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Abstract

It is well known that the linear minimum cost flow network problem can be converted to an

equivalent assignment problem. We show here that when the auction algorithm is applied to this

equivalent problem with some special rules for choosing the initial object prices and the person

submitting a bid at each iteration, one obtains the generic form of the e-relaxation method. The

reverse equivalence is already known, that is, if we view the assignment problem as a special case

of a minimum cost flow problem and we apply the e-relaxation method with some special rules

for choosing the node to iterate on, we obtain the auction algorithm. Thus, the two methods are

mathematically equivalent.
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2. The Auction Algorithm for the Assignment Problem

1. INTRODUCTION

An extension of the assignment auction algorithm [Ber79] was given for the minimum cost flow

problem by the author in [Ber86a] and [Ber86b]. This method, called e-relaxation, also contains as

a special case a one-phase version of the preflow-push algorithm for the max-flow problem, earlier

developed by Goldberg and Tarjan [Gol85], [GoT86]. These methods, which are frequently called

auction or preflow-push methods, have attracted much interest recently because of their excellent

practical performance and worst-case complexity properties [AOT89], [AhO89], [BeE87], [BeE88],

[Ber88], [ChM89], [Gol87], [GoT90], [MPS91]. An extensive account can be found in the textbooks

[AM089], [BeT89], [Ber91], and in the tutorial survey [Ber92].

The purpose of this paper is to show that the e-relaxation method is not just a generalization of

the original 1979 auction algorithm but is in fact mathematically equivalent with it, in the sense that

each method can be derived starting from the other. We have shown elsewhere [BeE87], [BeE88],

[BeT89] (p. 374) how to derive the auction algorithm starting from the e-relaxation method, so in

this paper we will focus in the reverse derivation. In particular, we apply the auction algorithm

to an assignment problem, which is equivalent to the linear minimum cost flow problem. After we

streamline the computations, we obtain the generic form of the e-relaxation method for the original

problem. As a corollary we obtain that the generic form of the preflow-push max-flow algorithm can

be viewed as a special case of the auction algorithm.

2. THE AUCTION ALGORITHM FOR THE ASSIGNMENT PROBLEM

In the classical symmetric assignment problem there are n persons and n objects that we have to

match on a one-to-one basis. There is a benefit avj for matching person i with object j and we want

to assign persons to objects so as to maximize the total benefit. We are given a set A of pairs (i, j)

that can be matched. For each person i, we denote by A(i) the set of objects that can be matched

with i

A(i) = {j I (i, j) e A}. (1)

For simplicity we assume that there are at least two objects in each set A(i).

By an assignment we mean a set S of person-object pairs (i, j) such that each person i and each

object j is involved in at most one pair from S. If the number of pairs in S is n, so that every person

is assigned to a distinct object, we say that S is feasible; otherwise S is said to be infeasible. If a

feasible assignment exists, the problem is said to be feasible, and otherwise it is said to be infeasible.

We seek an optimal assignment within the set of feasible assignments, that is, a set of person-object
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2. The Auction Algorithm for the Assignment Problem

pairs (1,jl),... ,(n, j,) from A, such that the objects jl,..., j, are all distinct and the total benefit

=l aiji is maximum.

The auction algorithm uses a positive scalar e > 0, and maintains a price vector p consisting of

a price pj for each object j and an assignment S. We refer to aij - pj as the value of object j for

person i. Throughout the algorithm, the pair (p, S) satisfies the condition

aij, -pj, > max ai,- pj} - E, V (i,j ) E S, (2)
ieA(i)

known as e-complementary slackness or (e-CS for short). Initially one may use any price vector p

and the empty assignment S = 0; this pair trivially satisfies e-CS. The algorithm terminates if S is

feasible, that is, if all persons are assigned. Otherwise an unassigned person i is selected to bid in

the auction as follows.

Typical Iteration of the Auction Algorithm

An unassigned person i finds an object ji that maximizes over all j E A(i)

ai -pj, (3)

and increases pj, to the level

ai, - wi + e, (4)

where wi is the second best object value

The= assignment S and, if j was assigned to some person at the5)

The pair (i,ng of the) is added to the assignment S andr (, if ji was assigned to some person k at the

beginning of the iteration, the pair (k, j,) is deleted from S.

