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Abstract 

 

The importance of the African market has increased in the past few years thanks to the 

continent’s fast-growing economies. However, research on asset pricing within the market 

remains very low. This study comprehensively investigates asset pricing within the resource 

sector of the African equity market. 

To achieve a robust analysis, data problems within the African market had to be addressed. To 

do this, I formed indices of African markets; this was done by the creation of two major indices 

– the emerging African market index and the frontier African market index. A further two 

indices were created – the South African market index and the emerging African market 

excluding South Africa index. I also employ this classification because I expect differences in 

the results within these markets. 

One major problem identified in the literature review regarding previous research in the African 

market is the lack of adjustments for survivorship bias. In analysing survivorship bias, I used 

the Jensen alpha approach and the mean difference approach, which identified survivorship 

bias of 297.47 basis points per week and 359.00 basis points per week for the emerging African 

market, using each approach respectively. 

In analysing the performance of asset-pricing models within the African continent, I find 

significant differences across all four market indices, due to the varying levels of integration 

with world markets. I find that beta is consistently positive and significant, however, while size 

and liquidity are both significant but their direction depends on the characteristics of the 

surveyed market. I also find that value and momentum factors have a positive relationship with 

returns, but their importance depends on the level of integration with world markets. 

The coskewness measure was found to be important only in the frontier African market, while 

the cokurtosis measure is important in an emerging African market context (including when 

South Africa is excluded). For the contagion factor, there seems to be an offsetting effect 

between the dummy and higher-order moments in the emerging African market; otherwise, 

contagion is negative and significant. 
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This contagion factor accounts for the financial crisis and the Arab Spring. This offered a 

unique opportunity to test the impact of contagion on unconditional, as well as conditional, 

asset-pricing models. 

In analysing the conditional model, I employed GARCH-type models and found beta in the 

frontier African market to be unstable, while the high alpha parameter values in the South 

African market, the emerging African market and the emerging African market excluding 

South Africa showed no significance. 

In testing for contagion using the conditional beta, I employed the dummy variable test and the 

comparison-of-means test; both showed evidence of contagion within the emerging African 

index, the emerging African index excluding South Africa and the frontier African market 

index. There was no evidence of contagion within the South African market and I attribute this 

to the interdependence between the South African market and Western markets. 
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1 INTRODUCTION 

 

1.1 Background 

Asset-pricing studies have developed enormously following the seminal works of Sharpe 

(1964) and Lintner (1965). Some of the important examinations of the CAPM include the 

works of Miller and Scholes (1972), Merton (1973), Roll (1977), Fama and French (1992, 

1993), Carhart (1997), Hwang and Satchell (1999) and Pástor and Stambaugh (2003). The 

results of these studies have not remained uncontested, with a number of papers offering a 

rebuttal of some of the findings while others support them. 

Most of these studies have, however, been carried out in the developed markets and the 

emerging markets in Asia and Latin America, with limited asset pricing research in the African 

market. This is due to the relative newness of the market, thin trading and problems of 

illiquidity; however, these have improved drastically in the past 10–15 years. We are now 

beginning to see some research into the African market, such as those in Omran (2007), Hearn 

and Piesse (2009) and Alagidede (2011). However, the pace still remains slow. 

African stock markets have become increasingly important thanks to their fast-growing 

economies. According to Assefa and Mollick (2014), there has been a remarkable increase in 

the total value of stocks traded in the African stock markets (in dollar terms) of more than 

1,700% on average from 1995 to 2010. In terms of absolute returns and risk-adjusted returns, 

the African stock market performed very well, with an average annual return of 25% between 

2000 and 2010. With the exception of 2008, there has been a very significant increase in 

performance with some markets achieving returns of more than 100% in some years, as seen 

in Malawi and Egypt. 

According to Alagidede (2011), average returns on African stocks reached 44% in 2004, as 

compared to 36% in Japan (Nikkei), 26% in the US and 32% in Europe (Standard and Poor’s) 

and 30% on the Morgan Stanley Capital International (MSCI) index. Although the average 

return was 44% in 2004, there were some spectacular returns within individual markets in US 

dollar terms – Zimbabwe (30%), Egypt (67%), Ghana (70%) and Kenya (75%). A year later, 

the Nigerian stock market and Cote d’Ivoire posted a 100% increase in the value of stocks in 

dollar terms.1 Harvey (1995) comments on the benefits of portfolio diversification given these 

                                                 
1 Alagidede P. (2011). Return behaviour in Africa’s emerging equity markets. The Quarterly Review of Economics and 

Finance, 51, 133–140. 



2 
 

returns in the African market and also with returns being uncorrelated with developed market 

returns. Alagidede (2011) also identifies zero correlation (and sometimes negative correlation) 

of African markets with developed markets. 

As highlighted in Hearn and Piesse (2009), the importance of this market is expected to rise 

even further, with the current drive towards integration being pursued by regional bodies such 

as the African Stock Exchanges Association (ASES) and the New African Partnership for 

Development (NEPAD). There is, however, a wide variety of markets at very different levels 

of development, from the fledgling markets of Botswana and Zambia to the largest and most 

developed market in South Africa. This results from a considerable contrast in levels of 

regulation and regulatory enforcement. 

This difference in levels of development within the African market and between the African 

markets and world markets raises some doubt about the viability of the application of asset-

pricing models developed mainly in developed markets. In emerging markets, the importance 

of the most prominent risk factors of beta, size and book-to-market value remain mixed, as 

identified in Lischewski and Voronkova (2012). Even studies in the developed markets have 

sometimes identified results contradictory to other studies, as seen in Reinganum (1981), 

Stambaugh (1982) and Lakonishok and Shapiro (1986) and Fama and French (1992, 1993). 

 

1.2 The motivation and statement of the problem 

Within the African market, there is yet to be a consensus asset-pricing model, as most studies 

have focused on parts of the market or analysed the importance of some variables and not 

others; as seen in Appiah-Kusi and Menyah (2003), Mecagni and Sourial (1999), Smith and 

Jerreris (2005), Omran (2007) and Alagidede (2011). This mostly results from the paucity of 

data in some African countries in the past, although more recently some data have become 

available for most of the markets with a stock exchange. It has thus become an important 

research endeavour to examine asset pricing in Africa’s stock markets with a more wholisic 

approach, as this knowledge will be invaluable to professional fund managers, academic 

researchers and regulators. This is the gap this thesis seeks to fill. 

The peculiarity of the African market, however, will possibly make the optimal asset pricing 

model different, when compared to expectation in the developed markets. This is because stock 

markets in Africa remain small in terms of market capitalisation when compared with 
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developed markets. As stated above, Lischewski and Voronkova (2012) have identified that 

the importance of the most prominent risk factors of beta, size and book-to-market value 

remains mixed in the emerging markets; the expectation is also varied within the African 

market. The evaluation of the importance of these factors in the African market is important as 

studies in the past have not been able to use the Fama–French factors. This is because they 

have not been available for most the markets, as shown in Cheng et al. (2010) 

Beyond these three factors, identified initially by Fama and French (1992, 1993), the 

characteristics of the African market may give credence to other factors. For example, the 

severe illiquidity in the African market as identified in Allen, Otchere and Senbet (2011) may 

have an impact on the determinants of asset pricing.  

In investigating the four-factor model, Carhart (1997) employed the momentum as defined in 

Jegadeesh and Titman (1993) within developed markets. Given the informational efficiency of 

the African market, as highlighted in Ntim (2012), momentum may be an even more important 

factor within the African market. Also, most studies in the developing and emerging markets 

find contradictory evidence. However, given the relative newness of the African market, the 

importance of momentum in the African market is still not clear-cut. Researchers such as 

Rouwenhorst (1999) even argue that it is quite difficult to detect momentum in emerging 

markets. The importance of momentum will hence be explored in this thesis. 

 

An even rarer concept within asset pricing is the impact of contagion on estimates of asset-

pricing models. As highlighted in Pettenuzzo and Timmermann (2011), investors face 

parameter uncertainty and uncertainty as to the function form of the true process, along with 

model instability risk, which are breaks in the parameters of the returns-generating process. 

Contagion has become an important factor since the 2008 global recession; given the spread of 

the crisis from the US to other countries due to the international linkages of financial systems. 

According to Morales and Andreosso-O’Callaghan (2014), the question that springs to mind is 

whether the severity of the impact of the financial crisis on different world economies is 

directly related to the level of integration of financial markets. Morales and Andreosso-

O’Callaghan (2014) posed a question which also relates to African market in particular – are 

all economies of the world affected in the same way? This question was asked because different 

financial systems are at different levels of development.  
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During periods of financial crisis, shocks in one stock market can be transmitted among world 

equity markets, as in contagion. But the main question is to which extent contagion affects 

returns variation in affected markets. The events that will be analysed within this study are 

those that may induce structural breaks and create contagion from other markets. This is where 

the original event does not occur in the African market identified but originates from developed 

or other emerging markets. These will be analysed within asset-pricing models to highlight any 

potential impact of contagion on returns variation. 

Before the formation of asset portfolios to be used in asset pricing tests, one problem that needs 

to be eliminated is that of survivorship bias. According to Rohleder et al. (2011) and many 

more in the literature, survivorship generally biases returns upwards. This overestimation of 

performance results from the fact that the predominant rationale for firm disappearance is poor 

performance, as highlighted in Malkiel (1995). This is particularly important as most asset 

pricing research within the African market does not control for survivorship bias. Given this 

finding, this study will not only eliminate survivorship bias from the dataset but will also model 

the behaviour of survivorship bias in the emerging African market index. Studies in developed 

markets have found a strong relationship between survivorship bias and attrition rate; this study 

will also investigate this relationship in the African market. 

The final discussion for this study centres around the instability in beta. As stated in 

Jagannathan and Wang (1996), the constant beta assumption of the static CAPM is not 

reasonable as the relative risk of an asset is likely to vary over time. They insist that beta and 

expected return will, in general, depend on the nature of the information available at any given 

point in time and vary over time as information set changes. During periods of bad economic 

conditions, for example, the expected market risk premium is relatively high, more leveraged 

firms are likely to face more financial difficulties and have higher conditional betas, but the 

static CAPM seldom accounts for this. Lusting and Van Neiuwerburgh (2005) and Santos and 

Veronesi (2006) find beta to be time-varying within their sample.  

This is expected to be particularly important in the African market given that the African 

market remains relatively illiquid and with problems of thin trading; which will make it 

susceptible to shocks as identified in Mlambo and Biekpe (2003). The relatively weak 

economic environment as highlighted in Kenny and Moss (1998) does not help ensure that beta 

is stable either. Following this indication, this study will test time variation in beta using a 

GARCH-type model. 
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1.2.1 Research aims, objectives and hypothesis 

 

Chapter 2 provides justification for the research objectives identified here; these have been 

identified in the context of the existing literature on asset pricing in the African continent. The 

research objectives are summarised as follows. 

Survivorship bias: The aim is to evaluate the impact of survivorship bias on asset-pricing 

models in the emerging African market. The objective is to evaluate the magnitude of 

survivorship bias in the emerging African market using two methods – Rohleder, Scholz and 

Wilkens (2011), and Eling (2008). 

Structural break: The aim is to analyse the potential impact of structural breaks on the asset-

pricing models, while the objective is to analyse potential changes in the structure of data in 

the markets that make up the emerging and frontier Africa indices using the Bai and Perron 

(1998, 2003) methodology. The second objective is to identify the breaks in the returns index 

using the Chow (1960) test. 

Models: There are considerable differences between the economic/social structures within 

individual countries in the African continent, which means it is very unlikely that there is a 

“one size fits all” asset-pricing model I can develop for Africa as a whole. In this thesis, the 

objective will, therefore, be to identify differences in the asset pricing models for the South 

African market, the emerging African market, the emerging African market excluding South 

Africa and the frontier African market. This fits into the aim, which is to identify which of the 

alternative unconditional factor models is most appropriate for explaining realised returns in 

each of the sampled indices. 

Factor loading: The aim is to assess the important factors in each of the sampled indices. The 

objective is to determine the significance and directions of the factors examined. The factors 

examined are beta, size, book-to-market value, momentum, liquidity and higher moments 

(coskewness and cokurtosis). 

Conditional CAPM: The aim here is to examine time variation in beta. The objective is to 

identify if beta within the sampled indices relates to conditional information, using the 

DCC/ADCC GARCH model. 
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Contagion: The aim is to identify the impact of contagion on the behaviour of asset-pricing 

models within the indices sampled. The objective is to examine the potential impact of 

contagion on the estimates of conditional beta. 

The research hypothesis relates to the optimal model in the markets investigated, the 

importance of different factors, the impact of contagion, the impact of conditional information, 

the explanatory power of higher order moments and the nature of survivorship bias. These are 

developed in Section 2.12 within the literature review.   

 

 

1.3 Novel contributions of the thesis 

The thesis makes the following contribution to the asset-pricing literature in the African 

market. 

The thesis makes a contribution to the African CAPM literature by taking into consideration 

the impact of survivorship bias on the modelling of stock-market returns. To the best of my 

knowledge, this has not been undertaken comprehensively before in the emerging African 

market context. 

Grinblatt and Titman (1989) were among the first to identify in a US context that failure to take 

survivorship bias into consideration would bias the econometric modelling of stock returns. 

The findings in my thesis indicate that this issue is even more important in an African context. 

Attrition rates are directly related to survivorship bias; a low attrition rate will lead to low 

survivorship bias, as identified in Liang (2000). This study finds the average attrition rate in 

the emerging African market to be much higher than those found in US studies, therefore 

calling into question previous studies on asset pricing in African markets that do not adjust for 

survivorship bias. 

The thesis identifies the factors that determine returns on stocks in one of the key economic 

sectors on the continent; namely the natural resources (basic materials) sector. The standard 

three-factor Fama-French model is extended in an African context to include additional 

issues relating to momentum, liquidity, third- and fourth-moment effects, and also contagion 

effects (financial and political). The model explores differences between the South African 
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market, emerging African market and frontier African market and discusses the comparative 

results. 

The thesis finds significant differences in the factors that determine returns across the South 

African, emerging and frontier African markets, which highlights the tendency for the 

determinants to change with the degree of integration with Western markets, although with 

significant peculiarities on the direction of some of the variables within the African market. 

The thesis also explores the impact of African market volatility on the market beta in a time-

varying context. This is undertaken using a DCC/ADCC-based GARCH (and GJR) 

methodology. It also focuses on identifying the impact of financial and political contagion 

events on the market beta during the period considered. 

The thesis finds a significant time-varying effect on the frontier African market, but the high 

parameter value in the South African market, the emerging African market and the emerging 

African market excluding South Africa was insignificant. Contagion resulting from the 

financial and political crisis had a significant impact of the conditional beta within the emerging 

African market, the emerging African market excluding South Africa and the frontier African 

markets, but not the South African market because of its interdependence with Western 

markets. 

 

 

1.4 Significance of the study and general philosophy. 

The general philosophy described here relates to the overall progression of the research and 

how the various parts are related. The philosophy of science approach for this thesis, as it 

relates to major theoretical contributions of Karl Popper, Thomas Kuhn and Imre Lakatos, is 

discussed in the methodology section. 

The performance of the Sharpe-Lintner CAPM has been questioned, as identified earlier; 

Chapter 2, Section 2.2 provides an overview of the CAPM, identifying tests that dispute and 

some that affirm the validity of the CAPM. With all the questions around its validity, however, 

it remains universally in use by practitioners. Within this study, I take the premise that the 

CAPM can be applied within the African market, but also recognise that it may not be the 

optimal asset-pricing model given the unique characteristics of these markets. Therefore, I 
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investigate various alternative models and highlight the most optimal, identifying the rationales 

and implications. 

To investigate the factors that are important in the African equity market, the study identifies 

several methodologies that can be applied. However, to make sure this thesis is comprehensive, 

the standard Sharpe-Lintner CAPM is applied along with the Fama-French three-factor model 

and the Carhart four-factor model. To account for the impact of illiquidity and investors’ 

preference for positive skewness and aversion to high kurtosis, the four-factor model is 

augmented by the liquidity factor and the coskewness and cokurtosis factors. This thesis also 

accounts for the impact of contagion on the performance of the asset-pricing models. 

The need to account for liquidity is exacerbated by the very low number of listed companies in 

the African market when compared with companies listed in developed markets. For example, 

Senbet and Otchere (2010) identify that five companies constitute 75% of the transactions in 

Abidjan while Ashanti Goldfields represents 90% of the total capitalisation of the Ghana stock 

market. The number of these companies has also fluctuated considerably as identified in Allen, 

Otchere and Senbet (2011). The thin nature of these markets makes them susceptible to 

increased volatility following large orders of traders. 

To address this problem along with problems of sparse trading identified in Ekechi (1989), 

Bowie (1994) and Mlambo et al. (2003), I have formed the emerging and frontier market 

regional indices following the FTSE quality of market criteria (AFRICA) of March 2014 

(Chapter 3, Sections 3.2 and 3.3). To address the sample selection problems, which the study 

finds to be a major problem (Chapter 4), I use the Centre for Research in Security Prices 

(CRSP) methodology to eliminate survivorship bias in the sample. 

In accounting for the effect of higher moments, I accommodate criticisms of the traditional 

mean-variance approach, which suggests that the behaviour of stock market returns is departing 

from the frequently assumed normal distribution as documented in Hwang and Satchell (1999) 

and Harvey and Siddiqui (1999, 2000). In considering contagion, I take the premise that 

contagion (from the 2008 financial crisis and the Arab Spring) had an impact on the returns-

generating process within the sample. 

This stems from the fact that during financial crisis in other parts of the world, investors have 

a tendency to reassess fundamentals, which in itself increases the probability of the crisis 

spreading to other regions. This describes the “wake-up call” theory of contagion as identified 

in Ahnert and Bertsch (2014) (Chapter 2, Section 2.6). To identify the contagion period, this 
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thesis uses the actual timeline as identified in the chapter appendix in Section 3.11 of Chapter 

3. In the case of the 2008 financial crisis, confirmation is achieved by using the CBOE volatility 

index (VIX). 

Because of the criticisms of the unconditional CAPM (Chapter 2, Section 2.8) and to further 

investigate the impact of time variation, this thesis employs the dynamic conditional correlation 

(DCC) analysis of Engle (2002) and also the asymmetric dynamic conditional correlation in 

the multivariate GARCH (1, 1), GARCH (2, 1) and GJR-GARCH models (rationale is provided 

in Chapter 7). Initially, a dummy variable is used to test for contagion in conditional correlation 

(Chapter 7, Section 7.2.5), while the robustness check takes the form of a comparison-of-means 

test (Chapter 7, Section 7.2.6). Other potential alternative methods – threshold CAPM, Kalman 

filters, stochastic volatility and Markov switching approach –are also discussed in Section 3.8.6 

of Chapter 3. 

 

1.5 Data and scope of the thesis 

The scale of the literature on asset pricing is vast, with a large number of potential tests of the 

CAPM, using competing methodologies. It is, therefore, essential to identify the exact scope 

of this thesis. The scope of the research is as follows. 

The research shall focus on the African equity market, using the FTSE quality of market criteria 

(AFRICA) of March 2014, which classified the African market into the emerging African 

market and the frontier African market. The thesis limits the sample to this classification. They 

classified South Africa as an advanced emerging market, while Egypt and Morocco were 

classified as emerging markets and, for the purpose of this research, South Africa, Egypt and 

Morocco were classified as emerging African market. The following countries were classified 

as frontier markets: Botswana, Cote d’Ivoire, Ghana, Kenya, Mauritius, Nigeria and Tunisia. 

Due to the paucity of data in Ghana and Mauritius, both markets are excluded from the analysis. 

Based on these classifications, I form two principal indices: the emerging African market index 

and the frontier African market index. These indices are formed to alleviate data problems in 

regard to the frequency of data and survivorship bias; it also provides diversification benefits 

(see Section 3.3 in Chapter 3 for detailed justification). 

Because of the size of the South African market relative to the rest of Africa, two further indices 

are formed: the South African market index and the emerging African market excluding South 
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Africa index. This is to ensure that the characteristics of the emerging African market index 

are not blurred by the South African market and, in the case of the South African market index, 

to help highlight the possible impact of integration with world markets. It is also expected that 

different factors will influence the returns across these indices. 

The population for this study is limited to the natural resources sector (basic materials indices). 

This is because the resource sector drives the economies within the African continent and 

makes up a large percentage of the market capitalisation within the countries’ markets. To a 

large extent, this sector drives other sectors within the economy of the African countries and 

hence can be a good gauge of broader economic performance. For example, and as seen in 

Chapter 3, Section 3.2, basic materials make up 26% of the Johannesburg Stock Exchange. 

Resource-driven stocks in Egypt and Morocco from about 38.4% and 15.3% of the total market 

capitalisation, respectively. 

The survivorship bias elimination technique is limited to the CRSP methodology (as justified 

in Chapter 3, Section 3.4). To demonstrate the magnitude of survivorship bias in the African 

market, I devote a whole chapter (Chapter 4) to highlight this and its potential impact on 

portfolio returns and asset pricing studies in the African continent. It is paramount to eliminate 

survivorship bias due to its tendency to bias returns upward and distort CAPM estimates. This 

is also very essential given the high attrition rate identified in Chapter 4. 

It is important to note that the aim of this chapter is only to highlight this problem and its 

potential impact, hence I use only the emerging African market and, for robustness, the South 

African market, along with a shorter sample period (2005–2014). This is warranted following 

the rather surprising finding that most asset pricing studies in this continent do not address this 

problem, even giving the obvious implications on estimates of asset-pricing models. 

The scope of the methodology is quite exhaustive as I consider the Sharpe-Lintner CAPM, the 

Fama-French three-factor model, the Carhart four-factor model and the liquidity, higher-

moments augmented models, and also include a contagion dummy. In analysing the momentum 

factor, the discussion chapter (Chapter 8) employs the behavioural finance literature. The 

literature is also evaluated in Chapter 2, Section 2.2.6. Beyond this, the analysis does not 

employ any more behavioural finance literature, but this will be an important area for further 

studies. As identified earlier, I also employ the DCC/ADCC GARCH model as I consider it 

sufficient for the analysis required, and I also identify other potential alternatives that could be 

employed. 
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Before the application of the DCC/ADCC GARCH models, structural break tests are carried 

out to identify potential breaks in the structure of the series. These tests are performed on the 

market indices of each country within the sample before the formation of the market portfolio. 

The motivation is to ensure that possible breaks are identified and taken into account, as the 

formation of the index can blur the identification of breaks. I also carry out structural break 

tests to identify further breaks after the formation of the regional market portfolios, using the 

index returns. 

Although I find a relatively large number of breaks across the markets studied (Chapter 3, 

Section 3.8.4.2), I account for these only within the DCC/ADCC GARCH model and further 

specify the 2008 financial crisis and the Arab Spring political crisis for the contagion test. 

Literature-supported steps are followed in the formation of the market, size, value, momentum 

and liquidity portfolios, and the coskewness and cokurtosis measures in the emerging Africa 

market, the emerging Africa market excluding South Africa, the frontier Africa market and the 

South Africa market samples. The details of the steps, modifications applied and rationale are 

detailed in Chapter 3, Section 3.9.1. 

I observe that the research on the impact of contagion within the African market remains sparse 

with largely no research on the impact of the 1990s crisis on returns behaviour in the African 

market, except the South Africa market. This is obviously different when compared with 

developed markets. 

This was possibly a result of the relative underdevelopment of other African markets at the 

time or a reflection of the low level of correlation between the African market and developed 

markets. However, with the development and growing importance of the African market, the 

linkage between the developed markets and the African markets is becoming stronger. This 

makes accounting for contagion in asset pricing absolutely essential. 
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1.6 Structure of the thesis 

The thesis has the following structure 

Introduction (Chapter 1): The introduction provides some context for asset-pricing research 

in the African market and also gives some perspective on the evolution of the market. It also 

identifies the scope of the research, the research objectives and the novel contributions of the 

thesis. 

Literature review (Chapter 2): The review provides a historical perspective of the CAPM 

along with its shortfalls, highlighting potential implications for an African CAPM. This chapter 

forms the foundation for the discussions in subsequent chapters. 

This chapter has the objective of highlighting the issues around the CAPM, especially in 

regards to peculiar characteristics of the African market. It evaluates the theoretical and 

empirical foundations of the application of asset-pricing models and identifies gaps in existing 

studies within the African market. 

Data description, index creation, methodological notes and portfolio formation (Chapter 

3): The methods to be applied within the thesis mostly depend on the structure of the data, 

hence this chapter evaluates the data in the emerging and frontier African markets. 

The objective of this chapter is to describe the structure of the data available, explain the index 

creation procedure and the subsequent methodological approach applied. 

Survivorship bias (Chapter 4): This chapter highlights the magnitude and impact of 

survivorship bias on estimates of asset-pricing models, following the Jensen alpha 

methodology of Rohleder, Scholz and Wilkens (2011), and the mean difference methodology 

identified in Eling (2008). 

The objective of this chapter is to highlight the significant problem of survivorship bias in the 

emerging African market and, for robustness, the South African market only. 

Empirical results (Chapter 5): This chapter evaluates the results in the South African market, 

the emerging African market (and also the emerging African market excluding South Africa) 

and the frontier African market. 

The objective of this chapter is to provide a detailed analysis of the results within each index, 

highlighting the best performing model and the importance (and direction) of each factor. 
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Comparative discussion of results (Chapter 6): This chapter discusses the findings identified 

in Chapter 5 above, but with the view of understanding how important factors change as 

markets become more mature. 

The objective of this chapter is to analyse how market characteristics affect the results-

expectation, as the African markets evolve from being frontier markets to being emerging 

markets. 

Conditional CAPM (Chapter 7): This chapter applies the dynamic conditional correlation 

(and asymmetric dynamic conditional correlation) analysis based on GARCH (1, 1), GARCH 

(2, 1) and GJR-GARCH. To test for the impact of contagion on unconditional beta, this chapter 

applies a dummy variable test for the crisis period (financial crisis and the Arab Spring) and 

uses an equality-of-means test for robustness. 

The objective is to analyse the structure of the conditional beta and the impact of contagion on 

estimates of conditional beta in the markets surveyed. 

Conclusion and areas for further research (Chapter 8): The chapter provides a summary of 

the major findings and novel contribution of the thesis. It also identifies the potential 

implications of the findings to various stakeholders and areas of further research within the 

African market. 

The objective of this chapter is to summarise the thesis, highlight the main findings, summarise 

the implications of the findings to various stakeholders and identify possible directions for 

further development of the research. 

 

1.7 Background/overview of the African market 

The stock market in Africa remains the smallest of any region despite the surge in the 

establishment of stock exchanges, particularly in Sub-Saharan Africa, in the last two decades. 

These stock exchanges still face serious challenges in terms of market capitalisation and listing, 

except the two oldest markets in South Africa and Egypt, established in the 1880s. However, 

as stated in Alagidede (2011) the mean market capitalisation (as a percentage of GDP) for each 

of the sub-regions has been increasing steadily. But as of 2008, the market capitalisation of 

Egypt has decreased by 50% while that of South Africa dropped by 40%. The mean number of 
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companies listed in Africa has also been decreasing and stood at 92 in 2009, as opposed to 129 

in 2007. 

Conventionally, a market is liquid if it can absorb trades without large changes in price, as 

defined in Allen and Gale (1994). When markets are thin, volatility increases along with the 

tendency for asset prices to react adversely to the orders of traders, as stated in Pagano (1989). 

In measuring liquidity in the African market, Allen, Otchere and Senbet (2011) employed two 

measures. The first measures the market’s trading activity, relative to the size of the economy, 

by the total value of shares traded on the exchange scaled by the GDP. The second measure 

uses the turnover ratio based on the total value of shares traded relative to market capitalisation. 
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Figure 1.1 Market capitalisation of listed companies (% of GDP) (source: Allen, Otchere and Senbet, 2011, p4) 
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Figure 1.2 Liquidity of African markets (source: Allen, Otchere and Senbet, 2011, p6) 
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From Figure 1.2, it’s clear that stock markets in Africa are thin and illiquid with the 

exception of Egypt and South Africa. In some cases, as in the case of East African 

markets, liquidity is terribly low with stocks traded being less than 1% of GDP. 

Sometimes, very few companies dominate the market in some of these African countries, 

for example, according to Senbet and Otchere (2010), five companies constitute 75% of 

the transactions in Abidjan while Ashanti Goldfields represents 90% of the total 

capitalisation of the Ghana stock market. Allen et al. (2009) unsurprisingly found that 

when liquidity in African markets is compared with other regions, even in comparison 

with other developing countries, it still looks abysmal. 

Others who recognise the acute illiquidity in African markets include Kenny and Moss 

(1998), who highlight that the small size, illiquidity and often unstable economic and 

political environments of African markets make them extremely volatile. Examples of 

this volatility, in Kenny and Moss (1998), can be seen in Zimbabwe’s stock exchange 

index, with gains of 133% and 110% in 1990 and 1993, respectively, but reporting losses 

in 1991 and 1992 of −55% and −59%, respectively. 

The problems of illiquidity and thin trading have been widely researched as 

acknowledged in Dimson (1979), Cohen et al. (1983), Lo and MacKinlay (1990), Miller, 

Muthuswamy and Whaley (1994) and Bowie (1994). The bias caused by thin trading in 

the serial correlation of index returns was first identified by Fisher (1966). He points out 

that this bias results in recorded prices not being necessarily equal to their underlying 

theoretical values. This results in discrepancies between the indices from these share 

prices and the underlying values of the shares. Lo and MacKinlay (1990b) also highlights 

that econometric problems are bound to arise when one ignores the fact that the statistical 

behaviour of sampled data may be quite different from the behaviour of the underlying 

stochastic process from which the sample was obtained. Pagano (1989) develops a model 

that captures the relationship between market thinness and volatility; he finds that market 

thinness leads to more volatility irrespective of the volatility of the asset fundamentals. 

Using a sample of the 20 most actively traded stocks on the Nigeria stock exchange 

between 1980 and 1986, Ekechi (1989) found that for the whole period covered, none of 

the stocks was traded every single day, with the most active stock traded on 509 of the 

1,512 trading days for the period. Bowie (1994) found that out of 10 trading days, thinly 
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traded stocks did not trade more than eight days. He used daily data of 367 securities 

listed on the Johannesburg Stock Exchange. Using daily data between 1997 and 2002, 

Mlambo et al. (2003) found that eight out of 35 socks on Morocco’s Casablanca Stock 

Exchange, 10 out of 40 stocks on Kenya’s Nairobi Stock Exchange, nine out of 63 stocks 

on the Egyptian Stock Exchange and eight out of 39 stocks on the Zimbabwe Stock 

Exchange did not trade on more than 75% of the respective trading days. 

Biekpe and Mlambo (2005) found that thin trading is a problem in the African stock 

market. They also identified that at some specific time period within their sample, 

investors who intend to benefit from short-term price fluctuations may not find them 

favourable. They, however, identify that serial correlation induced by thin trading is only 

minimal in individual stock returns. This, they say, raises doubt where previous studies 

used index data without adjustments for thin trading within the African stock market. 

Many more authors document the well-known empirical finding that thin markets are 

more volatile in comparison to thick markets. These authors include Tauchen and Pitts 

(1983). 

Beyond illiquidity and thin trading, Ntim (2012) finds that despite the rapid development 

in establishment of stock markets in Africa, with the exception of South Africa, stock 

markets in Africa remain small in terms of market capitalisation and also small compared 

to the size of their economies, as also identified in Ntim et al (2011). Ntim (2012) also 

highlights the vulnerability of African stocks to speculation and manipulation by insiders, 

due to their small size. This results from the level of allocative, operational and, in 

particular, informational efficiency within the African market. This is also supported by 

the findings of Smith et al (2002). 

Irving (2005) hence identifies the importance of regional integration and corporation in 

deepening the financial market. According to Ntim (2012), this will lead to a larger stock 

market with a robust regulatory, monitoring and enforcement framework that should be 

less vulnerable to speculation and manipulation. The use of better communications and 

technological infrastructure can minimise operational costs, thereby improving overall 

market efficiency, as stated in Ntim (2011). This can be achieved by the reduction of 

duplication and the improvement of information flow into the market. 
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1.6.1 The emerging African market index 

The constituents of the emerging African market index are South Africa, Egypt and 

Morocco.2 

1.6.1.1 South Africa 

The oldest and largest market in Africa remains the Johannesburg Stock Exchange (JSE). 

Established in 1887, the JSE adopted a sophisticated electronic trading system following 

the end of the outcry system in 1996. The JSE uses the Southern African Financial 

Instruments Clearing and Settlement System (SAFICAS) as its central depository, and it 

is based on technology employed in the Swiss stock exchange. The levels of corporate 

governance are quite high following the King I and II reports3 and international regulatory 

standards.4 According to Hearn et al. (2010), the South African stock market is the best-

regulated market in Africa. 

The JSE represents one of the most developed stock markets in Africa, and it also has the 

highest market capitalisation within Africa as reported in Yartey (2008). Within the JSE, 

the mining stocks remain the best known; however, according to PageReyaneke (1997), 

the growth of the commercial and industrial sectors of the South African economy and 

the decline in international commodity prices have reduced their relative importance. 

However, the mining stocks and mining financials remain very important within the JSE. 

The characteristics of the African markets sampled are shown below. The following 

definitions apply to the charts shown. 

 

 

 

 

 

                                                 
2 The selection of countries in the emerging Africa index followed the classification in the FTSE quality of market criteria 

(AFRICA), as at March 2014. 
3 The King Reports that regulate corporate governance practices in South Africa are very similar to the UK Cadbury Report and the 

US Sarbanes–Oxley Act (South African Institute of Directors, 2009). 

4 See the JSE website 
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Variable Definition 

GDP growth – Annual data Annual percentage growth rate of GDP at 

market prices based on constant local 

currency. Aggregates are based on 

constant 2005 US dollars. GDP is the 

sum of gross value added by all resident 

producers in the economy plus any 

product taxes and minus any subsidies 

not included in the value of the products. 

It is calculated without making 

deductions for depreciation of fabricated 

assets or for depletion and degradation of 

natural resources. Data source: World 

Bank national accounts data and OECD 

National Accounts data files – World 

Bank Databank. 

 

GDP (in dollar terms) – Annual data GDP at purchaser’s prices is the sum of 

gross value added by all resident 

producers in the economy plus any 

product taxes and minus any subsidies 

not included in the value of the products. 

It is calculated without making 

deductions for depreciation of fabricated 

assets or for depletion and degradation of 

natural resources. Data are in current US 

dollars. Dollar figures for GDP are 

converted from domestic currencies using 

single year official exchange rates. For a 

few countries where the official exchange 

rate does not reflect the rate effectively 
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applied to actual foreign exchange 

transactions, an alternative conversion 

factor is used. Data source: World Bank 

national accounts data and OECD 

National Accounts data files – World 

Bank Databank. 

 

Total value of stocks traded (% of GDP) 

– Annual data  

Stocks traded refers to the total value of 

shares traded during the period. This 

indicator complements the market 

capitalisation ratio by showing whether 

market size is matched by trading. Data 

source: World Bank national accounts 

data and OECD National Accounts data 

files – World Bank Databank. 

Turnover ratio of stocks traded – 

Annual data 

Turnover ratio is the total value of shares 

traded during the period divided by the 

average market capitalisation for the 

period. Average market capitalisation is 

calculated as the average of the end-of-

period values for the current period and 

the previous period. Data source: World 

Federation of Exchanges database – 

World Bank Databank. 

Market capitalisation of listed 

companies (% of GDP) – Annual data 

Market capitalisation (also known as 

market value) is the share price times the 

number of shares outstanding. Listed 

domestic companies are the domestically 

incorporated companies listed on the 

country’s stock exchanges at the end of 

the year. Listed companies do not include 
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investment companies, mutual funds, or 

other collective investment vehicles. 

Data is as a percentage of GDP. Data 

source: World Federation of Exchanges 

database – World Bank Databank. 

 

Market capitalisation of listed 

companies (current US$) – Annual data 

Market capitalisation (also known as 

market value) is the share price times the 

number of shares outstanding. Listed 

domestic companies are the domestically 

incorporated companies listed on the 

country’s stock exchanges at the end of 

the year. Listed companies do not include 

investment companies, mutual funds, or 

other collective investment vehicles. 

Data is in current US dollars. Data 

source: World Federation of Exchanges 

database – World Bank Databank. 

 

  

 The share price of the JSE All Share Index is depicted in Figure 1.3 below, while its 

returns are shown in Figure 1.4. 

Figure 1.3 Weekly time-series price of the Johannesburg Stock Exchange All Share Index 
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Figure 1.4 Weekly returns on the Johannesburg Stock Exchange All Share Index 

 

 

Table 1.1 Summary statistics of the returns on the Johannesburg Stock Exchange all share 

index 

Mean Median Minimum Maximum 

0.0022 0.0036 −0.1033 0.1604 

Std dev CV Skewness Ex. kurtosis 

0.0271 12.1789 −0.1620 3.3798 

 

 

 

Figure 1.5 GDP growth for South African. 
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Figure 1.6 The total value to stocks traded (% of GDP) for the South African market 

 

 

 

Figure 1.7 Turnover ratio of stocks traded (%) in the South African stock market 

 
 

 

Figure 1.8 The market capitalisation of South Africa’s listed companies (% of GDP) 
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Figure 1.9 Market capitalisation of South Africa’s listed companies (current US$) 

 
 

Table 1.2 Summary statistics of GDP growth, stocks traded to GDP (%), stock turnover ratio 

(%), market capitalisation to GDP (%) and market capitalisation in US$ for South Africa 

Variable Mean Median Minimum Maximum 

GDP growth 3.21 3.19 -1.54 5.59 

Stocks traded/GDP % 89.35 78.46 56.83 142.19 

Stock turnover ratio % 49.51 48.80 33.16 64.26 

Mkt cap/GDP 184.35 169.27 115.01 278.39 

Mkt cap (US dollars) 487179000000 52297500000

0 

13975000000

0 

83354800000

0 

Variable Std dev. CV Skewness Ex. kurtosis 

GDP growth 1.80 0.56 −1.00 1.35 

Stocks traded/GDP 29.95 0.34 0.64 −0.90 

Stock turnover ratio 8.91 0.18 −0.12 −0.75 

Mkt cap/GDP 51.44 0.28 0.55 −0.86 

Mkt cap (US dollars) 224599000000 0.46 −0.26 −1.17 

 

Figure 1.3 shows the time-series price of the JSE all share index between 2010 and 2015. 

The bull market on the trend is clear to see, except for the financial crisis of 2008. Figure 

1.4 shows the log returns on the index with Table 1.1 showing a mean weekly return of 

0.22%, a median of 0.36%, minimum value of −10.33% and a maximum value to 16.04%. 

The skewness and kurtosis values are −0.16 and 3.38, respectively. GDP growth in South 

Africa has been an average of 3.21% per annum, a maximum of 5.59% and a minimum 

of −1.54% during the 2008 financial crisis. On average, the total value of stocks traded 

as a percentage of GDP is 89.35% with a minimum of 56.83% and a maximum of 

142.19%, with an average turnover of 49.51%, a minimum of 33.16% and a maximum of 

64.26%. 
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The size of the South African market to GDP shown as the market capitalisation to GDP 

is an average of 184.35%, a minimum of 155.01% and a maximum of 278.39%. The 

market capitalisation in dollar terms is an average of 487,180,000,000 dollars, a minimum 

of 139,750,000,000 dollars and a maximum of 833,550,000,000 dollars. 

A liquidity construct is examined below for the Johannesburg Stock Exchange compared 

with the London Stock Exchange. 

Figure 1.10 Bid-ask spread for British American Tobacco listed on the London Stock 

Exchange (BATS_L) and Johannesburg Stock Exchange (BTIJ_L). 

 

This presents a visible difference in the structure of the London and the Johannesburg 

markets, showing the bid-ask spread for British American Tobacco listed on the London 

Stock Exchange (BATS_L) and the bid-ask spread of British American Tobacco listed 

on the Johannesburg Stock Exchange (BTIJ_L). These are calculated 

using(
(𝐴𝑠𝑘𝑊−𝐵𝑖𝑑𝑊)

(𝐴𝑠𝑘𝑊+𝐵𝑖𝑑𝑊)/2
), as identified in Hearn and Piesse (2009). It is quite clear that 

BTIJ_L has higher spreads than BATS_L through the period. 

This demonstrates the possible existence of different systematic factors that affect 

securities in these markets, which will also affect pricing. The difference in the bid-ask 

spread particularly highlights the presence of severe illiquidity within the African market, 

hence the modelling approach will also account for the effect of liquidity. 
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1.6.1.2 Egypt 

The Egyptian stock market was formed through the integration of the Alexandria Stock 

Exchange, which was established in 1988, and the Cairo Stock Exchange, established in 

1903. Trading takes place electronically via a listed securities market, a primary dealers 

bond market and an OTC market. Settlement is assisted by a central depository that is 

largely compliant with G305 recommendations along with large and well-capitalised 

custodian banks,6 which supports overseas investors. In 2003, a code of corporate 

governance was established to enshrine the best principles of OECD guidelines by a 

committee formed from CASE and the 10 largest companies. 

In the 1980s, the Egyptian government opened up the market to local and foreign 

investors by embarking on a privatisation attempt, which was encouraged by the 

International Monetary Fund (IMF). According to Omran (2005), this led to the rapid 

growth of participation in the stock market by both individuals and institutions. As 

highlighted in Smith, Jefferis and Ryoo (2002), the Egyptian stock market witnessed an 

average growth rate of turnover of about 60% between 1988 and 1997. For an excellent 

analysis of the rapid growth of the Egyptian economy, see Shinnawy and Handoussa 

(2003). 

Figures 1.11 and 1.12 show the time-series plot of the Egyptian stock market’s main index 

(EGX) and the log returns respectively. 

Figure 1.11 Weekly time-series price of Egyptian stock market’s main index (EGX) 

 

 

                                                 
5G30 relates to the Group of Thirty, which is the most influential body to encourage the standardisation and improvement in global 

securities administration. 

6As stated on the Cairo Alexandria Stock Exchange website. 
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Figure 1.12 Weekly returns for the Egyptian stock market’s main index (EGX) 

 

 

Table 1.3 Summary statistics for the returns on the Egyptian Stock Exchange EGX Share 

Index 

Mean Median Minimum Maximum 

0.0021 0.0045 −0.2196 0.1552 

Std dev. CV Skewness Ex. kurtosis 

0.0426 19.976 −0.6768 3.3169 

 

 

Figure 1.13 GDP growth for Egypt 
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Figure 1.14 GDP (in dollar terms) for the Egyptian market 

 
 

Figure 1.15 Total value to stocks traded (% of GDP) for the Egyptian market 

 
 

Figure 1.16 Turnover ratio of stocks traded (%) in the Egyptian market 

 
 

Figure 1.17 Market capitalisation of Egypt’s listed companies (% of GDP) 
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Figure 1.18 Market capitalisation of Egypt’s listed companies (current US$) 

 

 

Table 1.4 Summary statistics of GDP growth, GDP (USD), stocks traded to GDP (%), stock 

turnover ratio (%), market capitalisation to GDP (%) and market capitalisation in USD for 

Egypt 

Variable Mean Median Minimum Maximum 

GDP growth (%) 4.15 4.09 1.82 7.15 

GDP (US$) 16018400000

0 

13047900000

0 

78845200000 28653800000

0 

Stocks traded/GDP 

(%) 

18.99 11.14 2.91 44.16 

Stock turnover (%) 36.16 37.79 10.14 61.85 

Mkt cap/GDP (%) 48.32 37.69 20.63 106.75 

Mkt cap (US dollars) 63247700000 58008000000 24335100000 13928900000

0 

Variable Std dev. CV Skewness Ex. kurtosis 

GDP growth (%) 1.88 0.45 0.36 −1.17 

GDP (US dollars) 77010800000 0.48 0.45 −1.40 

Stocks traded/GDP 15.74 0.83 0.57 −1.28 

Stock turnover (%) 17.89 0.50 −0.14 −1.22 

Mkt cap/GDP (%) 28.37 0.59 0.96 −0.45 

Mkt cap (US dollars) 35127300000 0.56 0.59 −0.45 

 

The average GDP growth for Egypt was 4.15% per annum, with a minimum of 1.82% 

and a maximum of 7.15%. Average stocks traded to GDP was 18.99%, which is lower 

than 89.35% in South Africa. A minimum value of 2.91% and a maximum of 44.16% 

were reported within the period. Stock turnover for the Egyptian stock market was an 

average of 36.16%, with a minimum and maximum of 10.14% and 61.85%, respectively. 

The market capitalisation to GDP was an average of 48.32%, which is significantly lower 

than reported in the South African market. The minimum and maximum market 
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capitalisation to GDP were 20.63% and 106.75%, respectively. Egypt’s market 

capitalisation was an average of $63,247,700,000, with a minimum of $24,335,100,000 

and a maximum of $139,289,000,000. 

 

1.6.1.3 Morocco 

Established in 1929, the Bourse de Casablanca trades electronically with terminals 

located in the local brokerage community. Settlement by MAROCLEAR, the national 

CSD established in 19987 is also G30-compliant. By reporting trading electronically to 

both local and international vendors such as Reuters and Bloomberg, the Bourse de 

Casablanca is able to attract overseas investors. In line with changes in political, economic 

and administrated governance institutions, corporate governance legislation in Morocco 

has undergone considerable modernisation. However, according to Hearn and Piesse 

(2009), a formal code of corporate governance was only recently enacted in February 

2007, through the establishment of a National Commission of Corporate Government in 

Casablanca (National Commission on Corporate Governance 2008). This largely follows 

the OECD’s best practice guideline. 

 

Figure 1.19 Weekly time-series price of the Casablanca SE All Share Index 

 

 

                                                 
7See Bourse de Casablanca website, 2009. 
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Figure 1.20 Weekly returns of the Casablanca SE All Share Index 

 

 

Table 1.5 Summary statistics of the returns on the Casablanca SE All Share Index 

Mean Median Minimum Maximum 

0.0014 0.0009 −0.0980 0.0789 

Std dev. CV Skewness Ex. kurtosis 

0.0201 14.077 −0.4927 3.6377 

 

 

Figure 1.21 GDP growth for Morocco 
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Figure 1.22 GDP (in dollar terms) for Morocco 

 
 

Figure 1.23 The total value of stocks traded (% of GDP) for the Moroccan market 

 
 

Figure 1.24Turnover ratio of stocks traded on the Moroccan market 

 
 

Figure 1.25 Market capitalisation of Morocco’s listed companies (% of GDP) 
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Figure 1.26 Market capitalisation of listed companies (current US$) 

 
 

Table 1.6 Summary statistics of GDP growth, stocks traded to GDP (%), stock turnover ratio 

(%), market capitalisation to GDP (%) and market capitalisation in US$ for Morocco 

Variable Mean Median Minimum Maximum 
GDP growth (%) 4.37 4.38 1.59 7.76 

GDP (US$) 73260700000 75223600000 37020600000 107005000000 

Stocks traded/GDP 11.75 6.37 1.39 34.93 
Stock turnover (%) 18.67 9.78 6.21 45.73 

Mkt cap/GDP 53.95 54.88 21.26 100.36 

Mkt Cap (US$) 40723100000 49360000000 8590570000 75494600000 
Variable Std dev. CV Skewness Ex. kurtosis 

GDP growth (%) 1.85 0.42 0.46 −0.76 

GDP (US$) 25138800000 0.34 −0.17 −1.46 
Stocks traded/GDP 12.17 1.04 0.91 −0.73 
Stock turnover (%) 14.51 0.78 0.86 −0.89 

Mkt cap/GDP 24.60 0.46 0.20 −0.98 
Mkt cap (US$) 25556700000 0.63 −0.09 −1.64 

 

Average GDP growth is 4.37%, which is higher than the 4.15% in Egypt, with minimum 

and maximum values of 1.59% and 7.76%, respectively. Average GDP (US$) was 

$73,260,700,000, with a minimum of $37,020,600,000 and a maximum of 

$107,005,000,000. Average stocks traded were 11.75% of GDP with a minimum and 

maximum value of 1.39% and 34.93%, respectively. Stock turnover for the Moroccan 

stock market was an average of 18.67%, with a minimum of 6.21% and a maximum of 

45.73%. The market capitalisation to GDP was an average of 59.95%, which is higher 

than reported in Egypt but lower than reported in South Africa. The minimum and 

maximum market capitalisation to GDP were 21.25% and 100.36%, respectively. 

Morocco’s market capitalisation was an average of $40,723,100,000, with a minimum of 

$8,590,570,000 and a maximum of $75,494,600,000. 
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1.6.2 The frontier African market index 

The constituents of the frontier African market index are Botswana, Cote d’Ivoire, Ghana, 

Kenya, Mauritius, Nigeria and Tunisia.8 However, due to the paucity of data, Ghana and 

Mauritius will be excluded. 

1.6.2.1 Botswana 

The Botswana Stock Exchange (BSE) was established in 19899 and given the 

responsibility to operate and regulate the equities and fixed-interest securities markets. 

At establishment, the exchange was referred to as the Botswana Share Market (BSM) but 

this was changed to BSE in 1995. BSE was to be pivotal to Botswana’s financial system, 

as an avenue for the government, quasi-government and the private sector to raise debt 

and equity capital in the capital market. According to the BSE website, the BSE has 

averaged a 24% aggregate return in the past decade, making it one of the best-performing 

stock exchanges in Africa. 

The BSE has also grown in terms of market capitalisation, becoming the third largest 

stock exchange by market capitalisation in southern Africa. As at January 2016, the BSE 

had 20 domestic companies listed on its main board, with another two companies listed 

on its venture capital board. For foreign companies, it has four companies on its main 

board and a further six venture capital companies. It also has four exchange-traded funds. 

Brokers consist of Imara Capital Securities, Motswedi Securities, Stockbrokers Botswana 

and African Alliance Botswana Securities. The exchange also has other partners such as 

primary dealers, custodians and transfer secretaries. 

The figure below shows the weekly time-series trade price of the Botswana Stock 

Exchange DC index. 

                                                 
8 The selection of countries in the emerging Africa index followed the classification in the FTSE quality of market criteria 

(AFRICA), as at March 2014. 
9 Source: Botswana Stock Exchange website - http://www.bse.co.bw/abt_us/role_in_botswana.php 

http://www.bse.co.bw/abt_us/role_in_botswana.php
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Figure 1.27 Weekly time-series price of the Botswana Stock Exchange DC index 

 

Figure 1.28 Weekly log returns of the Botswana Stock Exchange DC index 

 

Table 1.7 Summary statistics of the returns on the Botswana Stock Exchange DC index 

Mean Median Minimum Maximum 

0.0024 0.0018 −0.0673 0.0855 

Std dev. CV Skewness Ex. kurtosis 

0.0118 4.9696 0.3357 7.6683 

 

 

Figure 1.29 GDP growth for Botswana 
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Figure 1.30 GDP in US$ for Botswana 

 
 

Figure 1.31 Total value to stocks traded (% of GDP) for the Botswana stock market 

 
 

No data was found for turnover ratio of stocks traded, market capitalisation (% of GDP) 

and market capitalisation (US$) for Botswana. 

 

Table 1.8 Summary statistics of GDP growth, GDP (US$) and stocks traded to GDP (%) for 

Botswana 

Variable Mean Median Minimum Maximum 

GDP growth (%) 4.57 4.83 −7.65 9.32 

GDP (US$) 10630000000 10267000000 5438900000 15813000000 

Stocks traded/GDP 0.93 1.01 0.45 1.32 

Variable Std dev. CV Skewness Ex. kurtosis 

GDP growth (%) 4.24 0.93 −1.59 2.64 

GDP (US$) 3622300000 0.34 0.013 −1.16 

Stocks traded/GDP 0.25 0.27 −0.38 −0.71 
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Botswana’s mean GDP growth for the period was 4.57%, which is higher than in South 

Africa (3.21%), Egypt (4.15%) and Morocco (4.37%) in the emerging African market. 

Stock traded to GDP is very low at 0.93% compared to 89.35% in South Africa and 

18.99% in Egypt and 11.75% in Morocco. 

 

1.7.2.2 Cote d’Ivoire (BRVM) 

According to Hearn (2012), the Bourse Regionale des Valeurs Mobilieres SA (BRVM), 

which stands for Regional Securities Exchange SA, is a regional stock exchange serving 

members of the Union Monétaire et Économique de l’Afrique de l’Ouest (UMEAO) 

which includes Benin, Burkina Faso, Guinea-Bissau, Cote d’Ivoire, Mali, Niger, Senegal 

and Togo. BRVM started operations in 1998 and operates entirely electronically. The 

mission of the exchange is to organise the securities market, disseminate market 

information and promote the market. 

According to African Markets,10 BRVM ranks as the topmost performing stock market in 

Africa, in terms of its index of all listed securities in 2015, with a 17.77% increase in its 

composite index (BRVM composite). This is largely due to the continued economic 

growth in Cote d’Ivoire and throughout the West African Economic and Monetary Union 

(WAEMU), and the prospect of regional development that makes it attractive to investors. 

The figure below shows the weekly time-series trade price of the Abidjan SE Industrials 

index. 

                                                 
10 https://www.african-markets.com/en/stock-markets/brvm/brvm-african-stock-market-champion-for-2015 

https://www.african-markets.com/en/stock-markets/brvm/brvm-african-stock-market-champion-for-2015
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Figure 1.32 Weekly time-series price of the Abidjan SE Composite index 

 

 

Figure 1.33 Weekly returns of the Abidjan SE Composite index 

 

 

Table 1.9 Summary statistics of the returns on the Abidjan SE Industrials index 

Mean Median Minimum Maximum 

0.0015 0.0003 −0.1858 0.2286 

Std dev. CV Skewness Ex. kurtosis 

0.0228 15.774 0.6858 25.707 
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Figure 1.34 GDP growth for Cote d’Ivoire 

 

Figure 1.35 GDP (US$) for Cote d’Ivoire 

 

Figure 1.36 Market capitalisation of Cote d’Ivoire’s listed companies (% of GDP), incl. 2000-

2002 

 

Figure 1.37 Market capitalisation of Cote d’Ivoire’s listed companies (% of GDP), excl. 2000-

2002 
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Figure 1.38 Market capitalisation of listed companies (current US$), incl. 2000-2002 

 

Figure 1.39 Market capitalisation of listed companies (current US$), excl. 2000-2002 

 
 

No data was found for turnover ratio of stocks traded, total value of stocks traded (% of 

GDP) and turnover of stocks traded for Cote d’Ivoire. The GDP data for 2002 seems to 

have been stored in the world bank database in error, hence figures 1.36 and 1.38 exclude 

years 2000 to 2002.  

Table 1.10 Summary statistics of GDP growth, GDP (US$), market capitalisation to GDP (%) 

and market capitalisation in US$ for Cote d’Ivoire 

Variable Mean Median Minimum Maximum 

GDP growth (%) 3.06 1.89 −4.39 10.71 

GDP (US$) 23204000000 24251000000 15307000000 34254000000 

Mkt cap/GDP (%) 25.93 27.04 10.78 40.82 

Mkt cap (US$) 6401900000 6687700000 1650100000 11834000000 

Variable Std dev. CV Skewness Ex. kurtosis 

GDP growth (%) 4.39 1.43 0.37 −0.54 

GDP (US$) 5980300000 0.26 0.34 −0.86 

Mkt cap/GDP (%) 9.69 0.37 −0.22 −0.96 

Mkt cap (US$) 3409800000 0.532 0.13 −0.93 
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The GDP growth for Cote d’Ivoire was a mean of 3.06%, which is lower than all of South 

Africa, Egypt, Morocco and Botswana. Market capitalisation to GDP ratio was also low 

(25.93%) compared with South Africa (184.35%), Egypt (48.32%) and Morocco 

(53.95%) 

Data on GDP growth and GDP at market prices (current US$) for the other BRVM 

countries of Benin, Burkina Faso, Guinea-Bissau, Mali, Niger, Senegal and Togo are 

analysed but not included in this study. 

 

1.7.2.3 Kenya 

The Nairobi Stock Exchange (NSE) was registered under the Societies Act (1954) as a 

voluntary association of stockbrokers.11 Although dealing in shares actually commenced 

in the 1920s, it was only based on a gentlemen’s agreement, with no physical trading 

floor. Up until 1970, the NSE comprised public companies from Kenya, Tanzania and 

Uganda, operating as a regional market in East Africa, but with political regime change 

in the region, companies domiciled in Tanzania and Uganda delisted. In 1991, NSE was 

registered as a private company limited by shares. Share trading became based on an open 

outcry system in Nairobi. In 1994, the exchange set up a computerised delivery and 

settlement system (DASS). 

The Central Depository and Settlement Corporation Limited (CDSC) was incorporated 

under the Companies Act in 1999 and in 2001 the market at the NSE was split into the 

Main Investment Market Segment (MIMS), Alternative Investment Market Segment 

(AIMS) and the Fixed Income Securities Market Segment (FISMS). In 2004, the process 

of clearing and settlement of shares traded in Kenya’s capital market became automated 

through the central depository system. The NSE All Share Index (NASI) was introduced 

in 2008, while in 2011 the equity settlement cycle moved from the previous T+4 

settlement cycle to the T+3 settlement cycle. 

The figure below shows the weekly time-series trade price of the NSE All Share Index 

                                                 
11Nairobi Securities Exchange - https://www.nse.co.ke/nse/history-of-nse.html 

 

https://www.nse.co.ke/nse/history-of-nse.html


43 
 

Figure 1.40 Weekly time-series price of the Nairobi Stock Exchange All Share Index 

 

Figure 1.41 Weekly returns of the Nairobi Stock Exchange All Share Index 

 

Table 1.11 Summary statistics of the returns on the Nairobi Stock Exchange All Share Index 

Mean Median Minimum Maximum 

0.0011 0.0024 −0.1241 0.1531 

Std dev. CV Skewness Ex. kurtosis 

0.0251 23.857 −0.0373 5.6780 

 

Figure 1.42 GDP growth for Kenya 
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Figure 1.43 Kenya’s GDP in US$ 

 

Figure 1.44 Market capitalisation of Kenya’s listed companies (% of GDP) 

 

Figure 1.45 Market capitalisation of listed companies (current US$) 

 
Table 1.12 Summary statistics of GDP growth, GDP (US$), market capitalisation to GDP (%) 

and market capitalisation in US$ for Kenya 

Variable Mean Median Minimum Maximum 

GDP growth (%) 4.39 5.10 0.23 8.40 

GDP (US$) 31167000000 31958000000 12705000000 60937000000 

Mkt cap/GDP (%) 29.33 29.62 8.05 44.06 

Mkt cap (US$) 9629800000 10854000000 1045300000 22256000000 

Variable Std dev. CV Skewness Ex. kurtosis 

GDP growth (%) 2.46 0.56 −0.43 −0.79 

GDP (US$) 16352000000 0.27 −0.36 −1.39 

Mkt cap/GDP (%) 10.83 0.37 −0.62 −0.32 

Mkt cap (US$) 6079200000 0.63 0.29 −0.43 
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The GDP growth for Kenya was a mean of 4.39% compared with 3.06% in Botswana and 

4.14% in Egypt. The market capitalisation to GDP was 29.33% compared with Botswana 

(25.93%), South Africa (184.35%), Egypt (48.32%) and Morocco (53.95%). 

 

1.7.2.4 Nigeria 

The Nigerian Stock Exchange was founded in 1960 with trading commencing in 1961.12 

It is a registered company limited by guarantee, licensed under the Investments and 

Securities Act (ISA) and regulated by the Securities and Exchange Commission (SEC) of 

Nigeria. In 1984, the exchange launched an all-share index that reached the 1000 mark in 

1992. 

In 1996, the percentage pricing system was introduced (with 5% as the limit of the daily 

fluctuation band) and later that year the T+14 settlement/delivery period was abolished 

and a weekly settlement/delivery period introduced. In 1997, the Central Securities 

Clearing System Limited was commissioned, providing automated clearing, settlement, 

delivery and custodian services. In 1999, it transitioned to a fully automated trading 

system. In 2000, the week-long settlement/delivery period was replaced by the T+3 

settlement/delivery period. 

The figure below shows the weekly time-series trade price of the Nigerian Stock 

Exchange all share index 

                                                 
12 Nigerian Stock Exchange - http://www.nse.com.ng/about-us/about-the-nse/notable-dates 

http://www.nse.com.ng/about-us/about-the-nse/notable-dates
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Figure 1.46 Weekly time-series price of the Nigeria Stock Exchange all share index 

 

Figure 1.47 Weekly returns of the Nigerian Stock Exchange all share index 

 

Table 1.13 Summary statistics of the returns on the Nigeria Stock Exchange all share index 

Mean Median Minimum Maximum 

0.0020 0.0018 −0.1424 0.1562 

Std dev CV Skewness Ex. kurtosis 

0.0311 15.480 −0.3087 3.7565 
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Figure 1.48 GDP growth for Nigeria 

 
 

Figure 1.49 GDP for Nigeria in US$ 

 

 

Figure 1.50 Market capitalisation of Nigeria’s listed companies (% of GDP) 
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Figure 1.51 Market capitalisation of listed companies (current US$) 

 

Table 1.14 Summary statistics of GDP growth, GDP (US$), market capitalisation to GDP (%) 

and market capitalisation in US$ for Nigeria 

Variable Mean Median Minimum Maximum 

GDP growth (%) 7.87 6.27 3.45 33.74 

GDP (US$) 228800000000 166450000000 44138000000 568510000000 

Mkt cap/GDP (%) 25.72 18.54 4.02 99.98 

Mkt cap (US$) 86107000000 43545000000 2373900000 568400000000 

Variable Std dev. CV Skewness Ex. kurtosis 

GDP growth (%) 7.39 0.94 3.12 8.51 

GDP (US$) 184140000000 0.80479 0.68 −1.08 

Mkt cap/GDP (%) 26.06 1.01 2.17 3.70 

Mkt cap (US$) 153810000000 1.79 2.88 6.61 

 

Nigeria has the highest GDP growth all the countries within the sample with a mean GDP 

growth rate of 7.87%. However, the market capitalisation to GDP was quite low at 

25.72% when compared with Kenya (29.33%), Botswana (25.93%), South Africa 

(184.35%), Egypt (48.32%) and Morocco (53.95%). 

 

1.7.2.5 Tunisia 

According to Hearn (2011), Tunisia’s Bourse de Tunis was established in 1969, with 

electronic trading introduced in 1996. Settlement is fully G30-compliant,13 with the 

trading system split into fixing and continuous systems. The fixing system handles the 

small and liquid securities with the continuous system trading from 09.00 to 14.10, but 

                                                 
13G30 refers to the Group of Thirty, which is the most influential body to encourage the standardisation and 

improvement in global securities administration. 
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from 08.30 to 12.10 during Ramadan. To attract listings, the bourse established an 

alternative market with relaxed regulations. This was also done to attract greater 

prominence in the financing of domestic businesses as, according to Zribi (2008), only 

5% of new finance was raised through the exchange in 2007. According to Hearn (2011), 

the exchange has only 48 listings, which is rather small. 

According to Bass (2015), the turn of the millennium saw Tunisia achieve a good rate of 

economic growth with exports of goods and services (especially tourism) reaching a high 

of 56% of GDP in 2008. However, due to the global financial crisis, the eurozone crisis 

and the Arab Spring movement (which started in Tunis in December 2010), the share has 

since declined. 

The figure below shows the weekly time-series trade price of the TUNINDEX all share 

index 

 

Figure 1.52 Weekly time-series price of the TUNINDEX all share index 

 

 

Figure 1.53 Weekly returns of the TUNINDEX all share index 
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Table 1.15 Summary statistics of the returns on the Tunisian Stock Exchange all share index 

Mean Median Minimum Maximum 

0.0017 0.0013 −0.1363 0.0835 

Std dev. CV Skewness Ex. kurtosis 

0.0156 9.0302 −0.6787 13.703 

 

Figure 1.54 GDP growth for Tunisia 

 

Figure 1.55 GDP in US$ for Tunisia 

 
 

Figure 1.56 Total value to stocks traded (% of GDP) on the Tunisian market 
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Figure 1.57 Market capitalisation of Tunisia’s listed companies (% of GDP) 

 
 

Figure 1.58 Market capitalisation of listed companies (current US$) 

 
 

Table 1.16 Summary statistics of GDP growth, GDP (US$), stocks traded to GDP 

Variable Mean Median Minimum Maximum 

GDP growth (%) 3.65 3.80 −1.92 6.71 

GDP (US$) 36652000000 38908000000 21473000000 48613000000 

Stocks traded/GDP(%) 2.04 1.68 0.60 3.86 

Mkt cap/GDP (%) 20.48 19.16 18.91 24.25 

Mkt cap (US$) 9422200000 9312000000 8581300000 10681000000 

Variable Std dev. CV Skewness Ex. kurtosis 

GDP growth (%) 2.07 0.57 −1.13 1.77 

GDP (US$) 9796000000 0.27 −0.36 −1.39 

Stocks traded/GDP 1.05 0.52 0.20 −1.22 

Mkt cap/GDP (%) 2.29 0.11 1.04 −0.53 

Mkt cap (US$) 815820000 0.086586 0.64 −0.81 
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The average GDP growth for Tunisia over the period was 3.65% per year with a minimum 

of −1.92% and a maximum of 6.71% per year, respectively. This is higher than seen in 

South Africa (3.21%) but lower than GDP growth in Egypt (4.15%) and Morocco 

(4.37%). The average GDP (US$) was $36,652,000,000 with a minimum of 

$21,473,000,000 and a maximum of $48,613,000,000. Stocks traded were a mean of 

2.04% of GDP, with a minimum and maximum value of 0.60% and 3.86%, respectively. 

This is significantly lower than the stocks traded-to-GDP ratio in the emerging African 

market. For example, the mean stocks traded-to-GDP ratio in South Africa was 89.35%, 

Egypt 18.99% and Morocco 11.75%. 

The market capitalisation to GDP ratio was an average of 20.48%, which is significantly 

lower than reported in the South African market (184.35%), Egypt 48.32% and Morocco 

59.95%. The minimum and maximum market capitalisation to GDP were 18.91% and 

24.25%, respectively. The market capitalisation in the Tunisian stock market was an 

average of $9,422,200,000, with a minimum of $8,581,300,000 and a maximum of 

$10,681,000,000. 

 

  



53 
 

2 LITERATURE REVIEW 

 

2.1 Introduction 

Establishing the relationship between risk and expected return has become one of the 

most important areas in modern finance. The expected return from rational equity markets 

is solely determined by the underlying risk, hence many researchers have made efforts to 

identify factors that capture risk. The theory that has formed the bedrock of this effort is 

the capital asset pricing model (CAPM), which was developed in the early 1960s by 

William Sharpe (1964), Jack Treynor (1962), John Lintner (1965a, 1965b) and Jan 

Mossin (1966). As identified in Harvey (1991), most tests of this mean-variance 

efficiency of the world market have failed to reject the CAPM. However, most of these 

tests were carried out in developed markets and only a few in developing markets. 

In analysing the distribution characteristics of emerging market returns, Bekaert et al. 

(1998) found that emerging equity markets have high volatility, low correlation with 

developed markets and, within the emerging markets, high, long-horizontal returns and 

predictability above and beyond what is found in developed market returns. They also 

indicate that the efficient frontier is pushed forward when emerging market returns are 

plugged into the standard Markowitz (1959) framework. This is because of a combination 

of low correlation and high expected return. They conclude that because emerging market 

returns cannot be completely characterised by the traditional mean-variance measures of 

the CAPM, application in these markets becomes problematic. 

Most of the research on asset pricing has focused on the developed markets and some 

emerging markets, with very few studies on the African market. Hence this study will 

focus on identifying the factors that are important within the African market. This is very 

important given the severe illiquidity and thin trading problems identified in Allen, 

Otchere and Senbet, 2011. According to Pagano (1989), when markets are thin volatility 

increases along with the tendency for asset prices to react adversely to the orders of 

traders. This can lead to instability in the beta, which is contrary to the assumption of the 

static CAPM, hence conditional information may play an important role in explaining 

excess returns in the African stock market. 
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Others believe that the behaviour of stock-market returns does not conform to the 

frequently assumed normal distribution as stated in Harvey and Siddiqui (1999, 2000). 

This is due to non-stationarity, which is most severe in the African market. This results 

from changes in the level of market integration, significant non-economic factors such as 

political factors, re-emerging and survivorship bias in data, and the evolution from an 

emerging/frontier market towards a mature market. 

The literature around asset pricing is vast; to develop a framework within which this 

research will be conducted, Section 2.2 will review the historical development of the 

CAPM, which will further investigate portfolio theory and the separation theorem in 

Section 2.2.1, rational expectation, non-correlated trading and arbitrage in Section 2.2.2, 

the efficient market hypothesis in Section 2.2.3, empirical tests on the CAPM in Section 

2.2.4, the three-factor model and other tests of the CAPM in Section 2.2.5 and the four-

factor model in Section 2.2.6. Fuller details of the methodologies are discussed in Chapter 

3. 

Given the relative underdevelopment of the African market, I expect some irrationality in 

investors’ decision-making, hence Section 2.2.7 will analyse the literature on the impact 

of behavioural finance on asset pricing. To evaluate the impact of the characteristics of 

surveyed markets on the performance of the CAPM and multifactor models, literature on 

the performance of the CAPM in developing versus developed economies are analysed 

in Section 2.3. 

Because of the impact of illiquidity and thin trading on asset-pricing models, Section 2.4 

reviews the literature on liquidity and its potential importance in the African market. 

Section 2.5 investigates the impact of market segmentation in the African market and 

Section 2.6 the potential impact of contagion. Structural breaks in the data are discussed 

in Section 2.7 and, following the possible presence of structural breaks, I explore the 

literature on conditional asset pricing in Section 2.8, with a view to identifying gaps in 

the literature. 

Other very important aspects of asset pricing are reviewed as well: higher moments in 

Section 2.9, the risk-free rate in Section 2.10 and the effect of survivorship bias in Section 

2.11, with the gaps in the literature identified in the conclusion in Section 2.12. 
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The major issues regarding asset pricing that relate to the African market as presented in 

the literature are tabulated below. 

 

Table 2.1 Major areas of research potentially important in the African market. 

Section Important issues Important papers 

2.2.4.1 Risk premium 

Miller and Scholes (1972) 

Black, Jensen and Scholes (1972) 

Blume and Friend (1973) 

Fama and MacBeth (1973) 

2.2.4.2 Beta and expected return 

Roll (1977) 

Reinganum (1981) 

Stambaugh (1982) 

Lakonishok and Shapiro (1986) 

2.2.5 Three-factor model Fama and French (1992, 1996)  

2.2.6 
Four-factor model and 

momentum 
Jagadeesh and Titman (1993) 

Carhart (1997) 

2.2.7 Behavioural finance 

De Bondt and Thaler (1985) 

Chopra, Lakonishok and Ritter (1992) 

Blume, Easley and O’Hara (1994) 

Hirshleifer and Shumway (2003) 

2.3 
Characteristics of the African 

market 

Ekechi (1989)  

Kenny and Moss (1998) 

Omran (2007) 

Senbet and Otchere (2010) 

Allen, Otchere and Senbet (2011) 

2.4 Liquidity effect 

Pástor and Stambaugh (2003) 

Correia and Uliana (2004)  

Martinez et al. (2005)  

Lesmond (2005)  

Liu (2006)  

Hearn and Piesse (2009)  

2.6 Contagion 

Claessens and Forbs (2004) 

Bekaert, Harvey and Ng (2005) 

Boamah (2014) 
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2.2 Historical overview of the CAPM 

Before the CAPM, Harry Markowitz (1959) developed the portfolio theory, which 

assumes that investors are averse to risk and that they are only interested in the mean and 

variance of their portfolio, which is selected at time 𝑡 − 1 and produces a stochastic return 

at 𝑡. Following this, Fama and French (2004) highlight that investors choose a mean-

variance-efficient portfolio, which, given expected return, should minimise the variance 

of the portfolio return and, given variance, should maximise expected return. 

Based on the algebraic conditions established in the Markowitz portfolio model, the 

CAPM establishes a testable prediction about the relation between expected return and 

risk. For asset prices to clear the market of all assets, the CAPM identifies a portfolio that 

must be efficient. Identifying this mean-variance-efficient portfolio depends on certain 

Ahnert and Bertsch (2014) 

2.7 Structural breaks 

Faboozi and Francis (1978) 

Garcia and Ghysels (1998)  

Harvey and Lumsdaine (2002) 

Bai and Perron (2003)  

  Merton (1973) 

2.8 
  

Conditional CAPM, 
intertemporal CAPM, bull 

and bear beta 
  

Jagannathan and Wang (1996)  

Zhang (2005)  

Lusting and Van Neiuwerburgh (2005) 

Lewellen and Nagel (2006) 

Chong, Halcoussis and Phillips (2012) 

2.9 Higher-order moments 

Bekaert et al. (1998) 

Hwang and Satchell (1999)  

Siddiqui (1999, 2000) 

Kim and White (2004) 

2.10 Risk-free rate 

Collins and Abrahamson (2006) 

Hearn and Piesse (2009) 

2.11 Survivorship bias 
Boynton and Oppenheimer (2006). 

Rohleder et al. (2011) 
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assumptions regarding the portfolio model, as disclosed by Sharpe (1964) and Lintner 

(1965). One of the assumptions, as stated in Perold (2004), is that investors can borrow 

as well as lend at the risk-free rate no matter what the amount borrowed or lent is. Perold 

(2004) defines a risk-free rate as an instrument that pays a fixed, real return and is default-

free. An example of a risk-free instrument in this case is a US Treasury bill or a US 

Treasury inflation-protected instrument (TIPS). Another assumption relates to the 

homogeneous expectations or beliefs of investors. According to Bodie et al. (2011), this 

assumption of the CAPM implies that all investors share the same economic view of the 

world and analyse securities in the same way, resulting in identical estimates of the 

probability distribution of asset return, i.e. a homogeneous list of inputs for any set of 

security prices to feed into the Markowitz portfolio model. They go on to highlight that 

with the risk-free interest rate, and given a set of security prices, all investors generate the 

efficient frontier and the unique optimal risky portfolio using the same expected return 

and covariance matrix of security return. 

The third assumption is that investors are risk-averse and evaluate their investment 

portfolios solely in terms of standard deviation and expected return measured over a 

single holding period; hence they all use the Markowitz portfolio selection model. The 

fourth assumption refers to the perfection of the market in the following sense: all assets 

are infinitely desirable; there are no transaction costs, no taxes, no short-selling; and 

information is costless and available to everyone. The fifth assumption describes the 

wealth holding of investors. It states that the wealth of each individual investor amid the 

many investors is small compared to the total investor wealth. The assumption of perfect 

competition in microeconomics holds, where investors act as though security prices are 

not affected by their own trades, hence investors are price-takers. 

And, lastly, a universe of publicly traded financial assets constrains investments. This 

assumption limits traded assets to financial assets such as bonds, stocks and risk-free 

borrowing and lending arrangements, while excluding investments in non-traded assets 

such as private enterprise, human capital and government-funded assets such as 

international airports. 

Using the assumptions identified above, the logic of the CAPM as stated in Fama and 

French (2004) can be described as in Figure 2.1 below. 
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Figure 2.1 Investment opportunities 

 

 

The vertical axis measures the expected return and the horizontal axis shows the standard 

deviation of portfolio returns, which measures the risk of the portfolio. The abc curve 

outlines combinations of risk and expected return for risky asset portfolios at various 

levels of expected return for which variance is minimised (lending and borrowing at the 

risk-free rate is not included). The trade-off between expected return and risk is apparent 

for minimum variance portfolios, as shown in Figure 2.1; investors desiring a particular 

level of expected return must be willing to accept the corresponding risk of the portfolio. 

For example, investors who desire a high level of expected return, say at point 𝑎 in the 

graph, must be willing to accept the high level of risk associated with 𝑎. Conversely, point 

𝑇 presents an intermediate level of expected return with lower volatility. Portfolio b and 

those above it along the abc curve are the only mean-variance-efficient portfolios when 

there is not risk-free borrowing or lending. This is because, given their return variances, 

these portfolios maximise expected return. 
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The efficient set is turned into a straight line with the addition of risk-free borrowing and 

lending. Consider an investor who invests 𝑥 proportion of his funds in a security classed 

as risk-free and 1 − 𝑥 in portfolio g. Given a risk-free investment of all funds, i.e. loaned 

out at an interest equal to the risk-free rate, the result is a portfolio with a risk-free rate of 

return and zero variance, i.e. the point 𝑅𝑓 in Figure 2.1. Combining positive investment 

in g and risk-free lending can be seen on a straight line between 𝑅𝑓 and g. On the right of 

g along the straight line are borrowings at the risk-free rate with the proceeds from the 

borrowing used to increase investment in portfolio g. That is to say that portfolios that 

combine risky portfolio g with risk-free borrowing or lending plot along a straight line 

from 𝑅𝑓 through g. 

A mean-variance-efficient portfolio can be obtained with risk-free borrowing and lending 

by drawing a line from 𝑅𝑓 to the tangency portfolio 𝑇, to the left as far as possible. It thus 

becomes clear that all efficient portfolios are combinations of the risk-free asset and a 

single risky tangency portfolio, 𝑇. This was highlighted in the works of James Tobin 

(1958), who showed that the efficient frontier simplifies in an important way when 

investors can borrow as well as lend at the risk-free rate. This is the key to the separation 

theorem, which will be discussed in more detail later in the chapter. 

Combining this with the assumptions of the CAPM, the picture becomes a whole lot 

clearer; investors have complete agreement on the distribution of returns, hence they see 

the same opportunity and combine the same risky portfolio 𝑇 with risk-free lending or 

borrowing. This portfolio 𝑇 must be a value-weighted portfolio of risky assets since all 

investors hold that same portfolio. The market portfolio that is denoted as 𝑀, which 

represents each risky asset’s weight in the tangency portfolio, must be the total market 

value of all outstanding units of the asset divided by the total market value of all risky 

assets. Also, the risk-free rate must be set to clear the market of risk-free borrowing and 

lending, along with prices of risky assets. 

The assumptions of the CAPM imply that if the market portfolio M must be on the 

minimum variance asset for the market to clear, the algebraic relation for the market 

portfolio must follow that of the minimum variance portfolio. Specifically, for 𝑁 risky 

assets, 
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(𝑀 minimum variance condition) 

 𝐸(𝑅𝑖) = 𝐸(𝑅𝑍𝑀) + [𝐸(𝑅𝑀) −  𝐸(𝑅𝑍𝑀)]𝛽𝑖𝑀, 𝑖 = 1,… . , 𝑁. (2.1) 

where 𝐸(𝑅𝑖) and 𝛽𝑖𝑀 are the expected return on 𝑖 the market beta of 𝑖 respectively, where 

(market beta) 𝛽𝑖𝑀 = 
𝑐𝑜𝑣(𝑅𝑖, 𝑅𝑀)

𝜎2(𝑅𝑀)
   (2.2) 

as the covariance of its return with the market return divided by the variance of the market 

return. 

The expected return on assets that are uncorrelated with the market (those that have 

market betas equal to zero) is denoted by 𝐸(𝑅𝑍𝑀), the first term on the right-hand side of 

the minimum variance condition. The risk premium that is the market beta of asset 𝑖, 𝛽𝑖𝑀, 

times the premium per unit beta, which is the expected market return, 𝐸(𝑅𝑀), minus 

𝐸(𝑅𝑍𝑀). This is the second term of the minimum variance condition. 

A correct and indeed common interpretation of the beta is that it measures the sensitivity 

of the asset’s return to variation in the market return. This is because the slope in the 

regression of the return of asset 𝑖 on the market return is the market beta 𝛽𝑖𝑀. However, 

the beta can also be interpreted differently and more in line with Harry Markowitz’s 

portfolio model upon which the CAPM is established. The risk of the market portfolio is 

the weighted average of the covariance risks of the assets in 𝑀 [𝑐𝑜𝑣(𝑅𝑖,  𝑅𝑀)], which is 

measured by the variance of its return [𝜎2(𝑅𝑀)]. That is to say that 𝛽𝑖𝑀 is the covariance 

risk of asset 𝑖 in 𝑀 measured relative to the average covariance risk of assets. 

The expected return on a zero-beta asset 𝐸(𝑅𝑍𝑀) is nailed down using the risk-free 

borrowing and lending assumption. The expected return on an asset is uncorrelated with 

the market return when the average of the assets covariance with the return on other assets 

just offsets the variance of the asset’s return. In the market portfolio, this risky asset is 

riskless as it contributes nothing to the variance of the market return. The expected return 

on assets that are uncorrelated with the market 𝐸(𝑅𝑍𝑀), must equal the risk-free rate, 𝑅𝑓 , 

when there is risk-free borrowing and lending. The familiar Sharpe-Lintner CAPM 

equation of the relationship between return and beta results from this. 

(Sharpe-Lintner CAPM) 



61 
 

𝐸(𝑅𝑖) =  𝑅𝑓 + [𝐸(𝑅𝑀) − 𝑅𝑓)]𝛽𝑖𝑀, 𝑖 = 1, … . , 𝑁. (2.3) 

Perold (2004) highlights that these assumptions of the CAPM are highly simplified, 

which seems fairly obvious, but they are necessary to obtain the CAPM in its basic form. 

Relating to the assumption of unrestricted risk-free borrowing and lending, Fischer Black 

(1972) insists that is it unrealistic and thus developed a version of the CAPM without 

risk-free borrowing or lending. His results show that allowing unrestricted short sales of 

risky assets does not refute the key result of the CAPM – that the market portfolio is 

mean-variance-efficient. Looking back at Figure 2.1, if there were no risk-free asset, 

investors would pick portfolios along 𝑎 to 𝑏, which is the mean-variance-efficient 

frontier. The market portfolio is formed through market clearing prices, as the weight of 

the aggregate invested wealth relating to investors in relation to the market portfolio. 

Thus, a portfolio of the efficient portfolios chosen by investors is the market portfolio. 

With unrestricted short-selling of risky assets, portfolios made up of efficient portfolios 

are themselves efficient. 

Hence, the minimum variance condition for 𝑀 given above holds as the market portfolio 

is efficient. It has the attributes of the Black CAPM. 

The interpretations in relation to the expected return on assets that are uncorrelated with 

the market (those that have market betas equal to zero), denoted by 𝐸(𝑅𝑍𝑀) constitute the 

only difference between the Black and the Sharpe-Lintner versions of the CAPM. The 

Sharpe-Lintner version of the CAPM highlights that 𝐸(𝑅𝑍𝑀) must be the 𝑅𝑓 which is the 

risk-free rate, and 𝐸(𝑅𝑀) − 𝑅𝑓 is the premium over one unit of beta risk. In contrast, the 

Black CAPM insists that 𝐸(𝑅𝑍𝑀) must be less than the expected market return, so the 

premium for beta is positive. 

Both the assumptions of unrestricted risk-free borrowing and lending and that short-

selling is unrestricted are unrealistic. Hence, portfolios made up of efficient portfolios 

will not be typically efficient if there is no risk-free asset and no short-selling of risky 

assets, as stated in the algebra of portfolio efficiency. If short-selling is not allowed and 

there is no risk-free asset, mean-variance investors will still choose the efficient 

portfolios. But this means that the portfolio of the efficient portfolios, which is the market 

portfolio chosen by investors, is not typically efficient and the expected return and market 
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beta relation of the CAPM is lost. The predictions regarding expected return and betas 

with regards to other efficient portfolios cannot be ruled out if theory can specify the 

efficient portfolios required if the market is to clear. But this has proven impossible so 

far. 

It can then be deduced that many unrealistic assumptions form the basis for the efficiency 

of the market portfolio. But this is not unusual for interesting models, which is why they 

must be tested against data. This review will critically analyse the major area of research 

investigating the portfolio theory and asset pricing. 

 

2.2.1 Portfolio theory and the separation theorem 

In contrast to Markowitz’s contribution, which may be viewed as microeconomic, Tobin 

(1958) addressed the liquidity preference problem largely referred to as a standard 

Keynesian macroeconomic problem. The aggregative function was proposed by Keynes 

without a formal deviation. Tobin (1958) derives the economy’s liquidity preference by 

developing a theory that explains the behaviour of the decision-making units of the 

economy. One may wonder what the connection between liquidity preference and 

portfolio theory is. Three motives for holding cash are identified by Keynes and these are 

transactions, precautionary and speculative. While income determines the transactions 

and precautionary motives, the amount of cash held for speculative motive was influenced 

by the rate of interest. The foundation for Tobin’s interest elasticity of the liquidity 

preference derives its strong theoretical foundation from this speculative motive of 

investors, as detailed in Constantinides and Malliaris (1995). Tobin considered only cash 

and consoles (government securities) as the assets available to an investor, as he wanted 

to explain the demand for cash. 

He highlights that the higher the proportion of investment in console balance available to 

an investor, the more risk the investor assumes. At the same time, increasing the 

proportion of consoles also increases his expected return. As Tobin states, the investor is 

assumed to have preferences between expected return and risk that can be represented by 

a field of indifference curves. Plausibly, for some investors, risk-lovers, these indifferent 

curves have negative slopes. These investors are willing to accept lower expected returns 

in order to have the chance of unusually high capital gains afforded by high values of risk. 
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Risk-averters, on the other hand, will not be satisfied to accept more risk unless they can 

also expect greater expected returns. Their indifference curve will be positively sloped. 

According to Tobin (1958), there are two kinds of risk-averters; the first, which he called 

diversifiers, are those whose indifference curves are concave upwards. The second group 

he called plungers, which are those whose indifference curves are also sloping upwards, 

but either linear or convex. 

As stated in Elton and Gruber (1997), when the investor has access to riskless assets, the 

choice of optimum portfolio of risky assets is unequivocal and independent of the 

investor’s expected returns or variance. This is the principle of the separation theorem. 

The implications of the separation theorem include the facilitation of calculation where 

the portfolio problem can be restated as a problem of finding the tangency portfolio to a 

line passing through the riskless asset in expected return standard deviation space, as 

highlighted in Elton and Gruber (1997). The portfolio that maximises the ratio of expected 

return minus the return on the riskless asset to the standard deviation is the tangency 

portfolio. According to Tobin (1958), nothing changes if there are many risky assets. This 

is because, as stated in Constantinides and Malliaris (1995), the risky assets can be viewed 

as a single composite asset (mutual fund) and investors find it optimal to combine their 

cash with a specific portfolio of risky assets. 

This connects the separation theorem to the mutual fund theorem, which states that the 

desired portfolio of investors can be obtained by mixing two mutual funds: one 

representing the tangency portfolio and one made up of the riskless asset. Another 

implication is that other assumptions will then be taken into consideration, for example 

more funds and new types of funds will enter the decision set. Suppose that all investors 

choose to invest in mean-variance-efficient portfolios due to restrictions in utility 

functions, and they choose specific proportions of two distinct mean-variance efficient 

portfolios that generate all the others. The two specific proportions can be used to generate 

the market portfolio, which is the wealth-weighted sum of the portfolio holding of all 

investors. According to Constantinides and Malliaris (1995), this implies that the market 

portfolio is also mean-variance-efficient. This was the cornerstone of Black’s (1972) 

development of the CAPM. 
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Before the work of Black (1972), Sharpe (1964) identified that most authors have used 

models similar to that proposed by Tobin to derive corresponding conclusions about 

individual investor behaviour. Sharpe, however, highlighted that Hicks (1962) identified 

more explicitly the nature of the conditions under which the process of investment choice 

can be dichotomised. Sharpe also identified the work of Gordon and Gangpolli (1962), 

which included a rigorous proof in the context of a choice among lotteries. Sharpe went 

further to state that no author has attempted to extend models of investor behaviour to 

construct a market equilibrium theory of asset prices under conditions of risk. Sharpe 

(1962) provided this extension and identified that such extension provides a theory with 

implications consistent with the assertions of traditional financial theory. 

 

2.2.2 Rational expectation, non-correlated trading and arbitrage 

When diverse and asymmetric information is available to agents in speculative markets, 

equilibrium prices will normally contain information beyond that held by each agent 

originally. According to Admati (1985), “this observation together with the assumption 

that agents make statistically correct inferences based on all the information they possess, 

including current prices, leads to the notion of rational expectations equilibrium where 

equilibrium prices affect agents’ behaviour both by entering their budget constraints and 

by influencing their beliefs and predictions”. As stated in Admati (1985), most of the 

development within the literature on rational expectation has been concerned with fully 

revealing equilibria, within which we observe that in equilibrium, information asymmetry 

that may exist disappear. 

As seen in Milgrom (1981), when each trader is privy to their own information that is 

private, or acquire information at a cost, their options may be significantly different when 

compared to the case where information is public. It may be possible for a trader to infer 

information from the terms of trade he is offered or from any observations he makes 

concerning the behaviour of other traders. Milgrom (1981), however, identifies that the 

existing rational expectations equilibrium models are defective. Admati (1985) also 

highlights that the notion of fully revealing rational expectations equilibrium has proved 

problematic, both conceptually and empirically. This view was also expressed in 

Anderson and Ross (1985) and Grossman (1981). Admati (1985) did, however, identify 
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that most of the problems associated with fully revealing equilibria are resolved if, 

because of some noise, agents are not able to extract all relevant information from prices. 

Noisy rational expectations models allow diversity of beliefs to be sustained in 

equilibrium where price information is being utilised optimally. 

Grossman and Stiglitz (1980) indicate that within this competitive equilibrium, arbitrage 

profits are eliminated. They do, however, indicate that it is not possible for the economy 

to always be in equilibrium. Hence the assumption that all markets, including that for 

information, are always in equilibrium and always perfectly arbitraged is inconsistent 

when arbitrage is costly. Drake and Fabozzi (2010) do, however, identify that arbitrageurs 

profit without risk. However, such opportunities are rare in financial markets. They also 

identify that less obvious arbitrage opportunities exist in situations where a package of 

assets can produce a payoff (that is, expected return) identical to an asset that is priced 

differently. This arbitrage relies on a fundamental principle of finance, the law of one 

price, which states that a given asset must have the same price regardless of the means by 

which one goes about creating that asset. 

When a situation is discovered whereby the price of the package of assets differs from 

that of an asset with the same payoff, rational investors will trade these assets in such a 

way as to restore price equilibrium. Following on, the arbitrage pricing theory believes 

that this arbitrage mechanism is possible and is founded on the fact that an arbitrage 

transaction does not expose the investor to any adverse movement in the market price of 

the asset in the transaction. However, if the market is efficient, there should not be 

consistent arbitrage opportunities as identified within the efficient market hypothesis, 

which is discussed below. 
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2.2.3 Efficient market hypothesis (EMH) 

 “A blindfolded chimpanzee throwing darts at the stock pages could select a portfolio that 

would do as well as the experts” - Burton G. Malkiel, 1973, p 4. (A Random Walk Down 

Wall Street). 

Although the quote was made largely in jest, the analogy is to throw a towel over the 

stock pages and simply buy an index fund where the index holds all the stocks that 

constitute the broader stock market. The earliest form of the efficient market hypothesis 

appeared as the random walk theory (Bachelier, 1964). In the 1960s, the theory was 

confirmed empirically, as seen in Cootner (1964) and many more times since. The EMH 

is based on the overarching logic that were returns forecastable, many investors would 

use them to generate unlimited profits. However, the behaviour of these investors will 

induce returns that obey the EMH, and should this not happen, there would exist a “money 

machine” producing unlimited wealth. This contrasts with the expectation from a stable 

economy. 

In defining market efficiency, Jensen (1978) identified a market as efficient in respect of 

information set 휃𝑡 if it is impossible to make economic profits by trading based on 

information set 휃𝑡. A similar definition was provided in Timmermann and Granger 

(2004). Malkiel (1992) identified an efficient capital market as one where all relevant 

information in fully and correctly reflected in security prices. This implies that it is 

impossible to make economic profits by trading based on information set 휃𝑡. Hence the 

market is said to be efficient with respect to information set 휃𝑡, if security prices would 

be unaffected by revealing that information to all market participants. Timmermann and 

Granger (2004) highlight three points of emphasis: the first relates to the importance of 

the information set used in the test 휃𝑡; the second relates to the ability to exploit this 

information in a trading strategy; and the third relates to use of economic profit as the 

yardstick. Economic profit here relates to profits that are risk-adjusted and net of 

transaction costs. 

The information sets in use within most EMH literature are categorised based on the set 

of variables contained in the information set 휃𝑡 as seen in Roberts (1967) and Fama 

(1970). When 휃𝑡 comprises current and past asset prices, as well as variables such as 

trading volume and possibly dividends, as revealed in Timmermann and Granger (2004), 
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the EMH is being tested in its weak form. When 휃𝑡 is expanded to include information 

that is publicly available, the EMH is being tested in its semi-strong form. When 휃𝑡 is 

expanded to include information that is both publicly and privately available, the EMH is 

being tested in its strong form. Most studies in the literature test EMH in its weak or semi-

strong form because private information is more expensive to acquire and harder to 

measure. The strong form can, however, be tested indirectly as identified in Timmermann 

and Granger (2004) by considering the performance of fund managers and testing if they 

earn profits net of risk premiums when the cost of private information has been accounted 

for. 

In recent years, many financial economists have started questioning the EMH as it has 

seemed that there have been some instances where prices failed, ex-post, to reflect 

available information, as identified in Malkiel (2005). There have also been large-scale 

periods of irrationality as seen during the internet bubbles of the early 1990s and early 

2000, and also the recent 2008 financial crisis. According to Robert Shiller (2000), in his 

book, Irrational Exuberance, the EMH should be rejected. Others highlight that the stock 

prices are, to a large extent, predictable on the basis of either valuation metrics such as 

price-to-earnings ratio and dividend yield or based on past returns, as seen in Fama and 

French (1988), Campbell and Shiller (1988a,b), Lo and MacKinlay (1999) and De Bondt 

and Thaler (1995). 

However, there have been doubts cast on the robustness of many of the predictable 

patterns that have been developed, as seen in Fama (1998) and Malkiel (2003). Dimson 

and Marsh (1999) highlight the disappearance of the small-cap premium in the UK stock 

market after it became publicly known. Bossaert and Hillioin (1999) find out-of-sample 

disappearance of in-sample predictability of monthly stock returns in a variety of 

international stock markets. Aiolfi and Favero (2002) also reported the disappearance of 

the predictability in US stocks, which had been documented in earlier studies, in the 

1990s. Sullivan, Timmermann and White (1999) found the technical trading rules that 

historically generate excess returns to have broken down after 1986. However, and rather 

fascinatingly, Brook, Lakonishok and LeBaron (1992) found technical trading rules to be 

profitable in 1986. 
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The investigation of market efficiency in the African market had previously received very 

little attention due to data paucity. Those who pioneered efficient markets research in the 

African market include Samuels and Yacout (1981) and Parkinson (1984) using 

autocorrelation tests, who, however, offered conflicting results, as identified in Ntim et al 

(2011). While Samuels and Yacout could not reject weak-form efficiency in 21 listed 

Nigerian firms, Parkinson rejects weak-form efficiency in 30 listed Kenyan firms. 

However, later studies in the Kenyan market, as seen in Dickinson and Muragu (1994), 

found evidence of weak-form efficiency. In investigating weak-form efficiency using the 

partial-autocorrelation test, Magnusson and Wydick (2002) found weak-form efficiency 

in six out of eight African stock markets. The weak-form efficient markets are Botswana, 

Cote d’Ivoire, Kenya, Mauritius, Nigeria and South Africa, while Ghana and Zimbabwe 

were not weak-form efficient. 

Appiah-Kusi and Menya (2003) investigated weak-form efficiency in 11 African stock 

markets using an EGARCH-M model. Their result demonstrates weak-form efficiency 

for Egypt, Kenya, Morocco, Mauritius and Zimbabwe, while Botswana, Ghana, Ivory 

Coast, Nigeria, South Africa and Swaziland were not efficient. Jefferis and Smith (2005) 

also used a GARCH model to investigate serial dependence in eight African stock 

markets, but found only South Africa to be weak-form efficient. In using a robust, non-

parametric, variance-ratio test in addition to its parametric form, Ntim, Opong and 

Danbolt (2007) found the Ghana stock market to be weak-form inefficient. Unlike 

previous studies, the findings are robust to thin trading, sub-sample periods and choice of 

dataset. 

Ntim et al (2011) investigated 24 African continent-wide stock indices and eight 

individual stock-price indices. They found improvements in informational efficiency 

within the countrywide indices over the individual national stock indices, notwithstanding 

the test statistic used. They also found better improvement in efficiency for sector-based 

indices than size indices. They conclude that no individual national index is weak-form 

efficient, while 80% of African sectorial indices are weak-form efficient even when the 

robust Wright (2000) non-parametric, variance-ratio tests are used. Ntim (2012) 

documents similar findings. Following the evidence highlighted, this study will employ 

African continent-wide stock indices, but on a regional basis, to establish potential 

difference in returns behaviour within the regions. 
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2.2.4 Empirical tests on the CAPM 

As stated in Fama and French (2004), tests of the CAPM usually take the form of 

examining the relationship between the market beta and expected return implied by the 

CAPM model in three distinct ways. The first implication of the CAPM is that expected 

returns on the market portfolio are greater than the expected return on assets, where the 

asset returns are uncorrelated with the market return, indicating the beta premium is 

positive. The second implication is that no other variable has marginal explanatory power 

as expected returns on all assets are linearly related to their betas. The last implication is 

that expected returns of uncorrelated assets are the risk-free rate, while the expected 

market return minus the risk-free rate is the beta premium. Fama and French (2004) also 

note that most tests of the CAPM use either time-series or cross-sectional regression. 

2.2.4.1 Risk premium tests 

Miller and Scholes (1972) and Black, Jensen and Scholes (1972) examining stock in the 

US between 1937 and 1965 found that low-beta stocks did better than the CAPM predicts, 

while high-beta stocks performed worse. They found that the slope of the line that relates 

the expected return to risk as stated in the CAPM is higher than the line relating average 

return and risk in their sample. In other words, and as explained in Miller and Scholes 

(1972), β is the systematic determinant of α on individual assets, but that low-beta stocks 

tend to have positive α’s and high-beta assets tend to have negative α’s. 

Fama and MacBeth (1973) and Blume and Friend (1973) found that the estimated 

relationship between average excess return and beta is too flat and the intercept is positive. 

In articulating the research on the tests of the CAPM, Fama and French (2004) highlight 

the CAPM’s approach in regressing a cross-section of average asset returns on estimates 

of asset beta, where the intercept is the risk-free rate 𝑅𝑓 and the coefficient of beta the 

risk premium 𝐸(𝑅𝑀) − 𝑅𝑓. Furthermore, they identify two problems: the imprecise 

nature of estimates of beta for individual assets and, secondly, common sources of 

variation on the regression residuals. 

Black, Jensen and Scholes (1972) indicate that the expected return on a security can be 

represented by a two-factor model such as 

𝐸(�̃�𝑗) =  𝐸(�̃�𝑧)(1 − 𝛽𝑗) +  𝐸(�̃�𝑀)𝛽𝑗 (2.4) 
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Where 𝑟 is total return, 𝐸(�̃�𝑧) is the expected return on the second factor, which is referred 

to as the beta factor because it has a coefficient that is a function of the assets beta. Black, 

Jensen and Scholes (1972) showed that when the riskless borrowing and lending 

assumption is relaxed, the asset-pricing model provides that, in equilibrium, the expected 

return on an asset is given by Equation 2.4 above. These findings defined �̃�𝑧 explicitly as 

the return on a zero covariance portfolio with the market portfolio return �̃�𝑀. These 

findings are identical to those of Mayers (1972), who established the model incorporating 

non-marketable assets in an equilibrium model and has shown that the basic linear relation 

of the traditional model is unchanged, but the constant term will be non-zero and will not 

be equal to 𝐸(𝑅𝑀). 

To improve the precision of estimated betas, Black, Jensen and Scholes (1972), Friend 

and Blume (1970), and Blume (1970) have all suggested the use of portfolios instead of 

individual securities. On the other hand, Fama and MacBeth (1973) proposed the use of 

month-by-month cross-section regression of monthly returns on betas instead of 

estimating a single cross-sectional regression of average monthly returns on betas. This, 

they said, would address the problem of inference caused by the correlation of residuals 

in cross-section regression. They remarked that the standard errors of the average 

intercept and slope fully capture the effects of residual correlation on variation in the 

regression coefficient, but sidestep the problem of actually estimating the correlations. 

This is resolved by the standard approach of capturing the residual correlation via 

repeated sampling of regression coefficients. 

The Sharpe-Lintner CAPM also implies a time-series regression test as identified in 

Jensen (1968). 

𝑅𝑖𝑡 − 𝑅𝑓𝑡 = 𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 휀𝑖𝑡, (2.5) 

This implies that Jensen’s alpha, the intercept term in the time-series regression in 2.5, is 

zero for each asset. Early tests squarely reject the Shape-Lintner CAPM, citing a positive 

but flat relation between beta and average return, as stated in Friend and Blume (1970), 

Black, Jensen and Scholes (1972), and Stambaugh (1982). The intercepts in time-series 

regressions of excess asset return on the excess market returns are negative for assets with 

high betas and positive for assets with low betas. However, when average returns are 
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considered, the relation with beta becomes approximately linear. This is consistent with 

Black CAPM. 

 

2.2.4.2 Market beta and expected return 

The CAPM insists on mean-variance-efficiency as reflected in the Sharpe-Lintner and 

Black versions of the CAPM. This means that other variables add nothing to the 

explanation of expected return as the sole explanatory variable of expected return is 

market beta. Along with the tests on risk premiums, other early tests focus on this 

prediction of differences in market beta as the sole explainer of differences in expected 

excess return across securities and portfolios, and the method usually employed is cross-

sectional regression, although time-series regression can also be employed. Tests on this 

carried out by Fama and MacBeth (1973) show results that are consistent with the findings 

in the Sharpe-Lintner and Black CAPM. 

Borrowing inferences from Gibbons, Ross and Shanken’s (1989) test, a candidate for the 

tangency portfolio 𝑇 (in Figure 2.1) is constructed by optimally combining the market 

proxy and the assets on the left-hand side of the time-series regressions. In effect, this 

statistic tests whether the market proxy is the tangency portfolio that can be constructed 

by combining the market portfolio with the specific assets used as dependent variables in 

the time-series regression. We can see similar interpretations of the cross-section 

regression test regarding the explanation of expected return by market betas. However, 

an important inference from this discussion as stated in Fama and French (1994) is that 

cross-section and time-series regression do not, strictly speaking, test the CAPM; they 

only test specific proxies of a market portfolio to ascertain if they are efficient in the set 

of portfolios that can be constructed from it and from assets on the left-hand side that are 

not explained by the market beta. As stated in Roll (1977), this is because the model does 

not contain all marketable assets and data for the true market portfolio of all assets are 

likely beyond reach. 

However, it is worth noting that the evidences from both cross-sectional and time-series 

regression do not disprove the predictions of the Black CAPM as the standard market 

proxies seem to be on the minimum variance frontier. But the predictions of the Sharpe-
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Lintner CAPM regarding the premium per unit of beta being the expected market return 

minus the risk-free rate of interest is constantly rejected in empirical research. 

Most tests of the CAPM are conducted within the developed markets or the Asian 

emerging market; this study will seek to investigate the premium per unit of beta theorised 

by the CAPM within the African equity markets. 

 

2.2.5 The three-factor model and other tests of the CAPM 

Further evidences against the CAPM have continued with Reinganum (1981), Stambaugh 

(1982) and Lakonishok and Shapiro (1986) stating that the relationship between beta and 

average return is even flatter beyond the sample period in the early CAPM. Statistical 

uncertainty (a large standard error) does, however, cloud the estimates of beta premium. 

Attempts have also been made to revive the Sharpe-Lintner CAPM by the likes of Kothari 

et al. (1995), who attribute the weak link between average return and beta to chance. Fama 

and French (2004) insist that this argument is irrelevant, citing the fact that other variables 

capture the variations in expected returns that are missed by beta. 

Other extensions of the CAPM include those of Merton (1973) and Breeden (1979), 

which allow for multiple time periods and investment opportunities that change from one 

period to the next. Solnik (1974), Stulz (1981) and Adler and Dumas (1983) extended the 

CAPM to international investing and the earlier discussed extension by Ross (1976), who 

relaxed some of the assumptions by relying on the arbitrage process. Perhaps the most 

important extensions of the CAPM come from Fama and French (1992, 1996), who added 

two more risk factors to the traditional CAPM model to form the three-factor CAPM 

model as: 

 

𝐸(𝑅𝑖𝑡) − 𝑅𝑓𝑡 = 𝛽𝑖𝑀[𝐸(𝑅𝑀𝑡) − 𝑅𝑓𝑡] + 𝛽𝑖𝑠𝐸(𝑆𝑀𝐵𝑡) + 𝛽𝑖ℎ𝐸(𝐻𝑀𝐿𝑡) (2.6) 

 

where 𝐸(𝑅𝑖𝑡) − 𝑅𝑓𝑡 is the expected return on a portfolio in excess of the risk-free rate, 

𝑅𝑀𝑡 − 𝑅𝑓𝑡 is the excess return on a broad market portfolio, 𝑆𝑀𝐵𝑡 (small minus big) is 

the difference between the return on a diversified portfolio of small stocks and that of 
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large stocks while 𝐻𝑀𝐿𝑡 (high minus low) is the difference in return of a diversified 

portfolio of high and low book-to-market stocks. 𝐸(𝑅𝑀𝑡) − 𝑅𝑓𝑡, 𝐸(𝑆𝑀𝐵𝑡) and 𝐸(𝐻𝑀𝐿𝑡) 

are expected premiums and the betas are slopes in the time-series regression, 

𝑅𝑖𝑡 − 𝑅𝑓𝑡 = 𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 휀𝑖𝑡. (2.7) 

They found that this combination of size and book/market ratio performs best in 

explaining the cross-sectional variations in stock returns. More interestingly, they found 

that when these two factors are accounted for, CAPM beta becomes insignificant. Like 

Fama and French (1992), Basu (1977) found earnings-to-price multiples to be positively 

significant while Banz (1981) found size (value of equity) to be negatively related to 

average stock returns. Similarly, Stattman (1980) and Rosenberg et al. (1985) find that 

on average high book-to-market stocks return more than the CAPM. Others document 

that the deviations from the linear CAPM risk-return trade-off are related to leverage 

(Bhandari, 1988) and book-to-market value (Chan et al. (1991)). However, unlike these 

studies, Fama and French (1992) insist that beta is dead, as they found it insignificant. 

A major rebuttal of the findings of Fama and French (1992) comes from the works of 

Kothari, Shanken and Sloan (1995), who insist that using beta estimates from annual 

rather than monthly returns produce a stronger positive relation between average return 

and beta. This is because true beta can vary systematically and non-linearly with the 

length of the interval used to measure returns; hence inferences from cross-sectional 

regression of average returns on beta can be sensitive to the return measurement interval 

used to estimate betas. Also, estimates of beta are biased in the short term, as stated in 

Scholes and Williams (1977) and Cohen et al. (1983), and this bias results from trading 

frictions and non-synchronous trading.  

Lo and MacKinlay (1990) and Mech (1993) also agree to biased estimates of beta in the 

short term, but they highlight that this is due to systematic cross-temporal covariances. 

Lastly, monthly returns appear to have a seasonal component that is quite significant, as 

stated in Keim (1983), but this seasonal component is not very well understood, as Rozeff 

and Kinney (1976) note. According to Kothari, Shanken and Sloan (1995), these biases 

can be mitigated using longer-interval return observations such as using annual returns, 
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but they also admit that in the case of mitigating the complications that arise from 

seasonality in returns, it may not be the best. 

Similar findings were also reported in Ball and Kothari (1989) using size portfolios. This 

also provided evidence in support of beta in accounting for cross-sectional variations in 

expected returns. The question of selection bias in the data used by Fama and French 

(1992) has also been raised in the literature. This suggests that the returns on high book-

to-market portfolios formed using the COMPUSTAT data may be spuriously inflated 

because of missing data and several years of surviving firms’ historical data being 

included in the database. Kothari, Shanken and Sloan (1995) also highlighted data-

snooping arising from their claim that variables other than size and book-to-market value 

were examined and eliminated. As a result, they doubted that the findings of Fama and 

French (1992) would be robust to longer periods. 

Kothari, Shanken and Sloan (1995) do, however, recognise that there are valid economic 

arguments for ratios such as earnings or dividend yield and book-to-market values to be 

positively related to expected return beyond beta. These were also confirmed in 

Sharathchandra and Thompson (1993) and Ball (1978). 

With Fama and French (2015) calling into question their very own prediction about the 

importance of book-to-market value in asset pricing, this study will investigate the 

Fama/French factor within the market with different characteristics – the African equity 

market. Thus, it is hypothesised that there is a positive relationship between beta and 

returns, a positive relationship between size and returns and a positive relationship 

between book-to-market value and returns. 

 

2.2.6 The four-factor CAPM 

One of the most popular of these models is the four-factor model of Carhart (1997), which 

includes momentum as measured in Jegadeesh and Titman (1993). According to Novy-

Marx (2012), momentum trading refers to buying past winners and selling past losers. 

Evidences have been provided by numerous researchers on the profitability of momentum 

trading strategies (e.g. Griffin et al., 2003, Jegadeesh and Titman, 1993, 2001, Jagadeesh 
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1990, Chui et al., 2003, Rouwenhorst, 1998, 1999, De Bondt and Thaler 1985), but there 

remains to be seen a consensus on the source of these profits. Badrinath and Wahal (2002) 

highlight the implication of momentum trading for the efficient markets by stating that it 

destabilises stock prices, which contrasts with Friedman’s (1953) argument, which insists 

that rational speculation must stabilise asset prices. Unlike the findings in Fama and 

French (1992), Carhart (1997) finds beta to be significant. 

However, the profitability of momentum trading strategies has also come under severe 

scrutiny, with Novy-Marx (2012) insisting that the predictive power of immediate past 

performance has diminished over time. They also emphasise that doubts still exist on the 

ability of momentum to predict returns during different time periods and in different 

markets. However, it is hypothesized in this study that there is a positive relationship 

between momentum and returns. 

2.2.6.1 Measuring momentum 

According to Jagadeesh and Titman (1993), momentum trading strategies that buy stocks 

that have recently performed well and sell stocks that have recently performed poorly can 

generate significant positive returns. Measurement of momentum largely follows the 

approach identified in Jegadeesh and Titman (1993), which selects stocks based on their 

past J month return and hold them for K months. As stated in Gutierrez Jr and Hameed 

(2007) and Siganos and Chelley-Steeley (2006), overlapping holding portfolios are 

examined to increase the test strength. Chui, Titman and Wei (2003), Rouwenhorst (1999) 

and Siganos and Chelley-Steeley (2006) have all documented momentum over 3–12-

month horizons in different markets. 

However, Fama and French (1996) insist that the momentum anomaly results from data-

snooping, while Lesmonda et al. (2004) and Korajczyk and Sadka (2004) admit that the 

profitability of momentum trading becomes very doubtful in the presence of direct and 

indirect transaction costs. Conrad and Kaul (1998) and Bulkley and Nawisah (2009) 

report that momentum profit can virtually all be traced to cross-sectional variation in 

unconditional mean returns. In their defence, Jegadeesh and Titman (2002) refute these 

claims and relates the findings of Conrad and Kaul (1998) and Bulkley and Nawisah 

(2009) entirely to small sample biases in their estimates. Surely, past performance should 
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persist indefinitely if momentum profits were primarily due to cross-sectional difference 

in mean returns, but Jegadeesh and Titman (2001) insist that momentum trading is only 

profitable during the first 12 months after portfolio formation and mostly due to time-

series dependence in realised return. 

2.2.7 Behavioural finance and asset pricing 

Other variants of the CAPM include those from the standpoint of behavioural finance and 

psychology, where proponents argue that the psychology of the investors affects their 

perception of risk in particular and investment behaviour in general, hence affecting 

expected returns. For example, reversal in long-term returns documented in De Bondt and 

Thaler (1985) and Chopra, Lakonishok and Ritter (1992) claim that stocks with low 2–5-

year past returns tend to have higher 2–5-year future returns. Others like Shu (2010) insist 

that mood affects expected returns through affecting investors’ rational cognitions, risk 

assessment and preferences. Research into the effect of mood on investment uses proxy 

variables such as beliefs (as in Dowling and Lucey, 2005), biorhythms (as in Yuan at al., 

2006, and Kamstra et al., 2003) and weather (as in Shu and Hung 2009, Keef and Roush 

2007, Chang et al., 2006, Cao and Wei, 2005, and Hirshleifer and Shumway, 2003). They 

believe that investment returns and asset prices fluctuate with investor mood. Other 

behavioural factors that affect asset prices include chaos (Clyde and Osler, 1997), 

disequilibrium (Beja and Goldman, 1980) and noisy rational expectations (Blume, Easley 

and O’Hara, 1994). 

A good starting point is to state some of the objections of behavioural finance to asset 

pricing and the objections of the fully rational approach. 
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Table 2.2: Common objectives to the psychological approach to asset pricing and parallel 

objectives to the full rational approach (Source: Hirshleifer, 2001) 

Objections to psychological approach Objections to fully rational approach 

Alleged psychological biases are 

arbitrary. 

Rational in finance theory requires 

impossible power of calculation. 

Experiments that generate alleged 

psychological biases are not meaningful. 

The evidence we possess does not 

support rational behaviour. 

It is easy to go theory fishing for 

psychological biases to match data ex-

post. 

It is easy to go theory fishing for factor 

structure and market imperfections to 

match data ex-post. 

Rational traders arbitrage away 

mispricing. 

Irrational traders should arbitrage away 

efficient pricing. 

Rational investors will make better 

decisions and get richer. 

Irrational investors will bear more risk 

and get richer. 

Confused investors will learn their way to 

good decisions. 

Accurate investors will learn their way to 

bad decisions. 

Apparent return predictability is spurious, 

so psychological models of predictability 

are misguided. 

Apparent returns predictability is 

spurious, so rational models of 

predictability are misguided. 

 

In recent years, there has been a significant increase in literature investigating the impact 

of behavioural biases on asset prices. These literatures have argued that the central task 

of asset pricing is to examine how expected returns are related to risk and to investor 

misvaluation. Several proxies have been used to measure misevaluation, including 

measures of public mood (such as the weather), actions possibly taken to exploit 

mispricing (such as insider purchase or recent occurrence of a stock repurchase) or price-

containing variables (such as earnings/price, market value, book/market value). Edmans 

et al (2007) note that the measures of mood largely take the form of either linking returns 

to single events, as in Frieder and Subrahmanyam (2004) and Kamstra et al (2000), or a 

continuous variable, as in Yuan et al. (2006) and Hirshleifer and Shumway (2003). 

Hirshleifer (2001) moved away from the psychological determinants of rational risk 

aversion and time preference to focus on the psychology of imperfect rationality. He 

analysed this using judgement and decision biases, evidence of risk and mispricing effect, 

and asset-pricing theories based on investor psychology. In analysing judgement and 

decision biases, he insists that the explanation for these come from emotional loss of 

control, self-deception and heuristic simplification. The effect of these, other behavioural 

biases and heuristics on investment decisions are analysed as follows. 
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2.2.7.1 Overreaction and underreaction 

As stated in Andrikopoulos (2007), overreaction and underreaction are the two most 

important hypotheses that can partially explain the price equilibrium anomalies. Several 

studies have investigated the initial stock-price reaction to earnings information and find 

that this initial reaction can be too large or too small. As highlighted in Abarbanell and 

Bernard (1992), some authors report that stock prices underreact to earnings 

announcement with a “post-earnings announcement drift” resulting from a subsequent 

completion of the reaction in stock prices. De Bondt and Thaler (1987 and 1990) find 

evidence consistent with overreaction to earnings and establish a link in explaining long-

term reversals of extreme prior stock-price changes that occur as overreactions correct. 

This is also supported by De Bondt and Thaler (1985). 

The tendency to overreact and deviate from Bayesian, optimum, rational decision-making 

arises from psychological biases such as representativeness, anchoring and adjustment, 

leniency and conservatism heuristics, as seen in Kahneman and Tversky (1973), 

Kahneman et al (1982) and Daniel et al (1998). According to Amir and Ganzach (1998), 

representativeness and anchoring and adjustment influence the extremity of predictions. 

Representativeness heuristic is the “illusion of seeing the patterns in random walk or more 

generally in order among chaos”, as identified in Andrikopoulos (2007). This leads people 

to choose a prediction value whose extremity matches the extremity of the predictive 

information, as seen in Kahneman and Tversky (1973). As seen in Andrikopoulos (2007), 

a series of company performances that is positive will be taken by investors to represent 

continuous growth potential, ignoring the possibility that this performance is of a random 

nature. This leads to excessive optimism and overvaluation of the company’s prospects. 

The anchoring and adjustment heuristic leads to excess moderation (i.e. underreaction). 

This heuristic causes investors to anchor at some salient value and adjust based on 

predictive information. This adjustment is, however, typically insufficient, causing the 

predictions to be excessively moderate, as also seen in Slovic and Lichtenstein (1971) 

and Kahneman and Tversky (1973). Leniency, on the other hand, leads to overly 

optimistic (lenient) predictions. This has been investigated by other authors, including 

Givoly and Lakonishok (1984). In offering some insight into this heuristic, De Bondt and 

Thaler (1990) and Affleck-Graves et al. (1990) identify the possibility that analysts have 

a preference to maintain good relations with management. Amir and Ganzach (1998) 
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identify that this preference for maintaining good relations with management causes 

analysts to offer optimistic forecasts that may be stronger in the presence of unfavourable 

stock recommendations. This was supported by the research in Francis and Philbrick 

(1993). 

The conservatism heuristic, as stated in Edwards (1968), relates to the conditions where 

an investor is subconsciously reluctant to alter their beliefs in the face of new information. 

This heuristic impacts investment decision-making through the fact that even if investors’ 

beliefs change as a result of the availability of new information, the magnitude of the 

change will be relatively low when compared to change under rational conditions. The 

importance in the overreaction and underreaction hypothesis is that investors will only 

partially evaluate new information or even disregard it altogether, if it is not in line with 

their beliefs. According to Andrikopoulos (2007), beside the conservatism psychological 

state, the heterogeneity of the investing public can cause investors’ underreaction to new 

information. This arises from the fact that investors do not have equal access to 

information, hence information diffuses slowly to investors. 

Abarbanell and Bernard (1992) highlight the anomaly in stock-price behaviour around 

earnings announcements, which may be rooted in a failure by market participants to 

appreciate what the current earnings imply about future earnings. Brennan (1991) 

indicates that stock prices appear to reflect expectations of quarterly earnings that are 

anchored too heavily on the earnings of the corresponding quarter of the prior year, hence 

underreacting to current news. In contrast to underreaction to earnings, De Bondt and 

Thaler (1987) explain how investor “myopia” could result in an overemphasis on earnings 

from the recent past. De Bondt and Thaler (1987) support the assertions with evidence 

consistent with generalised overreaction. They highlight the extreme difference between 

forecast earnings changes and actual changes estimated by analysts and conclude that 

analyst estimates are just too extreme to be rational. 

Another phenomenon that has a significant impact on the overreaction heuristic is the 

impact of analysts’ coverage on some stocks. As identified in Andrikopoulos (2007), 

small stocks that have no coverage exhibit a strong overreaction effect as they are usually 

excluded from analysts’ coverage and recommendations. Hong and Stein (1998) identify 

that when these small stocks have low analysts’ coverage, information flows gradually, 
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causing these stocks to exhibit the strongest reversal effect. Along with information flow 

and judgement bias, the behaviour of investors also contributes in explaining 

underreaction and overreaction as identified in Andrikopoulos (2007). 

 

2.2.7.2 Overconfidence 

According to Scott, Stumpp and Xu (2003), the overconfidence hypothesis suggests a 

systematic mispricing of public information by investors. This hypothesis identifies that 

investors are overconfident about their ability to predict the future. This is also supported 

by De Bondt and Thaler (1995), who identify overconfidence as a pervasive human 

characteristic. Andrikopoulos (2007) identifies that investors arguably fail to correctly 

define the length of the short and long run. This was supported by Jegadeesh and Titman 

(1993) and Haugen (1995); this along with biased self-attribution leads to excessive 

optimism about certain stocks, while simultaneously reducing the chance or probability 

of correcting their beliefs. 

Self-attribution relates to the fact that individuals tend to strongly attribute events that 

confirm the validity of their actions to high ability, while at the same time attributing 

events that do not confirm their actions to external reasons. According to Andrikopoulos 

(2007), these elements reinforce behavioural finance’s overconfidence hypothesis, where 

investors’ erroneous memory indirectly eliminates consideration of the correct alternative 

outcomes. A detailed overview of overconfidence is found in Odean (1998), where 

overconfidence is found to exist in many professional fields, not just in finance. However, 

Odean (1998) insists that participants in the financial markets are more overconfident 

than the general population due to selection bias. Self-enhancing bias also causes 

overconfidence in wealthy traders who are not in danger of being driven out of the 

marketplace, as highlighted in Gervais and Odean (2001). Odean (1998) asserts that it is 

not overconfidence that makes them wealthy, but the process of becoming wealthy 

contributes to their overconfidence. 

In concluding, Odean (1998) finds that “overconfidence is costly to the society”. 

Overconfident traders have the tendency not to share risk optimally; they expend too 

many resources on the acquisition of information and trade too much. He also identified 

that overconfidence increases trading volume and market depth, but decreases the 
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expected utility of overconfident traders. Daniel, Hirshleifer and Subrahmanyam (1998) 

identify an asset-pricing model that incorporates a version of the overconfidence 

hypothesis. Others who find evidence consistent with overconfidence include Daniel and 

Titman (1999). 

 

2.2.7.3 Mean-reversion hypothesis 

According to De Bondt and Thaler (1989), one of the most popular finance concepts 

relates to the “efficiency” of the market and the fact that security prices in efficient 

markets reflect their intrinsic value. Brealey and Myers (1988) highlight that efficient 

capital markets “have no memory”; this relates to assertion that future prices are 

unpredictable. However, in a world made up of noise traders, there can be no certainty 

that rational traders dominate the market such that noise traders become extinct. De Bondt 

and Thaler (1989) highlight that indeed under possible conditions rational arbitrageurs 

can even be outperformed by noise traders. They also indicate that prices do not always 

equal intrinsic value. 

However, since prices tend to move towards fundamentals, over the long run, they will 

be mean-reverting. This indicates that they are not a random walk and indeed predictable. 

This is similar to the question posed by Fama (1965) regarding whether stock prices are 

predictable or not; he concludes that “it is safe to say that the evidence is in favour of the 

random walk theory”. 

However, in his later paper with French (Fama and French, 1989), they admit that the 

evidence is in support of predictability of prices. This was also supported by Lewellen 

(2001). Lewellen and Shanken (2002) assert that in an efficient market, investors should 

be aware of any cross-sectional or time variation in expected return; hence predictability 

simply reflects changes in the risk premium. This implies that researchers must judge if 

predictability is consistent with rational behaviour or whether it is better explained by 

irrational mispricing. 

Poterba and Summers (1988), Lo and MacKinlay (1988), and Clark (1987) challenge the 

conventional view and find evidence that stock returns are characterised by positive 

autocorrelation over intervals under a year and by negative autocorrelation over longer 

intervals. The long-run negative autocorrelation does, however, indicate some evidence 
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of mean-reversion behaviour in stock prices. These studies employed Cochrane’s (1988) 

variance-ratio methodology. 

 

2.2.7.4 Ambiguity aversion 

According to Stracca (2004), an ambiguous situation is a situation where the probability 

distribution is unknown. This, he says, is disliked by agents’ even more than a risky 

situation, which he defines as a situation where the probability distribution is known. A 

good review of ambiguity aversion literature is provided in Camerer and Weber (1992). 

To handle these “ambiguous” situations, Savage (1954) developed the subjective 

expected utility, where expectations of a utility function can represent preferences under 

certain axioms and is time-weighted by the individual’s subjective probability 

assessment. In Ellsberg’s (1961) experimental work, otherwise known as Ellsberg 

paradoxes, people dislike occasions where the probability distribution of a gamble is 

uncertain, thus causing irrational choices. As expressed in Heath and Tversky (1991), 

agents feel a particularly strong distaste for ambiguity when there is a perception of 

limited information. They also insist that an agent’s feeling of incompetence in assessing 

a relevant distribution also results in ambiguity aversion. 

Peters and Solvic (1996) support this view, but observe that ambiguity aversion seems to 

reflect a more general tendency for emotions such as fear to affect risky choices. Barberis 

and Thaler (2003) provide more examples of various contexts where ambiguity aversion 

may appear. According to Hirshleifer (2001), because of the uncertainty of outcomes and 

the structure of economic surroundings, risk premiums of newly introduced financial 

markets may increase unduly due to ambiguity aversion. This results from the obvious 

absence of an identifiable parameter of the decision problem, which most times are 

associated with hostile manipulation and higher risk. 
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2.2.7.5 Mood, feeling and decisions 

Most researchers believe that mood and emotions affect people’s perception of risk, thus 

affecting their judgement and decision-making, and hence altering investing behaviour. 

As a result, asset prices and returns fluctuate with investor mood. The research on the 

effect of mood on decision-making includes those on the association between good mood 

and fast and efficient decision-making (Forgas, 1998), and those on its role as a focusing 

mechanism in economic decision-making (Etzioni, 1998). Others believe that mood has 

an influence on the integration of information (Estrada et al., 1997), cognitive process 

(Isen, 2001) and in preference (Loewenstein, 1996; Mehra and Sah, 2002). 

Loewenstein et al. (2001) show that emotions can affect, and sometimes override, rational 

cognitions when the decisions involve risk and uncertainty. Other sources investigate the 

effect of mood on perception, with misattribution being the most quoted. According to 

Schwarz and Clore (1983) and Frijda (1988), misattribution occurs when people attribute 

their feelings to the wrong sources, thus causing incorrect judgement. Nofsinger (2005) 

remarked that mood can be the difference between an investment in assets with various 

degrees of risk, as he admits that people in a good mood are more likely to invest in risky 

assets than those in a bad mood. Forgas and Ciarrochi (2001) point out that a good mood 

sometimes makes people assign higher values to both potential and actual wealth, while 

Wright and Bower (1992) insist that people in a good mood tend to be more optimistic 

than those in a bad mood with regards to their judgement. 

Using the sale of lottery tickets after a football victory by the Ohio State University, 

Arkes, Herren and Isen (1988) reveal that sports results affect people’s optimism or 

pessimism about not just their own abilities, but life in general. Bizman and Yinon (2002) 

and Platow et al. (1999) admit that this may also affect investors’ view of future stock 

prices. However, Shu (2010) confirms that the complexity of a decision and the 

environment also has an influence on the effect of mood on judgement and decision-

making. Simplified rules or heuristics seem to be the basis of decisions when there is 

partial or incomplete information; thus as MacGregor et al. (2000) state, it is much easier 

to use an affective impression in decision-making than judging probabilities when the 

decision is full of uncertainty or can be perceived as complex. These studies show that 

changes in investors’ emotional state can affect market prices even when the cost-benefit 
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effect of the underlying event is economically neutral. As Hanoch (2002) and Kaufman 

(1999) explain, under bounded rationality people rely on their emotions to make 

satisfying decisions. 

Shu (2010) insists that the effects of mood also depend on mood status, not just on 

decision characteristics, suggesting that emotional factors affect people in a good mood 

easily. Schwarz and Bless (1991) add that optimistic judgement is typically connected to 

good mood and tends to cause heuristic styles of information processing. This follows 

from Schwarz’s (1990) mood-as-information theory, which states that “people tend to 

make decisions that are congruent with their moods”. Furthermore, he reports that people 

in a bad mood tend to react strongly to relevant news, unlike people in a good mood who 

are prone to react to irrelevant news. Hence, unlike people in a good mood, those in a bad 

mood are less optimistic about the future. Those in a good mood rely more on heuristic 

styles of information processing and are more willing to invest in risky assets. This is in 

line with the findings in Nofsinger (2005). 

In terms of evidences, a wide array of financial studies have attempted to link stock prices 

to investor mood. Parrott and Sabini (1990) and Schwarz and Clore (1983) both 

documented relationships between weather, mood and stock prices, while Shu (2010), 

Pilcher et al. (2002), Anderson (2001), Rotton and Cohn (2000) and Schneider et al. 

(1980) document the influence of weather on behaviour. 

Geomagnetic storms, wind, temperature and sunshine are some of the weather variables 

that are known to correlate with stock prices. These all point to the conclusion that mood 

misattribution, which guides investors to optimally priced stocks, is triggered by a good 

mood, brought about by pleasant weather. Negative correlations between geomantic 

storms and stock returns were found by Krivelyova and Robotti (2003). Thus, stock prices 

rise only on days of quiet geomagnetic activity, but fall following high geomagnetic 

activity. They disclose that this arises because investors misattribute their bad mood 

resulting from geomagnetic storms to negative economic conditions, which tends to make 

them sell stock on days with geomagnetic storms. In the same vein, wind, as reported in 

Shu and Hung (2009) and Keef and Roush (2007), and temperature, as in Keef and Roush 

(2007) and Chang et al. (2006), affect stock prices. 
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Also, Hirshleifer and Shumway (2003) and Saunders (1993) report a relationship between 

sunshine and stock returns. They insist that investors are more likely to buy stock on 

sunny days due to their optimistic mood. This is in line with other research in the realm 

of psychology that suggests that an increase in sunshine hours leads to a decrease in 

scepticism and depression (Howarth and Hoffman, 1984, and Eagles, 1994) and an 

increase in optimism and general good mood (Persinger, 1975, and Howarth and 

Hoffman, 1984). Following on from weather effects, long winter nights induce 

depression, which makes investors more risk-averse. Kamstra et al. (2003) attribute this 

to seasonal variation in stock returns, which is explained by seasonal affective disorder 

(SAD). Using new moon and full moon, Yuan at al. (2006) argue that stock returns are 

significantly lower on the days around a full moon than on the days around a new moon. 

These, they say, result from the tendency for investors to value stocks lower due to the 

depressed mood associated with a full moon. 

According to Shu (2010), the strength of the mood effects depends largely on the 

complexity of the decision. Also, its effect on the stock markets depends on investor mood 

status with Dowling and Lucey (2005) insisting that a positive, recent market 

performance enhances the relationship between mood and equity returns. 

 

2.2.7.6 Self-deception 

According to Hirshleifer (2001), “self-deception theory implies overconfidence”. In 

cognitive psychology, as stated in Odean (1998), people are usually overconfident and 

value the accuracy of their knowledge more than it truly is. This is supported by 

Lichtenstein et al (1982), Keren (1991) and McClelland and Bolger (1994). This is in line 

with the fact that people weigh different types of information differently, underweighting 

some and overweighting some. Kumar (2009) adds to this by stating that investors 

sometimes overestimate either the quality of the information they possess or their ability 

to process it due to overconfidence. Hirshleifer (2001) supports this view and admits that 

their predictions of probabilities are often too extreme, too low relative to the true 

frequency when they think the event will probably not occur and too high when they think 

it will. 
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Attitudinal changes resulting from actions can explain self-deception. Harmon-Jones and 

Mills (1999) identify that these are the same attitudinal changes that motivate the theory 

of cognitive dissonance. Hindsight bias is another factor that can lead to self-deception, 

where individuals feel that they “knew it all along”, which helps their self-esteem. To 

maintain this self-esteem, individuals also interpret ambiguous evidence to rhyme with 

prior beliefs; this is referred to as confirmatory bias in Gilvoich (1991). Another 

individual bias that affects asset pricing, as detailed in Hirshleifer (2001), includes 

heuristic simplification. These include attention, memory, ease-of-processing effects, 

narrow framing, mental accounting, reference effects and the representativeness heuristic, 

belief updating (combining effects). 

Other evidences provided in Hirshleifer (2001) include evidence of risk and mispricing 

effects such as predictability of security returns, predictability based upon factor risk 

measures, predictability based upon price and benchmark volume measures, 

predictability based upon past returns, momentum and reversals, predictability based 

upon public versus private news events and predictability based upon mood proxies. They 

also examine positive feedback trading, pure noise trading, mistaken beliefs, alternative 

preferences and evolving population. 

 

2.3 CAPM in developed versus developing economies 

The Sharpe-Lintner CAPM and other variants are presumed to hold a diversified portfolio 

of equities in a world market portfolio. As identified in Harvey (1995a), the portfolio risk 

then becomes the variance of this well-diversified portfolio. The covariance of an 

individual security with this world portfolio then becomes the risk of that individual 

security and, usually, beta results from scaling these covariances by the variance of the 

world portfolio. As identified in Harvey (1991), most tests of this mean-variance 

efficiency of the world market have failed to reject the CAPM. However, most of these 

tests were carried out in developed markets and only a few in developing markets. 

In analysing the distribution characteristics of emerging market returns, Bekaert et al. 

(1998) found that emerging equity markets have high volatility, low correlation with 

developed markets and within the emerging markets, high long-horizontal returns and 
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predictability above and beyond what is found in developed market returns. They also 

indicate that the efficient frontier is pushed forward when emerging market returns are 

plugged into the standard Markowitz (1959) framework. This is because of a combination 

of low correlation and high expected return. They conclude that because emerging market 

returns cannot be completely characterised by the traditional mean-variance measures of 

the CAPM, application in these markets becomes problematic. Beyond the expected 

return, variance and covariance measures, returns in emerging markets show significant 

skewness and kurtosis. 

Investors in these markets will need to keep tabs on asset skewness and coskewness as 

investors have a preference for positively skewed distributions, as documented in Hwang 

and Satchell (1999) and Harvey and Siddiqui (1999, 2000). Bekaert et al. (1998) identify 

further complication in the presence of skewness and kurtosis in emerging markets; they 

highlight that skewness and kurtosis change through time. This suggests that over time 

there could be major changes in the returns characteristics. This drastic change usually 

happens as the market moves from a state of segmentation to a state of integration, which 

can lead to structural breaks. This evolution causes changes in the fundamental sources 

of risk from the local economy to the world economy. 

Harvey (1995) points out that because investors require compensation for bearing local, 

idiosyncratic risk, the cost of capital in segmented markets will be higher than in 

integrated markets. This means that an increase in financial integration should lead to 

decreases in cost of equity. In a more formal way, Stulz (1999) shows that in a CAPM 

framework, internationally integrated markets will have a risk premium that depends on 

covariance between the markets and the world market portfolio. The market should 

experience a decline in the cost of capital as it becomes internationally integrated, 

provided that the market’s variance of return is greater than its covariance with the 

market. 
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2.4 Liquidity risk and asset pricing 

CAPM does face a couple of additional problems in emerging markets apart from those 

created when its assumptions are relaxed. Collins and Abrahamson (2006) emphasise that 

these additional problems relate to the use of beta as a measure of risk. Using a sample of 

20 emerging markets, Harvey (1995a) found that between 1979 and 1992 betas 

significantly different from zero were found in only seven emerging markets, with a beta 

greater than 1 found in only one market. This means that compared to developed markets, 

the required returns in these emerging markets are very low as they hold very low risk. 

This is different from findings in developed markets where all betas are significantly 

different from zero and generate acceptable required returns. Beta does not accurately 

measure the risk in emerging markets as it fails to explain any cross-sectional variation 

in expected returns in a single-factor model framework. According to Hearn and Piesse 

(2009), this poor performance of the single-factor CAPM model highlights the 

importance of including a measure of liquidity in the pricing model. They go on to explain 

that significant bias in the beta is added through low variances and covariance between 

series, created through a high degree of price rigidity resulting from the presence of severe 

illiquidity problems in these markets. Liquidity is an elusive and broad concept, as stated 

in Pástor and Stambaugh (2003). It generally denotes the ability to trade large quantities 

of stock quickly, at a low price and without moving the market. 

Correia and Uliana (2004) and Martinez et al. (2005) point out that the one-factor CAPM 

fails to account for the well-documented effects of size and liquidity in explaining 

variation in returns. Mishra and O’Brien (2005) found similar results but using a two-

factor model that accounts for market risk and political risk, which relates variations in 

individual stocks to variations in the market portfolio. However, Lesmond (2005) raised 

some concern on the omission of liquidity risk, which also explains political risk and the 

assumption that emerging markets are integrated with the global market portfolio. The 

importance of liquidity has also been emphasised by Pástor and Stambaugh (2003), who 

suggest that liquidity is an important variable in asset pricing. They find that stocks with 

higher sensitivity to aggregate liquidity generate higher return than low-sensitivity stocks. 
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Acharya and Pederson (2005) present three forms of liquidity risk: the covariance of a 

stock’s liquidity with the market liquidity, return sensitivity to market liquidity, and 

liquidity sensitivity to market returns. These three forms of liquidity risk and the standard 

market beta make up the “net beta”. Within their liquidity-adjusted CAPM, they find a 

positive relationship between the expected return on a security and both its expected 

illiquidity and net beta. The net beta is proportional to the covariance of its expected 

return, net of its exogenous illiquidity costs, with the market portfolio’s net return. 

Using the theory of stochastic discount factor, Wang and Chen (2012) developed a 

liquidity-adjusted, conditional, two-moment CAPM and a liquidity-adjusted, three-

moment CAPM models. They found that using the liquidity-adjusted, two-moment 

model, a security’s conditional expected return consists of the liquidity risk premium, the 

systematic risk premium and its conditional expected liquidity cost. On the other hand, 

using the liquidity-adjusted, three-moment model, they found that a security’s conditional 

expected return depends on its conditional expected liquidity cost, the conditional 

covariance between its return and the market return, the conditional covariance between 

its liquidity cost and the market liquidity costs, and the conditional coskewness of its 

return and the market return. 

Liquidity has also been found to be significant in developed markets, as revealed in Pástor 

and Stambaugh (2003). They found between 1966 and 1999 that stocks with higher 

liquidity betas had higher returns within the US market, with an abnormal alpha of 7.5% 

for a model that also accounts for market, size, value and momentum factors. Other 

studies that investigated liquidity in developed markets include Datar, Naik and Radcliffe 

(1998) and Fiori (2000), who all found that less liquid stocks have higher expected 

returns. Chordia et al. (2001), using volume and turnover data, found a significant cross-

sectional relation between stock return and variability of liquidity. They concluded that 

stocks with more volatile liquidity have a lower expected return. 

Daniel and Titman (1997) and Liu (2006) insist that the one-factor CAPM and even the 

three-factor CAPM of Fama and French (1992) do not capture cross-sectional stock 

returns. Martinez et al. (2005) find similar results but observe that the size variable does 

have some explanatory power. With particular reference to emerging markets, Jun et al. 

(2005) finds a positive relationship between stock returns and liquidity. Hearn and Piesse 
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(2009) conclude that liquidity and size are significant in explaining cross-sectional 

returns, while rebuffing the usefulness of book-to-market values in emerging markets due 

to limitations in obtaining consistent accounting book values. 

The liquidity measure employed by Hearn and Piesse (2009) uses the bid-ask spread and 

commission costs and is specified as: 

𝑄𝑢𝑜𝑡𝑒𝑑 𝑠𝑝𝑒𝑎𝑑𝑀 =
1

2
[(

(𝐴𝑠𝑘𝑀 − 𝐵𝑖𝑑𝑀)

(𝐴𝑠𝑘 𝑀 + 𝐵𝑖𝑑𝑀)/2
) + (

(𝐴𝑠𝑘𝑀−1 − 𝐵𝑖𝑑𝑀−1)

(𝐴𝑠𝑘𝑀−1 + 𝐵𝑖𝑑𝑀−1)/2
)] (2.8) 

Bid-ask spreads that exceed 80% are trimmed as these are potentially errors, as stated in 

Lesmond (2005). 

Another measure of liquidity is the turnover-adjusted measure in Liu (2006), where the 

liquidity measure of a security, 𝐿𝑀𝑥, is defined as the standardised turnover-adjusted 

number of zero daily trading volume over the prior 𝑥 months (𝑥 = 1, 6, 12), represented 

as: 

𝐿𝑀𝑥 = [(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑧𝑒𝑟𝑜 𝑑𝑎𝑖𝑙𝑦 𝑣𝑜𝑙𝑢𝑚𝑒𝑠 𝑖𝑛 𝑝𝑟𝑖𝑜𝑟 ×𝑚𝑜𝑛𝑡ℎ𝑠)  

+ 

1
𝑥
𝑚𝑜𝑛𝑡ℎ 𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟

𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑜𝑟
]×

21𝑥

𝑁𝑜𝑇𝐷
 (2.9) 

 

where 𝑥 month turnover is the turnover over the prior 𝑥 months. 𝑁𝑜𝑇𝐷 is the total number 

of trading days over the prior 𝑥 months and deflector is chosen such that 

0 <

1
(𝑥 𝑚𝑜𝑛𝑡ℎ 𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟)⁄

𝐷𝑒𝑓𝑙𝑎𝑐𝑡𝑜𝑟
< 1 (2.10) 

for all stocks. Due to variations in trading days, typically from 15 to 23 days per month, 

21x/NoTD standardises the number of monthly trading days to 21, making the liquidity 

measure comparable over time. 𝐿𝑀1 is the turnover-adjusted number of zero daily trading 

volume over the prior 21 trading days, with 1 reflecting the period of measurement. 
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The assumption made by Hearn and Piesse (2009) is worth noting. The study assumes 

that the African markets within its analyses are fully integrated, although it does admit 

that in reality these markets are highly segmented. They also recognise that this problem 

of integration compounds the problems of choosing a suitable market variable, due to the 

lack of an appropriate regional benchmark in Sub-Saharan Africa. The model employed 

by Hearn and Piesse (2009) is Fama and French’s (1992) three-factor CAPM, as stated in 

Equation 2.6, with the HML variable representing the difference between the return on a 

portfolio of high illiquidity stock and of low illiquidity stocks. Equation 2.6 is also 

transformed in Equation 2.7 in order to test the model with historical data. They find that 

size and liquidity factors considerably improve the explanation of cross-sectional stock 

return. Hence it is hypothesised that liquidity is directly related to returns. 

 

2.5 Effects of market segmentation on estimates of the CAPM 

One of the assumptions of the CAPM is that under equilibrium conditions, expected 

returns represent fair compensation for a degree of risk each security contributes to the 

broad market portfolio. However, according to Bruner et al. (2008), the choice between 

a global index and a home country index as the market portfolio for the regression 

depends on the level of global market integration. Segmentation is said to exist when 

investment and consumption opportunities differ between residents and non-residents, 

leading Stulz (1994) to describe segmentation as a function of investment barriers. Within 

emerging markets, substantial difference can be made in the estimates of the CAPM when 

choices are made between global and local market indices, as Mishra and O’Brien (2005) 

and Bruner et al. (2008) identified. However, emerging markets have become 

increasingly less segmented, as noted in De Jong and De Roon (2004), and this has led to 

decreases in the cost of capital of these markets. 

When integration is achieved, Koedijk and Dijk (2004) point out that the sensitivity of a 

stock return to its home country index also captures the stock’s sensitivity to global risk 

factors. Koedijk et al. (2002) and Harris et al. (2003) support these assertions and state 

that in comparison with the model risk intrinsic to the CAPM, market portfolio is 

inconsequential. Most researchers on segmentation and liberalisation view liberalisation 
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as a snapshot event where markets are assumed to be completely segmented before a 

particular liberalisation date and become perfectly integrated afterwards, as stated in 

Bekaert and Harvey (1995, 2000) and Henry (2000). 

These studies focus on official liberalisation dates and/or estimated structural breaks on 

economic and financial indicators to examine the pre- and post-liberalisation effect on 

stock markets and the real economy. However, Stulz (1999) insists that integration occurs 

over time and is usually gradual. Panchenko and Wu (2009) also observe that the process 

of integration may experience short-term reversals. De Jong and De Roon (2004) insist 

on the importance of time variation in the level of market segmentation in identifying the 

effect of liberalisation on estimates of the CAPM. 

The importance of time variation in integration follows naturally from an international 

capital asset-pricing model (ICAPM) with investment restrictions. In the standard 

international CAPM of Adler and Dumas (1983), markets are assumed to be completely 

integrated; all investors can freely invest in all countries as there are no investment 

barriers between countries. As stated in Panchenko and Wu (2009), the ICAPM estimates 

return-based measures of market integration with implicit assumptions on what kind of 

risks are priced into emerging markets. 

In a segmented state, the variance of a market’s return dominates, as theorised in Bekaert 

and Harvey (1995), while in an integrated state the covariance with world market returns 

becomes relevant. Panchenko and Wu (2009) indicate that emerging markets will 

transition between the two. This transition, which is expected to occur over time, indicates 

that expected return should be time-varying during this period of transition; thus, in reality 

many emerging markets are partially segmented. To measure market segmentation in a 

CAPM-type model, De Jong and De Roon (2004) used a ratio of non-investable market 

value to total market value. This segmentation risk premium will be priced into the 

expected return of emerging stock markets, which will allow estimates of the effect of 

market segmentation on expected returns to be made from a simple regression model. 
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2.6 Contagion 

Despite the widespread use of the term contagion, there is neither a universally accepted 

definition, nor a universally accepted method for testing contagion effect. As stated in 

Caporale et al. (2005), there is still no consensus on the definition of contagion. In an 

attempt to unite the definitions/approaches of contagion, the World Bank14 (2013) 

proposed classification of the definition of contagion with the following key areas: broad 

definition, restrictive definition and very restrictive definition. 

In the broad definition, it identifies contagion as “the cross-country transmission of 

shocks or the general cross-country spillover effect”. In the restrictive context, it defines 

contagion as the “transmission of shocks to other countries or the cross-country 

correlation, beyond any fundamental link among the countries and beyond common 

shocks. This definition is usually referred to as excess co-movement, commonly 

explained by herding behaviour”. In the very restrictive definition, it remarks that 

“contagion occurs when cross-country correlation increases during ‘crisis times’ relative 

to correlation during ‘tranquil times’.” For other definitions of contagion, see the 

excellent summary in Ahmadu-Bello (2014).15 

Within this study, our concern is mainly on the causes of contagion and the impact of 

financial integration. One aspect of the cause of contagion relates to fundamental causes 

that led Bekaert, Harvey and Ng (2005) to remark that contagion relates to the excess 

correlation above what would be expected from economic fundamentals. In the “wake-

up call” theory of contagion, from Ahnert and Bertsch (2014), investors’ reassessment of 

fundamentals in itself can lead to an increased probability of a crisis spreading to other 

regions. This is supported by Forbes (2012). The fundamentalist view of contagion 

believes that contagion results from common shocks, trade and financial linkages. See 

Claessens and Forbs (2004), Hermandez and Valdes (2001) and Patev and Kanaryan 

(2003). 

Away from the fundamentalist view, other authors believe that investor behaviour is the 

prime cause of contagion, where investors in other countries ignore the differences in 

                                                 
14 For details on the World Bank classification and definition of contagion, see http://go.worldbank.org/JIBDRK3YC0. 
15 Thesis titled “The 2007-09 Global Financial Crisis and Financial Contagion Effects in African Stock Markets”, submitted to 
Coventry University, UK. 

http://go.worldbank.org/JIBDRK3YC0
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fundamentals among countries. As stated in Dornbusch and Claessens (2000), this is 

linked to herding behaviour. Other investor behaviours that may lead to contagion are 

highlighted in Račickas and Vasiliauskaitė (2011). These include liquidity problems, 

incentive problems, information asymmetry, market coordination problems and investor 

reassessment. 

As identified in Section 2.5, integration has an impact on estimates of the CAPM as 

sensitivity of a stock return to its home country index also captures the stock’s sensitivity 

to global risk factors when the market is integrated with world markets. In analysing the 

degree of integration of African markets, Berger, Puthuanthong and Yang (2011) found 

little evidence of integration in Nigeria, Mauritius and Kenya, but found some level of 

positive integration in Tunisia, Ghana and Botswana. Agyei-Ampomah (2001) and 

Boamah (2014) found that South Africa remains the most integrated of the African 

market, with most other African countries being largely segmented, despite the structural 

improvements and growth of African stock markets. 

If most African markets are segmented, we expect little or no financial contagion resulting 

from the financial crisis, apart from the South African market; and some political 

contagion resulting from the Arab Spring, as some of the north African countries were 

affected. Thus, it is hypothesised that contagion in absent in the African market.  

 

2.7 CAPM under structural breaks 

The unconditional CAPM of Sharpe (1964) and Lintner (1965) implies a linear 

equilibrium relationship between return and risk, with other authors such as Jensen and 

Scholes (1972) and Fama and MacBeth (1973) confirming this relationship. However, 

more recent articles, such as those of Fama and French (1992) and Jegadeesh and Titman 

(1993), find weak or no statistical evidence to support this relationship. Fama and French 

(1992) explain this lack of statistical evidence by showing that beta is not a complete 

measure of risk, as they reveal that some fundamental variables such as the size and book-

to-market ratio of a portfolio can explain the variations in returns. An alternative 

explanation comes from evidences supporting significant time variation in market betas 

despite the linear relationship that guides the Sharpe (1964) and Lintner (1965) CAPM. 
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Studies supporting the time-varying nature of the relationship between estimated betas 

and market risk premium include Fabozzi and Francis (1978), Ferson and Harvey (1991, 

1993) and Ghysels (1998). 

The arguments supporting time variation on market betas has led Jagannathan and Wang 

(1996) to advocate for a time-varying conditional CAPM to replace the static CAPM. 

This, however, results in an overstatement of the time variation as it fails to capture the 

dynamics of beta risk, Ghysels (1998) finds. Thus, Akdeniz et al. (2003) note that it is 

crucial to understand the dynamics of time variation in betas and include these dynamics 

in the CAPM. They introduced a new threshold CAPM where beta risk changes through 

time within the economic environment and also across industries. They confirm that this 

threshold CAPM outperforms both the conditional and unconditional CAPM models by 

generating smaller pricing errors. 

Huang and Cheng (2003) recommend that the unconditional CAPM can also be used with 

specifications made to allow for time variation in betas. Other findings in Huang (2000, 

2001, 2003) support non-consistency of the betas and also indicate that beta may be stable 

within one regime and unstable within another regime. 

Following from the discussion above, Garcia and Ghysels (1998) argue that the 

assumption of a constant (stable) relationship between the returns and beta can be 

seriously questioned due to the presence of structural changes resulting from market 

liberalisation. They also identified that structural breaks can also be present because of 

the introduction of new institutions and also as a result of drastic political or economic 

policy changes. This will mean that we need not always reject or accept the CAPM for 

the whole period as the single possible result, as the structural change modelling strategy 

allows for different dynamic behaviour among different regimes, leading to structural 

changes. 

Considerable empirical and theoretical research has been conducted on structural 

changes, especially for a single change as reported in Bai, Lumsdaine and Stock (1998), 

Hall and Sen (1999) and Bekaert, Harvey and Lumsdaine (2002). On the contrary, Bai 

and Perron (2003) focus on multiple changes in a linear model. Their work follows from 

Bai and Perron (1998), who estimated multiple structural changes in a linear model by 

least squares. They derived the rate of convergence and the limiting distributions of the 
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estimated break points using a framework of partial structural changes, which allows a 

subset of the parameters not to change. 

Another important development within their work is the use of a sup-Wald-type test for 

multiple structural breaks. The sup-Wald-type test tests for the null hypothesis of no 

change versus a pre-specified number of changes and also versus an alternative containing 

an arbitrary number of changes. They also consider a procedure that allows one to test the 

null hypothesis of, say, 𝑙 changes versus an alternative hypothesis of 𝑙 + 1 changes. 

Bai and Perron (2003) document that a useful strategy is to carry out the WD max or UD 

max test to investigate the presence of at least one break. If a break exists following these 

tests, a sequential examination of the sup𝐹(𝑙 + 1 | 𝑙) statistics constructed using global 

minimisers for the break dates can be used to decide the number of breaks. This study 

will however, hypothesise that there is no structural break in the African market indexes 

examined. 

 

2.8 Conditional asset-pricing models 

The presence of structural breaks suggests that beta may not be constant over time, which 

is contrary to the assumption of the static CAPM of Sharpe (1964) and Lintner (1965). 

Jagannathan and Wang (1996) highlight that this assumption is not reasonable as the 

relative risk of an asset is likely to vary over time. They insist that betas and expected 

return will, in general, depend on the nature of the information available at any given 

point in time and vary over time. Some of the points that present a problem to the static 

(unconditional) CAPM include the rise in the beta of equities during a recession caused 

by leverage, the varying effect of the business cycle on different types of assets, effects 

of technological changes and changes in consumer taste. 

Looking back at the Sharpe-Lintner-Black (static) CAPM, the model implies a time-series 

regression test as identified in Jensen (1968) as; 

𝑅𝑖𝑡 − 𝑅𝑓𝑡 = 𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 휀𝑖𝑡, (2.11) 

where 𝛽 is defined as 

𝛽𝑖 = 𝐶𝑜𝑣 (𝑅𝑖𝑡 , 𝑅𝑀𝑡)/𝑉𝑎𝑟(𝑅𝑀𝑡) (2.12) 
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Based on cross-sectional returns, the CAPM can be written as 

𝐸[𝑅𝑖𝑡 − 𝑅𝑓𝑡] =  𝛾0 + 𝛾1𝛽𝑖 (2.13) 

There is a linear constant relationship between 𝐸[𝑅𝑖𝑡 − 𝑅𝑓𝑡] and 𝛽𝑖. 

As identified above, this version of the CAPM is the static CAPM as 𝛽𝑖 is constant. This 

version is also referred to as unconditional CAPM, since conditional information plays 

no role in determining excess returns. However, as documented in Keim and Stambaugh 

(1986), Breen et al (1989) and Chen (1991), conditional information does play a role in 

determining excess returns, hence beta may not be constant. For each asset 𝑖 and in each 

period 𝑡, 

𝐸(𝑅𝑖𝑡|𝐼𝑡−1) =  𝛾0𝑡−1 + 𝛾1𝑡−1𝛽𝑖𝑡−1, (2.14) 

where the conditional beta 𝛽𝑖𝑡−1is defined as 

𝛽𝑖𝑡−1 = 𝐶𝑜𝑣 (𝑅𝑖𝑡 , 𝑅𝑀𝑡|𝐼𝑡−1)/𝑉𝑎𝑟(𝑅𝑀𝑡|𝐼𝑡−1) (2.15) 

𝛾0𝑡−1 and 𝛾1𝑡−1 are the conditional expected return on a zero-beta portfolio and the 

conditional market premium respectively. The unconditional expectation of Equation 

2.14 will give 

𝐸(𝑅𝑖𝑡) =  𝐸(𝛾0𝑡−1) +  𝐸(𝛾1𝑡−1)𝐸(𝛽𝑖𝑡−1) +  𝐶𝑜𝑣(𝛾1𝑡−1, 𝛽𝑖𝑡−1) (2.16) 

If 𝐶𝑜𝑣(𝛾1𝑡−1, 𝛽𝑖𝑡−1) = 0, i.e., a linear function of the expected beta, we have a static 

CAPM for asset 𝑖, hence expected return is a linear function of the expected beta. 

Generally, 𝐶𝑜𝑣(𝛾1𝑡−1, 𝛽𝑖𝑡−1) ≠ 0. During periods of bad economic conditions, for 

example, the expected market risk premium is relatively high, more leveraged firms are 

likely to face more financial difficulties and have higher conditional betas. 

𝐶𝑜𝑣(𝛾1𝑡−1, 𝛽𝑖𝑡−1) = 0 is testable given 𝐼𝑡−1, and this forms the base for tests of 

conditional CAPM. 

In analysing the conditional CAPM versus the unconditional CAPM, Lewellen and Nagel 

(2006) chronicle the findings in Jensen (1968), Dybvig and Ross (1958) and Jagannathan 

and Wang (1996), who reveal that conditional CAPM could hold perfectly, period by 

period, even though stocks are mispriced by the unconditional CAPM. They go on to state 

that if beta is correlated with the equity premium or with market volatility and changes 
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through time, the conditional alpha (pricing error) of the stock might be zero when its 

unconditional alpha is not. These assertions are supported by the works of Hensen and 

Richard (1987). Following these studies, other authors argue that the size and book-to-

market (B/M) effect identified in Fama and French (1992) can, in fact, be explained by 

time-varying betas. These authors include Zhang (2005), who showed that high B/M 

stocks have an unconditional value premium during recessions, when risk premium is 

high. Lettau and Ludvigson (2001), Lustig and Van Nieuwerberburgh (2005) and Santos 

and Veronesi (2006) examine the beta of small, high B/M stock over the business cycle 

and they found that their beta does vary with the business cycle. They also found that 

these variations do explain the positive unconditional alpha found for these stocks. 

However, Lewellen and Nagel (2006) question whether asset-pricing anomalies can 

really be explained by conditional CAPM. This results from their assertion that 

conditional CAPM does not explain the B/M and momentum anomalies. They also argue 

that if the conditional CAPM holds, a stock’s unconditional alpha will depend primarily 

on the covariance between its beta and the market risk premium, and they find the implied 

alpha to be quite small. However, the empirical evidence provided by Lewellen and Nagel 

(2006) suggests that the pricing errors observed are just too large to be examined by time 

variation in beta. 

In analysing beta in an international CAPM (ICAPM), Mark (1988) and Ng (1991) find 

significant time variation in beta. Using an E-GARCH framework, Braun, Nelson and 

Sunier (1995) find beta not to be time-variant, where beta responds asymmetrically to 

positive versus negative domestic news or world news. However, using a state-dependent 

beta in a SWARCH model, Ramchand and Samuel (1998) found strong evidence of state-

dependent beta in the Pacific and North America, but in the European markets the 

evidence found was not significant. In studying a conditional version of the ICAPM for 

emerging markets, Bekaert and Harvey (1995) conditioned beta on an unobserved state 

variable taking the value of one or zero. 

𝑅𝑖,𝑡 =  𝛼 + 𝛽1(1 − 𝑆𝑡)𝑅𝑚,𝑡−1 + 𝛽2𝑆𝑡𝑅𝑤,𝑡−1 + 휀𝑤,𝑡  (2.17) 

The unobservable state variable is represented as 𝑆𝑡 which Bekaert and Harvey (1995) 

link to the degree of integration between the emerging market and the world market. They 

find time variation evidence on 𝛽1 and 𝛽2, consistent with partial integration. It is worth 
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noting that these ICAPM articles focus on time series and do not use exogenous 

observable information. 

Ferson and Harvey (1993), on the other hand, explain cross-sectional expected returns 

across world stock markets, where they allowed beta to vary over time with local market 

information variables. But when the market is integrated, they allow the risk premiums 

to depend only on global information variables. They found several variables (global and 

asset-specific variables) to be significant, i.e 𝐶𝑜𝑣(𝛾1𝑡−1, 𝛽𝑖𝑡−1) ≠ 0. However, only a 

small percentage of the predicted time variation of stock return is explained by their 

model, leading Ferson and Korajczyk (1995) to admit that the constant beta model for 

long-horizon returns cannot be rejected. However, they reject a constant beta assumption 

for the shorter horizon returns over long sample periods. Jagannathan and Wang (1996) 

explain cross-sectional returns further using the security market line. They find time-

varying beta for small, high book-to-market stocks over the business cycle, which largely 

explains positive unconditional alphas within these stocks. Similar results were found in 

Lusting and Van Neiuwerburgh (2005) and Santos and Veronesi (2006). 

 

2.8.1 Intertemporal CAPM 

Merton (1973) introduced the intertemporal CAPM, which has become a fundamental 

concept in finance. The intertemporal CAPM predicts a positive intertemporal risk-return 

relation. As stated in Jiang and Lee (2013), among the approaches to detecting a positive 

intertemporal risk-return relation is the use of conditional variance as detailed above. 

Other methods include those that include a hedge component within the empirical 

specification, as used in Guo and Whitelaw (2006). This method is consistent with the 

original specification of Merton’s (1973) intertemporal CAPM. The last method 

originated from Ludvigson and Ng (2007), who argue that the use of a small amount of 

conditioning information in modelling conditional mean and conditional volatility is the 

source of empirical disagreements in the risk-return relationship. 

The Merton (1973, 1980) intertemporal CAPM can be stated without the hedge 

component as follows: 

𝐸[(𝑅𝑀,𝑡 − 𝑅𝑓,𝑡)|Ωt−1] = 𝜇 + 𝛾𝐸(𝜎 𝑀,𝑡
2 |Ωt−1) (2.18) 
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where 

𝐸 = The expectations operator 

Ωt−1 = Information set available at 𝑡 − 1 

𝛾 = Parameter reflecting the relative risk aversion. 

Merton (1973, 1980) found that the expected excess return on the market portfolio, 

𝐸[(𝑅𝑀,𝑡 − 𝑅𝑓,𝑡)|Ωt−1], is positively related to the conditional market volatility 

𝛾𝐸(𝜎 𝑀,𝑡
2 |Ωt−1). By collecting terms and adjusting for the near impossibility of 

reproducing the information set used by economic agents, as stated in Jiang and Lee 

(2013), we use smaller information set I𝑡−1 and rewrite Equation 2.18 as: 

𝐸[{(𝑅𝑀,𝑡 − 𝑅𝑓,𝑡) − 𝜇 − 𝛾𝜎 𝑀,𝑡
2 }|It−1] = 0              (2.19) 

Expected market return depends not only on the conditional variance of the market return 

but also on the covariance with the time-varying future investment opportunity, i.e. the 

hedge component, as shown in the original intertemporal CAPM of Merton (1973). The 

importance of this hedge component is emphasised in Scruggs (1998). To check for 

robustness with a hedge component, Jiang and Lee (2013) added four state variables: 

default risk, term spread, detrended risk-free rate and the dividend-price ratio. They found 

a strong positive relation between expected excess return and the conditional variance, 

supporting the findings in Merton (1973). They, however, suggested that the best way of 

measuring expected excess return and conditional variance is by using the common 

information set based on a bivariate model of time series of excess return and variance in 

a consistent manner. They also measure the conditional variance using a bivariate moving 

average representation of excess returns and variance among other available measures. 

 

2.8.2 Bull and bear beta 

Another concept that has had less attention is the use of asymmetric betas, i.e. estimating 

beta for bull and bear markets, respectively, as stated in Chong, Pfeiffer and Phillips 

(2011). Chong, Halcoussis and Phillips (2012) support the estimation of dual beta by 

explaining that single beta estimates of stocks or mutual funds for both upturns and 

downturns in the market lead to incorrect estimates of beta, as it oversimplifies the risk 
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characteristics of the investment. They explain that data used in estimating a single overall 

beta can be split into two subsets within the dual-beta model. These two subsets will 

represent the up-market and down-market, giving rise to two estimates of beta that capture 

different levels of market risk. 

The dual-beta model in Chong, Halcoussis and Phillips (2012) is represented as 

(𝑟𝑗 − 𝑟𝑓)𝑡
= 𝛼𝑗

+𝐷 + 𝛽𝑗
+(𝑟𝑚

+ − 𝑟𝑓)𝑡
𝐷 + 𝛼𝑗

−(1 − 𝐷) + 𝛽𝑗
−(𝑟𝑚

− − 𝑟𝑓)𝑡
 (1 − 𝐷)

+ 휀𝑡,                            (2.20) 

Estimated parameters for up- and down-market days are represented as 𝛼𝑗
+, 𝛽𝑗

+, 

𝛼𝑗
− 𝑎𝑛𝑑 𝛽𝑗

−, respectively. Dummy variable 𝐷 is 1 when the market index daily return is 

non-negative and zero otherwise, 𝑟𝑚
+ = 𝑟𝑚 when the market index did not decline and 

𝑟𝑚
− = 𝑟𝑚 when it does. Others who investigated the dual CAPM include Fabozzi and 

Francis (1977), Bhardwaj and Brooks (1993), Howton and Peterson (1998) and Faff 

(2001). 

 

2.9 Higher-order moments 

A question posed to asset-pricing models has become: does the traditional mean-variance 

(two-moment) approach capture the true risk of the distribution of returns? This has 

become a renewed source of criticisms of the CAPM, with authors insisting that return 

distribution must account for investor preference for positive skewness and aversion to 

high kurtosis. The behaviour of stock-market returns departing from the frequently 

assumed normal distribution has been widely documented, as in Hwang and Satchell 

(1999), Bates (1996), Jorion (1988) and Harvey and Siddiqui (1999, 2000). Three 

characteristics universally recognised in time-series returns on assets are clustering in the 

volatility dynamics, negative skewness and severe excess kurtosis. The phenomena of 

volatility clustering has been successfully captured in Engle’s (1982) class of ARCH 

models, while the stylised facts of negative skewness and severe excess kurtosis in stock-

market returns have remained indisputable. 

Using robust measures of skewness and kurtosis and carrying out an extensive Monte 

Carlo simulation, Kim and White (2004) find that the skewness measures of the S&P500 
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index are quite close to zero; thus they conclude that there is little skewness in the 

distribution of the S&P500 index. 

However, they also found that, as in the conventional measure of kurtosis, the robust 

measure indicated excess kurtosis, but in a milder form than previously believed. They 

also found that removing outliers reduces both conventional measures of skewness and 

kurtosis substantially, but only very little change to the robust measures. Thus, they 

conclude that there is no negative skewness and quite mild kurtosis. Hence the robust 

measures are qualitatively the same, thus refuting the stylised facts previously regarded 

as true in finance. Bonato (2011) agrees, but emphasises the need for further investigation. 

In the African market, Omran (2007) found skewness to play a significant role in the 

return dynamics of the Egyptian stock market. 

The debate still rumbles on, with Hung (2008) insisting that higher-order CAPM does not 

provide a greater return predictive ability than the linear CAPM. However, he does admit 

that it does provide significant explanatory ability with regards to ex-post time variations. 

DeMiguel and Nogales (2007) and Breanan and Xia (2001) agree and point to parameter 

uncertainty for explanation, while Lewis (2006) and Paye and Timmermann (2006) point 

to the possibility of time-varying and unstable predictive relations. 

 

2.10 The risk-free rate 

Another problem faced by the CAPM in explaining return variations, especially in 

African markets, is in selecting the risk-free rate. In estimating the cost of capital across 

various African countries, Collins and Abrahamson (2006) used the prevailing rate on US 

Treasury bills at the end of each period as the risk-free rate for each period. Hearn and 

Piesse (2009) also used UK Treasury bills (one-month UK gilt rate) in their study; 

however, they adjusted it to take account of the monthly excess return rather than the 

quoted equivalent annualised rate. In analysing the CAPM and the DCAPM (downside 

CAPM) within emerging markets, Estrada (2002) used the yield on 10-year US Treasury 

notes. 

A different approach was taken in Cheung, Wong and Ho (1993), who used the end-of-

month weighted average interbank call loan rate as the risk-free rate in Taiwan and the 
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monthly average yield of the government and public bonds in Korea. Bekaert, Harvey 

and Lundbald (2007) ignored currency effects while using the dollar risk-free rate within 

emerging markets. In analysing the risk-return association of Dhaka Stock Exchange 

market using CAPM, Hasan et al. (2012) used the T-bills of Bangladesh. The government 

treasury rates available in most African countries are often greater than the market return 

obtainable in the stock market, hence some adjustments may be made to use them. 

Acording to Cheng et al. (2010), many Arabic countries, including those in Africa, do not 

have an active debt market. Moreover, the monetary authorities in these countries 

typically do not act independently. Some countries adhere to a strict reading of Islamic 

Shari'a law that in effect prohibits charging interest on deposits. 

 

In analysing the CAPM in the Egyptian stock market, Omran (2007) used the average 

annual short-term rate of 7.05%, from whivch he obtained a weekly short-term rate of 

0.136%. Given the prevailing use of dollar-based risk-free rates, this study will use the 

same to ensure the results are comparable to the literature. The risk-free rate of return will 

be the US 3-months Treasury bill (US3MT=RR), adjusted to obtain weekly short-term 

rates, as illustrated in Omran (2007). 

 

2.11 The effect of survivorship bias 

The consensus in the literature is that survivorship bias generally leads to an 

overestimation of performance (returns), as stated in Rohleder et al. (2011). This is 

because the predominant reason for non-surviving firm disappearance is inferior 

performance, as shown in Malkiel (1995) and Elton et al. (1996). Because of this obvious 

problem and its relevance, as identified in the literature, many studies on fund 

performance address the survivorship bias problem. It is important to note early on that 

the survivorship bias problem not only affects mutual fund performance, but also affects 

other financial instruments such as hedge funds, as noted in Liang (2000) and ter Horst 

and Verbeek (2007). Malkiel and Saha (2005) and Eling (2009) found survivorship bias 

in hedge funds. Survivorship bias has also been found in stocks, as examined in Brown 

et al. (1995) and Boynton and Oppenheimer (2006). 
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In addressing the survivorship bias problem, some studies, such as those of Berk and 

Green (2004), analytically model the survivorship bias structure, while the majority of 

the fund performance literature deals with survivorship bias empirically. This usually 

follows a systematic testing of the significance of survivorship bias on a comprehensive 

real returns data. These are shown in Carhart et al. (2002), who test for the significance 

of survivorship bias for one of their measures. In also testing for the significance of 

survivorship bias, Grinblatt and Titman (1989) used quarterly fund holdings within a 

small fund sample to construct hypothetical returns. 

According to Brown et al. (1992), survivorship bias has implications beyond performance 

measurement. They find that survivorship bias leads to obvious biases in the first and 

second moments and cross-moments of return, including beta. Brown et al. (1992) also 

indicate that there are serious implications for empirical tests of asset-pricing models, as 

survivorship bias induces spurious volatility-return relationships. This is more so for 

investigations of the so-called pricing anomalies. Brown et al. (1992) admit that it is 

difficult to devise a means of correcting survivorship bias using a simple adjustment to 

standard performance. However, they find that a rather simple procedure of using the 

residual standard deviation to normalise performance measures may provide a 

performance measure that is relatively robust to this source of misspecification. An 

important caveat pre-leads this finding and this relates to an assumption that the 

investigator knows the true parameters of the process. 

Another issue in dealing with survivorship bias is in identifying “best practice” in the 

literature. According to Rohleder et al. (2011), most studies calculate survivorship bias 

differently, making it difficult to compare the results. In describing an unbiased portfolio, 

ter Horst and Verbeek (2007) suggested a portfolio consisting of all funds operating at 

any time during the sample period. This is supported by research in Blake and 

Timmermann (1998) and Carhat et al. (2002), who insist that this evaluates the historical 

performance of a portfolio including all funds investors were able to invest in over time. 

In defining a biased portfolio, Rohleder et al. (2011) identify two subsets of the unbiased 

portfolio that are used in literature and typically include only survivors. 

As seen in the literature, there are alternative ways of conditioning a sample to correct 

survivorship bias. One commonly used approach that is quite popular in the literature is 
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known as end-of-sample conditioning, as highlighted in Rohleder et al. (2011). As shown 

in Otten and Bams (2004) and Deaves (2004), end-of-sample conditioning includes all 

funds/firms existing at the end of a specific sample period as survivors. The second 

survivor definition refers to full data-conditioning, which refers to funds/firms that 

existed through the entire sample period, as seen in Blake et al. (1993) and Holmes and 

Faff (2004). Some studies use both definitions, as seen in Malkiel (1995). As detailed in 

Rohleder et al. (2011), another methodological difference that exists in the literature is 

the use of weights in aggregating individual firm returns in a portfolio. Equal-weighting 

and value-weighting are the two commonly applied methods. Zhao (2005) demonstrates 

that survivors are typically larger than non-survivors, as also seen in Carhart (1997). 

In analysing the economic relations behind survivorship bias, Rohleder et al. (2011) 

identify the need to analyse the relations between size, performance and survival in detail. 

The relation between fund size and performance has always remained mixed in the 

literature, with some studies being in favour of positive relations, as seen in Otten and 

Bams (2002). Others such as Chen et al. (2004) and Cremers and Petajisto (2009) found 

a negative relation. Broadly, related literature on the relation between size and 

performance found the rationale for a negative relation to be liquidity disadvantages or 

ownership costs, as in Pollet and Wilson (2008), and the rationale for a positive relation 

to be mainly economies of scale, as in Indro et al. (1999). However, Indro et al (1999) 

also show some mixed evidence that indicates optimal size beyond which a positive size-

performance relation becomes negative. This mixed evidence is also found in Bird et al. 

(1983), while Droms and Walker (1996) find no significant relation. 

Brown and Goetzmann (1995) found a positive relation between survival and size and 

between survival and returns using a probit model, and modelling fund disappearance as 

a function of specified variables. This is supported by findings in Elton et al. (1996) and 

Cameron and Hall (2003). Cameron and Hall (2003) indicate that fund failure is better 

predicted using excess return relative to a market index rather than gross returns, which 

is rather predominant in the literature. Cogneau and Hübner (2015) identify that the 

determinant of survival varies beyond just size or performance and includes factors such 

as age (as supported by Lunde et al., 1999, and Brown and Goetzmann, 1995), incentive 

(as in Massa and Patgiri, 2009), expense ratios (as in Bu and Lacey, 2009) and style (as 

in ter Horst et al., 2001, and Bu and Lacey, 2009). 
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2.11.1 The magnitude of the survivorship bias 

The magnitude of survivorship bias has also remained contentious, with the likes of 

Grinblatt and Titman (1989) insisting that survivorship bias accounts for only about 0.1% 

to 0.4% of return each year when measured on a risk-adjusted basis without accounting 

for fees and transaction costs. Rohleder et al. (2010) show a survivorship bias alpha of 

+48 basis points yearly, for the equal-weighted US domestic equity mutual fund market 

between 1993 and 2006. This implies that the passive benchmark will be outperformed 

on a risk-adjusted basis by the average fund. The corresponding unbiased portfolio has 

an alpha of −109 basis points yearly, hence a survivorship bias of 157 basis points 

annually (which is the difference). The results in Grinblatt and Titman (1989) and Deaves 

(2004) demonstrate that previous studies have reported survivorship bias that has ranged 

from 1 to 271 basis points annually. However, Rohleder et al. (2010) insist that the 

different definitions of survivorship bias in these studies, as well as different time periods 

covered and different datasets, may account for some of these differences, hence making 

it difficult to compare. 

Eling (2009) estimated survivorship bias for hedge funds to be 0.08% per month, which 

is comparable to other values found in the literature, as seen in Ackermann et al. (1999) 

and Liang (2000). Eling (2009) also found that survivorship bias and attrition rate are 

higher for commodity funds than for stocks or bonds, as also seen in Liang (2000). Eling 

(2009) found survivorship bias of 0.01% and 0.0034% for stocks and bonds, respectively. 

Ter Horst and Verbeek (2007) report that survivorship bias is more severe in the mutual 

fund industry than in the hedge fund industry, due to a higher attrition rate, which they 

estimate as 5% annually for mutual funds and 14% annually for hedge funds. They 

highlight that mutual fund attrition is low because typically attrition is due to fund 

termination, i.e. merger or liquidation, as compared to attrition in hedge funds which can 

be due to liquidation, closed to new investments or voluntary non-reporting by the fund 

manager. They also identify that most studies attempt to correct for survivorship bias by 

taking returns into account until the moment the firm/fund disappears. Ter Horst and 

Verbeek (2007) found survivorship bias to be 2.1% per annum in their sample. 

Malkiel and Saha (2005) identify that the survivorship bias in their study is larger than 

those reported in other studies. Measuring hedge fund bias as the difference between all 

hedge fund returns and only surviving funds, they reported a survivorship bias of 374 
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basis points per year. This is higher than the 60–360 basis points per year reported in 

Brown et al. (1999), Brown et al. (2001), Liang (2000, 2001) and Amin and Kat (2003). 

Malkiel and Saha (2005) believe that the reason for the difference may be the different 

datasets in use across the literature. Liang (2000) specifically finds a 2% survivorship 

bias per year, which is consistent with the findings in Fung and Hsieh (1998). However, 

the bias differs across investment styles. Using data from Hedge Fund Research, Inc. 

(HFR) and Paradigm LDC and TASS Management Limited (TASS), Liang (2000) finds 

differences in style classification and survivorship bias across styles, with no style 

significant in HFR and 10 out of 15 styles significant in TASS. 

In investigating the effect of survivorship bias and microstructure distortions on asset 

pricing, Boynton and Oppenheimer (2006) find that these two biases account for a 

substantial portion of the size, book-to-market value and contrarian anomalies. However, 

they also identify that although the effects of these biases are substantial, they do not 

invalidate the anomalies. They find that the momentum premium identified in Carhart 

(1995) strengthens when these two biases are controlled for. The significance of 

survivorship bias is also disclosed in Brown et al. (1999), who asks the question – “given 

a series is subject to some form of survival bias, does the probability of false rejection of 

temporal interdependence approach one as the period of survival grows to infinity?”. 

They analysed the consequences of survival for studies of temporal dependency in long-

term stock-market returns, event studies and other empirical finance applications. 

 

2.12 Chapter conclusion and gaps in the literature 

Given the growing importance of the equity markets in the African continent and the 

perception of high risk within its markets, it is becoming very important to understand 

the behaviour of its stock-market returns. Previous studies cited in the literature 

investigated parts of the problem or a few of the markets; however, this is beginning to 

change as the African equity market continues to improve in importance. From the 

literature review, it can be argued that there are a considerable number of gaps in our 

body of knowledge. These issues will be summarised here. 
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The primary focus of this research will be the African stock markets, due to the relative 

newness of the market and very sparse asset-pricing research into it. This is particularly 

important as African stock markets have been found to be thin and illiquid, as seen in 

Allen et al. (2009) and Allen, Otchere and Senbet (2011), with stocks traded being less 

than 1% of GDP, as reported in Senbet and Otchere (2010). Even with the highlighted 

importance of liquidity, most asset-pricing research in the African market does not yet 

consider the liquidity factor. The importance of liquidity in asset pricing is well 

documented in Hearn and Piesse (2009). This will be analysed after considering the 

importance of the Fama-French and Carhart studies. The following research gaps are 

identified. 

Models: To identify which of the Sharpe/Lintner CAPM, Fama-French three-factor 

model, Carhart four-factor model or their augmented models performs best within the 

African market. This will naturally lead to the analysis of the importance of the variables 

in the models within the African context. 

Liquidity: Given the importance of liquidity as identified in the literature, the thesis will 

make a novel contribution in evaluating the importance of liquidity in an African index. 

If most African markets are segmented, we expect little or no financial contagion resulting 

from the financial crisis, apart from the South African market, and perhaps some political 

contagion resulting from the Arab Spring, as some of the north African countries were 

affected. The expectation is that contagion can manifest with the asset-pricing model, or 

can be a reason for structural changes. Structural breaks can also be present because of 

the introduction of new institutions and also as a result of drastic political or economic 

policy changes. This will mean that we need not always reject or accept the CAPM for 

the whole period as the single possible result, as the structural change modelling strategy 

allows for different dynamic behaviour among different regimes, leading to structural 

changes. Given the nature of the African markets, I believe that it is more prone to breaks 

than most markets, hence the following gaps are identified. 

Contagion: This research will investigate the impact of contagion on the asset-pricing 

models. 



109 
 

Structural breaks: This research will fill this gap in the literature by investigating 

structural breaks within the data. 

As identified in the review, African markets are perceived to be unstable due to the 

evolving degree of market integration, re-emerging and survivorship bias in data, 

significant non-economic factors such as political factors and the evolution from an 

emerging/frontier market towards a mature market. Hence the assumption that beta is 

stable, as indicated by the Sharpe-Lintner CAPM, will be unlikely. Jagannathan and 

Wang (1996) insist that this assumption is not reasonable as the relative risk of an asset 

is likely to vary over time. They insist that betas and expected return will, in general, 

depend on the nature of the information available at any given point in time and vary over 

time. With the susceptibility of African stocks to shocks, the assumption of a static beta 

will be most unlikely, hence the following research gap is identified. 

Conditional CAPM-type model: This research will fill this gap in the literature by 

investigating whether conditional information plays a role in determining excess returns 

in the African market. 

With criticisms of the mean-variance approach on its ability to capture the true risk of the 

distribution of returns, some in the literature insist that return distribution must account 

for investor preference for positive skewness and aversion to high kurtosis. This will most 

likely be particularly important in the African market following the findings in Hwang 

and Satchell (1999), which proposed the use of the four-moment CAPM over the 

conventional mean-variance CAPM, due to non-stationarity in emerging markets. 

Higher-moment CAPM: This research will fill this gap in the literature by 

comprehensively investigating the explanatory power of the higher-order moments in the 

African market. 

Another very important finding from this review is the fact that survivorship bias has 

become a major issue, with its impact expected to be more severe in the African market 

due to relatively high levels of stock disappearance (high attrition rate). Rohleder et al. 

(2010) show a survivorship bias of 157 basis points yearly for the equal-weighted US 

domestic equity mutual fund market between 1993 and 2006, while Deaves (2004) finds 

survivorship bias of between 232 and 271 basis points per year in the Canadian market. 
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Given the high disappearance of firms in the African market, it is absolutely essential to 

eliminate survivorship bias from datasets, as it has implications even beyond performance 

measurement. Indeed, Brown et al. (1992) find that it leads to obvious biases in the first 

and second moments and cross-moments of return, including beta. This questions asset-

pricing studies in the African market, as all studies found so far do not eliminate 

survivorship bias from their sample. 

Survivorship bias: This study will fill this gap in the literature by eliminating survivorship 

bias from the sample and also identifying the nature of survivorship bias in the African 

market. This survivorship bias-free dataset will be used within the analysis. 
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3 DATA DESCRIPTION, INDEX CREATION, METHODOLOGICAL NOTES 

AND PORTFOLIO FORMATION 

 

3.1 Introduction and structure of the chapter 

The deregulation of national markets and the relaxation of capital controls are fuelling 

the growth in international investment among private and institutional investors. 

According to Saritas and Aygoren (2005), international diversification has continued to 

spur international investments due to its ability to yield superior risk-reward trade-off 

when compared to domestic investments. Early studies by Grubel (1968), Levy and 

Sarnat (1970) and Solnik (1974) highlight the low correlations between index returns in 

different countries. However, proponents of international investments recognise that 

transaction costs can be significantly higher in international markets due to political risks, 

currency risks, regulatory and cultural differences, and high trading costs, as highlighted 

in Jorion and Roisenberg (1993). As Saritas and Aygoren (2005) remark, one effective 

strategy for overcoming the challenges of international investing is international 

indexing. This leads Griffin and Karolyi (1998) to conclude that the benefits of 

international diversification outweigh the numerous costs. 

This is perhaps more so in the African market, with its high volatility but with a potential 

for higher average returns when compared with the rest of the world, as noted in Assefa 

and Mollick (2014). More problems also blight an analysis of asset pricing in the African 

markets and this mainly relates to data. We identify the problems related to the data and 

proffer some African market-specific solutions. 

This chapter provides a rationale for the index creation, describes the data within the 

sample and highlights some data issues and remedies. It also identifies the methods to be 

applied, given the sample and the data available, and explains the portfolio formation 

process. The chapter starts with the discussion and identification of the research 

philosophy for this research Section 3.1.1 and the development of the emerging and 

frontier market indices in Section 3.2. The sample selection and data description are 

highlighted in Section 3.3, while the methodology and correction of survivorship bias are 

shown in Section 3.4. The total returns index formation is discussed in Section 3.5, while 

Section 3.6 makes the case for the consideration of the financial crisis and the Arab Spring 
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events in a contagion-based analysis. Diagnostics are reported in Section 3.7, while 

Section 3.8 analyses the methodological approaches available for the modelling 

procedures and highlights the empirical models. 

Various measures of skewness and kurtosis are analysed in Section 3.8.3 while Section 

3.8.4 identifies the tests for structural breaks. The GARCH-type conditional CAPM 

methods are identified in Section 3.8.5, while Section 3.8.6 identifies other potential 

alternative methods, which include the threshold CAPM, the Kalman filters, the 

stochastic volatility conditional betas and the Markov switching approach. Following the 

discussions, the empirical models to be used are highlighted in Section 3.9, which also 

includes the formation of portfolios. Section 3.10 and 3.11 are the chapter conclusion and 

chapter appendices respectively. 

 

3.1.1 Philosophy of science 

“Methodological understanding of theory is as important as theory itself, and must show 

the relationship between theoretical concepts used in the study and its expected 

conclusions” – Justine George (2016, p1). 

It has long seemed that among social sciences, especially in the realms of economics and 

sociology, so much time has been spent in discussing the methodological aspects of 

theory. The measurement of how scientific a theory is and its categorisation based on its 

relative merit can be difficult, given available theories. However, major theoretical 

contributions seem to be those of Karl Popper, Thomas Kuhn and Imre Lakatos, which 

are the best in developing a framework for the evaluation of progress in social science 

research. 

The core of the arguments from Karl Popper are identified in his core texts – Popper 

(1957, 1959, 1963 and 1972). Popper identified that science begins with problems and 

then proceeds via “conjecture and refutation”. He also identified that scientists propose 

bold theories that are then tested and if falsified, they are given up. He insisted that science 

then becomes made up of testable as-yet-unfalsified theories and that pseudoscience is 

immune to criticism. Kuhn (1964), on the other hand, argued against the points made by 

Popper by insisting that normal science is conducted within paradigms, which are 
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gradually extended via puzzle-solving. The paradigm could be referred to as a 

researcher’s social identity, which relates to agreements among groups of scientists about 

methods, theories and assumptions that relate to the “world”, that they agree upon and 

never question. Puzzle-solving relates to the quest of researchers within each paradigm to 

extend the reach of the paradigm, but not really test it or question its central 

ideas/methods. 

With regards to Popper’s claim that science is made up of testable yet falsifiable theories 

and that only pseudoscience is protected from criticism, this implies that a theory must 

have the capability to be falsified to be termed scientific. Kuhn disagrees as he insists that 

scientific knowledge is protected from criticism because it is characterised as part of a 

paradigm, and scientists never question those paradigms. Kuhn believes that changes in 

paradigms will only happen very rarely in a “revolutionary paradigm shift” where science 

breaks out from one paradigm to another. Kuhn remains very popular in social sciences 

as he believes in picking a paradigm and using theory as lenses not to be tested or 

criticised. Here the activity involved in the research becomes one of puzzle-solving and 

not theory-testing. Popper, on the other hand, seems to be more popular within natural 

sciences where theories are tested, maybe rejected and maybe modified. This is done 

through testing and rejecting a null hypothesis with the logic being more of conjecture 

and refutation. 

Lakatos proposed the “methodology of scientific research programmes”, which was 

proposed specifically to address Popper’s insistence on the fundamental importance of 

subjecting scientific theories to persistent and ruthless empirical refutations, and to 

Kuhn’s insistence on the importance of preserving accepted paradigms from refutation. 

The Lakatos framework examines scientific research, which is useful in evaluating a 

series of theories to judge whether theoretical development in a particular stream is 

“degenerating” or “progressing”. The proposal of Lakatos incorporates elements of 

Popper and Khan. To know whether a theory is science, Lakatos highlights that it is 

necessary to know its history. If it has been arrived at by content-reducing, ad hoc 

modifications of earlier theories, in the face of anomalies then it is not scientific. If it is a 

series of theories, that are referred to as a research programme, then it is scientific. 
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The research programme identified by Lakatos comprised a “negative heuristic” and a 

“positive heuristic”. The negative heuristic specifies the “hard core” of the programme, 

which is its conceptual framework or its metaphysical foundation. This hard core cannot 

be refuted by the methodological fiat of the programme’s proponents. The negative 

heuristic of the programme functions to prevent any anomalies that may occur from 

refuting the hard core. This is done by directing the scientists’ attention to the revision of 

the “protective belt” of supplementary hypothesis and initial conditions. The procedure 

to modify the protective belt is specified by a partially articulated plan – the positive 

heuristic. 

Lakatos identified two conditions for the successful modification of a protective belt of a 

research programme. The first relates to each successive modification being 

“theoretically progressive” or having “excess empirical content”, where the new theory, 

which is made up of laws of nature, auxiliary hypothesis and initial conditions, must 

predict some previously unexpected new fact. The second condition relates to the fact that 

the modifications must be “empirically progressive”, as the predicted fact must be at least 

occasionally substantiated. The converse relates to a “degenerating” programme, where 

it is not “progressive”. According to Lakatos, a research programme must be at least 

theoretically progressive to be regarded as scientific. For one research programme to 

surpass a rival, the rival must be degenerating while it is progressive. Also, it must 

successively explain the previous predictive success of its rival. 

The research carried out within this thesis follows the principals of Lakatos, as there are 

core theories that are protected and have a protective belt upon which the research is 

based. The hard core of the research relates to theories such as the portfolio theory 

(Markowitz, 1959) and Tobin’s liquidity preference (Tobin, 1958). The protective belt 

relates to the CAPM (Sharpe, 1964, and Lintner, 1965), three-factor model (Fama and 

French, 1992, 1993), four-factor model (Carhart, 1997), importance of liquidity (Hearn 

and Piesse, 2009), importance of higher moments (Chiao, Hung and Srivastava, 2003), 

impact of contagion (Bekaert, Harvey and Ng, 2005) and conditional CAPM 

(Jagannathan and Wang, 1996). 
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3.2 Development of the emerging and frontier African market indices 

As identified earlier, formation of these indices is essential due to the relative paucity of 

data in the African market; hence the index provides some diversification benefits that 

mimic an ideal investor’s behaviour when investing in a risky asset. The stock market in 

Africa remains the smallest of any region despite the surge in the establishment of stock 

exchanges, particularly in Sub-Saharan Africa, in the last two decades. The riskiness of 

the African market is further highlighted by the relatively high illiquidity of stock in the 

continent, with East African stocks trading being less than 1% of GDP, as noted in Senbet 

and Otchere (2010). The use of indices will not entirely eradicate this problem, but will 

make stocks on the continent more tradable. 

To ensure the benefits of diversification, a resource-driven (basic materials sector) index 

is formed. The index is formed using stocks in the basic materials index because most 

African countries are resource-driven. For example, the basic materials stocks form about 

one-quarter of the capitalisation of the Johannesburg Stock Exchange’s (JSE) average 

capitalisation (data as at 4 February 2013, via Forbes, 2014), making it the largest 

component of the JSE. 

 

Figure 3.1 Market capitalisation of the Johannesburg Stock Exchange by sector 

 

 

Collins and Abrahamson (2006) also identify the resources sector as the largest in South 

Africa. According to Hearn (2011), resource-driven stocks in Egypt and Morocco form 
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about 38.4% and 15.3% of the total market capitalisation, respectively. This suggests that 

a sample index formed on the basic materials index will to a large extent be representative 

of the overall emerging African market. 

To capture the risk-return behaviour in this sector, I will form the sample for this research 

on the classification of the African market into emerging and frontier African markets, as 

identified in the FTSE quality of market criteria (AFRICA) as at March 2014. It classified 

South Africa as an advanced emerging market, while Egypt and Morocco were classified 

as emerging and, for the purpose of this research, South Africa, Egypt and Morocco will 

be classified as emerging. The following countries were classified as frontier markets: 

Botswana, Cote d’Ivoire, Ghana, Kenya, Mauritius, Nigeria and Tunisia. The weightings 

for each market in the indices are analysed in each portfolio formation section. Although 

FTSE has made this classification, it has not formed any index using the resource stocks 

in these African countries. This also applies to the MSCI indices. Hence I form indices 

based on the basic materials index, initially for the emerging African market and 

subsequently for the frontier African market. 

Also, the use of indices improves informational efficiency when compared to individual 

national stock prices indices, as identified in Ntim et al. (2011). They also identify that 

individual national indices in the African continent are weak-form inefficient, while some 

efficiency can be achieved in countrywide stock-price indices. 

Apart from mimicking a diversification strategy, these indices are formed to alleviate 

some of the data problems identified in Section 3.1.1. 

 

3.3 Sample selection and data description 

3.3.1 Emerging African market16 

As identified earlier, the selection of countries in the emerging Africa index followed the 

classification in the FTSE quality of market criteria (AFRICA), as at March 2014. It 

classified South Africa as an advanced emerging market, while Egypt and Morocco were 

classified as emerging and, for the purpose of this research, South Africa, Egypt and 

                                                 
16 The stocks identified within each market are based on end-of-sample conditioning, hence will have a survivorship bias problem. 
This will be corrected in Section 4.4. 
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Morocco will be classified as emerging. The basic materials indices were selected from 

each country, as most African countries economies are resource-driven. In South Africa, 

the basic materials index (.JBASM) was selected, and comprised 19 firms as at 

01/01/2015, as shown in Table 3.1.  

Table 3.1 Sample selection from the South African stock market: The basic materials index17 

Name RIC Sector - ICB Mcap (USD) 

Sasol Ltd SOLJ.J Speciality chemicals 23,015,656,598.98 

Mondi Ltd MNDJ.J Paper 9,656,459,345.23 

Nampak Ltd NPKJ.J Paper 9,656,459,345.23 

AngloGold Ashanti Ltd ANGJ.J Gold mining 7,977,034,421.24 

Anglo American Platinum 

Ltd 

AMSJ.J Platinum & precious 

metals 

7,174,859,064.07 

Kumba Iron Ore Ltd KIOJ.J Iron & steel 4,505,004,425.81 

Gold Fields Ltd GFIJ.J Gold mining 3,495,450,013.82 

Impala Platinum Holdings 

Ltd 

IMPJ.J Platinum & precious 

metals 

3,182,320,793.86 

African Rainbow Minerals 

Ltd 

ARIJ.J General mining 1,926,159,303.79 

Assore Ltd ASRJ.J General mining 1,739,658,463.81 

AECI Ltd AFEJ.J Speciality chemicals 1,382,484,844.35 

Omnia Holdings Ltd OMNJ.J Speciality chemicals 1,029,028,738.38 

Pretoria Portland Cement 

Ltd 

PPCJ.J Cement and concrete  949,890,841.04 

Royal Bafokeng Platinum 

Ltd 

RBPJ.J Platinum & precious 

metals 

842,427,310.12 

Harmony Gold Mining 

Company Ltd 

HARJ.J Gold mining 834,725,797.33 

ArcelorMittal South Africa 

Ltd 

ACLJ.J Iron & steel 831,295,777.97 

Mpact Ltd MPTJ.J Paper 576,132,429.34 

African Oxygen Ltd AFXJ.J Speciality chemicals 370,559,105.72 

Eqstra Holdings Ltd EQSJ.J Mineral resources 143,670,341.44 

 

In Egypt, the basic material index (.TRXFLDEGPMAT) was selected, which comprised 

10 firms as at 01/01/2015, as shown in Table 3.2. 

 

                                                 
17 Source: Reuters Eikon and Datastream 
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Table 3.2 Sample selection from the Egyptian stock market: The basic materials index18 

Name RIC Sector - TRBC Mcap (USD) 

Suez Cement Company SAE SUCE.CA Cement & 

concrete 

manufacturing 

977,210,588.07 

Ezz Steel Co SAE ESRS.CA Iron & steel 969,048,101.90 

SidiKerir Petrochemicals Co SAE SKPC.CA Commodity 

chemicals 

963,990,825.69 

MisrBeniSuef Cement Co SAE MBSC.CA Mining 412,844,036.70 

South Valley Cement Co SAE SVCE.CA Cement & 

concrete 

manufacturing 

355,214,081.36 

Misr Cement Co ESC MCQE.CA Mineral resources 324,977,093.05 

Sinai Cement Co SAE SCEM.CA Cement & 

concrete 

manufacturing 

287,247,706.42 

Egyptian Chemical Industries SAE EGCH.CA Agricultural 

chemicals 

233,946,720.35 

Paints and Chemical Industries Co 

SAE 

PACH.CA Chemicals  132,372,214.94 

Egyptian Financial and Industrial 

SAE 

EFIC.CA Agricultural 

chemicals 

81,018,421.68 

 

In Morocco, the basic material index (.TRXFLDMAPMAT) was selected, which 

comprised six firms as at 01/01/2015, as shown in Table 3.3. 

Table 3.3 Sample selection from the Moroccan stock market: The basic materials index19 

Name RIC Sector - TRBC Mcap (USD) 

Lafarge Ciments SA LAC.CS Cement & concrete 

manufacturing 

3,300,066,402.77 

Ciments du Maroc SA SCM.CS Mineral resources 1,690,232,798.38 

Holcim Maroc SA HOL.CS Cement & concrete 

manufacturing 

1,186,055,315.80 

Managem SA MNG.CS Diversified mining 917,947,211.73 

Societe Metallurgique du 

Meter SMI 

SMI.CS Diversified mining 489,099,889.66 

Touissit Cie Miniere de SA CMT.CS Lead ore mining 217,802,105.07 

 

                                                 
18 Source: Reuters Eikon and Datastream 
19 Source: Reuters Eikon and Datastream 
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The market portfolio includes South Africa’s JSE All Share Industrials index, Egypt’s 

EGX 100 Index and Morocco’s Casablanca SE All Share Index. The risk-free rate of 

return is the US 3-month Treasury bill (US3MT=RR) adjusted to obtain weekly short-

term rates, as illustrated in Omran (2007). This represents the risk-free rate adjusted to 

take account of weekly excess returns rather than the quoted equivalent annualised rates. 

The US risk free rate is used to ensure that the study is comparable to studies in the 

African market, like those of Collins and Abrahamson (2006) and Bekaert, Harvery and 

Lundbald (2007). See Section 2.10 for further justification.  

 

3.3.2 Frontier African market 

The selection of countries in the frontier Africa index followed the classification in the 

FTSE quality of market criteria (AFRICA), as at March 2014. The constituents of the 

frontier African market index are Botswana, Cote d’Ivoire, Ghana, Kenya, Mauritius, 

Nigeria and Tunisia. However, because of the paucity of data, Ghana and Mauritius will 

be excluded. The resource indices were selected from each country as most African 

countries’ economies are resource-driven. 

In Botswana, the basic materials index (.FCIBT) was selected, and comprised eight firms 

as at 01/01/2015, as shown in Table 3.4. 

 

Table 3.4 Sample selection from the Botswana stock market: The basic materials index20 

Name RIC Sector - TRBC Mcap (USD) 

Discovery Metals Ltd DML.BT Copper ore mining 8,942,875.36 

CIC Energy Corp ELC.BT Coal 53,051,485.62 

Investec Ltd INV.BT Diversified investment 

services 

7,929,081,318.21 

Decimal Software Ltd AVA.BT Diversified mining 11,155,855.88 

A-Cap Resources Ltd ACB.BT Uranium mining 13,785,131.38 

African Copper PLC ACU.BT Copper ore mining 10,407,353.74 

Anglo American PLC AGLO.BT Diversified mining 26,111,188,090.19 

 

                                                 
20 Source: Reuters Eikon and Datastream 
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On the BRVM in Cote d’Ivoire, the Industrials index (.INDCI) was selected, and 

comprised four firms as at 01/01/2015, as shown in Table 3.5. 

 

Table 3.5 Sample selection from the Abidjan stock market: The basic materials index21 

Name RIC Sector - TRBC Mcap (USD) 

Vivo Energy Cote d’Ivoire SA SHEC.CI Oil & gas refining 

and marketing 

145,680,215.99 

Air Liquide Cote d’Ivoire SA SIVC.CI Commodity 

Chemicals 

27,585,322.81 

Total Cote d’Ivoire SA TTLC.CI Gasoline stations 419,827,944.60 

Petro Ivoire SA 

MLPIV.PA 

Oil & gas refining 

and marketing 18,989,454.94 

 

In Kenya, the basic material index (.EPNR) was selected, which comprised three firms as 

at 01/01/2015, as shown in Table 3.6. 

Table 3.6 Sample selection from the Nairobi stock market: The energy and petroleum index 

Name RIC Sector - TRBC Mcap (USD) 

Kenya Electricity Generating 

Co Ltd 

KEGN.NR Renewable utilities 248,182,478 

 

Kenya Power and Lighting 

Company Ltd 

KPLC.NR Electric utilities 

313,185,081.93 

KenolKobil Ltd KENO.NR Oil & gas refining and 

marketing  

143,348,074.82 

 

In Nigeria, the NSE Oil and Gas index (.NGSEOILG5) was selected, which comprised 

seven firms as at 01/01/2015, as shown in Table 3.7. 

 

 

 

 

 

 

 

 

 

                                                 
21 Source: Reuters Eikon and Datastream 
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Table 3.7 Sample selection from the Nigerian stock market: The NSE oil and gas index22 

Name RIC Sector - TRBC Mcap (USD) 

Oando Plc OANDO.LG Integrated oil and gas 781,195,016.34 

Total Nigeria Plc TOTAL.LG Petroleum product 

wholesale 264,526,308.22 

Mrs Oil Nigeria Plc CHEVRON.LG Petroleum product 

wholesale 

73,877,514.22 

Conoil Plc CONOIL.LG Petroleum product 

wholesale 

143,341,545.69 

Forte Oil Plc FO.LG Petroleum product 

wholesale 

1,346,068,644.73 

Seplat Petroleum Development 

Company Plc 

SEPLAT.LG Oil and gas exploration 

and production 

1,122,381,953.12 

Mobil Oil Nigeria Plc MOBIL.LG Petroleum product 

wholesale 

311,503,834.86 

 

In Tunisia, the following six firms will be used, as shown in Table 3.8. 

Table 3.8 Sample selection from the Tunisian stock market23 

Name RIC Sector - TRBC Mcap (USD) 

Ste Sotuver SA STVR.TN Glass Containers & 

Packaging  

61,736,046.76 

Ste Chimique Alkimia SA ALKM.TN Commodity Chemicals 61,612,016.41 

Sotipapier SA STPAP.TN Paper Mills and 

Products  

64,219,445.49 

Air Liquide Tunisie SA AL.TN Commodity Chemicals 165,373,609.70 

Manufacture de Panneaux Bois 

du Sud SA 

MPBS.TN Wood Products 24,126,719.69 

Industries Chimique de Flour 

SA 

ICF.TN Commodity Chemicals 42,088,807.85 

 

 

3.3.3 Data problems 

Missing data points are a major problem within the African market (see also Chapter 2, 

Section 2.4). Within different sector indices, I observe missing data points that result from 

thin trading and sometimes no trading in some markets. I take a few precautions to ensure 

that the study is robust in the presence of data problems. The use of the basic materials 

index alleviated some of this problem as the resource sector remains the largest within 

                                                 
22 Source: Reuters Eikon and Datastream 
23 Source: Reuters Eikon and Datastream 
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the African continent and subsequently the most traded. To harness the benefits of 

diversification and to minimise the impact of the data problems identified, this study will 

be based on an index of emerging African markets and frontier African markets. Section 

3.9.1 below highlights the formation procedure for these indices. 

Also, I found that most stocks traded daily but some did not, and in these cases I found 

that my use of a weekly data point could eliminate the impact of this problem. The trading 

week in some African countries is from Sunday to Thursday, which can potentially create 

a problem in aligning returns weekly. I take the approach of a weekly returns window, 

where the end of the trading week is aligned, rather than a particular day in the week, as 

long as the difference is by only a day. Another potential problem relates to survivorship 

bias as was found within the emerging African market in Chapter 4 and highlighted in the 

literature review in Chapter 2. As seen in Section 2.11 of the review, the evidence 

suggests that survivorship bias is a major problem within African markets and will bias 

estimates of the risk-return relationship, first and second moments as well as cross-

moments of returns. In eliminating survivorship bias, I follow the procedure identified in 

Section 3.4.2. The formation of the emerging and frontier African market index also 

ensures that there are sufficient data points for portfolio formation throughout the sample 

period, as I take a multi-country market index dimension rather than a single country 

dimension because of the problems identified above. 

 

3.4 Survivorship bias 

Following the discussions in Section 2.12 of Chapter 2, I identify two potential methods 

of correcting survivorship bias and report the number of stocks in the survivorship bias-

corrected sample compared with the biased sample. 

 

3.4.1 Heckman’s two-equation method 

To neutralise the effect of selection bias resulting from selecting survivors using end-of-

sample conditioning, one of the most common methods in literature is the Heckman two-

equation method. Heckman (1979) uses a binary approach that depends on a linear 

combination of observable and unobservable factors, as identified in Tucker (2010). This 
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approach estimates the choice model in stage one, and in stage two a bias correction term 

is added to the regression. This bias correction variable in the form of an inverse Mills 

ratio (IMR), is derived after further restricting unobservables to multivariate normal 

distributions. Because of the use of truncated binormal distribution in deriving the IMRs, 

the appropriate approach will be to model the first-stage choice decision in binary probit, 

and the second stage in a linear regression, and if the unobservables in the two stages are 

binormally distributed. As noted in Tucker (2010), adding IMR to the second stage does 

not correct the selection bias if these conditions are not met. However, Michaely, Rubin 

and Vedrashko (2015) insist that the Heckman two-equation model could reduce the 

extent of the bias but not fully eliminate it, hence it will not be used in this study. 

 

3.4.2 CRSP methodology 

The CRSP database is renowned for providing survivorship-bias-free data for research in 

security pricing. The database originated developed by Mark M. Carhart for his 1995 

dissertation, Survivor Bias and Persistence in Mutual Fund Performance. According to 

the methodology detailed in crsp.com, the “M” funds (dead funds) are introduced into the 

dataset so as to eliminate survivorship bias. Although the CRSP database is quite accurate, 

it actively seeks to correct some known biases as they are found, as identified by CRSP. 

One of the major biases is a returns averaging bias resulting from a situation where a split 

in a fund results in, say, four other funds and each new share class of fund is permitted to 

inherit the entire return history, resulting in the duplication of returns histories. The 

second bias is a selection bias that favours the best performing private funds when they 

become public. This is because the SEC has started permitting funds with prior returns 

histories as private funds to splice these returns onto the beginning of their public 

histories. This will mean that only successful private find histories will be added to the 

database. 

As stated in Gottesmann and Morey (2007) and Rohleder et al. (2010), the CRSP database 

only provides survivorship-bias-free data for the US mutual fund market, whereas for 

many other countries such comprehensive data is not available. 
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The CRSP methodology will, however, be applied to our dataset but with some further 

adjustments. The “dead” firms in our case will include delisted firms and firms that have 

gone private, merged, along with bankrupt/liquidated firms; hence some of the firms may 

come back into the dataset, if they are only removed from the index at any one time for 

any reason apart from liquidation. According to Blake and Timmermann (1998) and ter 

Horst and Verbeek (2007), an unbiased portfolio consists of all funds operating at any 

time during the sample period (as at when they are on the index in the case of a firm). 

According to this definition, a portfolio that does not include new firms is not unbiased. 

Hence the dataset for this study will include all firms in the index for the length of time 

they were on. This will be referred to as the unbiased dataset. To analyse the effect of 

survivorship bias, the unbiased dataset will be compared to the end-of-sample survivors 

for the emerging African market and the South African market. Details of the dataset 

will be discussed in the data chapter. 

 

3.4.3 Correction for survivorship bias 

As identified above, correction for survivorship bias will take the form of the CRSP 

methodology. This will be applied to our dataset but with some further adjustments. The 

“dead” firms in our case will include delisted firms and firms that have gone private, 

merged, along with bankrupt/liquidated firms, hence some of the firms may come back 

into the dataset, if they are only removed from the index at any one time for any reason 

apart from liquidation. According to Blake and Timmermann (1998) and ter Horst and 

Verbeek (2007), an unbiased portfolio consists of all funds operating at any time during 

the sample period (as at when they are on the index in the case of a firm). 

Following this, the number of companies for the unbiased and biased samples of the 

emerging and frontier African markets are detailed below. 
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3.4.3.1 Unbiased dataset (survivorship bias corrected) – emerging African market 

index 

The number of firms in the unbiased dataset of the emerging African market (the basic 

materials sectors of South Africa, Egypt and Morocco) is shown below. 

Table 3.9 Number of companies in the unbiased emerging African market24 

2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 

40 47 51 56 63 65 61 60 65 50 35 

Data on some delisted firms have been removed from the database and hence will not be 

used in this study. They are excluded as they have insufficient data to be considered. The 

firms are: South Africa – Gold One International (GDOJ.J), Freeworld (FWDJ.J), Eland 

Platinum (ELDJ.J), Uranium (UUUJ.J); Egypt – HAC (HACCO.CA), AMCC 

(AMRI.CA). 

3.4.3.2 The biased dataset – emerging African market index 

The number of firms in the end-of-sample conditioned dataset of the emerging African 

market (the basic materials sectors of South Africa, Egypt and Morocco) is shown below. 

Table 3.10 Number of companies in the biased emerging African market25 

2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 

35 35 35 35 35 35 35 35 35 35 35 

 

3.4.3.3 Unbiased dataset (survivorship bias corrected) – frontier African market index 

The number of firms in the unbiased dataset of the frontier African market (the basic 

materials sector of Botswana, Cote d’Ivoire (which consists of Benin, Burkina Faso, 

Guinea Bissau, Cote d’Ivoire, Mali, Niger, Senegal and Togo), Kenya, Nigeria and 

Tunisia, is shown below. 

Table 3.11 Number of companies in the unbiased frontier African market26 

2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 

25 24 24 23 23 23 20 17 16 15 15 

 

                                                 
24 Source: Reuters Eikon and Datastream 
25 Source: Reuters Eikon and Datastream 
26 Source: Reuters Eikon and Datastream 
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3.4.3.4 The biased dataset – frontier African market index 

The number of firms in the end-of-sample conditioned dataset of the frontier African 

market (the basic materials sector of Botswana, Cote d’Ivoire (which consists of Benin, 

Burkina Faso, Guinea Bissau, Cote d’Ivoire, Mali, Niger, Senegal and Togo), Kenya, 

Nigeria and Tunisia, is shown below. 

Table 3.12 Number of companies in the biased frontier African market27 

2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 

25 25 25 25 25 25 25 25 25 25 25 

 

3.5 Total return index formation 

The emerging and frontier Africa indices are formed following mostly the methods used 

by the FTSE group of indices and the International Organisation of Securities 

Commission (IOSCO). The return on these indices is the weekly return using the closing 

price of the last day of the trading week. This total return index is based share price data 

from Reuters/DataStream which are adjusted for dividends, preference shares, loan stock 

and splits (capital changes). The prices are based on the firms’ home country currency, 

but only the calculated (logarithm) returns are used within the index. 

For the purpose of the indices to be formed, eligible securities are all securities within the 

specified country. For the emerging Africa market index, the companies within the 

specified sector are those that have a full listing on the Casablanca Stock Exchange, the 

Egyptian Stock Exchange and the Johannesburg Stock Exchange. For the frontier African 

market index, the companies are those that have a full listing on the Botswana Stock 

Exchange, the BRVM, the Nairobi Stock Exchange, the Nigerian Stock Exchange and 

the Tunisian Stock Exchange. 

The securities will be tested for liquidity yearly by calculating the median weekly trading 

per quarter. When calculating the median of weekly trades per quarter of any security, a 

minimum of five trading weeks in each quarter must exist, otherwise the quarter will be 

excluded from the test. Following the methodology in the FTSE, liquidity will be tested 

for the June review from the first business week of the quarter, at the start of April. The 

calculation of the median trade is done by ranking the weekly trade and selecting the 

                                                 
27 Source: Reuters Eikon and Datastream 
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middle ranking week. Zero trading weeks are included in the ranking, such that any 

security that does not trade for more than half the weeks in the quarter will have a median 

weekly trade of zero. 

According to the Egyptian Stock Exchange, trading is from Sunday to Thursday; hence 

the end of the trading week will be aligned to the end of the trading week for Morocco 

and South Africa, both of which trade from Monday to Friday, for the emerging African 

market. 

For the frontier African market, trading is from Monday to Friday on the Botswanan, 

Kenyan (Nairobi), Nigerian and Tunisian stock exchanges, while trading is on Monday, 

Wednesday and Friday on the BRVM. 

The initial constituents of the index are the constituents of each individual country’s index 

as at 01/01/2015. However, this changes throughout the period as the sample is adjusted 

to eliminate survivorship bias (details are given in Section 3.4). The constituents of each 

of the countries’ index must be classed as being part of the basic materials index by 

Reuters for each country as at 01/01/2015. The indices’ algorithm and calculation method 

is based on the returns of the different basic materials indices that form the emerging and 

frontier Africa index, hence the asset returns index series is calculated using the following 

average return (AR) formula: 

∑ (𝑟𝑖)
𝑛
𝑖=1

𝑛
 

where, 

𝑖 = 1,2,….,𝑛 

𝑛 is the number of basic materials indices in the index. 

𝑟𝑖 is the returns on each basic materials index (returns calculated using the price at the 

close of the week) 

The index returns are calculated based on the arithmetic average of the returns of the 

individual indices, which implies rebalancing to equal weights for each period. Blume 

and Stambaugh (1983), Roll (1983) and Conrad and Kaul (1993) used an equal-weighted 

buy-and-hold return for the benchmark portfolio to minimise the impact of compounding 
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related bias. Bartholdy and Peare (2005) found that an equal-weighted index provides the 

best estimate compared to the commonly recommended value-weighted index. This study 

uses weekly equal-weighted returns. Following Bartholdy and Peare (2005), no 

adjustments were made for dividends. Data from Reuters/Datastream are, however, 

already adjusted for dividends. 

 

3.6 Contagion – the financial crisis and the Arab Spring 

According to Pettenuzzo and Timmermann (2011), beyond the risks of the components 

of stock return not being predicted by any model of return-generating process, parameter 

uncertainty and uncertainty as to the function form of the true return process, investors 

also face model instability risk, which refers to “breaks” in the parameters of the return-

generating process. Normal practices assume that model parameters remain constant over 

time. This ignores the fact that estimation samples often span years and sometimes 

decades, hence the relationship between economic variables will likely not remain the 

same. Instabilities in these economic variables could result from technological, legislative 

or institutional change, tax policy, monetary targets, large macroeconomic shock, 

financial innovation, financial crisis and political factors. 

This substantial variation in return predictability was also examined in Bossaerts and 

Hillion (1999), Lettau and Ludvigson (2001) and Welch and Goyal (2008). Sudden and 

sharp changes in model parameters are consistent with empirical findings in Dangl and 

Halling (2012) and Johannes et al. (2009), who suggest that the changes in the model 

return predictability parameter can be large. Like Pettenuzzo and Timmermann (2011), 

we identify two events that may induce large structural breaks and create contagion to be 

the financial crisis and the Arab Spring. 

The financial crisis of 2008/2009 originated in modern financial centres (in the US 

precisely), as highlighted in Shalini and Prasanna (2015), but because of the integration 

of financial markets, its impact was amplified. As reported in Blanchard (2008) and Lin 

and Martin (2011), some of the primary causes of this crisis included lack of financial 

regulation, loose monetary policy, complex securitisation techniques and real estate burst. 
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Identifying the starting point as well as the end point of a crisis period is subjective. Most 

studies on contagion also faced similar problems in identifying the contagion event, 

especially for short-lived events. However, since the crisis originated from the US, I will 

use the VIX index to identify the contagion period. The VIX index is also popularly 

known as the “fear index” or the “fear gauge”. The CBOE volatility index (VIX)28 is a 

measure of market expectations of near-term volatility conveyed by the S&P500 stock 

index option prices. I use this as a tool to identify the financial crisis contagion event in 

my analysis. 

 

                                                 
28 See http://www.cboe.com/micro/vix/vixintro.aspx 

http://www.cboe.com/micro/vix/vixintro.aspx
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Figure 3.2 CBOE market volatility index 2004–201529 

 

                                                 
29 Source: Reuters. Shows the series of events around the start of the financial crisis. Detailed timeline of the events within the Arab Spring and financial crisis periods are shown in appendix 

one of the chapter appendices. 

 10

 20

 30

 40

 50

 60

 70

 80

 2004  2006  2008  2010  2012  2014

VI
X

Time

CBOE MARKET VOLATILITY INDEX

15/09/2008 - Lehman Brothers 

Holdings incorporated files for 

Chapter 11 bankruptcy 
protection. 

 

07/09/2008 - The Federal Housing 

Finance Agency (FHFA) places 

Fannie Mae and Freddie Mac in 

government conservatorship. The 

week of the start of the financial 

crisis contagion period 

(05/09/2008) 

29/05/09 - end of the 

financial crisis contagion 

period 



131 
 

On the other hand, the Arab Spring represents a collective wave of events that started in 

December 2010 with the self-immolation of Mohamed Bouazizi on 18 December 2010, in 

Tunisia. As stated in Hearn and Piesse (2014), this has generated an unprecedented wave of 

political upheaval across the Middle East and North Africa (MENA) region. Within North 

Africa, the Arab Spring has resulted in the popular overthrow of governments in Egypt, Libya 

and Tunisia, while considerable political and governmental reforms have been implemented in 

Morocco and, to a lesser extent, Algeria. For the purpose of the contagion variable, I define the 

start of the Arab Spring as 14 January 2011, with the resignation of the Tunisian president, and 

the end as 19 October 2012, with the death of Wissam al-Hassan,30 a brigadier-general of the 

Lebanese internal security forces. 

These two periods are represented in Figures 3.3, 3.4 and 3.5 for Morocco, Egypt and South 

Africa, respectively. The contagion from the financial crisis in the US is the bear market on the 

country’s main stock index, while the contagion from the Arab Spring is the bear market after 

the 2010 event in Tunisia (described above). 

 

Figure 3.331 Weekly closing prices of the Casablanca SE All Share index from 01/01/2004 to 

01/01/2015, showing the bear period for the financial crisis and the Arab Spring 

 

 

 

 

 

 

 

                                                 
30 See chapter appendices for full timeline. 
31 Data source: Reuters eikon 
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Figure 3.432 Weekly closing prices of Egypt’s EGX30 index from 01/01/2004 to 01/01/2015, 

showing the bear period for the financial crisis and the Arab Spring 

 

Figure 3.533 Weekly closing prices of the Johannesburg Stock Exchange All Share Industrials 

from 01/01/2004 to 01/01/2015, showing the bear period for the financial crisis 

 

For an initial assessment of the impact these two events have had on the return series, I will 

analyse the risk-return relationship using dummy variables. The period for the financial crisis 

                                                 
32 Data source: Reuters eikon 
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to be used is from 5 September 2008 to 29 May 2009, while the period of the Arab Spring to 

be used is from 14 January 2011 to 19 October 2012. This is based on the most overlapping 

volatility period as shown in the emerging African market index (which includes Morocco and 

Egypt) in Section 5.4. 

The effect of both the financial crisis and the Arab Spring on the African market (the other 

African markets, in the case of the Arab Spring), will be classified as a contagion effect; hence, 

in our analysis a single dummy variable will represent both events. According to Collins and 

Biekpe (2003), contagion is the spread of market disturbance from one market to another. 

However, Morales and Andreosso-O’Callaghan (2014) point out that there is no unanimously 

agreed definition of contagion, citing several definitions and methodologies developed in the 

literature. According to Dornbusch, Park and Claessens (2000), there are two separate causes 

of contagion; one is through a fundamental spillover resulting from the normal interdependence 

among economies and the second is related to fundamentals and looks to investor behaviour 

for an explanation. 

This study does not focus on defining or measuring contagion per se, but will use the concept 

of contagion as a proxy for the financial crisis (which started in the US) and the Arab Spring 

(which started in Tunisia). For an excellent view of contagion in the African market, see Collins 

and Biekpe (2003) and Morales and Andreosso-O’Callaghan (2014). 

Beta will also be modelled, with the impact of contagions analysed within the process of 

determining if beta is stable. This will be discussed in greater detail in Chapter 6. 

 

3.7 Diagnostics 

Classic autocorrelation and heteroscedasticity diagnostics will be carried out as part of the 

analysis. It is quite possible to eliminate or at least mitigate the problem of autocorrelation by 

specifying the dynamics of the model more fully, i.e. by including relevant lagged variables on 

a time-series model. Autocorrelation tests are carried out using Cochrane-Orcutt, Hildreth-Lu 

and Prais-Winsten in Gretl. Tests for heteroscedasticity were carried out using White’s test, 

Breusch-Pagan tests (See Greene, 2003) and Keonker tests. 

Where one or more of the tests indicated that autocorrelation and/or heteroscedasticity is 

present in the form of an unknown function of the regressors that can be approximated by a 

quadratic relationship, a heteroscedasticity/autocorrelation-corrected model or a 
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heteroscedasticity-corrected model within Gretl is applied. The description within Gretl 

indicates that “this offers the possibility of consistent standard errors and more efficient 

parameter estimates as compared with OLS. The procedure involves (a) OLS estimation of the 

model of interest, followed by (b) an auxiliary regression to generate an estimate of the error 

variance, then finally (c) weighted least squares, using the reciprocal of the estimated variance 

as weight.” 

In the auxiliary regression (b) I regress the log of the squared residuals from the first OLS on 

the original regressors and their squares. The log transformation is performed to ensure that the 

estimated variances are non-negative. I call the fitted values from this regression u*. The 

weight series for the final WLS is then formed as 1/exp(u*). 

A correlogram is further used for autocorrelation tests. As stated within the Gretl software, the 

correlogram to be used prints the values of the autocorrelation function for series, which may 

be specified by name or number. The values are defined as 𝜌(𝑢𝑡, 𝑢𝑡−𝑠), where 𝑢𝑡 is the 𝑡𝑡ℎ 

observation of the variable 𝑢 and 𝑠 denotes the number of lags. 

The partial autocorrelations (calculated using the Durbin–Levinson algorithm) are also shown; 

these are net of the effects of intervening lags. In addition, the Ljung–Box Q-statistic is printed. 

This may be used to test the null hypothesis that the series is “white noise”; it is asymptotically 

distributed as chi-square, with degrees of freedom equal to the number of lags used. 

If an order value is specified, the length of the correlogram is limited to at most that number of 

lags, otherwise the length is determined automatically, as a function of the frequency of the 

data and the number of observations. 

 

3.8 Methodological review and empirical models 

3.8.1 Introduction 

In analysing the distribution characteristics of emerging market returns, Bekaert et al. (1998) 

found that emerging equity markets have high volatility, low correlation with developed 

markets and, within the emerging markets, high long-horizontal returns and predictability 

above and beyond what is found in developed market returns. These have been found to be 

even more severe in the African market. They also indicate that the efficient frontier is pushed 

forward when emerging market returns are plugged into the standard Markowitz (1959) 

framework and even further with the inclusion of African market returns. This is because of a 
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combination of low correlation and high expected return. I conclude that because African 

market returns cannot be completely characterised by the traditional mean-variance measures 

of the CAPM, application in these markets becomes problematic. 

Given the sample and the data problems highlighted and corrected for above, this chapter will 

analyse the alternative methodological issues relating to the research questions identified in 

Chapter 2 (literature review) – i.e. relating to the gaps in the literature. These gaps relate to the 

effects of liquidity on asset pricing in the African market, the role of conditional information 

in determining excess returns in the African market, the explanatory power of higher-order 

moments in the African market and the effect of survivorship bias on asset-pricing models in 

the African market. 

 

3.8.2 Multifactor models and the liquidity factor 

According to Levy (2010), the Sharpe-Lintner CAPM is still alive and well, despite the 

criticisms against it. Hence it will be a good starting point for investigating the important risk 

factors in the African market. 

The Sharpe-Lintner CAPM is denoted as 

𝐸(𝑅𝑖) − 𝑅𝑓 = [𝐸(𝑅𝑀) − 𝑅𝑓)]𝛽𝑖𝑀, 𝑖 = 1,… . , 𝑁. (3.1) 

 

According to the literature review (Sections 2.3 and 2.4), I expect differences between the 

developed and the African markets, as the literature suggests that African market returns may 

not be completely characterised by the traditional Sharpe-Lintner CAPM. Hence, the 

performance of the Fama and French (1992, 1996) model in explaining returns in the African 

market, as well as other multifactor models, will also be investigated. The Fama and French 

three-factor CAPM model is denoted as: 

𝐸(𝑅𝑖𝑡) − 𝑅𝑓𝑡 = 𝛽𝑖𝑀[𝐸(𝑅𝑀𝑡) − 𝑅𝑓𝑡] + 𝛽𝑖𝑠𝐸(𝑆𝑀𝐵𝑡) + 𝛽𝑖ℎ𝐸(𝐻𝑀𝐿𝑡) (3.2) 

The Carhart (1997) model is also analysed as there are tendencies for behavioural biases to be 

present in markets that are not fully developed, as seen in Section 2.2.6 of Chapter 2. Carhart 

(1997) includes momentum as measured in Jegadeesh and Titman (1993) in the Fama-French 

three-factor model as: 
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𝐸(𝑅𝑖𝑡) − 𝑅𝑓𝑡 = 𝛽𝑖𝑀[𝐸(𝑅𝑀𝑡) − 𝑅𝑓𝑡] + 𝛽𝑖𝑠𝐸(𝑆𝑀𝐵𝑡) + 𝛽𝑖ℎ𝐸(𝐻𝑀𝐿𝑡) + 𝛽𝑖𝑚𝐸(𝑈𝑀𝐷𝑡) (3.3) 

Where 𝐸(𝑅𝑖𝑡) − 𝑅𝑓𝑡 is the expected return on a portfolio in excess of the risk-free rate, 𝑅𝑀𝑡 −

 𝑅𝑓𝑡 is the excess return on a broad market portfolio, 𝑆𝑀𝐵𝑡 (small minus big) is the difference 

between the return on diversified portfolio of small stocks and that of large stocks, 𝐻𝑀𝐿𝑡 (high 

minus low) is the difference in return of a diversified portfolio of high and low book-to-market 

stocks, while 𝑈𝑀𝐷𝑡 (up minus down) is the difference between the return on diversified 

portfolio of winner stocks and loser stocks. 𝐸(𝑅𝑀𝑡) − 𝑅𝑓𝑡, 𝐸(𝑆𝑀𝐵𝑡), 𝐸(𝐻𝑀𝐿𝑡) and 𝐸(𝐻𝑀𝐿𝑡) 

are expected premiums and the betas are slopes in the time-series regression. 

However, within the African market Hearn and Piesse (2009) (and as also seen in Chapter 2, 

Section 2.4) specify the importance of including a measure of liquidity within the pricing 

model. They explain that significant bias in the beta is added through low variances and 

covariance between series, created through a high degree of price rigidity resulting from the 

presence of severe illiquidity problems in these markets. Bakaert et al. (2003) reveal that 

models that take liquidity into account outperform other models that incorporate only market 

risk factors in predicting returns. 

Following Hearn and Piesse (2009), a liquidity factor will augment the Carhart four-factor 

model, where the liquidity factor will account for the difference in return of a diversified 

portfolio of high illiquid stocks and very liquid stocks, (illiquid minus very liquid). 

The models are extended to test for the importance of liquidity by the IMV factor in a time-

series regression in a five-factor model. The five-factor model will be constructed using 

Carhart’s (1997) four-factor model and the additional factor capturing liquidity. This five-

factor model is consistent with a model of market equilibrium with five risk factors. Hence, 

performance will be estimated relative to the five-factor models as: 

𝐸(𝑅𝑖𝑡) − 𝑅𝑓𝑡 = 𝛽𝑖𝑀[𝐸(𝑅𝑀𝑡) − 𝑅𝑓𝑡] + 𝛽𝑖𝑠𝐸(𝑆𝑀𝐵𝑡) + 𝛽𝑖ℎ𝐸(𝐻𝑀𝐿𝑡) + 𝛽𝑖𝑚𝐸(𝑈𝑀𝐷𝑡)

+ 𝛽𝑖𝑝𝐸(𝐼𝑀𝑉𝑡) (3.4) 

where 𝐸(𝑅𝑀𝑡) − 𝑅𝑓𝑡, 𝐸(𝑆𝑀𝐵𝑡), 𝐸(𝐻𝑀𝐿𝑡), 𝐸(𝑈𝑀𝐷𝑡), 𝐸(𝐼𝑀𝑉𝑡) are expected premiums and 

the factor sensitivities or loading, 𝛽𝑖𝑀, 𝛽𝑖𝑠, 𝛽𝑖ℎ, 𝛽𝑖𝑚 and 𝛽𝑖𝑝, are the slopes in the time-series 

regression, 휀𝑖𝑡 is a random shock distributed IN(0,𝜎𝑖
2) 
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𝑅𝑖𝑡 − 𝑅𝑓𝑡 = 𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡 + 𝛽𝑖𝑝𝐼𝑀𝑉𝑡

+ 휀𝑖𝑡 (3.5) 

However, as highlighted in Lesmond (2005), it is quite difficult to define liquidity, let alone 

estimate it. The measures of liquidity available in the literature include those of Roll (1984), 

Lesmond et al. (1999), Amihud (2002), Jain (2002) and Lesmond (2005). 

Broadly, the measures of liquidity are dependent on firstly trading costs that are based on bid-

ask quotes. However, due to the frequent deviation of closing prices from the quotes resulting 

from consummation of trades at different pricing and sometimes at prices outside the quotes, 

these quotes are not always available for all time periods in all markets. This lack of 

information has led to the second class of estimators based on volume, specifically turnover 

and Amihud’s measure, in Amihud (2002). 

However, some problems arise with the use of turnover as it fails to account for cost per trade 

and also turnover is likely to increase during periods of credit crises when liquidity decreases, 

rather than decreasing to reflect this liquidity decease within the market, as Lesmond (2005) 

points out. The last liquidity estimators require only price information instead of volume 

information. This includes the estimators in Roll (1984), who uses an estimator of implied 

effective spread based on measuring the negative autocorrelation produced by bounces between 

the bid and ask quotes. Lesmond (2005) explains that this estimator should be positively related 

to the bid-ask spread. However, they highlight that sometimes the serial autocorrelation is 

positive, thereby invalidating the estimate. 

The liquidity measure includes the bid-ask spread liquidity measure of Lesmond (2005), which 

is shown as: 

𝑄𝑢𝑜𝑡𝑒𝑑 𝑠𝑝𝑒𝑎𝑑𝑀 =
1

2
[(

(𝐴𝑠𝑘𝑀 − 𝐵𝑖𝑑𝑀)

(𝐴𝑠𝑘 𝑀 + 𝐵𝑖𝑑𝑀)/2
) + (

(𝐴𝑠𝑘𝑀−1 − 𝐵𝑖𝑑𝑀−1)

(𝐴𝑠𝑘𝑀−1 + 𝐵𝑖𝑑𝑀−1)/2
)] (3.6) 

Bid-ask spreads that exceed 80% are trimmed, as these are potentially coding errors. 

The turnover measure of liquidity is shown in Liu (2006), where the liquidity measure of a 

security, 𝐿𝑀𝑥, is defined as the standardised, turnover-adjusted number of zero daily trading 

volume over the prior 𝑥 months (𝑥 = 1, 6, 12), represented as: 
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𝐿𝑀𝑥 = [(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑧𝑒𝑟𝑜 𝑑𝑎𝑖𝑙𝑦 𝑣𝑜𝑙𝑢𝑚𝑒𝑠 𝑖𝑛 𝑝𝑟𝑖𝑜𝑟 ×𝑚𝑜𝑛𝑡ℎ𝑠)  + 

1
𝑥
𝑚𝑜𝑛𝑡ℎ 𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟

𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑜𝑟
]

×
21𝑥

𝑁𝑜𝑇𝐷
 (3.7) 

 

where 𝑥month turnover is the turnover over the prior 𝑥 months. 𝑁𝑜𝑇𝐷 is the total number of 

trading days over the prior 𝑥 months and deflector is chosen such that 

0 <

1
(𝑥 𝑚𝑜𝑛𝑡ℎ 𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟)⁄

𝐷𝑒𝑓𝑙𝑎𝑐𝑡𝑜𝑟
< 1 (3.8) 

for all stocks. Due to variations in trading days, typically from 15 to 23 days per month, 

21x/NoTD standardises the number of monthly trading days to 21, making the liquidity 

measure comparable over time. 𝐿𝑀1 is the turnover-adjusted number of zero daily trading 

volume over the prior 21 trading days, with 1 reflecting the period of measurement. Equation 

(3.8) captures multiple dimensions of liquidity, placing considerable emphasis on trading 

speed, which up until now has been largely ignored in the literature. According to Liu (2006), 

this liquidity measure also reflects the bid-ask spread measure documented in Lesmond et al. 

(1999). A detailed step in estimating this measure is reported in Liu (2006). 

Amihud’s measure defines stock illiquidity as: 

𝑄𝑖𝑥 = 1/𝐷𝑖𝑥∑|𝑅𝑖𝑥𝑑|/𝑉𝑖𝑥𝑑,

𝐷𝑖𝑥

𝑡=1

 

where 𝐷𝑖𝑥 is the number of days for which data are available for stock 𝑖 in year 𝑥, |𝑅𝑖𝑥𝑑|/𝑉𝑖𝑥𝑑 

is the (dollar) trading volume on day 𝑑, 𝑅𝑖𝑥𝑑 is the return on stock 𝑖 on day 𝑑 of year 𝑥 and 

𝑉𝑖𝑥𝑑 is the daily volume in dollars respectively. As stated in Amihud (2002), the measure 

follows the concept of illiquidity in Kyle (1985) and the thinness measure in Silber (1975). 

As stated in Lesmond (2005), the most demonstrable indicator of overall liquidity still remains 

the bid-ask quote. Given that the bid-ask quotes required are available, this study will employ 

the bid-ask spread estimate for liquidity. 

 

(3.9) 
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3.8.3 Higher-order moments 

In their review of the robust measures of skewness and kurtosis, Kim and White (2004) 

highlight the following; assuming that 𝑦𝑡s are independent and identically disturbed with a 

cumulative distribution function 𝐹, in the process {𝑦𝑡}𝑡=1,2,…,𝑁 the coefficients of skewness and 

kurtosis (in its conventional form) for 𝑦𝑡are given by: 

𝑆𝐾1 = 𝐸 (
𝑦𝑡 − 𝜇

𝜎
)
3

, (3.10) 

𝐾𝑅1 =  𝐸 (
𝑦𝑡 − 𝜇

𝜎
)
4

− 3, (3.11) 

where 𝜎2 = 𝐸(𝑦𝑡 −  𝜇)
2 and 𝜇 = 𝐸(𝑦𝑡), and expectation 𝐸 is taken with respect to 𝐹. Given 

data {𝑦𝑡}𝑡=1,2,…,𝑁, 𝑆𝐾1 and 𝐾𝑅1 are usually estimated by the sample averages: 

𝑆�̂�1 = 𝑇
−1∑(

𝑦𝑡 − �̂�

�̂�
)
3𝑁

𝑡=1

, (3.12) 

𝐾𝑅1̂ = 𝑇−1  ∑(
𝑦𝑡 − �̂�

�̂�
)
4𝑁

𝑡=1

−  3 (3.13) 

 

where �̂�2 = 𝑇−1∑ (𝑦𝑡 − �̂�)
2𝑁

𝑡=1 , �̂� =  𝑇−1∑ 𝑦𝑡
𝑁
𝑡=1 . 

Using the GMM model estimator and a multivariate approach, and focusing on emerging 

markets, Hwang and Satchell (1999) proposed the use of the four-moment CAPM over the 

conventional mean-variance CAPM. This, they say, results from non-stationarity in emerging 

markets, due to the evolving degree of market integration, re-emerging and survivorship bias 

in data, bias related to the selection of country, significant non-economic factors such as 

political factors and the evolution from an emerging to a mature market. Chiao, Hung and 

Srivastava (2003) support this view and report that when the distribution of returns has a 

positive coskewness, investors expect a lower return. On the other hand, when it has a positive 

cokurtosis, they expect a higher return. They also show the importance of relative coskewness 

and cokurtosis risks over covariance risks in regards to return variation, insisting that this is 

particularly evident in the bull market subperiod. 
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Other authors who have investigated the limitations of the mean-variance approach include 

Arditti (1971), Jean (1971, 1973) and Arditti and Levy (1975), who explored the relationship 

between skewness and return of individual securities and portfolios, and Friend and Westerfield 

(1980), Simkowitz and Beedles (1978), Sears and Wei (1985), Barone-Adesi (1985), 

Chunhachinda et al. (1997), Lim (1989), Tan (1991) and Harvey and Siddique (1999, 2000), 

who investigated the importance of skewness in asset pricing. While Fama (1963) inferred that 

stock returns have fat tails, Sears and Wei (1988) insisted that ignoring the coskewness risk 

may bias estimates in risk-return trade-off tests. Fang and Lai (1997) find that investors are 

rewarded with higher expected returns for bearing systematic cokurtosis, covariance and 

coskewness risks. 

An even more interesting assessment has surfaced with Kim and White (2004) asking: “How 

useful are the conventional measures of skewness and kurtosis used in asset-pricing models?” 

This question, they insist, results from the use of averages, which are not robust, in the 

computation of skewness and kurtosis. They insist that in the presence of one or more large 

outliers, the values become arbitrarily large. However, they recognise that an apparently 

straightforward solution would be to eliminate the outliers from the data, but they maintain that 

removing outliers manually would be subjective and arbitrary. They thus insist on a more 

robust measure of skewness and kurtosis. An example of this is the use of median for location 

and interquartile range for dispersion (as they are quantile-based). Subsequently, a coefficient 

of skewness was developed by Bowley (1920) and its simplest form is represented as: 

𝑆𝐾2 = 
𝑄3  +   𝑄1 − 2𝑄2

𝑄3 − 𝑄1
 (3.14) 

where 𝑄1 = 𝐹
−1(0.25), 𝑄2 = 𝐹

−1(0.5), and 𝑄3 = 𝐹
−1(0.75) - (as 𝑄𝑖 is the 𝑖th quartile of 

𝑦𝑡). From the above, it is obvious that the Bowley coefficient of skewness is zero for any 

symmetric distribution. 𝑆𝐾2 of -1 corresponds to extreme left skewness, while 𝑆𝐾2 of 1 

corresponds to extreme right skewness, as the denominator 𝑄3 − 𝑄1 rescales the coefficient. 

Other modifications include the generalisation of the Bowley coefficient of skewness by 

Hinkley (1975) and a further modification of Hinkley’s coefficient by Groeneveld and Meeden 

(1984). 

As stated in Kim and White (2004), the conventional kurtosis 𝐾𝑅1 measure can be large when 

probability mass is concentrated either near the mean 𝜇 or in the tails of the distribution. This 

follows that 𝐾𝑅1 can be construed as a measure of a distribution dispersion around the two 
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values 𝜇 ±  𝜎. Resulting from this analysis, Moors (1988) developed a robust alternative to 

𝐾𝑅1: 

(𝐸7 − 𝐸5) + (𝐸3 − 𝐸1)

𝐸6 − 𝐸2
 (3.15) 

where 𝐸𝑖 = 𝐹
−1(𝑖 8⁄ ) for 𝑖 = 1,2,...,7, as 𝐸𝑖 is the 𝑖th octile. Other forms of this measure, which 

follow from Moore’s centred coefficient, include those of Hogg (1974) and Crow and Siddiqui 

(1967). 

However, the most popular measure of coskewness and cokurtosis still remains that of Kraus 

and Litzenberger (1976). This is largely due to the relative ease of application as seen in Chiao, 

Hung and Srivastava (2003). The Kraus and Litzenberger (1976) measure is: 

 

𝑆𝑖 = 𝛾𝑖 =
∑ [(𝑅𝑚𝑡 − �̅�𝑖𝑡)(𝑅𝑚𝑡 − �̅�𝑚𝑡)

2]−80
𝑡=1

∑ (𝑅𝑚𝑡 − �̅�𝑚𝑡)3
−80
𝑡=1

 (3.16) 

 

𝐾𝑖 = 𝛿𝑖 =
∑ [(𝑅𝑚𝑡 − �̅�𝑖𝑡)(𝑅𝑚𝑡 − �̅�𝑚𝑡)

3]−80
𝑡=1

∑ (𝑅𝑚𝑡 − �̅�𝑚𝑡)4
−80
𝑡=1

 (3.17) 

𝑅𝑖𝑡 and 𝑅𝑚𝑡 are the returns of asset 𝑖 (index returns) and the market, respectively, and �̅�𝑖𝑡 and 

�̅�𝑚𝑡 are the expected returns on asset 𝑖 and the expected market returns, respectively. This 

skewness and kurtosis measure follows the measures in Kraus and Litzenberger (1976) and 

Barone-Adesi (1985) designed to avoid the risk of spurious correlation between the systematic 

risks of the portfolio. 

However, as seen in Kim and White (2004) there may be an outlier problem with this measure. 

Hence the application of these measures can only be recommended along with a robust method 

of dealing with outliers. The method for dealing with the outlier problem is highlighted in 

Section 3.9 below. 
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3.8.4 CAPM with structural breaks 

The stable relationship between expected return and beta has been seriously questioned in 

Garcia and Ghysels (1998), who argue that this relationship may not hold due to the presence 

of structural breaks. This will mean that I need not always reject or accept the CAPM for the 

whole period as the single possible result, as the structural change modelling strategy allows 

for different dynamic behaviour among different regimes. The structural change model to be 

employed in this research will mimic the models in Bai and Perron (2003) and Huang and 

Cheng (2003). 

The following multiple linear regression will be specified to have (𝑚 + 1 regimes) as: 

𝑦𝑡 = 𝑤𝑡
′ ∩ +𝑧𝑡

′𝛿𝑗 + 𝑢𝑡 ,   𝑡 = 𝑇𝑗−1 + 1,… , 𝑇𝑗 (3.18) 

for 𝑗 = 1,… ,𝑚 + 1. 𝑦𝑡 is the observed dependent variable at 𝑡, 𝑤𝑡 (𝑣×1) and 𝑧𝑡 (𝑞×1) are 

vectors of the explanatory variables with corresponding coefficients ∩ and 𝛿𝑗, (𝑗 = 1,… ,𝑚 +

1), and the disturbance term 𝑢𝑡 . The coefficient vector 𝛽 is not subject to shift and is estimated 

using the whole sample; hence this model is that of partial structural change. A pure structural 

change model is obtained where all parameters subject to change when 𝑝 = 0. The indices 

(𝑇1, … , 𝑇𝑚), or the break points (𝑇𝑗) = (𝑇1, … , 𝑇𝑚)
′ are explicitly treated as unknown (the 

convention 𝑇0 = 0 and 𝑇𝑚+1 = 𝑇). 

To obtain our structural change CAPM, adjustments need to be made to Equation 3.18 as it is 

a very general setup. To make the adjustments I set 𝑝 = 0 and redefine 𝑦𝑡 = 𝑟𝑡, 𝑧𝑡 = (1, 𝑟𝑚𝑡)
′, 

and 𝛿𝑗 = (𝛼𝑗, 𝛽𝑗)′, hence Equation 3.18 can be written as: 

𝑟𝑡 = 𝑧𝑡
′𝛿𝑗 + 𝑢𝑡  (3.19) 

The purpose here is to estimate the unknown parameters 𝛼𝑗 and 𝛽𝑗 for 𝑗 = 1,2, . . , 𝑚 + 1, and 

the break points based on 𝑇 observations on 𝑟𝑡 and 𝑟𝑚𝑡. All parameters are subject to shifts 

resulting in a pure structural change model. 

Estimation of the structural change model will follow the process detailed in Huang and Cheng 

(2003), following the works of Hansen (2000) and Bai and Perron (2003). 
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3.8.4.1 Test statistics for multiple structural changes 

Three 𝐹 −related test statistics for multiple breaks have been proposed by Bai and Perron 

(1998, 2003). A brief discussion of the test statistics is as follows. 

 

A test of no break versus a fixed number of breaks 

As stated in Bai and Perron (1998, 2003), I consider the sup F type test of no structural break 

(𝑚 = 0) against the alternative hypothesis of 𝑚 = 𝑘 breaks. Let (𝑇1, … , 𝑇𝑘) be a partition such 

that 𝑇𝑖 = [𝑇𝜆𝑖] and 𝑖 = 1,… , 𝑘. Let 𝑅 be the conventional matrix such (𝑅𝛿)’ = (𝛿1
′ −

𝛿2
′ , … , 𝛿𝑘

′ − 𝛿𝑘+1
′ )’ 

Define: 

𝐹𝑇
∗(𝜆1, … , 𝜆𝑘; 𝑞) =  

1

𝑇
(
𝑇 − (𝐾 + 1)𝑞 − 𝑝

𝑘𝑞
) 𝛿′𝑅′(𝑅�̂�(𝛿)𝑅′)

−1
𝑅𝛿, (3.20) 

 

where �̂�(𝛿) is an estimate of the variance covariance matrix of 𝛿 that is robust to serial 

correlation and heteroscedasticity; i.e., a constant estimate of: 

𝑉(𝛿) = 𝑝lim𝑇(�̅�′�̅�)−1�̅�′Ω�̅�(�̅�′�̅�)−1 (3.21) 

𝐹𝑇
∗ is just the conventional F-statistic for testing 𝛿1 = ⋯ = 𝛿𝑘+1 against 𝛿1  ≠  𝛿𝑖+1 for some 

𝑖 given the partition (𝑇1, … , 𝑇𝐾). The test is: 

𝑠𝑢𝑝𝐹𝑇(𝑘; 𝑞) = 𝐹𝑇(�̂�1, … , �̂�𝑘; 𝑞) (3.22) 

where (�̂�1, … , �̂�𝑘) minimises the global effect of squared residuals under the specified 

trimming. This is much simpler to construct, while still being asymptotically equivalent to 

maximising the F test in Equation 3.20. This is because even in the presence of serial 

correlation, the estimated break dates are still consistent. 

 

Double maximum tests 

Bai and Perron (1998) introduced the double maximum test, which is made up of two tests of 

null hypothesis of no structural break against an unknown number of breaks giving some upper 

bound 𝑀. The first test is an equal-weighted version as follows: 
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𝑈𝐷𝑚𝑎𝑥𝐹𝑇(𝑀, 𝑞) =  
𝑚𝑎𝑥

1 ≤ 𝑚 ≤ 𝑀
𝐹𝑇(�̂�1, … , �̂�𝑘; 𝑞) (3.23) 

The second test applies weights to the individual tests such that the marginal 𝑝 values are equal 

across values of 𝑚 and is denoted as: 

𝑊𝐷𝑚𝑎𝑥𝐹𝑇(𝑀, 𝑞) =  
𝑚𝑎𝑥

1 ≤ 𝑚 ≤ 𝑀

𝑐(𝑞, 𝛼, 1)

𝑐(𝑞, 𝛼,𝑚)
𝐹𝑇(�̂�1, … , �̂�𝑘; 𝑞) (3.24) 

where 𝑐(𝑞, 𝛼,𝑚) represents the asymptotic critical value of the test 𝐹𝑇(�̂�1, … , �̂�𝑘; 𝑞). 

𝑊𝐷𝑚𝑎𝑥𝐹𝑇(𝑀, 𝑞) depends on the significance level chosen since the weights themselves 

depend on 𝛼. The weights are defined as 𝑎1 = 1 and 𝑎𝑚 = 𝑐(𝑞, 𝛼, 1)/𝑐(𝑞, 𝛼,𝑚). 

 

A test of 𝓵 versus 𝓵 + 𝟏 breaks. 

As an alternative, Bai and Perron (1998) introduced a test for ℓ versus ℓ + 1 breaks, denoted 

as 𝑠𝑢𝑝 𝐹𝑇 ( ℓ + 1|ℓ). The method amounts to the application of (ℓ + 1) tests of the null 

hypothesis of no structural change. The test apples to each segment containing the observations 

�̂�𝑖−1 to �̂�𝑖 for 𝑖 = 1,… , ℓ + 1 where �̂�0 = 0 and �̂�ℓ+1 = 𝑇. They conclude that a rejection in 

favour of a model with (ℓ + 1) breaks, if the overall minimal value of the sum of squared 

residuals is significantly smaller than the sum of residuals from the ℓ break model. The break 

date thus selected is the one associated with this overall maximum. 

In conclusion, Bai and Perron (2003) document that a useful strategy is to carry out the WD 

max or UD max test to investigate the presence of at least one break. If a break exists following 

these tests, a sequential examination of the sup𝐹(𝑙 + 1 | 𝑙) statistics constructed using global 

minimisers for the break dates can be used to decide the number of breaks. 

 

3.8.4.2 Results of structural break tests 

I follow the methods identified above to perform structural break tests on the market indices 

within the emerging and frontier African market countries. This method is essential as it allows 

us to identify shifts in volatility endogenously in contrast to methods where regime shifts are 

imposed on a priori grounds. The structural break tests are important given the criticisms and 

issues associated with the unconditional CAPM as identified in Section 2.5 in Chapter 2. As 

identified earlier, there are two events that I expect will lead to regime shift in the return-
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generating process; however, there may also be some unexpected breaks that do not seem 

obvious when I observe the time-series plots of the data. I therefore develop two hypotheses to 

account for all breaks. 

Hypothesis 1 

There is NO structural break in the market indices of the emerging African markets. 

Hypothesis 2 

There is NO structural break in the market indices of the frontier African markets. 

The structural break methodology adopted in this section is the Bai-Perron test as examined 

earlier. I test the stability of the market indices in the emerging African market (South Africa, 

Egypt and Morocco) and the frontier African market (Botswana, BRVM in Cote d’Ivoire, 

Kenya, Nigeria and Tunisia). I apply Equation 3.22 and the double maximum tests (unweighted 

max-F (UDmax) and weighted max-F (WDmax), as in Equation 3.23 and 3.24. I specify the 

maximum number of breaks as five, with trimming of 0.15. The test statistics employ HAC 

covariances (quadratic-spectral kernel, Andrews bandwidth) and allow heterogeneous error 

distribution across breaks. The results for the tests are shown below. 

Emerging African market 

Table 3.13 Result for the test of no break versus a fixed number of breaks for the South African 

market index 34 

Estimated number of breaks 5 
Maximum number of breaks 5 
Breaks 26/8/2005, 20/4/2007, 29/1/2010, 23/9/2011, 

17/5/2013 

 

The following events occurred around the break dates: 

26/8/2005 – Week after strike action by the South African Municipal Workers Union over 

wage dispute. 

20/4/2007 – The JSE TradElect system (electronic trading) replaced the JSE SETS system. 

29/1/2010 – South Africa officially submitted its targets to reduce emissions by 34% by 2020 and 42% by 2025 

to the Copenhagen Accord.35 

23/9/2011 – Statement from the monetary policy committee of the South African reserve bank highlighting a 

significant increase in downside risks to the global and domestic growth prospects.36 

17/5/2013 – Figures were released on the growth of the economy, indicating that the economy slowed sharply in 

the first three months of the year when compared to the previous quarter.37 

                                                 
34 Result output is shown in chapter appendix A3.2a and the actual, fitted and residual graph is shown in chapter appendix A3.2b 
35 http://www.ieta.org/resources/Resources/Case_Studies_Worlds_Carbon_Markets/south_africa_case_study_may2015.pdf 
36 https://www.resbank.co.za/Lists/News%20and%20Publications/Attachments/4899/01Full%20Quarterly%20Bulletin.pdf 
37 http://www.bbc.co.uk/news/business-22690531 

http://www.ieta.org/resources/Resources/Case_Studies_Worlds_Carbon_Markets/south_africa_case_study_may2015.pdf
https://www.resbank.co.za/Lists/News%20and%20Publications/Attachments/4899/01Full%20Quarterly%20Bulletin.pdf
http://www.bbc.co.uk/news/business-22690531
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Table 3.14 Result for the test of no break versus a fixed number of breaks for the Egyptian market 

index 38 

Estimated number of breaks 3 
Maximum number of breaks 5 
Breaks 19/8/2005, 6/4/2007, 21/11/2008 

 

The following events occurred around the break dates: 

19/8/2005 – Week following a series of terrorist attacks in the Egyptian resort city of Sharm el-Sheikh. 

6/4/2007 – This followed continued improvement in the Egyptian economy, highlighted by the addition of 2.4 

million jobs as at the end of March 2007, from the end of 2004. This also followed strong levels of FDI and rising 

equity and real estate prices, leading to a peak in CPI of 12.8% in 2007.39 

21/11/2008 – This relates to contagion from the financial crisis. 

 

Table 3.15 Result for the test of no break versus a fixed number of breaks for the Moroccan market 

index 40 

Estimated number of breaks 4 
Maximum number of breaks 5 
Breaks 26/8/2005, 20/4/2007, 12/12/2008, 13/4/2012 

 

The following events occurred around the break dates: 

 

26/8/2005 – Western Sahara’s exiled Polisario Front independence movement has released all of its remaining 

Moroccan prisoners of war, a total of 404.41 

20/4/2007 – This followed a series of bombings in Casablanca on 11 March, 10 April and 14 April. 

12/12/2008 – The financial crisis period. 

13/4/2012 – Morocco aids drought-stricken farmers.42 

17/11/2006 – Hotel shortage threatens Morocco’s tourism industry. 

 

Frontier African market 

Table 3.16 Result for the test of no break versus a fixed number of breaks for the Botswanan 

market index 43 

Estimated number of breaks 5 
Maximum number of breaks 5 
Breaks 26/8/2005, 20/4/2007, 12/12/2008, 22/7/2011, 

22/3/2013 

 

The following events occurred around the break dates: 

 

26/8/2005 – Worries about high inventories cast a shadow over the main diamond markets, as traders worried 

about the potential impact on polished prices.44 

                                                 
38 Result output is shown in chapter appendix A3.4a and the actual, fitted and residual graph is shown in chapter appendix A3.4b 
39 https://www.imf.org/external/np/ms/2007/091207.htm 
40 Result output is shown in chapter appendix A3.6a and the actual, fitted and residual graph is shown in chapter appendix A3.6b 
41 http://edition.cnn.com/2005/WORLD/europe/08/18/morocco.release/ 
42 http://www.moroccoworldnews.com/2012/04/34981/morocco-aids-drought-stricken-farmers/ 
43 Result output is shown in chapter appendix A3.8a and the actual, fitted and residual graph is shown in chapter appendix A3.8b 
44 https://www.polishedprices.com/go/market-news/weekly-market-reports~3165 

https://www.imf.org/external/np/ms/2007/091207.htm
http://edition.cnn.com/2005/WORLD/europe/08/18/morocco.release/
http://www.moroccoworldnews.com/2012/04/34981/morocco-aids-drought-stricken-farmers/
https://www.polishedprices.com/go/market-news/weekly-market-reports~3165
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20/4/2007 – The methodology for calculating the market indices was changed from a simple market-cap 

weighted calculation to a volume-adjusted market cap as a result of a new upward trend.45 

12/12/2008 – Drop in the operation of the personal transport section index, which was attributed to the fall in 

retail prices of both diesel and petrol by P1.0 per litre.46 

22/7/2011– Botswana to ban wildlife hunting, which could affect tourism.47 

22/3/2013 – Poor economic data announced.  
 

Table 3.17 Result for the test of no break versus a fixed number of breaks for the BRVM - Cote 

d’Ivoire market index 48 

Estimated number of breaks 2 
Maximum number of breaks 5 
Breaks 13/1/2006, 17/5/2013 

 

The following events occurred around the break dates: 

 

13/1/2006 – Ivory Coast toxic waste dump. 

17/5/2013 – A pledge by the Ivorian government to pursue a 10-year poultry farming revitalisation.49 

 

 

Table 3.18 Result for the test of no break versus a fixed number of breaks for the Kenyan market 

index 50 

Estimated number of breaks 3 
Maximum number of breaks 5 
Breaks 16/1/2009, 29/1/2010, 29/3/2013 

 

The following events occurred around the break dates: 

 

16/1/2009 – Poor harvest in Kenya.51 

29/1/2010 – Kenya to improve the handicraft sector.52 

29/3/2013 – Kenyatta wins the presidential election.53  
 

Table 3.19 Result for the test of no break versus a fixed number of breaks for the Nigerian market 

index 54 

Estimated number of breaks 5 
Maximum number of breaks 5 
Breaks 26/8/2005, 20/4/2007, 12/12/2008, 27/5/2011, 

8/1/2013 

 

The following events occurred around the break dates: 

                                                 
45 http://allafrica.com/stories/200708070873.html 
46 http://www.sundaystandard.info/december-inflation-falls-line-expectation 

47 http://goodnature.nathab.com/botswana-to-ban-wildlife-hunting/ 
48 Result output is shown in chapter appendix A3.10a and the actual, fitted and residual graph is shown in chapter appendix A3.10b 
49 http://www.ghanaweb.com/GhanaHomePage/NewsArchive/Injaro-invests-in-C-te-d-Ivoire-poultry-sector-274284 
50 Result output is shown in chapter appendix A3.12a and the actual, fitted and residual graph is shown in chapter appendix A3.12b 
51 http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=36683 
52 http://www.capitalfm.co.ke/business/2010/01/kenya-to-revamp-handicraft-sector/ 
53 http://www.ft.com/cms/8c6320a8-7c4b-11e2-99f0-00144feabdc0.html?ft_site=falcon&desktop=true 
54 Result output is shown in chapter appendix A3.14a and the actual, fitted and residual graph is shown in chapter appendix A3.14b 

http://allafrica.com/stories/200708070873.html
http://www.sundaystandard.info/december-inflation-falls-line-expectation
http://goodnature.nathab.com/botswana-to-ban-wildlife-hunting/
http://www.ghanaweb.com/GhanaHomePage/NewsArchive/Injaro-invests-in-C-te-d-Ivoire-poultry-sector-274284
http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=36683
http://www.capitalfm.co.ke/business/2010/01/kenya-to-revamp-handicraft-sector/
http://www.ft.com/cms/8c6320a8-7c4b-11e2-99f0-00144feabdc0.html?ft_site=falcon&desktop=true
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26/8/2005 – Oil bid round records largest turnout of players.55 

20/4/2007 – Disputed general elections held56 

12/12/2008 – Supreme Court upheld the results of the presidential election57 

27/5/2011 – Presidential elections held58 

18/1/2013 – Nigerian economy estimated to grow at 6.8%59 

 

Table 3.20 Result for the test of no break versus a fixed number of breaks for the Tunisian market 

index 60 

Estimated number of breaks 5 
Maximum number of breaks 5 
Breaks 21/4/2006, 1/2/2008, 18/9/2009, 23/9/2011, 

10/5/2013 

 

The following events occurred around the break dates: 

 

21/4/2006 – Canadex’s Tunisian Oil test well reached total depth61 

1/2/2008 – Ranked 32nd for competitiveness for 2007-2008 by the World Economic Forum62 

18/9/2009 – Election in an atmosphere of repression63 

23/9/2011 – Lead-up to parliamentary elections64 

10/5/2013 – Poll numbers showed as significant in the political landscape, with Nidaa being more popular than 

Ennahda.65 

 

I apply the test of 𝓵 versus 𝓵 + 𝟏 breaks as identified in Section 3.8.4.1. I use a sequential 

evaluation method and specify the maximum number of breaks as five with trimming of 0.15. 

Test statistics employ HAC covariances (Quadratic-Spectral Kernel, Andrews bandwidth) and 

allow heterogeneous error distribution across breaks. 

Emerging African market 

Table 3.21 Result for a test of 𝓵 versus 𝓵 + 𝟏 breaks for the South African market index 66 

Estimated number of breaks 3 
Maximum number of breaks 5 
Breaks 22/9/2006, 1/10/2010, 4/1/2013 

 

                                                 
55 http://www.nnpcgroup.com/PublicRelations/NNPCinthenews/tabid/92/articleType/ArticleView/articleId/230/2005-Oil-Bid-Round-

Records-Largest-Turnout-Of-Players.aspx 
56 http://www.npr.org/templates/story/story.php?storyId=9766502 
57 http://www.state.gov/outofdate/bgn/nigeria/200317.htm 

 
58 http://www.usip.org/sites/default/files/PB%20103.pdf 
59 http://www.bloomberg.com/news/articles/2013-02-18/nigerian-economy-to-grow-6-8-in-2013-inflation-to-average-9-8- 
60 Result output is shown in chapter appendix A3.16a and the actual, fitted and residual graph is shown in chapter appendix A3.16b 
61 http://www.oilandgasinternational.com/html/login.aspx?ReturnUrl=%2fdepartments%2fexploration_discoveries%2fapr06_candax2.aspx 
62 http://www.nomarmiteintunisia.co.uk/december2007.htm 
63 https://www.hrw.org/news/2009/10/23/tunisia-elections-atmosphere-repression 
64 http://www.bbc.co.uk/news/world-africa-14107720 
65 http://www.al-monitor.com/pulse/politics/2013/05/tunisian-poll-ennahda-popularity-declines-nidaa-tunis.html 
66 Result output is shown in chapter appendix A3.3a and the actual, fitted and residual graph is shown in chapter appendix A3.3b 

http://www.nnpcgroup.com/PublicRelations/NNPCinthenews/tabid/92/articleType/ArticleView/articleId/230/2005-Oil-Bid-Round-Records-Largest-Turnout-Of-Players.aspx
http://www.nnpcgroup.com/PublicRelations/NNPCinthenews/tabid/92/articleType/ArticleView/articleId/230/2005-Oil-Bid-Round-Records-Largest-Turnout-Of-Players.aspx
http://www.npr.org/templates/story/story.php?storyId=9766502
http://www.state.gov/outofdate/bgn/nigeria/200317.htm
http://www.usip.org/sites/default/files/PB%20103.pdf
http://www.bloomberg.com/news/articles/2013-02-18/nigerian-economy-to-grow-6-8-in-2013-inflation-to-average-9-8-
http://www.oilandgasinternational.com/html/login.aspx?ReturnUrl=%2fdepartments%2fexploration_discoveries%2fapr06_candax2.aspx
http://www.nomarmiteintunisia.co.uk/december2007.htm
https://www.hrw.org/news/2009/10/23/tunisia-elections-atmosphere-repression
http://www.bbc.co.uk/news/world-africa-14107720
http://www.al-monitor.com/pulse/politics/2013/05/tunisian-poll-ennahda-popularity-declines-nidaa-tunis.html
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The following occurred around the break dates: 

22/9/2006 – A Sasol Tigers Aero L-29 Delfin crashed into Table Bay during a validation flight for the Africa 

Aerospace and defence air show. 

1/10/2010 – South Africa’s reserve bank’s monetary policy committee (MPC) reduced the repurchase rate to 6%, 

with banks’ prime overdraft rate at 9.5%, the lowest in three decades.67 

4/1/2013 –The week before the downgrade of South Africa’s long-term foreign currency issuer Default Rating 

from BBB+ to BBB and long-term local currency IDR from A to BBB+ by Fitch Group. 

Table 3.22 Result for a test of 𝓵 versus 𝓵 + 𝟏 breaks for the Egyptian market index 68 

Estimated number of breaks 1 
Maximum number of breaks 5 
Breaks 19/8/2005 

 

The following event occurred around the break date: 

19/8/2005 –Week following a series of terrorist attacks in the Egyptian resort city of Sharm el-Sheikh. 

 

Table 3.23 Result for a test of 𝓵 versus 𝓵 + 𝟏 breaks for the Moroccan market index. 69 

Estimated number of breaks 2 
Maximum number of breaks 5 
Breaks 17/11/2006, 6/4/2012 

 

The following events occurred around the break date: 

 

17/11/2006 – Hotel shortage threatens Morocco’s tourism industry 

6/4/2012 – “Turnover reached MAD 834.4m (USD 98.7m), significantly more than last week’s MAD 441.4m and 

the six-month average of MAD 689.5m. The MORALSI is now -3.4% weaker for the year (-2.3% in USD terms) 

with total market capitalisation at USD 58.4bn.”70 

 

Frontier African market 

Table 3.24 Result for a test of 𝓵 versus 𝓵 + 𝟏 breaks for the Botswanan market index71 

Estimated number of breaks 3 
Maximum number of breaks 5 
Breaks 13/10/2006, 12/12/2008, 15/3/2013 

 

The following events occurred around the break date: 

 

13/10/2006 – Improvements in the diamonds and torsion sectors. 

12/12/2008 – Drop in the operation of personal transport section index, which was attributed to the fall in retail 

prices of both diesel and petrol by P1.0 per litre.72 

15/3/2013 - Poor economic data announced. 

                                                 
67 http://www.gov.za/remarks-release-2010-annual-economic-report-and-september-2010-quarterly-bulletin-south-african 
68 Result output is shown in chapter appendix A3.5a and the actual, fitted and residual graph is shown in chapter appendix A3.5b 
69 Result output is shown in chapter appendix A3.7a and the actual, fitted and residual graph is shown in chapter appendix A3.7b 
70 http://www.afribiz.info/content/2012/morocco-stock-market-commentary-week-ending-april-6-2012/ 
71 Result output is shown in chapter appendix A3.9a and the actual, fitted and residual graph is shown in chapter appendix A3.9b 
72 http://www.sundaystandard.info/december-inflation-falls-line-expectation 

http://www.gov.za/remarks-release-2010-annual-economic-report-and-september-2010-quarterly-bulletin-south-african
http://www.afribiz.info/content/2012/morocco-stock-market-commentary-week-ending-april-6-2012/
http://www.sundaystandard.info/december-inflation-falls-line-expectation
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Table 3.25 Result for a test of 𝓵 versus 𝓵 + 𝟏 breaks for the BRVM market index. 73 

Estimated number of breaks 5 
Maximum number of breaks 5 
Breaks 2/12/2005, 20/7/2007, 6/3/2009, 22/10/2010, 

1/3/2013 

 

The following events occurred around the break date: 

 

2/12/2005 – Anti-money laundering bill passed into law.74 

20/7/2007 – Initiation of the emergency post-conflict assistance project75 

6/3/2009 – 3.8% increase in GDP 

22/10/2010 – First round of the violent elections in Ivory Coast. 

1/3/2013 - Announced local elections set for 21 April; opposition Ivorian Popular Front on 15 Feb said party will 

boycott polls.76 

Table 3.26 Result for a test of 𝓵 versus 𝓵 + 𝟏 breaks for the Kenyan market index.77 

Estimated number of breaks 3 
Maximum number of breaks 5 
Breaks 16/1/2009, 29/1/2010, 29/3/2013 

 

The following events occurred around the break date: 

 

16/1/2009 – Poor harvest in Kenya.78 

29/1/2010 – Kenya to improve the handicraft sector.79 

29/3/2013 - Kenyatta wins the presidential election.80 

Table 3.27 Result for a test of 𝓵 versus 𝓵 + 𝟏 breaks for the Nigerian market index81 

Estimated number of breaks 3 
Maximum number of breaks 5 
Breaks 9/2/2007, 31/10/2008, 25/1/2013 

 

The following events occurred around the break date: 

 

9/2/2007 – Anambra state governor handed over following court verdict 

31/10/2008 – Central Bank Governor gave a speech on the financial crisis82 

25/1/2013 – Nigerian economy estimated to grow at 6.8%83 

Table 3.28 Result for a test of 𝓵 versus 𝓵 + 𝟏 breaks for the Tunisian market index84 

Estimated number of breaks 2 
Maximum number of breaks 5 
Breaks 27/10/2006, 4/9/2009 

 
The following events occurred around the break date: 

                                                 
73 Result output is shown in chapter appendix A3.11a and the actual, fitted and residual graph is shown in chapter appendix A3.11b 
74 http://www.anti-moneylaundering.org/africa/Ivory_Coast.aspx 
75 http://www.worldbank.org/projects/P082817/emergency-post-conflict-assistance-project?lang=en&tab=overview 
76 http://www.crisisgroup.org/en/publication-type/crisiswatch/crisiswatch-database.aspx?CountryIDs=%7BACB2D1F7-8CB1-432E-ABFB-

76436AE72921%7D 
77 Result output is shown in chapter appendix A3.13a and the actual, fitted and residual graph is shown in chapter appendix A3.13b 
78 http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=36683 
79 http://www.capitalfm.co.ke/business/2010/01/kenya-to-revamp-handicraft-sector/ 
80 http://www.ft.com/cms/8c6320a8-7c4b-11e2-99f0-00144feabdc0.html?ft_site=falcon&desktop=true 
81 Result output is shown in chapter appendix A3.15a and the actual, fitted and residual graph is shown in chapter appendix A3.15b 
82 http://www.cenbank.org/documents/speeches.asp?beginrec=41&endrec=60 
83 http://www.bloomberg.com/news/articles/2013-02-18/nigerian-economy-to-grow-6-8-in-2013-inflation-to-average-9-8- 
84 Result output is shown in chapter appendix A3.17a and the actual, fitted and residual graph is shown in chapter appendix A3.17b 

http://www.worldbank.org/projects/P082817/emergency-post-conflict-assistance-project?lang=en&tab=overview
http://www.crisisgroup.org/en/publication-type/crisiswatch/crisiswatch-database.aspx?CountryIDs=%7BACB2D1F7-8CB1-432E-ABFB-76436AE72921%7D
http://www.crisisgroup.org/en/publication-type/crisiswatch/crisiswatch-database.aspx?CountryIDs=%7BACB2D1F7-8CB1-432E-ABFB-76436AE72921%7D
http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=36683
http://www.capitalfm.co.ke/business/2010/01/kenya-to-revamp-handicraft-sector/
http://www.ft.com/cms/8c6320a8-7c4b-11e2-99f0-00144feabdc0.html?ft_site=falcon&desktop=true
http://www.cenbank.org/documents/speeches.asp?beginrec=41&endrec=60
http://www.bloomberg.com/news/articles/2013-02-18/nigerian-economy-to-grow-6-8-in-2013-inflation-to-average-9-8-
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27/10/2006 – Tunisia signed the United Nations convention against corruption85 

4/9/2009 – Election in an atmosphere of repression86 

 

I reject the null hypothesis of no structural break, as each one of the series identified had at 

least one break based on both the test of no break versus a fixed number of breaks and the test 

of ℓ versus ℓ + 1 breaks. I also observe that the breaks identified vary between the indices and 

even between the methods used. In the emerging African market, the test of no break versus a 

fixed number of breaks identified more break points than the test of ℓ versus ℓ + 1 breaks. This 

is similar in the finding in the frontier African market except for the Cote d’Ivoire (BRVM) 

market index, where the number of breaks for the test of no break versus a fixed number of 

breaks is two, while the test of ℓ versus ℓ + 1 breaks identified five breaks. Overall, this shows 

a potential for the emerging and frontier African indices formed to have significant structural 

changes. 

The timing of the breaks indicates that volatility in the African markets differs considerably 

and appears to reflect country-specific developments. The breaks within these markets are also 

more frequent than one would expect when compared to the developed markets, as noted in 

McMillan and Thupayagale (2011). This is obviously due to the relative newness of these 

markets and problems of illiquidity and thin trading, and as a consequence are potentially more 

volatile than equity markets in industrialised economies. The frequent regime changes have 

also been reported in McMillan and Thupayagale (2011) within the African market. This does, 

however, increase the case for the incorporation of breaks in the unconditional variance at the 

very least, as identified in McMillan and Thupayagale (2011). 

This indication of the instability of the structure of the series will put in doubt the assumption 

of constant beta in the unconditional CAPM. This is supported by Jagannathan and Wang 

(1996), who insist on a time-varying relative risk due to cash flow variations resulting from 

business cycles and the degree of a firm’s financial leverage. 

The Chow tests for parameter stability are further carried out on the index returns of the South 

African market, the emerging African market, the emerging African market excluding South 

Africa and the frontier African market. These are done using two break points: the start of the 

2008 financial crisis (5/9/2008) and the start of the Arab Spring (14/1/2011). I also employ 

                                                 
85 https://www.unodc.org/unodc/en/treaties/CAC/signatories.html 
86 https://www.hrw.org/news/2009/10/23/tunisia-elections-atmosphere-repression 

https://www.unodc.org/unodc/en/treaties/CAC/signatories.html
https://www.hrw.org/news/2009/10/23/tunisia-elections-atmosphere-repression
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CUSUM tests87 (following Brown, Durbin and Evans, 1975) and the CUSUM of squared tests88 

(following Lu, Maekawa and Lee, 2008) to identify any break points not indicated in the Chow 

test (reported in the chapter appendix). This is done as there may be some delayed impact of 

these events on the indices. The null hypothesis for each test is: no breaks at specified 

breakpoints. 

Table 3.29 Chow test with break point at 5/9/2008 for the returns on the South African market 

index 
     
     F-statistic 1.858819  Prob. F(1,573) 0.1733 

Log likelihood ratio 1.862288  Prob. Chi-square(1) 0.1724 

Wald statistic  1.858819  Prob. Chi-square(1) 0.1728 

     
     
 

Table 3.30 Chow test with break point at 14/1/2011 for the returns on the South African market 

index89 
     
     F-statistic 1.221245  Prob. F(1,573) 0.2696 

Log likelihood ratio 1.224203  Prob. Chi-square(1) 0.2685 

Wald statistic  1.221245  Prob. Chi-square(1) 0.2691 

     
     

 

Table 3.31 Chow test with break point at 5/9/2008 for the returns on the emerging African market 

index 
     
     F-statistic 11.42847  Prob. F(1,573) 0.0008 

Log likelihood ratio 11.35549  Prob. Chi-square(1) 0.0008 

Wald statistic  11.42847  Prob. Chi-square(1) 0.0007 

     
     

 

Table 3.32 Chow test with break point at 14/1/2011 for the returns on the emerging African market 

index90 
     
     F-statistic 4.991198  Prob. F(1,573) 0.0259 

Log likelihood ratio 4.986931  Prob. Chi-square(1) 0.0255 

Wald statistic  4.991198  Prob. Chi-square(1) 0.0255 

     
     
Table 3.33 Chow test with break point at 5/9/2008 for the returns on the emerging African market 

excluding South Africa index 
     
     F-statistic 13.16191  Prob. F(1,573) 0.0003 

Log likelihood ratio 13.05844  Prob. Chi-square(1) 0.0003 

Wald statistic  13.16191  Prob. Chi-square(1) 0.0003 

     
     
 

                                                 
87 The CUSUM test (Brown, Durbin, and Evans, 1975) is based on the cumulative sum of the recursive residuals. This option plots the 

cumulative sum together with the 5% critical lines. The test finds parameter instability if the cumulative sum goes outside the area between 

the two critical lines. 
88 The CUSUM of squares test (Brown, Durbin, and Evans, 1975) provides a plot of the test statistic 𝑆𝑡 against time 𝑡 and the pair of 5 percent 

critical lines. As with the CUSUM test, movement outside the critical lines is suggestive of parameter or variance instability. 
89 Test results for CUSUM test and CUSUM of squared test on the South African asset portfolio returns are in appendix chapter A3.18 and 

A3.19 respectively. 
90 Test results for CUSUM test and CUSUM of squared test on the Emerging African asset portfolio returns are in appendix chapter A3.20 
and A3.21 respectively. 
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Table 3.34 Chow test with break point at 14/1/2011 for the returns on the emerging African market 

excluding South Africa index91 
     
     F-statistic 5.079758  Prob. F(1,573) 0.0246 

Log likelihood ratio 5.075026  Prob. Chi-square(1) 0.0243 

Wald statistic  5.079758  Prob. Chi-square(1) 0.0242 

     
     
 

Table 3.35 Chow test with break point at 5/9/2008 for the returns on the frontier African market 

index 
     
     F-statistic 5.294851  Prob. F(1,573) 0.0217 

Log likelihood ratio 5.288933  Prob. Chi-square(1) 0.0215 

Wald statistic  5.294851  Prob. Chi-square(1) 0.0214 

     
     
 

Table 3.36 Chow test with break point at 14/1/2011 for the returns on the frontier African market 

index92 
     
     F-statistic 0.516773  Prob. F(1,573) 0.4725 

Log likelihood ratio 0.518343  Prob. Chi-square(1) 0.4715 

Wald statistic  0.516773  Prob. Chi-square(1) 0.4722 

     
     

From the results of the Chow test above, I observe a variation on the impact of the 2008 

financial crisis and the Arab Spring on the asset indices formed. Within the South African 

market, I cannot reject the null hypothesis of no breaks at the specified breakpoints (Tables 

3.45 and 3.46). The CUSUM test (chapter appendix A3.17) also verifies this finding and also 

indicate a stable time-series through the sample period. However, the more robust CUSUM of 

squared test (chapter appendix A3.18) is suggestive of parameter instability, although these 

changes are not on the particular dates (5/9/2008 and 14/1/2011) being tested. 

For the returns on the asset portfolio within the emerging African market, I reject the null 

hypothesis of no breaks at the specified breakpoints as I observe some instability in the data as 

indicated by the Chow test in Table 3.47 for the 2008 financial crisis and Table 3.48 for the 

Arab Spring. This is further confirmed by the CUSUM and CUSUM of squared tests in chapter 

appendices A3.19 and A3.20, respectively. 

When South Africa is excluded from the emerging African market index, the results of the 

Chow test (Table 3.49 for the 2008 financial crisis and Table 3.50 for the Arab Spring) show 

that the null hypothesis of no breaks at the specified breakpoints is rejected. The CUSUM test 

                                                 
91 Test results for the CUSUM test and CUSUM of squared test on the emerging Africa ex South Africa asset portfolio returns are in chapter 

appendices A3.22 and A3.23, respectively. 
92 Test results for the CUSUM test and CUSUM of squared test on the frontier African asset portfolio returns are in chapter appendices 
A3.24 and A3.25, respectively. 
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and CUSUM of least squares test (chapter appendix, Figures A3.21 and A3.22, respectively) 

provide some support for this result. 

Lastly, within the frontier African market, the results of the Chow test demonstrate that the null 

hypothesis is rejected for the 2008 financial crisis, but cannot be rejected for the Arab Spring 

(Table 3.51 for the 2008 financial crisis and Table 3.52 for the Arab Spring). The CUSUM test 

and particularly the CUSUM of least squares test (chapter appendix, Figures A3.23 and A3.24, 

respectively) support this as I find no break in the CUSUM of least square graph at or around 

the 14/1/2011 mark for the Arab Spring. 

This provides further evidence on potential instability in the estimates of the unconditional 

asset-pricing models. This supports the discussion in Chapters 5, 6, 7 and 8 on the impact of 

the contagion dummy variables within the static CAPM model. Following these findings, I also 

investigate the impact of time variation on asset-pricing estimates in Chapter 6. 

 

3.8.5 Conditional CAPM 

According to the CAPM, any difference in beta, which measures the difference in an assets 

exposure to systematic risk, should explain any difference in expected returns on the asset. The 

Sharpe-Lintner-Black CAPM remains one of the most used asset-pricing models in describing 

how investors assess risk. However, it has come under increased scrutiny as it does not account 

for returns of portfolios sorted by size, value, momentum and liquidity, as identified in Fama 

and French (1992), Carhart (1997) and Wang and Chen (2012). 

One of the commonly made assumptions of the static CAPM is that the betas of assets remain 

constant over time, which is quite unrealistic given that the business cycle will present 

variations to a firm’s cash flow and also the degree of a firm’s financial leverage, hence a 

varying relative risk, as highlighted in Jagannathan and Wang (1996). This implies that in 

theory, the CAPM could hold conditionally on time information, period by period, even when 

the unconditional CAPM does not hold. 

This implies that the CAPM can hold in the different regimes identified in Section 3.8.4 above, 

but still not hold unconditionally, although the tendency of the CAPM to hold in different 

regimes improves drastically compared to the unconditional whole period CAPM. This failure 

of the CAPM to account for time variation may have led to its poor performance as identified 
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in Adrian and Franzoni (2009). This unconvincing empirical evidence of the static CAPM may 

well be due to systematic stochastic changes affecting the environment that generate returns as 

observed in Chan and Lakonishok (1993), Black (1993) and Jagannathan and Wang (1996). 

The size and B/M effects identified in Fama and French (1992) could be explained by time-

varying beta as observed by Zhang (2005), Lustig and Van Nieuwerburgh (2005) and Santos 

and Veronesi (2006). 

Studies of the conditional CAPM in the emerging markets suggest that exposure to the common 

risk factor is low, hence the static CAPM performs poorly in explaining expected cross-

sectional returns. According to Harvey (1994), emerging markets are mostly influenced by 

local information sets rather than global information sets. This is because most emerging and 

African markets are segmented from the world capital markets, as identified in Kim and Singal 

(2000), Bekaert and Harvey (2000) and Bekaert (1995); hence the implicit assumption that the 

world capital markets are completely integrated does not hold. Harvey (1994) also identified 

that risk loadings in emerging markets are not constant, as suggested by many researchers in 

developed markets, as they are time-varying in emerging markets. 

Although a good number of papers have investigated asset-pricing models, the emphasis has 

often been on developed markets and some emerging markets, with only a very thin and 

segmented emphasis on investigating the African market. This is probably due to the relative 

newness of the financial markets in Africa. According to Alagidede (2008), this may also be 

due to the perceived high riskiness of the African market due to the underdevelopment of the 

institutional environment in which the financial markets operate and the high illiquidity of the 

market. However, in light of the growth of the African markets and their often superior 

performance in recent years, as identified in Cheng et al. (2010), there is an obvious gap in the 

literature. 

In recent decades, the stability of beta over time has been a subject of increasing research. In 

his seminal article, Blume (1971) highlighted the tendency of beta to mean-revert. In the US, 

Fabozzi and Francis (1978) identified that most US equities have time-varying betas. This is 

supported by Collins et al. (1987), Simmonds et al. (1986) and Bos and Newbold (1984), who 

suggest that over a five to 10-year period, between 2% and 58% of US stocks have varying 

betas. According to Pope and Warrington (1996) and Faff and Brooks (1997), between 11% 

and 61% of Australian stocks are time-varying over a five to 10-year estimation period. This 

is supported by the findings of Faff et al. (1992) and Brooks et al. (1992). Other researchers 
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who find beta to be unstable in other countries include Abuzar and Shah (2002), Oran and 

Soytas (2008) and Tunçel (2009). However, Altman et al. (1974), Baesel (1974) and Roenfeldt 

(1978) insist that the betas will become more stable with longer estimation periods. 

As stated in Brooks et al. (1998), some literatures believe in the microeconomic nature of 

varying betas, hence highlighting an ability to diversify away its effects through the formations 

of a portfolio; other evidences disclose that this is not so (see Collins et al., 1987, and Brooks 

et al., 1992, 1994). Thus, the instability of betas could well be due to macroeconomic factors 

or “noise” from portfolio formations, as explained in Brooks et al. (1998). If the existing 

literature mostly focuses on the developed market due to the problems raised by beta instability, 

there should be even more interest in emerging markets as the effects are more likely to be 

more significant, and even more in the African markets. However, research on beta instability 

in the African market continues to be very thin. Given that the effect of varying beta could be 

greater in the African market, I account for beta instability within the analysis. 

There are a number of techniques that exist in the literature for the modelling and estimation 

of time-varying beta. These are broadly based on observable economic factors used in 

modelling variations in beta using econometric models, and the estimation of beta series using 

time-series models, though these beta estimates are provided from internal structure in the data. 

The macroeconomic models estimate beta coefficient as a function of economic variables such 

as oil prices, inflation, trade deficit, budget deficit and interest rates, as identified in Abell and 

Kreuger (1989). Other studies that follow this procedure include Shanken (1990) and Faff and 

Brooks (1998). The generalised autoregressive conditional heteroscedasticity (GARCH) time-

series model will be used in modelling time-varying betas in this study. Other prominent time-

series modelling techniques include the Schwert and Seguin model and the Kalman filter 

algorithm, and are discussed in the next sections. 

As identified in Bali and Engle (2010), the version of the Sharpe (1964) and Lintner (1965) 

CAPM model which is a time-varying conditional model that relates the conditionally expected 

excess returns of the risky asset to the conditionally expected excess return on the market 

portfolio, is denoted as: 

𝐸(𝑅𝑖,𝑡+1|Γ𝑡) =  
𝐸(𝑅𝑚,𝑡+1|Γ𝑡)
𝑣𝑎𝑟(𝑅𝑚,𝑡+1|Γ𝑡)

. 𝑐𝑜𝑣(𝑅𝑖,𝑡+1, 𝑅𝑚,𝑡+1|Γ𝑡) (3.25) 

The expected conditional beta 𝐸(𝛽𝑖,𝑡+1|Γ𝑡) is represented by the ratio of 

𝑐𝑜𝑣(𝑅𝑖,𝑡+1, 𝑅𝑚,𝑡+1|Γ𝑡) to 𝑣𝑎𝑟(𝑅𝑚,𝑡+1|Γ𝑡), 
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𝐸(𝛽𝑖,𝑡+1|Γ𝑡) =  
𝑐𝑜𝑣(𝑅𝑖,𝑡+1, 𝑅𝑚,𝑡+1|Γ𝑡)

𝑣𝑎𝑟(𝑅𝑚,𝑡+1|Γ𝑡)
 (3.26) 

where, according to Bali and Engle (2010), 
𝐸(𝑅𝑚,𝑡+1|Γ𝑡)
𝑣𝑎𝑟(𝑅𝑚,𝑡+1|Γ𝑡)

 represents the reward/risk ratio, 

which is also the relative risk-aversion coefficient, as noted in Merton (1980). 𝑅𝑖,𝑡+1 is the 

return on the risky asset 𝑖 in excess of the risk-free interest rate (𝑅𝑖,𝑡+1 = 𝑟𝑖,𝑡+1 − 𝑟𝑓), while 

𝑅𝑚,𝑡+1 is the aggregate wealth portfolio of all assets in the economy, represented as the market 

portfolio 𝑚 in excess of the risk-free interest rate (𝑅𝑚,𝑡+1 = 𝑟𝑚,𝑡+1 − 𝑟𝑓). The common 

information set available to the investors at time 𝑡 is represented as Γ𝑡, which is the information 

set that investors use to form expectations of future returns. The expected excess return on the 

risky asset 𝑖 conditional on information set Γ𝑡 at time 𝑡 + 1 is represented as 𝐸(𝑅𝑖,𝑡+1|Γ𝑡), while 

𝐸(𝑅𝑚,𝑡+1|Γ𝑡) represents the expected excess return on the market portfolio conditional on the 

information set Γ𝑡 at time 𝑡 + 1, 𝑣𝑎𝑟(𝑅𝑚,𝑡+1|Γ𝑡) is the expected conditional variance of excess 

returns on the market at time 𝑡 + 1 given information set Γ𝑡, and 𝑐𝑜𝑣(𝑅𝑖,𝑡+1, 𝑅𝑚,𝑡+1|Γ𝑡) is the 

expected conditional covariance between excess returns on the risky asset and the market 

portfolio at time 𝑡 + 1 given information set Γ𝑡. 

However, the fundamental nature of a single-factor CAPM has been a subject of immense 

debate with Fama and French (1992) showing that size and value are priced, but not the 

conventionally estimated beta. Fama and French (1993) proposed a three-factor, asset-pricing 

model that seemed to adequately describe the average stock excess returns. According to Fama 

and French (1996), the three-factor model also explains long-term return reversals, but not the 

short-term return continuation (momentum) anomaly. Recent literature has also identified the 

inability of the three-factor model to explain the liquidity premium (see Lam and Tam, 2011, 

and Lee, 2011). This is particularly severe in emerging and African markets as identified in 

Claessens and Dasgupta (1995). Also, recent research in the emerging markets and particularly 

in the African markets insists that the value premium is insignificant, as identified in Loughran 

(1997), Wang and Xu (2004) and Shum and Tang (2005). 

Even where the intertemporal behaviour of the market risk premium is used, most researchers 

employed the conditional single-factor model motivated by the static CAPM of Sharpe (1964) 

and Lintner (1965). The implication of these single-factor conditional models is a proportional 

or simple linear relation between conditional market variance and market risk premium. 

However, the findings using these conditional single-factor models have been mixed, with 
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Campbell (1987) and Glosten et al. (1993) finding a significant negative relation between risk 

and return, and Harvery (1989) and Baillie and DeGennaro (1990) finding a significant positive 

relation. The multifactor model within this paper assumes that there is a partial relation between 

risk premium and conditional market variance; hence, if this assumption becomes “true”, the 

estimates of conditional single-factor models suffer from omitted variable bias and will be 

misspecified. This research will explore whether a conditional multifactor model explains the 

conditional behaviour of asset prices better than the single-factor models used in existing 

literature. 

Following these studies, this research will incorporate conditioning information into a four-

factor model that includes excess market returns, the average returns of small firms minus the 

average returns of big firms (size), the contemporaneous average returns on a short-term winner 

portfolio minus the average returns on a short-term loser portfolio (momentum) and the 

contemporaneous average returns on a portfolio of illiquid stocks minus the average returns of 

liquid stocks (liquidity). In using a conditional four-factor model, I consider that in a dynamic 

world, the prices of risk and indeed risk exposures are likely to depend on conditioning 

information and hence will vary over time. Equation 3.26 can be extended to a conditional 

four-factor model and can be written as: 

𝐸(𝑅𝑖,𝑡+1|Γ𝑡) =  𝛽𝑀,𝑡𝐸(𝑅𝑀,𝑡+1|Γ𝑡) + 𝛽𝑠,𝑡𝐸(𝑆𝑀𝐵𝑡+1|Γ𝑡) + 𝛽𝑚,𝑡𝐸(𝑊𝑀𝐿𝑡+1|Γ𝑡)

+ 𝛽𝑝,𝑡𝐸(𝐼𝑀𝑉𝑡+1|Γ𝑡), (3.27) 

where 𝑅𝑖,𝑡+1 is the return on the risky asset 𝑖 in excess of the risk-free interest rate (𝑅𝑖,𝑡+1 =

 𝑟𝑖,𝑡+1 − 𝑟𝑓), 𝑅𝑀,𝑡+1 is the aggregate wealth portfolio of all assets in the economy represented 

as the market portfolio 𝑚 in excess of the risk-free interest rate (𝑅𝑀,𝑡+1 = 𝑟𝑀,𝑡+1 − 𝑟𝑓), 

𝑆𝑀𝐵𝑡+1 is the returns of a mimicking portfolio based on size, 𝑊𝑀𝐿𝑡+1is the return of a 

mimicking portfolio based on momentum, 𝐼𝑀𝑉𝑡+1 is the return of a mimicking portfolio based 

on liquidity, the information set is represented by Γ𝑡, 𝐸[. |Γ𝑡] is the conditional expectation 

based on information as at time 𝑡, 𝛽𝑀,𝑡 is the relative risk, 𝛽𝑠,𝑡 is the state risk arising from 

investors’ special hedging concerns associated with size; 𝛽𝑚,𝑡 is the risk arising from special 

hedging concerns related with momentum and 𝛽𝑝,𝑡 is the risk arising from investors’ special 

hedging concerns associated with illiquidity. 

An alternative specification of the conditional Fama-French model is identified in Wu (2002) 

as: 
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𝐸(𝑅𝑖,𝑡+1|Γ𝑡) =  𝜓𝑀,𝑡𝑐𝑜𝑣(𝑅𝑖,𝑡+1, 𝑅𝑀,𝑡+1|Γ𝑡) + 𝜓𝑠,𝑡𝑐𝑜𝑣(𝑅𝑖,𝑡+1, 𝑆𝑀𝐵𝑡+1|Γ𝑡)

+ 𝜓𝑚,𝑡𝑐𝑜𝑣(𝑅𝑖,𝑡+1,𝑊𝑀𝐿𝑡+1|Γ𝑡) + 𝜓𝑝,𝑡𝑐𝑜𝑣(𝑅𝑖,𝑡+1, 𝐼𝑀𝑉𝑡+1|Γ𝑡), (3.28) 

where 𝜓𝑀,𝑡 is the reward to covariability with the market (the price of the market risk); 𝜓𝑠,𝑡 is 

the reward to covariability with 𝑆𝑀𝐵𝑡+1 (the price of the state risk associated with size); 𝜓𝑚,𝑡 

is the reward to covariability with 𝑊𝑀𝐿𝑡+1, (the price of the state risk associated with 

momentum) and 𝜓𝑝,𝑡 is the reward to covariability with 𝐼𝑀𝑉𝑡+1 (the price of the state risk 

associated with illiquidity). The expectation in a conditional approach is that the price risks and 

covariances are supposed to be time-varying. Following from Equation 3.28 and the risk 

loadings identified in Wu (2002), I hypothesise that the risk loadings are linear functions of a 

set of conditioning information as shown in the following regression: 

𝑅𝑖,𝑡+1 = 𝛼 + 𝚭𝑡𝜷𝑀𝑅𝑀,𝑡+1 + 𝚭𝑡𝜷𝑠𝑆𝑀𝐵𝑡+1 + 𝚭𝑡𝜷𝑚𝑊𝑀𝐿𝑡+1 + 𝚭𝑡𝜷𝑝𝐼𝑀𝑉𝑡+1 + 휀𝑖,𝑡+1 (3.29) 

The total excess return on portfolio 𝑖 is denoted as 𝑅𝑖,𝑡+1 while 𝑅𝑚,𝑡+1 is the market portfolio 

𝑚 in excess of the risk-free interest rate, 𝑆𝑀𝐵𝑡+1 and 𝐼𝑀𝑉𝑡+1 are returns on portfolios sorted 

by size and liquidity, 𝚭𝑡 is a row of vectors while 𝛼, 𝜷𝑀, 𝜷𝑠, 𝜷𝑚 and 𝜷𝑝 are constant weights. 

The conditional risk loadings on 𝑅𝑀, 𝑆𝑀𝐵, UMD and 𝐼𝑀𝑉 are 𝚭𝑡𝜷𝑀, 𝚭𝑡𝜷𝑠, 𝚭𝑡𝜷𝑚 and 𝚭𝑡𝜷𝑝, 

respectively. The abnormal return is usually 𝛼, the intercept. 

In a dynamic economy, rational risk-averse investors will normally expect and hedge against 

the possibility that investment opportunities may change adversely in the future. Due to this 

hedging possibility of a dynamic economy, the expectation will be that the conditionally 

expected return on an asset will be jointly linear in the conditional market beta and the hedge 

portfolio betas, as identified in Jagannathan and Wang (1996).I assume that the motivation for 

hedging within this dynamic economy is still sufficient, following Merton (1980). 

 

3.8.5.1 GARCH models 

As explained in Mills (1996), once the linear assumption of the CAPM is relaxed, several 

possible ways of modelling a time-series emerge, covering such classes as chaotic dynamics in 

Hsieh (1991) and conditional heteroscedasticity models in Bollerslev, Chou and Kroner (1992). 

Setting ∆log𝑃𝑡 as the returns of a stock, the AR(𝑝) model is then 

𝜑𝑝(L) ∆log𝑃𝑡 = 𝛿𝑡 (3.30) 
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where the AR polynomial in 𝐿 of order 𝑝 is 𝜑𝑝(L) = 1 - 𝜑1𝐿 −⋯− 𝜑𝑝𝐿
𝑝 and 𝛿𝑡 satisfies the 

white noise properties 𝐸[𝛿𝑡] = 0, 𝐸[𝛿𝑡
2] =  𝜎2 and 𝐸[𝛿𝑡𝛿𝑠] = 0, ∀𝑠 ≠ 𝑡. 

But investors’ attitudes towards risk and expected return are non-linear; also, the process by 

which information is incorporated into security prices and the interactions among market 

participants are all inherently non-linear. As stated in Alagidede (2011), an array of tests can 

be used since nonlinearity occurs in many forms and hence the following tests can be 

considered: GARCH of Engle (1982) and McLeod and LI (1983), BDS test for randomness by 

Brock, Dechert, Scheinkman and LeBaron (1996), the threshold effects of Tsay (1986) and the 

bicovariance test of Hinich and Patterson (1995) and Hinich (1996). The exponential GARCH-

M will be fit where the mean equation is specified as 

∆log𝑃𝑡 =  𝛾 + ∑𝜑𝑖∆log𝑃𝑡−1 + √ℎ𝑡  
𝜔 + 𝛿𝑡 𝛿𝑡Ωt−1 ∼ NID(0, ht) (3.31) 

where 𝛿𝑡 = √ℎ𝑡
𝑍𝑡  and 𝑍𝑡is independent and identically distributed with mean and unit variance 

of zero. The conditional variance |ℎ𝑡| is represented as 

In (ℎ𝑡) =  𝜕 + ∑ 𝛼𝑖𝑔(𝑧𝑡−1)
𝑞
𝑖=1 + ∑ 𝛽𝑗In(ℎ𝑡−𝑗)

𝑝
𝑗=1  (3.32) 

where 𝑔(𝑧𝑡) =  휃𝑧𝑡 + 휁[|𝑍𝑡| − 𝐸|𝑧𝑡|], 𝑧𝑡 = 휀𝑡/√ℎ𝑡 . 𝑔(𝑧𝑡) has 1 (휁 = 1) set as its coefficient. 

The risk premium can be examined by setting the conditional mean in Equation 18 as a function 

of the conditional variance. Hence, as Alagidede (2011) illustrates, I am able to check whether 

investors are rewarded for taking on more risk with extra returns. To account for asymmetry 

effect in the volatility process, an EGARCH model can be specified, as identified in Black 

(1976), Nelson (1991), Glosten, Jagannathan and Runkle (1993) and Christie (1982). 

Often, Equation 3.32 produces evidence in empirical research that the conditional volatility 

process is highly persistent and may also not be covariance-stationary. This suggests that it 

may be more suitable to have a model in which shocks have permanent effect on volatility. To 

achieve this, fractionally integrated GARCH (FIGARCH) can be applied; this can be 

particularly used to examine persistence in the variance and long memory. The FIGARCH 

(𝑝, 𝑑, 𝑞) model of the conditional variance can be established as an autoregressive, fractionally 

integrated, moving average (ARFIMA) model applied to squared innovations, as noted in 

Baillie, Bollerslev and Mikkelsen (1996) as: 

(1 − 𝛼(𝐿))(1 − 𝐿)𝑑𝛿𝑡
 2 =  𝜕 + (1 − 𝛽(𝐿))𝑣𝑡 (3.33) 
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where 𝛼(𝐿) and 𝛽(𝐿) are polynomials of order 𝑞 and 𝑝, and 0<d<1 is the fractional integration 

parameter. The FIGRCH (𝑝, 𝑑, 𝑞) model can be expressed as follows after defining 𝑣𝑡 = 휀𝑡
 2 −

ℎ𝑡 and rearranging Equation 3.33: 

ℎ𝑡 =  𝜕 +  𝛽(𝐿)ℎ𝑡 + (1 − 𝛽(𝐿) − (1 −  𝛼(𝐿))(1 − 𝐿)
𝑑)𝛿𝑡

 2 (3.34) 

Decoupling of the short-run and long-run movements in volatility is the main advantage of the 

FIGARCH, as stated in Alagidede (2011). The lag polynomials capture the short-run 

component, while the fractional differencing parameter 𝑑 captures the long-run component. In 

cases where 𝑑 = 0, the FIGARCH becomes the standard GARCH model. 

 

3.8.5.2 The GARCH model applied 

With the incremental benefits of other time-varying models over the standard GARCH model 

quite minute, this study will be using the GARCH-based model. The Sharpe-Lintner CAPM 

assumes returns to be IID, although stylised facts within empirical finance literature highlight 

that returns in many financial markets show signs of autocorrelation with regularly observed 

volatility clusters, where volatile periods with large absolute returns are followed by periods of 

small absolute returns. To extract conditional moments and betas for a variety of test portfolios, 

this research will extend the multivariate GARCH parameterisation to accommodate GARCH-

in-mean effects, as proposed in Ding and Engle (1994). This follows the M-GARCH model 

first proposed by Bollerslev (1986), which derives the time-series of beta indirectly from 

estimates of the expected conditional covariance between excess returns on the risky asset and 

the market portfolio, and the expected conditional variance of excess returns on the market, in 

Equation 3.26. 

𝐸(𝛽𝑖,𝑡+1|Γ𝑡) =  
𝑐𝑜𝑣(𝑅𝑖,𝑡+1, 𝑅𝑚,𝑡+1|Γ𝑡)

𝑣𝑎𝑟(𝑅𝑚,𝑡+1|Γ𝑡)
 (3.36) 

It was subsequently extended to capture the dynamics of autoregressive means and volatility 

process for valuation in stock options, as noted in Ritchken and Trevor (1999), along with 

further extensions by Engle (2001) for a variety of applications in the areas of stock price and 

equity indices volatility. 

The GARCH model is generally denoted as GARCH (𝑢, 𝑣), which is interpreted as a 

generalisation of Engle’s (1982) ARCH (𝑢) model obtained by including 𝑣 moving average 



162 
 

terms in the autoregressive equation for the conditional expectation. As detailed in Engle and 

Bollerslav (1986) and Bollerslav (1987), the time-series technique of Box and Jenkins (1976) 

can be applied to the correlations and the autocorrelations for the squared process, which will 

be used to identify the orders of 𝑢 and 𝑣. 

The use of GARCH-based methods of modelling time-varying beta has been quite dominant in 

the literature and utilised in various studies, including Giannopoulos (1995), who used a 

bivariate GARCH-in-mean model to identify the time-series properties of, initially, the total 

risk of security and subsequently the systematic and nonsystematic components. Brooks et al. 

(1997b) also captured conditional betas using a bivariate specification of the M-GARCH 

model. Li (2003) found the GARCH model to be the most favoured for out-of-sample 

forecasting. Marti (2006) used an asymmetric beta model, a macroeconomic variable model, 

the Schwert and Segun model, the Kalman filter, GARCH models and the rolling regressions, 

although the study finds that the Kalman filter with beta being specified as a random walk 

performs best. And lastly, Choudhry and Wu (2007) tested the forcasting ability of four 

different GARCH models (bivariate GARCH, BEKK GARCH, GARCH-GJR and the 

GARCH-X model) and the Kalman filter model. 

This study also applies an innovation of the dynamic conditional correlations based on a 

GARCH-type model (see Chapter 7) and a variant of the GARCH-GJR. 

 

3.8.6 Potential alternative methods for a conditional-type CAPM 

3.8.6.1 The threshold CAPM 

Emphasising the importance of understanding the dynamics of time variation in betas, Akdeniz, 

Salih and Caner (2003) developed the threshold CAPM. They highlight that despite the widely 

accepted premise of time variation in expected return and betas, there still remains to be seen 

a consensus on the way to model time variation. Modelling of time variation takes the form of 

continuous approximation of the conditional CAPM, which Ghysels (1998) refutes as 

ineffective. He argues that time variation in beta is slower than the conditional CAPM suggests. 

Arisoy, Altay-Salih and Akdeniz (2011) developed a model where beta changes slowly and 

discretely in time. They propose a volatility-based threshold CAPM where asset betas change 

with respect to investors’ assessment of aggregate risk conditions. 
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Within the threshold CAPM, investors re-evaluate the riskiness of an asset when the aggregate 

volatility goes beyond a certain threshold. It also allows for time variation in aggregate 

volatility, allowing beta to change contemporaneously with the changes in aggregate volatility. 

Lastly, Hansen’s (2000) threshold regression methodology is used to test volatility-related 

regime changes in beta risk. The threshold volatility CAPM developed in Arisoy, Altay-Salih 

and Akdeniz (2011) is represented as 

𝑟𝑖,𝑡+1 = (𝛼11{𝑧𝑡≤𝜆} + 𝛼21{𝑧𝑡>𝜆}) + (𝛽11{𝑧𝑡≤𝜆} + 𝛽21{𝑧𝑡>𝜆})𝑟𝑚,𝑡+1 + 휀𝑖,𝑡+1 (3.37) 

where 

𝑟𝑖,𝑡+1 = the excess return on asset 𝑖, 

𝑟𝑚,𝑡+1 = the excess return on the market portfolio, 

𝛽𝑡 captures time variation in market betas, 

𝑧𝑡 = the conditioning information on investors’ assessment of aggregate volatility risk, 

1{ } = the indicator function, 

𝜆 = the threshold parameter for aggregate volatility. 

 

3.8.6.2 Kalman filter-based approaches 

As stated in Mergner and Bulla (2005), the time-varying structure of the beta can be modelled 

directly through a state space approach. This is in contrast to other techniques based on 

volatility, which require the estimation of conditional variance of asset 𝑖 and the market to be 

obtained first before the conditional beta series can be constructed. The state-based models are 

estimated numerically, based on an assumption of normality, through a recursive algorithm 

known as the Kalman filter. For more details on the Kalman filter and its application, see 

Meinhold and Singpurwella (1983) or Harvey (1989). In the state space form, an observation 

equation is construed from the excess returns market model of Sharpe and Lintner. 

𝑅𝑖𝑡 = 𝛼𝑖𝑡 + 𝛽𝑖𝑡𝑅𝑀𝑡 + 휀𝑖𝑡 (3.38) 

With the 𝛼𝑖𝑡 treated as zero, the equation becomes an observable equation: 

𝑅𝑖𝑡 = 𝛽𝑖𝑡𝑅𝑀𝑡 + 휀𝑖𝑡 (3.39) 
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where the state equation 

𝛽𝑖𝑡 = 𝜗𝑖𝛽𝑖𝑡−1 + 휂𝑖𝑡 (3.40) 

defines the dynamic process of the unobserved time-varying state vector, 𝛽𝑖𝑡, with the constant 

transmition parameter denoted as 𝜗𝑖. The state equation error 휂𝑖𝑡 and the observation error 휀𝑖𝑡 

are assumed to be Gaussian: 

𝐸(𝜖𝑖𝑡𝜖𝑖𝜏
′ ) = {

𝜎𝑖
2, 𝑓𝑜𝑟 𝑡 = 𝜏

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 (3.41) 

𝐸(휂𝑖𝑡휂𝑖𝜏
′ ) = {

𝜎𝜂𝑖
2 , 𝑓𝑜𝑟 𝑡 = 𝜏

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 (3.42) 

and to be uncorrelated at all lags: 

𝐸(𝜖𝑖𝑡휂𝑖𝜏
′ ) = 0 for all 𝑡 and 𝜏. (3.43) 

The hyper-parameters of the system are 𝜗𝑖, which is the transition parameter, and 𝜎𝑖
2 and 𝜎𝜂𝑖

2  

which are the constant variances. With different assumptions on 𝜗𝑖, a number of alternative 

specifications of the stochastic process of 𝛽𝑖𝑡 may be derived. By setting 𝜗𝑖 to unity, Mergner 

and Bulla (2005) represents the first state space specification of the evolution of the time-

varying beta as a random walk (RW) model. The beta coefficient is a RW model 

�̂�𝑖𝑡
𝐾𝐹𝑅𝑊 = 𝛽𝑖,𝑡−1 + 휂𝑖𝑡  (3.44) 

where the two hyper-parameters 𝜎𝑖
2 and 𝜎𝜂𝑖

2  have to be estimated. See Doornik (2001) for 

further details. (Doornik (2001) used 0 x 3.30 together with the package SsfPack by Koopman 

et al. (1999) to compute the KF models). A mean-reverting model can also be used for the 

model time-varying beta process. An autoregressive process of the order AR (1), with a 

constant mean can be used within a mean-reverting (MR) model: 

�̂�𝑖𝑡
𝐾𝐹𝑀𝑅 = �̅�𝑖

∗ + 𝜗𝑖𝛽𝑖,𝑡−1 + 휂𝑖𝑡 (3.45) 

with the AR (1) parameter |𝜗𝑖|< 1 and a constant �̅�𝑖
∗. To allow for significant economic 

interpretation, which can allow �̅�𝑖to be the mean beta over the entire sample and 𝜗𝑖 to measure 

speed of mean revision of the time-varying beta, Equation 3.45 can be rearranged as: 

�̂�𝑖𝑡
𝐾𝐹𝑀𝑅 = �̅�𝑖 + 𝜗𝑖(𝛽𝑖,𝑡−1 − �̅�𝑖) + 휂𝑖𝑡 (3.46) 
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where all of 𝜎𝑖
2,𝜎𝜂𝑖

2 , �̅�𝑖 and 𝜗𝑖 will be estimated. For further evidence on the speed parameter, 

see Faff at al. (2000) and Yao and Gao (2004). 

 

3.8.6.3 Stochastic volatility conditional betas 

Another alternative approach of modelling time-varying beta includes the addition of 

contemporaneous shock to the return variance, as identified in Taylor (1986). These models 

are otherwise known as SV models. These differ from the GARCH framework in that with a 

GARCH framework with only one error term, the conditional mean and conditional volatility 

of the return series are characterised by the same shock. The SV models can qualify as a better 

model for describing financial time-series as they imply excess kurtosis and have a higher 

degree of flexibility. According to Mergner and Bulla (2005), the first two moments are usually 

used to represent the SV model. The mean equation is given as: 

𝑅𝑖𝑡 = 𝜇𝑖𝑡 + 𝜎𝑖𝑡𝜖𝑖𝑡, 𝜖𝑖𝑡 ~ 𝑁𝐼𝐷(0,1), 𝑡 = 1,… , 𝑇, (3.47) 

where 𝑅𝑖𝑡 is the return series of index 𝑖 and 𝜇𝑖𝑡 is the expectation of 𝑅𝑖𝑡. The mean is usually 

taken to be zero for SV models or modelled before estimating the volatility process, as stated 

in Hol and Koopman (2002). As seen in Kim et al (1998), other authors use the mean-corrected 

returns 𝑅𝑖𝑡
∗  as an alternative, where 

𝑅𝑖𝑡
∗ = ln( 𝑃𝑖𝑡) − ln ( 𝑃𝑖,𝑡−1) − (1/𝑇) ∑(ln ( 𝑃𝑖𝑡) − ln ( 𝑃𝑖,𝑡−1)), (3.48)

𝑇

𝑖=0

 

The disturbances are assumed to be IIND with zero mean and unit variance. The variance 

equation is given as 

𝜎𝑖𝑡
2 = 𝜎𝑖𝑡

∗2 exp(𝜐𝑖𝑡), (3.49) 

where the product of a positive scaling factor 𝜎∗2 and the exponential of the stochastic process 

𝜐𝑖𝑡is the actual volatility 𝜎𝑖𝑡
2 , which is modelled as a first-order autoregressive process: 

𝜐𝑖𝑡 = 𝜙𝑖𝜐𝑖,𝑡−1 + 𝜎𝜂𝑖휂𝑖𝑡,  휂𝑖𝑡  ∼  𝑁𝐼𝐷 (0,
𝜎𝜂
2

1 − 𝜙𝑖
2) , (3.50) 

To ensure stationarity of 𝜐𝑖𝑡 the persistence parameter 𝜙𝑖 is restricted to be positive and smaller 

than one. 𝜖𝑖𝑡 and 휂𝑖𝑡 are assumed to be uncorrelated, contemporaneously and at all lags. A good 
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interpretation of these two different shocks is identified in Franses and van Dijk (2000), where 

휂𝑖𝑡 represents the shocks to the intensity of the flow of news and 𝜖𝑖𝑡 reflects the content of new 

information (good or bad news). The parameters of the SV model cannot be estimated by 

directly applying the standard maximum likelihood techniques. This is due to the addition of 

an unobservable shock to the return variance, which makes the variance a latent process, 

making it impossible to characterise the variance explicitly with respect to observable past 

information. 

The estimation of SV models has followed various procedures as identified within the 

literature. Some of these procedures include the Monte Carlo likelihood (MCL) estimator 

presented in Danielsson (1994), the efficient MCL proposed by Sandmann and Koopman 

(1998), a Bayesian Monte Carlo Markov Chain (MCMC) procedure developed by Jacquier et 

al. (1994), a quasi-maximum likelihood presented in Harvey et al. (1994) and the moments 

estimators proposed by Melino and Turnbull (1990). However, Mergner and Bulla (2005) 

highlight that these volatility models are very rarely used in practice due to the lack of 

consensus on estimating the models. One process that is prevalent is that of Mergner and Bulla 

(2005), which estimates the SV models using the efficient MCL technique, which is less 

computationally intense but still with finite sample performance that compares well with those 

of MCMC. Mergner and Bulla’s (2005) process follows the procedure developed in Doornik 

(2001) and the package in Koopman et al. (1999). With estimates of 𝜎0𝑡
2  and 𝜎𝑖𝑡

2  obtained, the 

time-varying beta can be constructed using: 

�̂�𝑖𝑡
𝑆𝑉 = 

𝜎0𝑖𝜎𝑖𝑡
𝜎0𝑡

. (3.51) 

3.8.6.4 The Markov switching approach 

The Markov switching model introduced by Hamilton (1989) is also known as the regime-

switching model within a broader class of state space models. It involves the characterisation 

of the time-series behaviours of different regimes using multiple structures (equations). By 

allowing switching between these structures, the model is able to capture more complex 

dynamic patterns. This follows an implicit assumption that data results from a process that 

undergoes sudden changes. The systematic risk of an asset is determined by the beta within the 

regimes where the switching mechanism is controlled by an unobserved state variable that 

follows the Markov chain. This differs from a structural change model that allows only 

occasional and exogenous changes, unlike the Markov switching model, which allows frequent 

changes at random time points. According to Mergner and Bulla (2005), the switching 
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behaviour of a beta is governed by a transition probability matrix (TPM). Within a two-state 

model assumption, the TPM will take the form of: 

Γ =  (
𝛾11 𝛾12
𝛾21 𝛾22

) , (3.52) 

where 𝛾11 represents the probability of staying in the first state from period 𝑡 to period 𝑡 + 1, 

and 𝛾12 is the probability of switching from the first to the second state. The second row of the 

Γ can be interpreted analogously. Following the process explained in Mergner and Bulla(2005), 

two Markov switching (MS) models are used, where the first is a simple MS regression model 

constructed as follows: let the state sequence representing the different regimes be denoted as 

{𝑠1, … , 𝑠𝑇} and be driven by the TPM of a stationary Markov chain; the states take values in 

{1, … ,𝑚}. The regime-switching CAPM follows Huang (2000) and is denoted as: 

𝑅𝑖𝑡 = 𝛼𝑖𝑠𝑡 + 𝛽𝑖𝑠𝑡𝑅0𝑡 + 휂𝑖𝑡, 휂𝑖𝑡  ~ 𝑁(0, 𝜎𝑖𝑠𝑡
2 ), (3.53) 

where the value of state 𝑠𝑡 determines the regression coefficient (𝛼𝑖𝑠𝑡𝛽𝑖𝑠𝑡) to be selected. This 

is also designed to accommodate both the serial correlations of the individual series as well the 

correlations across returns series. The Markov switching market (MSM) model is the second 

approach, where there are more assumptions on the market returns to harmonise the switching 

times of beta with different market conditions. The hidden Markov model with normal or 

double-exponential variables can govern the temporal and distributional properties of daily 

returns series, as shown in Rydan et al. (1998). They identify that the dynamics of assets returns 

follow the same equation (3.53) with the distribution of the market returns being given by: 

𝑅0𝑡 = 𝜇𝑠𝑡 + 𝜖𝑖𝑡, 𝜖𝑖𝑡 ~ 𝑁(0, 𝜎0𝑠𝑡
2 ), (3.54) 

This shows the synchronous behaviour that allows for direct conclusions from the market 

conditions on the asset’s risk represented in the beta. This is because in the MSM model, the 

regime of the market changes together with the regime of the regression setup as they depend 

on the same state sequence. 

MSMs are based on the maximum likelihood method for hidden Markov models. Through 

numerical maximisation of the log-likelihood function, the parameters of the model can be 

estimated directly. This is because the likelihood 𝐿𝑇 of both models is available in an explicit 

form (MacDonald and Zucchini, 1997, cf.). The estimates for the model parameters include 

among other things the state-dependent betas for each asset 𝑖 and state 𝑗 denoted by �̂�𝑖𝑗
𝑀𝑆 or 
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�̂�𝑖𝑗
𝑀𝑆𝑀. To obtain in-sample estimates and out-of-sample forecasts of conditional betas, the 

information about the state distribution at 𝑡 has to be derived. This is because the state sequence 

cannot be observed. As explained in Ephraim and Merhav (2002), through smoothing, filtering 

and state prediction algorithms, the desired probabilities of a sojourn in state 𝑗 at time 𝑡 can be 

computed. By weighting the state-dependent �̂�𝑖𝑗
𝑀𝑆/𝑀𝑆𝑀

 with the probability of the sojourn in 

the corresponding state, estimates for the time-varying betas can be calculated given the state 

distribution at time 𝑡 as: 

�̂�𝑖𝑗
𝑀𝑆/𝑀𝑆𝑀

=  ∑[𝛽𝑖𝑗. 𝑃(𝑠𝑡 = 𝑗|𝑅01, … , 𝑅0𝑇 , 𝑅𝑖1, … , 𝑅0𝑇)] (3.55)

𝑚

𝑗=1

 

with 

𝑃(𝑆𝑡 = 𝑗|𝑅01, … , 𝑅0𝑇 , 𝑅11, … , 𝑅1𝑇) =  

{
 
 

 
 
𝛼𝑡(𝑗)𝛽𝑡(𝑗)

𝐿𝑇
𝑓𝑜𝑟 1 ≤ 𝑡 ≤ 𝑇

𝛼𝑡(𝑗)(Γ
𝑡−1)⋅𝑗

𝐿𝑇
𝑓𝑜𝑟 𝑇 ≤ 𝑡,

 (3.56)

 

where 𝛼𝑡(𝑗), 𝛽𝑡(𝑗) are the forward/backward probabilities from the forward-backward 

algorithm (Rabiner, 1989) and (Γ𝑡−1)⋅𝑗 denotes the 𝑗th column of the matrix Γ𝑡−𝑇. 

For more details on the Markov switching model, see Engle and Hamilton (1990), Goodwin 

(1993), Ghysels (1994) and Kim and Nelson (1998). Other variants incorporate the switching 

mechanism into conditional variance models, see Lam and Li (1998), Jacquier, Polson and 

Rossi (1994), Chen and Lin (1999) and Li, Hung and Kuan (2002). 

 

3.9 Empirical models 

The modelling procedure will follow a sequential development approach, starting with the 

Sharpe-Lintner CAPM as identified in Section 3.8.2. Although I expect returns in the African 

market to behave differently than suggested by the CAPM, this research will still examine the 

explanatory power of the CAPM in the African market. This is important given that the findings 

in the literature (See Jagannathan and Wang, 1993) suggest that the CAPM is still alive and 

well. 
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This study will also take into account the effect of size, book-to-market value, momentum and 

liquidity that offer improved performance in capturing anomalies across the cross-section of 

stock returns, as highlighted in the literature and in Section 3.8.2 above. The motivation is to 

examine whether the asset-pricing model, which includes factors for size (SMB), book-to-

market value (HML), and momentum (UMD), can explain most of the variation in stock 

returns, following the findings in Fama and French (1992) and Carhart (1997). 

The effect of liquidity has also been found to be very important in emerging/frontier markets, 

as seen in Hearn (2012) and Assefa and Mollick (2014). See also Section 2.4 in Chapter 2. This 

research will therefore employ a sequential model development approach using alternative 

pricing models. This approach was adapted from Carhart (1997) and Bartholdy and Peare 

(2005). I start off with the estimation of the standard CAPM: 

𝑅𝑖 − 𝑅𝑓 = 𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀) − 𝑅𝑓)  +  휀𝑖𝑡 (3.57) 

This model will then be extended by the SMB and HML factors to become the Fama-French 

three-factor model: 

𝑅𝑖𝑡 − 𝑅𝑓𝑡 = 𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡  +  휀𝑖𝑡 (3.58) 

The third model follows the Carhart four-factor model: 

𝑅𝑖𝑡 − 𝑅𝑓𝑡 = 𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡  +  휀𝑖𝑡 (3.59) 

This allows an investigation of whether size, book-to-market value and momentum are price 

factors on the African stock market. 

These models are extended further to test for the importance of liquidity by incorporating the 

IMV factor in the time-series regression: 

𝑅𝑖𝑡 − 𝑅𝑓𝑡 = 𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡 + 𝛽𝑖𝑝𝐼𝑀𝑉𝑡

+ 휀𝑖𝑡 (3.60) 

Following Karus and Litzenberger (1976), Homaifar and Graddy (1988) and Fang and Lai 

(1997) and the rationale for accounting for higher moments, as highlighted in Section 2.10 of 

Chapter 2, I further augment the liquidity-adjusted Carhart (1997) four-factor model by 

incorporating the systematic measures of skewness and kurtosis. This is denoted as: 
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𝑅𝑖𝑡 − 𝑅𝑓𝑡 = 𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡 + 𝛽𝑖𝑝𝐼𝑀𝑉𝑡

+ 𝛽𝑖𝑒𝑆𝑖 + 𝛽𝑖𝑘𝐾𝑖 + 휀𝑖𝑡 (3.61)93 

where 𝑆𝑖 represents the systematic coskewness and 𝐾𝑖 is the systematic cokurtosis of asset 𝑖. 

As disclosed in Doan and Lin (2012), coskewness can be defined as the co-movement between 

an asset’s return and the variance of the market portfolio, while cokurtosis refers to the co-

movement between an asset’s return and the skewness of the market portfolio. 

 

3.9.1 Formation of portfolios 

The asset portfolio (𝑹𝒊 − 𝑹𝒇):94 The basic materials index asset portfolio for the emerging 

and frontier African markets, in the time-series regression, is formed following Sharpe (1964) 

and Lintner (1965) as: 

𝑅𝑖 − 𝑅𝑓 = (
∑ 𝑅𝑖𝑒
𝑛
𝑖

𝑛
) − 𝑅𝑓  (3.62) 

where 𝑅𝑖𝑒 is the weekly return of each emerging/frontier African market index and 𝑅𝑓 is the 

risk-free rate of return. 𝑛 is the number of countries within emerging/frontier African markets. 

 

The market portfolio (𝑹𝒎 − 𝑹𝒇):
95 The market portfolio is also formed following Sharpe 

(1964) and Lintner (1965) as follows: 

𝑅𝑚 − 𝑅𝑓 = (∑ 𝑅𝑚𝑒𝑎𝑑𝑗)
𝑛

𝑖
− 𝑅𝑓 (3.63) 

where 𝑅𝑚𝑒𝑎𝑑𝑗 is the weekly return on the market index of each emerging/frontier African 

market, adjusted by market capitalisation, and 𝑅𝑓 is the risk-free rate of return. As noted in 

Bartholdy and Peare (2005), the underlying theory of the CAPM specifies that a value-

weighted index consisting of all assets in the world be used. However, it is impossible to 

construct such index because only a small fraction of the assets in the world are traded on a 

                                                 
93 See also Harvey and Siddique (2000) for higher-moment augmented models. 
94 The asset portfolios are identified in Section 3.3 above. Data source: Reuters Eikon and Datastream 
95 The market portfolios are identified in Section 3.3 above. Data source: Reuters Eikon and Datastream 
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stock exchange. Hence for this paper a value-weighted index that comprises the major stock 

exchange indices will be used as a proxy for the market index. 

The size portfolio (𝑺𝑴𝑩):96 Following from Fama and French (1993), I construct six sub-

portfolios (S/L, S/M, S/H, B/L, B/M, B/H). The size portfolio is formed as follows: 

𝑆𝑀𝐵 = ( 
∑(
𝑆
𝐿 ,
𝑆
𝑀 ,

𝑆
𝐻)

3
) − ( 

∑ (
𝐵
𝐿 ,
𝐵
𝑀 ,

𝐵
𝐻)

3
) (3.64) 

The size portfolio mimics the risk factor in returns related to size, which is the weekly 

difference between the same weighted simple average of the returns on S/L, S/M, and S/H, 

which are the three equal-weighted97 small-stock portfolios, and the average of the returns on 

B/L, B/M, and B/H, which are the three equal-weighted big stock portfolios. As stated in Fama 

and French (1993), this will mean that the influence of book-to-market equity value should be 

largely absent from this difference, with the focus on the returns behaviour of the small and big 

stocks. 

The small and big sub-portfolios were ranked based on the median of the market capitalisation 

of the firms on the last week of each holding semi-annual period, ending June and December 

of each sample year. The market capitalisation for each firm in each African market was 

extracted in dollars from Reuters Eikon to ensure that they are perfectly comparable. Hence 

firms with market capitalisation higher than the median are placed in the big sub-portfolio and 

those smaller are placed in the small sub-portfolio. 

The median98 market capitalisation was used instead of the mean market capitalisation because 

the dataset comprised firms from different countries; hence some firms may be 

disproportionately bigger than others. Fama and French (1996) also used the median. For 

example, in constructing the emerging African market index, I used three countries – South 

Africa, Egypt and Morocco – and this makes the new dataset unevenly distributed, as South 

Africa clearly has the firms with higher market capitalisations. 

The stocks were allocated to an independent portfolio based on the book-to-market value 

groups. This was classed as low (L), medium (M) and high (H) following the classification in 

                                                 
96 Data source: Reuters Eikon and Datastream 
97 Bartholdy and Peare (2005) find that equal-weighted index, as opposed to value-weighted index provides a better estimate, using CRSP 

data between 1970 and 1996. They also identify that it does not matter whether dividends are included in the index. Fama and MacBeth 

(1973) also used an equal-weight portfolio. 
98 Also used by Fama and French. See Table I in Fama and French (2006). 
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Fama and French (1996), where breakpoints are based on the bottom 30%, the middle 40% and 

the top 30%. Six sub-portfolios (S/L, S/M, S/H, B/L, B/M, B/H) were formed using the 

intersection of the two size portfolios and the three value-based portfolios. SMB, as seen in 

Equation 3.64, is the weekly difference between the average of the returns on the three small-

size portfolios 
𝑆

𝐿
,
𝑆

𝑀
,
𝑆

𝐻
 and the average of the returns on the three big-size portfolios 

𝐵

𝐿
,
𝐵

𝑀
,
𝐵

𝐻
. 

The weekly equal-weighted portfolios are rebalanced at the end of December of year 𝑡−1 and 

June of year 𝑡 and formed every January and July of year 𝑡. The returns are calculated every 

six months from January to June and from July to December of year 𝑡. 

The value portfolio (𝑯𝑴𝑳):99 Similarly, the HML (high minus low) portfolio mimics the risk 

factor that relates to the book-to-market equity value: 

𝐻𝑀𝐿 = ( 
∑ (

𝑆
𝐻
,
𝐵
𝐻
)

2
) − ( 

∑ (
𝑆
𝐿
,
𝐵
𝐿
)

2
) (3.65) 

where 𝑖 is the 𝐻𝑀𝐿 (high minus low) portfolio for each market 𝑖. 𝐻𝑀𝐿 is the weekly difference 

between the equal-weighted average of the two high book-to-market value portfolios – S/H and 

B/H; and the equal-weighted average of the returns of the two low book-to-market value 

portfolios – S/L and B/L. This difference is thus largely free from size effect, focusing instead 

on the behaviour of the returns of the high and low book-to-market value firms. This equal-

weighted portfolio is formed using the book-to-market ratio publicly available six months 

earlier, i.e. the book-to-market value used for portfolio formation in June is the value available 

in December of t – 1. This is similar to the method in Fama and French (1996). There were no 

stocks with negative book-to-market values; hence no stock was excluded based on negative 

values when calculating the breakpoints. 

The momentum portfolio (UMD):100 The UMD (up minus down) portfolio mimics the risk 

factor that relates to the momentum of the equity of a firm. The momentum portfolio uses 

Carhart’s (1997) four-factor model, which applies a momentum factor in Jegadeesh and Titman 

(1993). At the end of the last trading week of every holding period 𝑛 (𝑛 = 6 months), the 

securities are ranked in descending order on the basis of their mean weekly returns in the past 

𝑛 period. The returns calculations are based on average abnormal returns (AAR), as they cause 

                                                 
99 Data source: Reuters Eikon and Datastream 
100 Data source: Reuters Eikon and Datastream 
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the list problem in terms of spurious abnormal average return. Fama (1998) highlights the 

potential spurious abnormal average return, which becomes statistically significant in 

cumulative abnormal returns (CARs). 

This is because the mean of the CAR increases like N number of periods summed, but the 

standard error increases like 𝑁1/2. However, for AAR, the pricing error is constant but the 

standard error of the AAR decreases like 𝑁−1/2. Also, Andrikopoulos et al. (2008) highlights 

that “there is an upward bias in the CARs of securities that are low priced compared to an 

average benchmark and a downward bias in the CARs of relatively-priced securities”. Fama 

(1998) investigated the buy-and-hold abnormal returns (BHARs) and concluded that the bad-

model problem with it is most acute. This is because it multiplies (compounds) an expected-

return model problem. Fama (1998) goes on to recommend the use of ARRs or CARs instead 

of BHARs. Mitchell and Stafford (2000) presents evidence to show that BHARs can give a 

false impression of the speed of price adjustment. This is because BHARs can grow with the 

return horizon even when there is no abnormal return after a period. 

Furthermore, Barber and Lyon (1997) discuss the BHAR return, but identify that inferences 

are less problematic in AARs and CARs than in BHAR. However, in their later article, Lyon 

et al (1999) developed an elaborate technique for correcting some of the inference problems of 

BHARs, but they acknowledge that their improved methods produce inferences no more 

reliable than AARs or CARs. This is due to the extreme skewness problem induced by 

compounding. 

Five-quantile (quintile) portfolios are formed that equally weights the stocks contained in the 

bottom quintile, the penultimate quintile, and so on. This follows the quintile analysis of Chan 

et al (2004). Rohlerder et al (2010)101 indicate that the quintile- and decile-based portfolio 

formation are economically the same. 

The “loser” portfolio is represented by the bottom quintile, while the “winner” portfolio is 

represented by the top quintile. The strategy buys the winner portfolio (up) and sells the loser 

portfolio (down) and holds the position for a semi-annual period (from January to June and 

from July to December of year 𝑡) before rebalancing. This portfolio formation strategy is 

slightly different from that in Jegadeesh and Titman (1993), who formed the portfolio based 

                                                 
101 Rohlerder, Scholz and Wilkens (2011) “Survivorship Bias and Mutual Fund Performance: Relevance, Significance, and Methodical 
Differences.” Review of Finance 15, 441-474 
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on 10 deciles. This is because of the relatively lower number of stocks in our sample when 

compared to those used in Jegadeesh and Titman (1993). 

The liquidity portfolio (IMV):102 The IMV (illiquid minus very liquid) portfolio uses the 

liquidity construct developed in Lesmond (2005), which measures the trading cost directly 

using the bid-ask spread identified in Jian (2002). The weekly quoted spread used is defined as 

𝑄𝑢𝑜𝑡𝑒𝑑𝑠𝑝𝑒𝑎𝑑𝑊 =
1

2
[(
(𝐴𝑠𝑘𝑊 − 𝐵𝑖𝑑𝑊)

(𝐴𝑠𝑘𝑊 + 𝐵𝑖𝑑𝑊)
2

) + (
(𝐴𝑠𝑘𝑊−1 − 𝐵𝑖𝑑𝑊−1)

(𝐴𝑠𝑘𝑊−1 + 𝐵𝑖𝑑𝑊−1)/2
)] (3.66) 

A 50th percentile cut-off for illiquid and liquid stocks was used in constructing the portfolio. 

The portfolios were formed based on weekly average liquidity over the previous 𝑛 period and 

held for a further 𝑛 period before rebalancing. 

Skewness and kurtosis: The importance of skewness and kurtosis in the African market has 

been identified in the literature review and methodological notes. The normality test for the 

South African market index as shown in Figure 3.6 further demonstrates the non-normality of 

the data and hence the potential importance of higher moments. 

Figure 3.6 Distribution of the returns on the Johannesburg Stock Exchange all share index, 

Showing test statistic and p-values for normality tests 

 

Test for normality of RM: 

                                                 
102 Data source: Reuters Eikon and Datastream 
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Doornik-Hansen test = 96.4914, with p-value 1.11469e-021 

Shapiro-Wilk W = 0.966312, with p-value 1.42087e-009 

Lilliefors test = 0.0707685, with p-value ~= 0 

Jarque-Bera test = 173.867, with p-value 1.75902e-038 

 

The skewness and kurtosis variables are formed using the construct identified in Hwang and 

Satchell (1999) and Chiao et al. (2003) as follows 

𝑆𝑖 = 𝛾𝑖 =
∑ [(𝑅𝑚𝑡 − �̅�𝑖𝑡)(𝑅𝑚𝑡 − �̅�𝑚𝑡)

2]−80
𝑡=1

∑ (𝑅𝑚𝑡 − �̅�𝑚𝑡)3
−80
𝑡=1

 (3.67) 

𝐾𝑖 = 𝛿𝑖 =
∑ [(𝑅𝑚𝑡 − �̅�𝑖𝑡)(𝑅𝑚𝑡 − �̅�𝑚𝑡)

3]−80
𝑡=1

∑ (𝑅𝑚𝑡 − �̅�𝑚𝑡)
4−80

𝑡=1

 (3.68) 

As highlighted in Chiao et al (2003), the covariance measure within the higher-moment CAPM 

is denoted as: 

�̂�𝑖 =
∑ [(𝑅𝑚𝑡 − �̅�𝑖𝑡)(𝑅𝑚𝑡 − �̅�𝑚𝑡)]
−80
𝑡=1  

∑ (𝑅𝑚𝑡 − �̅�𝑚𝑡)2
−80
𝑡=1

 (3.69) 

𝑅𝑖𝑡 and 𝑅𝑚𝑡 are the returns of asset 𝑖 (index returns) and the market, respectively, and �̅�𝑖𝑡 and 

�̅�𝑚𝑡 are the expected returns on asset 𝑖 and the expected market returns, respectively. This 

skewness and kurtosis measure follows the measures in Kraus and Litzenberger (1976) and 

Barone-Adesi (1985) designed to avoid the risk of spurious correlation between the systematic 

risks of the portfolio. To deal with outliers within these two variables, I apply the inverse 

transformation used in Osborne (2010), to the outliers. As highlighted in Osborne (2002), 

square roots and logarithmic (e.g. base 10, natural log) scales were not applied in the 

transformation because some of the outliers were negative. The inverse transformation belongs 

to power transformations described in Tukey (1957), which merely raises a number to an 

exponent (power), in this case 𝑥−1. Overall, six data points were transformed for the emerging 

African market index and 13 data points for the frontier African market. These transformations 

are necessary because, according to Zimmerman (1995), they can improve the results of the 

analysis. 
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3.10 Chapter conclusion 

This chapter analyses the data problems and evaluates the methodological issues relating to the 

research questions identified from the literature review (the gaps in the literature), as it applies 

to the African market. The problems identified relate to the paucity of data and survivorship 

bias. The correction for these issues were identified in terms of creating an index and correcting 

for survivorship bias using the CRSP methodology. Other gaps relate to the effects of liquidity 

on asset pricing in the African market, the role of conditional information in determining excess 

returns in the African market, the explanatory power of higher-order moments in the African 

market. I conclude with the following recommendations. 

Due to the uniqueness of the African market, the multifactor models, augmented by the 

liquidity factor, may perform best in explaining the realised returns in the African market. 

However, to conclude that this is the case, a sequential development approach is recommended, 

which starts with the Sharpe-Lintner CAPM model, the three and four-factor models of 

Fama/French and Carhart and their liquidity-augmented variants, respectively. 

In forming the liquidity measure, I follow the conclusions in Lesmond (2005) that insist that 

the most demonstrable indicator of overall liquidity still remains the bid-ask quote; hence this 

study will employ the bid-ask spread estimate for the liquidity factor. The literature review has 

also found higher moments to be important in emerging markets, hence the importance of 

higher moments will also be tested in the African market. This will be done using the higher 

moments construct of Kraus and Litzenberger (1976), as seen in Chiao et al. (2003). 

Given the importance of adjusting for time variation in the African market, the test for structural 

breaks will follow the three 𝐹 −related test statistics for multiple breaks proposed by Bai and 

Perron (1998, 2003). For the conditional CAPM model, this study will employ the M-GARCH 

and GJR-GARCH models and will also model the impact of contagion on conditional 

correlation and beta. The modelling procedure will be discussed in the methodology section. 

This chapter also identifies the portfolio formation procedure for the different factors. Using 

these methodologies, the next chapters will present preliminary results for the South African 

market, the emerging African market and the frontier African market. Before this, the 

comprehensive result of the survivorship bias analysis will be evaluated. 
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3.11 Chapter appendices 

Appendix A3.1: Timelines for financial crisis periods and the Arab Spring  

Financial crisis timeline103 

7/9/2008 - The Federal Housing Finance Agency (FHFA) places Fannie Mae and Freddie Mac 

in government conservatorship. The US Treasury department announces three additional 

measures to complement the FHFA’s decision: 1) preferred stock purchase agreements 

between the Treasury/FHFA and Fannie Mae and Freddie Mac to ensure the GSE’s positive 

net worth; 2) a new secured lending facility that would be available to Fannie Mae, Freddie 

Mac and the Federal Home Loan Banks; and 3) a temporary programme to purchase GSE MBS. 

15/9/2008 - Lehman Brothers Holdings Incorporated files for Chapter 11 bankruptcy 

protection. 

16/09/2008 - The Federal Reserve Board authorises the Federal Reserve Bank of New York to 

lend up to $85 billion to the American International Group (AIG) under Section 13(3) of the 

Federal Reserve Act. 

29/10/2008 - The FOMC votes to reduce its target for the federal funds rate 50 basis points to 

1.00%. The Federal Reserve Board reduces the primary credit rate 50 basis points to 1.25%. 

18/11/2009 - Executives of Ford, General Motors, and Chrysler testify before Congress, 

requesting access to the Troubled Asset Relief Programme (TARP) for federal loans. 

5/1/2009 - The Federal Reserve Bank of New York begins purchasing fixed-rate mortgage-

backed securities guaranteed by Fannie Mae, Freddie Mac and Ginnie Mae under a programme 

first announced on 25 November 2008. 

17/2/2009 - President Obama signs into law the American Recovery and Reinvestment Act of 

2009, which includes a variety of spending measures and tax cuts intended to promote 

economic recovery. 

11/3/2009 - Freddie Mac announces that it had a net loss of $23.9 billion in the fourth quarter 

of 2008 and a net loss of $50.1 billion for 2008 as a whole. Further, Freddie Mac announces 

that its conservator has submitted a request to the US Treasury department for an additional 

                                                 
103 Source: Federal Reserve Bank of St. Louis https://www.stlouisfed.org/financial-crisis/full-timeline, see also full timeline 

via this link. 

https://www.stlouisfed.org/financial-crisis/full-timeline


178 
 

$30.8 billion in funding for the company under the Senior Preferred Stock Purchase Agreement 

with the Treasury. 

7/5/2009 - The Federal Reserve releases the results of the Supervisory Capital Assessment 

Programme (stress test) of the 19 largest US bank holding companies. 

21/5/2009 - Standard and Poor’s Ratings Services lowers its outlook on the UK government’s 

debt from stable to negative because of the estimated fiscal cost of supporting the nation’s 

banking system. S&P estimates that this cost could double the government’s debt burden to 

about 100% of GDP by 2013. 

Arab Spring timeline104 

14/1/2011 – Tunisian president Ben Ali resigns. 

11/2/2011 – Egyptian president Hosni Mubarak resigns. 

20/2/2011 – Libyan president Muammar Gaddafi dies. 

15/3/2011 - King Hamad of Bahrain declares a state of emergency and brings in troops from 

neighbouring Sunni-led Gulf states to restore order. 

24/11/2011 – Yemen’s president, Ali Abdullah Saleh. agrees to cede power to his vice-

president, Abdrabbuh Mansour Hadi. 

21/2/2012 - President Assad of Syria presses ahead with a referendum that approves a new 

constitution that dropped an article giving the ruling Baath Party unique status as the “leader 

of the state and society”. 

19/10/2012 - Wissam al-Hassan, a brigadier-general of the Lebanese Internal Security Forces, 

died along with several others in the 2012 Beirut bombing. 

 

Table A3.2a Breakpoint specification for the test of no break versus a fixed number of breaks for the 

South African market index 

      
      Estimated number of breaks: 5    
Method: Bai-Perron tests of 1 to M globally determined breaks 

Maximum number of breaks: 5    
Breaks: 26/8/2005, 20/4/2007, 29/1/2010, 23/9/2011, 17/5/2013 

      
 

 

 

           
      

                                                 
104 Source: BBC http://www.bbc.co.uk/news/world-12482291, see also link for full time line. 

https://en.wikipedia.org/wiki/Wissam_al-Hassan
https://en.wikipedia.org/wiki/Brigadier_general
https://en.wikipedia.org/wiki/Lebanon
https://en.wikipedia.org/wiki/Internal_Security_Forces
https://en.wikipedia.org/wiki/2012_Beirut_bombing
http://www.bbc.co.uk/news/world-12482291
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Sequential F-statistic determined breaks:  5  

Significant F-statistic largest breaks:  5  

UDmax determined breaks:   5  

WDmax determined breaks:   5  
      
        Scaled Weighted Critical  

Breaks F-statistic F-statistic F-statistic value  
      
      1 * 127.7575 127.7575 127.7575 8.58  

2 * 80.87399 80.87399 96.10787 7.22  

3 * 310.2658 310.2658 446.6578 5.96  
4 * 1514.366 1514.366 2603.860 4.99  

5 * 1740.356 1740.356 3818.992 3.91  

      
      UDMax statistic*  1740.356 UDMax critical value**  8.88 

WDMax statistic*  3818.992 WDMax critical value**  9.91 

 

 

Figure A3.2b Actual, fitted and residual graph for the test of no break versus a fixed number of 

breaks for the South African market index 
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Table A3.3a A test of test of 𝓵 versus 𝓵 + 𝟏 breaks for the South African market index 
    
    Estimated number of breaks: 3  

Method: Bai-Perron tests of L+1 vs. L globally determined 

breaks   

Maximum number of breaks: 5  

Breaks: 22/9/2006, 1/10/2010, 4/1/2013 

    
        
Sequential F-statistic determined breaks:  3 

Significant F-statistic largest breaks:  3 

    
      Scaled Critical 

Break test F-statistic F-statistic value** 
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    0 vs. 1 * 127.7575 127.7575 8.58 

1 vs. 2 * 736.9474 736.9474 10.13 

2 vs. 3 * 230.9048 230.9048 11.14 

3 vs. 4 1.750255 1.750255 11.83 

4 vs. 5 0.896761 0.896761 12.25 

    
 

Figure A3.3b Actual, fitted and residual graph for the test of l versus l+1 breaks for the South 

African market index 
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Table A3.37a Breakpoint specification for the test of no break versus a fixed number of breaks for 

the Egyptian market index 

      
      Estimated number of breaks: 3    

Method: Bai-Perron tests of 1 to M globally determined breaks 

Maximum number of breaks: 5    

Breaks: 19/8/2005, 6/4/2007, 21/11/2008   

      
            Sequential F-statistic determined breaks:  5  

Significant F-statistic largest breaks:  5  

UDmax determined breaks:   3  

WDmax determined breaks:   3  

      
        Scaled Weighted Critical  

Breaks F-statistic F-statistic F-statistic value  

      
      1 * 98.59719 98.59719 98.59719 8.58  

2 * 49.07705 49.07705 58.32148 7.22  

3 * 1273.202 1273.202 1832.898 5.96  

4 * 958.7731 958.7731 1648.552 4.99  

5 * 810.5591 810.5591 1778.669 3.91  

      
      UDMax statistic*  1273.202 UDMax critical value**  8.88 

WDMax statistic*  1832.898 WDMax critical value**  9.91 
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Figure A3.4b Actual, fitted and residual graph for the test of no break versus a fixed number of 

breaks for the Egyptian market index 
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Table A3.5a A test of test of 𝓵 versus 𝓵 + 𝟏 breaks for the Egyptian market index  

    
    Estimated number of breaks: 1  

Method: Bai-Perron tests of L+1 vs. L globally determined 

breaks   

Maximum number of breaks: 5  

Break: 19/8/2005   

    
    Sequential F-statistic determined breaks:  1 

Significant F-statistic largest breaks:  1 

    
      Scaled Critical 

Break test F-statistic F-statistic value** 

    
    0 vs. 1 * 98.59719 98.59719 8.58 

1 vs. 2 3.291208 3.291208 10.13 

2 vs. 3 8.681706 8.681706 11.14 

3 vs. 4 8.387214 8.387214 11.83 

4 vs. 5 4.135587 4.135587 12.25 
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Figure A3.5b Actual, fitted and residual graph for the test of l versus l+1 breaks for the Egyptian 

market index 
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Table A3.6a Breakpoint specification for the test of no break versus a fixed number of breaks for the 

Moroccan market index 

      
      Estimated number of breaks: 4    

Method: Bai-Perron tests of 1 to M globally determined breaks 

Maximum number of breaks: 5    

Breaks: 26/8/2005, 20/4/2007, 12/12/2008, 13/4/2012  

      
      Sequential F-statistic determined breaks:  5  

Significant F-statistic largest breaks:  5  

UDmax determined breaks:   4  

WDmax determined breaks:   5  

      
        Scaled Weighted Critical  

Breaks F-statistic F-statistic F-statistic value  

      
      1 * 72.88548 72.88548 72.88548 8.58  

2 * 109.6630 109.6630 130.3197 7.22  

3 * 55.97348 55.97348 80.57927 5.96  

4 * 3264.239 3264.239 5612.660 4.99  

5 * 2681.023 2681.023 5883.164 3.91  

      
      UDMax statistic*  3264.239 UDMax critical value**  8.88 

WDMax statistic*  5883.164 WDMax critical value**  9.91 

      
       



183 
 

Figure A3.6b Actual, fitted and residual graph for the test of no break versus a fixed number of 

breaks for the Moroccan market index 
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Table A3.7a A test of test of 𝓵 versus 𝓵 + 𝟏 breaks for the Moroccan market index. 

    
    Estimated number of breaks: 2  

Method: Bai-Perron tests of L+1 vs. L globally determined 

    breaks   

Maximum number of breaks: 5  

Breaks: 17/11/2006, 6/4/2012  

    
Sequential F-statistic determined breaks:  2 

Significant F-statistic largest breaks:  2 

    
      Scaled Critical 

Break test F-statistic F-statistic value** 

    
    0 vs. 1 * 72.88548 72.88548 8.58 

1 vs. 2 * 56.18281 56.18281 10.13 

2 vs. 3 1.919804 1.919804 11.14 

3 vs. 4 11.81628 11.81628 11.83 

4 vs. 5 7.353054 7.353054 12.25 
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Figure A3.7b Actual, fitted and residual graph for the test of l versus l+1 breaks for the Moroccan 

market index 
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Table A3.8a Breakpoint specification for the test of no break versus a fixed number of breaks for the 

Botswanan market index 

      
      Estimated number of breaks: 5    

Method: Bai-Perron tests of 1 to M globally determined breaks 

Maximum number of breaks: 5    

Breaks: 26/8/2005, 20/4/2007, 12/12/2008, 22/7/2011, 22/3/2013 

      
      Sequential F-statistic determined breaks:  5  

Significant F-statistic largest breaks:  5  

UDmax determined breaks:   5  

WDmax determined breaks:   5  

      
        Scaled Weighted Critical  

Breaks F-statistic F-statistic F-statistic value  

      
      1 * 132.8815 132.8815 132.8815 8.58  

2 * 134.4209 134.4209 159.7412 7.22  

3 * 82.22352 82.22352 118.3688 5.96  

4 * 75.56034 75.56034 129.9214 4.99  

5 * 1269.228 1269.228 2785.160 3.91  

      
      UDMax statistic*  1269.228 UDMax critical value**  8.88 

WDMax statistic*  2785.160 WDMax critical value**  9.91 

      
      



185 
 

 

 

Figure A3.8b Actual, fitted and residual graph for the test of no break versus a fixed number of 

breaks for the Botswanan market index 
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Table A3.9a A test of test of 𝓵 versus 𝓵 + 𝟏 breaks for the Botswanan market index 
    
    Estimated number of breaks: 3  

Method: Bai-Perron tests of L+1 vs. L globally determined 

breaks   

Maximum number of breaks: 5  

Breaks: 13/10/2006, 12/12/2008, 15/3/2013 

    
Sequential F-statistic determined breaks:  3 

Significant F-statistic largest breaks:  3 

    
      Scaled Critical 

Break test F-statistic F-statistic value** 

    
    0 vs. 1 * 132.8815 132.8815 8.58 

1 vs. 2 * 64.82169 64.82169 10.13 

2 vs. 3 * 15.47632 15.47632 11.14 

3 vs. 4 3.741978 3.741978 11.83 

4 vs. 5 0.000000 0.000000 12.25 
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Figure A3.9b Actual, fitted and residual graph for the test of l versus l+1 breaks for the Botswanan 

market index 
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Table A3.380a Breakpoint specification for the test of no break versus a fixed number of breaks for 

the BRVM - Cote d’Ivoire market index 

       
       Estimated number of breaks: 2     

Method: Bai-Perron tests of 1 to M globally determined breaks  

Maximum number of breaks: 5     

Breaks: 13/1/2006, 17/5/2013     
       
Sequential F-statistic determined breaks:  5   

Significant F-statistic largest breaks:  5   

UDmax determined breaks:   2   

WDmax determined breaks:   5   
       
         Scaled Weighted Critical   

Breaks F-statistic F-statistic F-statistic value   
       
       1 * 46.92069 46.92069 46.92069 8.58   

2 * 179.2227 179.2227 212.9822 7.22   

3 * 59.43637 59.43637 85.56443 5.96   

4 * 175.8611 175.8611 302.3824 4.99   

5 * 177.7579 177.7579 390.0673 3.91   
       
       UDMax statistic*  179.2227 UDMax critical value**  8.88  

WDMax statistic*  390.0673 WDMax critical value**  9.91  
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Figure A3.10b Actual, fitted and residual graph for the test of no break versus a fixed number of 

breaks for the BRVM market index 
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Table A3.11a A test of test of 𝓵 versus 𝓵 + 𝟏 for the BRVM market index.  

    
    Estimated number of breaks: 5  

Method: Bai-Perron tests of L+1 vs. L globally determined 

breaks   

Maximum number of breaks: 5  

Breaks: 2/12/2005, 20/7/2007, 6/3/2009, 22/10/2010, 1/3/2013 

   

    
Sequential F-statistic determined breaks:  5 

Significant F-statistic largest breaks:  5 

    
      Scaled Critical 

Break test F-statistic F-statistic value** 

    
    0 vs. 1 * 46.92069 46.92069 8.58 

1 vs. 2 * 52.07231 52.07231 10.13 

2 vs. 3 * 19.37104 19.37104 11.14 

3 vs. 4 * 70.22438 70.22438 11.83 

4 vs. 5 * 15.62443 15.62443 12.25 
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Figure A3.11b Actual, fitted and residual graph for the test of l versus l+1 breaks for the BRVM 

market index 
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Table A3.392a Breakpoint specification for the test of no break versus a fixed number of 

breaks for the Kenyan market index 

      
      Estimated number of breaks: 3    

Method: Bai-Perron tests of 1 to M globally determined breaks 

Maximum number of breaks: 5    

Breaks: 16/1/2009, 29/1/2010, 29/3/2013   

      
Sequential F-statistic determined breaks:  5  

Significant F-statistic largest breaks:  5  

UDmax determined breaks:   3  

WDmax determined breaks:   3  

      
        Scaled Weighted Critical  

Breaks F-statistic F-statistic F-statistic value  

      
      1 * 93.10634 93.10634 93.10634 8.58  

2 * 137.3079 137.3079 163.1720 7.22  

3 * 186.3725 186.3725 268.3014 5.96  

4 * 135.2672 135.2672 232.5837 4.99  

5 * 109.1049 109.1049 239.4170 3.91  

      
      UDMax statistic*  186.3725 UDMax critical value**  8.88 

WDMax statistic*  268.3014 WDMax critical value**  9.91 
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Figure A3.12b Actual, fitted and residual graph for the test of no break versus a fixed number of 

breaks for the Kenyan market index 
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Table A3.13a A test of test of 𝓵 versus 𝓵 + 𝟏 breaks for the Kenyan market index. 
 

 

   
    Estimated number of breaks: 3  

Method: Bai-Perron tests of L+1 vs. L globally determined 

breaks   

Maximum number of breaks: 5  

Breaks: 16/1/2009, 29/1/2010, 29/3/2013 

    
Sequential F-statistic determined breaks:  3 

Significant F-statistic largest breaks:  5 

    
      Scaled Critical 

Break test F-statistic F-statistic value** 

    
    0 vs. 1 * 93.10634 93.10634 8.58 

1 vs. 2 * 29.91057 29.91057 10.13 

2 vs. 3 * 21.99163 21.99163 11.14 

3 vs. 4 4.050629 4.050629 11.83 

4 vs. 5 * 37.02445 37.02445 12.25 
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Figure A3.23b Actual, fitted and residual graph for the test of l versus l+1 breaks for the Kenyan 

market index 
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Table A3.404a Breakpoint specification for the test of no break versus a fixed number of 

breaks for the Nigerian market index 

      
      Estimated number of breaks: 5    

Method: Bai-Perron tests of 1 to M globally determined breaks 

Maximum number of breaks: 5    

Breaks: 26/8/2005, 20/4/2007, 12/12/2008, 27/5/2011, 8/1/2013 

      
Sequential F-statistic determined breaks:  5  

Significant F-statistic largest breaks:  5  

UDmax determined breaks:   5  

WDmax determined breaks:   5  

      
        Scaled Weighted Critical  

Breaks F-statistic F-statistic F-statistic value  

      
      1 * 22.64809 22.64809 22.64809 8.58  

2 * 84.91674 84.91674 100.9121 7.22  

3 * 90.27390 90.27390 129.9581 5.96  

4 * 79.49843 79.49843 136.6927 4.99  

5 * 222.0614 222.0614 487.2856 3.91  

      
      UDMax statistic*  222.0614 UDMax critical value**  8.88 

WDMax statistic*  487.2856 WDMax critical value**  9.91 
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Figure A3.34b Actual, fitted and residual graph for the test of no break versus a fixed number of 

breaks for the Nigerian market index 
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Table A3.15a A test of test of 𝓵 versus 𝓵 + 𝟏 breaks for the Nigerian market index 
    
    Estimated number of breaks: 3  

Method: Bai-Perron tests of L+1 vs. L globally determined 

    breaks   

Maximum number of breaks: 5  

Breaks: 9/2/2007, 31/10/2008, 25/1/2013 

    
Sequential F-statistic determined breaks:  3 

Significant F-statistic largest breaks:  3 

    
      Scaled Critical 

Break test F-statistic F-statistic value** 

    
    0 vs. 1 * 22.64809 22.64809 8.58 

1 vs. 2 * 15.12108 15.12108 10.13 

2 vs. 3 * 98.79927 98.79927 11.14 

3 vs. 4 2.863531 2.863531 11.83 

4 vs. 5 0.000000 0.000000 12.25 
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Figure A3.4b Actual, fitted and residual graph for the test of l versus l+1 breaks for the Nigerian 

market index 
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Table 3.16a Breakpoint specification for the test of no break versus a fixed number of breaks for 

the Tunisian market index  

      
      Estimated number of breaks: 5    

Method: Bai-Perron tests of 1 to M globally determined breaks 

Maximum number of breaks: 5    

Breaks: 21/4/2006, 1/2/2008, 18/9/2009, 23/9/2011, 10/5/2013 

      
Sequential F-statistic determined breaks:  5  

Significant F-statistic largest breaks:  5  

UDmax determined breaks:   5  

WDmax determined breaks:   5  

      
        Scaled Weighted Critical  

Breaks F-statistic F-statistic F-statistic value  

      
      1 * 490.6935 490.6935 490.6935 8.58  

2 * 774.0839 774.0839 919.8947 7.22  

3 * 831.3221 831.3221 1196.769 5.96  

4 * 722.7210 722.7210 1242.675 4.99  

5 * 8013.184 8013.184 17583.92 3.91  

      
      UDMax statistic*  8013.184 UDMax critical value**  8.88 

WDMax statistic*  17583.92 WDMax critical value**  9.91 
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Figure A3.5b Actual, fitted and residual graph for the test of no break versus a fixed number of 

breaks for the Tunisian market index 
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Table 3.17a41 A test of test of 𝓵 versus 𝓵 + 𝟏 breaks for the Tunisian market index 
    
    Estimated number of breaks: 2  

Method: Bai-Perron tests of L+1 vs. L globally determined 

breaks   

Maximum number of breaks: 5  

Breaks: 27/10/2006, 4/9/2009  

    
Sequential F-statistic determined breaks:  2 

Significant F-statistic largest breaks:  2 

    
      Scaled Critical 

Break test F-statistic F-statistic value** 

    
    0 vs. 1 * 490.6935 490.6935 8.58 

1 vs. 2 * 74.95857 74.95857 10.13 

2 vs. 3 3.161220 3.161220 11.14 

3 vs. 4 3.194017 3.194017 11.83 

4 vs. 5 0.000000 0.000000 12.25 
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Figure A3.67b Actual, fitted and residual graph for the test of l versus l+1 breaks for the Tunisian 

market index 
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Figure A 3.78 CUSUM test for the returns on the South African market index 
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Figure A 3.89 CUSUM of squares test for the returns on the South African market index 
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Figure A 3.20 CUSUM test for the returns on the emerging African market index 
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Figure A 3.9 CUSUM of squares test for the returns on the emerging African market index 
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Figure A 3.10 CUSUM test for the returns on the emerging African market excluding South Africa 

index 
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Figure A 3.113 CUSUM of squares test for the returns on the emerging African market excluding 

South Africa index 
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Figure A 3.124 CUSUM test for the returns on the frontier African market index 
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Figure A 3.135 CUSUM of squares test for the returns on the frontier African market index 
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4 THE EFFECT OF SURVIVORSHIP BIAS ON THE PERFORMANCE OF 

ASSET-PRICING MODELS IN THE EMERGING AFRICAN MARKET 

 

4.1 Introduction 

In the literature review, the importance of eliminating survivorship bias in time-series data was 

identified. This chapter justifies the elimination of survivorship bias by evaluating survivorship 

bias in the emerging African market. This chapter will also evaluate the impact of the attrition 

rate on survivorship bias in these markets. For a robustness check, the outcome is compared to 

the outcome within the South African market. It is pertinent to note that this chapter is aimed 

at highlighting the importance of adjusting African market data for survivorship bias; hence I 

used data on the emerging African market and the South African market from January 2005 to 

Deccember 2014. 

Section 4.2 provides details of the portfolio formation procedure, while Section 4.3 shows the 

empirical result using the Jensen alpha approach. In Section 4.4, the survivorship bias results 

for the emerging African market and the frontier African market are discussed, while the 

relationship between the attrition rate and survivorship bias is established in Section 4.5. 

Section 4.6 is the chapter conclusion, Section 4.7 the chapter contribution and Section 4.8 the 

chapter appendices. 

 

4.1.2 Unbiased dataset 

The number of firms in the unbiased dataset of the emerging African market (the basic 

materials sectors of South Africa, Egypt and Morocco) is shown below: 

2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 

40 47 51 56 63 65 61 60 65 50 

 

Data on some delisted firms have been removed from the database and hence will not be used 

in this study. The firms are: South Africa – Gold One International (GDOJ.J), Freeworld 

(FWDJ.J), Eland Platinum (ELDJ.J), Uranium (UUUJ.J); Egypt – HAC (HACCO.CA), AMCC 

(AMRI.CA). 

4.1.3 The biased dataset 
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The number of firms in the end-of-sample conditioned dataset of the emerging African market 

(the basic materials sectors of South Africa, Egypt and Morocco) are shown below: 

2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 

35 35 35 35 35 35 35 35 35 35 

 

4.2 Portfolio formation 

The portfolio formation for the asset and market portfolios follows the process identified in 

Sharpe (1964) and Lintner (1965), while the size and value portfolios follow variants of the 

formation process in Fama and French (1993). The momentum portfolio follows the formation 

procedure in Jegadeesh and Titman (1993), while the liquidity portfolio follows the liquidity 

construct developed in Lesmond (2005). A detailed analysis of the portfolio formation 

procedure used can be found in Chapter 3. 

 

4.3 Empirical results using the Jensen alpha approach 

4.3.1 Emerging African market index not sorted for survivorship bias 

This study analyses the Sharpe-Lintner CAPM, the Fama-French three-factor model and the 

Carhart four-factor model, and also includes the liquidity factor within each model. 

Variables are defined in the table below. 

 

Variable  Definition 

 𝛼𝑖 Jensen alpha term (the constant term) 

 𝛽𝑖𝑀 Beta 

 𝛽𝑖𝑠 factor loading on the size factor 

𝛽𝑖ℎ factor loading on the value factor 

 𝛽𝑖𝑚 factor loading on the momentum factor 

 𝛽𝑖𝑝 factor loading on the liquidity factor 
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Table 4.1105 Time-series regression using equally weighted weekly contemporaneous excess return for the CAPM, three-factor model, four-factor model 

and their liquidity-augmented variants 

Coeff.  CAPM106  
3-factor 

model107  

4-factor 

model108  

CAPM + 

liquidity109  

3-factor model + 

liquidity110  

4-factor model + 

liquidity111 

 -0.00129564 -0.00144332* -0.00145244* -0.00150074* -0.00154619* -0.00155959* 

𝛼𝑖 (0.000806874) (0.000806197) (0.000805965) (0.000810517) (0.000808333) (0.000808019) 
 0.769343*** 0.780840*** 0.779385*** 0.774618*** 0.781417*** 0.779901*** 

𝛽𝑖𝑀 (0.0406032) (0.0407485) (0.0407538) (0.0405633) (0.0407072) (0.0407061) 
   0.0831352*** 0.0757115***  0.0705833** 0.0622787** 

𝛽𝑖𝑠   (0.0267805) (0.0275093)  (0.0280623) (0.0288371) 
   -0.0786379* -0.0627916  -0.0862180** -0.0697455 

𝛽𝑖ℎ   (0.0426282) (0.0447037)  (0.0428895) (0.0448793) 
     0.0250166   0.0264416 

𝛽𝑖𝑚     (0.0213252)   (0.0213198) 

𝛽𝑖𝑝    
0.0429085** 

(0.0206150) 

0.0324564 

(0.0219129) 

0.0336407 

(0.0219232) 

𝑅2 
 

0.388541 

 
0.400087 0.401552 0.393202 0.402420 

0.404054 

 
*, ** and *** indicates statistical significance of the coefficient at the 10%, 5% and 1% levels. Study uses observations 2005-01-07: 2015-01-02112. Emerging African market data not sorted for 

survivorship bias 

 

                                                 
105 Heteroscedasticity-corrected using HAC standard errors. Data source – Reuters Eikon. 
106 𝑅𝑖 − 𝑅𝑓 = 𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀) − 𝑅𝑓)  +  휀𝑖𝑡 
107 𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡  +  휀𝑖𝑡 
108 𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡  +  휀𝑖𝑡 
109 𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑝𝐼𝑀𝑉𝑡 + 휀𝑖𝑡 
110 110 𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑝𝐼𝑀𝑉𝑡 + 휀𝑖𝑡 

111 𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡 + 𝛽𝑖𝑝𝐼𝑀𝑉𝑡 + 휀𝑖𝑡 
112 Descriptive statistics, correlation matrix and the time-series plots of the weekly values of the various factors for the basic materials emerging African index not sorted for survivorship bias are shown in the chapter 
appendix. 
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4.3.2 Emerging African market Index sorted for survivorship bias 

 

Table 4.2113 Time-series regression using equally weighted weekly contemporaneous excess return for the CAPM, three-factor model, four-factor model 

and their liquidity-augmented variants114 

Coeff.  CAPM  3-factor model  4-factor model  
CAPM + 

liquidity  

3-factor model + 

liquidity  

4-factor model + 

liquidity 

 −0.00206766 ** −0.00201035 ** −0.00201280** −0.00210284** −0.00201197** −0.00201522** 

𝛼𝑖 (0.000978129) (0.000971878) (0.000971570) (0.000989634) (0.000972554) (0.000971655) 
 0.771759 *** 0.776560*** 0.774435 *** 0.780576*** 0.778630*** 0.777193*** 

𝛽𝑖𝑀 (0.0684484) (0.0648729) (0.0643890) (0.0711353) (0.0683140) (0.0678916) 
   0.0328250 0.0321213  0.0253645 0.0216254 

𝛽𝑖𝑠   (0.0437052) (0.0444283)  (0.0431324) (0.0432183) 
   −0.0934450 −0.0800838  −0.0916887 −0.0767385 

𝛽𝑖ℎ   (0.0644557) (0.0638332)  (0.0667954) (0.0656289) 
     0.0204442   0.0217989 

𝛽𝑖𝑚     (0.0343857)   (0.0329383) 

𝛽𝑖𝑝    
0.0268155 

(0.0531758)  

0.0114386 

(0.0593859) 

0.0160212 

(0.0572467) 

𝑅2 
 

0.399131 

 
0.404177 0.404852 0.393202 0.404262 

0.405016 

*, ** and *** indicates statistical significance of the coefficient at the 10%, 5% and 1% levels. Study uses observations 2005-01-07: 2015-01-02. Emerging African market data sorted for 

survivorship bias. 

 

                                                 
113 Heteroscedasticity-corrected using HAC standard errors. Data source – Reuters Eikon. 
114 Descriptive statistics, correlation matrix and the time-series plots of the weekly values of the various factors for the basic materials emerging African index sorted for survivorship bias are shown in the chapter 
appendix 
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4.3.3 South African basic materials index – not sorted for survivorship bias 

 

Table 4.3115 Time-series regression using equally weighted weekly contemporaneous excess return for the CAPM, three-factor model, four-factor model 

and their liquidity-augmented variants116 

Coeff.  CAPM  3-factor model  4-factor model  
CAPM + 

liquidity  

3-factor model + 

liquidity  

4-factor model + 

liquidity 

 -0.00110871 -0.00106947 -0.000447738 0.000618477 -0.000528182 -0.000404742 

𝛼𝑖 (0.00197686) (0.00133890) (0.00132014) (0.00176471) (0.00130670) (0.00135245) 
 1.16812*** 0.880607*** 0.850363*** 0.893608*** 0.816498*** 0.848551*** 

𝛽𝑖𝑀 (0.0920584) (0.0576336) (0.0591658) (0.0821804) (0.0619216) (0.0587069) 
   -0.871156*** -0.886990***  -0.805907*** -0.802354*** 

𝛽𝑖𝑠   (0.0726090) (0.0696063)  (0.0813115) (0.0802716) 
   -0.130936* -0.0671721  -0.106899 -0.0238405 

𝛽𝑖ℎ   (0.0667739) (0.0645737)  (0.0703723) (0.0601097) 
     0.0982075*   0.117811** 

𝛽𝑖𝑚     (0.0547490)   (0.0507547) 

𝛽𝑖𝑝    
-0.668190*** 

(0.0786015)  

-0.113758* 

(0.0682193)  

-0.202243*** 

(0.0609669) 

𝑅2 
 

0.343294 0.632825 0.639003 0.458350 0.404262 
0.671013 

*, ** and *** indicates statistical significance of the coefficient at the 10%, 5% and 1% levels. Study uses observations 2005-01-07: 2015-01-02. South African market data not sorted for 

survivorship bias 

 

                                                 
115Heteroscedasticity-corrected using HAC standard errors. Data source – Reuters Eikon. 
116 Descriptive statistics, correlation matrix and the time-series plots of the weekly values of the various factors for the basic materials South African index, sorted for survivorship bias are shown in the chapter 
appendix 
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4.3.4 South African basic materials index sorted for survivorship bias 

Table 4.4117 Time-series regression using equally weighted weekly contemporaneous excess return for the CAPM, three-factor model, four-factor model 

and their liquidity-augmented variant118 

Coeff.  CAPM  3-factor model  4-factor model  
CAPM + 

liquidity  

3-factor model + 

liquidity  

4-factor model + 

liquidity 

 −0.00290084** −0.00190216 −0.00190483 −0.00149222* −0.00157533 −0.00157701 

𝛼𝑖 (0.00132269) (0.00119628) (0.00120075) (0.00136406) (0.00125385) (0.00126148) 
 1.07681*** 0.807398*** 0.807259*** 0.83919*** 0.782223*** 0.78214*** 

𝛽𝑖𝑀 (0.123974) (0.0815345) (0.0814176) (0.105292) (0.0859341) (0.0857486) 
   -0.691088*** -0.690659***  -0.482328*** -0.482083*** 

𝛽𝑖𝑠   (0.0719852) (0.0703196)  (0.0951437) (0.0928401) 
   0.015861 0.0139847  0.0338316 0.032669 

𝛽𝑖ℎ   (0.0850321) (0.0829662)  (0.0848109) (0.0822062) 
     0.00300207   0.00185722 

𝛽𝑖𝑚     (0.0505112)   (0.0474105) 

𝛽𝑖𝑝    
-0.697963*** 

(0.0796505) 

-0.30421*** 

(0.106125)  

-0.304179*** 

(0.106339) 

𝑅2 
 

0.366628 0.582827 0.582833 0.548781 0.598517 
0.598520 

*, ** and *** indicates statistical significance of the coefficient at the 10%, 5% and 1% levels. Study uses observations 2005-01-07: 2015-01-02. South African market data sorted for survivorship 

bias 

 

                                                 
117 Heteroscedasticity-corrected using HAC standard errors. Data source – Reuters Eikon. 
118 Descriptive statistics, correlation matrix and the time-series plots of the weekly values of the various factors for the basic materials South African index sorted for survivorship bias are shown in the chapter appendix 
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4.4 Survivorship bias results for the emerging African market and the South African 

market 

As stated in Rohleder, Scholz and Wilkens (2011), survivorship bias arises through the 

measurement of returns of a portfolio that includes only surviving funds. Generally, this will 

lead to the overestimation of performance. In measuring the survivorship bias, I follow the 

method in Rohleder, Scholz and Wilkens (2011), which uses the Jensen alpha. For the emerging 

African market, our analysis showed a survivorship-biased Jensen alpha of −12.96 basis points 

per week using the Sharpe-Lintner CAPM. The corresponding unbiased Jensen alpha in the 

analysis was −20.68 basis points per week. The difference of 7.72 basis points per week 

(402.55119 basis points per year) is usually referred to as survivorship bias. 

Using the Fama-French three-factor model the analysis showed a biased Jensen alpha of -14.43 

basis point per week while the corresponding unbiased dataset showed a Jensen alpha of -20.10 

basis point per week. The difference of 5.67 basis points per week (295.67 basis point per year) 

is the survivorship bias. Using the Carhart four-factor model, the analysis showed a biased 

Jensen alpha of -14.52 basis point per week while the corresponding unbiased data showed 

Jensen alpha of -20.13 basis point per week. The difference of 5.60 basis point per week 

(292.19 basis point per year) is the survivorship bias. 

When the Sharpe-Lintner CAPM is augmented by the liquidity factor, the analysis showed a 

biased Jensen alpha of −15.01 basis points per week, while the corresponding unbiased Jensen 

alpha was −21.03 basis points per week. The difference of 6.02 basis points per week (313.95 

basis points per year) is the survivorship bias. This is lower than the 7.72 basis points per week 

for the unaugmented Sharpe-Lintner CAPM. For the liquidity-augmented three-factor model, 

the analysis showed a biased Jensen alpha of −15.46 basis points per week, while the 

corresponding unbiased Jensen alpha was −20.12 basis points per week. This is a difference of 

4.66 basis points per week (242.87 basis points per year), which is less than the 5.67 basis 

points per week reported for the unaugmented three-factor model. 

The liquidity-augmented four-factor model showed a biased Jensen alpha of −15.60 basis 

points per week, while the corresponding unbiased Jensen alpha was −20.15 basis points per 

week. The difference of 4.56 basis points per week (237.59 basis points per year) is the 

survivorship bias, which is less than the 5.60 basis points for the unaugmented Carhart model. 

                                                 
119 52.1429 weeks in a year. 
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The average survivorship bias for all the models is 297.47 basis points per year for the basic 

materials index of the emerging African market between January 2005 and December 2014. 

This is higher than the 157 basis points per year reported in Rohleder, Scholz and Wilkens 

(2011), using the US domestic equity mutual fund market from 1993 through 2006. Deaves 

(2004) also reports a lower value in the Canadian market. They find the average difference 

between alphas of surviving funds and those that cease existence by the end, using unweighted 

average alphas, ranges from 232 to 271 basis points. Grinblatt and Titman (1989) report results 

that are lower than those in Deaves (2004). 

For the South African market only, our analysis showed survivorship-biased Jensen alpha of 

−11.09 basis points per week using the Sharpe-Lintner CAPM. The corresponding unbiased 

Jensen alpha in the analysis was −29.01 basis points per week. The difference of 17.92 basis 

points per week (934.47 basis points per year) is usually referred to as survivorship bias. 

Using the Fama-French three-factor model, the analysis showed a biased Jensen alpha of 

−10.70 basis points per week while the corresponding unbiased dataset showed a Jensen alpha 

of −19.02 basis points per week. The difference of 8.33 basis points per week (434.19 basis 

points per year) is the survivorship bias. Using the Carhart four-factor model, the analysis 

showed a biased Jensen alpha of -4.48 basis point per week while the corresponding unbiased 

data showed Jensen alpha of −19.05 basis points per week. The difference of 14.57 basis points 

per week (759.77 basis points per year) is the survivorship bias. 

When the Sharpe-Lintner CAPM is augmented by the liquidity factor, the analysis for the South 

African market showed a biased Jensen alpha of 6.9 basis points per week, while the 

corresponding unbiased Jensen alpha was −14.92 basis points per week. The difference of 

21.11 basis points per week (1100.59 basis points per year) is the survivorship bias. This is 

higher than the 17.92 basis points per week for the unaugmented Sharpe-Lintner CAPM. For 

the liquidity-augmented three-factor model, the analysis showed a biased Jensen alpha of −5.28 

basis points per week, while the corresponding unbiased Jensen alpha was −15.75 basis points 

per week. This is a difference of 10.47 basis points per week (546.01 basis points per year), 

which is higher than the 8.33 basis points per week reported for the unaugmented three-factor 

model. 

The liquidity-augmented four-factor model showed a biased Jensen alpha of −4.05 basis points 

per week, while the corresponding unbiased Jensen alpha was −15.77 basis points per week. 
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The difference of 11.72 basis points per week (611.25 basis points per year) is the survivorship 

bias, which is less than the 15.57 basis points for the unaugmented Carhart model. 

The average survivorship bias of all the models is 731.05 basis points per year for the basic 

materials index of the South African market between January 2005 and December 2014. This 

is quite high compared with the findings in the literature as seen in Grinblatt and Titman (1989), 

Deaves (2004) and Rohleder, Scholz and Wilkens (2011). A significant finding within the 

analysis is the difference between the emerging African market and the South African market. 

I found that survivorship bias for the South African basic materials index was higher than that 

of the emerging African market basic materials index. 

This can be explained by the attrition rate of stocks on the index as highlighted in the chapter 

appendix – Tables A4.9, A4.10 and A4.11, where the average attrition rate on the South African 

basic materials index is 12%, compared with 12% and 11% for Egypt and Morocco, 

respectively. This is supported by Liang (2000), who demonstrates that a low attrition rate leads 

to low survivorship bias. 

Some other authors estimated survivorship bias using the difference between the mean returns 

of all stocks and surviving stocks, as seen in Eling (2008). Using this method, Brown, 

Goetzman and Ibbotsen (1999), Liang (2000, 2001) and Brown, Goetzman and Park (2001) 

found survivorship bias that ranged from 60 to 360 basis points per year. Amin and Kat (2003) 

also found survivorship bias of 200 basis points per year. However, Pawley (2006) indicates 

that these differences are mainly methodological and data-related. Using this method, the mean 

returns for the biased emerging African market dataset (surviving stocks) is 16.55 basis points 

per week and the mean for the unbiased variant (all stocks) is 9.66 basis points per week, as 

shown in Table 4.5. 

Table 4.5120 Descriptive statistics of the returns on the biased emerging African market index 

(surviving stocks) and the unbiased emerging African market index (all stocks as at when on the 

index) 

 Mean Median Minimum Maximum Std dev.  

Biased South Africa 0.0014 0.0032 −0.1373 0.1441 0.0329 

Unbiased South Africa 0.0003 0.0016 −0.1421 0.1149 0.0292 

 

                                                 
120 Data source – Reuters Eikon. 
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The difference of 6.89 basis points per week (359121 basis points per year) is the survivorship 

bias for the basic materials index of the emerging African market from January 2005 to 

December 2014, which is rather high when compared to previous studies. 

For the South African market, the mean returns for the biased dataset (surviving stocks) is 

13.67 basis points per week and the mean for the unbiased dataset (all stocks) is 3.24 basis 

points per week, as shown in Table 4.6. 

Table 4.6122 Descriptive statistics of the returns on the biased South African basic materials index 

(surviving stocks) and the unbiased variant (includes all stocks as at when on the index). 

  Mean Median Minimum  Maximum Std dev.  

Biased emerging Africa 0.001655 0.002805 −0.13208 0.097097 0.025763 

Unbiased emerging Africa 0.000966 0.002545 −0.15812 0.080602 0.024846 

 

The difference of 10.44 basis points per week (544123 basis points per year) is the survivorship 

bias for the South African basic materials index from January 2005 to December 2014, which 

is rather high when compared to previous studies and to the emerging African market. 

 

4.5 Attrition rate and survivorship bias 

Most of the studies on attrition rate and survivorship bias are within the developed markets and 

some emerging markets. In their study of US hedge funds, Liang (2000) demonstrates that a 

low attrition rate leads to low survivorship bias if poor performance is the reason for firm 

disappearance. Bali et al. (2014) found the annual attrition rate was 8.2% between 1994 and 

2007, but this number changed enormously to 19.6% between 2008 and 2011. Bali et al. (2014) 

reveal that this increase was as a result of the severity of the financial crisis. Bali et al. (2012) 

found similar results. 

 

 

 

 

                                                 
121 52.1429 weeks in a year. 
122 Data source – Reuters Eikon. 
123 52.1429 weeks in a year. 
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Table 4.7 Attrition rate for the basic materials indices for the emerging African market 

Emerging African markets’ basic materials index attrition rate 

Year Year start  Entry  Exit 
Year 

end  
Attrition rate 

2005 35 0 1 34 3% 

2006 34 25 11 48 32% 

2007 48 4 4 48 8% 

2008 48 3 2 49 4% 

2009 49 18 2 65 4% 

2010 65 7 9 63 14% 

2011 63 4 9 58 14% 

2012 64 1 11 54 17% 

2013 54 4 7 51 13% 

2014 51 7 11 47 22% 

Average attrition rate 13% 
**Attrition rate is calculated as the percentage of firms removed from the index to the number of firms that were on the index 

at the beginning of the year. The attrition rates for individual countries within the emerging African market are reported in the 
appendix – see Tables A4.9, A4.10 and A4.11. 

From Table 4.7, the attrition rate of 13% in our sample can be referred to as high when 

compared to other studies. Carpenter and Lynch (1999) found an attrition rate of 3.6% in their 

study of the US market. They identified that attrition increases each percentile’s average 

performance in the evaluation period. Brown et al. (1992) identified an attrition rate ranging 

from 2.6% in 1985 to 8.5% in 1977, with an average of 4.8%. They also highlight that this is 

close to the 5% attrition rate found in Grinblatt and Titman (1989). Brown et al. (1992) 

hypothesise that as the number of firms increases through time, the attrition rate would also be 

expected to increase. In their study of mutual fund performance, Rohleder et al. (2010) report 

a growth in relative annual fund disappearance of 8.64%, from 5.25% between 1993 and 2006. 

Carhart (1997) also reports an attrition rate of 3.6% between 1962 and 1995. 

Studies on the attrition rate of African financial markets are very rare, with the only study found 

being the study by Pawley (2006), who found the attrition rate of South African unit trusts to 

be 5.23% per year. This study also found that the attrition rate increases with time, reporting 

an attrition rate of 52.59% at the 20-year mark. Pawley (2006) also identifies that attrition rates 

are increasing significantly over time, hence suggesting a lower future survival rate. This is 

consistent with the findings within the analysis for this research as seen in Table 4.7. 
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4.6 Chapter conclusion 

The returns overestimation problem that results from survivorship bias arises due to the 

formation of portfolios that include only surviving stocks, particularly based on end-of-sample 

conditioning. In analysing the degree of survivorship bias in the emerging African market, we 

observe a survivorship bias of 402.55, 295.67 and 292.19 basis points per year for the Sharpe-

Lintner CAPM, Fama-French model and the Carhart model, respectively, using the Jensen 

alpha term. For the liquidity-augmented models, I found survivorship bias of 313.95, 242.87 

and 237.59 basis points per year respectively, with an overall mean survivorship bias of 297.47 

basis points per year. Using the mean returns of the biased and unbiased datasets, I found 

survivorship bias of 359 basis points per year. These are quite high when compared with 

findings in other studies. These can be explained by the relatively high attrition rate of firms 

on the basic materials emerging African index. 

The attrition rate for the basic materials emerging African index is 12%, which is quite high 

when compared with findings in the literature. However, previous studies offer some 

explanation for this, with Brown et al. (1992) hypothesising that as the number of firms 

increases through time, the attrition rate would also be expected to increase. This is also 

supported by Pawley (2006). 

For the basic materials South African index, I observe a survivorship bias of 934.47, 434.19 

and 759.77 basis points per year for the Sharpe-Lintner CAPM, Fama-French model and the 

Carhart model, respectively, using the Jensen alpha term. For the liquidity-augmented models, 

I found survivorship bias of 1100.59, 546.01 and 611.25 basis points per year, respectively, 

with an overall mean survivorship bias of 731.05 basis points per year. Using the mean returns 

of the biased and unbiased datasets, I found survivorship bias of 544 basis points per year. This 

is quite high when compared with findings in the literature and also high when compared to 

the emerging African market. This can also be explained by the higher attrition rate of the 

South African market of 12%, compared to attrition rates of 11% for the Moroccan market, 

although similar to the finding in the Egyptian market. 
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4.7 Chapter contribution 

The thesis makes a contribution to the African CAPM literature by taking into consideration 

the impact of survivorship bias on the modelling of stock-market returns. To the best of my 

knowledge, this has not been undertaken comprehensively before in the emerging African 

market context. 

Grinblatt and Titman (1989) was one of the first to identify in a US context that failure to take 

survivorship bias into consideration would bias the econometric modelling of stock returns. 

The findings in this study indicate that this issue is even more important in an African context. 

The thesis finds average survivorship bias of 297.47 basis points per year for the basic materials 

emerging African index stocks (January 2005 to December 2014), and 731.05 basis points per 

year for the basic materials South African index stocks, over the same period, using the Jensen 

alpha methodology highlighted in Rohleder, Scholz and Wilkens (2011). This can be compared 

with the 157 basis points per year reported in Rohleder, Scholz and Wilkens (2011), using data 

from the US domestic equity mutual fund market (1993 to 2006), with lower values reported 

in other developed markets (Deaves, 2004). 

Using the mean difference methodology, as identified in Eling (2008), I find survivorship bias 

of 359 basis points per year for the basic materials emerging African index stocks (January 

2005 to December 2014). For the basic materials South African index, the corresponding 

survivorship bias was 544 basis points per year, during the same time period. These values are 

also high when compared with previous studies that applied the same methodology, as seen in 

Brown, Goetzman and Park (2001) and Amin and Kat (2003), who find survivorship bias of 

60 to 360 basis points per year and 200 basis points per year, respectively, both in the US 

market. 

Attrition rates are directly related to survivorship bias; a low attrition rate will lead to low 

survivorship bias, as identified in Liang (2000). This study finds the average attrition rate in 

the emerging African market to be much higher (13%) than those found in US studies (for 

example, Carpenter and Lynch, 1999 found an attrition rate of 3.6%). My research therefore 

calls into question previous studies on asset pricing in African markets that do not adjust for 

survivorship bias. 
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4.8 Chapter appendices 

Appendix 4.1: Descriptive statistics of the emerging African market not sorted for 

survivorship bias and time-series plot of the factors 

 

The summary statistics for the excess market returns portfolio, size portfolio, value portfolio, 

momentum portfolio and liquidity portfolio respectively are shown in Table A4.1 

Table A 4.1: Summary statistics for the emerging Africa market not sorted for survivorship bias 

 

 

 

Table A 4.2 Correlation coefficient for the emerging Africa market not sorted for survivorship bias 

 

MKT SMB HML UMD IMV   

1 −0.1400 −0.0879 0.0237 −0.0625 MKT 

  1 0.2619 0.1472 0.3404 SMB 

    1 −0.2515 0.1981 HML 

      1 −0.0223 UMD 

        1 IMV 

 

Table A4.2 shows the correlations between the explanatory variables. It does not detect any 

overly high value of the correlation coefficients that may give rise to any concerns of 

multicollinearity problem. 

Figures A4.1, A4.2, A4.3, A4.4 and A4.5 plot the weekly value of the market factor (MKT), 

the size factor (SMB), the value factor (HML), the momentum factor (UML) and the liquidity 

factor (IMV), respectively. 

Summary statistics, using the observations from 2005-01-07 - 2015-01-02 

Variable Mean Median Minimum Maximum Std dev. CV Skewness 
Ex. 

kurtosis 

MKT 0.0031 0.0046 −0.1140 0.0726 0.0196 6.2532 −1.0162 4.0794 

SMB 0.0025 0.0040 −0.1165 0.1029 0.0308 12.1285 −0.2587 1.1020 

HML 0.0013 0.0010 −0.0658 0.0702 0.0193 15.1684 0.0442 1.3715 

UMD 0.0005 0.0029 −0.1529 0.1523 0.0394 79.1660 −0.2746 1.9654 

IMV 0.0044 0.0030 −0.1208 0.2296 0.0386 8.7951 1.1896 5.1554 
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Figure A 4.1 Weekly value of the market factor (MKT) 

 

  

Figure A 4.2 Weekly value of the size factor (SMB) 

 

 

Figure A 4.3 Weekly value of the value factor (HML) 
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Figure A 4.4 Weekly value of the momentum factor (UMD) 

 

Figure A 4.5 Weekly value of the liquidity factor (IMV) 

 

Appendix 4.2: Descriptive statistics of the emerging African market data sorted for 

survivorship bias and time-series plot of the factors 

The summary statistics for the excess market returns, size, value, momentum, liquidity, 

skewness and kurtosis portfolios respectively are shown in Table A4.3 below. 

Table A 4.3 Summary statistics of the emerging African market data, adjusted for survivorship bias 

Summary statistics  

Variables Mean  Median Minimum Maximum Std dev. CV Skewness 
Ex. 

Kurtosis 

MKT 0.0028 0.0041 −0.1140 0.0726 0.0200 7.2291 −0.9894 3.9894 

SMB 0.0015 0.0033 −0.0782 0.0781 0.0252 17.2380 −0.0503 0.4527 

HML 0.0013 0.0016 −0.0643 0.0804 0.0180 14.1530 0.1187 1.5691 

UMD −0.0004 0.0016 −0.1373 0.1574 0.0333 89.3410 −0.2119 2.7261 

IMV 0.0004 0.0017 −0.0913 0.0849 0.0262 65.2760 −0.1873 0.7619 
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Table A 4.4 Correlation matrix of the emerging African market data, adjusted for survivorship bias 

Correlation matrix 

MKT SMB HML UMD IMV   

1 −0.1853 −0.0343 0.0698 −0.2512 MKT 
 1 0.1742 −0.0470 0.6364 SMB 
  1 −0.3509 0.0090 HML 
   1 −0.0959 UMD 
    1 IMV 

The correlation matrix does not detect any overly high values of the correlation coefficient that 

may give rise to concerns of multicollinearity problem, except for the correlation between IMV 

and SMB. HAC standard errors will be used for the OLS to mitigate any potential effect on the 

results.  

Figure A 4.6 Time-series plot of the weekly values of the market factor (MKT) for the unbiased 

dataset 

 

Figure A 4.7 Time-series plot of the weekly values of the size factor (SMB) for the unbiased dataset 
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Figure A 4.8 Time-series plot of the weekly values of the value factor (HML) for the unbiased 

dataset 

 

Figure A 4.9 Time-series plot of the weekly values of the momentum factor (UMD) for the unbiased 

dataset 

 

 

Figure A 4.10 Time-series plot of the weekly values of the liquidity factor (IMV) for the unbiased 

dataset 
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Appendix 4.3: Descriptive statistics of the basic material South African index not sorted for 

survivorship bias and time-series plot of the factors 

Table A 4.5 Descriptive statistics of returns on the basic materials South Africa index not sorted for 

survivorship bias 

 Minimum Maximum Mean Std deviation Skewness Kurtosis 

statistic statistic statistic statistic statistic statistic 

MKT −0.0891 0.1275 0.0009 0.0259 −0.162 2.263 

SMB −0.1283 0.0898 −0.0004 0.0262 −0.462 2.184 

HML −0.0975 0.0608 −0.0020 0.0229 −0.566 1.760 

UMD −0.1765 0.1927 0.0004 0.0364 0.089 6.018 

IMV −0.1571 0.0907 0.0027 0.0285 −0.563 3.770 

 

Table A 4.6 Correlation coefficients of the portfolios in the South African market not sorted for 

survivorship bias 

MKT SMB HML UMD IMV  
1 −0.2489 −0.1029 0.1976 −0.1772 MKT 

 1 0.3740 −0.2724 0.5627 SMB 

  1 −0.1575 0.3806 HML 

   1 0.0102 UMD 

    1 IMV 
Correlation coefficients, 5% critical value (two-tailed) = 0.1114 

The correlation matrix does not detect any overly high values of the correlation coefficient that 

may give rise to concerns of multicollinearity problem, except for the correlation between IMV 

and SMB. HAC standard errors will be used for the OLS to mitigate any potential effect on the 

results.  

Tables 4.16 and 4.17 report descriptive statistics and correlation for the market, size, book-to-

market, momentum and liquidity factors, indicated by MKT, SML, HML, UMD and IMV. 

Plots of the weekly value of the market factor (MKT), the size factor (SMB), the value factor 

(HML), the momentum factor (UMD) and the liquidity factor (IMV), respectively, are shown 

below. 
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Figure A 4.11 Time-series plot of the weekly values of the market factor (MKT) for the biased 

dataset 

 

Figure A 4.12 Time-series plot of the weekly values of the size factor (SMB) for the biased dataset 

 

Figure A 4.13 Time-series plot of the weekly values of the value factor (HML) for the biased 

dataset 
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Figure A 4.14 Time-series plot of the weekly values of the momentum factor (UMD) for the biased 

dataset 

 

Figure A 4.15 Time-series plot of the weekly values of the liquidity factor (IMV) for the biased 

dataset 

 

 

Appendix 4.4: Descriptive statistics of the basic materials South African index sorted for 

survivorship bias and time-series plot of the factors 

 

Table A 4.7 Summary statistics for the basic materials South African index sorted for survivorship 

bias 

Variable Mean Median Minimum Maximum Std dev. Skewness Ex. kurtosis 

RmMRf 0.0031 0.0044 −0.0867 0.1298 0.0225 −0.1877 2.8244 

SMB 0.0002 −0.0004 −0.1628 0.1045 0.0282 −0.1977 2.9217 

HML −0.0002 −0.0003 −0.1373 0.0982 0.0221 −0.3739 4.3700 

UMD 0.0009 0.0037 −0.1400 0.1655 0.0379 −0.1800 2.2074 

IMV 0.0010 0.0016 −0.1576 0.0937 0.0257 −0.4918 3.6090 

Skewness 0.9003 0.8120 −8.7240 8.4541 1.4329 −0.6081 17.3867 

Kurtosis 0.9927 0.9879 0.9704 1.0379 0.0132 0.9132 −0.0313 
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Table A4.7:124 Summary statistics for the South Africa basic materials index from 2005-01-07 to 2015-01-02 

Table A 4.8 Correlation coefficients for the basic materials South African index sorted for 

survivorship bias 

RmMRf SMB HML UMD IMV   

1 −0.309 0.1336 0.1091 −0.2988 RmMRf 

  1 −0.2861 −0.2195 0.7617 SMB 

    1 0.3995 −0.1744 HML 

      1 −0.1576 UMD 

        1 IMV 

5% critical value (two-tailed) = 0.0858 

The correlation matrix does not detect any overly high values of the correlation coefficient that 

may give rise to concerns of multicollinearity problem, except for the correlation between IMV 

and SMB. HAC standard errors will be used for the OLS to mitigate any potential effect on the 

results.  

Figure A 4.16 Time-series plot of the weekly values of the market factor (MKT) for the unbiased 

dataset – South Africa 

 

                                                 
124 Data is survivorship-bias-free. 
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Figure A 4.17 Time-series plot of the weekly values of the size factor (SMB) for the unbiased 

dataset – South Africa 

 

Figure A 4.18 Time-series plot of the weekly values of the value factor (HML) for the unbiased 

dataset – South Africa 

 

Figure A 4.19 Time-series plot of the weekly values of the momentum factor (UMD) for the 

unbiased dataset – South Africa 
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Figure A 4.20 Time-series plot of the weekly values of the liquidity factor (IMV) for the unbiased 

dataset – South Africa 

 

 Table A 4.9 South Africa’s basic materials index attrition rate 

A: South Africa’s basic materials index attrition rate 

Year Year start  Entry  Exit Year end  Attrition rate 

2004 24 3 1 26 4% 

2005 26 0 1 25 4% 

2006 25 25 11 39 44% 

2007 39 4 4 39 10% 

2008 39 3 2 40 5% 

2009 40 1 2 39 5% 

2010 39 2 1 40 3% 

2011 40 3 4 39 10% 

2012 39 1 7 33 18% 

2013 33 2 5 30 15% 

2014 30 4 3 31 10% 

Average attrition rate 12% 

 
 Table A 4.10 Egypt’s basic materials index attrition rate 

B: Egypt’s Basic Materials index attrition rate 

Year Year start  Entry  Exit Year end  Attrition rate 

2004 6 0 0 6 0% 

2005 6 0 0 6 0% 

2006 6 0 0 6 0% 

2007 6 0 0 6 0% 

2008 6 0 0 6 0% 

2009 6 14 0 20 0% 

2010 20 2 6 16 30% 

2011 16 1 5 12 31% 

2012 18 0 3 15 17% 

2013 15 1 1 15 7% 

2014 15 2 5 12 33% 

Average attrition rate 12% 
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 Table A 4.11 Morocco’s basic materials index attrition rate 

C: Morocco’s basic materials index attrition rate 

Year Year start  Entry  Exit Year end  Attrition rate 

2004 3 0 0 3 0% 

2005 3 0 0 3 0% 

2006 3 0 0 3 0% 

2007 3 0 0 3 0% 

2008 3 0 0 3 0% 

2009 3 3 0 6 0% 

2010 6 3 2 7 33% 

2011 7 0 0 7 0% 

2012 7 0 1 6 14% 

2013 6 1 1 6 17% 

2014 6 1 3 4 50% 

Average attrition rate 11% 

 

Figure A 4.21 Time-series plot of the weekly returns on the biased basic materials emerging 

African index 
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Figure A 4.22 Time-series plot of the weekly returns on the unbiased basic materials emerging 

African index 

 

Figure A 4.23 Time-series plot of the weekly returns on the biased basic materials South Africa 

index 

 

Figure A 4.24 Time-series plot of the weekly returns on the unbiased basic materials South Africa 

index 
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5 ASSET-PRICING MODELS IN THE SOUTH AFRICAN BASIC MATERIALS 

INDEX. 

 

5.1 Introduction and structure of chapter 

With increasing scepticism about the performance of the one-factor CAPM, especially in 

emerging markets as established in Section 2.2 of Chapter 2, Hearn and Piesse (2009) insist 

that this diverging definition of risk needs to be accounted for in modelling the returns 

relationship. This is supported by Dey (2005) and Lischewski and Voronkova (2012), who 

indicate that the diverging definition of risk around world markets needs to be recognised 

within models that seek to explain the behaviour of returns. This divergence from the one-

factor CAPM is more pronounced in the African markets due to severe illiquidity and thin 

trading, as identified in Levine and Zervos (1998), and financial segmentation/integration as 

seen in Stulz (1999). However, this divergence also varies across African countries due to the 

varying degree of integration with developed markets. This chapter will also investigate the 

liquidity premium. 

A huge part of this risk results from the severe illiquidity and thin trading problems in the 

African market, as stated in Allen, Otchere and Senbet (2011). According to Pagano (1989), 

when markets are thin, volatility increases along with the tendency for asset prices to react 

adversely to the orders of traders. This can often lead to instability in beta, which is contrary to 

the assumption of the static CAPM. With the rationale for the importance of liquidity and 

higher moments within asset-pricing models identified within African equity markets (Sections 

2.4 and 2.9 of the literature review in Chapter 2), this chapter will assess the importance of 

these factors in the South African market, the emerging African market and the frontier African 

market. 

Given the size of the South African market and its level of development/integration with world 

markets, this chapter will also analyse the emerging African market excluding South Africa. 

This is because I expect different characteristics within the index that excludes the South 

African market, given the size and classification of South Africa as an advanced emerging 

African market, as highlighted in Section 3.2 of Chapter 3. Also, I expect different factors to 

explain returns in the South African market, the emerging African market and the frontier 

African market. 
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This chapter will thus investigate the performance of the static Sharpe-Lintner CAPM, the 

three-factor Fama-French (1993) model, the four-factor Carhart (1997) model and the 

importance of liquidity in explaining the cross-section of asset returns in the African stock 

market. It will also investigate the question of whether higher moments have any explanatory 

power within a four-moment asset-pricing model in this market. Given the implication of 

contagion, as discussed in the literature review (Section 2.6), the impact of exogenous shock 

(contagion as identified in Section 3.6) on the South African market, the emerging African 

market, the emerging African market excluding South Africa and the frontier African market, 

will also be examined. 

Section 5.2 highlights the descriptive statistics of the emerging African market, while Sections 

5.3, 5.4, 5.5 and 5.6 highlight the results within the South African market, the emerging African 

market index, the emerging African market index excluding South Africa and the frontier 

African market, respectively. These empirical findings are analysed, with the chapter 

conclusion and chapter appendices provided in Sections 5.7 and 5.8, respectively. 

 

5.2 Descriptive statistics for the Indices formed125 

The descriptive statistics for the excess market returns portfolio, size portfolio, value portfolio, 

momentum portfolio, liquidity portfolio, skewness and kurtosis respectively are shown in the 

tables below. 

 

Table 5.1 Descriptive statistics for the South African basic materials index (full sample, 2004-2014) 

 

                                                 
125 The descriptive statistics and correlation matrix within this section are different from those in Chapter 4 as they are not the same sample 

period. 
126 MKT stands for Rm-Rf, which is the return on the market less the risk-free rate and defined in Fama and French (1993). 

 

Variable Mean Median Minimum Maximum 
Std 

dev. 
CV Skewness 

Ex. 

kurtosis 

MKT126 0.0035 0.0049 −0.0867 0.1298 0.0220 6.3673 −0.2372 2.9051 

SMB 0.0005 −0.0004 −0.1628 0.1045 0.0285 57.463 −0.1554 2.4852 

HML −0.0001 −0.0003 −0.0743 0.0982 0.0210 267.95 0.0686 2.2372 

UMD 0.0016 0.0041 −0.1400 0.1654 0.0374 23.387 −0.1799 2.0894 

IMV 0.0017 0.0021 −0.1576 0.0937 0.0256 15.126 −0.4557 3.3578 

𝑆𝑖 0.9145 0.8174 −8.7239 8.4541 1.3748 1.5033 −0.6355 18.898 

𝐾𝑖 0.9942 0.9876 0.9627 1.1648 0.0214 0.0215 3.5303 19.798 
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Initial indications from the summary statistics in Table 5.1 show a positive weekly average 

return of 0.35% for the market portfolio, with a standard deviation of 2.2% and a positive 

weekly average return of 0.05% on the size portfolio, with a standard deviation of 2.85%. 

However, the portfolio formed on value had a negative weekly average return of −0.01% with 

a standard deviation of 2.1%. The momentum factor had a weekly average return of 0.16% and 

a standard deviation of 3.74%, while the factor formed on liquidity had a weekly average return 

of 0.17% and a standard deviation of 2.56%. The higher-order moments of skewness and 

kurtosis had an average value of 0.92 and 0.99 respectively, with a standard deviation of 

137.48% and 2.14% respectively. 

The average return on the portfolio formed on size is in line with the findings in Banz (1981) 

and Quiros and Timmermann (2000). The average returns on the value portfolio suggest a 

departure from the findings in Ang and Chen (2007) on the importance of the value factor to 

the findings of Loughran (1997), who suggests the increasing reversal and unimportance of the 

value factor. The momentum factor conforms to the expectations in Jegadeesh and Titman 

(1993), while the liquidity premium identified in Table 5.1 conforms with the findings in 

Lischewski and Voronkova (2012). However, as stated in Horowitz et al. (2000a), identifying 

whether the magnitude of these factors is significant remains the major issue. 

 

Table 5.2 Correlation coefficients for the South African basic materials index portfolios 

MKT SMB HML UMD IMV 𝑆𝑖 𝐾𝑖  

1 −0.3001 0.0802 0.0984 −0.2782 −0.0447 0.0789 MKT 

  1 −0.2710 −0.1620 0.6962 0.0357 −0.0637 SMB 

    1 0.3511 −0.2118 0.0111 −0.0205 HML 

      1 −0.1207 0.0370 0.0253 UMD 

        1 0.0317 0.0102 IMV 

          1 0.1472 𝑆𝑖 

            1 𝐾𝑖 

 

Table 5.2 shows the correlation coefficients between the risk factors. There are no concerns 

about a multicollinearity problem. 
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Figures 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 plot the weekly values of the market factor (MKT), the 

size factor (SMB), the value factor (HML), the momentum factor (UMD), the liquidity factor 

(IMV), skewness and kurtosis, respectively.127 

Figure 5.1 Weekly values of returns on the market index (MKT) for the South African basic 

materials index 

 

 

Figure 5.2 Weekly values of the returns on the portfolio formed on size (SMB) for the South 

African basic materials index 

 

                                                 
127 The frequency distribution with the Doornik-Hansen test for normality for each variables and their correlograms are shown in the chapter 

appendix. The correlograms show the autocorrelation function using a maximum of 27 lags. The Ljung–Box Q-statistic is not shown but is 
available on request from the author. 
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Figure 5.3 Weekly values of the returns on the portfolio formed on value (HML) for the South 

African basic materials index 

 

Figure 5.4 Weekly values of the returns on the portfolio formed on the momentum factor (UMD) 

for the South African basic materials index 

 

Figure 5.5 Weekly values of the returns on the portfolio formed on the liquidity (IMV) for the 

South African basic materials index 
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Figure 5.6 Time-series weekly skewness (𝑺𝒊) values for the South African basic materials index 

 

 

Figure 5.7 Time-series weekly kurtosis (𝑲𝒊) values for the South African basic materials index 
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Table 5.3 Descriptive statistics for the emerging African market index portfolios. (full sample, 

2004-2014) 

 

Variable Mean Median Minimum Maximum 

MKT128 0.0033 0.0042 −0.1140 0.0726 

SMB 0.0025 0.0040 −0.0758 0.0786 

HML 0.0014 0.0013 −0.0643 0.0804 

UMD 0.0009 0.0018 −0.1373 0.1422 

IMV 0.0002 0.0017 −0.1029 0.0948 

𝑆𝑖 0.7724 0.8350 −6.5429 6.2220 

𝐾𝑖 0.9907 0.9893 0.9692 1.0328 

Variable 
Std 

dev. 
CV Skewness Ex. kurtosis 

MKT 0.0188 5.6838 −0.9601 4.4530 

SMB 0.0259 10.4505 0.0370 0.2781 

HML 0.0177 13.0213 0.1654 1.4352 

UMD 0.0332 38.0135 −0.2014 2.0362 

IMV 0.0271 172.1930 −0.1762 1.2305 

𝑆𝑖 1.1425 1.4791 −0.5855 10.0921 

𝐾𝑖 0.0126 0.0128 1.0183 1.6059 

 

Initial indications from the summary statistics in Table 5.3 show a positive weekly average 

return of 0.33% for the market portfolio, with a standard deviation of 2.4%, and a positive 

weekly average return of 0.25% on the size portfolio, with a standard deviation of 2.59%. The 

portfolio formed on value had a weekly average return of 0.14%, with a standard deviation of 

1.77%, while the portfolio formed on the momentum factor had a weekly average return of 

0.09% and a standard deviation of 3.32%. The factor formed on liquidity had a weekly average 

return of 0.02% and a standard deviation of 2.71%. The higher-order moments of skewness 

and kurtosis had an average value of 0.77 and 0.99, respectively, with a standard deviation of 

114.25% and 1.26%, respectively. 

The positive market returns are consistent with the findings in Sharpe, Alexander and Bailey 

(1999). The size premium highlighted in the summary statistics is in line with the expectation 

of Banz (1981), while the value factor mirrors the expectations in Stattman (1980). The positive 

mean of the momentum factor is consistent with the findings in Chui et al. (2003), while the 

liquidity premium is highlighted in Correia and Uliana (2004). However, as stated in Horowitz 

                                                 
128 MKT stands for Rm-Rf, which is the return on the market less the risk-free rate and defined in Fama and French (1993). 
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et al. (2000a), identifying whether the magnitude of these factors is significant remains the 

major issue. 

Table 5.4 Correlation coefficients for the emerging African market index portfolios 

MKT SMB HML UMD IMV 𝑆𝑖 𝐾𝑖   

1 −0.1624 −0.0323 0.0812 −0.2342 0.0087 0.1285 MKT 

  1 0.1954 0.0427 0.5594 −0.0169 −0.0176 SMB 

    1 −0.3174 0.0383 0.0077 0.0826 HML 

      1 -0.0209 0.0115 0.0269 UMD 

        1 0.0928 0.0139 IMV 

          1 0.0851 𝑆𝑖 

            1 𝐾𝑖 

 

Table 5.4 shows the correlation between the explanatory variables. It does not detect any overly 

high value of the correlation coefficients that may give rise to any concerns about a 

multicollinearity problem. 

Figures 5.8, 5.9, 5.10, 5.11, 5.12, 5.13 and 5.14 plot the weekly values of the market factor 

(MKT), the size factor (SMB), the value factor (HML), the momentum factor (UMD), the 

liquidity factor (IMV), skewness and kurtosis, respectively.129 

 

Figure 5.8 Weekly values of returns on the market index (MKT) for the emerging African market 

index 

 

                                                 
129 The frequency distribution with the Doornik-Hansen test for normality for each variables and their correlograms are shown in the chapter 

appendix. The correlograms show the autocorrelation function using a maximum of 27 lags. The Ljung–Box Q-statistic is not shown but is 
available on request from the author. 
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Figure 5.9 Weekly values of the returns on the portfolio formed on size (SMB) for the emerging 

African market index 

 

Figure 5.10 Weekly values of the returns on the portfolio formed on value (HML) for the emerging 

African market index 

 

Figure 5.11 Weekly values of the returns on the portfolio formed on the momentum factor (UMD) 

for the emerging African market index 
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Figure 5.12 Weekly values of the returns on the portfolio formed on the liquidity (IMV) for the 

emerging African market index 

 

Figure 5.13 Time-series weekly skewness (𝑺𝒊) values for the emerging African market index 

 

 

Figure 5.14 Time-series weekly kurtosis (𝑲𝒊) values for the emerging African market index 
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Table 5.5 Summary statistics for the emerging African market index ex. South Africa portfolios. 

(full sample, 2004-2014) 

Variable Mean Median Minimum Maximum 

MKT 0.0022488 0.0044849 −0.143901 0.0835953 

SMB 0.0028003 0.0020887 −0.087066 0.132079 

HML 0.0030757 0.0026746 −0.138809 0.151217 

UMD 0.0031432 0.0038385 −0.212984 0.303716 

IMV 0.0014879 0.0018897 −0.139173 0.102542 

𝑆𝑖  0.9564 0.980192 −0.091603 3.05011 

𝐾𝑖 0.99891 0.99752 0.9902 1.0115 

Variable Std dev. CV Skewness 
Ex. 

kurtosis 

MKT 0.027076 12.04 −1.08821 4.59447 

SMB 0.024024 8.579 0.152052 2.18541 

HML 0.0292616 9.51383 0.115868 2.19912 

UMD 0.0452134 14.3846 −0.317102 6.93382 

IllqLiq 0.0257778 17.3246 −0.098843 2.3005 

𝑆𝑖  0.216612 0.226487 1.40221 24.371 

𝐾𝑖 0.0060794 0.0060860 0.75677 −0.76201 

 

Table 5.6 Correlation coefficients for the emerging African market index ex. South Africa 

portfolios 

MKT SB HL UD IMV 𝑆𝑖  𝐾𝑖   

1 -0.0153 0.0795 0.5823 -0.1531 0.0047 0.1738 MKT 

  1 0.4814 0.0969 0.0959 0.056 -0.0836 SB 

    1 0.1066 0.1512 0.0874 -0.0032 HL 

      1 -0.1482 0.0334 0.1355 UD 

        1 -0.0212 -0.0384 IMV 

          1 0.1386 𝑆𝑖  

            1 𝐾𝑖 
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Table 5.6 shows the correlation coefficients between the risk factors. There are no concerns 

about multicollinearity problems. 

Figures 5.15, 5.16, 5.17, 5.18, 5.19, 5.20 and 5.21 plot the weekly values of the market factor 

(MKT), the size factor (SMB), the value factor (HML), the momentum factor (UMD), the 

liquidity factor (IMV), skewness and kurtosis respectively.130 

 

Figure 5.15 Weekly values of returns on the market index (MKT) for the emerging African market 

index ex. South Africa 

 

 

Figure 5.16 Weekly values of the returns on the portfolio formed on size (SMB) for the emerging 

African market index ex. South Africa 

 

 

                                                 
130 The frequency distribution with the Doornik-Hansen test for normality for each variables and their correlograms are shown in the chapter 

appendix. The correlograms show the autocorrelation function using a maximum of 27 lags. The Ljung–Box Q-statistic is not shown but is 
available on request from the author. 
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Figure 5.17 Weekly values of the returns on the portfolio formed on value (HML) for the emerging 

African market index ex. South Africa 

 

 

Figure 5.18 Weekly values of the returns on the portfolio formed on the momentum factor (UMD) 

for the emerging African market index ex. South Africa 

 

Figure 5.19 Weekly values of the returns on the portfolio formed on the liquidity factor (IMV) for 

the emerging African market index ex. South Africa 
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Figure 5.20 Time-series weekly skewness (𝑺𝒊) values for the emerging African market index ex. 

South Africa 

 
 

Figure 5.21 Time-series weekly kurtosis (𝑲𝒊) values for the emerging African market index ex. 

South Africa  

 
 

 

 

Table 5.7 Summary statistics for the frontier African market index portfolios. (full sample, 2004-

2014) 

Variable Mean Median Minimum Maximum 

MKT 0.0021399 0.0021947 −0.054026 0.0565424 

SMB 0.0039708 0 −0.195665 0.274255 

HML 0.0032126 0.0029247 −0.097841 0.195405 

UMD 0.0035595 0.0029572 −0.275449 0.254134 

IMV −0.0020635 −0.0020231 −0.140265 0.15331 

𝑆𝑖 
1.06402 1.01499 -1.39765 3.92408 

𝐾𝑖 
1.00036 1.00144 0.979476 1.01433 
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Variable Std dev. CV Skewness 
Ex. 

kurtosis 

MKT 0.0147452 6.89057 −0.082353 2.0633 

SMB 0.0483011 12.1641 0.4689 4.09269 

HML 0.035563 11.0697 0.656278 2.515 

UMD 0.0615406 17.2893 0.0945856 2.15467 

IMV 0.0426569 20.6717 0.0699244 1.1751 

𝑆𝑖 
0.395763 0.371952 2.97781 24.1126 

𝐾𝑖 
0.0062028 0.0062006 −0.216729 −0.35653 

 

Initial indications from the summary statistics in Table 5.7 show a positive weekly average 

return of 0.22% for the market portfolio, with a standard deviation of 1.48%, and a positive 

weekly average return of 0.40% on the size portfolio, with a standard deviation of 4.83%. 

However, the portfolio formed on value had a weekly average return of 0.32%, with a standard 

deviation of 3.6%. The momentum and liquidity factors had a weekly average return of 0.36% 

and −0.21%, respectively, with a standard deviation of 6.15% and 4.23%, respectively. The 

higher-order moments of skewness and kurtosis had an average weekly value of 1.06 and 1.00 

respectively, with a standard deviation of 39.58% and 0.62% respectively. 

Table 5.8 Correlation coefficients for the frontier African market index portfolios 

MKT SMB HML UMD IMV 𝑆𝑖 𝐾𝑖   

1 −0.1272 0.042 0.0187 0.0925 −0.0912 −0.1517 MKT 

  1 0.0967 −0.1064 0.1173 0.0168 0.0259 SMB 

    1 −0.2797 0.1284 −0.1121 0.053 HML 

      1 −0.1763 0.0321 0.0264 UMD 

        1 −0.0805 −0.0902 IMV 

          1 0.1321 𝑆𝑖 

            1 𝐾𝑖 

 

Table 5.8 shows the correlation between the explanatory variables. It does not detect any overly 

high value of the correlation coefficients that may give rise to any concerns of multicollinearity 

problem. 
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Figures 5.22, 5.23, 5.24, 5.25, 5.26, 5.27 and 5.28 plot the weekly values of the market factor 

(MKT), the size factor (SMB), the value factor (HML), the momentum factor (UMD), the 

liquidity factor (IMV), skewness and kurtosis respectively.131 

 

Figure 5.22 Weekly values of returns on the market index (MKT) for the frontier African market 

index 

 

Figure 5.23 Weekly values of the returns on the portfolio formed on size (SMB) for the frontier 

African market index 

 

                                                 
131 The frequency distribution with t he Doornik-Hansen test for normality for each variables and their correlograms are shown in the chapter 

appendix. The correlograms show the autocorrelation function using a maximum of 27 lags. The Ljung–Box Q-statistic is not shown but is 
available on request from the author. 

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 2004  2006  2008  2010  2012  2014

M
KT

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2004  2006  2008  2010  2012  2014

SM
B



241 
 

 

Figure 5.24 Weekly values of the returns on the portfolio formed on value (HML) for the frontier 

African market index 

 

Figure 5.25 Weekly values of the returns on the portfolio formed on the momentum factor (UMD) 

for the frontier African market index 

 

Figure 5.26 Weekly values of the returns on the portfolio formed on the liquidity factor (IMV) for 

the frontier African market index 
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Figure 5.27 Time-series weekly skewness (𝑺𝒊) values for the frontier African market index 

 
 

 

Figure 5.28 Time-series weekly kurtosis (𝑲𝒊) values for the frontier African market index 
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5.3 Empirical findings in the South African market 

This section analyses the Sharpe-Lintner CAPM, the Fama-French three-factor model and the 

Carhart four-factor model. It also examines the explanatory power of the liquidity factor and 

higher moments within the four-factor model, with adjustment for the contagion events 

(financial crisis period and the Arab Spring) using dummy variables. The objective of this 

approach is to investigate the role of the different risk factors in explaining asset pricing. The 

empirical results are shown in Table 5.9 where the table below shows the variable definition. 

 

 

Variable  Definition 

 𝛼𝑖 Jensen alpha term (the constant term) 

 𝛽𝑖𝑀 Beta 

 𝛽𝑖𝑠 factor loading on the size factor 

𝛽𝑖ℎ factor loading on the value factor 

 𝛽𝑖𝑚 factor loading on the momentum factor 

 𝛽𝑖𝑝 factor loading on the liquidity factor 

 𝑆𝑖 factor loading on the coskewness factor 

 𝐾𝑖 factor loading on the cokurtosis factor 

 Dummy_FC_AS dummy variable for the financial crisis and the Arab spring 



244 
 

Table 5.9132 Model performance in the South African market133 

Coeff.  CAPM134  
3-factor 

model135  
4-factor 

model136  

4-factor model 

+ liquidity137 
4-factor model + liquidity 

and contagion138 
4-factor model + liquidity, 

contagion and higher moments139 

 −0.00274168** −0.00160636 −0.00166179 −0.00112217 0.000443308 0.009221 

𝛼𝑖 (0.00123015) (0.00113999) (0.00114502) (0.00121951) (0.00126666) (0.0837092) 

 1.05411*** 0.814259 *** 0.810441*** 0.782204*** 0.771684*** 0.771138*** 

𝛽𝑖𝑀 (0.119640) (0.0819126) (0.0798892) (0.0833705) (0.0805736) (0.0791532) 

   −0.606609 *** −0.603633*** −0.413264*** −0.418064*** −0.418051*** 

𝛽𝑖𝑠   (0.0731787) (0.0712710) (0.0769728) (0.0763046) (0.0758411) 

   0.0525296 0.0283707 0.0180821 0.0295652 0.0300583 

𝛽𝑖ℎ   (0.0834949) (0.0779701) (0.0739083) (0.0729561) (0.0730565) 

     0.0407704 0.0416657 0.0360936 0.0358491 

𝛽𝑖𝑚     (0.0505914) (0.0479756) (0.0466760) (0.0468751) 

𝛽𝑖𝑝    
−0.318495*** 

(0.0859401) 

−0.324881*** 

(0.0842805) 

−0.324839*** 
(0.0841023) 

𝑆𝑖      
−0.000379482 
(0.00110353) 

𝐾𝑖      
−0.0084403 
(0.0844355) 

Dummy_FC_AS     
−0.00656053*** 

(0.00233059) 
−0.00677857*** 

(0.002425) 

𝑅2 
Adj 𝑅2 

0.360858 
0.359743 

0.550410 
0.548048 

0.551766 
0.548620 

0.574397 

0.570657 

0.579382 

0.574939 

0.579510 
0.573567 

                                                 
132 HAC standard errors. Data source – Reuters Eikon. 
133 *, ** and *** indicate statistical significance of the coefficient at the 10%, 5% and 1% levels 
134 𝑅𝑖 − 𝑅𝑓 = 𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀) − 𝑅𝑓)  +  휀𝑖𝑡 
135 𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡  +  휀𝑖𝑡 
136 𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡  +  휀𝑖𝑡 
137 𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡 + 𝛽𝑖𝑝𝐼𝑀𝑉𝑡 + 휀𝑖𝑡 
138 𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡 + 𝛽𝑖𝑝𝐼𝑀𝑉𝑡 + 𝛿𝑖𝐷𝐹𝐶𝐴𝑆 + 휀𝑖𝑡 
139 𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡 + 𝛽𝑖𝑝𝐼𝑀𝑉𝑡 + 𝛽𝑖𝑒𝑆𝑖 + 𝛽𝑖𝑘𝐾𝑖 + 𝛿𝑖𝐷𝐹𝐶𝐴𝑆 + 휀𝑖𝑡 
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5.3.1 Performance of the CAPM against the three-factor and four-factor models in the 

South African market 

This section focuses on investigating the role of different risk factors in explaining asset pricing 

using the standard CAPM, the Fama-French three-factor model, the Carhart four-factor model 

and their liquidity-augmented variants, within the South African basic materials index. It also 

investigates the role of higher-order moments in explaining realised returns and the effect of 

controlling for contagion events in terms of the financial crisis period and the Arab Spring. 

Table 5.9 reports the results of the estimation for the standard CAPM, the three-factor and four-

factor models, representing three alternative risk specifications. The explanatory power of the 

model increases with additional size, book-to-market value and momentum factors. This 

demonstrates the improved explanatory power of the Fama-French and Carhart models. The 

Jensen alpha terms, 𝛼𝑖, are negative for all three models and continue to get closer to zero with 

the addition of size, book-to-market factor and momentum factor. It is, however, statistically 

significant at the 5% level only for the Sharpe-Lintner CAPM, indicating a poor fit with 

established theoretical CAPM assumptions. This specifically indicates that the CAPM does not 

capture a significant part of the variation in the cross-section of average index returns, i.e. 

CAPM’s univariate market beta shows little relation to variables such as size, book-to-market 

value, momentum and liquidity, which are strongly related to average returns. 

This could be because of the naïve strategies followed by investors, which include preference 

for investment in highly profitable firms, overreacting to good and bad news, assuming trends 

in stock prices and extrapolating past growth rates too far into the future. MacKinlay (1995) 

notes that following these strategies, the possibility of non-zero intercept that is not solely due 

to missing risk factors, but also due to firm specific factors, may arise. MacKinlay (1995) also 

explains that since the model is developed under perfect market assumptions, the effects of 

market frictions and liquidity constraints are not accommodated and this may lead to non-zero 

intercepts in the CAPM tests. 

However, the insignificant Jensen alpha terms, 𝛼𝑖, for the three-factor and four-factor models 

indicate a good fit with established theoretical assumptions, as stated in Hearn and Piesse 

(2009). These conform to the findings in Fama and French (1992) and Carhart (1997). These 

insignificant intercepts demonstrate a parsimonious description of returns and average returns. 

They therefore capture much of the variation in the cross-section of average returns, absorbing 

most of the anomalies associated with the CAPM. The three-factor model captures average 
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returns as well as the four-factor model. Chapter 6 provides more detail on possible rationale 

for the deviation of the South African CAPM from CAPM theoretical assumptions. 

Even with this relative poor performance of the Sharpe-Lintner CAPM compared with the 

Fama-French and Carhart models, many practitioners still prefer the use of the Sharpe-Lintner 

CAPM in estimating cost of capital. Those who document this preference include Bruner et al. 

(1998) and Graham and Harvey (2001). 

In comparing the performance of the CAPM and the Fama-French model, Bartholdy and Peare 

(2005) compared the estimates of expected returns based on each model to identify the “best” 

possible estimate. Using a practitioner approach, they defined the best possible estimate using 

the 𝑅2 (goodness of fit). 𝑅2 measures how much the estimation procedure explains the 

difference in individual stock index return. Hence the best refers to the model and data that 

result in the highest 𝑅2. From the results in Table 5.9, the 𝑅2 for the Sharpe-Lintner CAPM 

was 36.08%, while those of the Fama-French model and the Carhart model were 55.04% and 

55.17%, respectively. This suggests that the Carhart four-factor model performs best in 

explaining realised returns on the South Africa basic materials index. However, some 

precaution should be taken as to the use of the 𝑅2, because with additional variables, the 𝑅2 of 

a model will normally increase; however, the adjusted 𝑅2 is still higher for the Carhart four-

factor model (54.86%), compared to the three-factor (54.80%) and the Sharpe-Linter models 

(35.97%). 

The estimated beta for the standard CAPM is positive and significantly different from zero at 

the 1% significance level, indicating that the return on the South African basic material index 

increases when the market risk premium increases. This behaviour is expected as identified in 

Sharpe (1964), Lintner (1965) and Sharpe, Alexander and Bailey (1999). When compared to 

the Fama-French three-factor model, the market beta remains positive and significant but the 

size premium is negative and statistically significant, indicating that large firms outperform 

small firms within the South African basic materials index. Hawawini and Keim (1995, 2000) 

and Hearn and Piesse (2009) also found this negative relationship. 

The negative relationship between size and returns in this study can be explained by industry-

specific factors within South Africa. The sizes of companies in the industry vary widely as 

shown in Chapter 3, with the big companies dominating the market. This reduces the revenue 

source for the small companies, translating into smaller profit margins compared with the large 

companies. According to Sadorsky (2001), the natural resources sector has remained quite 
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volatile, complicating the business for industry players. These complications come from the 

capital-intensive nature of the industry as new mining projects can cost billions to build. 

Secondly, industry players are dealing with depleting resource base, which pushed competitive 

advantage towards the ability to locate and extract low-cost, natural resources deposit to replace 

their depleting asset base. The products made by these companies are quite homogeneous, as 

product differentiation is not possible due to identical raw commodities. The best performing 

natural resource companies (in terms of return on investment and stock-price appreciation) are 

generally those companies that are the lowest cost producers, and these tend to be the large 

companies due to economies of scale and scope. 

Other papers that assert that the size effect disappeared after the early 1980s include 

Eleswarapu and Reinganum (1993), Dichev (1998), Chan et al. (2000), Horowitz et al. 

(2000a,b), and Amihud (2002), while Martinez et al. (2005) presents evidence on the limited 

explanatory power of the Fama-French three-factor model. This contradicts popular findings 

on the effect of size on returns, which report that small firms outperform big firms as observed 

in Banz (1981) and Fama and French (1992, 1996). Others who present evidence on the size 

effect in the US include Reinganum (1981), Keim (1983), Brown et al. (1983) and Lamoureux 

and Sanger (1989). International studies that find evidence of a size effect include Heston et al. 

(1999), Barry et al. (2002), Chan et al. (1991) and Annaert et al. (2002). However, these studies 

mostly focus on the developed markets. 

The value factor is positive and statistically insignificant. This is contradictory to the findings 

of Fama and French (1992, 1996), who find a significant relationship between book-to-market 

value and returns. Loughran (1997) insists that there is no consistent relationship between 

book-to-market value and realised return. Other authors have proffered some explanation for 

the value premium in Fama and French (1992, 1993), with Black (1993) suggesting that the 

value premium was due to data-snooping, and this is supported by MacKinaly (1995). Kothari 

et al. (1995) argue that value premium is due to survivorship bias, while Lakonishok et al. 

(1994) insist that it results from investor overreaction. 

In the Carhart four-factor model, the market beta remains positive and significant while the 

size also remains negative and significant. There also does not appear to be any value premium 

as the book-to-market value factor was found to be insignificant. This is consistent with the 

findings of Wang and Xu (2004) and Shum and Tang (2005) in the Asian market and the 

assertions in Gaunt (2004) using Australian data. There is a lack of empirical evidence on 
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whether the value premium is present in emerging equity markets generally, and particularly 

in the emerging African stock markets, as stated in Bundoo (2008). 

There is no momentum premium within the South African basic material index, with the 

momentum factor being positive, but this is contrary to findings in Jegadeesh and Titman 

(1993), Carhart (1997), Liew and Vassalou (2000) and L’Her, Masmoudi and Suret (2004). 

Unlike the findings in this study, momentum has also been found to be significant in the Asian 

market (Rouwenhorst, 1998, and Chui et al., 2000) and in the emerging markets (Rouwenhorst, 

1999). However, the sources of momentum have remained contentious, with Conrad and Kaul 

(1998) and Bulkley and Nawosah (2009) insisting that momentum is mainly explained by risk. 

However, Jegadeesh and Titman (2002) and Bhoota (2011) found that momentum largely 

results from behavioural biases. Another explanation comes from Lo and MacKinlay (1990), 

who suggest that the sources of momentum profits are positive serial correlation (negative 

cross-sectional correlation) and dispersion in unconditional mean returns. This will be 

discussed in greater detail in relation to the emerging and frontier African markets in Sections 

5.4 and 5.6. 

 

5.3.2 Liquidity-adjusted four-factor model in the South African market 

With the introduction of the liquidity factor, the market beta and size remained significant while 

the value and momentum factors remained insignificant. This corresponds to the findings of 

Bundoo (2008) on the relative unimportance of the value factor. He highlights that there is a 

lack of empirical evidence of whether the value premium is present in emerging equity markets 

generally, and particularly in the emerging African stock markets. Hence I can conclude that 

accounting for beta and size factors eliminates the relevance of the value and momentum factor 

in asset pricing within the South African market. 

The liquidity factor is significant but has a negative relationship with returns, which is in 

contrast to the findings in Amihud and Mendelson (1986), Pástor and Stambaugh (2003) and 

Chordia et al. (2000). A recent study by Lam and Tam (2011) shows that liquidity continues to 

be an important factor even after accounting for other well-established risk factors. Lee (2011) 

supports this view, revealing that liquidity is priced after controlling for market risk, size and 

value. However, as stated in Lischewski and Voronkova (2012), a number of studies have 

examined the relevance of liquidity in asset pricing, producing conflicting results. 
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Hearn (2011) identified that the effect of liquidity on asset pricing depends on the structure of 

the surveyed stock market. The study finds evidence of size and liquidity being priced in in 

Morocco, whereas the results for other north African countries were mixed. This will seem to 

be the case for the liquidity discount found in this study, which is somewhat related to the size 

discount as the larger companies tend to be the most liquid in the African market. This could 

be driven by larger capital-raising opportunities available to large companies in these markets, 

resulting from high interest of foreign investors in large stocks, lower-cost, international 

financing and/or availability of domestic government-subsidised credit. 

Similar findings are reported in Claessens and Dasgupta (1995), who investigated 19 emerging 

markets. They disclose that the contradictory behaviour of these emerging markets may be due 

to tax systems, market microstructure, improvements in market structures and the opening of 

markets to foreign investors. Further evidences of this negative relationship are reported in 

Amihud, Mendelson and Wood (1990) and Amihud (2002). The liquidity-adjusted models fare 

better in term of goodness of fit, 𝑅2, for cross-sectional returns, and they also fare better in 

terms of p-values in specification tests. 

 

5.3.3 Effect of contagion on the liquidity-adjusted four-factor model in the South African 

market 

When the dummy variable for the shock events (the financial crisis and the Arab Spring) was 

included, the results for the other variables remained the same as when the model does not 

contain the contagion dummy. However, the contagion dummy was significant at 1%, 

highlighting the importance of accounting for time variation. The Jensen alpha term for both 

the liquidity-augmented four-factor model and the liquidity and higher-moments augmented 

four-factor model became positive, although still insignificant. 

The direction of the alpha term is important, given that the direction of the alpha terms before 

the inclusion of the contagion dummy has been negative. This highlights the impact of 

contagion on returns on the South African basic materials index. This is also supported by the 

negative sign on the contagion dummy. Although this is expected as the 2008 financial crisis 

and the Arab Spring had negative impact of returns, the entire negative direction of the alpha 

term can be entirely attributed to the contagion dummy. This highlights the importance of 

accounting for time variation in assessing portfolio performance within the South African 

market. 
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The impact on the adjusted 𝑅2 is also important as we observe an increase from 57.07% to 

57.49% between the liquidity-augmented four-factor model and the same model that includes 

the contagion dummy. This indicates that the contagion dummy improves the overall 

performance of the model compared to the models that do not account for the effect of 

contagion. 

I therefore conclude that the shock events have had a time-varying effect on the models. Indeed, 

time variation is known to affect many financial and macroeconomic variables, as identified in 

Pettenuzzo and Timmermann (2005). Further evaluation of the effect of this shock on the 

estimates of asset-pricing models and the importance of accounting for time variation in the 

asset-pricing model using a conditional asset-pricing methodology, will be discussed in 

Chapter 7. 

 

5.3.4 Higher-moment CAPM in the South African market 

The results show that the higher moments of returns distribution are not priced in the South 

African basic materials index. This supports the findings in Hung (2008), indicating that 

skewness does not explain return variation. Friend and Westfield (1980) investigated the 

explanatory power of skewness in the US security markets and found that, contrary to the 

conclusions of Kraus and Litzenberger (1976), investors do not pay a premium for positive 

skewness of portfolio returns. 

According to DeMiguel and Nogales (2007) and Hung (2008), this may be due to parameter 

uncertainty resulting from the use of observed information in estimating unknown parameters, 

and also due to unstable predictive relations and time variation as identified in Lewis (2006) 

and Paye and Timmermann (2006). This is supported by Bekaert et al. (1998), who highlight 

that the skewness and kurtosis present in emerging market returns change over time. Sanchez-

Torres and Sentana (1998) showed no evidence of preference for positive skewness by 

investors using the Spanish stock market. 

Singleton and Wingender (1986) and Peiro (1999) insist that despite evidence that the 

coskewness and cokurtosis risk in asset return are priced, fundamental questions remain as to 

how these studies confirm the existence of higher moments of return distributions. They also 

point to the possibility of incorrect assumptions resulting in the observed skewness asymmetry 

in returns. Chiao, Hung and Srivastava (2003) question the ability of higher moments of return 
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distribution to persist through time. Singleton and Wingender (1986) thus show that higher 

moments of return distribution do not persist through time even with the presence of a stable 

frequency of positive skewness in most individual stock and portfolio returns. 

Investigating the Taiwanese market between 1974 and 1998, Chiao, Hung and Srivastava 

(2003) found no apparent relationship between higher moments and returns. They provide three 

plausible explanations for this. The first, which could also apply to the South African basic 

materials index, is the collinearity between the covariance, coskewness and/or cokurtosis risk 

measures. As identified in Friend and Westerfield (1980), this could be a potential problem. 

The second explanation results from the frequent revision of strategy by investors, which limits 

the ability of higher moments to explain returns distribution to a negligible level. 

This may result from transaction costs being incurred due to frequent trading, which will blur 

the contributions of higher moments. This is demonstrated within the South African market, 

where I find an increasing trend for turnover of stocks (See Figure 1.7 in Chapter 1, for the 

South African market). According to Samuelson (1970), expected return and variance become 

very important and beyond the variance, all other moments become of relatively much smaller 

importance. This is what I find within the South African market: significant beta and 

insignificant higher moments. 

The third point that may also apply to the South African basic materials index is that the 

relationship between risk and return is not indicated directly by applying ex-post realisation as 

a proxy for ex-ante expectations, as observed in the unconditional CAPM of Pettengill et al. 

(1995). Chiao, Hung and Srivastava (2003) highlight that this is particularly significant when 

the realised market return is less than the risk-free rate. I do not expect this to be much of a 

problem as the measure of risk-free rate used (see Section 3.3 in Chapter 3) ensures that the 

market returns are higher, hence true risk-free returns. 

Compared to the four-factor model that accounts for liquidity and contagion, the alpha term for 

the model that includes higher moments is still insignificant, but the adjusted 𝑅2 is lower at 

57.36%, hence the four-factor model that accounts for liquidity and contagion performs best in 

the South African market. 
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5.4 Empirical findings in the emerging African market 

As in the South African market, the objective of this section is to investigate the role of the 

different risk factors in explaining asset pricing within the emerging African market index. The 

empirical results are shown in Table 5.10. 
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Table 5.10140 Model performance for the emerging African market141 

Coeff.  CAPM142  
3-factor 

model143  
4-factor 

model144  

4-factor model 

+ liquidity145 
4-factor model + liquidity 

and contagion146 
4-factor model + liquidity, 

contagion and higher moments147 

 −0.00153846* −0.00166722* −0.00169653* −0.00170952* −0.000350224 −0.192618** 

𝛼𝑖 (0.000946723) (0.000909299) (0.000907255) (0.000907358) (0.000940420) (0.0863075) 

 0.788427*** 0.803047*** 0.797338*** 0.790198*** 0.775882*** 0.766978*** 

𝛽𝑖𝑀 (0.0677367) (0.0644096) (0.0628137) (0.0654904) (0.0629981) (0.0645285) 

   0.0763167* 0.0706369* 0.0911008** 0.0913560** 0.0959405** 

𝛽𝑖𝑠   (0.0417691) (0.0425021) (0.0439646) (0.0428271) (0.0428184) 

   −0.0803463 −0.0574970 −0.0626380 −0.0758104 −0.0835243 

𝛽𝑖ℎ   (0.0611953) (0.0621561) (0.0622812) (0.0631049) (0.061927) 

     0.0359296 0.0341063 0.0306662 0.0287265 

𝛽𝑖𝑚     (0.0343935) (0.0338087) (0.0333789) (0.0329108) 

𝛽𝑖𝑝    
−0.0351032 

(0.0436339) 

−0.0407794 

(0.0423631) 

−0.0427367 
(0.0424116) 

𝑆𝑖      
−0.000274863 
(0.00057182) 

𝐾𝑖      
0.193561** 
(0.0870456) 

Dummy_FC_AS     
−0.00562245*** 

(0.00195754) 

−0.00239083 
(0.00228456) 

𝑅2 
Adj 𝑅2 

0.379077 

0.377993 

0.387239 

0.384019 

0.389383 

0.385098 

0.390404 

0.385047 

0.399804 

0.393464 

0.406626 
0.398239 

                                                 
140 HAC standard errors. Data source – Reuters Eikon. 
141 T = 575. *, ** and *** indicates statistical significance of the coefficient at the 10%, 5% and 1% levels. 
142 𝑅𝑖 − 𝑅𝑓 = 𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀) − 𝑅𝑓)  +  휀𝑖𝑡 
143 𝑅𝑖𝑡 − 𝑅𝑓𝑡 = 𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡  + 휀𝑖𝑡 
144 𝑅𝑖𝑡 − 𝑅𝑓𝑡 = 𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡  +  휀𝑖𝑡 
145 145 𝑅𝑖𝑡 − 𝑅𝑓𝑡 = 𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡 + 𝛽𝑖𝑝𝐼𝑀𝑉𝑡 + 휀𝑖𝑡 
146 146 𝑅𝑖𝑡 − 𝑅𝑓𝑡 = 𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡 + 𝛽𝑖𝑝𝐼𝑀𝑉𝑡 + 𝛿𝑖𝐷𝐹𝐶𝐴𝑆 + 휀𝑖𝑡 
147 𝑅𝑖𝑡 − 𝑅𝑓𝑡 = 𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡 + 𝛽𝑖𝑝𝐼𝑀𝑉𝑡 + 𝛽𝑖𝑒𝑆𝑖 + 𝛽𝑖𝑘𝐾𝑖 + 𝛿𝑖𝐷𝐹𝐶𝐴𝑆 + 휀𝑖𝑡 
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5.4.1 Performance of the CAPM against the three-factor and four-factor models in the 

emerging African market 

This section focuses on investigating the role of different risk factors in explaining asset pricing 

using the standard CAPM, the Fama-French three-factor model, the Carhart four-factor model 

and the liquidity-adjusted four-factor model, within the emerging African basic materials 

index. It also investigates the role of higher-order moments in explaining realised returns and 

the effect of controlling for contagion events in terms of the financial crisis period and the Arab 

Spring. 

Table 5.10 reports the results of the estimation for the standard CAPM, the three-factor and the 

four-factor models, representing three alternative risk specifications. Much like in the South 

African market, the explanatory power of the model increases with additional size, book-to-

market value and momentum factors. This is an indication of the improved explanatory power 

of the Fama-French and Carhart models. The Jensen alpha terms, 𝛼𝑖, are negative for all three 

models and continue to get closer to zero with the addition of size, book-to-market factor and 

momentum factor. They were, however, statistically significant for all three models, indicating 

a poor fit with established theoretical CAPM assumptions. This is contrary to findings in Hearn 

and Piesse (2009), who identified that Jensen alpha terms are not statistically significant within 

the African market. 

The explanation for this significant alpha could be traced to investment strategies in these 

markets through preference for investment in highly profitable firms, overreacting to good and 

bad news, assuming trends in stock prices and extrapolating past growth rates too far into the 

future, as also seen within the South African market. These are aided by poor information 

dissemination and a relatively underdeveloped institutional environment within which the 

financial markets operate, when compared to South Africa and the developed markets. Another 

important factor that will be more pronounced within this market is the effect of time variation 

resulting from macroeconomic factors. 

This significant alpha may also be due to missing risk factor; however, MacKinlay (1995) 

identified that non-zero intercepts may not be solely due to missing risk factors, but may be 

due to firm/index specific factors. He identified the possible impact of market friction and 

liquidity constraints on intercepts of CAPM tests. Conrad and Kaul (1993) consider the 

possibility that biases in computed returns explain the deviations. They note that the implicit 

portfolio rebalancing in most analysis biases measured returns upwards, leading to overstating 



255 
 

returns and CAPM deviations. This reflects the impact of survivorship bias, and this has been 

eliminated from this dataset. 

The performance of the model can also be seen in the goodness of fit (𝑅2) of the models. As 

shown on Table 5.10, the 𝑅2 for the Sharpe-Lintner CAPM was 37.91%, while those of the 

Fama-French model and the Carhart model were 38.72% and 38.94%, respectively. This 

suggests that the Carhart four-factor model performs marginally better in explaining realised 

returns on the South Africa basic materials index. However, some precaution should be taken 

as to the use of the 𝑅2, because with additional variables the 𝑅2 will normally increase; 

however, the adjusted 𝑅2 is still highest for the Carhart four-factor model (38.51%), compared 

to the three-factor (38.40%) and the Sharpe-Lintner models (37.80%). 

The CAPM beta was positive and significant at the 1% level and this conforms to theoretical 

predictions as stated in Sharpe (1964), Lintner (1965) and Sharpe, Alexander and Bailey 

(1999). Using the Fama-French three-factor model, I find that beta and size are significant in 

the emerging African market. Beta is positive and significant at the 1% level, while size is 

positive and significant at the 10% level. This size effect demonstrates that small firms 

outperform larger firms in these markets. 

The diversification advantage of the index has resulted in a positive size effect. This is obvious 

given the negative factor loading for the size variable within the South African market and, as 

will be seen later, within the emerging African market excluding South Africa. This has also 

exacerbated the potential impact of time variation, as the potential effect of external shocks 

will increase within the index. As seen in Malkiel and Xu (1997, 2004), the impact of 

idiosyncratic risk, which they relate to size risk, will also be more pronounced, as the 

characteristics of the markets that make up the index will be reflected on the index. The markets 

within the emerging African market are homogeneous enough to be classed within the index, 

but still remain heterogeneous enough to provide some diversification advantages, hence the 

impact on the size factor. This is also supported by the market beta value when compared with 

the South African market beta, where beta is higher. 

Following the survey in van Dijk (2011), other studies that found a positive relationship include 

Banz (1981), Brown et al. (1983), Lamoureux and Sanger (1989) and Fama and French (1992), 

but these were in the US market. A broad range of international studies reported in van Dijk 

(2011) suggest that size effect is positive in most developed and emerging markets; see Gillan 

(1990), Annaert et al. (2002) and Aksu and Onder (2003). Those who found the size effect in 
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the African market include van Rensburg and Robertson (2003) and Basiewicz and Auret 

(2009). 

The value factor is negative and statistically insignificant. The direction of the value factor is 

contradictory to the findings of Fama and French (1992, 1996), who find a positive and 

significant relationship between book-to-market value and expected returns. However, 

Bossaerts and Fohlin (2000) also found a negative value effect in their study of German stocks. 

The insignificant value factor within the emerging African market is likely due to investors’ 

aversion of a probable “value trap” due to treatment of depreciation, loans, liens and intangibles 

within the book value. 

Controversy still exists over the importance of value in explaining returns. Loughran (1997) 

insists that there is no consistent relationship between book-to-market value and realised return. 

Other authors have proffered some explanation for the value premium in Fama and French 

(1992, 1993), with Black (1993) suggesting that the value premium was due to data-snooping; 

this is supported by MacKinlay (1995). Kothari et al. (1995) argue that value premium is due 

to survivorship bias, while Lakonishok et al. (1994) insist that it results from investor 

overreaction. 

Overall, the insignificant value factor is consistent with the findings of Wang and Xu (2004) 

and Shum and Tang (2005) in the Asian market, and the assertions in Gaunt (2004) using 

Australian data. There is a lack of empirical evidence on whether the value premium is present 

in emerging equity markets generally, and particularly in the emerging African stock markets, 

as stated in Bundoo (2008). 

The momentum factor in the emerging Africa index is also not significant. This contradicts the 

finding in Jegadeesh and Titman (1993), Carhart (1997), Chan, Hamao and Lakonishok (1991), 

Griffin, Ji and Martin (2003), Asness, Moskowitz and Pedersen (2013) and Chui, Titman and 

Wei (2010). However, Rouwenhorst (1999) indicates that it is quite difficult to detect 

momentum in emerging market countries, where he found significant momentum profit in six 

out of 20 emerging markets in his sample. This he attributed to the highly volatile nature of 

emerging market returns. Rouwenhorst (1999) insists that given the high trading costs, the 

existing evidence does not support the presence of momentum returns in emerging markets. I 

can attribute the insignificant momentum factor in the emerging African markets to the impact 

of the South African market. This is because given the slow pace of information flow in the 

African market and the gradual response of stock prices to earnings news, I expect the 
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momentum factor to be significant. I hence attribute this insignificance to the comparative 

efficiency of the South African market and its effect within the emerging African index. 

The source of this momentum return has, however, remained controversial, with Conrad and 

Kaul (1998) and Bulkey and Nawosah (2009) insisting that momentum is mainly explained by 

risk. Lo and Mackinley (1990) suggest that the sources of momentum returns are positive serial 

correlation (negative cross-sectional correlation) and dispersion in unconditional mean returns. 

 

5.4.2 Liquidity-adjusted four-factor model in the emerging African market 

Table 5.10 shows that liquidity is not priced in the four-factor model within the emerging 

African market. The importance of the other variables remained the same, with the Jensen alpha 

term also significant. The adjusted 𝑅2 indicates that the model that includes the liquidity 

measure performs poorly within the emerging African market, with an adjusted 𝑅2 of 38.505%, 

compared to 38.510% for the four-factor model. This is quite interesting, given the illiquidity 

and thin trading problems that characterise the African market. However, when we compare 

the results to those within the South African market, it becomes obvious that the interaction 

between the different markets within the emerging African market has reduced the importance 

of liquidity. The inclusion of the liquidity factor only served to increase the premiums 

associated with size, but reduced that associated with the market beta. This suggests that 

liquidity is reflected in the size of the companies sampled within the emerging African market. 

This is contrary to the findings in Lee (2011), who insists that liquidity is priced after 

controlling for market risk, size effect and value effect. 

Other contradictory results have also been found on the relevance of liquidity, as stated in 

Lischewski and Voronkova (2012). However, Hearn (2011) insists that the effect of liquidity 

on asset pricing depends on the structure of the surveyed stock market. He finds evidence of 

size and liquidity being priced in Morocco, but not in other north African countries. Lesmond 

(2005) highlights that his bid-ask measure of liquidity remains the most demonstrable indicator 

of overall liquidity, as also noted in Jain (2002). Lee (1993) continues to insist that there are 

deficiencies in the application of any bid-ask construct. 

The concept of liquidity itself has remained quite difficult to define because its characteristics 

transcend a number of transactional properties of markets, as reported by Hearn (2011). 

Lesmond (2005) identifies some of these transactional properties as resiliency, depth and 
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tightness, while O’Hara (2003) includes information. As identified, the plausible reason for the 

insignificant liquidity factor is the composition of the index, in terms of the South African, 

Egyptian, Moroccan stocks being together within the portfolio. There may be an offsetting 

effect on some of the variables; this will be analysed further in the discussion chapter. 

 

5.4.3 Effect of contagion on liquidity-augmented four-factor model in the emerging 

African market 

The exogenous shock identified in the dummy variable in Table 5.10 relates to the financial 

crisis and the Arab Spring. The result indicates that these exogenous shocks had a profound 

effect on the model. The findings show that the dummy variable was negative and significant 

at the 1% level, with the alpha terms being insignificant. This highlights the importance of 

accounting for time variations in estimates of the CAPM, thereby refuting the commonly made 

assumption that beta remains constant over time. Unlike the findings in the South African 

market, I find that accounting for the contagion variable does not change the sign on the alpha 

term, indicating that although not significant, the emerging African market has a tendency to 

perform worse than the South African market. 

Following Jagannathan and Wang (1996), the implication of the contagion dummy could relate 

to the impact of business cycles. Business cycles will usually present variations in performance, 

which is likely due to varying firm cash flow and the degree of a firm’s financial leverage, 

hence the possibility of a varying relative risk. In theory, this implies that the models can hold 

conditionally on time information, period by period, even when the unconditional CAPM does 

not hold. 

The indications are that this contagion factor is due to systematic stochastic changes affecting 

the environment that generates returns, as also observed in Chan and Lakonishok (1993), Black 

(1993) and Jagannathan and Wang (1996). According to Harvey (1994), emerging markets are 

mostly influenced by local information sets rather than global information sets. This is because 

most emerging and African markets are segmented from the world capital markets, as identified 

in Kim and Singal (2000), Bekaert and Harvey (2000) and Bekaert (1995); hence the implicit 

assumption that the world capital markets are completely integrated does not hold. This does 

not, however, mean complete segmentation either, hence shocks from developed markets can 

still affect the emerging African market. This is quite obvious from the financial crisis and 

Arab Spring contagion, as it shows that shocks can affect partially segmented markets. Harvey 
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(1994) also identified that risk loadings in emerging markets are not constant, as suggested by 

many researchers in developed markets, as they are time-varying in emerging markets. 

We also observe that when higher moments are included in the liquidity-augmented four-factor 

model, the contagion dummy becomes irrelevant. However, the alpha term becomes 

significant, indicating that the model does not perform well in explaining realised returns. 

 

5.4.4 Higher-moment CAPM in the emerging African market 

The results for the liquidity- and higher-moments augmented four-factor model show that 

coskewness is not priced in the emerging African market, while the cokurtosis is priced. The 

contagion dummy becomes insignificant, indicating that the higher-order moments reduce the 

importance of time variation within the model. However, the Jensen alpha term is significant, 

which indicates that the model does not perform well in explaining the returns behaviour within 

the emerging African market. 

The results for the skewness and kurtosis factors are consistent with the findings in Friend and 

Westfield (1980) and Hung (2008), who find that investors do not pay a premium for positive 

skewness of portfolio returns, but find that kurtosis provides some explanation of expected 

returns. Sanchez-Torres and Sentana (1998) showed no evidence of preference for positive 

skewness by investors using the Spanish stock market, while Fang and Lai (1997) find evidence 

for the pricing of cokurtosis in the US market. Other researchers that investigated the effect of 

skewness and kurtosis include Faff and Chan (1998) and Adock and Shutes (2005). 

However, the importance of higher moments is in question here, as the alpha term indicates 

that the SMB, HML, UMD, IMV loadings in the presence of the contagion dummy provide 

such good proxies for the higher-order moments and hence are more superior in actual use. 

This conclusion has also been reached in Chung, Johnson and Schill (2004). Many others have 

doubts as to the importance of higher moments. Singleton and Wingender (1986) and Peiro 

(1999) insist that despite evidence that the coskewness and cokurtosis risks in asset return are 

priced, fundamental questions remain as to how these studies confirm the existence of higher 

moments of return distributions. They also point to the possibility of incorrect assumptions 

resulting in the observed skewness asymmetry in returns. Chiao, Hung and Srivastava (2003) 

question the ability of higher moments of return distribution to persist through time. Singleton 

and Wingender (1986) thus show that higher moments of return distribution do not persist 
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through time even with the presence of a stable frequency of positive skewness in most 

individual stock and portfolio returns. 

They provide three plausible explanations for this. The first is the collinearity between the 

covariance, coskewness and cokurtosis risk measures. As identified in Friend and Westerfield 

(1980), this could be a potential problem. The second explanation results from the frequent 

revision of strategy by investors, which limits the ability of higher moments to explain returns 

distribution to a negligible level. This may result from transaction costs being incurred due to 

frequent trading, which may blur the contributions of higher moments. According to 

Samuelson (1970), expected return and variance become very important and beyond the 

variance all other moments become relatively of much smaller importance. The third point is 

that the relationship between beta and return is not indicated directly by applying ex-post 

realisation and proxy for ex-ante expectations, as observed by the unconditional CAPM of 

Pettengill et al. (1995). 

As identified in Barberis (2000), the parameters of these models are typically estimated with 

considerable uncertainty and, according to Pettenuzzo and Timmermann (2005), one aspect 

that receives less attention is model instability. This supports the long-lasting view in finance 

that suggests that the probability of return distribution changes over time, leading practitioners 

and academics to rely on more recent data, as identified in Pástor and Stambaugh (2001). 

Further analysis of the importance of higher-order moments will be made using a conditional 

CAPM-type model in Chapter 7. 

Due to the significant difference between the findings within the South African market 

compared to the emerging African market that includes South Africa, a further analysis of the 

risk-return relationship within the emerging African market excluding South Africa will be 

made. 

 

5.5 Empirical findings in the emerging African market excluding South Africa 

As in the South African market and the emerging African market, the objective of this section 

is to investigate the role of the different risk factors in explaining asset pricing within the 

emerging African market excluding South Africa index. The empirical results are shown in 

Table 5.11. 
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Table 5.11148 Model performance for the emerging African market excluding South Africa 149 

Coeff.  CAPM150  
3-factor 

model151  
4-factor 

model152  

4-factor model 

+ liquidity153 
4-factor model + liquidity 

and contagion154 
4-factor model + liquidity, 

contagion and higher moments155 

 −0.000303961 −5.85330e-05 −0.000131749 −0.000226469 0.000673819 −0.370386** 

𝛼𝑖 (0.000936634) (0.000903146) (0.000825323) (0.000818697) (0.000895996) (0.167989) 

 0.773389*** 0.763495*** 0.570914*** 0.577538*** 0.570192*** 0.563816*** 

𝛽𝑖𝑀 (0.0380698) (0.0373764) (0.0463033) (0.0457881) (0.0458402) (0.0457841) 

   −0.175687*** −0.212918*** −0.215075*** −0.209831*** −0.203346*** 

𝛽𝑖𝑠   (0.0491774) (0.0480996) (0.0466551) (0.0457877) (0.0446733) 

   0.0873957* 0.0836887** 0.0742680* 0.0712296* 0.0676494* 

𝛽𝑖ℎ   (0.0446112) (0.0395328) (0.0391656) (0.0380578) (0.037291) 

     0.197877*** 0.202097*** 0.201803*** 0.198446*** 

𝛽𝑖𝑚     (0.0315364) (0.0300815) (0.0300931) (0.0292625) 

𝛽𝑖𝑝    
0.0682631** 

(0.0314736) 

0.0723881** 

(0.0315716) 

0.0709348** 
(0.0318461) 

𝑆𝑖      
0.000808879 
(0.00356724) 

𝐾𝑖      
0.370089** 
(0.168695) 

Dummy_FC_AS     
−0.00389571** 

(0.00168830) 

−0.00119112 
(0.00179115) 

𝑅2 
Adj 𝑅2 

0.536787 

0.535979 

0.553792 

0.551448 

0.617450 

0.614765 

0.621020 

0.617690 

0.624217 

0.620247 

0.628757 
0.623510 

                                                 
148 HAC standard errors. Data source – Reuters Eikon. 
149 T = 575. *, ** and *** indicate statistical significance of the coefficient at the 10%, 5% and 1% levels. 
150 𝑅𝑖 − 𝑅𝑓 = 𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀) − 𝑅𝑓)  +  휀𝑖𝑡 
151 𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡  +  휀𝑖𝑡 
152 𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡  +  휀𝑖𝑡 
153 𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡 + 𝛽𝑖𝑝𝐼𝑀𝑉𝑡 + 휀𝑖𝑡 
154 𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡 + 𝛽𝑖𝑝𝐼𝑀𝑉𝑡 + 𝛿𝑖𝐷𝐹𝐶𝐴𝑆 + 휀𝑖𝑡 
155 𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡 + 𝛽𝑖𝑝𝐼𝑀𝑉𝑡 + 𝛽𝑖𝑒𝑆𝑖 + 𝛽𝑖𝑘𝐾𝑖 + 𝛿𝑖𝐷𝐹𝐶𝐴𝑆 + 휀𝑖𝑡 
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5.5.1 The performance of the CAPM against the three-factor and four-factor models in 

the emerging African market excluding South Africa 

 

The Jensen alpha terms are insignificant for all models, excluding the liquidity and higher-

moment adjusted four-factor model that accounts for the contagion effect. The insignificant 

alpha indicates a good fit with theoretical assumptions for the CAPM, the three-factor model, 

the four-factor model, the liquidity-augmented four-factor model and the contagion and 

liquidity-augmented four-factor model. This is in line with the Hearn and Piesse (2009), who 

point out that within Africa, the Jensen alpha terms are not statistically significant. The 

goodness of fit of the models increases with additional size, book-to-market value, momentum, 

liquidity, contagion and higher-moment factors. This demonstrates the improved explanatory 

power of the multifactor models. 

AS demonstrated by the Jensen alpha term 𝛼𝑖, the models clearly performed better in the 

emerging African market excluding South Africa than in the emerging African market. This 

could be due to the varying levels of integration with developed markets, as stated in Stulz 

(1999). When integration is achieved, Koedijk and Dijk (2004) point out that the sensitivity of 

a stock return to its home country index also captures the stock’s sensitivity to global risk 

factors. Hence when segmented, the sensitivity does not entirely capture the sensitivity to 

global risk factors. This relates to the fact that the South African market remains the most 

integrated of the African markets, hence the varying sensitivity to global risk factors when 

compared to other African markets within the emerging African market. Also, the 

characteristics of the South African market differ from those of Egypt and Morocco in terms 

of levels and impact of political instability, religious background, market development, 

investor protection and legal system. The impact of legal systems is analysed in detail in La 

Porta et al. (1997).156 

In regards to the coefficients, Table 5.11 indicates the importance of beta, size, book-to-market 

value, momentum and liquidity in explaining realised returns in the emerging African market 

excluding South Africa. However, the size factor does not conform to the expectations of Fama 

and French (1993), as there is no premium on the stock of small firms. The value factor is 

significant at the 10% level, which is contradictory to the findings in our emerging African 

market sample. The factor loading for value is positive, which is again contradictory to the 

                                                 
156 La Porta et al. (1997), Legal determinants of external finance. 
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findings in our emerging African market sample, although the value factor there was 

insignificant. 

This can be explained using the growth potential of the emerging African market excluding 

South Africa, as the factor loadings on HML are important for describing the returns on growth-

stock funds. This corroborates the findings in Fama and French (1996). This may also imply 

that the basic materials sector within the emerging African market excluding South Africa is 

distressed, as distressed industries have higher loading on HML. Fama and French (1993) 

highlight that average HML return is a premium for a state-variable risk related to relative 

distress. High book-to-market value is associated with persistently low earnings, while a low 

book-to-market value is typical of firms that have persistently strong earnings. However, Fama 

and French (1994) argue that loadings of industries on HML will vary with the business cycle, 

as strong positive HML is related to bad economic times while negative loadings are consistent 

with good economic times. I, however, find that when I control for potential bad economic 

times in the contagion dummy, the factor loading on the HML remained positive. This indicates 

a likely persistence of the HML factor loading through business cycles. This I relate to the 

composition of companies within the basic materials sector, with the larger firms dominating 

the sector. 

The momentum factor indicates a momentum premium within the emerging African market 

excluding South Africa. One reason for this momentum premium is the slow pace of 

information flow in the African market and the gradual response of stock prices to earnings 

news; hence I expect the momentum factor to be significant. This is particularly so in less-

efficient parts of the African market, as I see momentum premium when the South African 

market data is not included in the emerging Africa index. Behavioural biases can result in 

momentum profits, as stated in Jegadeesh and Titman (2002) and Bhootra (2011). This is also 

particularly a source of momentum in less-efficient markets, as identified in Section 2.2.6 of 

Chapter 2. The impact of behavioural biases on momentum returns within the African indices 

will be discussed in detail in Chapter 6. 

The liquidity factor is positive and significant, indicating that illiquid firms outperform liquid 

firms. This is consistent with the findings in Lam and Tam (2011). Assefa and Mollick (2014) 

have also found that liquidity is positively related to stock returns when South Africa is 

excluded from a sample of African markets, making liquidity priced in less liquid markets. 

This seems to be the overriding theme regarding liquidity in the African market and, as 
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identified in the study of the emerging African markets, this relates to the composition of the 

players in the sector, with large firms dominating the small ones. The importance of liquidity 

is quite obvious within this index, given the problems of thin trading discussed in the literature. 

Kenny and Moss (1998) support this view and highlight that the small size, illiquidity and often 

unstable economic and political environments of African markets make them extremely 

volatile. Chapter 8 provides a comparative discussion of liquidity across the indices within this 

study. 

When the contagion dummy is included within the model, I find the dummy significant. The 

significance of the contagion dummy identifies the importance of adjusting for time variation 

within the emerging African market excluding South Africa. As also seen in the South African 

market, the alpha term becomes positive with the inclusion of the contagion dummy; this 

indicates a potential for the index to outperform in stable periods. 

The importance of accounting for time variation has also been identified in Oran and Soytas 

(2008). The contagion and liquidity-augmented four-factor model performs best within the 

emerging African market, excluding South Africa, with an insignificant alpha term. 

 

5.5.2 Higher-moment CAPM in the emerging African market excluding South Africa 

Table 5.11 also shows the result of the liquidity and higher-moment augmented four-factor 

model. One important outcome relates to the significance of the alpha term in the model, 

indicating the poor performance when compared to the models without the higher moments. 

This is similar to the findings within the South African market. The insignificance of the 

skewness factor and the significance of the kurtosis variable are consistent with the findings in 

Friend and Westfield (1980) and Hung (2008), who find that investors do not pay a premium 

for positive skewness of portfolio returns but that kurtosis provides some explanation of 

expected returns. Kim and White (2004) also found that there is no negative skewness and quite 

mild kurtosis. 

With the significant alpha term, the conclusion that higher-moment augmented models perform 

better cannot be made, as also identified above. A comparative discussion of the importance of 

higher moments across the African market indices will be made in Chapter 6. 
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5.6 Empirical findings in the Frontier African market 

As in the South African market, the emerging African market and the emerging African market 

excluding South Africa, the objective of this section is to investigate the role of the different 

risk factors in explaining asset pricing within the frontier African market index. The empirical 

results are shown in Table 5.12. 

 



266 
 

Table 5.12157 Model performance for the frontier African market158 

Coeff.  CAPM159  
3-factor 

model160  
4-factor 

model161  

4-factor model 

+ liquidity162 
4-factor model + liquidity 

and contagion163 
4-factor model + liquidity, contagion 

and higher moments164 

 0.00219295** 0.00195859** 0.00171708* 0.00160413** 0.00323144*** −0.0329551 

𝛼𝑖 (0.000946424) (0.000933748) (0.000902973) (0.000862938) (0.000819579) (0.131935) 

 0.198098*** 0.209767*** 0.205892*** 0.217368*** 0.183974*** 0.188206*** 

𝛽𝑖𝑀 (0.0624902) (0.0623929) (0.0645382) (0.0614017) (0.0560353) (0.0567163) 

   0.0337210 0.0382279* 0.0418047** 0.0444451** 0.0440862** 

𝛽𝑖𝑠   (0.0207665) (0.0201338) (0.0207288) (0.0196571) (0.0186608) 

   0.0234962 0.0450782* 0.0483362** 0.0445542* 0.0481174* 

𝛽𝑖ℎ   (0.0266539) (0.0265515) (0.0259348) (0.0252050) (0.025701) 

     0.0456719** 0.0418725*** 0.0408926** 0.0406959** 

𝛽𝑖𝑚     (0.0193136) (0.0189410) (0.0181898) (0.017666) 

𝛽𝑖𝑝    
−0.0374348 
(0.0317782) 

−0.0419267 
(0.0300360) 

−0.0399902 
(0.0304431) 

𝑆𝑖      
0.00406455** 
(0.00187213) 

𝐾𝑖      
0.0321275 
(0.131951) 

Dummy_FC_AS     
−0.00679529*** 

(0.00245419) 
−0.00806524*** 

(0.00285705) 

𝑅2 
Adj 𝑅2 

  

0.025525 
0.023824 

0.036249 
0.031185 

0.057874 
0.051262 

0.065063 
0.056847 

0.088497 
0.078868 

0.095577 
0.082793 

                                                 
157 HAC standard errors. Data source – Reuters Eikon. 
158 T = 575. *, ** and *** indicate statistical significance of the coefficient at the 10%, 5% and 1% levels. 
159 𝑅𝑖 − 𝑅𝑓 = 𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀) − 𝑅𝑓)  +  휀𝑖𝑡 
160 160 𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡  +  휀𝑖𝑡 
161 𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡  +  휀𝑖𝑡 
162 𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡 + 𝛽𝑖𝑝𝐼𝑀𝑉𝑡 + 휀𝑖𝑡 
163 𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡 + 𝛽𝑖𝑝𝐼𝑀𝑉𝑡 + 𝛿𝑖𝐷𝐹𝐶𝐴𝑆 + 휀𝑖𝑡 
164 𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 + 𝛽𝑖𝑀(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡 + 𝛽𝑖𝑝𝐼𝑀𝑉𝑡 + 𝛽𝑖𝑒𝑆𝑖 + 𝛽𝑖𝑘𝐾𝑖 + 𝛿𝑖𝐷𝐹𝐶𝐴𝑆 + 휀𝑖𝑡 
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5.6.1 Performance of the CAPM against the three-factor and four-factor models in the 

frontier African market 

Table 5.11 reports the results of the estimation for the standard CAPM, the three-factor and the 

four-factor models, representing three alternative risk specifications. The Jensen alpha term, 

𝛼𝑖, is positive and statistically significant for all three models, indicating a poor fit with 

established theoretical CAPM assumptions. This is contrary to findings in Hearn and Piesse 

(2009), which identified that Jensen alpha terms are not statistically significant within the 

African market. 

An interesting finding from this study relates to the goodness of fit (𝑅2) of the models. These 

are quite low when compared to most findings in the literature, with the adjusted 𝑅2 for the 

one-, three- and four-factor models being 2.38%, 3.12% and 5.13%, respectively. Although 

this suggests an improved goodness of fit for the Carhart four-factor model, these values are 

quite low when compared to the 𝑅2 values for the emerging African market and the South 

African market. There are some recent studies that also find low 𝑅2 values in the African 

market such as Tunyi and Ntim (2016). 

The estimate of beta for the Sharpe-Lintner CAPM model was positive and significant at the 

1% level, indicating a good fit with the predictions in Sharpe (1964) and Lintner (1965). Beta 

is also positive and significant within the Fama-French three-factor model; however, the size 

factor is insignificant. This corresponds to findings in van Dijk (2011), who identifies that the 

strength of the size effect can depends on market characteristics such as the type of investor, 

trading mechanism and market efficiency in general. Horowitz et al. (2000a,b) and Amihud 

(2002) have identified that the size effect disappeared after the early 1980s. The value factor is 

also insignificant in the frontier African market. Empirical findings in Loughran (1997) 

indicate that there is no consistent relationship between book-to-market value and returns, with 

Kothari et al. (1995) arguing that the value premium is due to survivorship bias. 

The variables within the Carhart four-factor model are all significant at conventional levels. 

This also includes the alpha term, which indicates that the model performs poorly when 

compared to theoretical expectations. Beta, size, value and momentum are all positive, 

indicating that the frontier African market conforms to theoretical expectation within the 

Carhart four-factor model; see Carhart (1997). This indicates that the momentum factor is 

jointly important with the size and value factors within the frontier market. 

 



268 
 

5.6.2 Liquidity-augmented four-factor model in the frontier African market 

In Table 5.11, we also report the results of the liquidity-augmented models. The liquidity 

factors are all negative and insignificant, indicating that liquidity is not priced in the frontier 

African market. This contradicts the findings in Lee (2011), Amihud and Mendelson (1986) 

and Pástor and Stambaugh (2003), who believe that liquidity should be a priced state variable 

and that the liquidity premium should be positive. However, as stated in Hearn (2011), the 

effect of liquidity depends on the structure of the surveyed stock market, while Lischewski and 

Voronkova (2012) find conflicting results on the relevance of liquidity in asset pricing. The 

importance of liquidity within the frontier market compared to the other markets in our sample 

will be discussed in greater detail in Chapter 6. 

 

5.6.3 Effect of contagion on the liquidity-augmented four-factor model in the frontier 

African market 

When the contagion dummy variable (for the financial crisis and Arab Spring) is included in 

the liquidity-augmented four-factor model, the results remain the same, while the dummy 

variables are negative and significant all at the 1% level. This indicates the importance of 

variation in CAPM estimates, as the financial crisis and Arab Spring have affected the returns-

generating process within the frontier African market. 

The instability in beta has been well documented, with Lettau and Ludvigson (2001), Lustig 

and Van Nieuwerberburgh (2005) and Santos and Veronesi (2006) examining the beta of small, 

high B/M stock over the business cycle and finding that their beta varies with the business 

cycle. They also found that these variations can explain the positive unconditional alpha found 

for these stocks. However, as seen in this market, the inclusion of the contagion dummy has 

not improved the alpha term. This contradiction when compared to the findings in the South 

African and emerging African markets will be discussed in Chapter 6. 

 

5.6.4 Higher-moment augmented model in the frontier African market 

The liquidity- and higher-order moment augmented four-factor model, with a contagion-effect 

dummy, seems to be the “best” model within the frontier African market. This is because the 

results show an insignificant Jensen alpha term, indicating a good fit theoretical CAPM 

assumption. 
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The adjusted 𝑅2 for this model indicates its better performance when compared with the other 

models in the frontier African market, with an adjusted 𝑅2 of 8.28%. We find the skewness 

measure to be significant along with beta, size, value, momentum and the contagion dummy 

variable. The performance of this model and the importance of the skewness factor are 

supported by Harvey and Siddique (2000). They demonstrate the importance of skewness in a 

skewness-augmented three-factor model. They also concluded that, in general, models 

incorporating coskewness are helpful in explaining the cross-sectional variation of equity 

returns. 

The significance of the contagion dummy and the findings in Ariff and Johnson (1990) support 

its importance of accounting for time variation in estimates of the CAPM. Harvey (1994) 

suggests that risk exposure significantly changes through time for a number of emerging market 

countries as their industrial structure develops. This is particularly the case for countries that 

are less integrated with world capital markets. Bos and Fetherston (1992) have also investigated 

beta instability in the Korean and Singaporean markets, respectively. 

 

5.7 Chapter conclusion 

This chapter investigates the risk-return characteristics of the South African basic materials 

index, the emerging African market’s basic materials index, the basic materials index of the 

emerging African market excluding South Africa and the frontier African market using weekly 

return data from January 2004 to December 2014. It examined the Sharpe-Lintner CAPM, the 

Fama-French three-factor model, the Carhart four-factor model and includes the liquidity factor 

and higher-order moments in a step-wise regression model. It also examined the role of 

contagion in explaining returns within the liquidity-augmented four-factor model. The 

objective of this approach was to investigate the role of the different risk factors on asset pricing 

within the South African basic material index. 

The Jensen alpha terms, 𝛼𝑖, are not statistically different from zero for the three and four-factor 

models, indicating a good fit with established theoretical CAPM assumptions within the South 

African market. However, the Sharpe-Linter CAPM had significant alpha term, demonstrating 

its poor performance in explaining realised returns. Within the emerging African market, the 

Jensen alpha terms, 𝛼𝑖, were significant for the one-, three- and four-factor models. The alpha 

term remained significant even after the liquidity factor was added to the four-factor model. A 

marked difference was highlighted when the dummy variable for contagion was introduced 
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into the models. The result indicate that the exogenous shock had a profound effect on the 

dataset, showing that the dummy variable was negative and significant at the 1% level, with 

the alpha term being insignificant. This highlights the importance of accounting for time 

variations in estimates of the CAPM within the emerging African market, thereby refuting the 

commonly made assumption that beta remains constant over time. 

For the emerging African market excluding South Africa, the alpha terms are insignificant for 

all models except when higher moments are included, indicating that the models perform better 

within this market when compared with the emerging African market. For the frontier African 

market, the findings indicate that the Jensen alpha term, 𝛼𝑖, is positive and statistically 

significant for all models except the liquidity- and higher-moments adjusted four-factor model 

when contagion is accounted for, indicating a poor fit for other models with established 

theoretical CAPM assumptions. 

Within the South African market, the study finds that the explanatory power of the model 

increases with additional size, book-to-market value and momentum. This demonstrates the 

improved explanatory power of the Fama-French and Carhart models over the Sharpe-Lintner 

standard CAPM within the South African market. 

As expected, beta was found to be positive and statistically significant for the standard, three-

factor and four-factor CAPMs. But unlike most studies that identify a size premium, size was 

found to be negative and statistically significant, indicating that large firms outperform small 

firms in the South African market. This difference is explained by industry-specific factors and 

also by specific characteristics of the African market as explained in Hearn and Piesse (2009). 

The book-to-market value and momentum factors were insignificant. 

Due to the importance of liquidity, as established in recent literature, I adjusted the four-factor 

model by including a liquidity variable. I found that the market beta and size were significant, 

along with the liquidity factor, but the book-to-market value and momentum factors continued 

to be insignificant. This corresponds to the findings of Bundoo (2008), who highlights that 

there is a lack of empirical evidence as to whether the value premium is present in emerging 

equity markets generally, and particularly in the emerging African stock markets. Hence I can 

conclude that accounting for beta, size and liquidity factors eliminates the relevance of the 

value and momentum factors in asset pricing within the South African market. 

However, the liquidity factor had a negative relationship with returns. This means that investors 

are not compensated for holding illiquid stocks, as liquid stocks outperform illiquid stocks. 
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This contradictory finding may be due to tax systems, market microstructure, industry 

characteristics, improvements in market structures and the opening of the South African 

markets to foreign investors. 

When the effect of contagion (the financial crisis and the Arab Spring) is accounted for within 

the four-factor models where the contagion dummy was found to be significant, indicating 

possible time variation effects, the contagion dummy did not, however, change the result of the 

other variables in the South African market. 

Lastly, I incorporated the systematic skewness and kurtosis by examining the importance of 

the higher moments in explaining returns within a liquidity-adjusted four-factor model. Quite 

unexpectedly, the analysis uncovered that both coskewness and cokurtosis are not important in 

pricing stock on the South African basic materials index. One reason that could explain the 

result is parameter uncertainty resulting from the use of observed information in estimating 

unknown parameters and also due to unstable predictive relations; this has also been identified 

in Lewis (2006) and Paye and Timmermann (2006). 

The four-factor model that accounts for liquidity and contagion was found to perform best in 

the South African market. 

However, within the emerging African market, the liquidity-augmented four-factor model 

performs better when the contagion effect is controlled, as its alpha term is closest to zero. 

However, in terms of goodness of fit, the liquidity- and higher-moment augmented four-factor 

model performs better with the highest adjusted 𝑅2of 39.82%. However, the alpha term is 

significant, hence with an 𝑅2 of 39.35% and with a constant term closest to zero, the liquidity-

augmented four-factor model that controls for contagion performs better within the emerging 

African market. 

The chapter also finds beta, size and kurtosis to be positive and significant within the emerging 

African market, while book-to-market value, momentum, liquidity and skewness were 

insignificant. The dummy variable for contagion was found to be significant within the 

liquidity-augmented four-factor model that controls for contagion. 

For the emerging African market excluding South Africa, the alpha terms are insignificant for 

all models except when higher moments are included, indicating that the models perform better 

within this market when compared with the emerging African market. The liquidity-augmented 

four-factor model performs best within the emerging African market excluding South Africa, 
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with a high adjusted 𝑅2 of 62.03% and an insignificant alpha term when the contagion effect 

is controlled for. All the variables are significant except the skewness measure. However, one 

interesting finding is that the direction for some of the variables is different when compared 

with the findings in the emerging African market. 

The size factor is positive and significant in the emerging African market, indicating that small 

firms perform better than big firms, but the size effect is negative in the emerging African 

market excluding South Africa, indicating that big firms perform better. The value factor in 

negative but insignificant in the emerging African market, but positive and significant in the 

emerging African market excluding South Africa. The momentum factor is positive and 

significant in both markets, while the liquidity factor is not significant in the emerging African 

market but positive in the emerging African market excluding South Africa. The kurtosis factor 

is both positive and significant for both markets. 

The results also demonstrate the importance of accounting for time variation in the African 

market, as the contagion dummies were significant except within the models that account for 

higher moments. 

The models clearly performed better in the emerging African market excluding South Africa 

than in the emerging African market including South Africa. This is due to the interaction 

between the characteristics of the South African market with those of Egypt and Morocco. This 

results from varying levels of integration of the market with developed markets as stated in 

Stulz (1999). Also, the characteristics of the South African market differ from those of Egypt 

and Morocco in terms of levels and impact of political instability, religious background, market 

development, investor protection and legal system within the country. 

For the frontier African market, the adjusted 𝑅2 of the models was quite low when compared 

with the 𝑅2 in the South African market and the emerging African markets. Beta was, however, 

significant across all models while size and value were insignificant within the three-factor 

model, but significant when the momentum factor was introduced using the four-factor model 

and for other models with the momentum factor was also significant. 

I found liquidity to be unimportant within the frontier African market, when the contagion-

effect variable was significant, demonstrating the impact of the financial crisis and the Arab 

Spring on the frontier African market index. When the liquidity- and contagion-effect four-

factor model includes the effect of higher moments, I find that the alpha terms become 

insignificant with some increase in the 𝑅2; hence I conclude that the higher-moment augmented 
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models perform better within the frontier African market. However, the skewness measure is 

significant, while the kurtosis measure is insignificant. 

Therefore, I conclude that the liquidity- and higher-moment augmented model performs best 

within the frontier African market when the contagion dummy variable is introduced. I find 

that beta, size and value to be significant except within the three-factor model. Momentum, 

skewness and the contagion variable were also significant. 

In Chapter 6, I compare the performance of the models in the various indices and identify the 

implications of the results for asset pricing in the African market. 
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5.8 Chapter appendices 

South African market 

Figure A 5.1 Frequency distribution with Doornik-Hansen test for normality for the market 

portfolio (South Africa) 

 

Figure A 5.2 Market portfolio correlogram (South Africa) 
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Figure A 5.3 Frequency distribution with Doornik-Hansen test for normality for the portfolio 

formed on size (South Africa) 

 

Figure A 5.4 Size portfolio correlogram (South Africa) 

 

 

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

-0.15 -0.1 -0.05  0  0.05  0.1

D
e
n
si

ty

SMB

SMB

N(0.00049665,0.028539)
Test statistic for normality:

Chi-square(2) = 88.720 [0.0000]

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  5  10  15  20  25

lag

ACF for SMB

+- 1.96/T^0.5

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  5  10  15  20  25

lag

PACF for SMB

+- 1.96/T^0.5



276 
 

Figure A 5.5 Frequency distribution with Doornik-Hansen test for normality for the portfolio 

formed on value (South Africa) 

 

Figure A 5.6 Value portfolio correlogram (South Africa) 
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Figure A 5.7 Frequency distribution with Doornik-Hansen test for normality for the portfolio 

formed on the momentum factor (South Africa) 

 

Figure A 5.8 Momentum portfolio correlogram (South Africa) 
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Figure A 5.9 Frequency distribution with Doornik-Hansen test for normality for the portfolio 

formed on the liquidity factor (South Africa) 

 

Figure A 5.10 Liquidity potfolio correlogram (South Africa) 
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Figure A 5.11 Frequency distribution with Doornik-Hansen test for normality for the skewness (𝑺𝒊) 
measure (South Africa) 

 

Figure A 5.12 Correlogram for the skewness (𝑺𝒊) measure (South Africa) 
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Figure A 5.13 Frequency distribution with Doornik-Hansen test for normality for the kurtosis (𝑲𝒊) 
measure (South Africa) 

 

Figure A 5.14 Correlogram for the kurtosis (𝑲𝒊) measure (South Africa) 
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Emerging African market 

Figure A 5.15 Frequency distribution with Doornik-Hansen test for normality for the market 

portfolio (emerging African market) 

 

Figure A 5.16 Market portfolio correlogram (emerging African market) 
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Figure A 5.17 Frequency distribution with Doornik-Hansen test for normality for the portfolio 

formed on size (emerging African market) 

 

Figure A 5.18 Size portfolio correlogram (emerging African market) 
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Figure A 5.19 Frequency distribution with Doornik-Hansen test for normality for the portfolio 

formed on value (emerging African market) 

 

Figure A 5.20 Value portfolio correlogram (emerging African market) 
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Figure A 5.21 Frequency distribution with Doornik-Hansen test for normality for the portfolio 

formed on the momentum factor (emerging African market) 

 

Figure A 5.22 Momentum factor correlogram (emerging African market) 
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Figure A 5.23 Frequency distribution with Doornik-Hansen test for normality for the portfolio 

formed on the liquidity factor (emerging African market) 

 

Figure A 5.24 Liquidity portfolio correlogram (emerging African market) 
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Figure A 5.25 Frequency distribution with Doornik-Hansen test for normality for the skewness (𝑺𝒊) 
measure (emerging African market) 

 

Figure A 5.26 Skewness (𝑺𝒊) measure correlogram (emerging African market) 

 

 

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-6 -4 -2  0  2  4  6

D
e
n
s
it
y

Skewness

Skewness

N(0.77242,1.1425)
Test statistic for normality:

Chi-square(2) = 539.341 [0.0000]

-1

-0.5

 0

 0.5

 1

 0  5  10  15  20  25

lag

ACF for Skewness

+- 1.96/T^0.5

-1

-0.5

 0

 0.5

 1

 0  5  10  15  20  25

lag

PACF for Skewness

+- 1.96/T^0.5



287 
 

Figure A 5.27 Frequency distribution with Doornik-Hansen test for normality for the kurtosis (𝑲𝒊) 
measure (emerging African market) 

 

Figure A 5.28 Kurtosis (𝑲𝒊) measure correlogram (emerging African market) 
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Emerging market excluding South Africa index 

Figure A 5.29 Frequency distribution with Doornik-Hansen test for normality for the market 

portfolio (emerging African market excluding South Africa) 

 

Figure A 5.30 Market portfolio correlogram (emerging African market excluding South Africa) 
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Figure A 5.31 Frequency distribution with Doornik-Hansen test for normality for the portfolio 

formed on size (emerging African market excluding South Africa) 

 

Figure A 5.32 Size portfolio correlogram (emerging African market excluding South Africa) 
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Figure A 5.33 Frequency distribution with Doornik-Hansen test for normality for the portfolio 

formed on value (emerging African market excluding South Africa) 

 

Figure A 5.34 Value portfolio correlogram (emerging African market excluding South Africa) 
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Figure A 5.35 Frequency distribution with Doornik-Hansen test for normality for the portfolio 

formed on the momentum factor (emerging African market excluding South Africa) 

 

Figure A 5.36 Momentum portfolio correlogram (emerging African market excluding South 

Africa) 

 

 0

 2

 4

 6

 8

 10

 12

 14

 16

-0.2 -0.1  0  0.1  0.2  0.3

D
e
n
s
it
y

UMD

UMD

N(0.0031432,0.045213)
Test statistic for normality:

Chi-square(2) = 367.661 [0.0000]

-0.1

-0.05

 0

 0.05

 0.1

 0  5  10  15  20  25

lag

ACF for UMD

+- 1.96/T^0.5

-0.1

-0.05

 0

 0.05

 0.1

 0  5  10  15  20  25

lag

PACF for UMD

+- 1.96/T^0.5



292 
 

Figure A 5.37 Frequency distribution with Doornik-Hansen test for normality for the portfolio 

formed on the liquidity factor (emerging African market excluding South Africa) 

 

Figure A 5.38 Liquidity portfolio correlogram (emerging African market excluding South Africa) 
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Figure A 5.39 Frequency distribution with Doornik-Hansen test for normality for the skewness (𝑺𝒊) 
measure (emerging African market excluding South Africa) 

 

Figure A 5.40 Correlogram for the skewness (𝑺𝒊) measure (emerging African market excluding 

South Africa) 
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Figure A 5.41 Frequency distribution with Doornik-Hansen test for normality for the kurtosis (𝑲𝒊) 
measure (emerging African market excluding South Africa). 

 

Figure A 5.42 Correlogram for the Kurtosis (𝑲𝒊) measure (emerging African market excluding 

South Africa) 
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6 DISCUSSION OF FINDINGS 

 

6.1 Introduction and structure of chapter 

The objectives of this chapter are threefold. The first objective is to draw some conclusion on 

which model performs best in each of the South African market, the emerging African market, 

the emerging African market excluding South Africa and the frontier African market and why 

they differ across the sample. To achieve this, I compare the performance of the Sharpe-Lintner 

CAPM, the Fama-French three-factor model, the Carhart four-factor model, the liquidity-

augmented variants and also a liquidity- and higher-moments augmented four-factor model. 

The second objective is to analyse differences in the importance of beta, size, value, 

momentum, liquidity, coskewness and cokurtosis within the South African market, the 

emerging African market, the emerging African market excluding South Africa and the frontier 

African market, as highlighted in Chapter 5. 

The third objective is to evaluate the impact of contagion (contagion effect resulting from the 

financial crisis and the Arab Spring) within the South African market, the emerging African 

market, the emerging African market excluding South Africa and the frontier African market, 

and analyse the rationale for any differences. 

Section 6.2 discusses Sharpe-Lintner CAPM, Section 6.3 assesses the Fama-French three-

factor model while Section 6.4 evaluates the Carhart four-factor model. The effect of liquidity 

is discussed in Section 6.5, while the effect of contagion in the liquidity-augmented models is 

analysed in Section 6.6. Section 6.7 investigates the performance of the higher-order moment 

and liquidity-augmented four-factor model. Section 6.8 evaluates the importance of beta within 

the asset-pricing models. Section 6.9 analyses the size effect while Section 6.10 assesses the 

importance of the book-to-market value factor. The importance of the momentum effect is 

discussed in Section 6.11 while the explanatory power of the liquidity factor is analysed in 

Section 6.12. Higher-moment effects are discussed in Section 6.13 while the importance of 

contagion effect is highlighted in Section 6.14. 

 



296 
 

6.2 Sharpe-Lintner CAPM 

In evaluating the performance of the models, I replicate the methods in Lam and Tam, where 

the “better” model is the model with the most insignificant alpha terms across the markets and 

the highest adjusted R2. 

The Sharpe-Lintner one-factor CAPM model performs well in the emerging African market 

excluding South Africa, as the Jensen alpha terms, αi, in this market was positive and 

insignificant. However, the model performs poorly in the South African market, the emerging 

African market and the frontier African market, as the Jensen alpha terms, 𝛼𝑖, were significant. 

In the South African market and the emerging African market the alpha terms were negative 

and significant at the 5% and 10% levels, respectively, indicating a risk premium that is less 

than predicted by the CAPM. But in the frontier African market, the alpha term was positive 

and significant at the 5% level, indicating a risk premium higher than predicted by the CAPM. 

There are some explanations for this deviation of the CAPM in these African markets. One of 

these is the role of missing risk factors within the models. Fama and French (1993) also 

identified that the source of CAPM alpha deviation from zero is actually missing risk factors, 

which has led to their empirical examination of multifactor asset pricing. They found that the 

intercept of their three-factor model was close to zero; hence they conclude that missing risk 

factors in the CAPM are the sources of the deviation. The explanation for this significant alpha 

could be traced to investment strategies in these markets through preference for investment in 

highly profitable firms, overreacting to good and bad news, assuming trends in stock prices 

and extrapolating past growth rates too far into the future, as also seen within the South African 

market. These are aided by poor information dissemination and relatively underdeveloped 

institutional environment within which the financial markets operate in the less-developed 

African markets, when compared with South Africa and the developed markets. Another 

important factor that will be more pronounced within this market is the effect of time variation 

resulting from macroeconomic factors. 

On the other hand, MacKinlay (1995) identified that non-zero intercepts may not be solely due 

to missing risk factors, but to firm specific factors. He identified the possible impact of market 

friction and liquidity constraints on intercepts of CAPM tests. Hence there may have been some 

sector-specific factors within the basic materials indices in the South African market, the 

emerging African market and the frontier African market, which may have led to the significant 

intercepts. Although this sector is one of the most liquid in the African continent, given that 
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most of the countries are resource-driven, the equities market in the entire continent is still 

quite illiquid when compared with developed markets. This will give rise to problems of 

illiquidity and market friction, as identified in MacKinlay (1995). 

Another explanation comes from the work of Conrad and Kaul (1993), which considers the 

possibility that biases in computed returns explain the deviations. They note that the implicit 

portfolio rebalancing in most analysis biases measured returns upwards, leading to overstating 

returns and CAPM deviations. This is not the case within our study because all indices were 

rebalanced using the same method, but results differ. 

Lo and MacKinlay (1990) highlight that this deviation may due to data-snooping. They argue 

that deviations are a result of data-snooping that is mainly due to the grouping of assets with 

common disturbance terms. However, this again is not a problem within this study because 

some of the results reflect the theoretical expectation, while some do not, and in both cases the 

results are stated. Although it is difficult to quantify and adjust for the effect of data-snooping 

biases, MacKinlay (1995) identified that avoiding the sample selection bias problem discussed 

in Kothari, Shenken and Sloan (1994) may be a good way to ensure that data-snooping is 

avoided. This study has adjusted for selection bias (survivorship bias) as shown in Chapter 3. 

In comparing the performance of the CAPM and the Fama-French model, Bartholdy and Peare 

(2005) compared the estimates of expected returns based on each model to identify the “best” 

possible estimate. Using a practitioner approach, they defined the best possible estimate using 

the 𝑅2 (goodness of fit). 𝑅2 measures how much the estimation procedure explains the 

difference in individual stock index return. Hence the best refers to the model and data that 

result in the highest 𝑅2. When the goodness of fit (R2) of the model is analysed across the 

markets, I see some differences, with an adjusted R2 of 37.8% in the emerging African market 

and 53.6% in the emerging African market excluding South Africa. The adjusted R2 in the 

South African market and frontier African market were 36% and 2.4%, respectively. Hence I 

can conclude that CAPM performs best within the emerging African market excluding South 

Africa. The low 𝑅2 in these markets is similar to those reported in Hearn, Piesse and Strange 

(2010) where they found adjusted 𝑅2 as low as 0.0995. 

The performance of the CAPM in these markets will most likely be different to the performance 

of the multifactor models, hence the better performance of CAPM in the emerging African 

market excluding South Africa is limited to the standard CAPM. 
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6.3 Fama-French three-factor model 

Following the findings in Fama and French (1993), which indicate that the intercept of their 

three-factor model was close to zero and conclude that missing risk factors in the CAPM are 

the sources of the deviation, this study analysed the Fama-French three-factor model within the 

South African market, the emerging African market, the emerging African market excluding 

South Africa and the frontier African market. 

The results show a negative and insignificant alpha term for the South African market and the 

emerging market excluding South Africa, which is in line with findings in Hearn and Piesse 

(2009), who indicate that within the African market alpha terms are not statistically different 

from zero. However, this study finds significant alpha terms for the emerging and frontier 

African market indices (alpha is negative and positive for the emerging and frontier African 

market indices, respectively). This indicates that given the beta in the emerging African market, 

the basic materials index within this market returns less than the market index. On the other 

hand, the basic material index returns in the frontier African market are higher than the market 

returns, given the beta. 

This indicates that the three-factor model performs well in the South African market and the 

emerging African market excluding South Africa, while performing poorly in the emerging 

and frontier African markets. The significant alpha term in the emerging African market and 

the frontier African market could be an indication of an inefficient market. This divergence in 

performance of this model is due to the structure of these markets and their degree of integration 

with developed markets, given that the Fama-French three-factor model was developed within 

the developed markets. South Africa, for example, is the closest integrated market to the 

developed markets, hence the good performance of this model in this market is not surprising. 

More surprising, though, is the good performance of the model within the emerging African 

market excluding South Africa against the poor performance of the model when South Africa 

is included within the emerging African market. This is due to the interaction between the 

South African market and the Egyptian and Moroccan markets, resulting from the varying 

degree of integration with developed financial markets. As seen in Collins and Biekpe (2003), 

the South African market is the most integrated of the African markets; although other 

countries such as Egypt and Morocco are becoming more integrated, they have not yet reached 

the weightiness of the South African market. 
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Clearly, this study suggests that the performance of the Fama-French three-factor model 

depends on the characteristics of the surveyed market. This is related to the structure of the 

index, i.e. the emerging African market index that includes South Africa, Egypt and Morocco. 

Assefa and Mollick (2014) also find significant differences in their result when South Africa 

is excluded from their sample of African countries. The significant alpha term for the emerging 

and frontier African markets may also be due to the interaction between the markets that make 

up the index and/or some macroeconomic or exogenous factors. The effect of these will vary 

depending on the degree of integration, as the more integrated the market is with global 

markets, the less the price of risk. There seems to be a general consensus on this, as seen in 

Stulz (1999), Bekaert and Harvey (2000) and Errunza and Miller (2000). 

As stated in Fama and French (1996), the economic interpretations of the findings in Fama and 

French (1993) has remained contentious, with some agreeing that the model describes return, 

but argue that it is investor irrationality that prevents the three-factor model from collapsing 

into the CAPM, as seen in Lakonishok, Shleifer and Vishny (1994) and Haugen (1995). Others 

argue that CAPM anomalies are due to survivorship bias, data-snooping or poor proxies for 

market portfolio, as seen in Black (1993). Fama and French (1996) do, however, make the case 

for the multifactor model by arguing that the standard deviation for their HML portfolio is high 

(13.11%) and similar to the standard deviation for the MKT and SMB portfolios (16.33% and 

15.44%, respectively). 

They also find similar annual premiums for the HML, MKT and the SMB portfolios, indicating 

that the return on the HML is not a certainty, as indicated in Haugen (1995). This disputes the 

rational pricing explanation of multifactor models as seen in Lakonishok, Shleifer and Vishny 

(1994). Indeed, the average returns and standard deviations of our portfolios confirm the 

findings in Fama and French (1996). The argument on survivorship bias, data-snooping and 

poor proxies for market portfolio are excellently addressed in Fama and French (1996). While 

our findings are consistent with the process in Fama and French (1993, 1996), the performance 

of the Fama-French three-factor model depends on the surveyed market. 

Using the “best” possible estimate identified Bartholdy and Peare (2005), I compare the 𝑅2 

(goodness of fit) for the markets. The adjusted R2 for the South African market and the 

emerging African market were 54.81% and 38.40%, respectively, while the adjusted R2 for the 

emerging African market excluding South Africa and the frontier African market were 55.15% 

and 3.12%, respectively. Clearly the R2 for the emerging African market excluding South 
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African was the highest, and with an insignificant intercept as identified previously. At 54.81%, 

the R2 for the South African market is pretty close to that of the emerging African market 

excluding South Africa, and with an insignificant alpha term too; hence the three-factor model 

performs well in the emerging African market excluding South Africa and the South African 

market. 

The adjusted R2 is low in the African market overall and specifically in the frontier African 

market compared to the findings in Fama and French (1993), because of the difference in our 

dataset compared to that in Fama-French. This indicates that the models are less applicable to 

the African stock market. Lam and Tam (2011) find a similar difference in their adjusted R2 

for the same reason. 

 

6.4 Carhart four-factor model 

Following Carhart (1997), this study analysed the performance of the four-factor model within 

the South African market, the emerging African market, the emerging African market 

excluding South Africa and the frontier African market. The results show that the additional 

variables in the model account for the outstanding returns variation in the South African market 

and the emerging African market excluding South Africa, with the alpha terms insignificant 

for both markets. However, the model performs poorly within the emerging African market 

(with a negative and significant alpha term) and the frontier African market (with a positive 

and significant alpha term). 

Most of the criticisms of the Fama and French (1993) model apply to the Carhart (1997) model, 

too, due to the multifactor nature of both models. Hence, the Carhart model also disputes the 

rational pricing explanation of multifactor models as seen in Lakonishok, Shleifer and Vishny 

(1994). Appropriate adjustment has also been made to eliminate survivorship bias. The results 

demonstrate that the explanatory power of the model depends on the surveyed market. 

Using the “best” possible estimate identified in Bartholdy and Peare (2005), we compare the 

𝑅2 (goodness of fit) for the markets. The adjusted R2 for the South African market and the 

emerging African market were 54.86% and 38.51%, respectively, while the adjusted R2 for the 

emerging African market excluding South Africa and the frontier African market were 61.48% 

and 5.13%, respectively. Again, this clearly shows that the Carhart four-factor model performs 

significantly better in the emerging African market excluding South Africa. The increase of the 
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adjusted R2 between the three-factor and the four-factor model within the South African market 

and the emerging African market does not adequately justify the inclusion of the momentum 

factor, especially given that the momentum factor is insignificant in these markets. The 

adjusted R2 increased by 0.0572% and 0.179% in the South African market and the emerging 

African market, respectively, hence the effort in forming this variable is not justified in these 

markets. 

 

6.5 Liquidity-augmented Carhart four-factor model 

This section analyses the equilibrium asset pricing with liquidity risk, which is the risk arising 

from unprecedented changes in liquidity over time. We show that the model worked well in 

explaining realised returns, with non-significant alpha terms, in the South African market and 

the emerging African market excluding South Africa. The alpha terms remained significant in 

the emerging African market and the frontier market index. 

When compared with the four-factor models not augmented by the liquidity factor, the 

inclusion of the liquidity factor in all four market samples did not improve the alpha term, 

although the liquidity factor was significant within the South African market and the emerging 

African market excluding South Africa. 

The inclusion of the liquidity variable within the South African market has resulted in a 

significant increase in the explanatory power to 57.07% adjusted 𝑅2, compared with 54.56% 

for the four-factor model not augmented by the liquidity factor. However, within the emerging 

African market, the adjusted 𝑅2 was unchanged at 38.51% compared with 38.51% before 

including liquidity. The improvement in the adjusted 𝑅2 in the emerging African market 

excluding South Africa was marginal, with a 0.2925% increase. I also observe an increase in 

adjusted 𝑅2 within the frontier African market, with an increase from 5.13% to 5.69%. 

The improvements in the R2 observed here, although quite marginal, are also consistent with 

findings in the literature, as seen in Acharya and Pedersen (2003), who find that liquidity-

augmented CAPM performs better than the standard CAPM in terms of its R2 for cross-

sectional returns and p-values in specification tests. 
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6.6 Liquidity-augmented four-factor model in the presence of contagion 

This section analyses the effect of contagion on the performance of the liquidity-adjusted four-

factor models in the South African market, the emerging African market, the emerging African 

market excluding South Africa and the frontier African market. The results show that the model 

worked well in explaining realised returns, with insignificant alpha terms, in the South African 

market, the emerging African market and the emerging African market excluding South Africa; 

however, the frontier market index had a significant alpha term. 

The alpha term for the South African market and the emerging African market excluding South 

Africa remains insignificant when compared to the liquidity-augmented models that do not 

include a contagion dummy. The alpha term for the emerging African market became 

significant with the introduction of the contagion dummy, while the significance level for the 

alpha terms increased from the 5% level to the 1% level within the frontier African market. 

This highlights the impact of time variation on the emerging African market index. 

This is also supported by the significant contagion variable within all four markets. 

The performance of this model alludes to the importance of time variation in estimates of the 

CAPM. This is also consistent with recent developments in asset pricing that insist that asset-

pricing models should allow for time variation in estimated beta, as stated in Groenewold and 

Fraser (1999). Others who model the conditional distribution of returns include Ferson and 

Harvey (1999) and Lettau and Ludvigson (2001). With an insignificant alpha term and the 

highest R2 for the liquidity-augmented four-factor model that accounts for the contagion effect, 

I conclude that the liquidity-augmented four-factor model that accounts for the contagion effect 

performs best within the South African market, the emerging African market and the emerging 

African market excluding South Africa. Hence I recommend this model within these markets. 

 

6.7 Higher-order moments and liquidity-augmented Carhart four-factor model 

This section analyses the effect of higher-order moments on the performance of the standard 

CAPM, the three and four-factor models in the South African market, the emerging African 

market, the emerging African market excluding South Africa and the frontier African market, 

when the models are augmented by the liquidity factor and the contagion variable. The results 

show that the models worked well in explaining realised returns, with insignificant alpha terms, 

in the South African market and the frontier African market; however, the emerging African 
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market index and the emerging African market excluding South Africa had significant alpha 

terms. 

When compared to the liquidity-augmented models, the introduction of skewness and kurtosis 

within the South African market has not made any difference as the Jensen alpha term continues 

to be insignificant. However, within the emerging market and the emerging African market 

excluding South Africa, the introduction of higher moments has made the alpha term 

significant at the 1% level for the liquidity-augmented three-factor model, when it was 

insignificant prior to introduction. When higher moments are included in the liquidity-

augmented four-factor model of the frontier African market, the alpha term becomes 

insignificant. This demonstrates that skewness and kurtosis are important in explaining realised 

returns in the frontier African market. 

In regard to the performance of the models as measured by the adjusted 𝑅2, the adjusted 𝑅2 for 

the South African market was 57.36% compared to the 57.49% for the liquidity-augmented 

four-factor model. Hence I conclude that the higher-moment augmented model does not 

perform better in the South African market. The adjusted 𝑅2 for the emerging African market 

was 39.82% compared to 39.35% when the model excludes higher moments. Hence I can infer 

that the higher-moment augmented models fit the emerging African market data quite well 

compared to models that do not account for the effect of higher moments, but I cannot conclude 

that it performs better, as the alpha term becomes significant upon introduction. 

For the emerging African market excluding South Africa, the adjusted 𝑅2was 62.35% 

compared to 62.03% when the model does not account for higher moments, indicating that the 

higher-moment augmented model fits the emerging African market excluding South Africa 

data quite well rarther than models that do not include higher moments, but due to the 

significant alpha term, I cannot conclude that this model is better. The adjusted 𝑅2 within the 

frontier market was 8.28%, compared to 7.89% for the liquidity-augmented four-factor model, 

indicating that higher-moment augmented models fit the data in the frontier African market 

better than models that do not account for higher moments. Hence, with an insignificant alpha 

term, I conclude that the higher moments and liquidity-augmented four-factor model be applied 

to the frontier African market. Our findings are also consistent with those in Harvey and 

Siddique (2000), who identify that the success of any given multifactor model depends 

substantially on the methodology and data used to empirically test the model. 
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6.8 Beta in the African market 

The single-factor CAPM of Sharpe (1964) and Lintner (1965) identifies the importance of beta 

in asset pricing. This has been supported by many authors and disputed by some, but remains 

popular with practitioners, as stated in Bruner et al. (1998) and Graham and Harvey (2001). 

However, Fama and French (1992) found the relationship between expected return and beta to 

be too flat and statistically insignificant. Also, Frazzini and Pedersen (2010) find consistent 

returns to betting against beta, while Moskowitz, Ooi and Pedersen (2012) show the presence 

of global time-series momentum with Koijen et al. (2013) documenting global carry returns. 

This study does, However, find that beta is important across all models and in all markets 

studied, as shown in Table 6.1. Within the South African market, beta for the standard CAPM 

was 1.054 and significant at the 1% level, indicating that the South African basic materials 

index is riskier than the market index. This is expected because of the high volatility in the 

South African basic materials index resulting from industry-specific risks, political risks, 

financial risks and economic risks as identified in Hassan et al. (2003). Goetzamann and Jorion 

(1999) related this to their study of emerging markets where they found a standard deviation 

of 34.8% compared to 19.8% in the developed markets, although the average dollar returns 

were higher in the emerging market (9.1%) compared with the developed market (6.9%). 
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Table 6.1 Beta in the basic materials indices of the African market 

Market index  𝛽𝑖𝑀 (CAPM ) 
𝛽𝑖𝑀 (3-factor 

model ) 

𝛽𝑖𝑀 (4-factor 

model ) 

𝛽𝑖𝑀 (4-factor 

model + 

liquidity) 

𝛽𝑖𝑀 (4-factor model + 

liquidity and 

contagion) 

𝛽𝑖𝑀 (4-factor model + 

liquidity, contagion and higher 

moments) 

South Africa 1.05411*** 0.814259 *** 0.810441*** 0.782204*** 0.771684*** 0.771138*** 

 (0.119640) (0.0819126) (0.0798892) (0.0833705) (0.0805736) (0.0791532) 

Emerging Africa 0.788427*** 0.803047*** 0.797338*** 0.790198*** 0.775882*** 0.766978*** 

 (0.0677367) (0.0644096) (0.0628137) (0.0654904) (0.0629981) (0.0645285) 

Emerging Africa excluding 0.773389*** 0.763495*** 0.570914*** 0.577538*** 0.570192*** 0.563816*** 

South Africa (0.0380698) (0.0373764) (0.0463033) (0.0457881) (0.0458402) (0.0457841) 

Frontier Africa 0.198098*** 0.209767*** 0.205892*** 0.217368*** 0.183974*** 0.188206*** 

 (0.0624902) (0.0623929) (0.0645382) (0.0614017) (0.0560353) (0.0567163) 

This Table highlights the beta for the CAPM, the 3-factor model, the 4-factor model, the 4-factor model with liquidity, the 4-factor model with liquidity and contagion and the 4-factor model with 

liquidity, contagion and higher moments. 
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However, beta within the Fama and French three-factor model was 0.814 but was also 

significant at the 1% level, indicating that the basic materials index in the South African market 

is less risky than the market index, within a multifactor model. Market beta is lower than 1 due 

to the interaction between beta, size and book-to-markets value. This is also seen in Fama and 

French (1996). Within the four-factor model, beta was 0.810 and significant at the 1% level, 

indicating the impact of the interaction between the variables. For the liquidity-augmented 

model and the higher-moment augmented model (including the models that account for the 

contagion effect), beta remained positive and significant at the 1% level, with a beta value of 

between 0.771 and 0.782. 

As shown on Table 6.1, beta for the emerging African market were all positive and significant 

at the 1% level, with values between 0.767 and 0.803. This demonstrates that the basic 

materials index in the emerging African market is less risky compared with the market index. 

Within the emerging African market excluding the South African market, beta was also 

positive and significant, with values between 0.564 and 0.779. I do, however, notice a decrease 

in the beta when the model accounts for the momentum factor, from about 0.77 to about 0.57, 

indicating that a greater part of the variation in returns is explained by the momentum factor in 

this market. 

Beta within the frontier African market is far lower than those in the rest of the sample, with 

values between 0.184 and 0.217, which were all positive and statistically significant at the 1% 

level. This is perhaps the opposite of what is expected, as I would normally expect the frontier 

market to have a higher beta than the emerging and South African market, given how 

segmented they are from world markets. This phenomenon is related to the applicability of 

these models to this market and suggests that the CAPM and multifactor models may not be 

entirely appropriate within the frontier African markets, especially with adjusted 𝑅2 being quite 

low when compared with the rest of the sample. 

The predictive power of beta as identified in this study has been widely reported in the 

literature, as seen in Kothari, Shanken and Sloan (1995) and Carhart (1997), and the evidence 

in this study suggests beta is priced in the African equity markets. But there are clear variations 

in the value of beta across the markets, as I observe a decreasing beta across all models as I go 

from the more integrated market of South Africa to the more segmented markets in the frontier 

market index. This demonstrates that the riskiness (relative risk) of the basic materials indices 

diminishes with the degree of segmentation of the African market with world markets. 
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The rationale behind this phenomenon results from the use of a domestic market index and the 

basic materials indices within each market. This is because the more the market is segmented, 

the more the basic materials index in the countries (for each index) will become a larger part 

of the whole market, and hence will potentially become less risky than the market index. This 

is particularly the case in the African market due to the export-commodity nature of many 

African countries, as noted in Assefa and Mollick (2014). This decreasing beta value for 

countries less integrated to world markets is also reported in Hearn, Piesse and Strange (2010). 

Further evidence is provided by Harvey (1995a) identify only seven emerging markets to have 

betas significantly higher than zero in their sample of 20 emerging markets over the period 

from 1979 to 1992. Harvey (1995b) concludes that beta does not accurately measure risk in 

emerging markets. Collins and Abrahamson (2006) provide evidence against the accuracy of 

beta in the African market. 

 

6.9 The size effect 

The importance of size in asset pricing has been identified in Banz (1981), Reinganum (1981) 

and Fama and French (1993). This was also observed in the result of this study, with a 

significant negative size factor within the South African market. 
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Table 6.2 Factor loading for the size variable of the basic materials indices in the African market 

Market index  3-factor model  
4-factor 

model  

4-factor 

model + 

liquidity 

4-factor model + 

liquidity and 

contagion 

4-factor model + liquidity, 

contagion and higher 

moments 

South Africa −0.606609 *** −0.603633*** −0.413264*** −0.418064*** −0.418051*** 

 (0.0731787) (0.0712710) (0.0769728) (0.0763046) (0.0758411) 

Emerging Africa 0.0763167* 0.0706369* 0.0911008** 0.0913560** 0.0959405** 

 (0.0417691) (0.0425021) (0.0439646) (0.0428271) (0.0428184) 

Emerging Africa excluding −0.175687*** −0.212918*** −0.215075*** −0.209831*** −0.203346*** 

South Africa (0.0491774) (0.0480996) (0.0466551) (0.0457877) (0.0446733) 

Frontier Africa 0.0337210 0.0382279* 0.0418047** 0.0444451** 0.0440862** 

 (0.0207665) (0.0201338) (0.0207288) (0.0196571) (0.0186608) 
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The size discount is significant at the 1% for all models within the South African market. 

Within the emerging African market, the size variable is positive and significant at the 5% level 

across all models besides the three- and four-factor models where the size factor is significant 

at the 10% level. In the emerging African market excluding South Africa, the size variables are 

negative and statistically significant at the 1% level within all models, while within the frontier 

African market, evidence of the size effect is mixed, with the size factor in most models being 

positive and significant at the 5% or 10% level, while being insignificant within the Fama-

French three-factor model. 

The evidence in the South African market and emerging African market excluding South Africa 

is consistent with the findings in Hearn et al. (2010), who find negative values of the mean of 

SMB, which indicates a reverse size effect from that in Fama and French (1993). They also 

imply that this is due to the extremely heterogeneous feature of the universe of stocks where 

there are considerable differences between firms in the developed markets and those in the 

emerging markets. The results show that the return on the large-cap portfolio is higher than the 

returns on the small-cap portfolio within the South African market and the emerging African 

market excluding South Africa. Hou, Xue and Zhang (2015) also agree and state that anomalies 

in microcaps are unlikely to be exploited in practice due to transaction costs and lack of 

liquidity in these markets. Hearn and Piesse (2009) found similar results in their study of the 

north African market, while Martinez et al. (2005) reports the reversal of the documented size 

effect. 

Van Dijk (2011) highlighted the development of theories on the risk-based explanation of the 

size effect in which the size effect arises endogenously as a result of systematic risk. This 

corresponds to the evidence within the emerging African market and the frontier African 

market in this study, which found a size premium. As in Banz (1981), Lamoureux and Sanger 

(1989) and Barry et al. (2002), I find that small-cap firms outperform large-cap firms in the 

emerging African market and the frontier African market. However, size seems to be 

significant in the frontier African market only when momentum is accounted for. Clearly the 

evidence provided demonstrates that the importance and direction of the size effect depends on 

the market surveyed. 
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6.10 The value effect 

Asness, Moskowitz and Pedersen (2013) identify the importance of the value factor in asset 

pricing. They follow the work of Fama and French (1992), who find that size and value are the 

only priced variables in asset pricing. Fama and French (1992) highlight that stocks with a high 

book-to-market ratio have reliably higher returns than low book-to-market stocks. The book-

to-market factor in the South African market was positive but insignificant across all models, 

indicating that there is no value premium in the South African market. The book-to-market 

factor within the emerging African market was negative but also insignificant across all 

models, also indicating that the value factor is also not priced in the emerging African market. 

There is considerable consensus that the value factor is not important in asset pricing. This is 

consistent with the findings in Kothari et al. (1995), which suggest that the value premium is 

due to data-snooping; they also highlight that the value premium may be due to survivorship 

bias. However, this data is survivorship bias-free. The recent research by Fama and French 

(2015) also indicates that the value factor is dead. 
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Table 6.3 Factor loading for the value variable of the basic materials indices in the African market 

Market index  3-factor model  
4-factor 

model  

4-factor 

model + 

liquidity 

4-factor model + 

liquidity and 

contagion 

4-factor model + liquidity, 

contagion and higher 

moments 

South Africa 0.0525296 0.0283707 0.0180821 0.0295652 0.0300583 

 (0.0834949) (0.0779701) (0.0739083) (0.0729561) (0.0730565) 

Emerging Africa −0.0803463 −0.0574970 −0.0626380 −0.0758104 −0.0835243 

 (0.0611953) (0.0621561) (0.0622812) (0.0631049) (0.061927) 

Emerging Africa excluding 0.0873957* 0.0836887** 0.0742680* 0.0712296* 0.0676494* 

South Africa (0.0446112) (0.0395328) (0.0391656) (0.0380578) (0.037291) 

Frontier Africa 0.0234962 0.0450782* 0.0483362** 0.0445542* 0.0481174* 

 (0.0266539) (0.0265515) (0.0259348) (0.0252050) (0.025701) 
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However, the book-to-market factor in the emerging African market excluding South Africa is 

positive and significant at 10% for all models apart from the Carhart 4-factor model, where the 

value factor is significant at the 5% level. This significant value factor is due to the structure 

of the index and the interaction of the value factor with other factors in the model. This is 

similar to some findings in the literature, as in Fama and French (1998), Barry et al. (2002) and 

Drew and Veererghavan (2002). 

In investigating the frontier African market, this study finds that the book-to-market value 

factor is insignificant within the Fama-French 3-factor model, but significant at 5% or 10% 

levels within the Carhart 4-factor models and its augmented variants; hence the importance of 

the value factor within the frontier African market is rather inconsistent. This concern is also 

highlighted in Loughran (1997), who insists that there is no consistent relationship between 

book-to-market value and realised returns. Bundoo (2008) argues that there is a lack of 

convincing empirical evidence that the value premium is present in emerging equity markets 

generally, and particularly in the African markets. The results seem to demonstrate that the 

value factor becomes significant only when the momentum factor is accounted for. 

 

6.11 The momentum effect 

Carhart (1997) identified the importance of momentum in asset pricing by augmenting the 

Fama-French three-factor model by Jegadeesh and Titman (1993). According to Novy-Marx 

(2012), momentum trading refers to buying past winners and selling past losers. Evidences 

have been provided by numerous researchers on the profitability of momentum trading 

strategies, e.g. Griffin et al. (2003), Jegadeesh and Titman, (1993, 2001), Jagadeesh (1990), 

Chui et al. (2003), Rouwenhorst (1998, 1999) and De Bondt and Thaler (1985), but there 

remains to be seen a consensus on the source of these profits. Badrinath and Wahal (2002) 

highlight the implication of momentum trading for the efficient markets by stating that it 

destabilises stock prices, which contrasts with Friedman’s (1953) argument, which insists that 

rational speculation must stabilise asset prices. 

The momentum factor within the South African market and the emerging African market was 

positive but insignificant across all models. This is in line with the findings in Rouwenhorst 

(1999), who argues that it is quite difficult to detect momentum in emerging markets. He 

highlights that given the high trading costs, the existing evidence does not support the presence 

of momentum returns in emerging markets. Conrad and Kaul (1998) and Bulkey and Nawosah 



313 
 

(2009) insist that momentum is mainly explained by risk while Lo and Mackinley (1990) 

suggest that the sources of momentum returns are positive serial correlation (negative cross-

sectional correlation) and dispersion in unconditional mean returns. Bartens and Hassan (2010) 

find that the relationship between momentum and realised returns is unstable, suggesting that 

this may be due to time variation, related to changes in economic states. In their study of 

overreaction effect in the UK, Andrikopoulos et al. (2011) also found evidence of time 

variation. 
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Table 6.4 Factor loading for the momentum variable of the basic materials indices in the African market 

Market index  
4-factor 

model  

4-factor 

model + 

liquidity 

4-factor model + 

liquidity and 

contagion 

4-factor model + liquidity, 

contagion and higher 

moments 

South Africa 0.0407704 0.0416657 0.0360936 0.0358491 

 (0.0505914) (0.0479756) (0.0466760) (0.0468751) 

Emerging Africa 0.0359296 0.0341063 0.0306662 0.0287265 

 (0.0343935) (0.0338087) (0.0333789) (0.0329108) 

Emerging Africa excluding 0.197877*** 0.202097*** 0.201803*** 0.198446*** 

South Africa (0.0315364) (0.0300815) (0.0300931) (0.0292625) 

Frontier Africa 0.0456719** 0.0418725*** 0.0408926** 0.0406959** 

 (0.0193136) (0.0189410) (0.0181898) (0.017666) 
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The momentum factor is, however, positive and significant at the 1% level for all models that 

include the momentum factor within the emerging African market excluding South Africa. The 

momentum factor is also positive and significant at the 5% level for all models that include the 

momentum factor within the frontier African market. This is consistent with the findings in 

Carhart (1997) and Jegadeesh and Titiman (1993), who find that the profitability of momentum 

strategies is not due to their systematic risk or to delayed stock-price reaction to common 

factors. This is also consistent with the findings in Chui et al. (2000) and Griffin, Ji and Martin 

(2003). 

The difference between the importance of momentum in the South African market/emerging 

African market versus the emerging African market excluding South Africa/frontier African 

market demonstrates the impact of the degree of segmentation of the two markets on the 

importance of momentum, as highlighted in Assefa and Mollick (2014). 

 

6.11.1 Behavioural explanation of momentum 

Given the presence of momentum profit in the emerging and frontier African markets and the 

persistence of momentum profits reported in the literature, it is important to understand its 

cause. According to Barberis et al. (1998), Daniel et al. (1998) and Hong and Stein (1998) 

highlight that momentum profits are due to inherent bias in the way that investors interpret 

information. They believe that the holding period returns arise because of a delayed 

overreaction to information that pushes prices of winners above their long-term values and 

losers below their long-term values. The behavioural hypothesis implies that the return on 

losers should exceed the returns on winners in the subsequent holding period. Jegadeesh and 

Titman (1999) find evidence in support of the behavioural explanation of momentum, as does 

Rouwenhorst (1998) who finds out-of-sample evidence of momentum effect in many European 

countries. 

Negative autocorrelation in returns over a three to five year horizon (long-term reversal) is 

documented in De Bondt and Thaler (1987) and in Chopra et al. (1992); however, the economic 

rationale remains unclear. Copper (1999) continues to assert that overreaction is the cause, 

although Gutierrez and Kelley (2006) believe that this may have been caused by illiquidity-

related price reversals. Haugen and Baker (1996) find no evidence that systematic risk or other 

measures of risk are important for the cross-section of equity returns. An in-depth review of 

momentum literature is detailed in Subrahmanyam (2007). 
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However, according to Conrad and Kaul (1998), the profitability of momentum strategies is 

simply compensation for risk. Following from this, Lo and MacKinlay (1990) assert that 

momentum strategies should yield positive average returns, where stocks with high (low) 

unconditional expected returns in adjacent periods are expected to have high (low) realised 

returns in both periods. This contradicts the expectation within behavioural finance. Within our 

study, I do not find evidence of a behavioural anomaly as our results are consistent with the 

risk-based explanation of momentum, as highlighted in Lo and MacKinlay (1990). The factor 

loadings on the momentum variables in all markets are all positive, although only significant 

within the emerging African market excluding South Africa and the frontier African market. 

Hence I can conclude that the momentum profit identified is not a result of behavioural biases. 

 

6.12 The liquidity effect 

Research into the importance of liquidity in asset pricing has picked up steam in recent years 

since the study by Aminud and Mendelson (1986). Brennan and Subrahmanyam (1996) and 

Liu (2006) find a return-illiquidity relation even after taking price, size and book-to-market 

factors into account. In this study, I find that liquidity is priced at the 1% significance level 

within all liquidity-augmented models in the South African market. However, the liquidity 

factor is negative, indicating that returns decrease when the illiquidity premium increases. This 

contrasts with the findings in Amihud and Mendelson (1986), Pástor and Stambaugh (2003) 

and Chordia et al. (2000). However, Amihud (2002) finds a significant negative return-liquidity 

relation even in the presence of beta, size and momentum. 

The liquidity factor is also significant at the 5% level within the emerging African market 

excluding South Africa, but unlike the models within the South African market, liquidity 

factors for the emerging market excluding South Africa are positive, which is consistent with 

theoretical assumptions. Assefa and Mollick (2014) identify that stock returns are positively 

related to liquidity in the African stock markets when South Africa is excluded from the sample 

of countries. This, they say, may reflect some of the microstructure model mechanisms 

captured in Amihud and Mendelson (1986), Vayanos (1998), and Baker et al. (2002). These 

microstructure models infer that increases in liquidity predict lower subsequent returns. 

This positive link has also been reported in Gervais et al. (2001) and Jun et al. (2003). Others 

who found liquidity to be priced include Pástor and Stambaugh (2003), Martinez et al. (2005) 

and Liu (2006). 
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Table 6.5 Factor loading for the liquidity variable of the basic materials indices in the African market 

Market index  

4-factor model + 

liquidity 

4-factor model + 

liquidity and 

contagion 

4-factor model + 

liquidity, contagion 

and higher moments 

South Africa −0.318495*** 

(0.0859401) 

−0.324881*** 

(0.0842805) 

−0.324839*** 

(0.0841023)  

Emerging Africa −0.0351032 

(0.0436339) 

−0.0407794 

(0.0423631) 

−0.0427367 

(0.0424116)  

Emerging Africa excluding 0.0682631** 

(0.0314736) 

0.0723881** 

(0.0315716) 

0.0709348** 

(0.0318461) South Africa 

Frontier Africa −0.0374348 

(0.0317782) 

−0.0419267 

(0.0300360) 

−0.0399902 

(0.0304431)  
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The rationale behind the illiquidity factor in the African market is that liquidity can be 

seen as the cost of immediate execution and the willingness of an investor to transact at a 

favourable price, which will create a trade-off problem. The investor may either insist and 

execute a transaction immediately at a current bid or ask price, or wait to transact at a 

favourable price. In the African market, this execution cost is usually high due to the 

larger bid/ask spread. The execution cost (transaction cost) will thus become a cash 

outflow that will reduce future returns. Lischewski and Voronkova (2012) identify similar 

results. Another problem related to illiquidity in African markets is the problem of 

adverse selection, which according to Brennan and Subrahmanyam (1996) arises from 

the activities of informed traders. Lischewski and Voronkova (2012) highlight that a 

marginal investor may demand for higher rates due to the severity of the adverse selection 

problem if they are uninformed. 

The liquidity variables are not significant within the models in the emerging African 

market and the frontier African market, indicating that liquidity is not a priced variable 

within these markets. This is rather unexpected as the problems of illiquidity and thin 

trading have been widely researched as acknowledged in literature; see Dimson (1979), 

Cohen et al. (1983) Lo and MacKinlay (1990), Miller et al. (1994) and Bowie (1994). 

However, Lischewski and Voronkova (2012) identified the conflicting results produced 

by various studies that examined the relevance of liquidity in asset pricing. Jun et al. 

(2003) point out the lack of integration of emerging African markets with the global 

economy and highlight that the lack of liquidity will not function as a risk factor, thus 

cross-sectional returns will not necessarily be lower for liquid markets. The insignificance 

of the liquidity factor within the emerging African market may be due to the 

characteristics of the surveyed markets, i.e. the interaction between the South African, 

Egyptian and Moroccan markets. This is because the results show that the liquidity factor 

within the South African market is negative and significant but positive and significant 

within the emerging African market excluding South Africa, hence a combination of the 

two markets has led to an insignificant liquidity factor. This evidence has also been found 

in Hearn (2011), who admits that the effect of liquidity on asset pricing depends on the 

structure of the surveyed stock market. 

However, given that logical investors will prefer to invest in liquid assets, Lesmond 

(2005) highlights that the illiquidity of emerging market stocks relative to the more 

developed market will present problems. Bekaert et al. (2003) insist that models that 
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account for liquidity risk outperform other models that incorporate only a market risk 

factor in predicting future returns and this is observed in this study as seen in Sections 6.5 

and 6.6 above. 

 

6.13 Higher-order moment effect 

Jean (1971) and Scott and Horvath (1980) argue that the higher moments of returns 

distribution are very important beyond the mean-variance context established by the 

CAPM. This also follows the findings in Kraus and Litzenberger (1976), who expanded 

the utility function beyond the second moment to examine the importance of skewness. 

Unlike the Sharpe-Lintner (standard) CAPM, which implies that investors are only 

compensated for bearing the systematic covariance risk, Fang and Lai (1997) found that 

investors are compensated for bearing the systematic cokurtosis risk, as well as the 

systematic covariance and coskewness risks, with higher expected returns. However, the 

importance of coskewness and cokurtosis risk measures (third and fourth moments of 

return distribution) in supplementing the covariance risk in asset pricing remains 

debatable. 

Table 6.6 Factor loading for the coskewness factor of the basic materials indices in the 

African market 

 

Market index 

4-factor 

model + 

liquidity, 

contagion and 

higher 

moments 

South Africa −0.000379482 

(0.00110353)  

Emerging Africa −0.000274863 

(0.00057182)  

Emerging Africa excluding 0.000808879 

(0.00356724) South Africa 

Frontier Africa 0.00406455** 

(0.00187213)  
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Table 6.7 Factor loading for the cokurtosis factor of the basic materials indices in the African 

market 

Market index 

4-factor 

model + 

liquidity, 

contagion and 

higher 

moments 

South Africa −0.0084403 

(0.0844355)  

Emerging Africa 0.193561** 

(0.0870456)  

Emerging Africa excluding 0.370089** 

(0.168695) South Africa 

Frontier Africa 0.0321275 

(0.131951)  

 

Within the South African market, I find that coskewness and cokurtosis are both not 

significant within a liquidity- and higher-moment augmented four-factor model, when 

contagion is accounted for. This suggests that the higher-order moments are not important 

in explaining ex-ante returns in the South African basic materials sector. As noted earlier, 

this is consistent with the findings in Singleton and Wingender (1986), who observe that 

higher moments of return distribution do not persist through time. DeMiguel and Nogales 

(2007) and Hung (2008) highlight that the poor explanatory power of the higher moments 

result from parameter uncertainty. This, however, may not be the case as the analysis had 

adjusted the model for some time-varying problems. Other researchers who investigated 

the effect of skewness and kurtosis include Faff and Chan (1998), Adock and Shutes 

(2005), Jurczenko et al. (2005) and Polimenis (2002). 

However, within the emerging African market and the emerging African market 

excluding South Africa, the cokortosis measure is important at the 5% levels, 

respectively, but the coskewness measures are both insignificant. This is consistent with 

findings in Friend and Westfield (1980) and Hung (2008), who find no premium for 

skewness but indicate that kurtosis offers some explanation of realised returns. This also 

highlights the fact that returns in these markets are leptokurtic and supports the findings 

in Hwang and Satchell (1999), who identify the explanatory power of higher moments in 

emerging markets. The insignificance of the skewness factor may be due to the 

collinearity between the risk measures or the failure of unconditional models as 

highlighted in Pettengill et al. (1995). 
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The coskewness measure is significant within the frontier African market while the 

cokurtosis measure is insignificant. This highlights the importance of skewness within 

the frontier African market and identifies that returns increase with an increase in the 

right-side skewness measure. With a large positive skewness (high probability of a large 

positive return), investors may be willing to hold portfolios even when expected returns 

are negative, as also identified in Harvey and Siddique (2000). Chang, Christoffersen and 

Jacobs (2013) do, however, provide some evidence of time variation in higher moments. 

Hence I cannot rule out the impact of time variation on the behaviour of the higher-

moment factors in our study. 

 

6.14 Contagion effect in the African market 

One of the commonly made assumptions of the static CAPM is that the betas of assets 

remain constant over time, which is quite unrealistic given that the business cycle will 

present variations to a firm’s cash flow and also the degree of a firm’s financial leverage, 

hence a varying relative risk, as highlighted in Jagannathan and Wang (1996). This 

implies that in theory, the CAPM could hold conditionally on time information, period 

by period, even when the unconditional CAPM does not hold. This would also account 

for the presence of structural break/regime shift in volatility that may result from 

exogenous events. Structural breaks in the surveyed markets are analysed in Section 3.8.4 

of Chapter 3. 

This study includes a dummy variable for contagion, representing the financial crisis and 

the Arab Spring, within the models. The dummy variable is significant in all four samples 

within the liquidity-augmented four-factor model. But when higher moments are included 

in the models, the contagion variable within the emerging African market and the 

emerging African market excluding South Africa became insignificant, while remaining 

significant in the South African market and the frontier African market. This identifies 

some contagion effects on the estimates of the models, calling into question the stability 

of beta as theorised in the Sharpe-Lintner CAPM. Many authors believe that the beta is 

indeed unstable. In his seminal article, Blume (1971) highlighted the tendency of beta to 

mean-revert. In the US, Fabozzi and Francis (1978) identified that most US equities have 

time-varying betas. If the existing literature mostly focuses on the developed market 

becsause of the problems raised by beta instability, there should be even more interest in 
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emerging markets as the effects are more likely to be more significant, and even more so 

in the African markets. However, research on beta instability in the African market 

continues to be very thin. 

I, however, observe the impact of higher moments on the contagion factor within the 

emerging African market and the emerging African market excluding South Africa. This 

is likely due to the interaction between the higher moments and the contagion variable. 

Time variation will be more of a problem as most African countries are segmented, to 

varying degrees, from world markets. A good example of the effect of segmentation can 

be seen in the results within this study, as South Africa is significantly different from 

Egypt and Morocco due to its higher level of integration with world markets. This has 

huge implications for the emerging market index because the behaviour of returns 

changes with the degree of integration. Hence, as stated in Bekaert and Harvey (2002), 

prices should rise and expected returns should decrease as markets transition from a 

segmented to an integrated market. 

According to Bekaert et al. (2011), segmentation within the US is quite small (with a 

mean of 1.5%) and fairly constant (with a time-series standard deviation of 0.6%). This 

is relative to the level of measured segmentation of developed countries, with a mean of 

3.0% and average time-series standard deviation of 1.7%. On the other hand, emerging 

market economies had a high measured segmentation, with a mean of 5.0% and an 

average time-series standard deviation of 3.1%. According to Harvey (1995), it has 

always been argued that emerging markets are segmented from world capital markets 

because returns are more likely to be influenced by local rather than global information 

variables. 

Other determinants of market segmentation, as identified in Bekaert et al. (2011), include 

measures of de facto openness, political risk and institutions, financial development, risk 

appetite and business cycle, informational friction and growth determinants. When these 

factors are considered, many observers admit that South Africa is more integrated with 

world markets than any other African country. This is supported by Agyei-Ampomah 

(2011), who remarks that stock markets in Africa, with the exception of South Africa, are 

still segmented from global markets despite their liberalisation efforts. Hence the effect 

of varying information will be investigated in a conditional CAPM-type analysis. 
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6.15 Differences between the emerging and frontier African markets 

The study shows some important differences between the emerging and the frontier 

African markets, with the most important being arguably the model that performs best 

within each market. I find that the liquidity- and contagion-augmented four-factor model 

performs best in the emerging African market, while the liquidity-, higher-moment and 

contagion-augmented four-factor model performs best in the frontier African market. The 

adjusted 𝑅2 in the frontier African market was found to be very low compared with the 

adjusted 𝑅2 in the emerging African market. Another major difference relates to the 

absence of the value premium in the emerging African market, while being priced in the 

frontier African market. This conforms to the findings in the literature that suggest that 

the value factor becomes unimportant with time. 

The momentum factor was found to be absent within the emerging African market, but 

was important in the frontier African market. This is attributable to delayed stock-price 

reaction to common factors, which diminishes as the market becomes more efficient. Our 

study show that momentum becomes unimportant as a country moves from being a 

frontier market to being an emerging market in the African continent. Another key 

difference is in the higher moments that are priced in each market. I find that cokurtosis 

is priced in the emerging African market while coskewness is priced in the frontier 

African market. Also, contagion seems to affect the frontier African market consistently, 

but within the emerging African market the contagion effect disappears when higher 

moments are accounted for. 

 

6.16 Chapter conclusion 

The threefold aim of this chapter was to highlight the best performing model in each 

market, to evaluate the importance of each variable in these markets and to evaluate the 

impact of contagion. I find that the liquidity-augmented four-factor model, which 

accounts for the contagion effect, performs best in the South African market, the emerging 

African market and the emerging African market excluding South Africa, while the 

higher-moment and liquidity-augmented four-factor model, which accounts for the 

contagion effect, performs best in the frontier African market. 
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In analysing the variables in the models, this study finds beta to be consistently important 

across all models and all markets. Size was found to be negative and significant in the 

South African market and the emerging African market excluding South Africa, 

indicating that stocks of big firms outperform those of small firms. It was also significant 

in the emerging African market and the frontier African market, but with a positive 

coefficient, indicating a premium for holding stocks of small firms. 

The book-to-market value factor was consistently insignificant across all models within 

the South African market and the emerging African market. This corresponds to the recent 

finding in Fama and French (2015). However, the book-to-market value factor within the 

emerging African market excluding South Africa is positive and significant across all 

models, highlighting the value premium within the market. This also demonstrates the 

impact of the exclusion of the South African market from the emerging Africa market on 

the characteristics of the index. The significance of the book-to-market value factor was 

found to be inconsistent within the frontier African market. 

The momentum factor was unimportant in the South African market and the emerging 

African market, but was found to be positive and significant within the emerging African 

market excluding South Africa and the frontier African market. The liquidity factor was 

significant within the South African market, but with a negative coefficient. This indicates 

that there is no reward for holding illiquid stock, but rather a reward to picking liquid 

stocks. The liquidity factor was found to be positive and significant within the emerging 

African market excluding South Africa, indicating an illiquidity premium in this market. 

Surprisingly, liquidity was found to be unimportant within the emerging African market 

and the frontier African market, hence I conclude that the effect of liquidity on asset 

pricing depends on the structure of the surveyed stock market 

I find coskewness and cokurtosis to be insignificant within the South African market, 

indicating that higher moments are not priced in this market. The cokurtosis factor was 

significant within the emerging African market and the emerging African market 

excluding South Africa, but the coskewness measure was insignificant in these markets. 

This is similar to the findings in Hung (2008), who found no premium for skewness, but 

indicates that kurtosis offers some explanation of realised returns. However, I found the 

coskewness measure to be significant within the frontier African market while the 
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cokurtosis measure was insignificant within the liquidity and higher-moment augmented 

four-factor model, when the contagion effect is accounted for. 

The contagion-effect dummy was introduced within the models to investigate the possible 

effect of time variation within the data. The dummy variable was significant in the South 

African market, the emerging African market (except for the liquidity and higher-moment 

augmented four-factor model), the emerging African market excluding South Africa 

(except for the liquidity and higher-moment augmented four-factor model) and the 

frontier African market. This provides some evidence of time variation. 

The findings do, however, indicate that the importance and impact of the variables studied 

depend on the structure of the market surveyed, as also found in Andrikopoulos et al. 

(2008). 

Given the significance of the contagion dummy in most of the models, the next chapter 

will examine the impact of time variation on the estimates of beta using a multivariate 

GARCH-based approach. 
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7 CONDITIONAL CAPM 

 

7.1 Introduction and structure of chapter 

A further issue of robustness concerns the parameter stability of the basic (unconditional) 

CAPM factors, of beta, size, book-to-market value, momentum, liquidity and the higher 

moments. The results between January 2004 and January 2015 largely assume that the 

factor loading parameters are constant. This may be too far an assumption in the African 

market, as I have seen frequent policy and regulatory changes within the sample period. 

These changes would have affected the perspective of investors, especially the 

institutional investors, and could have caused structural breaks (regime shifts) in the 

returns-generating and/or volatility clustering. 

Also, as highlighted in the literature review (Chapter 2), many researchers question the 

assumption of a constant (stable) returns-beta relationship due to the possible presence of 

structural breaks resulting from market liberalisation, institutional changes and drastic 

political and economic policy changes. These are even more so in the African equity 

markets due to the relative newness of the market. Given the time period in view, 

considerable shifts in regimes are to be expected. 

In Chapter 3, Section 3.8.4.2, I establish the presence of breaks that can potentially affect 

the returns-generating process with the South African market index, the emerging market 

index, the emerging market less South African market index and the frontier market 

index. Given the prevalence of the structural changes identified, I have attempted to 

control for this within the unconditional asset-pricing models in Chapters 5 using a 

dummy variable for the effect of financial and political contagion on the sample. As 

discussed in Chapter 6, Section 6.14, the contagion dummy was mostly significant across 

the sample, indicating a possible exogenous influence on the return-generating process. 

This demonstrates the possibility for beta to increase significantly during crisis periods. 

As seen in Jagannathan and Wang (1996), there is a growing acknowledgement that beta 

and expected return will in general depend on the nature of the information available at 

any given point in time and vary over time. Some of the points that present a problem to 

the static (unconditional) CAPM include the rise in the beta of equities during a recession 

caused by leverage, the varying effect of the business cycle on different types of assets, 

effects of technological changes and changes in consumer taste. Following the most 
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recent financial crisis (2007/2008), which started in the US, and the Arab Spring in some 

MENA countries, there may be some time-varying impact on beta in African countries. 

This impact is expected via contagion from the affected areas. 

In the next sections, I use the more robust time-varying models to test for stability in beta. 

I use contagion from the financial crisis and the Arab Spring for this test because as stated 

in King and Wadhwani (1990), price changes in one market are expected to reflect on the 

markets by means of structural contagion coefficients. They also identified that this is 

more likely during periods of market crash. 

 

7.2 Time-varying correlation and beta analysis 

I adopt the DCC-MGARCH type model as the time-varying methodology for this section. 

To ensure that the optimal model is employed I also use the DCC GJR-GARCH model 

(and also the ADCC to allow for the possibility of asymmetry), allowing the impact of 

lagged squared returns on the current conditional variance to change according to the sign 

of the past returns. 

I estimate the conditional correlations at each point in time, which is unlike the static 

model. This is done by estimating conditional variance terms and conditional covariance, 

which are estimated from 𝑄𝑡 = [qij,t], with 𝑄𝑡, being the covariance matrix. 

To estimate the conditional correlation, the conditional variance and conditional 

covariance needs to be estimated at each point in time.165 

ρij,t =
Conditional covarianceij,t

√conditional varianceitconditional variancejt
 =

qij,t

√qii,tqjj,t
 (7.1) 

The conditional beta is also estimated at each point in time as follows 

βij,t =
Conditional covarianceij,t

conditional variancejt
 =

qij,t

qjj,t
 (7.2) 

𝑤ℎ𝑒𝑟𝑒 𝑖 = the asset portfolio and 𝑗 = the market portfolio 

 

                                                 
165 The variance and covariance structures are shown in the chapter appendix 
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7.2.1 Multivariate DCC model in estimating conditional correlations 

The model applied follows from Engle (2002) and uses a variant of the original DCC 

multivariate GARCH model. 

The use of a system of equations or a series of equation pairs is the usual way of applying 

this methodology, where the equation pairs are the asset portfolio and the market 

portfolio, for each sample. I run the model on the basis of four equation pairs, for the 

South African market, the emerging African market, the emerging African market 

excluding South Africa and the frontier African market. I exclude the contagion dummy 

variable (for the 2008 financial crisis and the Arab Spring) and this will be used for further 

tests later in the chapter. 

The first step is to estimate the residual returns mean equations in a pairs-based modelling 

procedure. These models will include innovations of size, book-to-market value, 

momentum, liquidity, skewness and kurtosis (the mean equation form is discussed below) 

and are as follows:166 

 

𝑟𝑖𝑡  =  𝛼𝑖 + 𝛽𝑖𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑖ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑖𝑚𝑈𝑀𝐷𝑡 + 𝛽𝑖𝑝𝐼𝑀𝑉𝑡 + 𝛽𝑖𝑒𝑆𝑡 + 𝛽𝑖𝑘𝐾𝑡

+ 휀𝑖𝑡 (7.3) 

 

𝑟𝑗𝑡 = 𝛼𝑗 + 𝛽𝑗𝑠𝑆𝑀𝐵𝑡 + 𝛽𝑗ℎ𝐻𝑀𝐿𝑡 + 𝛽𝑗𝑚𝑈𝑀𝐷𝑡 + 𝛽𝑗𝑝𝐼𝑀𝑉𝑡 + 𝛽𝑗𝑒𝑆𝑡 + 𝛽𝑗𝑘𝐾𝑡

+ 휀𝑗𝑡  (7.4) 

 

where 𝑖 represents the asset portfolio and 𝑗 represents the market portfolio. 𝑟𝑖𝑡 is the 

return on the asset portfolio less the risk-free rate, while 𝑟𝑗𝑡 is the return on the market 

portfolio less the risk-free rate. 𝛽𝑖𝑠, 𝛽𝑖ℎ, 𝛽𝑖𝑚, 𝛽𝑖𝑝, 𝛽𝑖𝑠𝑘 and 𝛽𝑖𝑘are factor loadings on the 

size, book-to-market value, momentum, liquidity, skewness and kurtosis factors, 

respectively. 𝛽𝑗𝑠, 𝛽𝑗ℎ, 𝛽𝑗𝑚, 𝛽𝑗𝑝, 𝛽𝑗𝑠𝑘 and 𝛽𝑗𝑘 are factor loadings for the variables in respect 

of the market J. 

The methodology assumes that residuals are conditionally multivariate student 

distribution as the t-distribution generates the lowest forcaset errors compared to the 

                                                 
166 Proof for the correct identification of time-varying beta is in chapter appendix 1 
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normal error distribution and the generalized error distribution, as seen in Marshall, 

Maulana and Tang (2009). 

The variance equations are hence derived from the residuals from the mean equation 

pairs. Following the peculiar characteristics of the African continent and to find the best 

structure, I start off with the GARCH (1, 1) format (discussed below). They are as follows: 

 

𝛿𝑖𝑡
2 = 𝛼𝑖0 + 𝛼𝑖1 휀𝑖𝑡−1

2 + 𝛽𝑖1𝛿𝑖𝑡−1
2     (7.5) 

 

𝛿𝑗𝑡
2 = 𝛼𝑗0 + 𝛼𝑗1 휀𝑗𝑡−1

2 + 𝛽𝑗1𝛿𝑗𝑡−1
2      (7.6) 

 

where the conditional variance is represented by 𝛿𝑡
2, the intercept is denoted as 𝛼0, 

the residuals are denoted as 휀 and the ARCH and GARCH parameters are denoted 𝛼1 

and 𝛽1, respectively. 

 

The second form used is the GARCH (2, 1), with the format as follows: 

𝛿𝑖𝑡
2 = 𝛼𝑖0 + 𝛼𝑖1 휀𝑖𝑡−1

2 + 𝛽𝑖1𝛿𝑖𝑡−1
2 + 𝛽𝑖2𝛿𝑖𝑡−2

2     (7.7) 

 

𝛿𝑗𝑡
2 = 𝛼𝑗0 + 𝛼𝑗1 휀𝑗𝑡−1

2 + 𝛽𝑗1𝛿𝑗𝑡−1
2 + 𝛽𝑗2𝛿𝑗𝑡−2

2    (7.8) 

 

I also use the GJR-GARCH (Glosten, Jagannathan and Runkle, 1993). This allows 

the conditional variance to respond differently to the past negative and positive 

innovations. 

𝛿𝑡
2 =  𝜔 + ∑ 𝛼𝑖휀𝑡

2
𝑝

𝑖=1
+ ∑ 𝛽𝑗 𝛿

2
𝑡−𝑗

𝑞

𝑗=1
+ ∑ 𝛾𝑖𝐼𝑡−1휀

2
𝑡−𝑖.

𝑝

𝑖=1
 (7.9) 

𝐼𝑡−1 = {
1 𝑖𝑓 휀𝑡−1  < 0
0 𝑖𝑓 휀𝑡−1  ≥ 0 

  

 

The conditional correlations and conditional betas are estimated from the DCC 

equation (Equation 7.10) and the asymmetric dynamic conditional correlation 

(ADCC) (Equation 7.11): 

 

Qt = (1 − α − β)Q̅ + α𝑢t−1𝑢t−1
′ + βQt−1    (7.10) 
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where 𝑄𝑡 = [qij,t], �̅� = [𝑢𝑡𝑢𝑡
′], the covariance matrix is represented by 𝑄𝑡 and the 

residuals standardised by their conditional standard deviation are denoted as ut. Given 

the restriction for the non-negative scalars of 𝛼 + 𝛽 < 1, the model is mean-reverting. 

The ADCC follows from Cappiello, Engle and Sheppard (2006), who extended the DCC 

model to account for possible asymmetric issue in the time-varying conditional 

correlation. 

Qt = ( Q̅ − 𝛼2Q̅ − β2Q̅ − 𝑔2N̅) + 𝛼2𝑢𝑡−1𝑢𝑡−1
 ′ + 𝑔2𝑧t−1𝑧t−1

′ + β2Qt−1 (7.11), where 

α, β and 𝑔 are scalars, 𝑧𝑡 = 𝐼[𝑢𝑡  < 0]°𝑢𝑡 (with the Hadamard product indicated by °), 

�̅� = 𝐸[𝑧𝑡𝑧𝑡
′]. For �̅� and �̅�, expectations are infeasible and replaced with sample 

analogues, 𝑇−1∑ 𝑢𝑡𝑢𝑡
′𝑇

𝑡=1  and 𝑇−1∑ 𝑧𝑡𝑧𝑡
′𝑇

𝑡=1 , respectively.    

For conditions where beta will vary considerably over time, this is will be indicated by a 

significant alpha coefficient value in the DCC or ADCC equation. I only report the model 

that performs best between DCC GARCH (1,1), DCC GARCH (2,1), DCC GJR-GARCH 

(1,1), DCC GJR-GARCH (2,1), ADCC GARCH (1,1), ADCC GARCH (2,1), ADCC 

GJR-GARCH (1,1) and ADCC GJR-GARCH (2,1) models. The superior model is based 

on Akaike (AIC),167 Shibata,168 Schwarz (SC)169 and Hannan-Quinn (HQ)170 information 

criteria. 

As highlighted previously, the rationale for these forms of GARCH is the need to account 

for possible asymmetry. The use of lags in eliminating autocorrelation and 

heteroscedasticity within the model will distort the time-varying beta that I expect to 

measure, hence the preference for varying forms of GARCH. 

Appendix Table A7.2 indicates that the alpha parameter is only significant in the frontier 

market. This indicates that the conditional beta changes significantly over time within the 

frontier market, which suggests that there is a strong likelihood that evidence of contagion 

could be found within the data. However, the alpha term within the South African market, 

the emerging African market and the emerging African market excluding South Africa is 

not significant. This does not necessarily eliminate the possibility of the impact of 

                                                 
167 Akaike information criterion (AIC). See Burnham and Anderson (2004) 
168 Shibata information criterion. See Shibata (1976) 
169 Schwarz criterion (SC). See Cavanaugh and Neath (1999) 
170 Hannan-Quinn criterion (HQ). See Burnham and Anderson (2004) 
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contagion as the parameter within these markets are quite high when compared to the 

frontier market. Persistence171 within the series is estimated using the beta parameter. 

If 𝛼 + 𝛽 = 1, this would in effect indicate that the series would be integrated to the order 

1: i.e. I (1) as the model will not mean-revert. 

 

The multivariate Student-t distributed errors is used to estimate the GARCH models as 

proposed by Bollerslev (1987). 

 

7.3 Development of the mean equations 

Table A7.1 presents results of the mean equation developed. These are single constant 

equations with all factors included except the market portfolio in the first mean equation 

and the asset portfolio in the second mean equation. The residuals to be used in estimating 

the conditional beta must eliminate all other factors that can influence returns. These 

factors are typically non-contagion-based and are used to identify contagion on the series 

as highlighted in Forbes and Rigobon (2002). The non-contagion factors are eliminated 

with the inclusion of the size, value, momentum, liquidity, coskewness and cokurtosis 

factors. However, autocorrelation in the residuals of either the mean or the variance 

equation would compromise the integrity of the methodology as identified in Tsay (2005). 

This will present problems for the MGARCH-DCC / MGARCH-ADCC model. Section 

7.3.2 below describes the process of testing for autocorrelation. 

 

7.3.1 Innovation of the variance equations 

The variance equations developed are presented in Table A7.2, based on the most optimal 

GARCH form. 

 

Given the tendency for market cycle price adjustments to be faster in the bear market 

phases than the pace of adjustment in the bull phases, there may be possible asymmetry 

in the data. To deal with this, different GARCH specifications can be considered in the 

markets surveyed, as identified in Section 7.2.1 above. 

                                                 
171 Persistence is measured as the half-life of shock computed as ln(0.5)/ln(α+β) as suggested in Engle and Sheppard (2001). The 

half-life is defined as the time at which a shock to correlation is expected to be halfway dissipated. 
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I found that the superiority of the range of alternative asymmetric GARCH models 

available depended on characteristics of the market being surveyed. The superior 

alternative within the South African market index and the emerging African market was 

the DCC GJR (1,1). Within the emerging African market excluding South Africa, the 

DCC GARCH (1,1) was superior, while the DCC GARCH (2,1) was superior in the 

frontier African market. The results can be seen in Appendix Tables A7.1 and A7.2. 

(These do not include the contagion factor, as that will be applied later-on to highlight its 

potential impact on the models.) 

It can be noted from the tables that α0 and β1 were statistically significant in respect to the 

South African market, the emerging African market and the emerging African market 

excluding South Africa, with α0 being insignificant in the frontier African market. 

Significance is at the 10% level. As stated in 7.2.1 above, α1 was only significant in the 

frontier African market. 

Attempts were made towards other GARCH models but these showed insignificant alpha 

in their DCC equation and the models returned lack of improvement of fit across the 

different alternative GARCH models. 

 

7.3.2 Autocorrelation testing in the mean and variance equations 

As highlighted earlier, the robustness of the modelling procedure will be questionable if 

the mean and variance equations contain autocorrelation, as also identified in Tsay 

(2005). Hence, a series of autocorrelation tests are performed and reported in the chapter 

appendix; this check for autocorrelation in the modelling process. These tests are reported 

in Tables A7.3 and A7.4. 

The Q-statistic of Ljung and Box (1978) is employed as the autocorrelation test for the 

standardised residuals and standardised squared residuals on the mean and variance 

equations. The null hypothesis states that the parameter values are simultaneously zero; 

as the tests are joint tests. Rejection of the null indicates the presence of misspecification 

errors (i.e. autocorrelation). 

The presence of ARCH effects in the variance equation is examined using the Q-statistic 

test on the squared standardised residuals. 



333 
 

7.4 Financial crisis and Arab Spring contagion 

As identified in Section 3.6 of Chapter 3, the crisis period refers to the 2008 financial 

crisis (05/09/2008 – 29/05/2009) and the Arab Spring (14/01/2011 – 19/10/2012); hence 

the contagion test will be carried out for this period. This takes the form of a regression-

based test of significance in respect to a regression dummy variable representing the crisis 

periods. 

 

𝐶𝐵𝑖𝑗,𝑡 = 𝜌𝑗 + 𝛾𝑗𝐶𝑟𝑖𝑠𝑖𝑠 𝐷𝑈𝑀𝑀𝑌𝑡 + 휀𝑖𝑗,𝑡  (7.12) 

 

where CBij,t is the conditional beta at time t, for the asset portfolio (i) relative to the 

market portfolio (j). Crisis DUMMYt is a dummy variable taking on a value of 1 over the 

respective crisis periods being tested, and 0 for the non-crisis (tranquil) periods. 

Contagion is said to have occurred when the Crisis DUMMYt has a positive and 

statistically significant parameter value. The hypothesis tested is: 

𝐻𝑂 : 𝛾𝑗 ≤ 0 (absence of contagion) 

𝐻1: 𝛾𝑗 >  0 (presence contagion) 

A statistically significant negative parameter on the dummy variable would typically 

indicate a significant fall in conditional beta during the crisis period. This does not 

constitute contagion. The test statistic is estimated as: 

𝑡 =
𝛿�̂� − 0

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟(𝛿�̂�) 
 (7.13) 

7.4.1 Robustness check for contagion: the equality-of-means test 

To add to the robustness of the analysis, an alternative test is also undertaken to provide 

some confirmation to the results identified in the first method. I use the comparison-of-

means tests to examine the impact of contagion on the conditional beta, given that the 

conditional beta is estimated across each point in time for the sample. The test identifies 

the extent of the statistical significance of any differences in the mean weekly conditional 

beta in the non-crisis period against the mean weekly conditional beta in the crisis period 

(the financial crisis and the Arab Spring). 
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I expect the variance of the contagion period and the variance of the non-contagion period 

to differ, given that market volatility is usually expected to be greater during crisis 

periods; hence I undertake an independent sample t-test. Differing forms of the 𝑡-test can 

be run on the basis of (i) equal variance samples and (ii) unequal variance samples. 

To determine which test to apply, I use the Levine test for variance equality (where the 

null hypothesis is variance equality). If unequal variances are identified the test becomes 

marginally stricter and this acts as the effective difference between the two tests. 

The null hypothesis is that the mean weekly conditional beta during the financial crisis 

and Arab Spring is equal to the mean weekly conditional beta in the non-contagion 

periods. Contagion is deemed to have been found when the null is rejected. 

𝐻𝑂 : 𝑦2 ≤ 𝑦1 (absence of contagion) 

𝐻1: 𝑦2 >  𝑦1 (presence of contagion) 

where 𝑦2 and 𝑦1 are the mean weekly beta values during the crisis periods and the 

tranquil period respectively. 

If equal variances are assumed, the pooled variance 𝑡-test may be used. This is estimated 

as: 

𝑡 = 
𝑦2 − 𝑦1

𝑠𝑝𝑜𝑜𝑙√
1
𝑛1
+
1
𝑛2

~𝑡(𝑛1 + 𝑛2 − 2) (7.14) 

where 𝑠𝑝𝑜𝑜𝑙
2 = 

∑(𝑦1𝑖 − �̅�1)
2 + ∑(𝑦2𝑗 − �̅�2)

2

𝑛1 + 𝑛2 − 2
= 
(𝑛1 − 1)𝑠1

2 + (𝑛2 − 1)𝑠2
2 

𝑛1 + 𝑛2 − 2
 

n1 – tranquil period sample size 

n2 – crisis period (financial crisis and Arab Spring) sample size 

If unequal variances are assumed the 𝑡-test is estimated as: 

𝑡 = 
𝑦2 − 𝑦1

𝑠𝑝𝑜𝑜𝑙√
1
𝑛1
+
1
𝑛2

~𝑡( 𝑑𝑓𝑠𝑎𝑡𝑡𝑒𝑟𝑡ℎ𝑤𝑎𝑖𝑡𝑒 ) (7.15) 

where 𝑑𝑓𝑆𝑎𝑡𝑡𝑒𝑟𝑟𝑡ℎ𝑤𝑎𝑖𝑡𝑒 = 
(𝑛1 − 1)(𝑛2 − 1) 

(𝑛1 − 1)(1 − 𝑐)2 + (𝑛2 − 1)𝑐2
 𝑎𝑛𝑑 𝑐 =  

𝑠1
2/𝑛1

𝑠1
2/𝑛1 + 𝑠2

2/𝑛2
 

and s2 is the variance. The procedure for the Satterthwaite approximation follows from 

Satterthwaite (1946). 
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7.5 Results and discussion 

In this section, the graphical representation of the weekly time-varying conditional 

variances, conditional covariance, conditional correlation and time-varying beta within 

each index are shown, with the regression analysis subsequently used to identify 

contagion. The results of the robustness check in the form of a comparison-of-mean test 

will also be reported. This is used due to the fact that the use of means often obscure the 

considerable spikes in conditional correlation and beta over time. 

 

7.5.1 Graphical description of the time-varying conditional beta: a stylised fact 

The discussions in this section depend on the graphical presentations in the chapter 

appendix for the conditional variances of the asset and market portfolios, conditional 

covariance, conditional correlation and conditional beta for the South African market, the 

emerging African market, the emerging African market excluding South Africa and the 

frontier African market. In the chapter appendix, Figures A7.1 to A7.5 relate to the South 

African market, A7.6 to A7.10 relate to the emerging African market, A7.11 to A7.15 

relate to the emerging African market excluding South Africa and A7.16 to A7.20 relate 

to the frontier African market. The values for the conditional correlation and conditional 

beta are derived using Equations 7.1 and 7.2 respectively. 

 

From the conditional beta charts in the chapter appendix (and in Table 7.1 below), the 

resource sector of the emerging African market is riskier relative to the market index than 

the resource sectors in the frontier African market, with beta of 0.74 and 0.23, 

respectively. Beta within the frontier market is rather unexpectedly low, as typically beta 

for more segmented markets tend to be higher than those in more integrated markets. This 

pattern is also seen using the unconditional beta as discussed in Chapter 8 and also 

highlighted in Piesse and Strange (2010). Beta in the emerging African market ranged 

from 0.28 to 1.79 (range of 1.51), compared with a range of -0.09 to 1.27 (1.36) in the 

frontier African market. 

 

When South Africa is excluded from the emerging African market index, the mean 

conditional beta becomes 0.57 and range from 0.06 to 1.57 (1.51). The decrease in beta 

when South Africa is excluded suggests that the South African natural resource sector is 

risker relative to the market when compared with the rest of the emerging market 
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countries in the sample. This is also shown in the mean conditional beta of the South 

African market of 0.76 which ranged from 0.27 to 1.43 (1.16). The charts show spikes in 

the beta around the 2009 financial crisis within the South African market, but there were 

also spikes in late 2004 and in 2005. 

 

Spikes in the conditional beta can also be seen in the emerging African market, but this 

is less around the 2008 financial crisis period and more around the Arab Spring. This 

pattern is also observed when South Africa is excluded from the emerging African market 

index. This points to the potential impact of the Arab Spring on the emerging African 

market and the limited impact of the financial crisis. Within the frontier African market, 

the behaviour of beta is unique as the chart shows a trending conditional beta. However, 

there were spikes in the trend around the financial crisis, the Arab Spring and in late 

2013/early 2014. 

 

Also, in 2005 and 2006 conditional beta turns negative; this is quite rare and indicates 

that the resource sector in the frontier African market performed better when the market 

declined within these points in 2005 and 2006. This negative beta phenomenon is usually 

seen in safe-haven assets, such as gold and gold stocks, which usually see increases in 

value as the market decreases in value. This is perhaps expected in the frontier African 

market as they are mainly dominated by natural resources stocks. The trending 

conditional beta then becomes a result of the opening up of the markets/integration with 

world markets, which will enhance diversification of the market and hence an increase in 

beta for the natural resource sector. 

 

The impact of the financial crisis has been mixed, as the spike in the conditional beta is 

less pronounced in the emerging African market and the emerging African market 

excluding South Africa. This was more pronounced in the South African and frontier 

African markets. The effects of the Arab Spring are more pronounced within the African 

market with considerable spikes in the emerging African, emerging African excluding 

South Africa and the frontier African markets, but not obvious in the South African 

market. This relates to a possible proximity effect of the events to the markets in the 

sample and the effects of integration with world markets. 
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In the case of South Africa, the high level of integration with world markets has 

minimised the impact of possible African-based events (or events close to the continent). 

This led to an impact of the financial crisis, which started in the US, on the South African 

market, but not an impact from the Arab Spring, even when the Arab Spring occurred in 

some countries within the continent. 

 

The financial crisis, on the other hand has affected the emerging African market excluding 

South Africa index but not as much as its effect on the South African market and the 

frontier African markets. However, this does not seem to have any effect on the emerging 

African market index. This is potentially due to the offsetting impact of combining South 

Africa with Morocco and Egypt within one index. 

 

The trending conditional correlation supports the trending conditional beta within the 

frontier African market and also shows negative values within 2005 and 2006. However, 

unlike the South African market, the emerging African market and the emerging African 

market excluding South Africa which show mean conditional correlation (and range) of 

0.51 (0.25), 0.55 (0.31) and 0.55 (0.82), respectively, the frontier African market shows 

a mean value of 0.16 (0.46). This is much lower and can provide some diversification 

advantages for investments in the resource sector of the frontier markets. 

 

The changes seen in the conditional correlations charts are largely driven by Equation 

7.1, which shows the ratio of the conditional covariance to the square root of the product 

of the portfolio and the market conditional variances. From the conditional covariance 

charts in the chapter appendix, the spike around the financial crisis is quite obvious for 

all indices in the sample although the magnitude differs. The charts show greater increase 

in covariation in the emerging and frontier African markets than in the South African and 

even less in the emerging African market excluding South Africa index. The charts also 

shows two other considerable spikes within the emerging African market excluding South 

Africa before the financial crisis and for the Arab Spring; however, this is observed to a 

lesser extent within the other indices. 

 

Considerable increase in conditional covariance does not necessarily mean an increase in 

conditional correlation as this also depends on the square root of the product of the 

variances. The conditional variances for the asset and the market portfolios are depicted 
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in the chapter appendix. As expected, the conditional variances for the asset portfolios 

are higher than those of the market portfolios. Overall, there are spikes in the financial 

crisis period and other relatively smaller spikes within the South African and emerging 

African markets. 

 

Within the frontier African market, I observe one major spike during around the financial 

crisis for both the asset portfolio and the market portfolio, but with a second major spike. 

Within the emerging African market excluding South Africa, the conditional variances 

are very volatile. This reflects country-specific factors in Egypt and Morocco. 

 

There are other comparatively smaller spikes in the conditional variances for both the 

asset and market portfolios; these mostly reflect some African-related factors. These 

factors include considerable political upheavals, drastic regulatory changes and currency 

risks. These smaller spikes seem to be more frequent within the emerging African market 

excluding South Africa and are mostly related to index/country-specific events in Egypt 

and Morocco. 

 

In looking at the difference between the emerging and frontier African markets, the 

difference in the mean values as shown in Table 7.1 demonstrates these significant 

differences. 

 

Table 7.1 Mean values of conditional variance, conditional covariance, conditional 

correlation and conditional beta 

Variable (mean 

value) 

South 

Africa 

Emerging 

Africa 

Emerging 

Africa ex. SA 

Frontier 

Africa 

Asset portfolio 

conditional 

variance 

 

0.000870390 

 

0.000551695 

 

0.000477373 

 

0.000331507 

Market portfolio 

conditional 

variance 

 

0.000428971 

 

0.000329728 

 

0.000474072 

 

0.000202341 

Conditional 

covariance  

 

0.000306807 

 

0.000235691 

 

0.000262483 

 

0.00003377 

Conditional 

correlations  

 

0.507304 

 

0.550319 

 

0.548502 

 

0.157209 

Conditional beta 0.762146 0.739438 0.570848 0.228433 
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Table 7.2 Unconditional beta using the liquidity and higher-moments augmented 4-factor 

model 

Variable South Africa Emerging 

Africa 

Emerging 

Africa ex SA 

Frontier 

Africa 

Unconditional 

beta 

 

0.779893 

 

0.769154 

 

0.569373 

 

0.210801 

 

The most indicative of the differences is the value of the mean conditional correlation and 

conditional beta. These are far higher in the emerging African market when compared 

with the frontier market, as stated earlier. The conditional covariance is also significantly 

different. With regards to the conditional beta, there seems to be some reverse integration 

effects in play, with beta increasing from the frontier markets (which are perceived to be 

riskier), through the emerging African markets to the South African market (which is 

perceived to be less risky in comparison). This is rather surprising as the reverse is usually 

the case in other continents. However, the evolving characteristics of the African market 

make these relations possible, and the expectation is that with continued integration the 

characteristics of this market will fall more in line with those of developed markets. 

 

When compared to the unconditional beta as shown in Table 7.2, the conditional beta 

does not have a clear pattern as to the degree of underperformance of the unconditional 

beta, when compared with the conditional beta. The mean conditional beta is higher in 

the emerging African market excluding South Africa and in the frontier market, but lower 

in the South African and emerging African markets. 

 

In conclusion, it is quite obvious from the charts that there has been some contagion 

effects on parameters in the markets surveyed. The impact on beta, however, varies across 

the markets surveyed. To conclude on the impact of contagion on conditional beta, the 

next section will employ a dummy variable test and, for robustness, a comparison-of-

means test. 
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7.5.2 Dummy variable test for contagion 

In the section, I carry out a dummy variable-based analysis for contagion effect on the 

conditional beta. This takes the form of a one-tail regression-based test of significance in 

respect to the regression dummy variable representing the crisis periods. The structure of 

the test was described in Section 7.2.5. Contagion is said to have occurred when the crisis 

dummy variable (DUMMYt) has a positive and statistically significant parameter value. 

This significance is based on the one-tail test at 5% and a “No” in the last column indicates 

no evidence of contagion while a “Yes” indicates contagion. The results are shown in 

Table 7.3 below. 

 

Table 7.3 Dummy variable test for contagion effect on the conditional beta 

 

 

Index 

 

 

R squared 

 

 

Constant 

 

 

Dummy 

 

 

t – Dummy 

Evidence of 

impact of 

contagion 

South 

African 

market 

0.0109678  0.752449  0.0422441  2.521 NO 

Emerging 

African 

market 

0.0976087  0.708114  0.136449  7.873*** YES 

Emerging 

African 

market 

excluding 

South 

Africa 

 

0.0145153  

 

0.559119  

 

0.0510935  

 

2.905** 

 

YES 

Frontier 

African 

market 

0.0401773  0.204056  0.106192  4.897*** YES 

*, **and *** are significance levels at the 10%, 5% and 1% points, respectively. Contagion is defined as 

statistical significant at the 5% level. 

 

 

Table 7.3 shows evidence of contagion in the emerging African market, the emerging 

African market excluding South Africa and the frontier African market, but no evidence 

was found in the South African market. In the observed structure of the conditional beta 

in the South African market as shown in Figure A7.5 in the chapter appendix, there are 

no spikes around the Arab Spring period, while in 2004/2005 there are some spikes not 

considered within the time period of the dummy. These have clouded the spikes within 

the financial crisis period. The implication is that within the period sampled, the 

conditional beta does not vary much across the period, which suggests that the 
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unconditional beta may be a good representation of relative risk in the South African 

resource sector. 

The spike in beta around the financial crisis can also not be seen as contagion as the South 

African market is more closely integrated to the Western markets, where the crisis 

originated, than other African markets. Hence, the spike may simply be due to 

“interdependence”. According to Forbes and Rigobon (2002), this refers to the strong 

linkage that exists between markets. 

 

For the other markets sampled, the contagion dummy is significant and indicates that beta 

is definitely not static as suggested by the unconditional CAPM. Within the emerging and 

the frontier African market, the crisis dummy variable is significant at the 1% level, and 

at the 5% level for the emerging African market excluding South Africa. This 

demonstrates that beta increases with impact of the crisis and hence invalidates the 

assumption of static beta in the CAPM. 

 

For robustness, I carry out a comparison-of-means test that also tests for any impact of 

the crisis on conditional beta in the sampled markets. 

 

7.5.3 Contagion robustness check 

To test for the robustness of the results in Section 7.3.2, I carry out a comparison-of-

means test (Levine’s test of equality of variances) where the t-test for the presence of 

contagion is based on a one-tail test at 5% significance level. The structure of the test to 

be reported is described in Section 7.2.6. As with the dummy variable test, a “No” in the 

last column indicates the absence of any contagion effect while a “Yes” indicates the 

presence of contagion. Table 7.4 below show the results of the test. 
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Table 7.4 Comparison-of-means test 

 

Index 

Tranquil period Financial crisis 

and Arab Spring 

period 

Test for 

equality of 

variances 

T-test 

for 

equality 

of 

means 

Evidence 

of impact 

of 

contagion Mean Std. 

dev. 

Mean Std. 

dev.  

F Sig 

South 

Africa 

market 

0.752449 0.17073 0.79469 0.16304 0.257 0.612 2.521 NO 

Emerging 

African 

market 

0.70811 0.15203 0.84456 0.23587 36.016 0.000 6.270*** YES 

Emerging 

African 

market 

excluding 

South 

Africa 

 

0.55912 

 

0.16617 

 

0.61021 

 

0.21079 

 

10.081 

 

0.002 

 

2.905** 

YES 

Frontier 

African 

market 

0.20406 0.23643 0.31025 0.14327 34.440 0.000 4.897*** YES 

Statistical significance at the 5% level indicates contagion for the Levine test of equality of variance, where the null 

hypothesis is equality of means. The reported t-test is appropriate for the variance identified. *, ** and *** are for 10%, 

5% and 1% significance levels, respectively. 

 

The comparison-of-means test shows identical findings to those from the dummy variable 

test and hence provides robustness for its findings. In terms of the level of significance, 

the two tests show exactly the same level of significance and hence this test verifies the 

findings in the dummy variable test. 

 

7.6 Summary of findings 

The objective of this chapter was to test for the stability of beta in the African markets. 

From the result within this section, I find that contagion has had a time-varying effect on 

beta within the South African market, the emerging African market and the emerging 

African market excluding South Africa. The result for the frontier African market is 

mixed. The instability in beta seen here is also reflected in Saleem and Viahenkoski 

(2010) and Tsai et al. (2014), who identify that the constant OLS beta does not capture 

the dynamics of beta. Others have highlighted that time-varying beta outperform the 

unconditional beta. I do, however, find that the outperformance of beta depends on the 

surveyed market. The dummy test and comparison-of-means test indicate that beta in the 

crisis period is significantly higher than those in the tranquil period within the emerging 

African market, the emerging African market excluding South Africa and the frontier 

African markets, but not in the South African market. This indicates the impact of 
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contagion on these markets (except South Africa). The charts within the South African 

market show a couple more spikes beyond the period defined as the contagions period 

and this is the potential explanation for the insignificant result. In observing the 

conditional variable charts, it is clear that the conditional variables fluctuate over time, 

with clear spikes around the financial crisis and/or the Arab Spring. In their analysis of 

some developed and emerging market countries, Long et al. (2014) found some contagion 

effects similar to the findings within this study. 

 

7.7 Chapter conclusion 

The main purpose of this chapter was to check the stability of beta in the emerging and 

frontier African markets, along with the South African market and the emerging African 

market excluding South Africa. The more robust GARCH-type models are used to control 

for heteroscedasticity and to model conditional beta in the markets sampled. The results 

show that beta is not stable in the frontier market index, but the high parameter values in 

the South African market, the emerging African market and the emerging African market 

excluding South Africa did not show any significance. 

 

However, the instability in beta across the indices seemed obvious with a visual 

observation of the conditional beta charts. These are also found from observing the 

conditional correlation, conditional covariance and conditional variances. It is generally 

expected that during crisis periods, variance, covariance, correlation and, to a lesser 

extent, beta of financial returns increase dramatically; hence I observe spikes around the 

financial crisis period and also around the Arab Spring for most markets. Although there 

were also other mostly smaller spikes within each index, the spikes are, however, not 

consistent across the indices surveyed. 

 

The graphical results also show a reverse behaviour of beta, as the mean conditional beta 

in the frontier African market (0.23) was far lower than beta in the emerging African 

market (0.74). This was also observed in the unconditional beta discussed in Chapter 6. 

This is attributed to a reverse integration effect where indices in the African continent 

show characteristics that are not in line with those in the Western markets until after some 

degree of integration is achieved. 
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In testing for contagion, this study employs the dummy variable test and for robustness, 

the comparison-of-means test. The results for both tests are identical and show evidence 

of contagion in the emerging African market, the emerging African market excluding 

South Africa and the frontier African market. However, no evidence of contagion was 

found in the South African market due to the interdependence of the South African market 

and the Western markets. 
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7.8 Chapter appendices 

Appendix 1: Proof of correct identification of time-varying beta 

Original model 

Model 1: OLS 

Dependent variable: PORT 

 

  Coefficient Std error t-ratio p-value  

const 28470.4 1911.48 14.8944 <0.00001 *** 

MARKET 0.055904 0.00569477 9.8167 <0.00001 *** 

SIZE -170.509 66.1109 -2.5791 0.01379 ** 

MOM -55.1351 24.5861 -2.2425 0.03068 ** 

 

Replicate MOM beta - First mean equation 

 

Model 2: OLS 

Dependent variable: PORT 

 

  Coefficient Std error t-ratio p-value  

const 32025.1 1120.75 28.5747 <0.00001 *** 

MARKET 0.0434583 0.00133937 32.4469 <0.00001 *** 

SIZE -217.77 65.7419 -3.3125 0.00197 *** 

 

Second mean equation 

 

Model 3: OLS, using observations 1969-2011 (T = 43) 

Dependent variable: MOM 

 

  Coefficient Std error t-ratio p-value  

const -64.4725 6.86991 -9.3848 <0.00001 *** 

MARKET 0.000225731 8.20997e-06 27.4948 <0.00001 *** 

SIZE 0.857185 0.402981 2.1271 0.03963 ** 

 

Residuals from two mean equations 

 

Model 4: OLS, using observations 1969-2011 (T = 43) 

Dependent variable: uhat2 

 

  Coefficient Std error t-ratio p-value  

uhat3 -55.1351 23.6917 -2.3272 0.02485 ** 

 

 

The coefficient -55.1351 in the regression above (Model 4) is calculated as 

Cov(x,y)/Var(x). If the Cov(x,y) and Var(x) are time-varying, then we can possibly get a 

time-varying coefficient. 
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Table A 7.1 Mean equations with robust standard errors 

 South Africa Emerging Africa Emerging Africa ex. SA Frontier Africa 

Variable 𝑟𝑖𝑡 𝑟𝑖𝑗 𝑟𝑖𝑡 𝑟𝑖𝑗 𝑟𝑖𝑡 𝑟𝑖𝑗 𝑟𝑖𝑡 𝑟𝑖𝑗 

𝜶 −0.140414 −0.138663 * −0.379823*** −0.185208*** −0.659568*** −0.434355** 0.246544* 0.328681** 

𝝁𝒊𝒔 −0.531814 *** −0.152598*** 0.0717933 −0.0325135 −0.260251*** −0.100150* 0.0330483 −0.0410139*** 

𝝁𝒊𝒉 −0.000672588 −0.0241135 -0.0835153 −0.00275418 0.106120* 0.0673308 0.0580786** 0.0230112 

𝝁𝒊𝒎 0.0683822 0.0340642 0.0617514 0.0421787 0.387257*** 0.334895*** 0.0447139** 0.00995168 

𝝁𝒊𝒑 −0.408432 *** −0.115049* -0.154121*** −0.146608*** 0.0289312 −0.0722888 −0.0316438 0.0316064* 

𝝁𝒊𝒔𝒌 −0.000979672 −0.00114582 -0.000163795 0.000259961 −0.00165167 −0.00395748 0.00164275 −0.00218731** 

𝝁𝒊𝒌 0.144201 0.144529* 0.384491*** 0.190154*** 0.662448 *** 0.439998** −0.246129* −0.323979** 

*, ** and *** indicates statistical significance of the coefficient at the 10%, 5% and 1% levels.
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Table A 7.2 DCC equations for South Africa, Emerging Africa, Emerging Africa ex SA and Frontier Africa 

South Africa - GJR (1,1) Parameter  T-value T-probability Log likelihood 

Rho 0.509405 12.58  0.0000 

2798.603 

Alpha 0.023376  1.095  0.2738 

Beta 0.906806  7.883  0.0000 

Emerging Africa - GJR (1,1) Parameter  T-value T-probability Log likelihood 

Rho 0.551048  13.63  0.0000 

3067.472 

Alpha 0.029311  1.553  0.1211 

Beta 0.909351  13.10  0.0000 

Emerging Africa ex SA - GARCH (1,1) Parameter  T-value T-probability Log likelihood 

Rho 0.546280  13.28  0.0000 

3003.352 

Alpha 0.095264  1.330  0.1840 

Beta 0.718306  2.685  0.0075 

Frontier Africa – GARCH (2,1) Parameter  T-value T-probability Log likelihood 

Rho 0.031194  0.5490  0.5832 

3260.201 

Alpha 0.014504  2.685  
0.0075 

Beta 0.985486  146.2  0.0000 

Rho is the correlation targeting parameter.
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Table A 7.3 Autocorrelation tests for mean equations. Q-statistics on standardised residuals 

of South Africa, Emerging Africa, Emerging Africa ex SA and frontier Africa 

South African market - asset portfolio South African market - mkt portfolio 

Q(5) = 5.90232 [0.3158402] Q(5) = 5.96691 [0.3094522] 

Q(10) = 14.9605 [0.1335089] Q(10) = 13.9421 [0.1756496] 

Q(20) = 23.5250 [0.2637576] Q(20) = 21.8302 [0.3497960] 

Q(50) = 51.7500 [0.4053443] Q(50) = 63.5350 [0.0945950] 

Emerging African market - asset 

portfolio 

Emerging African market -mkt 

portfolio 

Q(5) = 8.66259 [0.1233029] Q(5) = 3.57667 [0.6118188] 

Q(10) = 9.21580 [0.5117530] Q(10) = 11.1591 [0.3452580] 

Q(20) = 24.8956 [0.2054549] Q(20) = 16.9523 [0.6560678] 

Q(50) = 62.9696 [0.1030022] Q(50) = 65.7448 [0.0668940] 

 Emerging African market ex. South 

Africa - asset portfolio  

 Emerging African market ex. South 

Africa - mkt portfolio 

Q(5) = 3.13922 [0.6785319] Q(5) = 4.80168 [0.4405605] 

Q(10) = 5.27163 [0.8723103] Q(10) = 10.8675 [0.3679366] 

Q(20) = 10.7992 [0.9512644] Q(20) = 19.3447 [0.4995293] 

Q(50) = 33.8098 [0.9614656] Q(50) = 55.5274 [0.2743414] 

Frontier African market - asset 

portfolio 

Frontier African market - mkt 

portfolio 

Q(5) = 5.81901 [0.3242302] Q(5) = 61.1376 [0.0000000] 

Q(10) = 10.3948 [0.4065629] Q(10) = 91.5194 [0.0000000] 

Q(20) = 24.5324 [0.2199084] Q(20) = 120.064 [0.0000000] 

Q(50) = 65.7627 [0.0667002] Q(50) = 157.618 [0.0000000] 
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Table A 7.4 Autocorrelation tests for means equations. Q-statistics on squared standardised 

residuals of South Africa, Emerging Africa, Emerging Africa ex SA and frontier Africa 

South African market - asset portfolio South African market - mkt portfolio 

Q(5) = 1.25559 [0.9394341] Q(5) = 1.86412 [0.8676086] 

Q(10) = 3.34404 [0.9721304] Q(10) = 7.70491 [0.6576360] 

Q(20) = 14.9616 [0.7785979] Q(20) = 14.8309 [0.7860004] 

Q(50) = 47.3396 [0.5807779] Q(50) = 65.3152 [0.0716754] 

Emerging African market - asset portfolio Emerging African market - mkt portfolio 

Q(5) = 1.77502 [0.8793167] Q(5) = 4.56893 [0.4707142] 

Q(10) = 8.66997 [0.5636845] Q(10) = 9.76135 [0.4616748] 

Q(20) = 24.7974 [0.2092940] Q(20) = 24.6055 [0.2169430] 

Q(50) = 56.3165 [0.2505030] Q(50) = 72.4254 [0.0207225] 

 Emerging African market ex. South 

Africa - asset portfolio  

 Emerging African market ex. South 

Africa - mkt portfolio 

Q(5) = 1.68383 [0.8909302] Q(5) = 1.84968 [0.8695290] 

Q(10) = 3.14094 [0.9779099] Q(10) = 3.53786 [0.9657971] 

Q(20) = 24.9801 [0.2021953] Q(20) = 6.73677 [0.9974633] 

Q(50) = 58.9954 [0.1797231] Q(50) = 26.0817 [0.9979235] 

Frontier African market - asset portfolio Frontier African market - mkt portfolio 

Q(5) = 7.33076 [0.1971804] Q(5) = 3.73281 [0.5884890] 

Q(10) = 10.3222 [0.4126928] Q(10) = 9.96903 [0.4432148] 

Q(20) = 21.1315 [0.3894305] Q(20) = 14.8388 [0.7855563] 

Q(50) = 70.1393 [0.0315747] Q(50) = 46.8959 [0.5987066] 
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Figure A 7.1 Conditional variance for the South African market asset and market portfolios 

 
Mean conditional variance for the asset and market portfolios are 0.00087039 and 0.000428971, respectively. 

 

 

Figure A 7.2 Conditional covariance for the South African market 

 
Mean conditional covariance is 0.000306807 

 

 

 

 

 

CondVar_Port 

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

0.001

0.002

0.003

0.004

CondVar_Port 

CondVar_Mkt 

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

0.001

0.002

0.003
CondVar_Mkt 

CondCov 

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

0.001

0.002 CondCov 



351 
 

Figure A 7.3 Conditional correlation and conditional beta for the South African market 

 
Mean conditional correlation and conditional beta are 0.50730371 and 0.762146409, respectively. 
 

 

Figure A 7.4 Conditional variance for the emerging African market asset and market portfolios. 

 
Mean conditional variance for the asset and market portfolios are 0.000551695 and 0.000329728, respectively. 
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Figure A 7.5 Conditional covariance for the emerging African market 

 
Mean conditional covariance is 0.000235691 
 

 

Figure A 7.6 Conditional correlation and conditional beta for the emerging African market 

 
Mean conditional correlation and conditional beta are 0.550318985 and 0.739438166 respectively. 
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Figure A 7.7 Conditional variance for the emerging African market excluding South Africa asset 

and market portfolios 

 
Mean conditional variance for the asset and market portfolios are 0.000477373 and 0.000474072, respectively. 

 

 

Figure A 7.8 Conditional covariance for the emerging African market excluding South Africa 

 
Mean conditional covariance is 0.000262483 
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Figure A 7.9 Conditional correlation and conditional beta for the emerging African market 

excluding South Africa 

 
Mean conditional correlation and conditional beta are 0.548502369 and 0.570847856, respectively. 

 

Figure A 7.10 Conditional variance for the frontier African market asset and market portfolios 

 
Mean conditional variance for the asset and market portfolios are 0.000331507 and 0.000202341, respectively. 
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Figure A 7.11 Conditional covariance for the frontier African market 

 
Mean conditional covariance is 0.00003377 
 

Figure A 7.12 Conditional correlation and conditional beta for the frontier African market 

 
Mean conditional correlation and conditional beta are 0.157209141 and 0.228433412, respectively. 
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8 CONCLUSION, THESIS CONTRIBUTION, LIMITATION OF THE RESEARCH 

AND AREAS OF FURTHER RESEARCH 

 

8.1 Introduction 

The deregulation of markets and relaxation of capital controls within the African continent are 

fuelling the growth in international investment among private and institutional investors. With 

this growing importance of the African equity market, the need for a comprehensive asset-

pricing study became paramount. The overriding aim of this research was to achieve just that, 

a comprehensive asset-pricing study within the African continent. 

To capture the characteristics of the African market, I employ data from the resource sector 

within the surveyed markets. This is done because African markets are mainly resource-driven, 

with activities within this sector driving most other sectors and hence the economy. 

To achieve a robust analysis, data problems in the African market had to be addressed. To do 

this, the data was expunged of survivorship bias using the CRSP methodology and 

subsequently indices were formed based on the FTSE quality of market criteria (AFRICA) of 

March 2014. These indices allowed for the problem of infrequent daily data to be overcome 

and had the added benefit of providing a diversification advantage. 

The indices are the emerging African market index and the frontier market index. I formed a 

further two indices – the South African market and the emerging African market index 

excluding South Africa, to isolate the possible blurring impact of the largest African market – 

South Africa. I employed this classification because I expected differences in the results within 

these markets. 

My thesis analyses deeply the factor that explains realised returns using the Sharpe-Lintner 

CAPM, the Fama-French three-factor model, the Carhart four-factor model and the liquidity- 

and higher-moments augmented models, providing a unique perspective within the indices 

created. 

The 2008 financial crisis and the Arab Spring provided the opportunity to test for the impact 

of contagion on asset-pricing estimates, in the African market. This has not been done 

comprehensively in the African market in the past. This also gives researchers the opportunity 

to explore in more detail the importance of accounting for exogenous factors in asset-pricing 

models. 
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8.2 Summary of the main findings of the thesis 

In identifying potential factors that are important in African CAPM-type models, I evaluated 

the key literature within the asset pricing and the African market (Chapter 2). As part of this 

process of identifying gaps in the literature, I identified the following potential novel 

contribution as: 1) evaluating the magnitude and potential impact of survivorship bias of 

estimates of the asset-pricing models; 2) examining which of the alternative factor models is 

best suited for the South African market, the emerging African market, the emerging African 

market excluding South Africa and the frontier African market; 3) analysing the importance of 

beta, size, book-to-market value, momentum, liquidity and higher-order moments (coskewness 

and cokurtosis), in explaining realised returns; 4) examining the impacts of contagion on 

estimates of the unconditional and conditional asset-pricing models. 

Chapter 3 discussed the data problems and sample selection. The dataset consisted of four 

indices: the South African market index, the emerging African market index, the emerging 

African market index excluding South Africa and the frontier African market index. The 

emerging African market index consists of South Africa, Egypt and Morocco, while the frontier 

African market consists of Botswana, Cote d’Ivoire, Kenya, Nigeria and Tunisia. 

In analysing the impact of contagion, I identified two shocks –the 2008 financial crisis and the 

Arab Spring. This was done using the timeline of events and the CBOE market volatility index 

(VIX). I applied the DCC GARCH approach with the objective of identifying whether the 

contagion factors had a time-varying effect on the estimates of beta with the sampled indices. 

Other potential alternative methodologies are also assessed in Chapter 3, Section 3.8.6, with 

the DCC GARCH being the preferred method. The expectation was that contagion will affect 

beta across all the indices formed, although the effect may vary across these indices. 

The impact of survivorship bias was expected to be higher within the African market when 

compared with findings in developed markets. Hence I identified in Chapter 3, Section 3.4, the 

methods through which the survivorship bias will be eliminated from the data. The CRSP 

methodology was preferred over Heckman’s two-equation method, due to the limitations of 

Heckman’s two-equation method as highlighted in Chapter 3, Section 3.4.1. 

Chapter 4 evaluates the magnitude and potential impact of survivorship bias on estimates of 

asset-pricing models, using the Jensen alpha approach identified in Rohleder, Scholz and 

Wilkens (2011) and the mean difference approach of Eling (2008). This chapter also goes on 

to estimate the attrition rate of stock within the index and establish a link between the attrition 
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rate and survivorship bias. This was based on the emerging African market index and, for 

robustness, the South African market index, as this chapter was for demonstration of the impact 

of survivorship bias. Survivorship bias was, however, corrected for in all the indices used. 

8.2.1 Key findings 

The thesis finds average survivorship bias of 297.47 basis points per year for the basic materials 

emerging African index stocks (January 2005 to December 2014), and 731.05 basis points per 

year for the basic materials South African index stocks, over the same period, using the Jensen 

alpha methodology highlighted in Rohleder, Scholz and Wilkens (2011). This can be compared 

with the 157 basis points per year reported in Rohleder, Scholz and Wilkens (2011), using data 

from the US domestic equity mutual fund market (1993 to 2006), with lower values reported 

in other developed markets (Deaves, 2004). 

Using the mean difference methodology, as identified in Eling (2008), I find survivorship bias 

of 359 basis points per year for the basic materials emerging African index stocks (January 

2005 to December 2014). For the basic materials South African index the corresponding 

survivorship bias was 544 basis points per year, during the same time period. These values are 

also high when compared to previous studies that applied the same methodology, as seen in 

Brown, Goetzman and Park (2001) and Amin and Kat (2003), who find survivorship bias 

between 60 and 360 basis points per year and 200 basis points per year, respectively, both in 

the US market. 

Attrition rates are directly related to survivorship bias; a low attrition rate will lead to low 

survivorship bias, as identified in Liang (2000). This study finds the average attrition rate in 

the emerging African market to be much higher (12%) than those found in US studies (for 

example, Carpenter and Lynch, 1999, found an attrition rate of 3.6%). My research therefore 

calls into question previous studies on asset pricing in African markets that do not adjust for 

survivorship bias. 

Within the South African market, beta was found to be positive and statistically significant for 

the standard, the three-factor and four-factor CAPMs. But unlike most studies that identify a 

size premium, I found size to be negative and statistically significant, indicating that large firms 

outperform small firms. The book-to-market value and momentum factors were insignificant, 

while the liquidity factor was significant but had a negative relationship with returns. The 

higher moments of returns distribution are not priced in the South African basic materials 

index; however, I found that the contagion dummy was negative and significant, indicating that 
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extreme shocks have a negative relationship with returns. The results do indicate that the 

liquidity-augmented four-factor model that controls for contagion performs better within the 

South African market. 

Within the emerging African market, I found beta, size and cokurtosis to be positive and 

significant while book-to-market value, momentum, liquidity and coskewness were 

insignificant. The dummy variable for contagion was found to be significant within the 

liquidity-augmented four-factor model that controls for contagion, but insignificant when 

higher moments are included. The findings also indicate that the liquidity-augmented four-

factor model that controls for contagion performs better within the emerging African market. 

I also examined the performance of the emerging African market when the South African 

market is excluded and found that beta (positive), size (negative), book-to-market value 

(positive), momentum (positive), liquidity (positive) and cokurtosis (positive) were all 

significant, while coskewness was insignificant. The liquidity-augmented four-factor model 

also performs best within the emerging African market less South Africa. 

I also found that the models perform better in the emerging African market excluding South 

Africa, than when South Africa is included, and this is due to the significant difference in the 

level of integration of the South African market, compared with the Egyptian and the Moroccan 

markets. 

Within the frontier African market, beta was significant across all models while size (positive) 

and value (positive) were insignificant within the three-factor model, but were significant when 

the momentum factor was introduced, with the momentum (positive) factor also significant. I 

found liquidity to be unimportant within the frontier African market, with the contagion-effect 

variable being negative and significant, demonstrating the impact of the financial crisis and the 

Arab Spring on the frontier African market’s index performance. However, unlike the findings 

above, the higher-moment augmented model performs better within the frontier African 

market, with the coskewness measure being significant but the cokurtosis measure being 

insignificant. 

In comparing performance of the models across all the four indices, I found significant 

differences across all four market indices as expected, due to the varying levels of integration 

with world markets. I found that beta is consistently positive and significant, indicating that 

beta is alive and well in the African market. I found that size and liquidity are significant, but 

their direction depends on the characteristics of the surveyed market. However, I found that 
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value and momentum factors have a positive relationship with returns, but their importance 

depends on the level of integration with world markets. 

For higher moments, I found that the coskewness measure is only important in the frontier 

African market, while the cokurtosis measure is important in an emerging African market 

context (including when South Africa is excluded). For the contagion dummy, there seems to 

be an offsetting effect between the dummy and higher-order moments in emerging African 

markets; otherwise contagion is negative and significant. 

Time-varying beta: in comparing the results across the GARCH-type models, I found beta in 

the frontier African market to be unstable, while the high parameter value in the South African 

market, the emerging African markets and the emerging African market excluding South Africa 

showed no significance. However, a visual representation of the conditional beta, conditional 

correlation, conditional covariance and conditional variances showed instability within the 

time period studied. The results also show marked differences between the emerging and 

frontier African markets, with the mean conditional beta being 0.23 in the frontier market, 

compared with 0.74 in the emerging African market. This is, however, consistent with the 

pattern observed within the unconditional beta estimates. 

In testing the impact of contagion on the African indices, I employed a dummy variable test 

and, for robustness, a comparison-of-means test. The results show some evidence of contagion 

in the emerging African index, the emerging African index excluding South Africa and the 

frontier African market index. However, no evidence of contagion was found in the South 

African market due to its interdependence with Western markets. 

 

8.3 Novel contributions 

The novel contributions of my research to asset pricing in the Africa market include the 

following. 

The thesis has added to the body of knowledge in the African market through a detailed analysis 

of the magnitude of survivorship bias in the emerging African market. Survivorship bias was 

found to be much higher in the African market when compared to studies in developed markets. 

But, in line with other studies, attrition rate was found to be directly related to survivorship 

bias.  
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The thesis has also contributed to the literature through a comprehensive analysis of asset-

pricing models using indices formed on African stocks. I find that the liquidity-augmented 

four-factor model, which accounts for the contagion effect, performs best in the South African 

market, the emerging African market and the emerging African market excluding South Africa, 

while the higher-moment and liquidity-augmented four-factor model, which accounts for the 

contagion effect, performs best in the frontier African market. The thesis finds significant 

differences in the factors that determine returns across the South African, emerging and frontier 

African markets, which highlights the tendency for the determinants to change with the degree 

of integration with Western markets, although with significant peculiarities on the direction of 

some of the variables within the African market. 

The thesis has demonstrated the time-varying nature of beta in the markets studied. It has also 

shown the impact of contagion on conditional beta within the African market indices. The 

results show that beta is not stable in the frontier market index, but the high parameter values 

in the South African market, the emerging African market and the emerging African market 

excluding South Africa did not show any significance. However, the instability in beta across 

the indices seemed obvious with a visual observation of the conditional beta charts. These are 

also found from observing the conditional correlation, conditional covariance and conditional 

variances. 

 

8.4 Recommendations for stakeholders 

Professional fund managers: As demonstrated in Chapter 1, the growth in the African stock 

market is mostly greater than in the developed markets and hence provides a good source of 

capital gains. As seen in Chapter 6, asset-pricing determinants vary across the continents and 

do depend on the level of integration with world markets. Also, I identified variations in 

conditional correlation and conditional beta within the African markets, as seen in Chapter 7. 

This shows, for example, a very low mean conditional beta of 0.23 in the frontier African 

market, hence providing diversification advantages. 

Academic researchers: This thesis provides a more comprehensive asset-pricing study within 

the African market, but also identifies potential areas of future research, which are highlighted 

below. 

Regulators/policy-makers: This thesis identifies some liquidity effects that may also be a 

source of contagion as relatively small and illiquid markets may reflect the fact that markets 
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contain a relatively small number of active traders. Hence more liquidity could minimise any 

adverse impacts of contagion. The continued opening of markets to foreign investors will be a 

good way to ensure increased liquidity. Also, liquidity can be improved by integrating the 

operations of African stock markets. This will also enhance operational effectiveness and more 

efficient allocation of capital and, consequently, a positive impact on economic growth. 

In regulating activities within various sectors, it will be beneficial to measure time-varying beta 

in comparison to static beta as this study shows that beta may not be static, especially in the 

frontier African market. 

 

8.5 Limitations of the research 

Even with this study being performed on a large number of African markets (South Africa, 

Egypt, Morocco, Botswana, Kenya, Nigeria, Tunisia and a regional market – BRVM in Cote 

d’Ivoire, which covers the markets in Benin, