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ABSTRACJI We study the performance of the unslotted transmission must be received by all stations, and the
ALOHA multiple access protocol in a high speed success of a transmission requires that the space-tirie
bidirectional bus network. For point-to-point utilization of different packets is mutually exclusive.
communications, its maximum throughput is known to be
1/(2e), and independent of the ratio of end-to-end In the conventional analysis of the unslotted ALOHA
propagation delay to packet transmission time. For protocol in bus networks, the spatial properties are
broadcast communications, we show that, if the offered not taken into consideration. Recent work on random
load density is uniform along the bus, the maximum access in bus networks has increasingly focused on
throughput achievable by a station depends on its location space-time properties [4], [5], [6]. Gonsalves and
along the bus. To achieve a uniform throughput density, Tobagi have conducted a simulation study of the
the offered load density has to vary along the bus. We effects of station locations on the broadcast
derive the optimal profile for the offered load density. In performance of Ethernet type bus networks using the
any case, the maximum throughput degrades with the CSMA/CD protocol [7]. They observed that, with
ratio of end-to-end propagation delay to packet stations uniformly distributed along the bus, those
transmission time. near the center of the bus obtain better performance

than those near the ends. Such behavior is due to the
fact that transmissions from stations close to the ends

i I n t r o d u c t i o n of the bus propagate longer on the bus, and are more
vulnerable to collisions than those from stations close

Unslotted ALOHA is a well known random access to the center of the bus. We confirm the above
protocol [1], [2]. Its spatial properties were first behavior analytically for unslotted ALOHA.
studied by Abramson, who analyzed the spatial
densities of throughput and offered load in a packet High speed bus networks have received a lot of
radio broadcasting network with capture [3]. He attention lately [8], [9]. The speed of a bus network is
derived a differential equation relating the often specified by the parameter a, which denotes the
throughput and the offered load densities. He end-to-end propagation delay normalized with respect
provided solutions to two special cases: constant to the average packet transmission time. Many random
offered load density and constant throughput density. access strategies for high speed unidirectional bus
In this paper, we study the space-time properties of networks have been studied by Maxemchuk, who shows
the unslotted ALOHA protocol in a high speed that, in unidirectional bus networks, slotted protocols
bidirectional passive bus network, where are always more efficient than unslotted protocols
transmissions are in the form of packets of constant [10]. It is shown in [11] that this is not the case for
length. We follow an approach similar to that in [3]. point-to-point communications in bidirectional bus

networks.

We distinguish between point-to-point and broadcast
communications. For point-to-point communications, 2 Unslotted ALOHA System
each transmission is designated for only one station,
and the success of a transmission depends on its being We first review the unslotted ALOHA protocol in a
free of collision only where and when the reception is bidirectional bus network, of length D=1, which is
intended. For broadcast communications, each assumed to have perfectly absorbing terminations at

both ends. Let positions on the bus be specified with
*This research was conducted at the Laboratory fr respect to the center of the bus, so that any position x

This research was conducted at the Laboratory for must fall within the range [-1/2, 1/2]. In this paper,
Information and Decision Systems at MIT, under all functions of distance are defined for this range.
contracts with the Defense Advanced Research Without loss of generality, we assume that all packet
Projects Agency (N0014-84-K-0357), the National transmissions are of unit length.
Science Foundation (NSF-ECS-8310698), and the Army
Research Office (ARO-DAAL03-86-K-0171).



Each transmitting station receives an immediate 3 .2 Space-Time Analysis
error-free feedback about the success or failure of its
transmitted packets. If a transmission fails, the A vulnerable region associated with a transmission is
packet is transmitted again after some random delay, the space-time region over which any other packet
independent of past transmissions and other stations. arriving at the network could cause a collision. The
We summarize below the unslotted ALOHA model used size of the vulnerable regions is a limiting factor on
in this paper. the performance of a contention-based protocol. In

general, for a given protocol, the larger the size of the
* Asynchronous transmissions; vulnerable regions, the smaller is the probability of
* Immediate feedback from receiver specifying success of each transmission.

success or failure;
* Offered traffic including retransmissions is 1 E E I?

approximately a Poisson process; Ad D-1· Statistical equilibrium; .-.

· For broadcast communications, each transmission I
must be received successfully by all stations. 

