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Abstract

We consider an optical communication system where a reference signal is transmitted
along with a phase modulated information carrying signal. This system has the potential of
alleviating the effect of phase noise considerably. We jointly optimize the bandwidth of the

receiver and the powers of the two signals. The scheme achieves a performance that is close

to that of ideal phase modulation systems when the ratio of bit rate to laser linewidth is

large, and a performance that is identical to that of frequency modulation when the ratio is
small. We also introduce a centered filter structure which achieves a far better performance

than traditional filters due to increased the phase coherence.
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1 Introduction

Phase noise is a major impairment on the performance of coherent optical communication

systems. Due to spontaneously emitted photons within the laser cavity, the phase of a

semiconductor laser exhibits random fluctuations resulting in phase noise [1].

The incomplete knowledge and time-varying nature of the phase causes a degradation

in the bit error rate. Traditional methods to alleviate this performance degradation in-
volve modulation formats that are relatively insensitive to phase uncertainty, e.g. Amplitude

Shift Keying (ASK) and Frequency Shift Keying (FSK). Envelope detector structures with

widened filter bandwidths are used in conjunction with these modulation formats to reduce

the performance degradation to a few dB's [2, 3, 4]. While this receiver modification yields

acceptable performance, it does not achieve the full potential of phase noise impaired sys-

tems. This is because the signaling mechanisms do not exploit the structure of the phase

noise problem.

In this paper we consider an alternative communication scheme which has been designed

specifically for its robustness against phase noise. This approach attempts to optimize the

signaling mechanism as well as the receiver structure and therefore yields better results than

doing the latter alone.

The phase noise problem may be viewed as the lack of a reference signal at the receiver

that has the same phase structure as the received signal. Therefore the transmission of

a reference signal that is corrupted with the same noisy phase sample as the information

carrying signal may help improve the performance. We study one such transmitted reference

scheme here and obtain its performance. In Section 2 we describe the phase noise process

and its statistical properties. In Section 3 we introduce transmitted reference systems and

explain their structure. The performance of such systems with wideband filters is given in

Section 4. The reference transmission schemes with optimally adjusted power and bandwidth

parameters are described in Section 5 and their performances are analyzed in Sections 6 and

7. The results are presented in Section 8, and then Section 9 concludes the paper.

2 Phase Noise Model

The unmodulated field output of a semiconductor laser is given by

ST(t) = AT cos (2rvot + OT(t))

where AT is the amplitude, vo is the optical frequency and OT(t) is the phase noise process.

The phase noise is commonly modeled as a Brownian motion process [5] which can be written



as

OT(t) = 27r jit)dt

where the frequency noise I(t) is a white Gaussian process with spectral height PT/21r. The
parameter OT is the 3 dB bandwidth of the power spectral density of the output field ST(t).

It is called the laser linewidth as it provides a measure of the spectral broadening induced
by phase noise.

In coherent optical systems, the received field is first processed by an optical heterodyne
receiver, which adds a local oscillator signal and photodetects the sum. The local oscillator
signal is at frequency vl and is corrupted by its own phase noise process OLo(t). When

the local oscillator power is sufficiently high, the photodetection process can be modeled
as a downshift of the carrier frequency from optical domain to electrical domain as well as
addition of a white shot noise process with Gaussian statistics. Hence, in the absence of

modulation, the intermediate frequency (IF) output of the photodetector is

r(t) = A cos (2rfct + 0(t)) + n(t)

where f = Ivo - vll, 9(t) = OT(t) - OLo(t) is the combined phase noise process, and n(t)

is the additive white Gaussian noise with spectral density No/2. Since the transmitter and

the local oscillator lasers have statistically independent phase noise processes, the combined

linewidth 3 of 0(t) is the sum of individual laser linewidths.

3 Transmitted Reference Systems

The discussion in the previous section reveals how the phase noise problem may be viewed
as a reference problem. If the local oscillator signal had the same phase noise corruption
as the transmitted signal, then the two phase noise processes would cancel to result in an

IF signal free of phase noise. This is not to suggest, however, that the signal to be used as
the local oscillator signal can be transmitted from the transmitter. Such a scheme would
result in a weak local signal which would overshadow the advantage of perfect phase noise
cancellation.

The reference transmission to be discussed here aims to alleviate the adverse effects of
phase noise after the photodetection. The goal is to provide the receiver with two IF signals
corrupted with the same phase noise process. One of these signals will be the modulated,

information-carrying signal, while the other signal will be an unmodulated reference signal.

These two signals can be subsequently processed in the IF domain to minimize the error

probability.
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The first issue that needs to be addressed is the mechanism in which two signals can be
transmitted simultaneously. Since these signals will share a common channel provided by the

optical fiber, a certain orthogonality must be provided so that the signals do not interfere

with each other and can be extracted at the receiver for further signal processing. Two

main methods have been suggested to achieve this orthogonality [6, 7]. The first method

assigns two different optical carrier frequencies vl and v2 to the information and reference

signals respectively. This can be accomplished by shifting the frequency of a portion of the

transmitter laser output. The signals will occupy nonoverlapping frequency bands if the

difference between vl and v2 is much larger than the data rate and the linewidth. The

receiver can separate them by using coherent detection and appropriate IF filtering, and

bring them to the same center frequency.

The second reference transmission method uses two orthogonal polarizations for the two
signals. The transmitter laser produces a lightwave that contains both x and y polariza-
tion components which are separated by a polarization-sensitive beam splitter. One of the

branches is modulated before beam combining and transmission. The receiver can separate

the two signals by using another polarization-sensitive beam splitter.
Frequency and polarization based reference systems are identical when viewed at the IF

domain in the receiver. Both provide the receiver with two IF signals corrupted with the

same phase noise process.

