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Abstract

In this paper, a necessary and sufficient condition for robustly stabilizing a family of plants
described by perturbations of fixed coprime factors of a plant is given. The computation of
the largest stability margin is discussed via solving a nonsquare El optimal control problem. A
new algorithm for obtaining lower approximaions of the minimum value of the optimaization
problem, 0o, is proposed. This, together with the standard algorithm which provides upper
approximations, /o can be computed within any degree of accuracy.

1 Introduction

For unstable plants, the natural way for representing plant uncertainty is by perturbing the graph

of the plant as it operates on a specific space. The choice of the space decides the admissible

class of plant perturbations [10]. In [11], the problem of robustly stabilizing a family of plants

generated by perturbing the graph of a nominal plant over £2 was analyzed and a Necessary and

Sufficient condition was derived. Exact computation of this condition was analyzed in [6] in which

the structure of the problem with normalized coprime factors was exploited. In [5], it was shown

that this class of plants is equivalent to a class of plants perturbed through the gap metric. In this

paper, the problem of stabilizing a family of plants characterized by perturbations of the graph of

a LTI plant (for some fixed coprime factors) over £f is considered. This is equivalent to perturbing

the coprime factors of the plant by bounded but arbitrary operators on f£. It is shown that a

similar Necessary and Sufficient condition can be derived in terms of the El norm. The computation

of the smallest possible value of this condition is discussed, and a new iterative scheme is proposed.

Although this scheme is explained for this particular £1 problem, it generalizes in a straightforward

way to arbitrary nonsquare El problems.

*The author is partially supported by the Center for Intelligent Control Systems under the Army Research Office
grant DAAL03-86-K-0171 and by NSF grant 8810178-ECS.

-------- ~ ~---~--~-1



2 Mathematical Preliminaries

First, some notation regarding standard concepts for input/output systems. For more details,

consult [4,8] and references therein.
°° denotes the extended space of sequences in RN, f = {fo, fl, f,. .. }. £0 denotes the set of

all f E e£ such that

Ilflleoo sup Ifilo < oo

where If~Koo is the standard i£ norm on vectors. £e\£OO denotes the set {f: f E £e' and f 0 Ao}.
fP,p E [1,oo), denotes the set of all sequences, f = {fo, f,f2, . . .} in RN such that

llflleP def ( Ifi p < oo.

co denotes the subspace of iE in which every function x satisfies

lim x(k) = 0.
k- oo

S denotes the standard shift operator.

Pk denotes the kth-truncation operator on £e° :

Pk: {fo, A, f,. f2, 0...., - fO, , .O, }

Let H : e- £, £e be a nonlinear operator. H is called causal if

PkHf = PkHPkf, Vk=0,1,2,...,

H is called strictly causal if

PkHf = PkHPkf, Vk = 0,1,2,...

H is called time-invariant if it commutes with the shift operator:

HS = SH.

Finally, H is called £P stable if

iIHII f sup sup IPkHfllp < 
k flg IJPkfllep

PkfIO

The quantity IHII is called the induced operator norm over IP.

ICTV denotes the set of all linear causal £o stable operators, T: £e -.- .£. 1
2TI denotes the set

of all T E £TV which are time-invariant. It is well known that CTI is isomorphic to e1.
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Finally, it is well known that c* = e1. Given X E co and Y E e l, then

< X,Y >= < ij,Yi;j >

and the induced norm on x is given by:

lxIl[ = E mnax llxj Ij..

3 Robustness in the Presence of Stable Coprime Factor Pertur-
bations

Let that Po be a linear time invariant, finite dimensional plant, with a doubly coprime factorization

given by:

-M N V = I

with Po = NM- 1. The graph of Po over the space jq is given by [10]:

Gq(Po) = Gp0o q where GPo =[

Define the following class of plants:

M+A1 1 AA 1
Qq = {PIGp = N + 2 an 1

where A is an Ve bounded linear operator. It is well known that all controllers stabilizing Po are

parametrized in the form [10]

C = (U - MQ)(V - NQ)- = ( - QN)-1 (- + QM)

The next theorem gives a necessary and sufficient condition for a controller that stabilizes Po to

stabilize all P E QOO. A similar result in the case of P E Q2 was proved in [11]. It is evident that

QfO contains time varying plants which will be essential for the proof of the next theorem. For this,

the following definition is introduced [9].

Definition 3.1 Two time varying operators G 1,G 2 posses unstable cancellation if there exists an

e ee\Vo£ such that both Gie 6 P0O for i = 1, 2.

Theorem 3.1 If C stabilizes Po, then C stabilizes all P E QOo if and only if

||[Ve-Q - U + QM] 1L <1 (1).
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Proof To prove Sufficiency, assume (1) is satisfied. let P = (N + A2)(M + A1 )-l for some fixed

A1, A 2. The closed loop system is stable if the operator GCGp is invertible inside CTV, where

GC = [V QN -UC +Q I]

However, G CGp = I + GCA and hence sufficiency follows immediately by the small gain theorem.

Notice that in this case the plant cannot have any unstable cancellations since its factors satisfy

Gc[ N + 2 = unit

which clearly prevents any unstable cancellations.

To prove Necessity, assume that [[GC > 1. Then from [1,8], there exists a time varying A,

strictly proper, with IIAJl < 1 such that GTCGp is unstable. This will certainly imply that the closed

loop system is unstable, however the instability may be a consequence of unstable cancellation in

the factors of the constructed plant. This situation is undesirable since no controller can stabilize

a class of plants that has hidden unstable modes. The proof will be completed if it is shown that

the lack of invertibility of GCGp is not a consequence of cancellations in the factors of P.

