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Abstract

In this paper we broadly generalize the assignment auction algorithm to solve linear minimum cost network

flow problems. We introduce a generic algorithm, which contains as special cases a number of interesting

algorithms, including the c-relaxation method, the auction algorithm for transportation problems, a new

network auction algorithm, and a new algorithm for the k node-disjoint shortest path problem. We provide

a broadly applicable complexity analysis of the generic algorithm, and we demonstrate the performance of

various special cases of the algorithm via computational experimentation.

1 Department of Electrical Engineering and Computer Science, M.I.T., Cambridge, Mass., 02139.
2 Department of Electrical and Computer Engineering, Boston University, Boston, Mass.

1



1. Introduction

1. INTRODUCTION

In this paper we discuss algorithms for solution of the classical minimum cost network flow

problem, involving a directed graph with node set Af and arc set A. Each arc (i,j) has a cost

coefficient aij. Letting xij be the flow of the arc (i, j), the problem is

minimize E aijxij (LNF)
(ij)EA

subject to

E >1 j- xj.=si, Vi., (1)
{Jl(ij)EA) {jJ(j,.)EA}

bij < xij < cj, V (i,j) E A, (2)

where aij, bij, cij, and si are given integers.

We denote by x the vector with elements xij, (i,j) E A. We refer to bij and cij, and the interval

[bij, cij] as the flow bounds and the feasible flow range of arc (i, j), respectively. We refer to si as

the supply of node i.

We refer to the constraints (1) and (2) as the conservation of flow constraints and the capacity

constraints respectively. A flow vector satisfying both of these constraints is called feasible, and if it

satisfies just the capacity constraints, it is called capacity-feasible. If there exists at least one feasible

flow vector, problem (LNF) is called feasible and otherwise it is called infeasible.

For a given flow vector x, the divergence of node i is defined to be the total flow coming out of i

minus the total flow coming into i,

Yi: Z xij- E xj,.
{jl(ij)eA} {j!(j,i)EA}

The surplus of node i is defined as the difference between the supply and the divergence of i,

gi = si - yi; (3)

it provides a measure of discrepancy between the specified flow into the node and the actual net

flow out of the node. Note that a flow vector is feasible if and only if it is capacity-feasible and the

surplus of each node is zero.

TWe assume that there exists at most one arc in each direction between any pair of nodes, but this

assumption is made for notational convenience and can be easily dispensed with. We denote the

numbers of nodes and arcs by N and A, respectively. W¥e also denote by C the maximum absolute

value of the cost coefficients,

C= max ]aijI.
(ij)EA
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1. Introduction

We formulate a well-known dual problem to (LNF) by associating a Lagrange multiplier pi (also

called the price of node i) with the ith conservation of flow constraint (1). Letting p be the vector

with elements Pi, i E N, we can write the corresponding Lagrangian function as

L(x,p) = E (aji + pj - ij + siPi(4)
(it)EA EAr

One obtains the dual function value q(p) at a vector p by minimizing L(x, p) over all capacity-feasible

flows x. This leads to the dual problem

maximize q(p)
(5)

subject to no constraint on p,

with the dual functional q given by

q(p) = min{L(x,p) I bij < xij < cij, (i,j) E A} = j qij(pi -pj) + sipi, (6a)
(ij)EA ieA

where

qij(pi - pj) = min (aij + pj - )xj I bij _< xj < cj}. (6b)
Xij

We henceforth refer to (LNF) as the primal problem, and note that standard duality results imply

that the optimal primal cost equals the optimal dual cost. A flow-price vector pair (x,p) is said to

satisfy the complementary slackness conditions if x is capacity-feasible and

Xij < cij Pi--P < aij, V (i, j) e A, (7a)

bij < xij pi -pj > aj, V (i,j) E A. (7b)

For a pair (x, p), complementary slackness and primal feasibility (gi = 0 for all i E IV) are necessary

and sufficient conditions for x to be primal-optimal and p to be dual-optimal.

The special structure of the dual cost (6) motivates solution by Gauss-Seidel relaxation (or coor-

dinate ascent methods). Relaxation methods of this type have been developed in the last few years,

and have led to remarkably successful computer codes [Ber82], [BeT85], [BeT88]. The idea is to

choose a single node i and change its price pi in a direction of improvement of the dual cost, while

keeping the other prices unchanged. Unfortunately there is a fundamental problem; the dual cost

q is nondifferentiable (piecewise linear), and the relaxation idea may encounter difficulty at some

"corner points," where the dual cost cannot be improved by changing any single node price.

The difficulty was overcome in the relaxation method proposed in [Ber82] by occasionally allow-

ing simultaneous price changes of several nodes. An alternative approach was introduced with the

auction algorithm for the assignment problem, which was first proposed in [Ber79]. An extension of
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1. Introduction

the auction algorithm for the minimum cost flow problem (LNF), called c-relaxation, was first pro-

posed in [Ber86a] and [Ber86b], and is actually mathematically equivalent to the auction algorithm

[BeE88]. We refer to [Ber88], [BeE88], [BeT89], [Ber90], [GoT90], and [Ber91la] for detailed analyses

of these algorithms, and to [PhZ88], [BeC89b], [BeC89c], [I(KZ89], [WeZ90], [Zak90], [WeZ91], and

[LiZ91] for computational results and implementations in a variety of parallel machines.

The main idea in the e-relaxation method is to allow a single price pj to change even if this

worsens the dual cost. When pi is changed, however, it is set to within a given e > 0 of the price

that maximizes the dual cost along the ith coordinate. For e small enough, it can be shown that

the algorithm approaches the optimal dual cost sufficiently accurately to yield a primal-optimal

solution. The e-approximation mechanism here is similar to the one of the e-subgradient method for

nondifferentiable optimization [BeM73].

While in the e-relaxation algorithm there is at most one node price change per iteration, in the

auction algorithm there may be two node price changes. In particular, the price of an unassigned

person is raised implicitly through a "bid" as this person is assigned to a "preferred" object (see

[Ber88], and [BeT89], Section 5.3), and then the price of this object is also raised. Raising the

price of the person and the preferred object simultaneously is an important feature that, we believe,

accounts for the practical effectiveness of the auction algorithm. Experiments show that the e-

relaxation method applied to the assignment problem, is on the average far slower than the auction

algorithm. This is true even when the two methods are implemented so that their worst-case

complexity bound is the same, and illustrates once more the fallacy of evaluating algorithms and

implementations strictly on the basis of a worst-case complexity analysis.

In this paper, we introduce a general algorithm, which contains the auction algorithm and the

e-relaxation method as special cases, and encompasses the idea of combining a price increase of a

node with price increases of several neighboring nodes. This general algorithm can form the basis

for a broad variety of algorithms tailored to the structure of particular problems. As special cases,

we develop a new algorithm for general minimum cost flow problem (LNF), called network auction,

and a new and intuitively appealing algorithm for the k node-disjoint shortest path problem.

In addition, to developing the general algorithm and establishing its termination properties, we

also analyze its worst-case complexity. In its unscaled form, the general algorithm is hampered by

the price war phenomenon, which manifests itself as protracted sequences of small price increases by

a number of nodes that push flow back and forth among themselves. This phenomenon was observed

experimentally and was supported by a pseudopolynomial complexity analysis when the auction al-

gorithm was first proposed [Ber79]. As a remedy, the e-scaling technique was suggested in [Ber79].

Subsequent research, starting with [Gol87], has established that with e-scaling or other forms of
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2. Basic Operations and the Generic Algorithm

scaling, the auction and c-relaxation algorithms have particularly favorable polynomial worst-case

complexity [BeE87], [BeE88], [BeT89], [GoT90]. In this paper we use cost scaling and we show that

a major special case of the general algorithm, the network auction algorithm, has an O (N3 log(NC))

running time; the data structures used here are simple and are based on the sweep implementation

of [Ber86a] and [BeE88]. By specializing this result, we obtain an O(N3 log(NC)) running time for

a suitable implementation of our earlier auction algorithm for transportation problems [BeC89a];

no polynomial complexity analysis was available for this transportation algorithm. Under the as-

sumption that the feasible flow range of all arcs is [0, 1], we show that the general algorithm has

an O(NAlog(NC)) running time, where A is the number of arcs. This bound applies in particular

to the assignment auction algorithm and to the new k node-disjoint shortest path algorithm. Fi-

nally, we show that a straightforward unsophisticated implementation of the general algorithm has

a 0 (N4 log(NC)) running time.

The paper is organized as follows: in the next section we formulate the generic auction algorithm

and establish its validity. In Section 3 we show that several known auction algorithms for assignment

and transportation problems, the e-relaxation method, and the network auction algorithm are all

special cases of the generic algorithm. In Section 4, we give the auction algorithm for the k node-

disjoint shortest path problem, and we show that it is a special case of the network auction algorithm

and, by extension, a special case of the generic algorithm. In Section 5 contains our complexity

analysis. Finally, in Section 6 we present a variety of computational results.

2. BASIC OPERATIONS AND THE GENERIC ALGORITHM

The algorithms of this paper maintain a price vector p, and a capacity-feasible flow vector x,

such that x and p jointly satisfy a relaxed form of the usual complementary slackness conditions

known as e-complementary slackness (e-CS for short). c-CS was introduced in the context of the

original proposal of the auction algorithm for the assignment problem [Ber79], and was generalized

in [BeT85], [BHT87], [TsB87a], and [TsB87b] for other types of problems. Roughly, a flow-price

vector pair satisfies e-CS if it violates the complementary slackness conditions (7) by at most e on

each arc. In particular, we say that (x,p) satisfies c-CS if x is capacity-feasible and

Xij < cij Pi- p j < aij + e V (i,j) E A, (8a)

bji < ji pi - pj < -aji - e V (j, i) E A. (8b)
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2. Basic Operations and the Generic Algorithm

The usefulness of c-CS is due in large measure to the following proposition. A proof may be found

in [Ber86a], [BeE88], [BeT89], [Ber91la]. Note that the proposition relies on our assumption that the

problem data are integer.

Proposition 1: If e < 1/N, x is feasible, and x and p jointly satisfy c-CS, then x is optimal for

(LNF).