The main property of the method is that for a feasible problem, it terminates with a feasible

assignment S that is optimal within ne; S is strictly optimal if e < 1/n and the benefits aij are

integer. As suggested in the original proposal of the method [Ber79], it is often beneficial to use

e-scaling, that is, apply the algorithm several times with decreasing values of c, each time obtaining

a favorable initial price vector for the next application.

There are several variants of the auction algorithm that differ from the preceding algorithm in

small details. For example, several persons may bid simultaneously with objects being awarded to

the highest bidders, the price increment may be slightly different than the one of Eq. (5), etc. The

important ingredients for each iteration of the method are that:
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3. A Profit-Oriented Auction Algorithm for the Assignment Problem

(a) c-CS is maintained.

(b) At least one unassigned person gets assigned to some object and the price of this object

is increased by at least e. Furthermore, the previously assigned person to each object that

gets assigned at the iteration (if any) becomes unassigned.

(c) No price is decreased and every object that was assigned at the start of the iteration remains

assigned at the end of the iteration.

Any variant of the auction algorithm that obeys these three rules can be shown to have the termi-

nation property of the basic method stated above.

3. A PROFIT-ORIENTED AUCTION ALGORITHM FOR THE ASSIGNMENT PROBLEM

There is considerable freedom in the way one uses the auction algorithm. In particular, one may

choose arbitrarily the unassigned person to bid at each iteration. Furthermore, the initial price-

assignment pair is arbitrary other than it must satisfy c-CS. By specifying various restrictions on

the choice of the bidding person and the initial price-assignment pair, one can obtain special cases

of the algorithm. In this section we will describe one such special case, which has not been reported

thus far and will prove useful for our purposes in this paper.

In this section we will introduce a version of the auction algorithm, which instead of a price vector,

maintains a profit vector 7r, consisting of a profit 7ri for each person i. The profit vector, however,

implicitly determines the price vector. Profits are in effect dual variables, and play the same role for

persons as prices play for objects. If in the course of the auction object j is assigned to person i, we

can view the value aij - pj as the current level of profit for i. With this in mind, it is reasonable that

a profit 7ri for each assigned person i should specify the prices of the corresponding assigned objects

ji via the relation pj, = aij, - 7ri. However, to be able to express all the object prices in terms of the

person profits, we need the notion of a preassignment S, which is defined as a set of n pairs from .A

consisting of exactly one pair (ij, j) for each object j. The person ij is called the preferred person

of object j, and its profit defines a price pj via the relation

pj = aijj -- rij, i = 1,...,n. (6)

The price vector p thus defined is called the price vector implied by (7r,S). Note that there are two

possibilities regarding a preassignment S:

(a) Each person is the preferred person for exactly one object, in which case S is a feasible assign-

ment.
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3. A Profit-Oriented Auction Algorithm for the Assignment Problem

(b) There is at least one person that is not preferred by any object, and at least one person

that is preferred by more than one object. In this case, S contains as subsets a collection

G(S) of assignments all of which are infeasible. We call G(S) the assignment subset of the

preassignment S.

Definition 1: We say that a profit-preassignment pair (7r,S) satisfies c-CS if the price vector

implied by (7r, S) together with each assignment in the assignment subset G(S) satisfies e-CS.

Using the definition (2) of e-CS, it is seen that a profit-preassignment pair (7r, S) satisfies e-CS if

and only if the condition

r + pj > aij - c, V i preferred by at least one object, and j E A(i) (7)

where pj is the implied price of j. Thus in order for the pair (7r, S) to satisfy e-CS, it is sufficient

that

7ri + pj > aij - , V (i, j) E A. (8)

Note also that given any profit vector 7r and e > 0, we can obtain a preassignment S satisfying e-CS

together with 7r by defining

pj = max J{aij-7ri}, V j 1,...,n, (9)
{Il(tj)eA)

and by letting S consist of exactly one pair (ij,j) attaining the maximum in the above equation for

each j. The sufficient condition (8) for e-CS will then be satisfied by (7r, ).