3 Vulnerable Regions time : . ;
( I :: - ;a)

In any contention-based multiple access system, every -: ~ --
transmission is vulnerable to collisions. If there nsioted
were no propagation delay, then the vulnerability of a A 4,
transmission may be characterized by the time
interval over which any other packet transmitted Fig. 1: Conventional Vulnerable Region for
could cause a collision. During this time interval, Broadcast Communications
which is known as the vulnerable period, the given
transmission is vulnerable everywhere on the bus. In In the conventional analysis, as we have reviewed
a bidirectional bus network with propagation delay, above, the vulnerable region for broadcast
the vulnerable periods do not adequately characterize communications in unslotted ALOHA is implicitly
the vulnerability of transmissions because they are assumed to be as shown in Figure 1. The length of this
location dependent. We need to consider vulnerable vulnerable region is 2(1+a) units of packet
regions in space and time, instead of vulnerable transmission time. This time interval is chosen for
periods. the worst case in which the end-stations communicate

with each other.
3.1 Conventional Analysis

The conventional analysis of unslotted ALOHA Em ' i
protocol for broadcast communications is based on the .

assumption of a single receiver, so that a transmission
is successful only if there are no other transmissions
within a vulnerable period of 2(1+a). Let G be the Communications
constant offered traffic rate, in packets per second, time
including retransmissions. Then, the probability of
success is .

Pa = e -2(1+a)G (1) Unsotte
The throughput is given by

-2(l+a)GSa = G e (2) Fig. 2: Conventional Vulnerable Region for
whose maximum with respect to G is Point-to-Point Communications

Sa*= (3)
a* = +a) 2e () In unslotted ALOHA, the vulnerable region for point-

to-point communications is smaller than that for
Note that the maximum throughput degrades with a.

broadcast communications. As shown in Figure 2, the
space-time area of a point-to-point vulnerable region
is always equal to 2, regardless of the value of a. It is



well known in the literature that the maximum throughput depends on the location along the bus. To
throughput of unslotted ALOHA for point-to-point achieve a uniform throughput density, the offered load
communications is e-2 G. density has to vary along the bus. In any case, the

maximum throughput degrades with the ratio of end-
For broadcast communications in unslotted ALOHA, to-end propagation delay to packet transmission time.
the actual vulnerable region for a transmission is
shown in Figure 3. Let Va(x) be the space-time area of Theorem: Consider unslotted ALOHA in a
this vulnerable region. It is easy to verify that bidirectional bus network. Let the position of a given

Va(x) = 2 + a/2 + 2ax2 (4) source station be represented by xE [-1/2, 1/2]. Let
g(x) be the offered traffic rate density at location x,
in packets per second. The throughput density at
location x for broadcast communications is

4 D=1 ' 'Sa(x) = g(x) Pa(x) (5)I ~~Broadcast _where Pa(x) is the spatial density of the probabilityBroadcast
Communications of success. Sa(x) is the solution to the following4! iili :- i -!i i11iii iii!i!:differential equation.

time Sa'(x)g(x) Sa(x) g'(x) - g(x)ha(x) (6)

where

ALOHA -1/2 z) d1 }Unslotted x 1/2ALOHA ha(x) = 2a g(z) dz - ' g(z) (7)
..................... - 1/2 x

Fig. 3: Actual Vulnerable Region for and f'(x) denotes the derivative of a function, f(x),
Broadcast Communications with respect to x.

As shown in Figure 4, Va(x) is symmetric about, and Proof: Let ka(x,z) be the temporal length of the
minimized at, x=0. Hence, we could expect the vulnerable region at location z when the transmission
throughput performance to be a function of x, and is originates at location x. For broadcast
largest in the middle of the bus. communications, as shown in Figure 3,

ka(x,z) = 2(1+alz-xl) (8)
4.0. \ /. The spatial density for the probability of success is

3.5 - \ a=E2.0 /1/2 g
Pa(x) = exp - ka(x,z) g(z) dz (9)

Va(x) -1/2
Taking the derivative of (5), multiplying each side by
g(x), and using (9), we obtain