In this paper, we assume that Phase Shift Keying (PSK) modulation format is employed.

We then have the IF signals

ri(t) = A 1 cos(2rfct + 0(t) + rm(t)) + ni(t)

r2 (t) = A2 cos(27rfct + O(t)) + n 2(t)

where 0(t) is the combined phase noise process, n1 (t) and n 2 (t) are statistically independent

white Gaussian processes each with spectral density No/2, and m(t) is the binary data

waveform. If the bit duration is T, the two signals have signal-to-noise ratios (SNR) ~i =

AT/2No for i = 1,2. The information carrying signal rl(t) and the reference signal r 2(t)
will be processed by an IF receiver that will reach a bit decision based on the correlation

between the two signals. Essentially, the reference signal will be used as a local signal which

is perfectly phase-locked to the received signal. Since rl(t) and r 2 (t) have a common phase
noise process, the mixed signal rl(t)r2(t) contains a baseband term which is free of phase
noise, and a double frequency term with doubled phase noise. Therefore, in the absence of

additive noise, we could eliminate the phase noise entirely by filtering out the high frequency

component. While this observation is promising, it merely points out that there is no error
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floor 2 in this transmitted reference scheme. Since the SNR is always finite, the signals need
to be filtered first to limit the additive noise power. Therefore, the IF receiver is of the form

shown in Figure 1. Filters 1 and 2 are bandpass filters centered at fc, while Filter 3 is a

lowpass filter. We will refer to this receiver as a double filter receiver due to two stages of

filtering. When the lowpass filter is absent, it will be called a single filter receiver.

The main contribution of this paper is to point out the benefit of jointly optimizing

the filter bandwidths and the distribution of the available transmitter power between the

signals, and to quantify the performance improvement. Filtering operations in the presence

of phase noise must be analyzed carefully since the spectral broadening necessitates wider

filters. Matched filters, which are optimal in the absence of phase noise, start deforming the

desired signal with the introduction of phase noise. Wider filters introduce more additive

noise at their output. The tradeoff between the phase noise and additive noise must be

accurately analyzed for transmitted reference systems [6, 7, 8]. Reference transmission has

been previously studied only in the context of wideband filters [6, 7], resulting in a suboptimal

performance, as outlined in the next section.

4 Performance of Wideband Receiver Structures

4.1 Single Filter Receiver

A wideband single filter receiver is as in Figure 1 with the post-mixing filter absent and the

pre-mixing filters having a large passband as explained below. The decision device samples

the mixer output at the end of each bit period, and compares the sampled value to 0 to

reach the decision.

Let the filter bandwidths for the reference and information signals be W and B respec-

tively. When these bandwidths are large enough to pass the signals undistorted, the standard

results of [9] about the probability that the product of two complex Gaussian random vari-

ables has a negative real part can be invoked to find the error probability as

Pe = [1 - Q(a, b) + Q(b, a)] (1)

where

a + (2)

2Error floor is the residual error probability as SNR tends to oo.
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and Q(., ) is the Marcum Q function. The design goal is to optimize the power distribution

subject to the total power constraint 61 + 62 _< for a given bandwidth pair (B, W).
When the two filters are identical, B = W as in [6], the optimal power distribution is

symmetric, , = ~2 = C/2. To see this, one uses the identity [10]

Pe = [1- Q(, b) + Q(b, a)] = )/2 [I(ab) + 2 E - I(ab) (3
2 2= rj =a '0~) 'E'J2na

where In(.) is the modified Bessel function of order n. Io(x) > 1 with equality only when
x = 0. On the other hand, the series above is nonnegative, and equals 0 only when b = 0.
Therefore we obtain the lower bound P, > 1/2e- V/2BT through the use of a 2 + b2 = (= l +

62)/BT. The equality is achieved when b = 0, i.e. when 1 = 62 = ~/2. Therefore the optimal
power distribution achieves the error probability

PD =1 e- ~/2BT. (4)

Since BT is large by definition, this system will have a performance that is far inferior to
phase noise free FSK with incoherent IF detection which has the error probability P, =

e-E/2

The following fundamental observation is made in [7]. The reference signal r2 (t) occupies
a smaller bandwidth than the information signal ri(t), as it is unmodulated. Hence r 2(t)
can be filtered with a narrower passband reducing the additive noise power at the output.

This fact breaks the symmetry between the two signals and allows an asymmetric power
distribution. The exact calculation of the optimal power distribution appears to be infeasible

in this case. If it is assumed that the SNR is high in both channels, (1) can be approximated

by P_ - Q(a - Ibi) where Q(.) is the complementary distribution function of a standard
Gaussian random variable [11]. Then the asymptotically optimal power distribution should
maximize the minimum of l1 /BT and 62 /WT subject to the constraint ~1 + (2 = ~. The

solution is easily found as
Il B

B+W

which satisfies b = 0 in (2). Therefore P, is obtained from (3) to be simply given as3

p, = e- (B+w)T (5)

3This simple form is not given in [7].



A comparison of (5) and (4) shows that asymmetric power distribution has the potential of 3
dB performance improvement. The effective drop in the SNR is the sum of filter bandwidths

normalized by the bit rate. By making the reference filter narrower, one saves in the SNR.
This is particularly significant when the phase noise strength, 7y 27rT, is small, which
implies W/B < 1.