The following auction algorithm starts with and maintains a profit-preassignment pair (7r,S)

that satisfies e-CS. If the preassignment S is an assignment (necessarily feasible), the algorithm

terminates, and S is within ne of being optimal. Otherwise, a person i that is not preferred by any

object under S is selected to bid under the rules of the auction algorithm based on the price vector

p implied by (7r,S). The auction iteration, however, can be expressed in terms of the profit vector

7r using the definition (6) of the implied price vector. The preassignment can then be rearranged so

that the new profit-preassignment pair satisfies c-CS. The complete iteration is as follows (compare

with the iteration of the preceding section):

Typical Profit-Oriented Auction Iteration

A person i that is not preferred by any object under S finds an object ji that maximizes over

all j E A(i)

ai - akjj + 7rkj, (10)

where kj is the person preferred by j under S, and sets 7ri to the level

wi- , (11)
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4. Auction Algorithms for Problems with Similar Persons

where wi is the second best object value in terms of the implied prices pj,

wi = max {aij-pj } = max {aj-akj + 7rkj}. (12)
jEA(i),j~ji jEA(,j3j i

The pair (i, ji) is added to the preassignment S and the pair (iki,j) that belonged to S at the

beginning of the iteration is deleted from S.

It can be seen that the final assignment and the sequence of implied price vectors generated by

the above auction algorithm can also be generated by the auction algorithm of the preceding section

with a special choice of initial price vector and sequence of persons submiting a bid at each iteration.

Thus the algorithm of this section is a special case of the algorithm of the preceding section.

4. AUCTION ALGORITHMS FOR PROBLEMS WITH SIMILAR PERSONS

We now consider a special type of assignment problem that involves groups of persons that are

indistiguinshable in the sense that they can be assigned to the same objects and with the same

corresponding benefits.

Definition 2: We say that two persons i and i' are similar, if

A(i) = A(i'), and aij = ai,j V j E A(i). (13)

For each person i, the set of all persons similar to i is called the similarity class of i.

If there are similar persons, the auction algorithm can get bogged down into a long sequence of

bids (known as a "price war"), whereby a number of similar persons compete for a smaller number

of objects by making small incremental price changes. An example is given in Fig. 1. As described

in [BeC89] (see also [Ber91] and [Ber92]), if one is aware of the presence of similar persons, one

can "compress" a price war within a similarity class into a single iteration. It is important to note

that the corresponding algorithm is still a special case of the auction algorithm of Section 2; the

computations are merely streamlined by combining many bids into a "collective" bid by the persons

of a similarity class.

The method to resolve a price war within a similarity class is to let the auction algorithm run

its course, then look at the final results and see how they can be essentially reproduced with less

calculation. In particular, suppose that we have a price-assignment pair (p, S) satisfying c-CS, and

that a similarity class M has m persons, only q < m of which are assigned under S. Suppose that

we restrict the auction algorithm to run within M, that is, we require the bidding person to be from

M, until all persons in M are assigned. We call this the M-restricted auction.
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4. Auction Algorithms for Problems with Similar Persons

PERSONS OBJECTS

Initially assigned Initial price = 
to object 1

Initially assigned 2 2 Initial price= 0
to object 2

Class of Similar
Persons

InitiallyI p
unassigned 3 >- k Initial price= 3

Initially
unassigned 4 - - "ti) Initial price =4

Solid lines indicate pairs (i,j) with a = C >> 1.
Broken lines indicate pairs (i,j) with a = O.

The optimal assignment is {(1,1), (2,2), (4,3), (3,4)).

Figure 1: An example of an assignment problem with similar persons. Here the persons 1, 2,

and 3 form a similarity class. This structure induces a price war in the auction algorithm. The persons 1,

2, and 3 will keep on bidding up the prices of objects 1 and 2 until the prices P1 and P2 reach or exceed

C + 3. The price increments will be at most 2¢.

