, Po, representing the DC variance, which can similarly be set to oo.

Finally, it is important to emphasize that what we have done here is to interpret the
smoothness constraint formulation and its extension (15) as optimal estimation problems.
The point is that we are not assuming statistics for x and v but rather are identifying the
assumptions that are intrinsic to the smoothness constraint formulation. That is, XBLSE in
(15) is the Bayes' least squares estimate if x - A(0, S- 1') and v s '(0, R). More generally,
if x and v are simply modeled as zero-mean uncorrelated random vectors with covariances
S - 1 and R, respectively, and with no further specification of their distributions, then (15)
is the linear least squares estimate, i.e. the best linear estimate of x.

The choice of the new prior model is now clearly at the heart of the problem. Recalling
that the smoothness constraint has the interpretation as a "fractal prior", we choose a prior
model which also has fractal-like characteristics. A natural way to specify such models is
to explicitly represent the optical flow field at multiple scales so that the self-similar fractal
characteristics of the field can be introduced explicitly. A stochastic modeling framework
which allows us to do this, and which also leads to efficient algorithms for solving (15), (16),
is described in the next section.

2.2 A Class of Multiscale Models

The models we utilize to replace the smoothness constraint prior model were recently in-
troduced in [11, 9, 10, 13]. The models represent the flow field at multiple scales, i.e. for



a set of scales m = 0,..., M, with m = 0 being the coarsest scale and m = M the finest
scale, we define a set of optical flow fields indexed by scale and space, namely Xm(i,j). At
the mth scale, the field consists of 4 m flow vectors, as illustrated in Figure 2, capturing
features of the optical flow field discernible at that scale (i.e. finer resolution features of the
field appear only in finer scale representations). Thus, the coarsest version of the flow field
consists of just a single vector corresponding to the coarse, aggregate value of the optical
flow over the entire spatial domain of interest, and successively finer versions consist of a
geometrically increasing number of vectors. At the finest level, the flow field is represented
on a grid with the same resolution as the image brightness data. In particular, xM(i,j)
corresponds to the optical flow vector x(i, j).

The multiscale optical flow field is defined on the quadtree structure illustrated in Fig-
ure 3. Pyramidal data structures such as the quadtree naturally arise in image processing
algorithms which have a multiresolution component. For instance, successive filtering and
decimation operations lead to images defined on such a hierarchy of grids in the Lapla-
cian pyramid coding algorithm of Burt and Adelson [6] and in the closely related wavelet
transform decomposition of images [23]. Also, the multigrid approaches to low level vision
problems discussed by Terzopoulos [45] involve relaxation on a similar sequence of grids. It
is important to emphasize here, however that in contrast to approaches such as these, in
our case we are using the quadtree structure to model a spatially-distributed random field
rather than to analyze or decompose a given field. As we will see, this model does, in fact,
lead to processing algorithms operating on the quadtree, but these algorithms are optimal
estimation procedures and thus are completely different in form, nature, and intent from
standard pyramidal decomposition procedures.

Our quadtree model for the optical flow field x(i, j) = xM(i, j) is constructed by adding
detail from one scale to the next (i.e. from coarse to fine). Just as the smoothness constraint
prior model (14) describes probabilistic constraints among values of the optical flow at
different spatial locations, our multiscale model describes such constraints among values at
different scales. For notational convenience in describing such models, we denote nodes on
the quadtree with a single abstract index s which is associated with the 3-tuple (m, i, j)
where, again, m is the scale and (i, j) is a spatial location in the grid at the mth scale (see
Figure 2). It is also useful to define an upward shift operator a. In particular, the parent of
node s is denoted sl (see Figure 3). For instance, if s corresponds to any of the nodes in the
upper left quadrant of the second level grid (see Figure 2), i.e. nodes (2, 1, 1), (2, 2, 1), (2, 1, 2)
or (2, 2, 2), then sl corresponds to their parent on the first level, namely node (1, 1, 1). With
this notation, our scale-recursive model takes the form:

x(s) = A(s)x(sy) + B(s)w(s) (17)

under the following assumptions:

:o - AJ(0, Po) (18)
w(s) - K(O, I) (19)

The vectors x and w are referred to as the state and driving noise terms. The state vari-
able x0 at the root node of the tree provides an initial condition for the recursion. The
driving noise is white in both space and scale, and is uncorrelated with the initial con-
dition. Interpreting each level as a representation of a two-dimensional field, we see that
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(17) describes the evolution of the process from coarse to fine scales. The term A(s)x(sg)
represents interpolation down to the next level, and B(s)w(s) represents higher resolution
detail added as the process evolves from one scale to the next. In the application of interest
here, x(s) = xm(i,j), where s = (m, i,j), and thus A, B E R2x2. Such a model corresponds
in essence to a first-order recursion in scale for optical flow. 4

Measurements of the finest level optical flow field are available from the brightness
constraint. In particular, at a particular point (i, j) at the finest level M, we have the
measurement equation:

y(i,j) = C(i,j)xM(i,j) + v(i,j) (20)

v(i,j) Af(O, R) (21)

where C(i, j) E R1 x 2 and the white Gaussian observation noise is assumed to be independent
of the initial condition ox0 and the driving noise w in (17) - (19). Of course, we can group
the state variables z(s) at the finest level into a vector XM as well as the corresponding
measurements y(s) and spatial gradient terms C(s) in the same way as we did to get (8):

Y = CXM+V (22)

v - A/(O, R) (23)

We now have exactly the framework which led to the statement of (15) as a generalization
of the smoothness constraint formulation (13). In particular, the modeling equations (17)
- (19) indicate that at the finest level of the quadtree, the flow field vectors will be a set
of jointly Gaussian random variables xM Af(0, A), where A is implicitly given by the
parameters in (17) - (19), and a set of noisy measurements given by (22). The Bayes' least
squares estimate of XM given the measurements in (22) and the prior model (17) - (19) is:

XM = arg min (y-CxM)TR-l(y- CXM) + XTA -lXM (24)
XM 

The multiscale modeling framework thus provides an alternative to the smoothness con-
straint formulation of (9) or (13). Furthermore, if we drop the assumption of Gaussianity
for zo0 , w(s), and v(i, j), the optimal estimate XM has the interpretation as the linear least
squares estimate of x.