4.2 Double Filter Receiver

A wideband double filter receiver is also considered in [6]. The first stage of filtering is
the same as the single filter receiver. The mixer output, which contains the baseband PSK
modulation, double frequency components, signal cross noise and noise cross noise terms, is
integrated over the bit duration prior to sampling. When the front end filters are identical
with wide passband B, the two signal cross noise terms are Gaussian with flat spectral

levels A2No/4 over Ifl < B. The noise cross noise term, which is neglected in [6], has
a triangular baseband spectrum over Ifl < B with peak NoB/2. As in [6], we assume

that the total noise is Gaussian, which is only accurate in the BT > 1 regime. We then

calculate the noise variance making use of the fact that the lowpass filter passband is much

narrower than the noise cross noise spectrum. The error probability is then found as P, =

Q (V/2 2/(~ + BT)). The optimal power distribution still satisfies j = 42 = F/2 with the
resulting error probability

P " Q( 1+ BT/) (6)

If the SNR is very high, then BT/I << 1 and one obtains a performance that is 3 dB

worse than phase noise free FSK. However, for practical values of phase noise strength and

optimized receiver bandwidths, phase noise does not cause a penalty as large as 3 dB in FSK

performance [2, 3]. This clearly shows the undesirability of wideband filters in the receiver.

These conclusions remain valid when W < B. B is replaced W in (6) and the accompa-

nying discussion. Consequently, the optimal power distribution is the symmetric one even

when the front-end filters are not identical. The advantage due to slightly narrower, but

still wideband, reference filtering is not significant with the narrowband filtering after the

correlation, as the same poor performance limit is encountered. We will see in the later
sections that this will not be true when the front-end filters are not wideband.
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4.3 Discussion

The analyses outlined above are useful in bringing out the possible performance improve-
ment by employing nonidentical filters and unequal powers for the information and reference

signals. However, the conclusion is imprecise as the effect of phase noise on the system
performance is implicit in the selection of the filter bandwidths. These bandwidths B and

W are taken to be sufficiently large to pass the phase noisy sinusoids unaltered. A heuristic

relation introduced in [12] and used in [6, 7] takes B = 1/T + k/ and W = kI, where k is
chosen to be large enough, such as 8, to make the filters wideband according to the criterion
mentioned above. This relation is motivated by the fact that the unmodulated carrier has
a 3 dB bandwidth of i, and the modulation increases the bandwidth by an amount on the

order of the bit rate. The predicted performance will depend strongly on the assumed value

for k. Furthermore, for a fixed value of k the linewidth can be made small enough to violate
the wideband nature of the filters, thus making the performance estimate entirely unrealistic.

The presence of a heuristic bandwidth parameter, the setting of which arbitrarily determines

the performance, is an undesired feature of these analyses.

The wideband front-end filters considered above do not adequately balance the tradeoff

between phase noise and additive noise. The spectral broadening effect of phase noise is

overemphasized by forcing these filters to pass the signals undistorted, while the effect of

additive noise is underemphasized. It is well understood today that the niondistortion af-

forded by wideband filters is not necessary for good performance in the presence of phase

noise [2, 3, 4]. An interesting example occurs in the floor performance of DPSK modulation

where a narrowband receiver outperforms a wideband receiver even when the additive noise

is neglected [13].

Figures 2 and 3 demonstrate the poor performance of wideband reference transmission

schemes. In Figure 2, the error probability of the single wideband filter receiver from (5)

is shown together with that of single filter binary FSK with optimal bandwidth setting [3].

It is seen that although the power is optimally distributed in the wideband system, a much

simpler FSK scheme yields a better performance. The parameter k is set to 8 as in [7]. The

same observation holds true with double filter receivers as shown in Figure 3 where the value
k = 7 is used. Again binary FSK with optimal filter bandwidth outperforms the wideband

reference scheme by far.

An important observation is that the performance of a transmitted reference system
with identical filters and an even power distribution is identical to that of binary orthogonal

signaling, e.g. wide deviation FSK, with envelope detection. This is because an equivalent

receiver will take the filter outputs yl(t) and y2(t), form (yl(t) + y 2 (t))2 and (yl(t)- y2(t))2,
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perform lowpass filtering (integration) on these signals in the case of a double filter receiver,
and decide for the larger of the sampled values. The signal component of one of the waveforms

formed will be zero when the powers are equal. This effectively results in an orthogonal

modulation. Two immediate conclusions can be drawn from this fact:

1. The inferior performance of wideband reference transmission scheme is due to the lack
of filter optimization,

2. Without power and filter optimization, reference transmission is limited to the perfor-
mance of FSK4 .

It is with the joint optimization of filters and powers, as will be shown in the following

sections, that the true potential of reference transmission can be uncovered.

5 Reference Transmission with Optimal Signal and

Receiver Parameters

In this section, we describe the model for the filters in the receiver, and we provide a perfor-

mance analysis of the system. Because of the correlation operation that follows the front-end
filters, the lowpass equivalents of the filter outputs must be considered. The lowpass equiv-

alent of a bandpass filter is modeled as a finite-time integrator. This filter model is used by

Foschini et. al. [2, 14] and many others [3, 15, 16, 17, 18]. It makes a time-domain analysis

with random signals tractable.

The integrators for the information signal r (t) have a time duration of T1 = TIM, while

those for the reference signal r2(t) have time durations T2 = KT/M, where K, M > 1 will
be found so as to optimize the performance. Thus, the information filter has a bandwidth

expansion factor of M relative to a matched filter, while the reference filter has a bandwidth

reduction factor of K relative to the information filter. This reflects the previous observation

that the reference signal can be filtered more tightly due to the absence of modulation. For

analytical convenience we assume that M and K are both integers.

