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Abstract

We analyze the performance of On-Off-Keying modulated signals in the presence of phase noise for different
envelope detection structures. We obtain closed-form expressions for the error probability conditioned on a random
envelope, and remove the conditioning via approximations. We also provide a tight lower bound in closed-form. We
also compare the performance with that of Frequency Shift Keying.

1 Introduction

Coherent optical communication systems provide an efficient way of sharing the huge bandwidth of single mode
optical fiber among different users of the future high-speed networks. Phase noise is a major problem in coherent
technology, due to both spectral broadening which necessitates wider channel spacing in a network and the incom-
plete knowledge and the time-varying nature of the phase which makes the correct retrieval of the transmitted data
bits more difficult for the receiver. On Off Keying (OOK) is an attractive modulation scheme for systems with phase
noise because of the weak coupling between the noise in the phase and the information in the amplitude.

In this paper we analyze a set of Intermediate Frequency (IF) receiver structures and determine their bit error
performances. These structures employ envelope detection which is insensitive to phase uncertainties. For the case
where the phase uncertainty is constant over the bit period, the envelope detector is the optimal receiver [10].

Various performance analyses for OOK exist in the literature [2, 3, 4, 5, 6, 7]. A contribution of this work is
to obtain closed-form expressions for the error probability conditioned on a normalized phase noisy envelope. This
phase noisy envelope was first formulated by Foschini et.al. [3] in the context of the same receiver structures that
we consider here. The exact error probabilities for these receivers can be obtained by taking the expectation of
the conditional error probability. However a computationally attractive method to obtain the statistics of the phase
noisy envelope is yet to be found, although significant progress has been achieved [7, 8]. Therefore, we use an approx-
imation to the actual envelope for which the statistics can be easily obtained. This approximation is first introduced
in [9]; it is identical to the desired envelope to the first order in phase noise strength and faithfully produces its first
two moments. Having computed the density function of the approximate envelope in [9] we obtain the performance
explicitly. We also provide a easily computed lower bound, and evaluate the accuracy of Gaussian approximation.

In the next section, we described the receiver structures that are considered. Then in Section 3 we present
the analysis and discuss its results. We compare the performance of OOK with Frequency Shift Keying (FSK) in
Section 4. Finally we present the conclusions from this work in Section 5.

2 Receiver Structures

The amplitude modulated optical field is assumed to reach the receiver in the transmitted form, i.e. we neglect
the fiber dispersion. The received signal is processed by an optical heterodyne receiver. Heterodyning involves the
addition of a local oscillator signal to the received signal, and the photodetection of the sum. The effect of this



processing is the transformation of the signal from optical frequency to intermediate frequency. We assume that the
local oscillator power is large enough to ensure that photodetection results in an addition of a white Gaussian noise
process (shot noise). Thus the IF signal output r(t) is given by

r(t) = d Acos (27rfct + 0(t)) + n(t) (1)

where d = 0, 1 is the current data bit, fc is the IF carrier frequency, O(t) is the combined phase noise process of the
transmitter and local oscillator lasers, and n(t) is the shot noise process with two-sided spectral density No/2. This
signal will be the input to the IF receiver which is the main focus of this paper. We use the standard Brownian
motion model for the phase noise process. According to this model, O(t) = 2ir fot i(r) dr , where the frequency noise
process /t(r) is white and Gaussian with spectral density 3/2r, /3 is the sum of the laser linewidths.

The general structure of the IF receiver to be considered in this paper is shown in Figure 1. The received signal is
first transformed to baseband via a standard quadrature demodulator. The integrators serve the purpose of limiting
the additive noise power. The integration time is T' which is yet to be determined. The signal is effectively bandpass
filtered around the center frequency by the use of demodulators and integrators; the filter bandwidth is 1/T'. For
a uniformly distributed phase uncertainty which is constant over the bit duration the optimum value of T' is the
bit duration T [10]. In the presence of phase noise, however, the signal occupies a larger frequency band because of
phase noise. This fact may necessitate a wider filter bandwidth, or equivalently smaller integration times. In order
to simplify the analysis, we assume that the ratio TIT' is a positive integer M as in [3].

The outputs of the in-phase and quadrature branch integrators in Figure I are squared and then added to perform
the envelope detection. The remainder of the signal processing depends on the value of M. For M = 1, the adder
outputs are sampled at the end of the bit duration and the sampled value is compared to a threshold h to reach a
decoding decision. This processing involves a single stage of filtering and corresponds to conventional envelope detec-
tion (CED). For M > 2, the bit duration consists of multiple integration windows, so a variety of signal processing
options exists. A simple strategy is to sample only once per bit as before, this effectively discards all but the last one
of M integration windows. We refer to this strategy as modified envelope detection (MED). Note that since M will
be chosen so as to optimize the performance, and since for M = 1 MED reduces to CED, this modification is guar-
anteed to be at least as good. In Figure 1, MED is shown with M samples per bit duration, but the decision device
discards all but the last of these samples. A better, but not optimal, processing is to average these M samples to get
the input to the threshold device. This averaging can be performed by a lowpass by a lowpass filter that integrates
the adder output over the bit duration. So we call this latter processing to be double filter envelope detection (DFED).

To summarize, we have outlined three reception strategies: conventional, modified and double filter envelope
detection. The first two are single filter receivers with the difference being in their filter bandwidths. In the special
case of M = 1 all three receivers are identical. These receiver structures were first suggested by Kazovsky et.al. in
[11] in the context of multiport homodyne receivers. The remainder of this paper is devoted to the performance
analysis of these receivers.

3 Performance Analysis and Results

Now we proceed to find the probability of error for the receiver structures outlined above. The method employed
is similar to that of [9] in that we first condition the error probability on the phase noise process, then we remove
this conditioning either by numerical integration or via analytical bounds.

We first consider the conventional envelope detection. The decision variable can be written as

fT 2

Y = dAd ei(tdt + n + j (2)

where n, and n, are independent identically distributed Gaussian random variables with zero mean and variance



o.2 = NoT/4. The signal component of the decision variable is

X= A ej o (t) dt

When d = 0, the decision variable has an exponential distribution given by

) e- y/2 > 0.

For d = 1, both additive noise and phase noise are present. We first condition the density on the phase noisy signal
component X' to obtain

py(yX')= e-(+x')/2Io ( )2o.2

which is a well known noncentral Chi-square distribution with two degrees of freedom.

Let Pe(O) be the probability of error when d = 0, and let Pe(11X') be the conditional probability of error given
d = 1 and X'. Then we have

P,(O) = Pr[Y > hid = 0]

= 1 _ e-y/2o, dy = e - h/2o,2

dh 2J 2
ahd

Pe(11X') = Pr[Y < hid = 1, X']

= e -(+±X')/ 2~ Y 2 (IoV ( T) dy
do 2o'2 02

= 12-Q( , 2)

where Q(-, ) is the Marcum's Q function defined as

Q(a, b) _ je e-(a2 +x2 )/2Io(ax)x dx .

It is convenient to define a normalize threshold h as

h
2o-2

and to rewrite X' as follows

ejX(t) dt - 4 ejv(t) dt 
2 4

where +(t) is the standard Brownian motion (E p2 (t) = t) and y is the phase noise strength defined as -r 2rT.
Now with the definition of normalized phase noisy envelope X(-y) as

12 2

X(y) = ejV(t)dt (3)

we have 2 = (X(-y) where ~ = A 2 T/2No is the signal to noise ratio (SNR). Then the error probabilities become

Pe(0) = e

Pe (1fX(Y)) = 19 (Q 2 (, h 2i )



and the unconditional error probability is given by

Pe = -Ft + 2[1-E [Q ( I ), vh)]] (4)

which reduces to the well known OOK error probability for - = 0.

If the probability density function of X(7 ) is explicitly known, then the expectation in (4) can be evaluated
to obtain the error probability. It will seen that only this density is required for the other receiver structures
as well. The phase noisy envelope plays the same critical role for envelope detection of phase noisy FSK [3, 9].
Because of this considerable effort has gone into characterizing its statistics. While there is progress in this direction
[7, 8], the techniques known so far are too complicated. Therefore, we pursue a different approach which attempts
to approximate the random variable X(7) with a random variable whose statistics can be easily obtained. This
approach of random variable fitting was first used in [3] where a linear approximation was used with XL(Y) =

1 - -yX'(0). (X'(0) is the derivative of X at 7 = 0, it is given in terms of the normalized Brownian motion as

.f (+(t)- - f+ (r) dr) dt.) This approximation retains the properties of the original random variable for small 7.
However, since it can take on negative values it yields poor results when used in conjunction with the conditional
error probabilities. In order to remedy this situation, another approximation was developed in [9] which uses the
random variable XE(Q) = exp(-yX'(0)). This variable is still a faithful replica of the original random variable to
the first order in 7, it also has the same range (0, 1). For a detailed discussion of the properties of this exponential
approximation the reader is referred to [1, 9].

The approximate probability density function, p- (x), of X(y) was obtained in [9]. Therefore the error probability
in (4) can be evaluated numerically. The results are shown in Figure 2 for different 7 values. The threshold h has
been optimized at each point to minimize the error probability. It is seen that the performance of the conventional
envelope detector deteriorates rapidly with the introduction of phase noise.

Next we consider the modified envelope detector (MED) . The analysis for this case is very similar to that of the
previous case, since the decision variable consists of a single sample as well. The additive noise variances increase by
a factor of M, while the effective phase noise strength decreases by the same factor. This is due to the reduction of
the integration period by M. As a result, the error probability of MED is given by

Pe = + - 1 [- E [ 2X (/ (Xy //M )/M, (25)

The value of M that minimizes Pe must be found as well as the normalized threshold h. The former optimization
poses a computational problem since the evaluation of the density function p(x) for many values of y/M is likely to
be difficult. However due to the exponential approximation for X(y) introduced in [9], this problem can be avoided
as follows. We have pY/M(z) = p,(xM)MxM-1 which results in

E[f (X(7/M))] = f(xl'/M )p (z) dx

for any function f(.) defined on (0, 1). Thus

Pe = e- + [1-; Q (12jx2lM/IM, 2i) Pp(x)dx (6)

which requires only one density function, instead of possibly many. The results are shown in Figure 3. Again we see
that the performance degradation due to phase noise is severe. The modified receiver introduces a small improvement
over the conventional receiver at no additional hardware complexity. All that is needed is an estimate of the signal to
noise ratio and the phase noise strength, and an a priori computation of the optimum bandwidth expansion factor AI.

Finally we consider the performance of the double filter envelope detection. In this case, the decision variable is a
sum of M statistically independent random variables, {Yk}, under both hypotheses. The additive noise components
are Gaussian with variance a 2 = NoT/4M. It is convenient to normalize both the decision variable and the threshold



as V = Y/2ac2 , h = h/2a2 . Then for d = 0, V is the sum of squares of 2M Gaussian random variables, thus it has a
Gamma density given as

vM-1

For d = 1, we first condition on the phase noise process, and obtain the Chi-square distribution with 2M degrees of
freedom

pv (v i {e(t) } t) ()(M-1)/2 +)IM( )

where the dependence on the phase noise process is exhibited in the parameter r. This parameter is defined as

M

r = 22 I(k)12
k=1

where
A fkTIM

X(k) = / eje(t) d k=1,...,M.
2 (k-1)T/M

It can be easily seen that r can be expressed as

M

r =- X-,k(7/M) (7)
k=l

where Xk (.) are independent observations of the random variable X(.). The parameter r may be regarded as a phase
noisy signal to noise ratio. It is always less than the actual SNR ~, and approaches i with probability 1 as M -- oo
due to both the central limit theorem and the fact that the means of Xk approach 1 as the phase noise strength
vanishes. Interestingly, the dependence of error probability on phase noise is through a single random variable r.
The error probability for d = 0 is easily seen to be

M-1 k

Pe(0)= E ke-
k=O

while the error probability for d = 1 conditioned on r is obtained as

P,(llr) = 1- j_ ((M1)2e-M+ )1M_( 4rv/)dr
7'

= - QM(v/', v2h)

where QM(, ') is the generalized Marcum's Q function [12] of order M defined as

QM(ab) -j al e-(X=+a 2 )/2IM_l(ax) d .

Note that there is no symmetry between P,(0) and P,(1) in OOK, unlike FSK [3, 9]. For a given r, P,(11r) increases
with Ml, as well as P,(O). On the other hand, for a given M, P,(11r) decreases with r. However, r is a function
of M as well, and it increases with probability 1 with M. Therefore there is a tradeoff in choosing M, between
the additive and phase noise processes. The optimal values of M will be lower than those of FSK, since P,(0) is
uniformly increasing in M.

The unconditional probability of error is given as

1. hk e_-I 1 [1 E [QM (JV', Vi')]] (8)
2 =k=O



which is to be optimized over M and h. Since r is a sum of M independent identically distributed random variables,
the expectation involves M-fold self-convolution of the density qy/M(X). Thus we have, once again, the problem of
many density computations as well as many convolutions. For MED, this problem could be solved by a change of
variable; for double filter FSK, the form of the conditional error probability allowed us eliminate the problem as well
[9]. However, this does not seem possible in this case, due to the fact that generalized Marcum's Q function does not
have a compact explicit representation (for example, a finite series). Therefore, we will use three different techniques
to obtain a reliable estimate of the error probability. First, we use Jensen's inequality to obtain a lower bound, which
provides a rather tight estimate of the error probability for FSK [9]. Here we observe that the quantity Pe(lr) is a
convex U function of r for a given threshold }I, so that an interchange of the expectation operator with the function
QM will result in a lower bound to the error probability. The lower bound corresponds to the error probability in
the optimistic scenario where the random variable r does not deviate from its mean. The resulting bound is

M-1 ret
Pe > S I= -1 QM 2TX(3/M), v2hJ (9)

2 2E!
k=O

where X(.) denotes the mean of X(.). This mean can be easily computed as [9]

() = [1 (1 e-'/2)] (10)

Equation (9) in conjunction with (10) describe a lower bound that we will use in the following discussion.

The second technique to be employed in estimating (8) is the Chernoff bound which yields

Pr(V < h) < e"'E(e- 'V)

for all s > 0. This provides an upper bound to Pe(l) in terms of the moment generating function of the decision
variable under d = 1. We note that the moment generating function of V is given by [10]

E [esv I r = ( 1 exp sr 

Since r is a sum of M independent, identically distributed random variables, the conditioning on r is removed to
yield

[eIV] =(1 + s)M [E [exp (M(1 + s) (7/M))]]

and finally the Chernoff bound is given by

M-1 _k (A S M

P -2 • ' l e - + 2(1 s)M /M M(1 + s))J (11)

where we denote the moment generating function of X(T) by 4,(s) = E(e-'X(7)). Lastly we relate C,/M(-) to q,(.)
as

,/M(S) = exp(-] /M)q (x) dx (12)

which eliminates the need for computation of many density functions. An additional optimization needs to be per-
formed over nonnegative a to obtain the tightest upper bound.

The Jensen bound and the Chernoff bound are shown in Figure 4 for various y values. Note that the bounds are
very close for all values of 7 and 5. Therefore, the computationally simpler lower bound may be used reliably.

A third approach in estimating the performance of the double filter receiver is Gaussian approximation. Since
the normalized decision variable V is the sum of M independent identically distributed random variables under both



hypotheses, it is tempting to use a Gaussian approximation for V. For d = 0, both the mean and the variance of V
are easily obtained to be M. For d = 1, the conditional mean of V is M + r, while its conditional variance is M + 2r.
Therefore we have with the Gaussian approximation

Pe(0) Q (h )

Pe (lr) Q M+- )

Due to the difficulty of removing the conditioning exactly, we will further approximate Pe(1) via a Jensen-type
interchange by

P() Q 0M + E(r) -

Under these approximations the error probability becomes

1 h h- M 1 M + X(Y/M)-(13

2 V\IM 2 \ M + 2SX(7/M) 

which is to be optimized over M and h. This is the error probability of a system in which the decision variables are
Gaussian with nonidentical variances. The optimal setting of the threshold is complicated. A conventional threshold
setting is one that equalizes the two error probabilities. This results in an error probability of