What remains to be done are (1) to specify a model within this class that has charac-
teristics similar to those of the smoothness constraint prior model, and (2) to demonstrate
why the use of this alternate multiresolution formulation is of any interest. We defer the
latter of these to the next section and focus here on the former. In particular, for our
multiscale model based on (17) - (19) to approximate the smoothness constraint prior we
would like to choose our model parameters so that we have A -1 ; LTL. The observation
that the prior model implied by the operator L in (13) corresponds to a Brownian motion
"fractal prior" suggests one approach to choosing the model parameters. In particular,

4 More generally, higher-order recursions in scale can be captured, just as in standard state space models,
by increasing the order of the model, i.e. the dimension of Z(J). In this case the actual optical flow at node
s would correspond to a subset of the components of z(s), with the remainder of Z(s) devoted to capturing
the memory in the multiscale recursion. In this paper, however, we restrict ourselves to the simple first order
recursion.



the one-dimensional Brownian motion has a 1/f2 generalized spectrum [24]. It has been
demonstrated that such processes are well approximated by multiscale models such as ours
in one dimension if geometrically decreasing powers of noise are added at each level m of

the process [10, 52]. This motivates the choice of B(s) = b4- 2 I in (17), where I is
the 2 x 2 identity matrix, and where b and / are scalar constants. The constant b directly
controls the overall noise power in the process. Also, as discussed in [52], the choice of p
controls the power law dependence of the generalized spectrum of the process at the finest
resolution as well as the fractal dimension of its sample paths. Specifically, this spectrum
has a 1/f' dependence and the choice of / = 2 would correspond to a Brownian-like fractal
process. Thus, our model for the optical flow field can be interpreted as providing individ-
ual penalties on each scale of detail, with penalty weights that vary from scale-to-scale in
essentially the same way as the smoothness constraint's.

To achieve greater flexibility in both the modeling and estimation, we allow I to be
a parameter that can be varied. In addition, recall that in the smoothness constraint
formulation, LTL was not invertible because of the implicit assumption of infinite prior
variance on the DC value of the optical flow field. In our multiscale regularization context,
this would correspond to setting Po equal to infinity in (18). This can be done without
difficulty in the estimation algorithms described next, but we have found that it is generally
sufficient simply to choose P0 to be a large multiple of the identity.

2.3 The Multiscale Regularization Algorithm

We have now specified a class of models which will allow us to approximate the smooth-
ness constraint prior model. The simple multiscale structure of these models leads to very
efficient algorithms for computing the optimal estimate of the state given a set of measure-
ments. One of these algorithms, which we refer to as the Multiscale Regularization (MR)
algorithm, was developed in [11, 9, 10, 12] for one-dimensional signals, and its extension to
images is described here.

The MR algorithm computes the Bayes' least squares estimate of the state vectors (17)
given the measurements (20) in two steps. The first step is an upward or fine-to-coarse
sweep on the quadtree, which propagates the measurement information in parallel, level
by level, from the fine scale nodes up to the root node. The second step is a downward
or coarse-to-fine sweep which propagates the measurement information back down, and
throughout the tree. The result is the least squares estimate of the state x(s) at each node
based on all of the data. The details of the upward and downward sweeps are given below
and are discussed in much greater detail in [10, 12].

To begin, note first that the measurement model (20) can be written in the following
form, allowing for the possibility of spatially varying noise intensity:

y(s) = C(s)X(s) + v(s) (25)
v(s) A(O, R(s)) (26)

In the context of the optical flow estimation problem, measurements are taken only on the
finest level, corresponding to C(s) = 0 unless s is a node at the finest level. However, in the
more general modeling framework discussed in [10, 12], the measurements may be available
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at any node, and the noise variance may vary with node as in (26). We present here this
more general algorithm in which, in addition, x, y and w may be of arbitrary dimension.

The model given by (17) - (19), (25) - (26) is a downward model in the sense that the
recursion starts from the root node and propagates down the quadtree from coarse-to-fine
scales. In order to describe the upward sweep of the MR algorithm, we need a corresponding
upward model. This upward model is equivalent to the downward model in the sense that
the joint second order statistics of the states x(s) and measurements y(s) are the same. The

-upward model is given by5 [9, 10]:

x(s) = F(s)x(s) - A-'(s)B(s)ti(s) (27)

y(s) = C(s)x(s) + v(s) (28)

where:

F(s) = P,yAT(s)P P - (29)

I(s) = w(s) - E[w(s)l(s)] (30)

E[Wi(s)wT(s)] = I -- B(s)TPs-IB(s) (31)

- Q(s) (32)

and where P, = E[x(s)xT(s)] is the variance of the state at node s and evolves according
to the Lyapanov equation:

P. = A(s)P,5 AT(s) + B(s)BT(s) (33)

To proceed further we need to define some new notation.

Y. = {y(s')[s' = s or s' is a descendant of s} (34)

Y + = Y. \{S} (35)
i(s'ls) = E[z(s')IY,] (36)

i(s' s+) = E[x(s')IYJ+] (37)
P(S'[s) = E[(x(s') - i(s'Is))(z(s') - i(s'ls))T] (38)

P(s'ls+) = E[(x(s')- i(s'js+))(X(s')- _(sIIs+))T] (39)

where the notation Y, \ {s} means the node s is not included in the set Y+. The upward
sweep of the MR algorithm begins with the initialization of E(sls+) and the corresponding
error covariance P(sls+) at the finest level, i.e. for s of the form (M,i, j) where M is the
finest scale. The initial conditions at this scale reflect the prior statistics of z(s) at scale M,
as we have not yet incorporated data. Thus, for every s at this finest scale we set i(sls+)
to zero (which is the prior mean of z(s)) and similarly set P(sls+) to the corresponding
covariance, namely the solution of the Lyapanov equation (33) at the finest level. The
upward sweep of the MR algorithm then proceeds recursively. Specifically, suppose that we

SWe use E[z] to denote the expected value of the random variable z and E[zly] to denote the expected
value of z given y.
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have i(sls+) and P(sls+) at a given node s. Then this estimate is updated to incorporate
the measurement y(s) (if there is a measurement at this node) according to the following:

i(sIs) = i(sjs+)+ K(s)[y(s) - C(s)i(sjs+)] (40)

P(sls) = [I - K(s)C(s)]P(sls+) (41)

K(s) = P(sls+)CT(s)V-1(s) (42)
V(s) = C(s)P(sls+)CT(s) + R(s) (43)

Denote the offspring of z(s) as x(sca), i = 1, .*, q. For the quadtree model, of course, q = 4,
but there is no increase in complexity here if we allow the possibility that there are more
or fewer offspring for each node. The updated estimates at the offspring nodes are then
predicted back up to the next level:

E(slsai) = F(sai)i(sajlsai) (44)
P(slsoai) = F(sai)P(sailsai)FT (sai) + Q(sal) (45)

Q(sai) = A-l(sai)B(sai)Q(sai)BT(sai)(A-1 (sai))T (46)

The predicted estimates from the q offspring are then merged:

i(sls+) = P(sls+) E P - l (s lsa l)(s lsai) (47)
i=1

P(sls+) = [(1 q)P, ' + p-1(slsai)]- (48)
i=l

The upward sweep given by the update, predict and merge equations proceeds recursively
up the quadtree. At the top of the tree (corresponding to the root node s = 0), one obtains
the smoothed estimate of the root node, that is, an estimate based on all of the data. The
estimate and its error covariance are given by:

is(0) = 0(OIO) (49)
PS(O) = P(OO) (50)

where the superscript s denotes the fact that these are smoothed estimates. The smoothed
estimate and associated error covariance at the root node provide initialization for the
downward sweep, which is given by the following coarse-to-fine recursion:

i'(=) = i(sIS) + J(s)[Vs(sj) _ i(sjIs)] (51)
P(s) = P(SIS) + J(S)[PS(SA) - P(SjlS)]JT (8) (52)

J(s) = P(sls)FT(S)P-l(SIls) (53)

The estimates VS(s) at the finest level of the quadtree provide the solution to (24). The form
of the algorithm we have specified here, which generalizes standard Kalman filtering and
smoothing algorithms to the multiscale context, obviously assumes that the state covariance
PJ is well defined and finite, and it is not difficult to see from (33) that this will be the case
if PO is finite. There is, however, an alternate form of this algorithm presented in [10, 12]
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which generalizes so-called information form algorithms for standard state space models
and which propagates inverses of covariances. In this alternate form it is straightforward
to accommodate the setting of Po to infinity (which corresponds to Po 1 = 0), and we refer
the reader to [10, 12] for details. As mentioned previously, we have found that setting Po
to a large but finite multiple of the identity, and then using (40) - (48), (51) - (53), yields
excellent results.

3 Experimental Results

3.1 Specification of the Multiscale Model

To specify the MR algorithm completely we use the following parameterization of the model
(17) - (19), (25) - (26):

(s) = aX(s5) + (b4 2 )w(s) (54)

y(s) = C(s)X(s) + (S) (55)
w(s) - A/ (O, I) (56)

v(s) A(O, R(s)) (57)

o A(0,pI) (58)

where I is a 2 x 2 identity matrix. From (54) and (56) we see that the two components
of the optical flow field are modeled as independent sets of random variables, and that
each has a fractal-like characteristic due to the form of the driving noise gain B(s). The
independence of the flow field components is motivated by the fact that the smoothness
constraint formulation implicitly makes this assumption as well [34, 35]. We view / and b
as free model parameters which can be varied to control the degree and type of regularization
in much the same way that the parameter R in the smoothness constraint formulation (4) is
used to tradeoff between the data dependent and regularization terms in the optimization
functional. However, we have found in our experiments that the choice b = / = 1 typically
works well, and we have used these values in all of the experiments below.

As discussed previously, the measurements y(s) and measurement matrix C(s) come
directly from the image temporal and spatial gradients, which are available at the finest
level of the quadtree. In the experiments described below, we smoothed the images with
the 7 x 7 filter given by:

[0.25 0.25 ] [ 0.25 0.25 0.25 0.25 (59)
0.25 0.25 J 0.25 0.25 ** 0.25 0.25 

(where * denotes the 2-D convolution) and then calculated spatial gradients with a central
difference approximation. The temporal gradient was computed as the difference of two
smoothed images. Temporal smoothing (in addition to the spatial smoothing) has been
shown to reduce estimation errors in several methods, including the smoothness constraint
approach [3] and thus would be of value for the multiscale regularization method as well. For
our purposes here, however, namely to demonstrate comparative computational efficiency
relative to the smoothness constraint formulation and to illustrate the use and value of
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both multiresolution estimates and covariance information, the simple two frame difference
is sufficient;

The additive noise variance is given by R(s). We have found empirically that the choice
R(s) = max(IIC(s)ll2,10) worked well in all cases. This choice effectively penalizes large
spatial gradients, which are points at which the brightness constraint equation is likely to
have large errors [38] (due, for example, to noise, aliasing or occlusion). The parameter p
in the prior covariance (58) of the MR model root node was set to p = 100.

We compare our approach computationally and visually to the Gauss-Seidel (GS) and
successive over-relaxation (SOR) algorithms, which can be used to compute the solution of
the smoothness constraint formulation given by (9) or (13)(see, for example, [19, 21, 32, 34,
35, 40]. In our experiments, we have found that SOR typically provides a factor of 10 to 100
performance improvement of Gauss-Seidel, and hence is computationally equal to or better
than multigrid approaches [45, 14]. The parameter R in the Horn and Schunck formulation
(4) was chosen in to yield good visual and quantitative results. In particular, R was set to
100 in the first example below, and 2500 in the subsequent examples. Several possibilities
for choosing this parameter based on the image data have been proposed in the literature
[5, 28], although there is no universally agreed upon method; our choice is comparable to
those in [7, 3, 16].

Straightforward analysis shows that the GS and SOR algorithms require 14 and 18 float-
ing point operations (flops) per pixel per iteration respectively. The number of iterations
required for convergence of the iterative algorithms grows with image size [21]. For reason-
able size images (say, 512 x 512), SOR may require on the order of hundreds of iterations
to converge, so that the total computation per pixel can be on the order of 10 3 to 104 flops.
On the other hand, the MR algorithm requires 76 flops per pixel (see Appendix B). Note
further that the MR algorithm is not iterative. Thus, as we will now see, the computational
gain associated with the MR algorithm can be on the order of one to two orders of mag-
nitude for problems of this size and substantially greater for problems defined over much
larger spatial regions.

3.2 Rotation Sequence

We begin with a comparatively small synthetic example of rotational motion in order to
illustrate the basic features of our approach. Specifically, this first example is a synthetic
sequence of Gaussian images modulated by a spatial sinewave with the first frame brightness
pattern given by:

E(z1 ,z 2,tl) = sin(atan(zi - 23, z2 - 28)) exp(-2z'Z-lz) (60)

[z - 23] (61)
z2 - 28

Z= [1000 0] (62)
0 500

where atan(zl,z 2) is a 27r arctangent (atan(0,1) = 0, atan(1,0) = -r), h = 1 and M = 6
(i.e. the image lattice is 64 x 64, cf. the discussion about discretization at the beginning of
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Section 2.1). The second frame is equal to the first, rotated by 1 degree about pixel (23,28).
The first frame and actual optical flow are illustrated in Figure 4. The rms value of this
flow field is 0.49.

The first point we wish to examine is the visual appearance of the estimates produced.
Figure 5 shows four different estimates of the optical flow. The first of these (a) is the SC
estimate produced using the original smoothness constraint formulation and performing 50
iterations of the SOR algorithm 6; (b) is the finest scale of the MR estimates produced by
the MR algorithm with the parameters set as b = p = 1; (c), which we refer to as MR-PF, is
a post-filtered version of the MR estimates in (b) to be described; and (d), which we refer to
as MR-SOR, is the estimate produced by performing 5 iterations of the SOR algorithm used
in (a) but using the MR estimates in (b) as an initial condition. All four estimates clearly
display the rotational nature of the true flow with quality that is roughly comparable. In
particular, while rms error is not necessarily an appropriate measure of absolute estimate
quality, it is of value in assessing the relative quality of these four methods, and for this
example the rms errors for the estimates in Figure 5 are:

(SC) 0.24
(MR) 0.22
(MR-PF) 0.22
(MR-SOR) 0.20

which indicates that the MR method and its variations in (c) and (d) yield estimates of
quantitative accuracy comparable to the SC-based method.