We will consider two forms of timing alignment between the filter outputs, as shown in

Figure 4. In the first form, the output of an integrator at time t is its input integrated
over (t - Ti, t) where i = 1 or 2. If TL is viewed as a time unit, the first K - 1 units of

the integration window of the reference filter precedes that of the information filter. For
4 This also implies that the performance of wideband double filter receiver approximated by (6) can be

more accurately estimated using the analysis of (2].
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large K the distance in time between portions of the phase noise process that affect the

filter outputs will be large. Therefore the filter outputs may lose the phase coherence of

the inputs. To increase this coherence, one has to minimize the maximum distance between

the respective integration windows. This means that the windows must be centered: If the

information filter integrates over (t - Tl,t), then the reference filter must integrate over

(t - (T1 + T 2)/2, t + (T 2 - T 1)/2), as in Figure 4.c. This constitutes the second timing form.

The two filter forms above will be referred to as noncentered and centered filters respec-

tively. At the output of the first stage of filtering we have the information signal x(t) and

the reference signal y(t) which are subsequently mixed and lowpass filtered. This mixing is

equivalent to finding the inner product of two signal vectors. The mixed signal is passed

through a lowpass filter which we model as a discrete-time adder after [2]. The output of

this filter is the sum of M samples of its input where the samples are taken with period T1.

It is convenient to employ a complex envelope notation where x(t) = Re(i(t)eji2fct) and

y(t) = Re(y(t)e/ 2 rfct). The complex envelopes are given by

(t) = d -T 1 e dr + L-T nl(r)eJ2 7fc dT (7)

= 2 XT ej() d + jT n2(r)e 2 irftr dr

for the noncentered filter, where d = ±1l depending on the data bit. We have assumed that

fcTi > 1 (i = 1,2) so that the double frequency components do not appear at the integrator
outputs. The centered filter will have the integral limits in y(t) appropriately modified. The

decision variable is then given by Y = "M=I Yk where Yk = Re[i(kTI)~*(kTI)], and the error

probability is Pe = Pr(Y < Old = 1).

Exact calculation of the error probability is complicated by two phenomena. The condi-

tional error probability given the phase noise process 0(t) is the probability that the com-

plex inner product of two Gaussian vectors, [i(kT1 ) : k = 1,2,..., M] and [g(kT1) : k =

1,2,..., M], has a negative real part. The evaluation of this probability is an involved task

even when the entries of the vectors are statistically independent [19]. In our case, how-

ever, [g(kTi)] has dependent entries for K > 1, due to overlapping integration windows at

successive sampling times. A further problem is the removal of the conditioning on phase

noise. Even for the simple case of M = 1, where the second filtering stage vanishes and the

vectors reduce to scalars, one gets a conditional error probability of the same form as (1)

with the arguments containing two correlated random variables that depend on phase noise.

Therefore, the exact calculation of the error probability seems to be infeasible.

The approach we take here for predicting the performance and for finding the optimal

parameters involves two steps. First, we find a Chernoff bound to the conditional error
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probability by taking the correlation of additive noise samples into account. Next, we remove

the conditioning on phase noise by an approximation that will be described in Section 7.

6 The Conditional Chernoff Bound

In this section, we obtain the Chernoff bound to the error probability conditioned on the
phase noise process, and we assess the tightness of the bound by considering some special
cases of our formulation.

6.1 General Development

The Chernoff bound to the bit error probability conditioned on the phase noise process {0(t)}

is given by

Pe(O(t)) Pr(Y < 0 I {((t)}, d = 1) < E (e - y I (t)) s > 0

where the expectation in the right hand side is to be taken over the additive noise samples.
We first obtain this bound for the noncentered filter and then modify it for the centered

filter.

We define the normalized phase noise integrals

X,(k) = ea'(') dt k = 1,...,M, i= 1,2 (8)
-i d(k-1)Ti

which satisfy X 2(k) = K E=1 Xl(k - 1) since T2 = KT1. The sampled bandpass filter

outputs, x(kT1 ) and y(kUT), are conditionally Gaussian random variables with means a(k) -
A T1 XI(k) and /(k) a A2T2 X 2 (k) respectively. The additive noise components of i(kT1) are

2 2

statistically independent, while those of g(kT1) are not independent due to the overlapping

integration windows. In fact, we have

;(kTl) = a(k) + iv-(k)
K-1

g(k~l ) = 8(k) + A, i(k - I)
1=0

where t13(k) = kT()T1 ni(t)ei2 ' fct dt, :(k) = f(k-)T, n 2(t)ei2sfct dt are independent, complex

Gaussian random variables with zero mean and component-wise variance a2 NoT 1 /4.
We define the complex M-dimensional column vectors a, b and W- in the generic form

g = [&(1),..., &(M)]T and the (M + K - 1)-dimensional complex vector z = [z(-K +
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2),..., z(M)]T. The latter vector must be of a larger dimension because of the larger time
span in the reference integrators. Finally, the M x (M + K - 1) matrix A is defined as

1 ifO < j-i < K-1
Aj - 0 otherwise,

hence A is a Toeplitz matrix with K consecutive l's in each row starting with the diagonal
entry.

With these definitions at hand, the decision variable can be written as

Y = Re [(a + +)H(b + Az)]

where the superscript H denotes the complex conjugate transpose. The following lemma

provides the result necessary to obtain the Chernoff bound explicitly.