WVe now define some terminology and computational operations that play a significant role in our

algorithms. Each of these definitions assumes that (x,p) is a flow-price vector pair satisfying e-CS,

and will be used only in that context.

Definition 1: An arc (i, j) is said to be e+-unblocked if

Pi = pj + aij + e, xij < Cij. (9)

An arc (j, i) is said to be c--unblocked if

pi = pj - aji + e, bji < Xji. (10)

The push list of a node i, denoted Pi, is the (possibly empty) set of arcs (i, j) that are e+- unblocked,

denoted P+, and the arcs (j, i) that are e--unblocked, denoted P-.

In all our algorithms, flow is allowed to increase only along e+-unblocked arcs and is allowed

to decrease only along e--unblocked arcs. The next definition specifies the type of flow changes

considered.

Definition 2: For an arc (i, j) [or arc (j, i)] of the push list Pi of node i, let S be a scalar such that

0 < 6 < Cij- xj (O < 6 < ji - bji, respectively). A 6-push at node i on arc (i,j) [(j, i), respectively]

consists of increasing the flow xij by 6 (decreasing the flow xji by 6, respectively), while leaving all

other flows, as well as the price vector unchanged. A saturating push of node i on arc (i, j) [arc

(j, i), respectively] is a 6-push with 6 = cj - xij (6 = ji - bji, respectively).

The next operation consists of raising the prices of a subset of nodes by the maximum common

increment y that will not violate e-CS.

Definition 3: A price rise of a nonempty, strict subset of nodes I (i.e., I ~ 0, I Af'), consists

of leaving unchanged the flow vector x and the prices of nodes not belonging to I, and of increasing

the prices of the nodes in I by the amount 7 given by

min{S+ U S-}, if S+ U S- 0, (11)

0, if S+ S = 0,1)
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2. Basic Operations and the Generic Algorithm

where S+ and S- are the sets of scalars given by

S+ = {pj + aij + e-Pi i (i, j) E .A such that i E I,j q I, xij < cij}, (12)

S- = {pj -aji + -pi I (j, i) E A such that i E I,j ¢ I, xji > bji}. (13)

In the case where the subset I consists of a single node i, a price rise of the singleton set {i} is also

referred to as a price rise of node i. If the price increment y of Eq. (11) is positive, the price rise is

said to be substantive and if y = 0, the price rise is said to be trivial. [Every scalar in the sets S+

and S- of Eqs. (12) and (13) is nonnegative by the c-CS conditions (8a) and (8b), respectively, so we

have y > 0. A trivial price rise changes neither the flow vector nor the price vector; it is introduced

to facilitate the presentation. Note that a price rise of a single node i is substantive if and only if

the set S+ U S- is nonempty but the push list of i is empty.]

The generic algorithm to be described shortly consists of a sequence of 6-push, and price rise

operations. The following lemma lists some properties of these operations that are important in the

context of the algorithm.

Lemma 1: Let (x,p) be a flow-price vector pair satisfying e-CS.

(a) The flow-price vector pair obtained following a 6-push or a price rise operation satisfies e-CS.

(b) Let I be a subset of nodes with positive total surplus, that is, Liej gi > 0. Then if the sets

of scalars S+ and S- of Eqs. (12) and (13) are empty, problem (LNF) is infeasible.

Proof: (a) By the definition of e-CS, the flow of an e+-unblocked and an e--unblocked arc can have

any value within the feasible flow range. Since a 6-push only changes the flow of an e+-unblocked or

e--unblocked arc, it cannot result in violation of e-CS. If p and p' are the price vectors before and

after a price rise operation of a set I, respectively, we have that for all arcs (i, j) with i E I, and

j E I or with i ¢ I and j ¢ I, the e-CS condition (8) is satisfied by (x,p') since it is satisfied by

(z,p) and we have pi - pj = p - p. For arcs (i,j) with i E I, j ¢ I and xij < cij we have, using

Eqs. (11) and (12),

P' - P = Pi -P + < i - pj + (pi + aii+ - Pi) = aij + ,

so condition (8a) is satisfied. Similarly, using Eqs. (11) and (13), it is seen that for all arcs (j, i)

with i E I, j ¢ I and xj; > bji, condition (8b) is satisfied.

(b) Since the sets S+ and S- are empty,

xij = cOj, V (i,j) E A with i E I,j 0 I, (14)
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2. Basic Operations and the Generic Algorithm

Xji = bji, V (i,j) E A with i E I,j 0 I. (15)

Using the definition (3) of surplus, we have

0 < Egi = si - E xij + E xji, (16)
iEI iEI {(ij)EAjiEIfjI} {(j,i)eAli~IjI} 

and by combining Eqs. (14)-(16), it follows that

O < Esi- E Cij + bji.
iEI {(ij)EAliEIs0I} {(j,i)EAiEIj0I}

For a feasible vector, si is equal to the divergence of i, so the above relation implies that the sum

of the divergences of nodes in I exceeds the capacity of the cut [I, / - I], which is a contradiction.

Therefore, the problem is infeasible. Q.E.D.

The Generic Algorithm

Suppose that problem (LNF) is feasible, and consider a pair (x, p) satisfying e-CS. Suppose that

for some node i we have gi > 0. There are two possibilities:

(a) The push list of i is nonempty, in which case a 6-push at node i is possible.

(b) The push list of i is empty, in which case the set S+ U S- corresponding to the set I = {i}

[cf. Eqs. (12) and (13)] is nonempty, since the problem is feasible [cf. Lemma 1(b)]. Therefore,

from Eqs. (11)-(13), a price rise of node i will be substantive.

Thus, if gi > 0 for some i and the problem is feasible, then either a S-push or a substantive price

rise is possible at node i. Furthermore, since following a price rise at a node i, the push list of i will

be nonempty [cf. Eqs. (11)-(13)], for a feasible problem a 6-push is always possible at a node i with

gi > 0, possibly following a price rise at i.

The preceding observations motivate a method, called generic algorithm, which uses a fixed

positive value of e, and starts with a pair (x,p) satisfying e-CS. The algorithm terminates when

gi < 0 for all nodes i; otherwise it continues to perform iterations. Each iteration consists of a

sequence of 3-pushes and price rises, including at least one S-push, as described below.

Typical Iteration of the Generic Algorithm

Perform in sequence and in any order a finite number of S-pushes and price rises; there should be at least

one 3-push but not necessarily at least one price rise. Furthermore:

8



2. Basic Operations and the Generic Algorithm

(1) Each 8-push should be performed at some node i with gi > 0, and the flow increment 6 must satisfy

6 _ g,.

(2) Each price rise should be performed on a set I with g, > 0 for all i E I.

The following proposition establishes the validity of the generic algorithm.

Proposition 2: Assume that the minimum cost flow problem (LNF) is feasible. If the increment

6 of each 6-push is integer, then the generic algorithm terminates with a pair (x,p) satisfying e-CS.

The flow vector x is feasible, and is optimal if e < 1/N.

Proof: We first make the following observations.

(a) The algorithm preserves e-CS; this is a consequence of Lemma 1.

(b) The prices of all nodes are monotonically nondecreasing during the algorithm.

(c) Once a node has nonnegative surplus, its surplus stays nonnegative thereafter. The reason is

that a 6-push at a node i cannot drive the surplus of i below zero (since 6 < go), and cannot

decrease the surplus of neighboring nodes.

(d) If at some time a node has negative surplus, its price must have never been increased up to

that time, and must be equal to its initial price. This is a consequence of (c) above and of the

assumption that only nodes with nonnegative surplus can be involved in a price rise.

Suppose, to arrive at a contradiction, that the algorithm does not terminate. Then, since there is

at least one 6-push per iteration, an infinite number of 6-pushes must be performed at some node m

on some arc (m, n) or some arc (n, m). For concreteness, assume it is arc (m, n); a similar argument

applies if the arc is (n, m). Since for each 6-push, 6 is integer, an infinite number of b-pushes must

also be performed at the opposite endnode n of the arc (m, n). This means that arc (m, n) becomes

alternately e+-unblocked with g, > 0 and e--unblocked with g, > 0 an infinite number of times,

which implies that p, and p, must increase by amounts of at least 2c an infinite number of times.

Thus we have Pm -- oo and pn, -- oo, while either g, > 0 or gn > 0 at the start of an infinite number

of 6-pushes.

Let A/% be the set of nodes whose prices increase to oo; this set includes the nodes m and n. To

preserve e-CS, we must have, after a sufficient number of iterations,

xij = cij for all (i, j) E A with i E Af°,j . NOO, (17)

xji = bji for all (j, i) e A with i E A'°,j ~ Af. (18)

After some iteration, by (d) above, every node in A/' must have nonnegative surplus, so the sum

of surpluses of the nodes in V.A/f must be positive at the start of the 6-pushes where either g, > 0
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or g,, > 0. It follows using the argument of the proof of Lemma 1(b) [cf. Eqs. (14)-(16)] that

0 < E si- E C, + i bji
iErV" .(ij)EAlieJNVojCJVN"} .(j,i)EAjliEX2,Jj¢.af}

For any feasible vector, the above relation implies that the sum of the divergences of nodes in /'6V

exceeds the capacity of the cut [Aco, / - Aoo], which is impossible. It follows that there is no

feasible flow vector, contradicting the hypothesis. Thus the algorithm must terminate. Since upon

ternination we have gi _ 0 for all i and the problem is assumed feasible, it follows that gi = 0 for all

i. Hence the final flow vector x is feasible and by (a) above it satisfies c-CS together with the final

p. By Prop. 1, if e < 1/N, x is optimal. Q.E.D.

The example of Fig. 1 shows how the generic algorithm may never terminate even for a feasible

problem, if we do not require that it performs at least one 6-push per iteration.

S3 = 1

Cost =0 Cost =0 Cost =0

/ S4 =-1

Flow range: [0,1]

Figure 1 Example of a feasible problem where the generic algorithm does not terminate, if it does
not perform at least one S-push per iteration. Initially, all flows and prices are zero. Here, the first iteration
raises the price of node 1 by e. Subsequent iterations consist of a price rise of node 2 by an increment of 2e
followed by a price rise of node 1 by an increment of 2e.