Despite this fact, the MR estimate in (b) has visual characteristics that may be somewhat
distracting to the viewer: namely, the apparent blockiness of the estimates. As the rms
errors indicate, and as we argue further in a moment, this visual artifact is not quantitatively
significant. However, its nature and the reason for its presence motivate the computationally
simple post-processing procedures illustrated in parts (c) and (d) of Figure 5. The first of
these is motivated by the interpretation of our MR algorithm in terms of wavelet transforms
and multiresolution analysis [6, 23]. Specifically, a natural interpretation of our model
is that of providing multiresolution approximations of an image or random field; i.e. the
values of a quadtree process at a given scale can be thought of as the so-called "scaling
coefficients" [23] of particular basis functions used in the approximation at that scale. In
that sense, the flow field estimate in (b) corresponds to the Haar approximation in which
the basis functions are piecewise constant over squares of size corresponding to the scale
being represented. The blockiness in (b) is thus due to the "staircase" nature of the Haar
approximation. On the other hand, there are far smoother choices for basis functions and
multiresolution approximations, each of which corresponds in essence to convolving the 2-D
array of quadtree estimates at the finest scale with particular FIR filters. The MR-PF
estimates in Figure 5(c) corresponds to using the FIR filter given by (59) together with the
MR estimate in (b).

The estimate in (d) is motivated by the observation that the visual artifacts in the
estimate (b) are local and high-frequency in nature. Indeed, it is precisely these high
frequency artifacts that are quickly and easily removed by SOR or GS algorithms computing

6In this-and subsequent examples, the iterative algorithms computing the solution of (4) were initialized
with zero.
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the smoothness constraint solution. This is clearly demonstrated in the MR-SOR estimates
in (d) in which only 5 SOR iterations have been used to post-process (b).

Let us now turn to the question of computational complexity. Figure 6 illustrates the
rms error in the flow estimates as a function of iteration for the SOR and GS algorithms.
The rms error in the MR flow estimate of Figure 5(b) as well as those of MR-PF and
MR-SOR in (c) and (d) are also indicated in the figure. The procedures used to generate
the MR, MR-PF and MR-SOR estimates are not iterative and thus the associated rms
errors are shown simply as straight lines. Note first that, as expected, the SOR algorithm
is significantly faster than the GS algorithm (they will converge to the same result since
they are solving the same partial differential equation). However, the SOR algorithm itself
has a substantial computational burden. For example, while the SOR algorithm has not
converged after 50 iterations, the estimates in Figure 5(a) are not bad, but even at this
point and even for this small example, SOR requires far more computation than the MR
based estimate. In particular, as we indicated previously, the computational load of the MR
algorithm equals 4.2 SOR iterations, while producing the MR-PF and MR-SOR estimates
requires computation equivalent to 5.6 and 9.2 SOR iterations, respectively 7. Thus, for
this small example, the algorithms corresponding to Figures 5(b) - (d) offer computational
savings over SOR of factors of 50/4.2 = 11.9, 50/5.6 = 8.9 and 50/9.2 = 5.4 respectively.
As an aside, note that these results also suggest that if one insists upon solving the partial
differential equation corresponding to the SC formulation, then using the MR estimate as
an initial condition is a computationally attractive way in which to do this. Specifically,
Figure 7 illustrates the rms difference between the smoothness constraint solutions and the
intermediate values of the GS, SOR and MR-initialized SOR estimates as a function of
iteration. The error plot for the MR-initialized SOR algorithm begins at 4.2 iterations to
take into account the initial computation associated with the MR algorithm. The figure
demonstrates that the MR-initialized SOR approach provides a substantial reduction in
computational burden even for this small size problem. This in fact suggests that MR algo-
rithms may be of more general use in the efficient solution of partial differential equations
in other applications as well.

As we have emphasized, the MR algorithm has other attractive features beyond its
computational efficiency, including the fact that it directly provides estimates at multiple
resolutions. Figure 8 depicts these estimates at scales m = 1, 2 and 3 (where the finest
scale m = 6 estimates are in Figure 5(b)). These coarser estimates also obviously capture
the rotational motion and may, in some cases, be preferable representations of perceived
motion because of their comparative parsimony compared to Figure 5(b). Indeed in many
applications one is interested in fairly aggregate measures of motion which these estimates
provide directly. Furthermore, as we describe next, the MR algorithm in fact directly
provides a precise way in which to determine the optimal resolution for characterizing
optical flow in different regions of the image, the basis of which is the multiscale covariance
information computed by the MR algorithm.

7With respect to the MR-PF estimates (c), straightforward convolution of the two components of the
optical flow in (b) with a separable 7 x 7 filter requires 26 flops per pixel (equivalent to 1.4 SOR iterations)
and could, of course, be reduced further with FFT algorithms.

8The smoothness constraint solution is approximated as the SOR algorithm optical flow estimates after
500 iterations.
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Figure 9 illustrates the trace of the 2 x 2 estimation error covariance in (52) at each point
in the quadtree at different scales. Bright areas correspond to regions of lower covariance
(higher confidence). Note that around the border of the image, where the Gaussian has
tapered off and the gradients are relatively small, the error covariance is relatively large, as
compared to the region around the point of rotation. One use of this covariance information
is to provide information that may be useful to higher level vision algorithms which use the
optical flow field in conjunction with information from other sources, and need to combine
this information in a rational way. Moreover, as we have suggested, this information can
also be used in the context of addressing the problem of resolution vs. accuracy in the
estimates. The idea is that we would expect to estimate rather well the coarse resolution
features in the optical flow field and that finer resolution features could be estimated with
decreasing fidelity depending on the quality and characteristics of the available data (e.g.
on the presence or absence of fine scale image intensity fluctuations). Thus, what we would
like is a rational procedure for determining the estimate resolution supported by the data.

There are several ways in which the flow estimate covariance information can be used
to approach this problem. One possibility, which has a precise statistical interpretation,
is as follows. To each node at the finest scale, we can trace a path up to the root node,
where nodes in the path correspond to the parent, grandparent, great-grandparent, etc. of
the node at the finest level. The optical flow estimates at each of these resolutions can be
thought of as successively coarser representations of the optical flow estimate at the finest
scale. Associated with that same path is a sequence of smoothing error covariance matrices
computed via (52). At each pixel location we can choose the optimal resolution at which to
represent the field by choosing the scale at which this error covariance is minimum. In Figure
10 the scale of the minimum of the trace of the smoothed error covariance along this path is
plotted for each lattice site. Note that in regions near the border, where the Gaussian has
tapered off and not much gradient information is available, a lower resolution representation
for the flow field is given. On the other hand, near the point of rotation, where there is
gradient information, the resolution is at a higher (i.e. finer) level. It is interesting to note
that the areas in which the finest level MR estimate of Figure 5(b) has the most visually
obvious blocky behavior are also areas in which one has no business estimating optical flow
at such a fine scale to begin with. Said another way, one interpretation of Figure 10 is that
any estimate of optical flow at such a fine scale in such regions is a visual artifact!

Finally, let us briefly comment on the choice of the parameters b and t in the MR
algorithm. In particular, we have found through experimentation that the rms error in the
estimates and their qualitative appearance is relatively insensitive to b and /. Figure 11
depicts the rms errors in the MR flow estimates for the rotation example as a function of b
and I, displaying characteristically flat behavior over a very large range of values.

3.3 Yosemite Sequence

The second example is a synthetic image sequence which simulates the view from a plane
flying through the Yosemite Valley 9. The first image in the sequence and the corresponding

9This sequence was synthesized by Lyn Quam of SRI International. The original sequence is 252 x 312. As
discussed in Appendix A, it is straightforward to adapt our approach to trees other than regular quadtrees,
i.e. to trees with varying numbers of branches. However, for simplicity, in these experiments we have coded
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optical flow are shown in Figure 12. The rms value of the flow field is 1.86.
Figure 13 illustrates four estimates of the optical flow corresponding to (a) the SC

formulation after 100 iterations of the SOR algorithm, (b) the finest scale of estimates
produced by the MR algorithm with parameters b = 1z = 1, (c) the MR-PF estimates
derived as described previously and (d) the MR-SOR estimates produced by post-processing
the MR estimates with 10 iterations of SOR. The estimates are qualitatively similar, each
indicating the fly-through nature of the sequence. The estimates are also quantitatively
similar as indicated by the rms errors for the four estimates:

(SC) 0.76
(MR) 0.79
(MR-PF) 0.79
(MR-SOR) 0.78

The rms errors as a function of iteration are shown in Figure 14. Note that the SC estimates
(a) have actually not yet converged after 100 iterations and that when they do, the rms
error of the SC estimate is slightly higher than those for the various approaches based on
the MR algorithm.

Again, there is some blockiness in the MR optical flow estimates, and, as seen in Figures
13(c) and (d), some of this effect can be eliminated by post-processing the estimates with
an FIR filter as in the previous example. There is still some blockiness apparent, but
comparison with (a) shows that this is also apparent in the SC solution. Hence, the residual
blockiness in the smoothed estimates is not due to the quadtree structure, but rather to the
nature of the image sequence data itself.

An examination of computational complexity again shows the gains achievable using
MR-based methods. The SC flow estimates shown in Figure 13(a) required 100 SOR it-
erations in this example, representing a factor of 100/4.2 = 23.8 more computation than
the MR estimates. Likewise, the MR-PF and MR-SOR (c) and (d) represent factors of
100/7.7 = 13 and 100/14.2 = 7.0 computational improvement. In general, the number of
iterations required for convergence of the SOR algorithm for the SC formulation depends on
several things, including the parameter R, the image gradient characteristics and the image
size. Analysis in [21] shows that the SOR algorithm requires on the order of N iterations
for an N x N image. Thus, we expect substantially more computational savings as the
image size increases.

Furthermore, as before one would expect to be able to quickly obtain the SC solution by
using the MR solution as an initial condition. Figure 15 illustrates how the GS, SOR and
MR-initialized SOR algorithms converge to the smoothness constraint solution. Note that
visually, there is almost no difference between the MR-initialized SOR estimates Figure
13(d) and the SC estimates shown in Figure 13(a). Indeed, the rms difference between
the MR estimates and the smoothness constraint solution is 0.178, while the rms difference
between the estimates in Figure 13(a) and the smoothness constraint solution is 0.181. More
generally, Figure 15 shows that for any given number of iterations, the MR-initialized SOR
estimates are substantially closer to the final solution than the GS or SOR estimates.

our algorithms for quadtrees. For this example, then, we extracted a 252 x 256 portion of the sequence
(the left side) so that processing could be done on a quadtree with 256 x 256 lattice sites at the finest level.
The measurement matrix C(s) defined at the unneeded four rows of the quadtree structure was set to zero,
reflecting the fact that we have no information about the (non-existent) optical flow field in that region.
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Estimates of the optical flow at scales m = 1, 2,3 computed via the MR algorithm are
shown in Figure 16 and multiscale error covariance images, again, corresponding to the
traces of the smoothing error covariance matrices at individual lattice sites, are shown in
Figure 17. The coarser versions of the flow are intuitively reasonable given the estimates at
the finest level and, as expected, the covariance images are relatively dark (high covariance)
in the top portion of the image where there is no gradient information available.

Figure 18 depicts a map of the optimum resolution for flow estimation at each pixel
location computed as the minimum of the trace of the smoothed error covariance matrix
along paths from nodes at the finest level to the root node. We see, not surprisingly, that
the level of resolution chosen for the region with no intensity information is quite low. In
addition, the resolution along the face of the mountain in the foreground is slightly reduced
due to the relative lack of gradient information in the direction of the striations.

Finally, Figure 19 illustrates the variations in the rms error in the optical flow estimates
to variations in the parameters b and /z. The figure shows that the estimates are relatively
insensitive to the parameter b, and are also insensitive to I for values ranging from slightly
less than 1 upward. The degradation in performance as I decreases toward zero is not
uncommon or unexpected. In particular, as discussed in [11, 9, 10, 12, 52] decreasing I leads
to significant decreases in spatial correlation in the model and to far noisier sample paths.
Thus, the estimates for small values of p correspond to imposing virtually no smoothness
constraint, resulting in estimated fields with noise-like characteristics. On the other hand,
choosing any value of it > 1 yields results of comparable quality to each other and to the
SC solution.

3.4 Moving Vehicle Sequence

The third example is based on a reall ° image sequence which depicts the view from a car
driving down a road. The first image in the sequence is illustrated in Figure 20 and Figure
21 illustrates four estimates of the optical flow corresponding to (a) the SC formulation
and 200 iterations of the SOR algorithm, (b) the finest scale of estimates produced by the
MR algorithm with parameters b = i = 1, (c) the MR-PF estimate and (d) the MR-SOR
estimate produced by post-processing the MR estimates (b) with 30 iterations of SOR.