Lemma: Let x and y be mutually independent, real Gaussian vectors with means

rmi and rm, and covariance matrices A, = a21, Ay = B for some positive definite matrix B.

Then the moment generating function of x-'y is given by

E (exp(-s5T)) = II- s2 2B-l/2 exp ( -smT + M l112 + `T5A-1~)

where a = -snTm + s2oa2 rfm, A = B - 1 - s2a2I, and I denotes the determinant of the

argument.

Proof: Since x has statistically independent elements, it is convenient to first condi-

tion the expectation on 7. Then it is easily observed from the moment generating function
of Gaussian random variables that

E [exp(-sxTy) | y1-expSmr Y

Then the desired expectation is given by

-M/ T1 s2crT 1_ .
(27r) M/2IBV l/2 Jexp (-s T + llii 2- (Y - mr)TB-,(y _ m7)) dy

which can be evaluated by completing the exponent to a quadratic to obtain the desired

result. C

Using the lemma with B = a2AAT and appropriate mean vectors yields the Chernoff

bound as

2P(0(t)) < II-s2a4AATI- ' exp[ Re ( -sa bq-+ 2 ||II

+ 2 -a's2b) H(I- sT 4 AAT)lAAT(a-sa2b))
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The bound is well-defined for s 2
ar

4 Amax(AA T) < 1, where Amax() denotes the maximum

eigenvalue.

We now express the bound in terms of fundamental parameters and random variables.

Using the definition of phase noise integrals in (8) one obtains after some manipulations

2uK -(rt u 2K 2 u 2
P(Xl,X2) < lClexp -M M t2lt (9)

where u = sa2 is the normalized Chernoff bound parameter, C = (I - u 2 AAT)- 1, and ti,

i = 1,2, 3, are given as

tl = Re X)'CX 1

t2 = X 2HCX2

t3 = XHCAATXI

for 0 < u < umax = AmX 2 (AAT). In obtaining (9) we have also used the matrix identity

I + (I-- B)-'B = (I- B)- 1 with B = u2AAT.

We now consider some special cases of the conditional Chernoff bound where its tightness

may be estimated.

6.2 Special Cases for the Chernoff Bound

The formulation of the Chernoff bound can be applied to a variety of specific problems. We

consider three of these problems.

1. Frequency Shift Keying: As explained in Section 5, setting K = 1 in (9) results

in a bound for the conditional error probability of incoherent double filter reception of wide

deviation FSK for which performance results are known. In this case X1 = X 2 = X, and A

becomes an M-dimensional unit matrix. Therefore, the bound simplifies to

Pe(X, K = 1) (1-u2)M exp M( 2) (u2( + 2) - 2u 1)]

with E1 + 62 = f. The optimal power distribution is symmetric, a fact also observed in
Section 5. This distribution results in

P,(X, K = 1) < (1 - U2)M exp [- +uM 0 < 1 (10)

Note that 1Xl112 is now a sum of M independent identically distributed random variables,

and IIX112 /M < 1 is the reduction in SNR due to phase noise [3]. If we further specialize
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to the case of no phase noise, where 11X112 = M, and the optimal value of M becomes 1

resulting in the conventional envelope detector. Thus for phase noise free FSK we obtain
the unconditional bound

P, < min(1-u ) exp( 

which has the same exponential nature e7/ 2 as the true error probability as u -+ . However

since the coefficient also grows with u the bound is not arbitrarily tight as seen in Figure 5
(- = 0 curves). Nonetheless it is still within 0.7 dB of the actual performance for low error
probabilities. Parametric optimization of (11) for >» 1 yields the bound as ~e-U/2/8. (Here
we first find the value of ~ for which u is optimal as ~ = 2u(1 + u)/(1 - u), and we express
the bound in terms of ~ when u _ 1.)

This example shows that Chernoff bound has the potential of retaining the essential
features of the actual performance, e.g. the optimal power distribution, the filter bandwidth
setting, and the rate of exponential decay of the error probability.

2. Single Filter Receiver: Another interesting special case of the Chernoff bound
is the single filter receiver. In this case, A becomes a row vector of K l's, so AAT = K, and

X1 , X2 become scalars. The bound reduces to

Pe(Xl,X 2 ) < (1- Ku 2)-lexp [Ku 2( l lX l l 2 + K1X2
12) -- 2uK ~V' I"Re(Xlx 2)1

In the case with no phase noise, X1 = X2 = 1. Then the optimal value of M is 1. Letting
v = V/Ku, one finds that the value of v that minimizes the numerator of the exponent is

V < -

(1 + K¢2 - 2

with the resulting numerator being -K¢ 1 62/(¢1 + K(2 ). We can bound the denominator and

the leading coefficient using 3 < 1 - (v*)2 < 1 to obtain the bound

Pe • 4exp
3 ( d + K6}

which is to be minimized over ~1, 2, K and M subject to the constraint ~1 + '2 = C . The

minimum occurs with 62 -O 0 and K -+ oo such that K 2 -+ oo. This results in

Pe < 4e-e

which has the same exponential character as PSK performance. The optimal solution cor-

responds to sending no power in the reference signal but getting a perfect local reference,
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which is exactly the case for phase noise free PSK. This example also confirms our expec-

tation that the conclusions reached from the Chernoff bound are likely to correspond to the

actual system.

3. Double Filter DPSK: A final application of our bound is the case of double filter

DPSK. Here we have the current and previous bits replacing the data and reference signals.

Both signals have the same SNR and the filter processing is identical, i.e. ~1 = C2 = g, K = 1.