The final results of an M-restricted auction are quite predictable. In particular, the set

A,,, = The m objects that are assigned to persons in M at the end

of the M-restricted auction

consists of the set

Aold = The q objects that were assigned to persons in M at the beginning

of the M-restricted auction

plus m - q objects not in Aold that offered the best value aij - pj for the persons i E M under the

price vector p at the start of the M-restricted auction. For a more precise description, let us label

the set of objects not in Aold in order of decreasing value, that is,

{j I j ~ Aold} = {jl, .. , jm-q, jm-q+l,. .. ,jn-q}, (14)

where for all persons i E M,

aijr - pr > ai,j,+ - PJ,+l, r = 1,..., n - q -1. (15)
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4. Auction Algorithms for Problems with Similar Persons

Then

Anew, = Aold U {jl ,. .. jm-q). (16)

The price changes of the objects as a result of the M-restricted auction can also be predicted to a

great extent. In particular, the prices of the objects not in Anew will not change, while the ultimate

prices of the objects j E Anew will be such that the corresponding values aij - pj for the persons

i E M will all be within e of each other and no less than the value aijm_q+l - Pjm-q+l of the next best

object jm-q+l minus e. At this point, to simplify the calculations, we can just raise the prices of the

objects j E Anew so that their final values ai - pj for persons i E M are exactly equal to the value

aij,_q+, - Pj,-q+l of the next best object jm-q+1 minus c, that is, we set

pj := aij -(aijq+, - Pm-q+) + c, V j E Anew, (17)

where i is any person in M. It can be seen that this maintains the e-CS property of the resulting

price-assignment pair, and that the desirable termination properties of the algorithm are maintained.

Consider the operation that starts with a price-assignment pair (p, S) satisfying e-CS and a

similarity class M that has m persons, only q of which are assigned under S, and produces through

an M-restricted auction a price-assignment pair specified by Eqs. (14)-(17). We call this operation

an M-auction iteration. Note that when the similarity class M consists of a single person, an

M-auction iteration produces the same results as the simpler auction iteration given earlier. Thus

the algorithm that consists of a sequence of M-auction iterations generalizes the auction algorithm

iteration given earlier, and deals effectively with the presence of similarity classes. Table 1 illustrates

this algorithm.

At Start of Object Assigned Bidder Preferred

Iteration # Prices Pairs Class M Object(s)

1 0,0,3,4 (1,1),(2,2) {1, 2,3} 1,2,3

2 C + 4 c, C 4 + , 4 , e,4 (1,1),(2,2),(3,3) {4} 3

3 C + 4 + e, C + 4 + c, C + 4 + 4 (11),(2,2),(4,3) 1,2,3} 1,2,4

Final 2C + 4 + 2e, 2C + 4 + 2e, C + 4 + , C + 4 + 2e (1,1),(2,2),(4,3),(3,4)

Table 1: Illustration of the algorithm based on M-auction iterations for the problem of Fig. 1.

It is possible to derive also a profit-oriented version of algorithm that uses M-auction iterations.
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4. Auction Algorithms for Problems with Similar Persons

This algorithm maintains a profit-preassignment pair (ir, S) satisfying e-CS. We impose two more

requirements:

(a) The profits of all persons in each similarity class must be equal.

(b) Persons in a similarity class should participate fairly in S, that is, no person of a similarity

class is preferred by more than one object while another person in the same similarity class is

not preferred by any object.

A profit-preassignment pair (7r, S) satisfying the above two conditions is said to be fair.

At each iteration of the algorithm we have a fair profit-preassignment pair (Or,S) satisfying e-

CS. If S is an assignment (necessarily feasible) the algorithm terminates. Otherwise the following

iteration is executed.

Typical Profit-Oriented M-Auction Iteration

Let M be a similarity class that has m persons, only q < m of which are preferred by some

object under S. Denote by Aold the set of q objects j such that (i, j) E S for some person i E M.

Label the objects not in Aold in order of decreasing value, that is, as

{j I j t Aold} = {jl,.. . , jm-q, jm-q+l,* .. , jn-q },

where for all persons i E M,

aijr - (akjir - 7rkjr ) aijr+l - (akjr+lr+l - 7kr+ ) r = 1,... ,n - q - 1, (18)

and for each object j, kj is the person preferred by j. The iteration sets the profit 7ri of each

person i E M to the level

wi - e, (19)

where wi is the value of the next best object jm-q+l in terms of the implied prices pj,

wi = aij.q+l - Pjm-q+l = amq+ -1 akim-_+ljm.-q+l + Xikjm-+1 (20)

and modifies the preassignment S as follows: It deletes from S the m pairs associated with the

objects in the set

Ane, = Aold U {jl, ... , jm-q}

and then adds to S m pairs (i, ji) that assign each person i E M to a distinct object ji of Anew.

It can be seen that the profit-preassignment pairs (7r, S) generated by this algorithm are fair and

satisfy e-CS. As an example consider using the algorithm to solve the problem of Fig. 1 with initial

profit vector 7r = (0, 0, 0,- -1) and preassignment S = {(1, 1), (2, 2), (4, 3), (4, 4)}. The initial implied
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5. The Minimum Cost Flow Problem and its Equivalent Assignment Problem

price vector is p = (C, C, C + 1, 1). The bidder class at the first iteration will be M = {1, 2, 3} and

will bid for the set of three best objects A,ne = {1,2,4}. The profits of the bidder class will be

lowered to the implied value -(C + 1) of the next best object (object 3) minus e. Thus the new

profit vector will be 7r = (-(C + 1 + e), -(C + 1 + e), -(C + 1 + e), -1), the new preassignment will

be S = {(1, 1), (2, 2), (4, 3), (3, 4)}. This preassignment is a (feasible) assignment, so the algorithm

will terminate.

For the remainder of the paper, we will assume that the persons have been partitioned in disjoint

similarity classes and all references to the auction algorithm refer to the generalized version of the

profit-oriented auction algorithm that consists of M-auction iterations as described above. We will

now show that this algorithm yields as a special case the e-relaxation method.

5. THE MINIMUM COST FLOW PROBLEM AND ITS EQUIVALENT ASSIGNMENT

PROBLEM

We consider the minimum cost flow problem with upper and lower bounds on the arc flows. For

simplicity of notation, we will take the lower arc flow bounds to be zero. Nonzero lower arc flow

bounds can be set to zero without loss of generality by subtracting the lower bound vector from the

arc flow vector. We are given a directed graph with set of nodes A" and set of arcs A. Each arc (i, j)

carries a flow xij. We denote by x the flow vector {xij I (i, j) E A}. We consider the problem

minimize E aijxjj (MCF)
(ij).A

subject to

E j- E Xji=s,, , V i EX,

{jl(i/j)EA} {jl(ji)eA

0 X< Vij < i (i,j) EA,

where aij, cij, and si are given integers.

The problem can be converted into an equivalent transportation problem by replacing each arc

(i, j) by a node labeled (i, j), and two incoming arcs (i, (i, j)) and (j, (i, j)) to that node as shown

in Fig. 2. The flows of these arcs are denoted yi(ij) and zj(ij), and correspond to the arc flow xij via

the transformation

Yi(ij)= Xij, Zj(ij) = Cij- Xij.

The equivalent transportation problem is
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5. The Minimum Cost Flow Problem and its Equivalent Assignment Problem

maximize E S aijzj(ij)
ieAr {jl(ij)EA)

subject to

E Yi(iij)+ E zi(j,i) =Si+ E cji, V iE/X,
{j I(ij)e)A { jl(j,i)(EA) {JI(j,i)eAJ

Yi(ij) + zj(ij) = cij, V (i, j) E A,

0 -< Yi(ij), 0 <- zj(iXj), V (i,j) E A,

(see Fig. 3).

It is in turn possible to transform this transportation problem into an assignment problem with

similar persons by means of the following two devices (see Fig. 4):

(a) Create si t {il(j,i)EA} Cji similar persons in place of each node/source i of the transportation

problem.

(b) Create cij duplicate objects for each arc/sink (i, j) of the transportation problem. The

benefit for assigning any one of the duplicate objects corresponding to arc (i, j) is zero for a

person in the similarity class corresponding to node i, and is aij for a person in the similarity

class corresponding to node j (cf. Fig. 3).

We will use this equivalence to transcribe the auction algorithm of the previous section into the

minimum cost flow context. We first derive the appropriate form of e-CS.

Let us consider the equivalent assignment problem and denote by 7r the corresponding profit

vector. For a given e > 0, consider a fair profit-preassignment pair (7r, S) for this problem. Then S

uniquely defines a flow vector (y, z) for the equivalent transportation problem. In particular, Yi(tj)

[or zj(ij)] is the number of pairs of S associated with a person of the similarity class corresponding

to node i (or node j, respectively), and with a duplicate object corresponding to arc (i, j). Because

there is a unique pair in S for each object of the equivalent assignment problem, we have

Yi(ij) + zj(ij) = cij

for each arc (i, j), so S defines the flow xij of each arc (i, j) via the relations

Xij = Yi(ij) = Cij -Zj(ij).