Dealing with Infeasibility

Let us consider now what happens when the problem is infeasible. Assume that the generic

algorithm is operated so that for each b-push, 6 is integer. Then there are three possibilities:

(a) The algorithm terminates with gi < 0 for all i and gi < 0 for at least one i, in which case

infeasibility is detected.

(b) The algorithm finds a subset of nodes I such that E eI gt > 0, and the sets of scalars S+

and S- of Eqs. (18) and (19) are empty [cf. Lemmna 1(b)], in which case infeasibility is again

detected.

(c) The algorithm performs an infinite number of iterations and, consequently, an infinite number

of 6-pushes. In this case, from the proof of Prop. 2 it can be seen that the prices of the nodes

involved in an infinite number of 6-pushes will diverge to infinity. The following proposition

10



2. Basic Operations and the Generic Algorithm

gives a bound on the total price change of a node for a feasible problem. When this bound is

violated, infeasibility is established.

Proposition 3: Suppose that the generic algorithm is applied to a feasible minimum cost flow

problem with initial prices p9. Then in the course of the algorithm, the price pi of any node i with

gi > 0 satisfies

Pi -p 0 < (N- 1)(C + c) + max -minp (19)

where C = max(ij)EA aij%.

Proof: Let x° be a feasible flow vector and let (x, p) be a flow-price vector pair generated by the

algorithm prior to its termination. Suppose that gi > 0 for some i. Then by using the Conformal

Realization Theorem (see e.g. [Roc84], [Ber9la]) on the flow vector x - x0, we conclude that there

exists a node s such that gs < 0, and a simple path H starting at s and ending at i such that

xij - j > 0 for all (i, j) E H+ and xjj - x < 0 for all (i,j) E H-, where H+ and H- are the sets

of forward and backward arcs of H, respectively. By c-CS we have

pj +aij <•pi+e, V (i, j) E H+,

pi < pj +aij +e, V (i,j) E H-.

Adding these conditions along H, we obtain

pi -Ps < (N- 1)(C + e).

Since s has negative surplus, its price has not yet changed (p, = p?), so by subtracting p? from both

sides of the above relation, we conclude that

Pi-pO < (N-1 )(C + e) + p¢-p° < (N - 1)(C + c) + maxp - minpg.

Pi - pP < \1* -- I,\V T '/ T y - jEA J j.~ EX

Q.E.D.

The conclusion is that when the problem is feasible, the generic algorithm will terminate with a

feasible x and a pair (x, p) satisfying e-CS, as per Prop. 2, and when the problem is infeasible, the

generic algorithm will detect infeasibility via one of the three tests (a)-(c) above.

An alternative way to deal with infeasibility is to introduce some artificial arcs to guarantee

that the problem is feasible. Each artificial arc should have zero lower flow bound and high cost

coefficient. The cost coefficient of each artificial arc should be high enough so that, for a feasible

problem, its flow starts and stays at zero in the course of the algorithm. By using the bound of the

preceding proposition, we can select the cost coefficients to be high enough so that in the case where

the original problem is feasible, the artificial arcs never become e+-balanced, and their flow stays at

zero.
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3. Special Cases of the Generic Algorithm

3. SPECIAL CASES OF THE GENERIC ALGORITHM

The price rise operations of the generic algorithm may involve several nodes. When we require

that only one node is involved in each price rise, we obtain the e-relaxation method first proposed

in [Ber86a], [Ber86b]. We will provide a statement of this method, which is equivalent with the ones

given in other sources [Ber86a], [Ber86b], [BeE87], [BeE88], [Gol87], [GoT90]. We will subsequently

describe a new algorithm, called network auction, which is similar to e-relaxation but occasionally

uses price rises involving multiple nodes. In both methods we assume that problem (LNF) is feasible.

In practice, the methods should be supplemented with additional mechanisms to detect infeasibility,

as discussed at the end of the preceding section.

We use a fixed positive value of e and we start with a pair (x,p) satisfying c-CS. Furthermore,

the starting arc flows are integer and it will be seen that the integrality of the arc flows is preserved

thanks to the integrality of the node supplies and the arc flow bounds. At the start of a typical

iteration of either algorithm we have a flow-price vector pair (x,p) satisfying e-CS and we select a

node i with gi > 0; if no such node can be found, the algorithm terminates. During the iteration

we perform several operations of the type described in the previous section involving node i and, in

the case of the network auction method, neighbor nodes of i (i.e., nodes connected to i with an arc).

As these operations are performed, with the attendant price and flow changes, some node surpluses,

and push lists are also modified. In our mathematical description of the iteration we assume that

these objects are automatically updated at the time when prices and arc flows change. We will

discuss appropriate data structures and implementation details later, when we provide a complexity

analysis.

The c-Relaxation Method

The typical iteration of the c-relaxation method is as follows:

Typical Iteration of the c-Relaxation Method

Step 0: Select a node i with gi > 0. If no such node exists, terminate the algorithm; else go to Step 1.

Step 1: If the push list of node i is empty go to Step 3; else select an arc a from the push list of i and

go to Step 2.

Step 2: Let j be the end-node of arc a, which is opposite to i. Let

= min{gi, cij - xij} if a = (i,j), (20)

min{gi, xji -bji} if a = (j, i).
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Perform a 8-push of i on arc a. If as a result of this operation we obtain gi = 0, go to Step 3; else go to

Step 1.

Step 3: Perform a price rise of node i. If gi = 0 stop; else go to Step 1.

We claim that the above iteration consists of a finite (but positive) number of 6-pushes and a finite

(possibly zero) number of price rises, which satisfy conditions (1) and (2) of the generic algorithm.

Indeed, since the starting arc flows, the node supplies, and the arc flow bounds are integer, the flow

increments 6 of all 6-pushes will be positive integers throughout the algorithm. Furthermore, from

Eq. (20) it is seen that E < gi, so condition (1) of the generic algorithm is satisfied. We also note

that at most one 6-push per incident arc of node i is performed at each iteration because from Eq.

(20) it is seen that a 6-push on arc a in Step 2 is either saturating, which causes arc a to drop out of

the push list of i through the end of the iteration, or else results in gi = 0, which leads the iteration

to branch to Step 3 and subsequently stop. Therefore, the number of S-pushes per iteration is finite.

In addition we have gi > 0 at the start and gi = 0 at the end of an iteration, so at least one S-push

must occur before an iteration can stop.

Regarding price rises, it is seen that Step 3 can be reached under two conditions:

(a) The push list of i is empty and g, > 0, in which case the price rise in Step 3 will be

substantive [in view of the assumption that problem (LNF) is feasible and Lemma 1(b)],

and the iteration will branch to Step 1 with the push list of i having at least one new arc.

(b) 'gt = 0, in which case the iteration will stop following a (possibly trivial) price rise in Step 3.

Thus all price rises involve a node with nonnegative surplus and satisfy condition (2) of the generic

algorithm. Since after each substantive price rise with gi > 0, at least one 6-push must be performed,

it follows that the number of substantive price rises per iteration is finite. Finally, as argued earlier,

there is at most one trivial price rise per iteration. From the preceding observations it is seen

that, assuming problem (LNF) is feasible, the e-relaxation method is a special case of the generic

algorithm. Furthermore, since the increment 6 of each 6-push is integer, it terminates finitely with

a feasible flow vector, which is optimal if e < 1/N, cf. Prop. 2.

The Network Auction Algorithm

The network auction algorithm is similar to the e-relaxation method in that it starts from a node

i with positive surplus and tries to exhaust the push list of i in preparation for a price rise. However,

as it does so, it collects information from neighboring nodes that can be used to effect a price rise

involving i and some of its neighbor nodes. The potential advantage here is that the corresponding
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price increment may be larger than in the e-relaxation method, thereby saving some iterations, and

furthermore a price rise can be performed before the push list of i is exhausted. The potential

drawback of the network auction algorithm is that it requires additional overhead relative to the

e-relaxation method. Generally, the network auction algorithm seems preferable to the c-relaxation

method only for problems with special structure some of which will be discussed in the sequel.

To describe the typical iteration of the network auction algorithm, we need some definitions and

a new operation. The reject capacity ri of node i is defined as

(0, if the push list Pi is empty,

= {jl(ji)ePi+}(Cij - ij) + {jl(j,i)ep-}(Xji - bj), otherwise. (21)

Thus, ri is the sum of the residual capacities of the arcs of the push list Pi.

Definition 4: A reject operation at node i consists of performing a saturating push on each of

the arcs in the push list of i.

Note that in a reject operation at node i, the push list of i is emptied and the total amount of

flow "pushed away" from i is equal to the reject capacity ri.

The network auction iteration uses a subset L of neighbor nodes of i, which is empty at the start

of the iteration. The nodes in L are the ones whose push list is emptied during the iteration through

a reject operation. As a result, the prices of all nodes in L can be increased at the end of the

iteration. This will occur regardless of whether the price of i is also increased. The price increase of

the nodes in L, however, often has the beneficial effect of allowing a larger price increase for i than

would otherwise be possible. On the other hand, a network auction iteration for which the set L

stays empty, is identical with a corresponding c-relaxation iteration.

Typical Iteration of the Network Auction Algorithm

Step 0: Select a node i with gi > 0. If no such node exists, terminate the algorithm; else set L = 0 and

go to Step 1.

Step 1: Let P' be the set of arcs of the push list of i whose end-node opposite to i does not belong to

L. If P' is empty go to Step 3; else select an arc a from P' and go to Step 2.

Step 2: Let j be the end-node of arc a, which is opposite to i. If rj < gj, perform a reject operation at

node j, set L := L U {j}, and go to Step 1. Else let

f min{rj - gj i, ,c,ij - xj} if a = (i, j),

min{rj- gj, g,, xj - bji} if a = (j, i). (22)

If 5 = rj - gj, perform a S-push of i on arc a, perform a reject operation at node j, and set L := L U {j};

else just perform a S-push of i on arc a. If as a result of these operations we obtain gi = 0 go to Step 3;

else go to Step 1.

Step 3: Perform a price rise of the set {i} U L. Then, if L 0 0, perform a price rise of L. Then, if gi = 0

stop; else set L = 0 and go to Step 1.