The reference vector AX2 has to be modified so as to include the time delay as

1I/kT,-T ¢jt(t) dt.X 2(k) = T- e(t) dt .

The conditional Chernoff bound with these parameters is

Pe(XI,X2) < (1 - 2) - M exp 1 - 2 (1 1 2) ReX )]

for 0 < u < 1. If we further specialize to the case with no phase noise we obtain

P, < min(1-u 2)- exp ( - ) (12)
-0<U< 1 + u

which is exactly 3 dB better than the Chernoff bound for FSK in (11), thus retains all the

desirable relations to the actual performance.

7 Chernoff-Jensen Approximation

7.1 Noncentered Reference Filter

The conditional Chernoff bound we obtained in Equation (9) depends on quadratic terms of

phase noisy vectors (X1 and X2. These quadratics have dependent components; therefore we

must know the joint statistics of X)l and X2 to be able to remove the conditioning on the

phase noise process. The statistics of JXl(k) 12 plays a fundamental role in the performance

analysis of incoherent reception of FSK and OOK [2, 3, 4]. In the light of the difficulty of

evaluating the probability distribution of this random variable only, the exact removal of the

conditioning is likely to be an infeasible task. Even in the single filter case the joint statistics

of the random variable pair v/jX1 ± V/2X212 is required to perform the unconditioning.

Therefore we pursue an approximate technique to estimate the performance.

Note that the conditional Chernoff bound is of the form

P (XI, X 2 ) < aexp [f(, X2)]

14



where both the coefficient a and the function f(.) depend on the parameters u, M, K,

(l, and 62. Although evaluating the expectation of the right hand side would effectively

require the complete statistics (moment generating function) of f(.), the expected value of

f(.) can be found with elementary computations. Thus by interchanging the expectation
and exponentiation operators, we can obtain an approximation to the error probability Pe.

This will not result in an upper bound on P, as exp(.) is a convex U function.

A similar approach was employed in [3, 4] to find a lower bound to the error probabil-

ity for envelope detection of FSK and OOK signals. In these cases, the conditional error
probabilities could be found exactly and were convex U functions, thus resulting in Jensen

bounds. It was found that the bounds were very close to more reliable performance esti-

mates. This encourages us to employ the approximation above which will be referred to as

Chernoff-Jensen approximation to reflect both the method by which the conditional bound
is obtained and the method by which the conditioning is removed. It is expected that due to
the optimization of the Chernoff bound and the averaging effect of the double filter structure
the excursion from the true performance will not be significant. It is immediately seen that

Chernoff-Jensen approximation overemphasizes the additive noise by upper bounding its
effect; and underemphasizes the phase noise by taking the phase noisy quadratics at their
means. Therefore, the values of M that will be predicted by our analysis will be smaller
than the optimal values, and conversely the predicted values of K will be larger than the
optimal.

A check of the approximation is the FSK case considered in Section 6.2. From (10), the

approximation yields

PCcj = min(- u2 )-M exp [-1 X(/M)

where X(.) is the mean of the squared envelope 1Xl(k)12 and is given by [20, 21, 3]

X(7) = 4 1[ - -.

This approximation is shown in Figure 5 together with a more reliable performance estimate

from [3]. For each 7 value, the Chernoff-Jensen approximation results in a larger error

probability than the prediction of [3]. It is seen that the two results are in satisfactory
agreement.

Now we apply the Chernoff-Jensen approximation to the double filter transmitted refer-
ence system. The conditional Chernoff bound in (9) requires three expectations to be found,

tf, t2 and tf. Let's define the correlation matrices of the random vectors X1 and X 2 as
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-- H
Hij = EXXij , i,j = 1,2. It is easily seen that the three expectations can be written as

t1 = tr(CH21), t2 = tr(CH2 2 ), t3 = tr(DH1) where C = (I - u2AAT)- as previously

defined, D = CAAT and tr(.) denotes the trace of a matrix5 . The correlation matrices are

computed in Appendix, resulting in the following expressions:

2 _ l(1-a) k i
H11(i, k) = (l -. lk-l-) k i (13)

2. 2_2 (12-e-") k = i

H 22(i, k) = K [e (K l) + (e - 2e4)e( )] < k - i < K

t (1----)2 e-cr(Ik-i-K) Ik -il > K
(14)

'(1 -- e-/)(1 - e-)ea(k - i - ) i < k

H 2 (i, k) = I -(1 - e -a ) [e - (i 'k ) + e- (K - l- ( i- i ) )] O < i - k < K (15)
i-k > K, ,1(1- e-L)(1 - ea)ea( i- k - K) i-k > K

zx A
where a A7rT 1 = T y/2M, iL = ArT 2 = K/2M.

The Chernoff-Jensen approximation is obtained as

2uK ,,, I¢1 ~ (16)
Pe Cl exp [L 2 K 'i(2+ tr(CH2 1) + tr(CH22 ) + U2 tr(DHl) . (16)

This approximation is to be minimized over u, C1, C2, K and M subject to the constraints

1 + ,2z = C, 0 < u < A-/2(AA T), K,M E {1, 2, .} .The results of this optimization will

be discussed in Section 8. First we describe the necessary modification for the performance

of the centered reference filter.