Since the true optical flow is not available (as it was in the previous simulated examples),
an alternate performance metric is needed. In particular, we will use a reconstruction error
metric, which is often used in contexts in which one is interested in using optical flow for
motion-compensated coding. This metric measures the mean square difference between the
current image in a sequence and an estimate of it based on the computed optical flow,
the previous image, and a bilinear interpolation scheme [29]. The optical flow used is that
associated with the current image. Essentially, one estimates the brightness at any given
point by using the optical flow to project that point back to the previous image. In general,
that point will not be on the image plane, and the bilinear interpolation is required.

Figure 22 provides a comparison of reconstruction error performance for the approaches
as a function of iteration (where once again the results for the non-iterative MR, MR-PF
and MR-SOR approaches are depicted as horizontal lines). In this example, the SC solution
was slightly better than the MR and MR-PF methods, achieving a slightly greater rms error

°The sequence is courtesy of Saab-Scania.
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reduction from the value obtained without motion compensation (i.e. straightforward frame
difference given by the zero-iteration starting point for SOR). However, this slight increase
in performance is achieved at the cost of significantly greater computation. In particular,
the computational gains are 200/4.2 = 47.6, 200/6.98 = 28.7 for the MR-PF and MR-
SOR approaches, respectively. Furthermore, as is also illustrated in Figure 22, the modest
performance gain of SC over MR can recouped with far less computation using the MR-SOR
procedure which has a factor of 200/34.2 = 5.8 computational speedup. Indeed, as Figure
23 shows, the MR-SOR solution of Figure 21(d) is closer to the SC solution than the result
in Figure 21(a), which required 200 iterations of SOR to obtain.

As in the previous examples, multiresolution flow estimates and error covariance in-
formation is available at all levels of the quadtree, and an image of the error covariance
information at the finest level lattice points is shown in Figure 24(a). Note in this case that
the error covariance is relatively high (dark regions in the image) along the road where the
image gradient is relatively low. Also, Figure 24(b) depicts the optimal resolution at which
to recover the optical flow field computed using this error covariance information.

Finally, the sensitivity of the optical flow estimates in this example to parameter choice
is shown in Figure 25. The figure shows that the reconstruction error is stable for / > 1
as in the Yosemite example, and is insensitive to variations in b over a significant range of
values.

3.5 Chopper Sequence

The first frame of the real "chopper" sequence" is shown in Figure 26. Figure 27 illustrates
four estimates of the optical flow corresponding to (a) the SC formulation and 200 iterations
of the SOR algorithm, (b) the finest scale of estimates produced by the MR algorithm with
parameters b = I = 1, (c) the MR-PF estimate and (d) the MR-SOR estimate produced
by post-processing the MR estimates (b) with 80 iterations of SOR.

As in the previous example, rms reconstruction error is the metric we use for comparison
since the true flow is not known. Figure 28 provides a comparison of the reconstruction
error performance of the approaches as a function of iteration. Note that in this example
all four methods yield essentially identical rms performance, but once again the MR-based
algorithms have significant computational advantage. Computational gains for the MR,
MR-PF, and MR-SOR approaches are 200/4.2 = 47.6,200/6.53 = 30.6 and 200/84.2 = 2.38.

Also, as in the previous examples, the performance of the MR algorithm is stable over
a wide range of values of the parameters b and A, as is illustrated in Figure 29. In addition,
multiresolution estimates and error covariance information are, of course, available. For the
sake of brevity, we illustrate only map of the optimum resolution information constructed
from the multiscale error covariance information in Figure 30. Note in this case that the
resolution level is relatively uniform over the image and is at a scale far coarser than the
finest scale level (level 10). That is, the image spatial intensity variations in this image
sequence are not particularly strong so that fine resolution flow estimation can only be
achieved with high levels of uncertainty.

"lThe 480 x 480 image lattice was centered on the finest level of a 10 level (512 x 512 at the finest scale)
quadtree. Again, as discussed in Appendix A, adapting our approach to deal directly with arbitrary size
lattices is straightforward.
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On the other hand, there is an important fine-level velocity feature of some significance in
this image sequence, namely a helicopter, located near the center of the image frame, which
is moving relative to the background. While the local image contrast in the image is not
sufficiently strong to allow very accurate estimation of what is in essence a discontinuity in
the optical flow field, it is reasonable to expect that there would be some useful, quantitative
information in the image sequence that could be used to detect this motion discontinuity
and obtain rough (i.e. coarse level) motion estimates. While it is beyond the scope of this
paper to develop such a scheme in detail, we can provide an indication of how the MR
method provides the essential elements for an effective solution.

The starting point for this is the well-known criterion of global smoothness constraint
type formulations such as ours, namely that they tend to obscure localized motions such as
that due to the helicopter in Figure 26. This is not surprising since SC-type formulations
yield what are in essence low-pass spatial filters. However, there is an extremely critical
point that is well-known in Kalman filtering theory and in that relating to the use of such
filters for the detection of abrupt changes in time series or dynamic systems. Specifically,
such filters can also be used to implement high-pass filters which produce outputs that not
only enhance the discontinuities to be detected but also make optimal detection possible.
Specifically, the residuals or innovations in a Kalman filter, that is, the difference between
the observations and predicted observations based on model and data, represent a statis-
tically whitened version of the observations resulting from what is in essence a high-pass
filter. As discussed in many papers and books ([4, 51], for example), discontinuities in
the data being processed then lead to distinctive signatures which can be looked for using
optimal detection methods.

In a similar fashion we can compute the residuals of the MR estimates:

v(s) = y(s) - C(s)V(s) (63)

for the chopper sequence, an image of which is illustrated in Figure 31. Note that in
contrast to the original image in Figure 26, this residual image does not display any coherent
structure other than the helicopter, making detection of the helicopter a far easier task in
this domain. Furthermore, high pass filtering has in fact enhanced the chopper signature,
as the helicopter rotors, nearly imperceptible in Figure 26 are clearly in evidence in Figure
31 because of the motion discontinuity. As we have indicated, statistically optimal methods
for using residuals analogous to these have been developed for time series, and, as discussed
in [4, 51], such methods require error covariance information from the estimator in order to
specify the optimal detection procedure. Since the MR algorithm also produces such error
covariance information it is possible to develop optimal detection methods in this imaging
context as well. Such a method is currently under development.

4 Conclusions

We have presented a new approach to the regularization of ill-posed inverse problems, and
have demonstrated its potential through its application to the problem of computing op-
tical flow. This approach starts from the "fractal prior" interpretation of the smoothness
constraint introduced by Horn and Schunck to motivate regularization based on a recently
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introduced class of multiscale stochastic models. This new formulation leads to an ex-
tremely efficient, non-iterative, scale-recursive solution, yielding substantial savings over
the iterative algorithms required for the smoothness constraint solution. In particular for
256 x 256 or 512 x 512 images, our algorithm leads to computational savings on the order of
a factor of 10 to 100. Indeed, since the iterative approaches associated with the smoothness
constraint solution typically take longer to converge as the image grows, whereas the per
pixel computation associated with the MR algorithm is independent of image size, even
larger savings can be realized for larger image domains.

