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Abstract

A current topic of great interest is the multiresolution analysis of signals and the development
of multiscale signal processing algorithms. In this paper we describe a framework for modeling
stochastic phenomena at multiple scales and for their efficient estimation or reconstruction given
partial and/or noisy measurements which may also be at several scales. In particular multiscale
signal representations lead naturally to pyramidal or tree-like data structures in which each level in
the tree corresponds to a particular scale of representaion. Noting that scale plays the role of a time-
like variable, we introduce a class of multiscale dynamic models evolving on dyadic trees. The main
focus of this paper is on the description, analysis, and application of an extremely efficient optimal
estimation algorithm for this class of models. This algorithm consists of a fine-to-coarse filtering
sweep, followed by a coarse-to-fine smoothing step, corresponding to the dyadic tree generalization
of Kalman filtering and Rauch-Tung-Stiebel smoothing. The Kalman filtering sweep consists of the
recursive application of 3 steps: a measurement update step, a fine-to-coarse prediction step, and a
fusion step, the latter of which has no counterpart for time- (rather than scale-) recursive Kalman
filtering. We illustrate the use of our methodology for the fusion of multiresolution data and for
the efficient solution of "fractal regularizations" of ill-posed signal and image processing problems
encountered, for example, in low-level computer vision.
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1 Introduction

A topic of considerable current interest and activity in the signal and image processing

communities is the development of multiresolution processing algorithms. Much of the

motivation for this has come directly from the fact that many phenomena exhibit dis-

tinctive patterns at multiple scales of resolution. For example fractal models, such as

stochastic processes with 1/f-like spectral characteristics, have often been suggested

for the description of natural scenes and images [2,22,23,25]. Also, transient events

and spatially-localized features can naturally be thought of as the superposition of

fine resolution detail on a more coarsely varying background. A second motivation

for this research is purely computational: many signal analysis problems, especially

those in several spatial dimensions, are of enormous computational complexity, and

thus extremely efficient, possibly highly parallel algorithms are essential. Given the

success of multigrid methods for solving partial differential equations [8,9,31], the

use of pyramidal, multiscale signal representations would seem to offer considerable

promise as a framework for efficient algorithm development.

Multiresolution signal and image representation and analysis methods have been

investigated for some time under a variety of names including multirate filters [41,35],

subband coding [28], Laplacian pyramids [10], and "scale-space" image processing

[38]. However it is the emerging theory of wavelet transforms [14,15,18,20,21,24,29]

that has sparked much of the recent flurry of activity in this area, in part because of

its rich mathematical foundation and in part because of the evocative examples and

research on wavelets indicating that it should be possible to develop efficient, optimal

processing algorithms based on such multiscale representations. The development of

such optimal algorithms- e.g., for the reconstruction of noise degraded signals or for

the localization of transient signals- and the evaluation of their performance requires

the development of a corresponding multiscale theory of stochastic processes that

allows us both to model phenomena and to develop efficient algorithms for their
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estimation and analysis. The research presented in this paper and in several others

[3,4,5,6,11] has the development of such a theory as its objective.

In particular in this paper we introduce a class of multiscale state space models.

The standard time domain versions of these models have, of course, proven to be

of considerable value both because of the extremely efficient algorithms they admit

(such as the Kalman filter) and because rich classes of stochastic phenomena can be

well-modeled using such state space descriptions. As we will see both of these are

also true for our multiscale state models, leading to the possibility of devising novel

and extremely efficient algorithms for a variety of signal and image analysis problems.

The key to our development is the observation that multiscale signal representations,

whether for 1-D time series or multidimensional images, have a natural, time-like

variable associated with them, namely scale. In particular essentially all methods for

representing and processing signals at multiple scales involve pyramidal data struc-

tures, where each level in the pyramid corresponds to a particular scale and each node

at a given scale is connected both to a parent node at the next coarser scale and to

several descendent nodes at the next finer scale.

In 1-D, if the typical scale-to-scale decimation by a factor of two is used, we are

led directly to a dyadic tree data structure. The simplest example of such a data

structure is provided by the Haar wavelet representation in which the representation

of a signal f(x) at the mth scale is given by its average values f(m, n) over successive

intervals of length 2 - m, i.e.

./n2-mf(m,n) = kmn] _ f(x)dx (1.1)
where km is a normalizing constant. In this case each node (m, n) is connected to

a single "parent" node (m - 1, [n]), where [y] = the integer part of y, and to two

"descendent" nodes (m + 1, 2n), (m + 1, 2n + 1), where the fine-to-coarse relationship

among the f(m,n) values is given by an interpolation plus the adding of higher

resolution detail not available at the coarser level.

There are several important points to note from this simple example. The first

is that the model relating the signal representations at different scales consists of a
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local scale-to-scale recursion on the dyadic tree structure of the (m, n) index set.

Secondly, while the fine-to-coarse recursion corresponds to the multiresolution anal-

ysis of signals, the coarse-to-fine recursion, in which we add higher resolution detail

at each scale, corresponds to the multiresolution synthesis of signals. It is the latter

of these, then, that is appropriate for the multiresolution modeling of signals and

phenomena. In doing this, however, we wish to consider a broader class of multiscale

representations than those provided by the Haar transform. In particular we choose

to view each scale of such a representation more abstractly, much as in the notion

of state, as capturing the feature of signals up to that scale that are relevant for the

"prediction" of finer scale approximations. For example the Haar transform recursion

can naturally be thought of as a first-order recursion in scale. However, as we know

from time series analysis, a considerably broader class of analytically tractable models

is obtained if we allow higher-order dynamics, i.e. by introducing additional memory

in scale.

In [3,4] we investigate such an extension by developing a theory of multiscale au-

toregressive modeling. In this paper we develop an alternate and in fact more general

modeling framework by considering vector state space recursive models on the dyadic

tree. As we will see, by doing this we provide a framework that allows us to model

phenomena with multiscale features and to develop extremely efficient, parallelizable

algorithms. Moreover, by adopting this perspective of multiscale modeling we pro-

vide a natural setting not only for dealing with multiscale phenomena and multiscale

algorithms but also with multiscale data. In particular a problem of considerable

importance in a variety of applications (e.g. remote sensing) is the fusion of data

from heterogeneous suites of sensors (multicolor IR, visual, microwave, etc.) which

in general provide information in different spectral bands and at different resolutions.

The framework we describe offers the possibility of modeling such multiresolution

data simply as measurements at different levels in the dyadic tree, resulting in data

fusion algorithms that are no more complex then algorithms for filtering single reso-

lution data. Furthermore since the key to our models and algorithms are recursions

in scale, we obtain essentially the same algorithmic structures for two- or higher-
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dimensional image processing. For example in 2-D our dyadic tree would be replaced

by a quadtree in which each node has 4 descendants rather than 2, resulting in an

increase in computational complexity of a factor of 2 in going from 1-D to 2-D rather

than the usual geometric growth encountered in other multidimensional signal pro-

cessing formalisms. The use of a simple quadtree model of the type described in this

paper has been explored in the context of image coding and reconstruction in [12,33].