14
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An alternative form of Step 3 is the following:

Alternative Form of Step 3: Perform a price rise of the set {i} U L. Then, if L ~ 0, sequentially

perform a price rise of each of the nodes in L. Then, if gi = 0 stop; else set L = 0 and go to Step 1.

It can be shown that the above alternative form of Step 3 leads to larger price rises for trans-

portation problems than the first form, because for bipartite graphs, there is no arc joining any pair

of nodes in L. Therefore, the alternative form of Step 3 is preferable for bipartite problems, or more

generally, in cases where for most iterations there is no arc connecting any two nodes of L.

It is also possible to consider variations of the network auction algorithm whereby an iteration

consists of a finite sequence of network auction and e-relaxation iterations, in any order. Such

combined iterations may be tailored to particular graph structures, thereby resulting in simpler

implementations.

Using similar reasoning as for the c-relaxation iteration, we can show that the network auction

algorithm is a special case of the generic algorithm. Indeed each iteration consists of 6-pushes, reject

operations, and price rises, and the S increments of all 6-pushes are positive integers. From Eq.

(22) it is seen that S < gi, while we have rj < gj whenever a node j enters the set L and a reject

operation is performed at j; this means that following a 6-push or a reject operation, the surplus of

the corresponding node is nonnegative, so condition (1) of the generic algorithm is satisfied. Note

also that the argument of the proof of Prop. 2 can be adapted to show that the number of 6-pushes

per iteration is finite. Furthermore, since we have gi > 0 at the start and gi = 0 at the end of an

iteration, it follows that at least one 6-push must occur before the iteration can stop.

Regarding price rises, we note that they involve nodes with nonnegative surplus, thereby satisfying

condition (2) of the generic algorithm. To show that the number of substantive price rises per

iteration is finite, note that with each substantive price rise, the reject capacity of either node i or a

neighbor node of i (belonging to L) is increased by an integer amount. It follows that the number

of substantive price rises per iteration cannot be infinite, since the reject capacity of each node is

bounded and the number of 6-pushes per iteration is finite. Finally, regarding the number of trivial

price rises per iteration, we note that the first price rise in Step 3 involving the set {i} U L will be

trivial only if the modified push list P' (cf. Step 1) is nonempty (the push lists of all nodes in L are

empty following the reject operation in Step 2), in which case we must have gi = 0 and the iteration

will stop at that visit to Step 3. Therefore with each visit to Step 3 except at most one, there will

be at least one substantive price rise. Since the number of substantive price rises is finite, it follows

that the number of visits to Step 3 is finite, implying that the number of trivial price rises is also

finite. Thus, the network auction algorithm is a special case of the generic algorithm and performs

at least one 6-push per iteration. Therefore, Prop. 2 guarantees the termination of the algorithm

with an optimal flow vector obtained if e < 1/N.
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Note that if the first price rise involving the set {i} U L in Step 3 is trivial and L is nonempty,

the subsequent price rise in Step 3 (or price rises, if the alternative form of Step 3 is used) involving

the set L will be substantive, since following the reject operation in Step 2, the push lists of all the

nodes in L are empty. Thus, with each visit to Step 3 for which the set L nonempty, there is a price

increase of all the nodes of L. Practical experience, as well as the complexity analysis of the next

section, suggest that high frequency and large size of price rises is a good performance indicator,

so the extra work needed to compute the set L may be compensated by the associated extra price

rises.

Relation to the Auction Algorithm for the Assignment Problem

We now show how the assignment auction algorithm of [Ber79] is a special case of the network

auction algorithm. (It is also possible to show that the assignment auction algorithm can be obtained

as a special case of the e-relaxation method; see [BeE88], [BeT89], [Ber9la].) Consider the assignment

problem where the graph is bipartite, having n nodes i with si = 1, called persons, and n nodes j

with sj = -1, called objects. All arcs (i, j) connect persons i with objects j, and the arc flow bounds

are bij = 0 and cij = 1. We choose initially x and p with the following properties:

(a) x and p satisfy e-CS.

(b) For all arcs (i,j), either xij = 0 or xij = 1. Furthermore if ax, = 1, then the arc (i, j) belongs

to the push list of j.

(c) gi = 0 or gi = 1 for all persons i and gj = 0 or gj = -1 for all objects j.

It will be seen that the algorithm preserves these properties. The typical iteration of the network

auction algorithm starts with a person i with gi = 1 and if the push list of i is empty, it raises pi to

Pi mill (aii -pj -+ ) (23)
{jI(ij)EA)

(Step 3); then chooses an arc (i, j) from the push list of i, increases xij to 1 (this is a 6-push with

6 = 1, which assigns person i to object j); then if j was assigned prior to the iteration to some person

i', the iteration reduces xiij to 0 [this is the reject operation at node j, canceling the assignment of j

to i', which is possible because (i', j) belongs to the push list of j by property (b) above]. The price

rises of Step 3 are now performed as follows with L being the singleton set {j}: the prices of i and

j are raised by an increment

min {aik + Pk + +}- p (24)
{kl(sk)E Ak}16
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(this is the price rise of the set {i} U L), and then the price of j is raised by 2e (this is the price

rise of L). Since at this point we have gi = 0, the iteration stops. It can be seen that at the end

of the iteration, e-CS holds, the arc (i, j) whose flow was changed from xij = 0 to xij = 1, is e--

unblocked, and the property gi = 0 or gi = 1 for all persons i and gj = 0 or gj = -1 for all objects

j is preserved. This allows the preceding iteration to be repeated as long as there are unassigned

persons and objects. If we view aik + Pk as the cost (negative value) of object k for person i, it

can be seen that object j was chosen as the object of minimum cost for person i at the start of

the iteration. From Eqs. (23) and (24), it is seen that the price of j was raised so that its cost is

equal to 2e plus the minimum object cost for i at the end of the iteration. This leads to the auction

interpretation, whereby a person selects its best object and bids up its price as much as possible,

subject to the constraint that the cost of the object is within 2c from the minimum cost of other

objects should the bid be accepted. We refer to [Ber88], [BeE88], [BeC89a], [Ber91a], and [BCT91]

for further discussion and recent extensions of the assignment auction algorithm.

Relation to the Transportation Auction Algorithm

The transportation auction algorithm of [BeC89a] can be shown to be a variation of the network

auction algorithm, which exploits the special structure of transportation problems. For these prob-

lems, the graph is bipartite, having n nodes i with positive supply si, called sources, and n nodes j

with negative supply -dj, called sinks. All arcs (i, j) connect sources i with sinks j and the arc flow

bounds are bij = 0 and ci = min{si, dj}. We now describe the steps in the transportation auction

algorithm of [BeC89a] and simultaneously indicate how they can be related to steps of a combined

version of the network auction and e-relaxation methods.

The initial x and p are required to have the following properties:

(a) x and p satisfy e-CS.

(b) For all arcs (i,j), xij E [O, cij].

(c) 0 < gi < si for all sources i, and -dj < gj < 0 for all sinks j.

(d) For any sink j, we have either rj = 0 or gj = 0.

These properties are preserved throughout the algorithm.

An iteration is started with a source i with 0 < gi [by properties (b) and (c) above, if no such

source can be found, x is feasible and the algorithm terminates]. If the push list of i is empty, we

first raise Pi to

Pi = min {aij + pj + e},
{jI(ij)EA}1
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4. An Algorithm for the k Node-Disjoint Shortest Path Problem

(this is a Step 3 with L = 0 in the network auction algorithm). Then, we choose an arc (i, j) from

the push list of i and compute

_ = min{rj - gj,gi, cj - xj),

[cf. Eq. (22)]. In the language of the transportation auction algorithm of [BeC89a], source i "bids"

for 6 units of the demand of sink j [this is equivalent to a S-push at i on arc (i, j)]. If the bid size 6

is large enough to exhaust the reject capacity of the sink (i.e., if 6 = rj - gj), a reject operation is

performed at sink j (Step 2), and sink j is added to a list L of sinks. If the resulting surplus gi is

still positive, the above bidding operation is repeated until gi = 0 or until the push list of i is empty.

At the end of this step, the set L (if nonempty) will consist of some sinks j with xij > 0.

The next step in the transportation auction algorithm of [BeC89a] is to raise the prices and

construct new push lists for the source i and the sinks in L (cf. the alternative form of Step 3 of the

network auction algorithm). This is done in a manner which is equivalent to a price rise on the set

i U L, followed by a price rise on each sink in L (if L 5 0). Through this step, the price of each sink

j E L is raised to the highest level for which its push list is nonempty.

In the above construction, it is possible that there are sinks j for which xij was increased during

the bidding iteration of source i (cf. Step 2 of the network auction algorithm), but which were never

included in the set L. In order to preserve the property gj < 0 for all sinks j, the transportation

auction algorithm performs 5-pushes as in Step 2 of the c-relaxation method, repeatedly until the

surplus of each sink j 4 L with gj > 0 is shifted to sources in the push list of j, and gj is set to

zero; such sources must exist, for otherwise j would have been included in the set L. In this way,

all bidding iterations will start with source nodes, simplifying the implementation.

Following the above flow changes and price rises, we check whether gi > 0, in which case L is

reset to empty, and the iteration is in effect restarted with node i (i.e. we return to Step 1 of the

network auction algorithm); otherwise the iteration stops.

After the iteration has stopped, conditions (a) and (b) above are satisfied because all of the steps

are part of either the e-relaxation iteration or the network auction iteration. Furthermore, conditions

(c) and (d) are maintained by the sequence of operations described.

4. AN ALGORITHM FOR THE K NODE-DISJOINT SHORTEST PATH PROBLEM

In this section we consider a generalization of the single origin/single destination shortest path

problem, where instead of a single path, we seek k node-disjoint paths that minimize a linear cost.
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4. An Algorithm for the k Node-Disjoint Shortest Path Problem

An example is a three-dimensional assignment problem, involving the optimal choice of k disjoint

ordered triplets, where the cost of a triplet (i, j, m) is separable of the form aij + ajm. We derive a

specialized version of the network auction algorithm for this problem. Note that in the literature,

the term "k shortest path problem" has been used somewhat differently; it refers to finding the

shortest, second shortest, etc., up to kth shortest path between an origin and a destination [Dre69].

Suppose that we are given a graph with node set Af, arc set A, and integer arc costs aij. In this

section, by a path P we mean either a single node i (in which case we say that P is a trivial path),

or else a sequence of arcs (il, i2 ), (i2 , i3),... ,(im-l,im). If the nodes il,..., im are distinct we say

that the path is simple. We refer to il as the starting node of P and to im as the terminal node of

P; if P is trivial, its unique node is viewed as both the starting and the terminal node of P. The

cost of a nontrivial path P is the sum of the costs of its arcs. By a cycle we mean a sequence of arcs

(il, i2), (i2 , i3), .. , (imi, il). If the nodes i, ... , iml are distinct we say that the cycle is simple.

Let s and t be given nodes called the origin and the destination, respectively. We assume that:

(a) s has no incoming arcs, t has no outgoing arcs, and (s,t) is not an arc. Furthermore, each

node except for t has at least one outgoing arc. (These assumptions are convenient for

stating the algorithm but do not involve a loss of generality.)

(b) The cost of each cycle is positive.

For a given positive integer k, we want to find k nontrivial simple paths P1, P2 ,..., Pk that start

at s, terminate at t, and satisfy the following conditions:

(a) The paths are node-disjoint, that is, any pair of paths from the set {P1 , P2 , Pk} shares

no node other than s and t.

(b) The sum of the costs of P1 , P2, ... , Pk is minimal.

It is possible to view this problem as a special case of the minimum cost flow problem (LNF) by

replacing each node i other than s and t with two nodes i+ and i-, which are connected with a zero

cost arc (i+, i-), and by replacing each arc (i, j) with the arc (i-, j+) of cost aij, as shown in Fig. 2.

All arcs have feasible flow range [0, 1]. The supply of the origin is k, the supply of the destination

is -k, and the supply of every other node is zero.

The following algorithm can be obtained by applying in a particular way the network auction

algorithm to the above minimum cost flow problem. In particular, there will be price rises of pairs

or triplets of nodes [either i+ and i-, or i- and j+ where (i,j) is an arc, or i+, i-, and j+ where

(i, j) is an arc]. These two-node or three-node price rises are almost as easy as single node price

rises, and the algorithm is far more efficient than what would be obtained by straighforward use of
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Figure 2 Converting the k node-disjoint shortest path problem to a minimum cost flow problem

with all arcs having feasible flow range [0, 1]. Each node i is split into the two nodes i+ and i-, which are

connected with a unit capacity and zero cost arc. Each arc (i, j) is replaced by an arc (i-, j+) of cost afj.

the c-relaxation method.

To simplify the presentation, we will describe the algorithm from first principles, and we will

indicate more precisely the connections with the network auction algorithm later. We first introduce

a price and flow vector structure, and a corresponding definition of c-CS, which are adapted to the k

node-disjoint shortest path problem. This form of c-CS is somewhat more restrictive than the form

given in Section 2.

c-CS for the k Node-Disjoint Shortest Path Problem

The subsequent k node-disjoint shortest path algorithm maintains the following:

(a) Two prices p+ and p- for each node i $ s, t, which satisfy

p7i p+, V i s, t; (25)

these prices correspond to the constituent nodes i+ and i- referred to earlier.

(b) A price p- for the origin and a price pi+ for the destination, which are specified in terms of

the remaining prices by the equations

P = min{z Jz > a,j + p+ + e for k or more arcs (s,j)}, (26)

p+ = max{z I ait + z < pa- + e for k or more arcs (i, t)}. (27)

(c) A set of simple paths P1 ,..., Pm and a set of simple cycles C1,..., C,, which are all node-

disjoint, and a flow vector x such that for all arcs (i, j)

ti1 if (i, j) belongs to one of the paths P, . .. , Pm or cycles C, ... , Cn ,, (28)

x0 0 otherwise.
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We require that out of the paths Pl,...,Pm, exactly k are nontrivial and start at the

origin, and at most k are nontrivial and terminate at the destination. Furthermore, a

trivial path consisting of a single node, say i, belongs to the set {P1, ... , Pm} if and only

if i $ s,t, p- < pi+, and no nontrivial path from {P1,...,Pm)} or cycle from {C 1 ,...,Cn)

passes through i. [Note that the triplet (x, p+, p-) specifies completely the paths P 1, ... , P,

and the cycles C1, .. ., C, based on the above requirements.]

We say that the triplet (x,p+,p-) satisfies c-CS for the k node-disjoint shortest path problem if

the above conditions hold and in addition

p7 > aij + p+-e, V (i, j) such that xij = 1, (29a)

p- < a/j + p+ + e, V (i,j) such that x/j = 0. (29b)

For a triplet (x,p+,p-) satisfying e-CS, we say that one of the corresponding paths P 1,..., Pm is

active if it terminates at a node other than the destination. Note that a trivial path consisting of a

single node i : s,t is active if and only if p- < p+. Note also that if there are no active paths, then

in view of the requirement that out of the paths P 1 ,..., P,, exactly k are nontrivial and start at

the origin, and no more than k are nontrivial and terminate at the destination, the paths P1 ,..., Pm

must be k in number, must all start at s, and must all terminate at t, thereby yielding a feasible

solution of the k node-disjoint shortest path problem.

The following proposition gives the basis for the subsequent algorithm.

Proposition 4: Suppose that the triplet (x, p+,p-) satisfies e-CS. Then if e < 1/N, there are no

simple cycles corresponding to (x, p+, p-). If in addition none of the corresponding paths P1,.. ., Pm

is active, then these paths constitute an optimal solution of the k node-disjoint shortest path problem.

Proof: If C is a simple cycle corresponding to (x,p+,p-), then for every arc (i,j) of C we must

have xij = 1, and from Eqs. (25) and (29),

p > p >-aij + - e.

By adding this relation over all arcs of C, we obtain

Cost of C = E aij < (N-1)e.
(ij)EC

Since the arc costs are integer and e < 1/N, it follows that the cost of C is less or equal to zero,

which contradicts our assumption that all cycle costs are positive.

If in addition there are no active paths, the vector x is a feasible solution that together with the

price vector (p+,p-) satisfies c-CS for the associated minimum cost flow problem, cf. Fig. 2. The
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optimality proof for x is obtained by adapting the proof of Prop. 1 (see e.g. [BeT89] or [Ber9la])

and by using the fact p+ > p- for all i $ s, t. We omit the details. Q.E.D.

The k node-disjoint shortest path algorithm starts each iteration with a triplet (x, p+, p-) satis-

fying e-CS. The algorithm terminates if there is no active path. Otherwise, the algorithm selects

an active path, and either contracts it by deleting its terminal node, or extends it by connecting its

terminal node to another node; also the triplet (x, p+, p-) and at most one other of the corresponding

paths and cycles are modified while maintaining e-CS. As a result of the iteration, the path may get

eliminated (if it consists of a single node or arc and is contracted) or may stop being active (if it

joins a path that terminates at the destination). The number of active paths then decreases by one.

It is also possible that the number of active paths stays the same as a result of the iteration.

To start the algorithm, we need an initial triplet (x,p+,p-) satisfying c-CS. One way to obtain

such a triplet is as follows:

Standard Initialization

Set xij = 0 for all arcs (i, j), select p+ arbitrarily for all i f s, set

p =min min, m i {a i+Pi+ } V i s; (30)pr I inPUI(ij)EA}

and set p; and p+ according to Eqs. (26) and (27); then select k nodes j such that (s,j) E A and

p, > aj +-p+ + C, and for all these nodes, set xq = 1 and = p - aj + ; then set xi, = 1 for all nodes

arcs (i, t) with p- > ai, + p+ + e.

Contraction and Extension Operations

We now describe the operations of contraction and extension of an active path. Let (x,p+,p-) be

a triplet satisfying c-CS, and let Pi,..., Pm and C 1,..., C, be the corresponding simple paths and

cycles. Suppose that P is an active path with terminal node i.

A contraction operation for P can be performed in one of the following two circumstances:

(a) P consists of just node i and

p<+ in {Jaj p q}-c, (31)
(jl(ij)pA)

in which case the contraction consists of setting

p+ = = min aj + p t }+ e (32)
22l(ij)EA)
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(In this case P is eliminated as a path.)

(b) P has a final arc, say (r, i), and

p- -ari < min {aij + P}), (33)
{j(ij)EA)

in which case the contraction consists of setting

p+ =p' = min {ai. + p} + c,
P fil(ij)E.a) 

deleting the final arc (r, i) from P, and setting xri = 0. If r is the origin node s, the following

additional operations are executed: the price p, is set to the value given by Eq. (26) [this

value may be higher than the previous value of p- since p+ was just increased]; also an arc

(s, n) is found such that x,, = 0 and p- = a,, +p+t + C, and its flow x,,, is set to 1, while the

flow of each incoming arc (r, n) with r : s is set to zero. [This creates a new nontrivial path

starting at the origin, to replace the path P consisting of the arc (s, i) that was eliminated

through the contraction.] Following these changes, the price pn of each node n with x,, = 1

is set to p7 - a,, + -e.

An extension operation for P is performed only if a contraction is not possible. Then we find a

node ji such that

ji = arg min {aij + p},
{jI(ij)EA) p

and we also find

={ min{jlj#j,, (ij)e.A}{aj + pj+} + e if i has two or more outgoing arcs,

00 if (i, ji) is the only outgoing arc from i,

fp - ari + e if P has a final arc (r, i),
vi -

PV + if P consists of just node i.

We then distinguish three cases, depending on whether ji is the destination node, and whether an

arc connecting the origin with ji is part of a current path (xj, = 1).

(a) If ji : t and x,j = 0, the prices p+ and p- are set to

p+ = vi p- = min{vi, wi}.

Furthermore, the price p+ is set to

p+ = min{v, w,} - aj, + c, (34)

while the arc (i, ji) is added to P and its flow is set to 1; also the flow of any incoming arc

(n, ji) with n : i and xnj, = 1 is set to 0 (this could make n the terminal node of an active

path).
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(b) If ji : t and x,j, = 1, all the operations of the preceding case (a) are performed, including

setting xj, to 0. The following additional operations are then executed to create a new

nontrivial path starting at the origin, replacing the path P = (s, ji) that was just eliminated

[cf. case (b) of the contraction operation]: the price p- is set to the value given by Eq. (26);

also an arc (s, n) is found such that x,n = 0 and pS = a,n + pn+ + c, and its flow x,,n is set

to 1, while the flow of each incoming arc (r, n) with r : s is set to zero. Following these

changes, the price p+ of each node n with x,n = 1 is set to p, - a,, + c.

(c) If ji = t, the prices p+ and p- are set to

p+ = vi, p- = min{vi, wi},

and the arc (i, t) is added to P, while its flow is set to 1. If as a result, the number of paths

terminating at t is k + 1, the price p+ is set to the value given by Eq. (27), and an arc (n, t)

is found such that x,,n = 1 and p+ = Pn - a,t + c, and its flow x,n is set to 0. [This eliminates

a nontrivial path terminating at the destination, and since P was extended by arc (i, t), the

number of nontrivial paths terminating at the destination is maintained at k.]

Note that in an extension operation it is possible that the extension node ji is already part of P;

then by setting xij, = 1, a cycle C is obtained that consists of the portion of P between ji and i and

the arc (i, ji). In this case, if ji is the starting node of P, the active path P is replaced by the cycle

C, and the number of active paths is reduced by one. Otherwise, the portion of P up to but not

including ji may become an active path.

By examining the nature of the contraction and extension operations, it is straightforward to

verify the following:

(a) At the start of each iteration, the triplet (x,p+,p-) satisfies c-CS.

(b) A contraction or extension that does not change the flow of any of the outgoing arcs from

the origin is equivalent to an iteration of the network auction algorithm applied to the

associated minimum cost flow problem described earlier.

(c) A contraction or extension that changes the flow of an outgoing arc from the origin [cf. case

(b) of a contraction or case (b) of an extension] is equivalent to two iterations of the network

auction algorithm: an iteration starting at node i followed by an iteration starting at the

origin.
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k Node-Disjoint Shortest Path Algorithm

Our algorithm starts each iteration with a triplet (x, p+, p-), and corresponding simple paths and

cycles P1,..., P., C1,..., C, satisfying e-CS.

Typical Iteration of the k Node-Disjoint Shortest Path Algorithm

Select an active path P. If no such path exists, terminate the algorithm; else if a contraction is possible

for P [that is, if the corresponding condition (31) or (33) holds] perform the contraction, and otherwise

perform an extension of P.

Figure 3 illustrates the algorithm for a simple example. From our earlier discussion, it is seen

that the algorithm is a special case of the network auction algorithm. By using Prop. 2, it follows

that for a feasible problem, the algorithm terminates, and by Prop. 4, the feasible solution obtained

at termination is optimal if e < 1/N.

It is interesting to note that a k x k assignment problem can be converted to a k node-disjoint

shortest path problem by adding an origin node s, which is connected with each person node with

a zero cost arc, and by also adding a destination node t, which is connected to each object node

with a zero cost arc. It can be verified that when the algorithm of this section is specialized to this

problem, it becomes equivalent to the auction algorithm for the assignment problem.

For another interesting connection, consider the case k = 1. Then the problem becomes a single

origin/single destination shortest path problem. It can be verified that when the algorithm of this

section is specialized to this problem but with the important difference that e = 0, it becomes

equivalent to a recently proposed auction algorithm for shortest paths [Ber91la], [Ber91b].

5. COMPLEXITY ANALYSIS

In this section, we derive a bound on the order of time required by a simple implementation

of the network auction algorithm. We then introduce a scaled version of the algorithm with a

O(N3 log(NC)) worst-case time bound. Our analysis parallels a corresponding analysis of the e-

relaxation method given in [BeE87], [BeE88], and [BeT89], which in turn uses the sweep implemen-

tation ideas of [Ber86a] and some of the scaling ideas of [Gol87].

Our method of analysis of the network auction algorithm yields also an O(N4 log(NC)) bound for

a straightforward implementation of the generic auction algorithm, and an O(NA log(NC)) bound

for the case where the feasible flow range of all arcs is [0, 1].
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are shown next to the
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Figure 3 Illustration of the k node-disjoint shortest path algorithm for k = 2, starting with p+ = 0

for all i 0 s and using the standard initialization. The problem data is given in the first graph. The numbers

on the left and the right sides of a node i are the prices p+ and p?, respectively. Thick (thin) line arcs are

the ones with flow equal to 1 (0, respectively). Initially the active paths are (1,2) and (1,5). At the start

of the second and third iterations there is only one active path, (1,5) and (1,2), respectively.
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lWe first make some assumptions:

Assumption 1: Problem (LNF) is feasible.

Assumption 2: All arc cost coefficients are integer multiples of e.

Assumption 3: All starting prices are integer multiples of e, all starting flows are integer, and

together they satisfy e-CS.

We assume that the push lists of the nodes, are maintained in a data structure that makes possible

the addition and deletion of a single arc in 0(1) time; this is true, for example if each push list Pi

is maintained in a doubly linked list. Then it is seen that selecting an arc in Step 1 takes 0(1)

time, updating the push list of node i following a S-push in Step 2 takes 0(1) time per 6-push, and

updating the push list of a node i following a price rise involving node i in Step 3 takes O(di) time

per price rise and node, where di is the number of incident arcs of node i.

The Admissible Graph

A notion that is central in our analysis is the so called admissible graph, introduced in [Ber86a],

which consists of the push list arcs, except that the directions of those arcs that are incoming to the

corresponding nodes are reversed to make them consistent with the direction in which flow is pushed

in the network auction algorithm. Formally, the admissible graph is defined as G* = (N, A*), where

A* contains arc (i, j) if either (i, j) is an c+-unblocked arc, or (j, i) is c--unblocked arc. Note that

the admissible graph depends on the current pair (x,p) that satisfies e-CS and changes as the pair

(x, p) changes during the course of the algorithm. In particular, when there is a saturating push on

an arc, the arc is removed from A*. However, b-pushes cannot create any new arcs of the admissible

graph. Furthermore, when there is a substantive price rise of a node set I in Step 3, all the arcs (i, j)

and (j, i) with i E I and j ¢ I that belonged to A* prior to the price rise are removed from A*, and

an arc (i, j) is added to A* if either an arc (i, j) (or (j, i)) with i E I and j ¢ I became e+-unblocked

(or c--unblocked, respectively), as a result of the price rise. Thus following the price rise, there are

no arcs (j, i) of the admissible graph that have a start node j ¢ I and an end node i E I, leading

to the conclusion that price rises cannot create any new cycles of the admissible graph (this will be

shown more precisely in the proof of the subsequent Prop. 5). Our next assumption is that:

Assumption 4: Initially, the admissible graph has no arcs.

Assumption 4 can be satisfied by setting initially xij = cij (or xj = bij) for all arcs (i, j) with

pi = pj + aij + e (Pi = pj + aid - c, respectively). Under this assumption, the admissible graph is

initially acyclic and since, based on the preceding arguments, neither b-pushes nor price rises can
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create a cycle, we conclude that the admissible graph is acyclic throughout the algorithm. (Again

this will be shown formally as part of the proof of Prop. 5.)

The Sweep Implementation

In order to obtain the subsequent complexity bounds, we need a certain rule for choosing the

starting node in each iteration. This rule is the basis for the sweep implementation referred to

earlier, and uses an ordered list T of all the nodes, which is restructured repeatedly in the course of

the algorithm. The initial choice of the list can be arbitrary. We say that node i ranks higher (or

lower) than node j at some time, if the position of i in the list T is higher (or lower, respectively)

than the one of j at that time. The order of nodes in the list will be shown to be related to the

admissible graph (see the proof of the subsequent Prop. 5). In particular, it will be seen that a node

i ranks higher than all nodes j such that there is a directed path from i to j in the admissible graph.

The order of nodes in T is changed only when there is a substantive price rise in Step 3. In

particular, if the price rise involves a set I, the nodes of I are placed at the top of T in the order in

which they appear in T prior to the price rise. The position of the nodes not in I is not changed.

Figure 4 illustrates the rule for restructuring the list T following a price rise. We note that the

restructuring of T can be done in O(N) time per substantive price rise. In the case where the

alternative form of Step 3 of the network auction algorithm or Step 3 of the e-relaxation algorithm

is used, the restructuring of T can be done more simply, in time 0(1) per single node price increase,

by placing sequentially the nodes of L at the top of T as their price is increased. In practice one

may want to maintain T in an appropriate data structure, such as a linked list, to minimize the

restructuring overhead, but this is not necessary for the subsequent complexity bounds.

If a given iteration is started at node i, the list T is used to select the starting node i' for the

next iteration as follows:

Let NVi be the set of nodes that were ranking lower than i in T at the start of the given iteration

and whose price did not change during the iteration. If Ni contains nodes that have positive

surplus at the end of the iteration, then i' is chosen to be the highest ranking of these nodes;

otherwise i' is chosen to be the highest ranking node in T among all the nodes that have positive

surplus at the end of the iteration. (Thus, the algorithm goes down the list T selecting nodes

with positive surplus and when it reaches the bottom of the list, it returns to the top of the list.)

A sequence of iterations between two successive times that the algorithm starts an iteration with

the highest ranking node with positive surplus is called a cycle. Note that the computation time

for selecting the starting node of an iteration by going down the list T and checking for a positive

surplus node, is O(N) per cycle. Our final assumption is:
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at the set I at the set I

Figure 4 Illustration of the rule for restructuring the order of of nodes in the list T following a

price rise at the set I.

Assumption 5: The starting nodes of iterations of the network auction algorithm are chosen as

described above.

Main Result

We begin the complexity analysis by introducing some terminology. For any path H, we denote

by s(H) and t(H) the start and end nodes of H, respectively, and by H+ and H- the sets of forward

and backward arcs of H, respectively, as the path is traversed in the direction from s(H) to t(H).

We say that the path is simple if it has no repeated nodes. For any price vector p and simple path

H, we define

dH(p) = max { O, E (pi -pj - aij) - E (pi -pj - aij) }
(ij)e+ (ij)EH -

= max {O, P,(H)-Pt(H)- ~ aij + E aij (35)
2(,9)~z+ (,. j)EZ/-
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Note that the second term in the maximum above may be viewed as a "reduced cost length of H,"

being the sum of the reduced costs (pi - pi - aij) over all forward arcs of H minus the sum of

(pi - pj - aij) over all backward arcs of H. It is seen that the following upper bound on dH(p) holds:

dH(p) < p+ - p- + L, (36)

where p+ = maxi pi, p- = mini pi, and L is the maximum simple path length, where the length of

each arc (i, j) is taken to be laij [. Since any simple path can have at most N - 1 arcs, it is seen that

when p+ - p- = 0(1), we have dH(p) = O(NC).

For any capacity-feasible flow vector x, we say that a simple path H is unblocked with respect to

x if we have xij < cij for all arcs (i, j) E H+ and we have xj, > b0j for all arcs (i,j) E H-.

For any price vector p and feasible flow vector x, denote

D(p, f) = max{dH(p) I H is a simple unblocked path with respect to f}.

In the exceptional case where there is no simple unblocked path with respect to x, we define D(p, f) =

0. In this case, we must have bij = cij for all (i, j) since any arc (i, j) with bij < cij gives rise to a

one-arc unblocked path with respect to x.

The scalar i(p) given by

=,(p) = min{D(p, f) I f is feasible}. (37)

plays an important role in the subsequent analysis. The following result has been proved for the

e-relaxation method in [BeE87], [BeE88], and [BeT89], and is based on showing that the relation

pi- p0 < (N - 1)E +, (pO), (38)

where pO is the initial price vector, holds throughout the algorithm for all nodes i with gi > 0. The

proof for the network auction algorithm is identical; see also the proof of Prop. 3:

Lemnlia 2: For every node, the total number of substantive price rises of a subset containing the

node, up to termination of the network auction algorithm, is O(N + k6(po)/e), where pO is the initial

price vector.

Our main complexity result is the following:

Proposition 5: Let Assumptions 1-5 hold and let p0 be the initial price vector. Then the network

auction algorithm terminates in O(N3 + N2,3(pO)/e) time.

Proof: . To economize on notation, we write 3 in place of ,(pO). W"re will also need to distinguish

between nonsaturating 6-pushes in Step 2 for which 6 < rj -gj or 6 = rj- gj in Eq. (22); these
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are called regular and irregular nonsaturating S-pushes, respectively. Note that for each irregular

6-push, the node j of Eq. (22) enters the set L and participates in a substantive price rise in the

subsequent Step 3. The dominant computational requirements of the network auction algorithm

are:

(1) The computation required for price rises and for updating the push lists of nodes involved

in the price rises.

(2) The computation required for restructuring the list T following price rises.

(3) .The computation required for saturating 6-pushes.

(4) The computation required for irregular nonsaturating 6-pushes.

(5) The computation required for regular nonsaturating S-pushes.

(6) The computation required for selecting a node i with gi > 0 in Step 0.

There is also additional computation for updating the reject capacities of various nodes, but this

work can be lumped into the work for 6-pushes and price rises, with no effect on the subsequently

derived complexity bound.

XVe will show that the times required for the operations in (1)-(6) above can be estimated as

follows:

For (1), O(A(N + 1/c)).

For (2), O(N2(N + 3/e)); if the alternative form of Step 3 is used, the time required is O(A(N +

1310) -

For (3), 0 (A(N + /)).

For (4), O(A(N + /c)).

For (5), O(N2(N + ,3l/)).

For (6), O(N2(N +P/)).

Thus, we will obtain the desired O(N2(N + 3/e)) time bound.

Indeed, since by Lemma 2, there are O(N + P/e) price increases for each node and a total of

O(N(N + P3/e)) price rises, the time required for (1) is O(A(N + 13/)) and the time required for

(2) is O(N2(N + 13/e)). If the alternative form of Step 3 is used, then the restructuring of the list

T can be done by placing sequentially the nodes of L at the top of T as their price is increased, so

that the time required for (2) is O(A(N + 13/e)).

Whenever an arc flow is set to either the upper or the lower bound due to a saturating push at

one of the end nodes, it takes a price increase of at least 2E by the opposite end node before the arc

flow can change again. Therefore, there are O(N + P/e) saturating pushes per are. The computation

time for each of these, including the time to remove the arc from the corresponding push list, is 0(1),
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so the time required for (3) is O(A(N + Pl/)). Similarly, for each irregular nonsaturating b-push

there is a price rise of the corresponding node j that enters the set L. Thus there are O(N + I/e)

irregular nonsaturating pushes per arc, and the time required for (4) is O(A(N + 13/e)).

There remains to estimate the computational requirements for (5) and (6). At this point, we

will use the assumption that the algorithm is operated in cycles with the node order in each cycle

determined by the list T. We will demonstrate that the number of cycles up to termination is

O (N(N+ 1/e)). Given this, we argue that for each cycle, there can be only one regular nonsaturating

push per node in Step 2, for a total of O(N2(N +f/le)) regular nonsaturating pushes. Since the time

required for each of these pushes is 0(1), the time required for (5) is O(N2(N +,3/)). Furthermore,

the time to select a positive surplus node in Step 0 is O(N) per cycle, so the time required for (6)

is also O(N2(N + P/e)). Thus the proof of the time estimates for the computations (1)-(6) stated

above will be completed.

To show that the number of cycles up to termination is O(N(N + l/e)), we use the admissible

graph G* = (N, A*) and we argue as follows: a node i is called a predecessor of a node j if a directed

path starting at i, ending at j, and having arcs oriented from i to j, exists in G*. First, we claim

that immediately following a price rise of a node set. I, there are no arcs (j, i) in A* with j ~ I and

i E I. To see this, note that if (j, i) E A with j ~ I and i E I is e+-unblocked after the price rise,

we must have pj > p, + aji + e before the price rise, and, hence, xji = cji, implying that (i,j) is not

in A*. The e--unblocked case is similar, establishing the claim. We next claim that G* is always

acyclic. This is true initially because, by Assumption 4, A* is empty. b-pushes can only remove

arcs from A*, so G* can acquire a cycle only immediately after a price rise of a node set I, and

the cycle must include nodes of I as well as some nodes not in I. But since there are no arcs (j, i)

with j 0 I and i E I in the admissible graph following the price rise, no such cycle is possible. This

establishes the second claim. Finally, we claim that the node list T maintained by the algorithm

will always be compatible with the partial order induced by G*, in the sense that every node will

always appear in the list after all its predecessors. Again this is initially true because A* starts out

empty. Furthermore a S-push does not create new predecessor relationships, while after a price rise

of a node set node I, there can be no predecessor of a node in I which does not belong to I, while

the set I is moved to the top of the list before any possible descendants. This establishes the claim.

Let N+ be the set of nodes with positive surplus that have no predecessor with positive surplus,

and let N o be the set of nodes with nonpositive surplus that have no predecessor with positive

surplus. Then, as long as no price rise takes place, all nodes in NO remain in NO, and execution of

an iteration starting at a node i E N+ moves i from N+ to N ° . If there is no price rise during a cycle,

then all nodes of N+ will be added to N o by the end of the cycle, which implies that the algorithm

terminates. Therefore, there will be a price rise during every cycle except possibly for the last one.
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Since the number of price increases per node is O(N + Pi/), there can be only O(N(N + ,l/c))

cycles.

The proof of the time estimates for (1)-(6) stated above is now complete and the desired overall

time bound for the algorithm follows. Q.E.D.

Note that the classical max-flow problem can be formulated so that all arc costs aij are zero

except for one arc cost which is unity ([BeT89], p. 334), and with an initial price vector p0 such that

p+ - p- = 0(1), we have Pi(p) = 0(1) [cf. Eq. (36)]. By taking e = 1/(N + 1) in Prop. 5, it follows

that the network auction algorithm solves the problem in O(N3) time.

The Scaled Version of the Algorithm

WTe now describe a scaled version of the network auction algorithm. Its analysis is virtually

identical to the corresponding analysis of the e-relaxation method given in the sources mentioned

earlier.

Consider the problem obtained from (LNF) by multiplying all arc cost coefficients by N+ 1, that

is, the problem with arc cost coefficients

ai. = (N + 1)aij, V (i,j) A.

We refer to this problem as (SNLF). If a pair (x',p') satisfies 1-CS (namely, c-CS with e = 1) with

respect to (SLNF), then clearly the pair

(Xp) = (=', X p

satifies (N + 1)-l-CS with respect to (LNF), and hence x' is optimal for (LNF) by Prop. 1. In the

scaled algorithm, we seek a 1-CS solution to (SLNF).

Let

M = [log2 (N + 1)CJ + 1 = O(log(NC)), (39)

where C = max(ij)eA la/jl. In the scaled algorithm, we solve MA subproblems. The mth subproblem

is a minimum cost flow problem, where the cost coefficient of each arc (i, j) is

a.j(m) = Trunc (2M I (40)

where Trunc(.) denotes integer rounding in the direction of 0, that is, down for positive and up for

negative numbers. Note that aij(m) is the integer consisting of the m most significant bits in the M-

bit binary representation of a j. In particular each a,j(1) is 0, +1, or -1, while aij(m+ 1) is obtained
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by doubling aij(m) and adding (subtracting) 1 if the (m + 1)st bit of the M-bit representation of

aij is a 1 and aij is positive (negative). Note also that

aij(M) = atj,

so the last problem of the sequence is (SLNF).

All problems in the sequence are solved by applying the e-relaxation algorithm using e = 1,

yielding upon termination a pair (f.(m),pi((m)) satisfying 1-CS with respect to the cost coefficients

aij(m). The algorithm is operated in cycles as per Assumption 4.

