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1 Introduction

Direct-detection (DD) optical fiber frequency division multiple access (FDMA) is a simple and practical alter-
native to optical heterodyne FDMA. Previous works on estimating the performance of DD optical FDMA networks
have usually focused only on the (linear) crosstalk degradation, typically relying on simplifying approximations such
as the dominance of the adjacent channel interference [1], [4]. Other sources of performance degradation such as
signal loss due to optical (predetection) and electrical (postdetection) filtering, intersymbol interference (ISI) due to
the optical filtering, and channel beats (or nonlinear crosstalk) are usually ignored.

This paper presents a more precise analysis that takes into account the effect of optical and electrical filtering,
ISI, and linear crosstalk [3]. The model used here is valid for arbitrary optical filter transfer functions and received
pulse shapes. We consider in this paper only On-Off-Keyed (OOK) modulation; extending the analysis to Frequency-
Shift-Keyed (FSK) modulation is straightforward, but is not discussed here.

2 System Model

The system is assumed to consist of M transmitter-receiver pairs connected by a star coupler. We assume for
convenience that M is even. The received signal r(t) at each receiver is given by

M/2-1 0o

T(t) =2 V E diks(t - kT) cos(2xfit + i)l

i=-M/2 k=-oo

where dik E (0, 1} is the data bit transmitted by channel i during the kth bit period kT < t < (k + 1)T, fi and
Oi are the carrier frequency and phase of channel i respectively, and s(t) is the received pulse shape, normalized to
unit energy. Note that all M channels are assumed to be bit-aligned. This results in a worst case linear crosstalk as
shown in [2]. Laser phase noise and frequency chirp are ignored. We choose channel 0 (the center channel) to be the
signal, with the other M - 1 channels being crosstalk. Strictly speaking, this is with some loss of generality since
the filter frequency response is a weak function of the chosen channel. However, for most cases, this effect is small
and can be neglected.

The front-end optical filter (see Fig. 1) is assumed throughout this paper to be linear time invariant (LTI) with
an impulse response h(t) and with a system bandwidth of P Hz. For optical filters with an aperiodic frequency
response, P equals the filter tuning range; for periodic optical filters P equals the frequency response period, or "free
spectral range". The channel spacing Af equals P/M. Shot noise is assumed negligible in comparison to the receiver
thermal noise, as is usually the case in practical direct detection receivers. The photodetector thus acts as an ideal
square-law detector with output current

2

-- 1({' = 1 0 14 (f T(-r)i'( - r)d1r) (2)

where Rpd is the photodetector responsivity (henceforth set to 1) . The subscript LP denotes removal of the double
frequency terms.

The total receiver current is i(t) = id(t) + i,,(t), where the noise current i,,(t) is assumed to be a zero mean
AWGN process with double sided spectral density NVo/2. The current i(t) is subsequently low pass filtered (modeled



by an integrate and dump filter), sampled, and compared to a threshold. The sampled output for the 0th bit period
is given by

Z(d, M) = id(t)dt + i (t)dt = (d, M) + A. (3)

The variable £ is the received energy, and is a function of the M data bits d - (di, i = -M/2,..., M/2 - 1}
sent by the M channels during [0, T]. The noise variable A/ is a zero mean Gaussian random variable with variance

-
2 = NoT/2. Assuming negligible ISI, we may approximate the received energy during each bit period by that

collected with an infinite-time integrator

£(d, M) 0 id(t)dt= j IH(f)l2IR(f)I2df. (4)

This form simplifies the analysis considerably. Later, we shall correct for this approximation.

The energy £(d, M) is a sum of three components: a signal component S(do, M), a linear crosstalk component

C(d-, M), and a nonlinear crosstalk, or channel beats, component B(d, M). Here, by abuse of notation, d-- d - do.
The three components of £ can be written as

S(do, M) = do IH(f)12lS(f - fo)l2df (5)

M/2-1 

C(d-, M) E di j IH(f)121S (f-fi)i 2df (6)
i=- M/a -

ifO

M/2-1 M oI o
A(d, M) IH(f)12S(f - fi)S(f -fi)e+ H(f)l 2 S(f + fi)S*(f + fi)eJ(i'-')df. (7)1(d, M) C 2.oo (f)

i,l=--M/2

10i

The sampled output is then
Z(d, M) = S(do, M) + C(d-, M) + B(d, M) + KV (8)

i.e., the signal is corrupted by two non-Gaussian noises in addition to the Gaussian noise source. The expressions in
(5)-(7) will enable us to determine the crosstalk degradation and signal energy reduction (due to the optical filter).
This is done in the following Section. Later, we shall determine the additional losses caused by the electrical filtering
(due to the finite time integration) and the ISI.

3 Analysis

Define 0 1,
Ei(di, M) di j H(f)l2 IS(f -f)l 2df ; d C {0,1} (9)

as the received energy from channel i when it sends di. Since the filter is centered on fo, the carrier frequency of the
signal, we may write (9) as

Ei(di, M) = d IH(6)I2 S(6 - d (10)

where 6 _ f/P is normalized frequency. In particular, the signal energy equals

S(do, lI) Co(do1A ) do IH(6 ) 12 S(6)12d6 (11)

Further simplification depends on whether IH(6)12 is an periodic or aperiodic function. In the former case we may
convert to the time domain to obtain

00

Ei(di, M) =di E h[q]s(q)e- j2 r qi/M (12)
q=-oo



where h[q] are the Fourier coefficients of IH(6)12 and i(n) are integer samples of the Fourier transforms of S(6)12
In particular, the signal energy when a ONE is sent, S(1, M), equals

(X)

S(1, M) = E h[q]Z(q). (13)
q=-eo

Note that we assume an ideal extinction ratio, which gives £i(0, M) = 0.1 The received energy is thus maximized
when all M channels send ONE:

M/2-1 oo

Emaz(M) = z E h[q]g(q)e- j2 ' i/M
i=-M/2 q=-00

00

= M E7 t[qM]s(qM). (14)
q=-oo

From (13) and (14), the maximum crosstalk energy equals

Cma,(M) =£mas(M)-,S(1, M) = M h[qM]i(qM)- E h[q]g(q). (15)
q=-_ q=-00

Similar expressions are obtained for optical filters with an aperiodic transfer function. A summary of these expressions
are given in Table 1.

From (12) above we may also obtain the received energy probability mass function (pmf), which is given by the
convolution of the Al independent random variables

£i(di, M) - 0 di = 0 prob = 1/2(16)
{ £(1, M); di=1 prob = 1/2,

where -M/2 < i < M/2 - 1, giving

M/2-1

PC(g) = ( [2 6() + 1 - £i(i, M)) (17)
i=-M/2 2

where ®& denotes convolution and 6(.) is the Dirac delta function. The crosstalk pmf, denoted as C(d-, M), is
obtained by removing the i =0 term in (17).

3.1 Filtering Penalty, Crosstalk Penalty and BER Computation
Ideally, the (normalized) received signal energy when a ONE is sent is 1. Filtering the signal energy reduces the signal
energy to S(1, M). Therefore, the signal filtering penalty equals

a 1
Xfi 10 log1 0 (1, M) (18)

Similarly, the crosstalk penalty is the ratio of the signal distance with worst-case crosstalk to that without crosstalk.
The former is equal to S(1, M) - Cma (M), while the latter is S(1, Al). The crosstalk penalty is thus

-10 log (1 (19)

To determine the bit error rate (BER) degradation, we first determine the expected energy output conditional
on the data sent by the crosstalk channels

E(Zdo = 0, d-) = C(d-,M)

E(Zldo=1,d-) = S(1, M)+C(d-, M)

Extending the analysis to include non-zero extinction ratios is simple, but not considered here.



where d- is defined in Section 2. The noise variance is equal to r2 = NoT/2 for both ONE and ZERO. Thus,
conditional on knowledge of the crosstalk pmf C(d-, M), our problem becomes the known problem of detecting
binary signals in AWGN, with the threshold y equal to (S(1, M) + Cm,,,(M))/2. This gives a probability of error

P, = 1E {Q -C(d-, M) +Q ( S(1 M) + C(d-, M)- ) (20)
2 Q a

where the averaging is performed over the crosstalk pmf C(d-, M) and Q(z) _ ef ;e-.z2/2dx.

4 Performance of FP filters

4.1 Frequency and Time Responses

An FP filter with mirror (power) reflectivity R has a (field) impulse response h(t) given by
00

h(t) = (1- R) E R'I(t- i/P) (21)
i=O

and intensity frequency response 00

IH(f)l2 = R E Rl e--j (22)
n=--00

The Fourier coefficients of IH(f)12 are thus

h[n] =1 R - oo < n < oo. (23)

Alternatively, the squared frequency response is given by the Airy function

iH(f)12- (24)
1 + (2F/7r)2sin2 (-) (24)

where the Finesse F rv/i-/(1 - R) and the Free Spectral Range (or period) P = c/2nL, with n the refractive
index inside the cavity. The FP filter's full width at half maximum (FWHM) B equals B = P/F.

Fig. 2 shows the pulse response of an FP filter to a pulse with F = 100 and 1/BT = 0.5 at resonance (6 = 0)
and slightly off resonance (6 = 0.03). Notice the "relaxation resonance" in the off-resonance pulse response.

We find it convenient here to define the ratios

a = 1/BT = data rate / filter FWHM

3p = 1/TAf = data rate / channel spacing.

Note that a is filter dependent, while 3 is filter independent. For the FP filter a = F/TP while , = M/TP, giving
/3/a = M/F (= filter FWHM to channel spacing ratio).

4.2 Penalty Calculations

For a received NRZ pulse shape, s(t) = 1/v' for t C [0, T] and zero elsewhere. It follows that

IS(6) 2 -= TP (,si(-rTPfS) (25)

whose transform equals { 1 r r TP
=0 - (26)
0 -(O P r > TP.

Substituting (23) and (26) in (12) and (14),and assuming F > 1 and P < 1 we obtain

S(1, M) 1- F-2cosech2 (Ir/2F) 1 - a/r (27)



£ma~(M) ~t [coth(rM/2F)- Ma cosech2(rM/ 2 F)

_7r U2 ( ( r (28)

where we used the approximations coth(x) ~ 1/2 + x/3 and cosech(x) ; 1/2 - x/6, which are valid for small 2. It
follows from above that the worst-case crosstalk is given by

,Cm,,(M) = £ ma~(M)- S(1, M) 2) (1 ir2 ) (29)

The above formulas agree precisely with our previous results in [2], where we assumed a = 0 (i.e., zero-bandwidth or
tone-like channels). In that case the signal energy and the crosstalk are given by 1 and 12 (M)2 respectively. Fig. 3
shows the energy pmf when an FP filter is used with MIF = 0.8. The two distinct and identical masses represent
the possible energy levels received when the signal sent ZERO or ONE. This figure also shows the effect of increasing
ct, which is to be interpreted here as increasing the data rate. The left (ZERO) mass shifts to the right (increasing
crosstalk energy), while the right (ONE) mass shifts to the left (increasing the signal energy loss). Both effects resflilt
in a closing of the eye-opening (equivalently, a reduction in signal distance).

By substituting (27) in (18) we obtain the signal filtering penalty

Xfl = 10 logo ( l 1 (30)

which is shown in Fig. 4 (bottom solid line) as a function of a. However, as mentioned earlier in Section 2, not all
the filtered signal energy is collected by the integrate and dump filter since the integration is only over a finite period
of length T and not over all time. This loss is referred to here as the finite time integration penalty. For general low
pass filters, it is the electronic filtering penalty. In the case of the FP filter, optimizing the integration period (of
duration T) of a received pulse yields the signal energy 1 - In 

2
+1/2a which is slightly less than 1 - a/ir. Thus, the

finite time integration penalty is

Xfin = 10loglo 1 - (ln2 + 1/2) (31)

The third signal related penalty is the ISI penalty which is a result of detecting energy from neighboring pulses in
addition to the desired pulse. By considering only nearest neighbor pulses, we find that the ISI in turn reduces the
signal distance from 1 - (In 2 + 1/2) to 1 - (21n 2) , yielding an additional penalty equal to

Xisi = 10log m (1 - (In 2 + 1/2) . (32)

Finally, we have the crosstalk penalty. Here we use the signal energy after both optical and electrical filtering as well
as ISI as the baseline (or numerator of log argument), giving a crosstalk penalty equal to

Xc, = 1 1og 1(2 n 2) a (33)
- , 1 2 (M/F)(1- /

Fig. 4 is a plot of the cumulative penalty as a function of ca. The first three penalties above are signal-related, and
thus are zero for a = 0. The crosstalk penalty, however, is nonzero even for a = 0, due to the M/F factor.

4.3 BER degradation

The BER degradation with increasing a is obtained by (numerically) computing the crosstalk pdf C(d-, M), and
using it as shown in (20). An example is shown in Fig. .5 for AI/F = 0.4. Here the signal to noise ratio (SNR) is

defined as SNR - 1/e, where (o = NoT/2 is the noise variance. Thus the SNR is referred to the input of the optical
filter.



5 Performance of Multistage MZ filters

5.1 Physical Structure and Power Transfer Function

An ideal single-stage Mach-Zehnder (MZ) filter consists of two ideal 3-dB couplers connected by two waveguides of
length difference AL (see Fig. 6(a)). The power transfer function of the two output ports referenced to the same
input port are given by

IHl(f)12 = cos2() IH 2 (f)12 = sin( ) (34)

where P = c/nAL is the transfer function period.
To construct a multistage MZ filter, single-stage MZ filters are cascaded in a manner such that the length difference

of stage i is double that of stage i - 1, with the first stage having a length difference AL as in Fig. 6(b) (see also [5],
[6]). The overall transfer function of a K-stage MZ filter is given by

K

IH(b)1=2 = T=cos2(r2i1-6) - sinr(M6) M 2K (35)
i=1 M2sin 2(Ir5)

with Fourier coefficients M n (36)
h[n] = -m Inl< M (36)

0 otherwise.

Fig. 7 shows the transfer functions of three stages comprising a 3-stage MZ filter and Fig. 8 shows one-period of
the resulting transfer function. By placing all but the signal channel in the 2 K-1 nulls of one period of the overall
transfer function and the signal channel in the passband, the crosstalk may be strongly suppressed. However, the
non-zero channel bandwidths as well as any filter imperfections naturally prevent a total crosstalk suppression. The
filter FWHM B is narrowed as the number of stages increases, since for large K we may show that

2.8 P
B -2 (37)

w 2
K '

The envelope of the transfer function is closely approximated by an Airy function (Eq. (24))

I1I(6)12 1
1 + M2 sin 2(irS)'

where the Finesse F = 7rM/2. The accuracy of this approximation can be seen from Fig. 9. Note that this Airy
function has a smaller FWHM than that of the MZ filter it approximates. Thus an FP filter with the above Finesse
will produce both more crosstalk and more signal loss than the MZ filter. As a result, the performance of this FP
filter is a lower bound on the MZ filter performance. For example, an ideal MZ filter with K = 7 stages will perform
no worse than an FP filter of finesse F i 200.

5.2 Temporal Responses

By construction, the it h stage of a K-stage MZ filter has two paths of length difference ALi- 2i-1AL, where AL
is the length difference of the first, or "coarsest", stage. In effect then, an input impulse "sees" exactly 2K different
paths of lengths 0, AL, .. , (2K - 1)AL. Thus a K-stage MZ filter is a finite impulse response (FIR) filter with an
impulse response given by a finite train of impulses of spacing At = nAL/c = 1/P and of equal height 2

- K = 1/M.
In contrast to our analysis of the FP filter model, we shall find it more convenient to express our results in terms

of , instead of c. However, these two quantities are dependent variables here since, by using (37),

A I1 B 1 2.8
A - -- 1T -- c for large M. (38)TAf af BT a-

Fig. 10 shows the pulse response of a 7 -stage MZ filter to two (unit intensity) pulses with f, = 0.25 and 2. As can
be seen, for minimal pulse distortion , has to be smaller than 1, allowing the pulse response to be concentrated in
a T-second long period, and to approach its ideal value of 1 during that period.