Our approach has a number of potential advantages in addition to the reduction in
computational cost. First, multiresolution estimates of the flow field are available and,
although we have not taken advantage of it in this paper, the MR algorithm also allows for
multiresolution measurements of the optical flow, i.e. measurements as in (25) but for triples
s = (m, i, j) at several scales. Second, error covariance information is available, allowing
one to assess the quality of the estimated optical flow, and we have used this information
to suggest one means of addressing the resolution vs. accuracy tradeoff inherent in ill-
posed problems by specifying the optimal resolution for flow reconstruction at each point
in the image. Finally, the MR algorithm provides an excellent initialization for algorithms
computing a solution based on a smoothness constraint formulation.

While we have not pursued it here, the multiresolution philosophy introduced here may
offer a promising approach to motion-compensated image sequence coding. In particular,
although we used the coding metric of reconstruction error as the basis for the comparison
of the SC and MR approaches, the methods presented here would not be the method of
choice in a coding context. In particular, motion-compensated coding algorithms designed
specifically to minimize this criterion [2, 29, 50] will generally outperform the SC and MR
approaches (which are not designed for that express purpose). However, the computation-
ally efficient MR algorithm can be used as an initial preconditioning step for such coding
algorithms. In addition, one can also imagine a second way in which MR ideas could be
used in this context. In particular, one of the problems with the SC and MR based meth-
ods is the differential form of the brightness constraint which, given the discrete nature of
spatial and temporal sampling, is only valid for relatively small interframe displacements.
In contrast, methods such as [2, 29, 50] use a direct displaced frame matching metric, which
is nothing but the integrated version of the brightness constraint. A common approach to
dealing with larger displacements with the differential brightness constraint is to spatially
blur the image sequences, i.e. to consider lower resolution versions of the image to estimate
larger displacements [14, 18]. What this suggests is an MR approach in which we not only
have a multiresolution model for optical flow but also multiresolution measurements. The
development of such an approach remains for the future.

Also, the framework in which our method is developed suggests a method for directly
detecting unmodeled discontinuities in the optical flow field in a rational and statistically
optimal way. In particular, the measurement residual field represents a high-pass version of
the observed data which accentuates the effects of motion discontinuities and removes other
features corresponding to smoothly varying parts of the flow field. For time series, such
residuals provide the basis for extremely effective methods for the detection of discontinu-
ities, and the development of corresponding methods in our multiscale, image processing
framework represents a promising direction for the future. Indeed, this suggests a number
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of additional directions for extending time-series methods to the imaging context such as
adaptive estimation of the multiscale parameters b and p in order to adaptively adjust the
level and nature of the regularization imposed on different image regions. While such adap-
tive methods are certainly not unknown in image processing, our scale-recursive framework
not only leads to an extremely efficient framework for the realization and provides the error
covariance information needed for the development of statistically optimal methods but the
use of a pyramidal framework provides enormous flexibility in adaptation. For example, in
the time series case, the use of a very large value for the noise parameter corresponding to b
at some point in time essentially decouples the processing before and after that point (since
no smoothness at that point is expected). In our framework a large value for b at some node
decouples the processing within the region, corresponding to the subtree of pixels beneath
that node, from processing outside that region, exactly what would be needed to deal with
a region corresponding to motion discontinuity relative to the background.

Finally, in this paper we have focused on a particular image processing problem, the
computation of optical flow. However, we believe that the multiscale stochastic modeling
approach can be more generally useful. In particular, it may provide a computationally
attractive alternative to standard approaches to the broad class of estimation problems in
which the underlying field to be estimated is modeled as a Gaussian Markov random field
or as the solution of noise driven partial differential equations, or in which a "smoothness
constraint" type regularization is employed. Viewing the multiscale models as an alternative
underlying model should lead to significant computational savings for such problems and
should also have the other benefits we have described.

Acknowledgment: The authors gratefully acknowledge the contributions of Dr. Albert
Benveniste who, among other things, first suggested that the problem of computing optical
flow would be well suited to this approach. We are also pleased to acknowledge the reviewers
for their comments that have helped to enhance the development and presentation of these
results.
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A Non-homogeneous Tree Structures

We made the assumption at the beginning of Section 2 that the image lattice is square,
and that the number of rows is equal to a power of two. The reason we have done this is
because of the fact that the multiscale model described in this paper is defined on a quadtree
structure. There are at least two ways to relax the assumption. First, we could simply zero
pad C(s) on the image lattice to make it fit the quadtree structure. This corresponds
assuming no information is available about the (non-existent) optical flow in that region.
A second, slightly more elegant approach, would be to change the modeling structure to
accommodate the lattice. In particular, we would like to have a structure which gives us the
proper number of nodes on the finest level. The quadtree structure is homogeneous in the
sense that each parent has four offspring; what we are proposing are non-homogeneous tree
structures in which different parents may have different numbers of offspring. For example,
suppose one had a 6 x 9 lattice. Figure 32 illustrates a sequence of grids that one might
use to model a random field defined this lattice. In the first level, the root node has six
offspring, two in the row direction and three in the column direction. At the second level,
each node has nine offspring, three in the row direction and three in the column direction.
Thus, at the finest level there is a 6 x 9 lattice. This example illustrates only one simple
suggestion. More complicated tree structures could be derived, and certainly the idea could
be combined with zero padding.

B MR Algorithm Complexity Analysis

In this section we analyze the computational complexity of the MR algorithm. The anal-
ysis applies to the specific model given by (54) - (58). The model is repeated here for
convenience:

x2(s) = 2(sj) + (b4 2 )w(s) (64)

y(s) = C(s)X(s) + v(s) (65)
w(s) - A/(O, I) (66)

v(s) -AJ(0, R(s)) (67)

xO - A(O,pI) (68)

where R(s) = max(IIC(s)][2 ,10). The analysis below takes into account all floating point
adds, multiplies and divides.

Consider first the update step given by (40) - (43). P(sls+) is initialized with pI. Com-
putation of V-1(s) requires 6 floating point operations (the inverse requires 1 divide since
V(s) is a scalar and the comparison required to compute R(s) is not counted). Computation
of K(s) requires 3 flops. Computation of P(sis) requires 7 flops (Perform the C(s)P(sls+)
first, and use the fact that P(sjs) must be symmetric). Initialize i(sjs+) with zero. Com-
putation of i(sIs) then requires 2 flops. The update step is required only at the finest level,
since this is the only place we have data for in the optical flow problem. Thus, the total
computation associated with this step is 18 x 41 flops (1 is defined to be the number of levels
in the quadtree. There are 41 points at the finest level.)
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Next, consider the prediction step, (44) - (46). Computation of Q(sai) is negligible
because this parameter varies only as a function of scale (level). Computation of P(slsai)
requires 5 flops (note that F(s) and Q(sai) are diagonal multiples of the identity). Compu-
tation of the predicted estimate i(slsai) requires 2 flops. These computations must be done
at levels 1 through 1. Thus, the total computation associated with this step is approximately
7 x 4/3 x 41 flops.