The starting pair (fO(1),pO(1)) for the first problem must be integer and must satisfy 1-CS. The

starting price vector for the (m + 1)st problem (m = 1, 2,...,M - 1) is

p°(m + 1) = 2pi(m), (41)

where pf(m) is the final price vector obtained from solution of the mth problem. Doubling pt(m)

as above roughly maintains complementary slackness since a,j(m) is roughly doubled when passing

to the (m + 1)st problem. Indeed, it can be seen that every arc that was 1-balanced (1-active,

1-inactive) upon termination of the algorithm for the mth problem will be 3-balanced (1-active,

1-inactive, respectively) at the start of the (m + 1)st problem.

The starting flow vector xO(m + 1) for the (m + 1)st problem is obtained from x1(m) by setting

A°j(m + 1) = xti j(m ) if -e < Pi - Pj - aij < e,

xQ,(m + 1) = cij if Pi -pj - aij > c,

(m + 1) = bij if -c p - pj - aij.

Note that this initialization method implies that the starting price and flow vector will be integer,

and that there will be no 1+-unblocked and 1--unblocked arcs initially for the (m + 1)st problem.

These facts guarantee that Assumptions 2, 3, and 4 are satisfied for the subproblems.

Based on Prop. 5, the scaled form of the algorithm solves the problem in O(MN3 + N 2 B) time,

where
M

B = EAlm [p(m)], (42)
m=l

and /,m(.) is defined by Eq. (37) but with the modified cost coefficients aij(m) replacing aij in the

definition (35). We will need the following result, which is shown in [BeE87], [BeE88], and [BeT89]:

Lemmlla 3: If there exists a feasible flow vector x satisfying 7-CS together with p for some y > 0,

then

o < 3(p) < (N -1)y.
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WVe will show that 3,,(pO(m)) = O(N) for every m, and we will then use Lemma 4 to obtain

the following result, which is identical to the one shown in [BeE87], [BeE88], and [BeT89] for the

c-relaxation method:

Proposition 6: Assume that for the initial subproblem, Assumptions 1-5 are satisfied and

that p_ -p0 = 0(1) for all arcs (i, j). The scaled form of the algorithm solves the problem in

O (N3 log(NC)) time, where C = max(ij)eA laij .

Proof: Since initially we have pi - pj = 0(1) and aij(l) = 0(1) for all arcs (i,j), we obtain

dH(pO(1)) = O(N) for all H, and 31(p°(1)) = O(N). We also have that the final flow vector xz(m)

obtained from the mth problem is feasible, and together with pO(mn + 1) it can be easily seen to

satisfy 3-CS. It follows from Lemma 3 that mp,+I (p°(n + 1)) < 3(N - 1) = O(N) and the result

follows from Eq. (42) as discussed above. Q.E.D.

Problems with Unit Arc Capacities

When the feasible flow range of each arc is [0, 1], such as for example the assignment problem

and the k node-disjoint shortest path problem, there are no regular nonsaturating pushes. For this

reason, to obtain a good complexity bound, it is not necessary to maintain and restructure the list

T as described earlier. Instead, a much simpler FIFO queue that includes the nodes with positive

surplus can be used. With this algorithmic modification, the preceding analysis can be adapted to

show that the complexity bound is reduced to O(A(N + /(po)/c)). When scaling is used, we can

then obtain with a similar analysis an 0 (NAlog(NC)) bound.

Complexity of the Generic Algorithm

Much of the preceding complexity analysis can also be applied to the generic algorithm under

some broadly applicable assumptions. In particular, let us call a 6-push by node i exhaustive on arc

(i,j) [or arc (j, i)] if 6 = min{gi, cij - xi} [or 6 = min{gi,xji - bji, respectively]. Let also ni be

the number of times that the price of node i is changed due to a price rise. Consider in addition to

Assumptions 1-3 of the previous section, the following assumptions:

(a) The computation required for price rises is bounded by a constant times i~E. aini, where

ai is the number of incident arcs of node i.

(b) Each S-push requires 0(1) computation and the number of 6-pushes which are not exhaustive
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-is bounded by a constant times liEN rn-

(c) Between two successive price rises there can be at most N 2 exhaustive S-pushes. (This

assumption in particular is satisfied is satisfied in the network auction algorithm if the node

selection policy is arbitrary but the algorithm is operated so that the admissible graph is

acyclic.)

Under these assumptions our earlier analysis can be easily modified to show an O(N4 log(NC))

running time for the scaled version of the generic algorithm. In particular, for fixed c, by using

assumptions (a) and (b) above, we can show similar to the proof of Prop. 5 that the computation for

price rises, saturating 6-pushes, and nonexhaustive 6-pushes is O(A(N + /?/)). By using assump-

tions (a) and (c) above we can also show similar to the proof of Prop. 5 that the computation for

nonsaturating 6-pushes is 0 (N3(N - P1/e)). We thus obtain a O(N3(N + ,/e)) bound for applying

the algorithm with a single fixed E, which with scaling translates to a O(N4 log(NC)) overall bound.

By exploiting the problem structure and by using data structures such as the ones of the sweep

implementation, it may be possible to reduce the time bound for nonsaturating 6-pushes, which is

the worst-case complexity bottleneck. Such data structures can be developed in the context of par-

ticular algorithms, e.g. the network auction algorithm. Note that for the case of unit arc capacities,

there are no nonsaturating S-pushes and we obtain the earlier O(NA log(NC)) bound.

6. COMPUTATIONAL RESULTS

In this section we present the results of some of our experimentation with various implemen-

tations of special cases of the generic algorithm. In particular, we will present results using the

transportation auction algorithm of Section 3 and using the k node-disjoint shortest path algorithm

of Section 4. The reader is also referred to several computational studies that have tested exten-

sively auction algorithms for assignment problems [BeC89b], [BeC89c], [Ber90], [KKZ89], [PhZ88],

[WeZ90], [WeZ91], [Zak90].

Transportation Problems

We compared our auction code for solving transportation problems, called TRANSAUCTION,

against the state-of-the-art minimum cost flow code RELAX-II, described in [BeT85], [BeT88]. In

[BeC89a] we also compared TRANSAUCTION with RELAX-II, as well as with the primal simplex
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code RNET in, but the experimentation reported here was done with much larger problems. Our

computational results, summarized in Figs. 5 and 6, generally agree with the conclusions of [BeC89a].

In particular, while TRANSAUCTION is not uniformly superior to RELAX-II, it runs much faster

for important classes of tranportation problems. Generally these problems are characterized by two

properties, which we call homogeneity and asymmetry. A homogeneous problem is one for which

there are only few levels of supply and demand. An asymmetric problem is one for which the

number of sources is much larger than the number of sinks. Based on our experience, homogeneous

and asymmetric problems arise in many types of applications. As Fig. 6 shows, TRANSAUCTION

has an advantage even for problems that are not homogeneous but are, however, very asymmetric.

- 2000
CD)

2 e ~~~No. of Sinks = 100
No. of Arcs = 12*(no. of Sources)

VX ·ITotal Demand = 10*(no. of Sources)
E Cost Range = 1-100

0
0

LU 1000 -

C ·......... .+........ Relax-!l

E

0
0 2000 4000 6000 8000

Number of sources

Figure 5 Comparison of TRANSAUCTION and RELAX-II for a constant number of sinks and

average node degree, as the number of sources increases. The relative advantage of TRANSAUCTION

exceeds an order of magnitude as N increases.

k Node-Disjoint Shortest Path Problems

WVe have implemented the auction algorithm for k node-disjoint shortest path problems in a code

called AUCTION-KSP, which we tested against an implementation of the c-relaxation method, called

E-RELAX (given in [Ber91]), the RELAXT-III code, (a more recent version of the RELAX-II code
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Figure 6 Comparison of TRANSAUCTION and RELAX-II for asymmetric problems, generated

with the problem generator NETGEN [KNS74]. Here the supplies and demands of all sources and sinks,

respectively, are randomly generated using a uniform distribution, resulting in inhomogeneous problems.

TRANSAUCTION still holds a significant advantage.

used for the results of Figs. 5 and 6), which is described in [BeT90], and the primal-simplex code

NETFLO, which is given in [KeH80]. Figures 7 and 8 give some representative experimental results.

NETFLO was slower by an order of magnitude than RELAXT-III and E-RELAX for the problems

we tried, so its performance is not shown in these figures. AUCTION-KSP does not use scaling

and this probably slows down its performance, particularly when k is relatively large. Despite this

fact, AUCTION-KSP is uniformly and substantially faster that RELAXT-III and much faster than

E-RELAX. This suggests that our specialized auction algorithm for the k node-disjoint shortest path

problem is not just a heuristic improvement on the e-relaxation method, but rather embodies some

computational ideas that are genuinely interesting. VWe note also that the performance of AUCTION-

KSP will probably improve substantially once we use scaling as well as "down iterations" where the

prices of nodes with negative surplus are decreased. Down iterations have been shown to be very

useful in the context of reverse auction for assignment problems [BCT91], [Ber9la], and reverse

auction for shortest path problems [Ber91la], [Ber91lb].
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Figure 7 Comparison of the auction code AUCTION-KSP for k node-disjoint shortest path

problems, with the transhipment codes E-RELAX, and RELAXT-III. Here the problems have a constant k

while the number of nodes increases. The graphs of these problems were generated using NETGEN.

Additional Comments

We have also conducted much additional experimentation with the purpose to determine for what

types of problems auction-like algorithms can form the basis for codes that outperform current state-

of-the-art codes. This experimentation is not conclusive and cannot be presented here. However,

the results seem to suggest that problems with a structure resembling the one of the assignment

problem (bipartite or nearly bipartite structure, small and/or uniform sized supplies, small arc

capacities) are good candidates for effective solution using specialized versions of the generic auction

algorithm. Also a relatively simple problem structure such as the one of the max-flow, shortest

path, and other related problems seems to favor the use of specialized auction algorithms. For

general linear transhipment problems without a particular special structure we found that our best

implementations of the e-relaxation and network auction algorithms were considerably slower (by a

factor of the order of three to ten) than state-of-the-art relaxation codes.
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Figure 8 Comparison of the auction code AUCTION-KSP for k node-disjoint shortest path

problems, with the transhipment codes E-RELAX, and RELAXT-III. Here there is a single graph that has

6400 nodes and 64000 arcs, but the number of shortest paths k varies.
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