The work described here provides a general formalism and machinery for such models

which appears to hold promise for a variety of applications.

In the next section we introduce our multiresolution state space models and per-

form some elementary statistical analysis. In Section 3 we then investigate the prob-

lem of optimal estimation for these multiscale models and in particular develop the

generalization of the Rauch-Tung-Striebel (RTS) algorithm [26], consisting of a fine-

to-coarse filtering sweep followed by a coarse-to-fine smoothing sweep. The fine-

to-coarse sweep, corresponding to a generalization of the Kalman filter to multiscale

models on trees, consists of a 3-step recursion of measurement updating, fine-to-

coarse prediction, and the fusion of information as we move from fine-to-coarse scales.

The last of these 3 steps has no counterpart in standard Kalman filtering, and this

in turn leads to a new class of scale-recursive Riccati equations for the filtering error

covariance. In Section 4 we then illustrate the application of our methodology for the

estimation of both fractal, 1/f-like processes and standard Gauss-Markov processes,

both based on single-scale measurements and based on the fusion of multiresolution

data. In addition we demonstrate the use of our methodology for the efficient solution

of a "fractal regularization" of a motion estimation problem typical of many ill-posed

image processing problems encountered, for example, in low-level computer vision.

For simplicity our entire development is carried on in the context of the dyadic tree

which corresponds to the representation and processing of 1-D signals. As we have

indicated the extension to higher dimensions introduces only notational rather than

analytical or comptutational complexity. This, together with the other examples in

this section point to the potential for this formalism both to provide solutions to a

variety of challenging estimation and data fusion problems and to yield substantial
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savings for many image processing problems. In addition, as we have indicated, the

estimation algorithm developed in this paper leads to a new class of Riccati equations.

In [43] we develop several basic system-theoretic concepts for systems on trees and

use these to analyze these Riccati equations and the error dynamics of the filtering

algorithm on trees developed here.

2 State Space Models on Dyadic Trees

As discussed in the preceding section, the focus of attention in this paper is on

stochastic process and dynamic models defined on the dyadic tree of scale/translation

pairs (m, n) where each value of m corresponds to a particular scale of resolution and

there is a factor of two decimation between any scale and its neighboring scale. The

structure of this tree is illustrated in Fig. 1 where for notational convenience we denote

each node of the tree by a single abstract index t, i.e. t = (m, n), where T denotes the

set of all nodes, and m(t) denotes the scale or m-component of t. In order to define

dynamics on T we need to introduce the basic shift operators on T, which play roles

analogous to forward and backward shifts for temporal systems. In particular, with

increasing m- i.e. the coarse-to-fine direction of synthesis- denoting the forward

direction, we can define a unique backward shift a and two forward shifts a and /

(see Figure 1). In particular if t = (m, n), then ta = (m+1,2n), to = (m + 1,2n+1),

and t7 = (m - 1, [2]). Note that 7 is onto but not one-to-one, as one would expect

of what is basically a fine-to-coarse decimination step, while a and /3, corresponding

to coarse-to-fine interpolation steps, are one-to-one but not onto.

The structure of T naturally admits two alternate classes of scale-recursive linear

dynamic models that are defined locally on T. The first of these is the class of

coarse-to-fine state space models on T:

x(t) = A(t)x(t7) + B(t)w(t) (2.1)

y(t) = C(t)x(t) + v(t) (2.2)
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Figure 1: Illustrating the multiscale structure of the dyadic tree and some notation used in
the paper.
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where w(t) and v(t) are independent, zero-mean vector white noise processes with co-

variances I and R(t), respectively, and x(t) is an n-dimensional, zero-mean stochastic

process. The term A(t)x(tV) in (2.1) represents a coarse-to-fine prediction or interpo-

lation, B(t)w(t) represents the higher resolution detail added in going from one scale

to the next finer scale, and y(t) is the measured variable (if any) at the particular scale

m and location n represented by t. Thus (2.1) represents a natural generalization of

coarse-to-fine synthesis form of the wavelet transform in that we allow additional

memory, captured by the vector x(t), at each scale, together with a general scale-

to-scale linear recursion rather than the particular synthesis recursion arising in the

Haar transform. This form serves as the basis for our multiscale modeling of stochas-

tic processes and also will arise in the coarse-to-fine smoothing sweep of the RTS

algorithm developed in Section 3. In contrast the fine-to-coarse Kalman filtering

step of our RTS algorithm falls into the class of fine-to-coarse recursive models of

the form

x(t) = F1(ta)x(ta) + F2(t/3)x(tf) + G(tca)w(tr) + G(t/)w(t3) (2.3)

which represents a vector generalization of the fine-to-coarse averaging and decima-

tion operation of the analysis form of the Haar transform.

Note that the general models (2.1)-(2.3) allow full t-dependence of all the sys-

tem matrices - e.g., A(t) can vary with both scale and translational position. An

important special case is that in which the system parameters are constant at each

scale but may vary from scale to scale, in which case we abuse notation by writing

A(t) = A(m(t)), etc. Such a model is useful for capturing the fact that data may be

available at only particular scales (i.e. C(m) $ 0 only for particular values of m);

for example in the original context of wavelet analysis, we actually have only one

measurement set, corresponding to C(m) being nonzero only at the finest scale in

our representation. Also, by varying A(m), B(m), and R(m) with m we can capture

a variety of scale-dependent effects. For example, dominant scales might correspond

to scales with larger values of B(m). Also, by building a geometric decay in scale

into B(m) it is possible to capture 1/f-like, fractal behavior as shown and studied in
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[36,37].

The general case of t-varying parameters also has a number of potential uses. For

example such a form for C(t) is clearly required in data fusion problems in which

coarse-resolution, broad coverage data (such as satellite IR images of ocean temper-

ature) are to be fused with sparse but high resolution data (such as from ship-borne

temperature measurements). An example illustrating this is given in Section 4 where

we also encounter the need for full t-dependence in the context of the low-level image

processing problem of motion estimation. Thus in Section 3 we describe the RTS

algorithm for the general t-varying case.

In the remainder of this section we analyze the basic statistics of the model (2.1).

For reasons that will become clear we assume that A(t) is invertible for all t. The

analysis and results we present extend to the case when this is not true, but our

discussion is simplified if we make this assumption. One additional assumption we

make is that w(t) is independent of the "past" of x, i.e. {x(r)lm(r) < m(t)}. Thanks

to the invertibility of A(t), this is equivalent to requiring w(t) to be independent of

some x(ir) with r f t, m(r) < m(t). In this case (2.1) not only describes a scale-

to-scale Markov process, but it in fact specifies a Markov random field on T in that

conditioned on x(t7), x(ta), and x(t/), x(t) is independent of x at all other nodes.l

Finally, let us comment on the domain over which (2.1) is defined. In particular

if we wish to consider representations of signals of unbounded extent, we must deal

with the full infinite tree T, i.e. {(m,n)I - oo < m,n < oo}. This is of interest only

when we consider asymptotic properties such as stability and steady-state behavior.

In any practical application, of course, we must deal with a compact interval of data.

In this case the index set of interest represents a finite version of the tree of Figure 1,

consisting of M + 1 levels beginning with the coarsest scale represented by a unique

root node, denoted by 0, and M subsequent levels, the finest of which has 2 M nodes.

In this case, we simply assume that w(t) is independent of the initial condition x(0)

which is asumed to have zero mean and covariance Px(0).

'Indeed this fact is used in [42] to describe a multigrid-like iterative algorithm for the solution of
the multiscale estimation problem studied in this paper.
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Straightforward calculations, analoguous to those for standard state space mod-

els, yield the second-order statistics of x(t). In particular the covariance Px(t) =

E[x(t)xT (t)] evolves according to a Lyapunov equation on the tree:

Px(t) = A(t)P.(ty)AT (t) + B(t)BT(t) (2.4)

Let KI,,(t, s) = E[x(t)xT (s)]. Let s A t denote the least upper bound of s and t, i.e.

the first node that is a predecessor of both t and s. Then

KIx(t, s) = (t, s A t)Px(s A t)JT(s, s A t) (2.5)

where for m(t1 ) > m(t 2)

='4~~ (tj~ tt~ t = t~2 ~(2.6)
N A(tl)o(tl7, t2) m(tl) > m(t2)

Note that (2.5) differs from the formula for standard state models in which the state

transition matrix appears on either the left or right (depending on whether

t < s or s < t), but not both sides of Px.

In the scale-varying model, i.e. the case in which the model parameters vary in

scale only, if at some scale Px(t) is constant, then this holds at each scale, so that

by an abuse of notation P,(t) = Px(m(t)), and we have a scale-to-scale Lyapunov

equation:

P,(m + 1) = A(m)Px(m)AT(m) + B(m)BT(m) (2.7)

(Note that this is always true if we are considering a finite subtree with single root

node 0). Our covariance, KI(t, s), in this case has the following form.

IKx(t, s) = 4(m(t), m(s A t))P,(m(s A t))(pT(m(s), m(s A t)) (2.8)

where for m1 > m2

= (ml,m2) ml > m2 (2.9)
A(mi)4D(ml - 1,m 2) ml > m 2
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Figure 2(a) depicts the sample paths of a scalar example of such a model with A = .9

and B(m) = 2-m/2,m = 1,...,7, and Px(O) = 1. As we have indicated, the use of

a geometrically-varying noise gain allows us to capture fractal signal characteristics

with commensurately-scaled fluctuations at all scales.

If we further specialize our model to the case in which A and B are constant,

we encounter an interesting notion of stationarity. Specifically if A is stable, then

(2.7) admits a steady-state solution, to which P.(m) converges, which is the unique

solution of the usual algebraic Lyapunov equation:

P, = APXAT + BBT (2.10)

In this case if P,(O) = P,(if we have a root node), or if we assume that P,(r) = P,

for m(r) sufficiently negative, then Px(t) = P, for all t, and we have what we refer to

as a stationary model

I~l(t, s) = Ad(t,sAt) P(AT)d(S~sAt)

= KI(d(t,s A t), d(s, s A t)) (2.11)

where d(tl, t 2) denotes the distance between tl and t 2, i.e. the number of branches

on the shortest path from tl to t 2. Figure 2(b) depicts the sample path of a scalar

example of such a model with A = .9, B = Px(0) = 1.

Referring to Figure 1 we see that the covariance in (2.11) only depends upon the

distances of s and t to their commmon "parent" node s A t, i.e. the finest scale node

that has both s and t as descendents. This yields a notion of self-similarity since,

roughly speaking (2.11) states that the correlation between x(t) and x(s) depends on

the differences in scale and in temporal offset of the nodes t and s. A stronger notion

of shift invariance for stochastic processes on trees is characterized by the condition

that Kx(t,s) depends only on d(s, t), and we refer to such processes as isotropic.

Note that (2.11) represents an isotropic covariance if APx = PxAT, which points to

the connection to the class of reversible stochastic processes[1]. For example in the

scalar case

K (t, s) = { 1 A } Ad(st) (2.12)
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Figure 2: Sample paths for two scalar multiscale models:
(a) Process with A= .9, B(m) = 2-m/2, Px(O) = 1;
(b) Process with A= .9, B=Px(O) = 1
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Note that since d(s, t) = d(s, s A t) + d(t, s At), any isotropic process is stationary, but

the reverse implication is not always true. We refer the reader to [5,6] for a detailed

analysis of isotropic processes and in particular for the development of a theory for

their multiscale autoregressive modeling.

Finally, in our development of smoothing algorithms in the next section we will

encounter the need for fine-to-coarse prediction and recursion. In particular, we

will need to consider the reversal of (2.1), i.e. a model representing x(tT) as a linear

function of x(t) and a noise that is uncorrelated with x(t). To do this, we can directly

apply the results of [34]:

x(ty) = F(t)x(t) - A-l(t)B(t)wz(t) (2.13)

with

F(t) = A-l(t)[I- B(t)BT(t)P-l(t)]

= Px(t`)AT(t)P-l (t) (2.14)

and where

,Zv(t) = w(t) - E[w(t)lx(t)] (2.15)

E[t7(t)1T(t)] = I-BT(t)P -1(t)B(t)

Q(t) (2.16)

In the development of reverse-time models for standard space models the noise

process tb(t) is white in time. In our case the situation is a bit more complex. In

particular tZ'(t) is white along all upward paths on the tree- i.e. zi(s) and tz1(t) are

uncorrelated if s A t = s or t. Otherwise it is not difficult to check that dt(s) and

wlv(t) are not uncorrelated.2 Indeed in the stationary case, wt(t) is also stationary with

correlation matrix K(dl, d 2) that does equal zero if d1 or d2 (but not both) are zero

but that is not zero if both dl and d2 are nonzero.

2In fact zw(t) is a martingale difference for a martingale defined on the partially-ordered tree [39].
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3 A Two-Sweep Estimation Algorithm for Mul-

tiscale Processes

In this section we derive an extremely efficient algorithm for the smoothing of (possi-

bly) multiscale measurement data for our dynamic system (2.1), (2.2) on the dyadic

tree. The algorithm is a generalization of the well-known Rauch-Tung-Striebel(RTS)

smoothing algorithm for causal state models. Recall that the standard RTS algorithm

involves a forward Kalman filtering sweep followed by a backward sweep to compute

the smoothed estimates. The generalization to our models on trees has the same

structure, with several important differences. First for the standard RTS algorithm

the procedure is completely symmetric with respect to time - i.e. we can start with

a reverse-time Kalman filtering sweep followed by a forward smoothing sweep. For

processes on trees, the Kalman filtering sweep must proceed from fine-to-coarse (i.e.

in the reverse direction from that in which the model (2.1) is defined) followed by a

coarse-to-fine smoothing sweep 3. Furthermore the Kalman filtering sweep, using the

backward model (2.13)-(2.16) is somewhat more complex for processes on trees. In

particular one full step of the Kalman filter recursion involves a measurement update,

two parallel backward predictions (corresponding to backward prediction along both

of the paths descending from a node), and the fusion of these predicted estimates.