Pe' 1Q ( M + (v/M + 2gX(/M) (14)

where the underlying threshold setting is

hG = M + VIx (7/M) (15)
vhM + M + 2.X(r/M)

It is known that this nonoptimal threshold setting gives results that are very close to the optimal threshold setting
for the Gaussian approximation [13]. The error probability predicted by the Gaussian approximation is compared
with the previously obtained lower bound in Figure 5. For each 7 value the Gaussian curve is the upper curve. It
is seen that the two results are in good agreement uniformly over the set of 7 and 5 values. Therefore we conclude
that the lower bound given in Equation (9) satisfactorily predicts the performance of the double filter receiver.

The closeness of the error probability prediction of the Gaussian approximation to the exact performance was
shown in [13] in the absence of phase noise. It was also noticed that the Gaussian threshold estimate is much lower
than the actual optimal threshold. If the threshold is set according to the Gaussian approximation, the resulting
performance would be far worse than what is predicted. This rather surprising result is true even when the value
of M is large [13]. The presence of phase noise does not help correct this discrepancy. In Figure 6 we show the
threshold predictions of the Gaussian approximation and the Jensen bound. It is seen that threshold predictions
remain very different.

The performance predicted by this work is considerably better than that predicted in [3] for conventional and
modified envelope detectors when 7 is large, while the results agree closely for the double filter performance. For
the latter receiver the optimal value of M is large enough to ensure small effective phase noise strength a/M; this
ensures that the exponential and linear approximations are close. On the other hand, the value of M is much smaller
for the single filter receivers, this causes the linear approximation to overestimate the error probability.

4 Comparison of OOK and FSK with Envelope Detection

A set of error probability curves of double filter envelope detection of OOK for a larger collection of y values is
given in Figure 7 for improved visual clarity. It is seen from the figure that at a bit error rate of 10 -', the SNR



penalty due to phase noise is 0.25 dB for y = 1, 0.38 dB for r = 2, 0.62 dB for r = 4, 0.75 dB for y = 6, and 1.13 dB
for -y = 16. The robustness of OOK to phase noise surpasses that of FSK in terms of required excess signal energy
to maintain a certain error probability level. This is seen clearly in Figure 8 which shows the penalty in SNR as a
function of phase noise strength for both OOK and FSK at an error probability of 10 - 9. The improved robustness
does not mean improved error performance, however. Since semiconductor lasers are limited in the peak power they
can generate, as opposed to being average power limited, envelope detection of OOK will always have an inferior
error probability with respect to envelope detection of orthogonal signals. This is demonstrated in Figure 9 for -y = 0
and y = 1. The reason behind this conclusion can be seen as follows. In orthogonal signaling, envelope detection
is performed for two frequencies, resulting in two decision variables. If one of the decision variables is neglected,
and the other is compared to a fixed threshold for the decision, then the resulting performance will be identical to
that of OOK. However, this clearly is a suboptimal processing of the available decision variables; symmetry dictates
a comparison of the two decision variables for deciding on the most likely hypothesis. Nonetheless, OOK is still
a modulation format of interest; the choice between OOK and FSK must be based on factors such as the amount
of desired simplicity for the transmitters and the receivers, the achievability of orthogonality (i.e. wide frequency
separation) in FSK, the severity of frequency dispersion during propagation along the fiber, etc.

5 Conclusions

We have provided a performance analysis for different envelope detection structures when the signal is OOK
modulated. This analysis is different from previously reported ones in that it provides exact closed-form conditional
error probabilities. The only obstacle to the final exact result remains the statistics of a normalized random envelope
which is currently receiving considerable attention. Here we have approximated this envelope by another random
variable to obtain the error performance. This enables us to compare the three envelope detection strategies and to
compare OOK with FSK with similar receivers. Double filter envelope detection provides robustness against phase
noise. While OOK is more robust in terms of phase noise induced degradation, FSK has a better performance for
peak power limited semiconductor lasers.
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Figure 1: IF receiver for envelope detection of OOK signals. For single filter receivers the adder is absent, and
Y =- M.
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