7.2 Centered Reference Filter

The analysis of Section 7.1 needs only minor modifications to be extended to the case of a

centered reference filter which was described in Section 5. The phase noisy reference vector

X2 is now given by

X 2 (k) 1 (k-1/2)T+T 2 /2 e(t) dt
T2 J(k-1/2)Ti-T 2/2

It is convenient to assume that K is odd since this will ensure that the reference integration

window consists of an integral number of chips of the information integration window. Then

5 The Re(.) in tj can be omitted since H2 1 is real as will be seen.
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with K = 2K'- 1, one can write

K'-1

X2(k)= X (k-1)-

The conditional Chernoff bound of (9) remains unchanged because the additive noise struc-
ture is the same. The only change will be in the Jensen approximation due to new correlation
matrices. H 1, is still given by (13) since Xl is not changed. H2 2 is also unchanged and given
by (14) since a shift in the time origin does not affect the correlation between X 2 (i) and
X 2(k). The cross correlation between X1 and X 2 will change however. In fact, this is pre-
cisely the reason we introduced this new filter structure. In Appendix we obtain the new
cross correlation matrix H 2, as

(i - _ _ (l - e) [e-a(K'-1-lk-il) + e(K'-l+lk-il < K'
_121 (i, k CeA (17)
21 (i'k) = , l-(1 - e-)(1 - e-)e- A(Iki- K') k - iI > K' .

Note that H2 1 is symmetric while H 21 was not, this is due to the symmetry of the integration
windows.

Equation (16) will yield the performance for the system with the centered filter with the
substitution of fH21 for H21. We now discuss the performance.

8 Results and Discussions

The Chernoff-Jensen approximation to the bit error probability has been numerically op-
timized over u, (l, 62, K and M subject to the constraints u > 0, (l + 62 < C and

K, M E {1,2,...} for both the centered and noncentered reference filters. The resulting
performance for the noncentered filter is shown in Figure 6 as a function of SNR C for vari-
ous values of the phase noise strength y. The error probability of double filter FSK obtained
by the same approximation is also shown in the same figure for comparison. It is observed
that for y = 0.01 the transmitted reference system has a 2.5 dB advantage over FSK, this
reduces to 1.8 dB for - = 0.1. The advantage of noncentered transmitted reference scheme
over FSK vanishes for -y > 1 as the respective performance curves become identical. This is

because for large values of oy the difference in the bandwidth occupancies of the information
and reference signals is small. Hence the respective filters become identical (K = 1), this in
turn imposes an even power distribution and thus FSK performance.

The performance of the system with a centered reference filter is shown in Figure 7
together with the FSK performance. It is seen that this system has a considerably better
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phase noise tolerance than its noncentered counterpart. For example, there is a distinct

performance improvement over FSK with y = 4.

Figure 8 shows the optimal values for K and M for various values of phase noise strength

y at an error probability of 10-9 , as well as the optimal distribution of power E1/~2. It is seen

that the optimal reference filter bandwidths for the centered system are narrower than those

of noncentered system. Consequently a smaller proportion of the total power is allocated to
the reference signal. The optimal value of K for the centered system is about twice that of

the noncentered one; this is due to the improved correlation between the filter outputs. For
both filter types K becomes 1 with increasing 7 as expected.

The phase noise induced SNR penalties of the two transmitted reference systems with

respect to ideal DPSK are shown in Figure 9. The penalty for double filter FSK, obtained

using the same approximation for consistency, is also shown. For small values of the phase

noise strength y, both reference transmission schemes have considerably better performance

than FSK. While the system with noncentered filter saturates to FSK performance at about

- = 1, the system with centered filter has an improved performance up to y = 12. For 7 = 1,

the centered filter has a gain of 0.8 dB over FSK.

9 Conclusion

The transmission of a reference at an optimal power distribution and a double filter receiver

with optimal filter bandwidths and proper filter structures achieves a performance that is

better than conventional modulation schemes. The performance gain is particularly pro-

nounced when a centered reference filter is used. At the high linewidth to bit rate ratio

regime, Frequency Shift Keying with double filter envelope detection is preferable to a refer-

ence transmission scheme, as the two systems achieve the same bit error probability. At the

low linewidth to bit rate ratio regime, a properly optimized reference transmission scheme

has considerable performance improvement over FSK. As advances in fiber-optic communica-

tion technology brings high speed transmission systems with low linewidth lasers into reality,

the reference transmission scheme described in this paper may achieve performances that

are close to those of ideal Phase Shift Keyed systems. The approach of jointly optimizing

the signaling and receiver parameters may also prove useful in other optical communication

systems impaired by phase noise and other nonideal phenomena.
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Appendix

A Calculation of Correlation Matrices

In this appendix, we obtain the auto- and cross-correlation matrices of the phase noisy vectors
X1 and X2. We start with the autocorrelation matrix of Xl, Hu,. From the definition of
X 1(k) we have

H 1l(i,k) = EXl(i)X(k)

1 iT1 kT 1- E e- j( °
(t)

- 9()) dr dt .
T1 (i-1)T J(k-1)T1

Now using the fact that 9(t) - 9(r) is Gaussian with variance 27r,3it -r, we obtain

Hii(i, k) = iTl kTl ePiti d7 dt .
TH2 (i-1)Tl J(k-1)T1

At this point there are two cases to consider: i = k and i # k. For the first case we get by
symmetry

Hil(i, i) = T e -1 r (t - ) dr dt

2 2(1 e-) (A.1)

where we have defined ac = 7ri3T 1. For i # k, let's first assume i > k. Then

1 /iT1 -f kT,
HIl(i, = I e-itdt I e0 ' dr

T-2 J(i-I)TI (k-1)r~

= (l~ e) i(Ii-ki1) (A.2)

where we have introduced the absolute value in the second line to make (A.2) valid for i < k
by symmetry. Equations (A.1) and (A.2) completely define the autocorrelation matrix Hi
as given in Equation (13).