Next, consider the merge step, (47) - (48). Computation of P(sls+) requires 44 flops
(there are five 2 x 2 inverses requiring 6 flops apiece, and the computation of (1- q)P,-l
is negligible since it only varies with scale. The inverses require only 6 flops because the
matrices involved are 2 x 2 and symmetric.) Computation of i(sls+) requires 36 flops. The
merge step must be done at levels 0 through I - 1. Thus, the total computation associated
with this step is 80 x 1/3 x 41 flops.

Finally, consider the steps in the downward sweep, (51) - (53). Computation of J(s)
requires 12 flops (the matrix P(syls) has already been inverted in (48), F(s) is a multiple
of the identity and J(s) is symmetric.) Computation of PS(s) is not required, unless one
is explicitly interested in the error covariance of the smoothed estimate. Computation of
fs(s) requires 10 flops. The smoothing step must be done at levels 1 through 1. Thus, the
total computation associated with this step is 22 x 4 l flops.

We can now add up all of the computations associated with the MR algorithm. There
are 41 pixels in the problem domain, and thus the algorithm requires 18 + 28/3 + 80/3 +
22 = 76 flops per pixel. We note that this is a lower bound on the number of flops per
pixel in any implementation of the algorithm and that the implementation with the lowest
number of flops per pixel may not be the best. The reason is simply that there may not be
enough memory available to keep all intermediate calculations around (such as the inverses
computed in (48) and reused in (53)). We compute the complexity of the GS and SOR
algorithms in the same way (i.e. all intermediate results are assumed to be available), and
thus the computational comparison we make between these algorithms is based on optimal
(in terms of the number of flops) implementations. Suboptimal implementation of the MR
algorithm will lower its computational advantage, but any reasonable implementation (for
instance one which saves just i(sfs), P(sls) and the measurement data) will still provide a
significant savings over the SOR and GS algorithms.
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Figure 1: Depiction of three fields which are equally favored by the smoothnless constraint,
illustrating how this p)ella.lty provides a. fra.ctal prior model for the ol)tical flow.
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Figure 6: Rnis Error ('Conmparison of IMR. MIR-PF, MR-SOR. SOR and Gauss-Seidel (GS)
algorithlinl flow estimates for thle rotation seqluence.
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Figure 7: Rms dlifference colllparisoll illustrates how the MR-initialized SOR, SOR and
CS a.lgoritlhns converge to the smoothnless constraint solution for the Rotation sequence.
The plots show the rms difference between the smoothness constraint solitlion aml(I the
estimates as a function of iteration. All will eventually converge. buI)llt the MlR-initialized
SOR a.lgoritlhn converges much faster than SOR or CGS.
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Figure 10: alap showing the optila.l resolution for optical flow reconstruction for the rota.-
tion image sequence optical flow. At points near the focus of rotation the flow is reprersented
at fine sca.les, while a.t points near the edge of the ila.ge (where little gradient inlfornla.tion
is available) the optical flow is represented at a. coarser level of the qua.dtree.
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Figure 11: Multisca.le Regularization rins error sensitivity to t.he para.llleters b and pt (rota.-
tion sequence).
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Figure 12: (a.) First frame of Yosemite sequence and (b) Yosemite sequence truite optical
flow.
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Figure 13: Yosemite sequence flow estima.tes. (a) Smoothness constraint estimal.es comt-
Iputed using 100 itera.tions of SOR. (1b) Multiscale Regularization ( MR) estimates. (c) Post-
filtered AMR estimates a.nd (d) Estimates produced b)y using I[R estimates as initial cotidition
for SOR a.lgorithm.
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Figure 15: Rlnis Difference Comparison illustrates how the MR-initialized SORI. SOIl and

GS algorithms converge to the simoothness constraint solution (Yosemlite sequence).
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Figure 1 adLevel 2

igure 18: Mla.p depictingt t he optilmafl rfieli esesenting tle opt.ical flo field as
a function of lattice site. Note that the optical flow field is relpresellte(l at a coarser level
in the qcuadtree in regions where there is no gradient information (a.t the top). It is also
represented at a, coarser level along the fa.ce of the mountain, where thllere is little gradient
illformation para.llel to the striations.
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Figure 1.9: lMultiscale Regularization rmls error sensitivity to the )a.rameters b and p
(Yosemite sequence).

Figure 20: First frame of MI.oving veh.icle sequence.
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Fiue_0 Fis frm of Alovn Veil sequence.
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Figure 21: Moving vehicle sequence flow estimates. (a.) Smoothlness constraint, estimates
compu~ted using 300 iterations of S011., (b) Multiscale R]egularization (MR.) estimates. (c)
Post-filtered MR estima.tes and (ci) Estimates p~roducedi by using MIR. estimates as initia~l
condition for S50/. algorithm.
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Figure 22: R.ls Error Comparison of MR, SOR and Ga.uss-Seidel (CS) a.lgorithm flow
estiniates for the Moving vehicle sequence.
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Figure 2.3: R.ls Difference 'olllpa.rison illustrates how the MR initialized SOR. SOR. a.d
GS a.lgorithmis converge to the simoothness constraint solution (MAoving vehicle sequence).
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Figure 2(j: First frame of Clhol>l>er sequence.
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ulSinlg 200 it~era~tions of SOW, (Ib) Multisca~le Regula~rizat~ion (iNIR) est~imlates, (c) Post-filtzered
M\R estimla~tes andl( (cl) Estimlates p~roduced by USinlg MIR est~imlates a~s inlitia~l cond~it~ion for
SO R algorit~hml.



8 \\ _Gauss-Seidel Relaxation

7 Successive Over-Relaxation

5 I MR algorithm and
MR-PF algorithm

MR-SOR algorithm
4 ,, I i I i

0 100 200 300 400 500
Iterations

Figure 28: Rnms Error (Comparison of AlR. SOR and Ca.uss-Seidel (CGS) algorithlu flow
estima.tes for the Cllhopper sequence.
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Figure 29: MIultiscale Regularization rms error sensitivit.y to the paramlneters b) and p ((C.hol)-

per sequence).
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Figure :30: Map illustrating the optimal resolution for the Chopper sequence optical flow
estimates.
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Figure :32: Non-homogeneous tree structure for lattices which are not square. Th'le grid
structure is a. simple extension of the quadltree structure in that it allows for varying niliunbers
of "offspring" from easch parent. The figure illustrates a. hierarchy of grids for a. 6 x 9 la.ttice.