If [[GT[[ > 1, then there exists an e E £e°\f£ such that

Pl.lll > mn > 1, Vn > n
IInell -

and u = GTe. In [1], it was shown that there exists a strictly proper A, time-varying, stable with

I'all < 1 such that

Au = -e + P, e

and

GCGpu = (I + G A)u e .

which implies that GTGp is not invertible. However, since GGpo = I, then Gpou = e + gl where

Gcgl = 0 and g91 £e. Also, Gpu = gi + P,.e. If gi is unbounded, the proof is complete. If not,

then the construction has to be adjusted as follows:

The Smith-McMillan form of GT is given by

T = S1 [E ]0S2

Where Sland S 2are both invertible in £TI. Then any input of the form g =S [ 0] satisfies

G 2g = O. Pick g in such a way that e = e + g satisfies

>pll ml > 1, Vn > n*
IIPn ll 4



and g E £e\t£o. It is easy to show that such a choice is possible following the construction procedure

in [1,8]. The basic idea of the construction is as follows: find an input eo that is supported on a

finite interval and captures the norm of GT. The input e is constructed (roughly) by adding up

translates of eo amplified by an increasing factor. This construction is now adjusted by adding

g=S:'l [ 0] to eo with g having the same support as eo and very small norm. The details of the

construction are omitted since it follows the same exact procudure as [1,8].

From here, the proof proceeds exactly as in [1], i.e a strictly proper time-varying A, with

JIlAl < 1 is constructed such that

Au = -e + P. e.

Notice that

Gpu = e + gl - e+f Pe = gl + g + P,. E o\£.

,Hence GTGp is not invertible, and the lack of invertibility is not due to cancellations in the factors

of Gp. This completes the proof.

Comment: Theorem 3.1 is readily generalized to the case of weighted plant perturbations. The

weights will appear in the optimization problem in the obvious way. The details will be omitted.

4 Stability Margin

Let p be defined as

QE1CTIr[VQ -U+QM]Jf

Then the largest stability margin defined as the maximum IjAIJ such that the closed loop system

remains stable is equal to a. The computation of p was analyzed in [3] and more recently in [7].

The next theorem specializes the results in the above mentioned references. It will be assumed that

the Bezout equations are all polynomials in the shift operator.

Theorem 4.1

p = sup E xii(O)
xEco

Subject to

ix(N* M*)l o < 1

with x C co is a square matrix, and A* and NA* are the weak' adjoint operators associated with

M, N respectively, i.e for any x E co,

oo

xN*(t) = ] x(t + k)N(k).
k=O

Before the proof is given, the following lemmas are presented.
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Lemma 4.1 Let

S = {K c el((K 1 K 2)= Q(N - M.), QE [}

Then K E S if and only if K E 1 and

(K1 (2) M ) (2).

Proof Necessity is straightforward. For Sufficiency, assume K E £1 satisfies (2). Then Q is

uniquely defined as Q = -K 2 M-1. The proof is completed if it is shown that Q lies in £1. From

the Bezout identity, N, M satisfy

-NU + MV = I

or equivalently

--- l'r U + V = i - .

Multiplying both sides by K2 :

-K 2
1 f- U + K 2V = K 2I

1' .

From (2),

K 1 = -K 2NM-' =-K 2MN-1

The above equations then imply that

Q = -f 1 U - K 2 V

which is clearly stable. This completes the proof.

Lemma 4.2

'S {y E coly = x(N* M*),x E co}

where 'S denotes the left annihilator subspace of S.

Proof Follows immediately from [3,7].

Comment: The first lemma shows that no extra interpolation conditions are needed to guarantee

the stability of Q. The combination of both lemmas above make the final solution quite elegant.

Proof of Theorem 4.1 From the above lemmas, the problem is given by

/u = inf || [ r _ U]-[KI K2]I|

The dual problem is given by

/1= sup <y,(V -U)>
yEl-S,llyll0 <1



Finally by noting that

(V -U) N -) =

the result follows.

In [3], it was shown that if the factoriztion is obtained over the space of polynomial matrices, then

the above problem is readily a semi-infinite linear programming problem. An iterative procedure

was proposed and convergence was proved. This procedure corresponds to the following problem:

7n = sup Z xii(o)
xEco

Subject to

IIPn(x(N* M*))llc < 1

This problem is a finite linear program, and in _> p. In the limit, j-, converges to p.

On the other hand, it is desirable to know at each iteration how far 4,. is from p. For this pur-

pose, we propose another method that approximates p from below, and has guaranteed convergence

in the limit. Consider the problem:

n = sup x i(O)
xEco

Subject to

IJ(Pnx)(N* M*)llco < 1

This problem is also a finite linear program, and p < p. Also, n will converge to p in the limit

since the space co can be approximated arbitrarily closely by Pnco for n large enough. Notice that

the above two problems are different. Basically, the first corresponds to truncating the constraints

(the output) after n steps in the semi-infinite problem, and the second corresponds to truncating

the input x. It is interesting to note that this procedure is valid for approximating / from below

for the general I1 problem, and hence it provides a consistent way of computing the minimum

performance to any desired accuracy.

5 Conclusions

In this paper, the problem of robustly stabilizing a class of plants characterized by coprime factors

perturbations is analyzed and a necessary and sufficient condition is derived. The computation of

the largest stability margin is discussed and an alternative algorithm that provides lower estimates

is furnished. By having both upper and lower estimates, it is possible to get arbitrarily close to the

minimum solution.
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