Now we consider the autocorrelation matrix H 22 of X 2. This can be written as the
following integral

=f e -iTlf) = r1 t- 71 dt dr.
i T-T 2 JkT1 -T 2

For i = k, this is similar to Hu,. Thus substituting T2 for T1 we get

H 22 (i,i) = 2 2 (1 - e-) (A.3)
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where we have defined / = Ka. For the case ji - kI > K, the two integrals split with the
result easily obtained as

H 2 2(i,k) = ( e -c( i - kI - K) . (A.4)

Finally for the case 0 < ji - kl < K, one has to consider the two regions in which the
absolute value in the exponent of the integrand take different values. After a tedious, but
straightforward calculation, one gets

2 k - i I 1 [,-.(K-jk-(-2 /_ 2e -,)e(K-Ik-i,)]H 22(i,k) = 2 (1 K + [ e il(KI + -1 - (A.5)

Equations (A.3), (A.4) and (A.5) define the autocorrelation matrix H22 as given in Equa-
tion (14).

Next we want to calculate the autocorrelation matrix H21. Instead of performing a similar
calculation to that of HIl which would be more involved due to the time overlaps between
the defining integrals, we will recall the relation

1 K-1
X 2 (i) = K Xi(i - 1)

1=0

and write the desired correlation as

1 K-1 1 K-1
H 21(i, k)= 1 E Xl(k) E X-(i = K

I=0 1=0

The result of the above will depend on whether the diagonal entries of Hll enter the sum-
mation or not. When i - k > K, or when i < k, the sum consists of nondiagonal entries
only, while when 0 < i - k < K we have both types of terms in the series. For the case
i - k > K, by using (A.2) we obtain

H 21l(i,k) = e- ) ( i - k- -a )

-= -(1 - e-a)(1 - e-O)e-Q ( i - k - K) (A.6)
aILl

Similarly, for the case i < k one gets

H~l ~..1 1 e-a 2 K-1 i-)

= (-e)(-eA)e(k-i-) 20(A.7)
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For the case 0 < i - k < K, one has the consider how the diagonal entries enter the series.

Since HI1 is symmetric and Toeplitz, we can use the convention H 11 (i, k) = h(li - kl). With

the convention, we can write for the case under consideration

_ .- 1nln n2

H 21(i,k) = K h(0) +2 E h(n) + E h(n)
L n=1 n=ni +1

where nl = min(i - k, K - 1 - (i - k)) and n2 = max(i - k, K - 1 - (i - k)). This yields

H 21(i k) = -- (1 _ - a) [eO-(i-k) + e-(K-1-(i-k))] . (A.8)

Equations (A.6),(A.7) and (A.8) define the cross-correlation matrix H21 as given in Equa-

tion (15).

Finally we want to calculate the cross-correlation matrix 121 for the case of the centered

reference filter given in Section 7.2. Now the reference vector X 2 is defined as

X 2(i) = Xl(i - 1)
I=-(K'-1)

so that the elements of Ht21 are

1 K'-1

H21l(i, k) =K H(ki - 1)
I=-(K'-1)

Note that the only changes from the calculation of H21 are the upper and lower limits of the

defining series. For Ii - kl > K', the series contains only the off-diagonal elements of Hi

and the result is

H 21(i, k) = 1 (1 e-) 2 (K'-

= (1 - e-)(1 - e-)e-(lk-'l-K') . (A.9)

For the case with li - kl < K', an accounting of the terms shows that, with the same

convention as before, we get

1K'-l-{i-k[ K'-l+li-k[

H21 (i, k) = h(O) + 2 h(n) + h(n)
n=l n=K'-li-k 

= -- -(1-ea) [e`(K'-1-i-kI) + e.-a(K'-1+ji-kj) (A.10)

Equations (A.9) and (A.10) define the new cross-correlation matrix as given in Equation (17).
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Figure 1: The IF receiver structure.
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Figure 2: Performance of wideband single filter receiver vs. single filter FSK for y = 6.
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Figure 3: Performance of wideband double filter receiver vs. double filter FSK for '7 = 1 and

7 = 4.
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Figure 4: The timing diagram of the integration windows: (a) The information filter, (b)

Noncentered reference filter, (c) Centered reference filter.
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Figure 5: A comparison of Chernoff-Jensen approximation for double filter FSK (top curve
for each -r value) with the performance given in [3]. The 'y = 0 curves correspond to the
exact error probability and the Chernoff bound for envelope detection of phase noise free
FSK.
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Figure 6: Error probability of transmitted reference system with a noncentered reference

filter as well as that of double filter FSK. For each -y value, the former has a lower error

probability. With y = 4,16, the performance curves are identical.
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Figure 7: Equivalent of Figure 5 with a centered reference filter. Note the performance gain
with 7 = 4.
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7 Noncentered Centered

K M 61/62 K M (e1/62

O 00 1 00 oo 1 o

0.006 24 1 10.7 58 1 19.8

0.01 18 1 8.5 41 1 15.8

0.05 7 1 4.1 15 1 7.1

0.1 4 1 2.8 9 1 4.8

0.5 2 1 1.6 7 3 2.0

1 2 2 1.1 5 4 1.5

2 1 2 1 3 4 1.2

4 1 4 1 3 7 1.07

16 1 10 1 1 10 1

Figure 8: Optimal values of K and M for various values of y at a bit error probability of

10- 9 .
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Figure 9: Phase noise induced SNR penalty for noncentered and centered reference trans-

mission systems as well as double filter FSK with respect to ideal DPSK at Pe = 10 - 9.
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