This last step has no counterpart for state models evolving in time and is one of the

major reasons for the differences between the analysis of temporal Riccati equations

and that presented in the sequel [43] to this paper. As a final remark we note that

our algorithm has a pyramidal structure consistent with that of the tree and thus

has considerable parallelism. In particular such a structure maps naturally onto the

hypercube multiprocessor architecture.

We begin by describing the fine-to-coarse filtering step, in which we recursively

compute the optimal estimate of x(t) based on data in the subtree with root node t

3 The reason for this is not very complex. To allow the measurement on the tree at one point to
contribute to the estimate at another point on the same level of the tree, one must use a recursion
that first moves up and then down the tree. Reversing the order of these steps does not allow one
to realize such contributions.
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(see Figure 3). Specifically, let us define some notation:

Yt = {y(s)ls = t or s is a descendant of t}

= {y(s)I e t(a, 3)*) (3.1)

Yt+ = {y(s)ls E ta(a,/p)* or tf(a,fl)*} (3.2)

(-Jlt) = E[x(.)IYt] (3.3)

(-lIt+) = E[x(.)IYt +] (3.4)

The interpretation of these estimates is provided in Figure 3. We begin by con-

sidering the measurement update step. Specifically, suppose that we have computed

i(tlt+) and the corresponding error covariance, P(tlt+). Then, standard estimation

results yield

x(tlt) = &(tlt+)+ K(t)[y(t)-C(t)x(tlt+)] (3.5)

K(t) = P(tIt+)CT(t)V-1(t) (3.6)

V(t) = C(t)P(tlt+)CT (t) + R(t) (3.7)

and the resulting error covariance is given by

P(tlt) = [I - K(t)C(t)]P(tlt+) (3.8)

Suppose now that we have computed x(taclta) and x(t3ltO/). Note that Yt, and

Yt, are disjoint and these estimates can be calculated in parallel. We then compute

x(tlta) and x(tlt3) which are given by

i(tlta) = F(tcxa)(talta) (3.9)

x(tlt/) = F(t/3)(tIlt/) (3.10)

with corresponding error covariances given by

P(tlta) = F(ta)P(tcaltac)FT (ta) + Q(tc) (3.11)

Q(taC) = A- (ta)B(ta)Q(ta)BT (tcx)A-T(tax) (3.12)

P(tlt3) = F(t3)P(t[lt/)FT (t/) + Q(t3) (3.13)

Q(t/) = A- 1 (tf)B(t/3)Q(t/)B T(tf)A-T(t3) (3.14)
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Figure 3: Representation of Measurement Update and Merged Estimates
I I I I~~~~~~~~~~~~~~~~~~--------
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These equations follow directly from the backward model (2.13)-(2.16).

The third and final step of the Kalman filtering recursion is to merge the estimaters

(3.9) and (3.10), to form x(tIt+):

xi(t t+) = P(t t+)[P-1(t tca)1(t ta) + P-'(t lt3).(tlt/)]

(3.15)

P(tlt+) = [P-l(tlta) + P-l(tlt3) - PJzl(t)]- (3.16)

The interpretation of (3.15), (3.16) is rather simple: x(tlta) (x(tjt/)) is the best

estimate of x(t) based on the prior statistics of x(t) (i.e. it is zero-mean, with co-

variance P,(t)) and the measurements in Yt, (in Yt3); consequently the fusion of

these estimates, as captured in (3.15) and in particular (3.16), must avoid a double-

counting of prior information. A brief proof of (3.15), (3.16) is given in Appendix

A.

Equations (3.5)-(3.16) define the coarse-to-fine Kalman filter for our multiscale

stochastic model. The on-line calculations consist of an update step (3.5), a pair

of parallel prediction steps (3.9), (3.10), and the fusion step (3.15). The associated

Riccati equation consists of three corresponding steps (3.6)-(3.8), (3.11)-(3.14), (3.16)

the first two of which correspond to the usual Riccati equation (in reverse time). The

third step (3.16) has no counterpart in the standard case.

Let us now turn to the smoothing problem, i.e. the computation of x8 (t), the

optimal estimate of x(t) based on all available data. As in the usual RTS algorithm,

this requires focusing on a compact data set, here corresponding to a finite subtree

with root node 0 and M scales below it. The initialization of the Kalman filter in

this case at scale m(t) = M is given by x(tlt+) = 0,P(tlt+) = P,(t). Once the

Kalman filter has reached the root node at the top of the tree, we have computed

s,(0) = x(010), which serves as the initial condition for the coarse-to-fine smoothing

sweep which also has a parallel, pyramidal structure. Specifically, suppose that we

have computed &8(tV). This is then combined with the fine-to-coarse filtered estimate

x(tjt) to produce x,(t):
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s(t ) = x(t t) + J(t) [si8(t7) - i(t7It)] (3.17)

where

J(t) _ P(tlt)F(t)P- (talt) (3.18)

We also have a coarse-to-fine recursion for the smoothing error covariance, initialized

with P,(O) = P(010):

Ps(t) = P(tlt) + J(t)[P,(t7) - P(t7lt)]JT (t) (3.19)

Equations (3.17)-(3.19) are of exactly the same form as the usual RTS smoothing

sweep, although the derivation, which is described in Appendix B, is somewhat more

involved.

4 Examples and Applications

In this section we provide several illustrations of the application of the estimation

framework described in this paper. The purpose of the first subsection is to demon-

strate that the highly parallelizable estimation structure we have developed can be

succesfully applied to a rather rich class of processes extending well beyond those that

are precisely of the form generated by our tree models. In the second subsection we

present examples of the fusion of multiresolution data which the algorithm of Section

3 accomplishes with essentially no increase in computational complexity as compared

to the processing of single scale data. Finally in Section 4.3 we examine a 1 - D

version of the computer vision problem of motion estimation, illustrating that the use

of a slight variation on standard formulations, involving a "fractal prior" obtained

from a tree model, yields excellent results while offering substantial computational

advantages. In particular, while all of the examples in this section are 1 - D, they all

can be extended to 2 - D, in which the potential computational savings can be quite

dramatic.
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4.1 Smoothing Gauss-Markov and 1/f Processes

In this section we consider smoothing problems for two stochastic processes, neither of

which exactly fits the tree model used in this paper. The first of these is a discrete-time

first-order Gauss-Markov process, i.e. a stationary time series given by the standard

first-order differnce equation

X,+l = ax, + Wn (4.1)

where, for simplicity, we normalize the variance of xn to a value of 1, so that the

variance of the white noise sequence Wn is (1 -a 2 ). For our example we take a = .9006,

a value arrived at by sampling and aliasing considerations [42]. We consider the

following measurements of xn.

Yn = xn + vn, n=0,... ,N- 1 (4.2)

where v, has variance R so that the SNR in (4.2) is R- 2 . In the examples that follow

we take N = 128.

As developed in [7,11,17] while the wavelet transform of {xnjO < n < N - 1}

does not yield a completely whitened sequence of wavelet coefficients, it does accom-

plish a substantial level of decorrelation, -i.e. the detail added to the approxima-

tion at each scale is only weakly correlated with the coarser-scale approximation.

Furthermore, decorrelation is improved by using wavelets of larger support-and in

particular those with increasing numbers of vanishing moments [7,14] -, suggesting

a wavelet-transform-based estimation algorithm developed in [11,42]. It also provides

the motivation for the example presented here in which we smooth the data in (4.2)

using a model for x, as the finest level process generated by a scalar model of the

form (2.1), (2.2), where in this case the data (4.2) corresponds to measurements only

at the finest level of the tree. In particular we have considered two scalar tree models,

the first being a constant parameter model in steady-state

x(t) = ax(tf) + w(t) (4.3)
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with w(t) having variance equal to p(l - a2), where p is the variance of x(t). In our

example in which the length of the signal x, is 128, the model (4.3) evolves from the

root node to level m = 7, at which we obtain our approximate model for x, and at

which we incorporate the measurements (4.2).

A second model that we considered has the property that its fine-scale variations

have smaller variance than its coarser-scale variations. In particular, as developed in

[16,32,36], fractal-like processes which have spectra that vary as 1/f' for some value

of /, have wavelet variances that decrease geometrically with m. Thus we consider a

variation on the model (4.3):

6m(t)

x(t) = ax(t) + 2- 2 w(t) (4.4)

where 6 controls the scale-to-scale geometric decay in the variance of the noise term,

w(t) has unit variance, and the variance of the initial condition, x(O), at the top of

the tree is p0.

Models of this type were used to design suboptimal estimators for the Gauss-

Markov process (4.1) based on the data (4.2) at several different SNR's. Figure 4a

illustrates a sample path of (4.1) and data (4.2) at SNR = V2, while Figure 4b

compares the Gauss-Markov sample path to the optimal estimate using a standard

optimal smoothing algorithm for the model (4.1). To compare this optimal perfor-

mance to that of algorithms based on the tree models (4.3), (4.4) we define a metric for

comparison based on error variance reduction. Specifically, if p is the prior variance

of a process, and p, is the error covariance of any particular smoothing algorithm,

then the variance reduction percentage achieved by this smoother is

Po Ps (4.5)
po

Then if po denotes the value of p for the optimal smoother and Ps denotes the value

for a suboptimal estimate, we define the following performance degradation measure:

A = Po - P (4.6)

Po



3

2

22~~~~~~~n ,

1~~~~~~~~~~~~~~~~~~1j , ,
I! ~1t~

I
I I Il I 

-2 -~~~~~~~~~~~ 

93 ; 9

time~\ I I I\ I r r ri i

) 6
I~~~~~~~~~~~~~~~~~~

a>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~, i 1 

a~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i il Ill II II 1 % fl
'r r II 1 I' I/A~1 I 

ILI ~ ~~ ~ ~~ " ,'I/ (I ,/I ,,l ',t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~9 9I( 9 I 

,1 '.'I
IiI

& , I I '

'30

Ejare~~~2 44) Sampl Pat of3 1a. SttoayGusMakvPoes(old0n t os-~~~ /

.]. , I r 

I,~~~~~~~~~ /,

I....I I 

~3

0 20 40 60 80 100 120 140

time

Measurement with SNR = 1.4142 (dashed); (b) the same Gauss-Makov sample path (solid)

and its smoothed version using the optimal smoother for the Gauss-Markov model.~~~~~99~~~~~ ~ 9999
99 i999 9

999 9 ' 9I '' 99 9-1r ji 9 99 9

iir
-2~~~~~~~~~~~~~~~~~~~~~~~

I~~~~~~~~~~~~~~~~~~I

I~~~~~~~~~~~~~~~~~ 9 

1~ ~ ~ ~ ~~ ~~~~~~~~~~~~~~~~\ 9.

-rC!~~~~~~~~~~~~9 9 9'' -

-2~~~~~~~~~~~~~~~~~ 9 99 

3~~~~~~~~~~~~~~~ 

o~~~~~~~~~~~~~~~~~~~~~ ~ 90 90 9 9010 rz 

9 9 9 9m

9 - 9/b

-lcur -()Sml aho ttoayGuk~ro rcs sld n t o
Meaurmet it SR .442(dshd) () hesae aus-akv amlepa9 /9id

Fndigur 4(a):he Sape Pathof asn Stationary moter GaussMro rcss (old)and It Noisy



4 EXAMPLES AND APPLICATIONS 17

Model (4.3) Model (4.4)
SNR= 2.8284 1.11% 1.08 %
SNR= 1.412 3.55 % 3.31 %
SNR = .7071 7.59 % 6.88 %
SNR = .5 10.52 % 9.15 %

Table 1: Performance Degradation Comparison for Tree Smoothers Based on Models
(4.3) and (4.4)

For each SNR considered and for each of the models (4.3), (4.4) we chose the model

parameters (a and p for (4.3) and a , po, and 6 for (4.4)), to minimize the corresponding

value of A. Table 1 presents the resulting values of A, expressed in percentage form,

indicating that estimators based on these models achieve variance reduction levels

within a few percent of the optimal smoother. 4 This is further illustrated in Figure

5 in which we compare in (a) the optimal estimate at SNR = V'2 for a tree smoother

based on the model (4.4) with the original sample path. In Figure 5b we compare the

estimates produced by the optimal filter (Fig.4b) and that of Fig.5a, providing further

evidence of the excellent performance of our estimators. One should, of course, ask

why this is significant, since we already have optimal smoothing algorithms for Gauss-

Markov processes. There are at least three reasons: (1) the tree algorithms, with their

pyramidal structure, are highly parallelizable; (2) as we will see in the next section,

these algorithms directly allow us to fuse multiresolution data; and (3) perhaps most

importantly, these same ideas extend to 2 - D data where the computational savings

over previously known algorithms should be substantial.

As a second example we consider smoothing for a 1/f-like fractal process of the

type developed in [36]. Specifically as shown in [36], we can use the synthesis form of

the wavelet transform to construct processes possessing self-similar statistical prop-

erties and with spectra which are nearly 1/f by taking the wavelet coefficients to be

4 Note that the increasing size of A with decreasing SNR is due for the most part to the decrease
in the denominator of (4.6), i.e. at low SNR's only minimal variance reduction is achieved by any
estimator.
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white and with variances that decay geometrically at finer scales. In Figure 6a we il-

lustrate the sample path of such a process using the 4-tap wavelet filter of Daubechies

[14], as well as noisy data with an SNR of v'. In this case the scale-dependent geomet-

ric decay in wavelet coefficient variances is 2 -m, yielding a 1/f 3 spectrum with f = 1.

In Figure 6b we illustrate the optimal estimate in this case. As developed in [11,37]

this optimal estimator can be implemented by taking the (4-tap) wavelet transform

of the data and then filtering each wavelet coefficient separately (taking advantage

of the fact that the wavelet transform yields the Karhunen-Loeve expansion for the

data). In Figure 7a we illustrate the result of smoothing the noisy data of Figure 6a

based on a tree model of the form of (4.4), and in Figure 7b we compare this estimate

to the optimal estimate of Figure 6b. The average performance degradation of the

tree smoother is only 2.76%, although, as indicated in Figure 7, the tree smoother

appears to do better over certain portions of the signal, indicating that our models are

well-suited to capturing and tracking 1/f-like behavior. Again given the existence of

effective optimal algorithms [11,37], there is the natural question of why we should

bother with the tree-based algorithm in this case, especially since these methods are

very efficient, the methods of [11] can be applied to multiresolution data, and they

can be extended to 2 - D. The reason is that, for these wavelet-transform-based

methods to apply, it is necessary that the identical type and quality of measurement

be available along each scale (i.e. C(t) in (2.2) must only depend on m(t)). In the

next two sections we encounter important examples in which this is not the case, and

thus the methods of [11,37] are not applicable, but our tree-based methods are.

4.2 Multiresolution Data Fusion

In this section we illustrate the application of our tree-based smoothing algorithms to

the fusion of multiresolution data. While we could provide examples in which data are

available at all nodes at several levels of the tree and such examples are presented

in [11,42] using wavelet-transform-based algorithms- we focus here on examples to

which neither standard smoothing algorithms nor wavelet-based methods apply. In

particular we consider an example in which we wish to fuse fine-scale data of limited
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coverage with full coverage coarse-scale data. Problems of this type arise, for example,

in atmospheric or oceanographic sensing in which both broad coverage satellite data

and sparse point measurement data (e.g. from surface measurement stations) are

available.

Consider first the Gauss-Markov process of Figure 4a where we assume that only

50% of the data in this figure are available, corresponding to the 32 data points at

each end of the data interval. In Figure 8a we illustrate the optimal tree-smoothed

estimate based on the model of (4.4) and using only this limited data set. In contrast,

in Figure 8b we display the optimal tree-smoothed estimate based on the fusion of

the limited fine-scale data with a full set of high quality measurements at a level

two scales coarser (i.e. where there are 32 points rather than 128). Note that in

addition to providing information that guides the interpolation of the fine-scale data,

the coarse data also provides information that allows us to remove offset errors in

regions in which noisy fine scale data are available. By using the multiscale covariance

equations of Section 3 we can quantify the value of such coarse data, as illustrated in

Figure 9 in which we display the variation of performance with the level at which the

coarse data is available. We refer the reader to [42] for other examples, including for

the 1/f process of Figure 6.

Finally, let us comment on the measurement model for the coarse-level data in the

example depicted in Figure 8b. In particular, the coarse data used in the example

of Figure 8 were noise-corrupted measurements of 4-point averages of the fine-level

process x,. Note that using the model (4.4) we can view these as measurements

two levels higher in the tree. For example, from (4;4) it is straightforward to see

that the average of x(tac2), x(tca3), x(t/acr) and x(t3 2) is a scaled version of x(t)

corrupted by the noises w(tcx), w(t3), w(tcr2 ), w(tca3), w(t/a), and w(tf 2 ). From

this it is straightforward to obtain a model for the coarse measurements in which

the measurement noise also reflects finer-scale process fluctuations captured by the

w's. Note that to be precise, this noise is correlated with the finer level data, and

thus a truly optimal tree-based smoother would need to account for this via state

augmentation. However the result presented in Figure 8b was generated using a tree-
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based smoother that neglected this correlation. As the quality of the result in the

figure indicates, excellent performance is achieved with this simplification.

4.3 Motion Estimation

In this section we illustrate the use of our tree model in order to provide statistical

regularization for a 1 - D version of a representative problem arising in computer

vision, namely that of estimating optical flow, i.e., motion in the image frame that

is apparent from observation of the temporal fluctuations in the intensity patterns in

an image sequence. Regularization methods are common in many computer vision

problems such as optical flow estimation and in other contexts including many inverse

problems of mathematical physics, and the approach described in this section should

prove to be of considerable value in many of these as well as in full 2 - D and

3 - D image analysis problems. In particular the usual "smoothness" regularization

methods employed in many problems lead to computationally intensive variational

problems solvable only by iterative methods. By adoptimg a statistical perspective

and by modifying the regularization slightly, we obtain a formulation exactly of the

form of our tree smoothing problem, leading to non-iterative, highly parallelizable

and efficient scale-recursive solutions.

The results in this section focus on a ID version of the problem as formulated

in Horn and Schunck[19]. Let f(x,t) denote a 1-D "image sequence", i.e. for each

t, f(x,t) is a function of the 1-D spatial variable x, representing image intensity

variations with space. The constraint typically used in gradient-based approaches to

motion estimation is referred to in the literature as the "brightness constraint"[19],

and it amounts to assuming that the brightness of each point in the image, as we

follow its movement, is constant. In other words, at each time t the total derivative

of the image intensity is zero, i.e.

= 0 (4.7)dt

This equation can be rewritten as follows.

aOf Of aOxaf fax= 0 (4.8)
Tt Ox at
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The quantity ax is referred to as the optical flow, which we denote as the spatial

function, v(x), and it is this quantity which we would like to determine from observ-

ing f(x, t) sequentially in time. That is, at each t we assume that we can extract

measurements of the temporal and spatial derivatives of f(x, t), and we then want

to use these, together with (4.8), to estimate the velocity field v(x) at this instant in

time.

We rewrite eq.(4.8) as

y(x) - c(x)v(x) (4.9)
Ofy(x) = (4.10)

Of
c(x) = 0x (4.11)

The following is the optimization problem formulation of Horn and Schunk [19]

for determining v(x).