5.3 Penalty Calculations

Substituting (36) and (26) in (12), we obtain

£i(1, M) M
2
sin M iM - (39){ '6 Mi =i 0

and
£ma (M) = 1. (40)

The last equation is exact and is independent of13. It follows directly from (39) and (40) that

S(1, M) 1 - 3/3 for large M (41)

and
and ma,(M) = 3( M2 ) z/3/3 for large M. (42)

The filtering penalty is thus

Xfll = 10logl 1-/3 (43)

Finding the finite time integration penalty is done as with the FP filter; the integration period position is chosen to
maximize the received energy. Some simple algebra reveals that the maximum received energy during a T-second is
1 - 513/12, thus giving a finite time integration penalty of

Xf i, = 0logl1 1- 5/3/12) (44)

Similarly, the ISI penalty is found following the same procedures used with the FP filter to be

Xii = 0log10 (1- 53/12) (45)

From above, the crosstalk penalty becomes independent of M for large M. Again, by measuring the penalty from
the filtering+finite time integration+ ISI signal energy baseline, we get

Xe, =10 log ( 1- 5,3/2) (46)

Fig. 11 is a plot of the resulting cumulative penalty.

5.4 BER Degradation

Computing the BER degradation follows steps identical to those used in the FP filter example. The difference is in
the values of S(1, M) and C(d-, M). Fig. 12 shows the BER degradation with 13 for K = 4 stages.

6 Multistage MZ Filter Imperfections
In this Section we discuss two crucial imperfections unique to multistage MZ filters. These imperfections may

cause the performance obtained with these filters to be seriously degraded, and are therefore worth considering.

6.1 Imperfect Coupling Ratios
An ideal multistage MZ filter is constructed with ideal 3 dB couplers. If the coupling ratio deviates from 50:50, then
the filter response changes significantly. Let feli, Ie2il < 1 be the deviations of the coupling ratios of the first and
second 3 dB coupler in the ith MZ stage. Using a first order series approximation, we find that the crosstalk penalty
with p = 0 is given by

10 log 10 (1 - 1 7i _ E1 2i (47)

~~~~~~~~~12,~K3l __ir1,i



where y1'i = e2i + e2 and 72i = (Eli - e2i) 2. The filtering plus crosstalk penalty, on the other hand, depends only on
the yli and equals

10 log 10 i K (48)

This penalty is shown for several values of KIy in Fig. 13, where we have assumed for simplicity that 'Yli = y.

6.2 Stage Misalignment

Another possible imperfection in MZ filters is an error in the misalignment of the stages such that the resonances do
not coincide as in Fig. 7. Using a second-order series approximation and after considerable algebra, we find that the
filtering plus crosstalk penalty may be expressed as

10 10 (og 1-22 = 1 (49)

where ei is the normalized deviation of stage i from its ideal length, the normalization factor being the signal
wavelength A0 = c/fo. Fig. 14 shows the increase in crosstalk energy due to stage asynchronism for several values of
K and the sensitivity increase with the number of stages.

7 Summary and Conclusions
We have presented an analysis of the performance of direct detection optical fiber FDMA networks in the presence
of linear crosstalk, optical and electrical filtering, and signal ISI. We used the developed model and theory to
analyze the performance of FP filters and multistage MZ filters as channel demultiplexers. Our results show that
the degradations due to signal filtering and linear crosstalk are roughly of equal magnitude for practical system
operating points, with finite time integration and ISI effects being of less significance. However, filter imperfections
such as filter loss (not discussed here), nonideal coupling ratios, and stage misalignment may significantly reduce
the obtainable performance. The additional effect of channel beats is complicated by the need to assume channel
bit-asynchronism and will be considered in future research.
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