2~~~~~~~~.5~~~~~ ~1/2

2.0- a Sa'(x)g(x) - g'(x)Sa(x) = g(x)Sa(x) j
-0.5 -0.3 -0.1 0.1 0.3 0.5 -1/2

Fia X (10)
Fig. 4: Area of Vulnerable Region It is easy to verify that

-2a i f x < z
Since Va(x) increases with a, and is less than ka'(x,z) = if x=z
(2+a)-2(1+a), the broadcast throughput of the +2a if x>z
unslotted ALOHA protocol indeed degrades as a It follows that (6) holds with ha(x) defined below.
increases, but more slowly than that under the 1/2
conventional assumption.

ha(x) = f ka'(x,z) g(z) dz
4 Maximum Throughput -1/2

In this section, we evaluate the broadcast throughput = 2a g(z) dz -} g(z) dz (12)
of unslotted ALOHA. We show that, if the offered -1/2 x
load density is uniform along the bus, the maximum

Q.E.D.



We will not derive the general solution to the For any given a>0, we can determine the maximun

differential equation in the above theorem. Instead, throughput Sa*, defined as follows.

we consider two special cases. S { max
Sa* = G tSa(G)j (21)

Case #1: Constant Offered Load Density From (17) and (18), we have the following bounds.

Suppose that g(x) is constant, such that (13) ( S 2e (22)2 e - +a*- 2e
g(x) = G (13) j+a/2

From (7), we have
ha(x) = 4aGx (14) In Figure 5, we show Sa* and its bounds. We have

From (6), (13), and (14), we obtain the following included the result of Case #2 and that of conventional

differential equation. analysis for comparison.
Sa'(X) = -4aGxSa(x) (15)

Case #2: Constant Throughput Density

Solving (15), we obtain the broadcast throughput
density of the unslotted ALOHA as follows.density of the unslotted ALOHA as follows. Suppose that Sa(x) is independent of location, such

that

Sa(x) = Ge -(2+a)G e -2 aG(xl4) (16) Sa(x) = Qa. (23)

Note that for a given G, Sa(x) is minimized at the ends This corresponds to the interesting case where all

and maximized at the center of the bus. It follows stations have the same throughput. We assume that

from (16) that g(x) is symmetric about the center of the bus. Thus,
Ge-(2+a)G < S(x) G -(2+a/2)G 17aigte g(x) = g(-x) (24)

Ge (2+a)G < Sa(x) Ge-(2+a/2)G (17) Taking the derivative of (7) and using (24), we obtain

The total throughput is ha'(x) = 4ag(x) (25)
1/2 From (6) and (23), we have

Sa(G) = [ Sa(x) dx (18) g'(x) = ha(x)g(x) (26)

-1 /2 Taking the derivative of (26), multiplying each side

Note that we have explicitly indicated in (18) the by g(x), and using (25), we obtain
dependence of the total throughput on G. g"(x)g(x) = 4ag3 (x) + {g'(x)12 (27)

Solving the above differential equation, using (24), we

We can write obtain

G G -(2+a/2)G { Kt }1/2 f aG 1/ 2 g(x) b2 b2 sec2(bx) (28)
Sa(G) e er 7 = sec2 (b x) (28)

err g 2x) = 2a cos 2 (bx) 2a

(19) for some constant b.

where erf(*) is the following standard error function:
y Define R as follows.

2 2 R= //(2b) (29)
erf(y) = J e dw (20) Note that g(x) is unbounded if

0 Ixl >R (30)
If b> 7C, then R < 1/2, and (9) implies that Pa(x) 0 

0.20 .. for x E[-1/2, 1/2]. It follows that Sa can only be
Uppefr gBound fzLower Boundo. For a given b, [3] defines the Sisyphus Distance

0.15for gxG fo g(x)=G as the value of x with which g(x) in (28) becomes

Sa*0 g(x)=G unbounded. It does not appear to have any physical
Sa*0.10- < Ax-*by:meaning in this case, as b is an arbitrary parameter.

0.10 In the analysis below, b is always smaller than 7t, so
that R > 1/2.

0.05
Conventional Sa(x)=Qa To evaluate Pa(x), we recall the following identity.

0.00-
0 1 2 3 4 5 C x 1

a Jx sec2 (bx) dx = b tan(bx) + 2 in {cos(bx)}

Fig. 5: Maximum Throughput
(31)
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