The profits of all persons corresponding to a node i are equal [since the profit-preassignment pair

(r, S) is fair] and will be denoted by 7ri. Regarding the implied prices of the objects corresponding to

an arc (i, j), we note that the objects paired, according to S, with persons in the similarity class of

i [which correspond to the flow yi(6j)] have implied price -7ri, while the objects paired with persons
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Arc Flow xij 

Cost aij

SjSi Cmjm m

Arc Flow FYi(ij)=xiOW zi, -ju
10,j) Ij j01j) c ij

Benefit 0 OBenefit= aij

-1j

Figure 2: Transformation of a min cost flow problem into a transportation problem. Each arc

(i, j) is replaced by a node labeled (i, j) and two incoming arcs (i, (i, j)) and (j, (i, j)) to that node.

SOURCES SINKS
(Nodes of original A h (Arcs of original
network) network)

Benefit = . .

Sij + Cmj - Benefit= a ij

Arc Flow = zj(ij) = cij - x ij

Figure 3: The equivalent transportation problem.
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-1

Capacity = 1 / \Capacity = 3

{ok Capacity= 1

Original Min Cost Flow Problem

SOURCES SINKS PERSONS OBJECTS

2 0 3
Similar Persons 

212 1 Duplicate Objects

2~1~2
Similar Persons 2

2,242

o 1

Equivalent Transportation Problem Equivalent Assignment Problem

Figure 4: Example of a min cost flow problem, and its corresponding equivalent transportation
and assignment problems.

in the similarity class of j [which correspond to the flow Zj(ij)] have implied price aij - r'j. Using

this fact, the c-CS condition (7) is written as

rj + (-ri) > aij- if Yi(ij) > 0, (21)

7ri + (aii - 7rj) > -E if zj(ij) > 0. (22)

We now introduce a price variable pi for each node i E .J/, which is the negative profit 7ri,

Pi = -vri, V i EAN, (23)

and we express the flow vector x in terms of (y, z) as

Xij = Yi(ilj) = cij - Zj(ij). (24)
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6. Deriving the e-Relaxation Method

The conditions (21) and (22) for a profit-preassignment pair (7r, S) satisfying e-CS are then written

as

pi > aj + pj - e for all (i, j) e A with xij > 0, (25)

p, < aij + pj + e for all (i,j) E .A with Xij < Cij. (26)

These are precisely the e-CS conditions for the minimum cost flow problem as first introduced in

connection with the e-relaxation method in [Ber86a] and [Ber86b].

Table 2 provides a list of the corresponding variables and relations between the minimum cost

flow problem and its equivalent transportation/assignment problem.

Transportation/ Minimum Cost

Assignment Flow

Flows (ij), zj(ij) = i - Yi(i) xij = Yi(i,) -= ci - zj(ij)

Profits 7ri for all persons in the similarity class of node i

-Prices ri for objects of (i, j) paired with persons of i via S

L aii- ri for objects of (i, j) paired with persons of j via S

c-CS 7rj + (-7ri) > aij - c for objects of (i,j) preferring persons of i under S pi > aij +pj - e if xij > 0

+ (aij - 7rj) > -c for objects of (i, j) preferring persons of j under S pi < aj + pj + e if xj < c1,

Table 2: Correspondences between the minimum cost flow problem and its transporta-
tion/assignment equivalent version.