· cl(~~~~>= v JI }'dx (4.12)

The second term in the cost function, 11d112, is referred to as the "smoothness"

constraint as it is meant to penalize large derivatives of the optical flow, constraining

the solution to have a certain degree of smoothness. In the standard 2-D image

processing problem v(x) is a 2-D velocity vector field, 'f is the 2-D gradient of image

intensity, and, the brightness constraint (4.8) provides a scalar constraint at each

spatial location for the 2-D vector v(x). In this case the optical flow problem is

ill-posed, and the smoothness penalty makes it well-posed by, in essence, providing

another (noisy) constraint in 2-D. The other purposes of the smoothness constraint is

to reduce the effects of noise in the measurement of the temporal and spatial gradients

and to allow interpolation of motion over regions of little or no contrast, i.e. regions

where c(x) is zero or nearly zero. In our 1-D problem, we do not have the issue of

ill-posedness, so that the role of the smoothness constraint is solely for the purposes

of noise rejection and interpolation in areas of zero or near-zero intensity variations.

Note that computing v(x) in (4.12) is potentially daunting as the dimension of v(x)

is equal to the number of pixels in the image.
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As in Rougee, et al [27] the optimization problem in (4.12) can be interpreted

as a stochastic estimation problem. In particular the smoothness constraint can be

interpreted as the following prior model on v(x).

= w(x) (4.13)dx

where w(x) is a 1-D white noise process with unit intensity. The estimation problem

equivalent to (4.12) consists of estimating v(x) based on the following observation

equation.

y(x) = c(x)v(x) + r(x) (4.14)

where r(x) is white noise with intensity y- 1. Henceforth, we refer to (4.13),(4.14) as

the standard model.

Let us now examine the particular prior model (4.13) associated with the smooth-

ness constraint. In particular we see that v(x) is in fact a Brownian motion process,

i.e. a self-similar, fractal process with a 1lf 2 spectrum. For this reason (4.12) is

sometimes referred to as a "fractal prior". Given that the introduction of this prior is

simply for the purposes of regularization, we are led directly to the idea of replacing

the smoothness constraint model (4.13) by one of our tree models. Since in 2-D, so-

lution of (4.12) corresponds to solving coupled partial differential equations [19], the

use of a tree model and the resulting scale-recursive algorithm offer the possibility of

substantial computational savings.

Let us consider a simplified, discretized, version of this problem, i.e. where f(x, t)

is observed only at integer values of x and t. In this case we need to approximate 2f

and L. For simplicity in our discussion, we consider the following finite difference

approximations of these partial derivatives.

of
tf Ix,t f(x,t + 1) - f(x,t) (4.15)

of lx,t (f(x + 1, t) - f(x - 1, t))/2 (4.16)

Obviously these rather crude approximations will lead to distortions (which we will see

here), and more sophisticated methods can be used. In particular, as discussed in [41],
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the highest velocity that can be estimated depends both on the temporal sampling rate

and the spatial frequency content of f(x, t). In particular, low-pass spatial filtering

of f(x, t) not only is useful for the reduction in noise in the derivatives (4.15), (4.16)

but also in allowing the estimation of larger inter-frame spatial displacements via the

differential brightness constraint (4.8). As we are simply interested in demonstrating

the promise of our alternate formulation, we confine ourselves here to the simple

approximation (4.15), (4.16).

We assume that our image is available at two time instants, t and t + 1, where

each image is uniformly sampled over a finite interval in space; i.e. we have f(i,t)

and f(i,t + 1) where i E {0,1,2,...N - 1}. The discretized smoothing problem for

our standard model is as follows.

v(i + 1) -v(i) = w(i) (4.17)

y(i) = c(i)v(i) + r(i) (4.18)

c(i) = f(i + 1, t) - f(i, t) (4.19)

where the white noises w(i) and v(i) have intensities 1 and -1i, respectively. The

solution to this smoothing problem is given by

V = (L + - -1CTC)-1(8-1CT)y (4.20)

where i is the vector of velocity estimates for all i, y is the vector of measurements,

and

c(O) 0 ... ... 0

0 c(1) 0 ... 0

C = . . (4.21)

0 ... c(N- 3) 0

o ... 0 c(N-2)
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and
1 -1 0 ......... 0

0 -1 2 -1 ...... 0

I=C . . ] (4.22)

0 ... ... 0 -1 2 -1

0 ... ... 0 -1 1

Note that the matrix £, which is a discrete approximation of the operator d-2, is a

result of the prior model we have chosen.

The multiscale model we use as our prior model for v(x), as an alternative to our

discretized standard model, is the tree model, (4.4) where t indexes the nodes of a

finite tree with N points at the bottom level. Thus, the covariance P(O) of this zero-

mean process at the bottom level of the tree is specified entirely by the parameter

vector 0 = [a,p0 ,y, b]. To choose the parameters of our tree model so as to yield

an approximation to the standard model, we fit the information matrix of our tree

process, P-l(0), to £ by minimizing the matrix 2-norm of the difference between L

and P-1(0).
argmin

Ofitted = 0 IL- P 1 (0) 2 (4.23)

In comparing the performance of the multiscale smoother with the performance

of the standard regularization method, we need a way of normalizing the problem.

We define the following quantity, which can be thought of as the ratio between the

information due to measurements and the information due to the model.

& trace(/CT C) (4.24)
trace(Z)

where I is either L or P-l(O). For our examples, we vary r by varying /,

Figure 10 shows snapshots of the image of a translating sinusoid at times t and

t + 1, while Figure Ila shows the result of estimating v based on standard regu-

larization for r = 1,.1,.01, and Figure Ilb shows the result of estimating v based

on our tree smoother for F = 1,.1,.01. The true value of v is a constant equal to

3. The substantial deviations from the value of 3 are due to the inaccuracy of the
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approximations (4.15), (4.16). Note that the two approaches yield similar results. In

fact for all three values of F our tree smoother actually performs better. As we would

expect by decreasing F, i.e. decreasing the weight p of the measurment term in the

cost function, the effect of the approximation error in (4.15), (4.16) is reduced, and

smoother estimates result. Figures 12a and b show similar behavior when the data

of Figure 10 is observed in noise. Again the performance is somewhat better for the

tree model, but this is not our main point. Rather, what we have shown is that com-

parable results can be obtained with tree-model-based algorithms, and, given their

considerable computational advantages, they offer an attractive alternative worthy of

further development.

5 Conclusions

In this paper we have developed a new method for the multiresolution modeling of

stochastic processes based on describing their scale-to-scale construction using dy-

namic models defined on dyadic trees. As we have seen, this framework allows us to

describe a rich class of stochastic processes and also leads to an extremely efficient

and highly parallelizable scale-recursive optimal estimation algorithm generalizing the

Rauch-Tung-Striebel smoothing algorithm to the dyadic tree. This algorithm involves

a variation on the Kalman filtering algorithm in that, in addition to the usual mea-

surement update and (fine-to-coarse) prediction steps, there is also a data fusion step.

This in turn leads to a new Riccati equation, which we analyze in detail in [43] using

several system-theoretic concepts for systems on trees. We have also illustrated the

potential of this iilmework in providing highly parallel algorithms for the smoothing

of broad classes of stochastic processes, for the fusion of multiresolution data, and for

the efficient solution of statistically regularized problems such as arise in computer

vision.