6. DERIVING THE e-RELAXATION METHOD

We will now apply the profit-oriented auction algorithm of Section 4 (which uses M-auction

iterations) to the equivalent assignment version of the minimum cost flow problem (MCF). This

algorithm starts with and maintains a fair profit-preassignment pair (7r, S) satisfying e-CS. Based

on the equivalences of the preceding section (cf. Table 2), the corresponding minimum cost flow

algorithm starts with and maintains a flow-price pair (x, p) satisfying the e-CS conditions (25) and

(26).
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6. Deriving the e-Relaxation Method

An auction iteration starts with finding a similarity class M containing some persons that are

not preferred by any object under S. This is equivalent to finding a node i such that the sum of

outgoing flows in the equivalent transportation problem

E Yi(ij) + E Zi(j,i)
{jil(ij)EA} {jl(ji)eA}

is less than the supply

si + 5 cji.
{j(I,i)E.A}

The difference of the above two quantities is the surplus of node i, denoted gi, which in view of the

definition

Yi(ij) -- Xij, Zi(j,i) -- Ci - Xii,

can be written as

g,= E xji- Xij + Si.
{jIU(j,')EA {jil(ij)EA}

We thus see that in the auction algorithm, each (M-auction) iteration involves a bid by a similarity

class corresponding to a node i with positive surplus gi. According to the rules of the auction

algorithm, node i must:

(a) Rank the objects corresponding to its incident arcs in terms of their values.

(b) Select a sufficient number of objects to satisfy its surplus.

(c) Brings the profit 7ri down to the implied value corresponding to the next best object minus

e [cf. Eqs. (19), (20)].

(d) Adjust the preassignment S so that it contains exactly one pair per object while each person

in the similarity class of i is preferred by exactly one object out of the ones selected in (b)

above.

Translating these operations in the context of the minimum cost flow problem, the iterating node

i must rank order the outgoing arcs (i, j) and the incoming arcs (j, i) in terms of the values of

the corresponding objects. The node must then push an increment of flow equal to its surplus

along a sufficient number of arcs (in the order of their values), while lowering its own profit 7ri or,

equivalently, raising its own price Pi as necessary.

In particular, in order for node i to push flow to an outgoing neighbor node j along an arc (i, j),

it must, by Eqs. (19), (20), set its profit 7r' to the (common) implied value of the objects of arc (i,j)

that prefer persons of the similarity class of j minus e, which is

-aj + yrj - e.
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6. Deriving the e-Relaxation Method

Equivalently, by using the relations pi = -7ri and nrj = -pj, we see that to push flow from i on an

arc (i, j), we must have

xij < cij, (27)

and the price pi must be set to

Pi = aij + pj + c. (28)

When an arc (i,j) satisfies the conditions (27) and (28), it is said to be c+-unblocked.

Similarly, in order for node i to push flow to an incoming neighbor node j along an arc (j, i) it

must set its profit to

aji + irj - e

or equivalently we must have

0 < xji,

and the price pi must be set to the level

Pi = Pj - aji + e. (30)

When an arc (j, i) satisfies the conditions (29) and (30), it is said to be e--unblocked.

We now transcribe the auction algorithm by using the correspondences derived above. At the

start of each iteration, a node i with positive surplus gi is chosen.

Typical M-Auction Iteration Applied to the Equivalent Assignment Problem

Step 1: (Scan incident arc) Select an arc a (i, j) that is an e+-unblocked arc and go to Step

2, or an arc (j, i) that is c--unblocked arc and go to Step 3. If no such arc can be found go to

Step 4.

Step 2: (Push flow forward along arc (i, j)) Increase xij by 6 = min{gt, cij - xij}. If now

gi = 0 and xij < cOj, stop; else go to Step 1.

Step 3: (Push flow backward along arc (j, i)) Decrease xj, by 6 = min{gi, xji}. If now gi = 0

and bji < xji, stop; else go to Step 1.

Step 4: (Increase price of node i) Increase pi to the level

min{{pj + aj + e I (i, j) E A and xx < cij}, {pj - aji + e (j, i) E A and bji < xj,}}-

Go to Step 1.

This is precisely the c-relaxation method first proposed in [Ber66a] and [Ber66b]. Note that Steps

2 and 3 correspond to changing the preassignment by associating the persons in the similarity class

16



References

of node i to their best objects corresponding to the incident arcs of i, up to the point where the

surplus of i is exhausted. This modification of the preassignment is done via perhaps multiple passes

through Steps 2 and 3. Step 4 raises the price pi to the appropriate level, so that the corresponding

profit-preassignment pair of the equivalent assignment problem is fair and satisfies c-CS. Step 1

checks whether there are objects that can change their preferred persons at the current profit level

(-pi) of the persons corresponding to i, and switches to Step 4 to increase pi when no such objects

exist.
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