We believe that this framework has considerable promise, and numerous direc-

tions for further work suggest themselves. In particular the extension and application

of these ideas in 2-D offers numerous possibilities such as for the motion estimation
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problem described in Section 4. Also, there are several reasons to believe that our

tree models can be used to describe a surprisingly rich class of stochastic processes.

For example, a recent extension of wavelet transforms is the class of so-called wave

packet transforms [13] in which both the fine resolution and coarse resolution features

are subject to further decomposition. These correspond, in essence, to higher-order

models in scale and thus correspond to higher-dimensional versions of our state mod-

els. These and a variety of other examples offer intriguing possibilities for future

investigation.
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A Appendix

In this appendix we verify the formulae (3.15), (3.16) for the fusion of the estimates

N(tlta) and x(tlt/i) to produce x(tlt+). By definition

x(tjt+) = E[x(t)lYt, Yta] (A.1)

But from our model (2.1),(2.2) we can decompose Yt, and Yta in the following way.

Yt, = Mt, (t) + 1 (A.2)

Yt3 = Mtpx(t) + 2 (A.3)

where the matrices Mt, and Mta contain products of A(s), rn(s) > m(t), and the

vectors (l and 62 are functions of the driving noises w(s) and the measurement noises

v(s) for s in the subtrees strictly below ta and to, respectively, the latter fact implying

61 _ 62. Let Rt, and Rt, denote the covariances of (l and 62, respectively. Then,

rewriting (A.2), (A.3) as

y = X x(t) + (A.4)

where

XH [ 1ME ' ET (A.5)

and x(t) - E, we can write the optimal estimate of x(t) given y in the following way:

P(tlt+) = [P;-(t) + H.TR- l]-i

= [P'l(t) + MT R -'Mt. + MtTp+t -RMt] 1

(A.6)

.x(tjt = P(tlt+)H7- 'y = P(tjt+)[MitRt-Ytc + Mt;Rt-7YtIo] (A.7)

Similarly

x(tltC) = P(tlct)MtiTRtlYta (A.8)

where

P(tlta) = [P,-'(t) + MTRjt-Mt]j' (A.9)

and analogous equations hold for x(tlto) and P(tlt3). Eqs. (3.15), (3.16) then follow

immediately from (A.6)-(A.9).
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B Appendix

In this appendix we verify the RTS smoothing recursions (3.17)-(3.19). The key to this

is the following orthogonal decomposition of YO (i.e. the full set of all measurements

at every node on the tree). Specifically, for each t, Yt, is given by (3.1), and we let Yt-

denote all the remaining measurements. Viewing these as vectors we define

vtlt = Yt-- E[Yt-IYt] (B.1)

so that Vtlt I Yt and the linear span of the set of all measurements, is given by

span Yo = span {Yt,YT} = span {Yt,vtlt} (B.2)

Then

xs(t) = E[x(t)lYt,vtlt]

= x(tlt) + E[x(t)lvtlt] (B.3)

If we write x(t) as

x(t) = i(tlt) + g(tlt) (B.4)

and note that

i(tlt) l Vtlt (B.5)

then we can write the following.

xs(t) = x(tjt) + E[x(tlt)lvflt] (B.6)

Using the same argument on xs(tv) allows us to write

.s(tff) = x(tflt) + E[x(t5lt)Ivt-t] (B.7)

Suppose the following equality were to hold.

E[x(tlt)lvtlt] = L(E[x(t7lt)lvqflt]) (B.8)

where L is a matrix. Then (B.6) and (B.7) could be combined to yield

x,(t) = 5(tlt) + L [ 8(tVy) - x(tflt)] (B.9)
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We now proceed to show that (B.8) indeed holds and compute explicitly the matrix

L. We begin with the following iterated expectation.

E[|(tlt) IJvt] = E[E[:(tjt)l (t7lt ) , vot] lVft] (B.10)

We now examine the inner expectation, E[i(tlt)ix(tlIt), vlt], in detail. In particular
note that Yt- corresponds to measurements at all nodes outside of the subtree with

root note t - i.e. at all nodes including tVy and extending from it in either of the

two directions other than toward t (i.e. toward t72 or toward tS-see Figure 1). Any

such node is connected to t7 by a backward segment (of possibly zero length) moving

back to tyr for some r > 0, followed by a forward segment moving down the other

portion of the tree (i.e. a path of the form ta, t 2, . - , t r-l, t-, t7-lS, tyr-l&6, . .).

By using the backward dynamics (2.13)-(2.16) for the backward portion of any such

path and the forward model (2.1) for the forward segment, we can express x(s) for

any s for any s outside the tree as a linear combination of x(ty), backward white

noises W = {iw(tYr) r > 0} and forward white noises W = {w(s)lsetT7*6{(,/ }*}.

Then, letting V denote the vector of measurement noises for YT, we have that Yt has

the following form

Yt = Llx(t7) + f(W, W) + V (B.11)

where f is a linear function of its arguments. Note that by construction W and W

are orthogonal to x(tf) and to everything beneath x(tf). The same is trivially true

of V. Thus, in particular f(W, W) + V I Yt, and substituting (B.11) into (B.1) then

yields

vtlt = Llx(tlyt) + f(Wl, W) + V (B.12)

From this, together with the fact that f(W, W) + V I J(tlt), x(tflt), yields

E[x(tlt) I[(tVlt), vflt ] = E[x(tlt)[-(tVlt)] (B.13)

But by using (2.13) and (3.9) (in the latter of these with tca - t and t - ty) we find

that
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where J(t) is given by (3.18). This, together with (B.10) then yields

E[x(tlt)jlvt] = J(t)E[~(t~7lt)[lvt] (B.15)

This together with (B.8) and (B.9) then yields t7 (3.17).

Finally, we can now easily derive a recursion for the smoothing error. Let

xs(t) = x(t) - :s(t) (B.16)

Subtracting x(t) from both sides of (3.17) and rearranging terms we get

;s(t) - J(t)s(tV) = i(tlt) - J(t):(tvlt) (B.17)

By multiplying both sides of (B.17) on the right by its transpose and taking expec-

tations, we get

Ps(t) + J(t)E[.s(t7)s '(t5_)]J T (t) = P(tlt) + J(t)E[x(tV7t)52T(tVJt)]JT (t)

(B.18)

Ps(t) = E[[~5(t)~T(t)] (B.19)

where we have relied on the fact that

E[..(t)_'(ty)] = 0 (B.20)

E[x(tlt)xT(ttlt)] = 0 (B.21)

And finally, since

E[s(t7)T(t p)] = Px(t7V) - P(t7) (B.22)

E[x(tylt)5T(t7 It)] = P(ty)-P (t lt) (B.23)

we obtain (3.19).
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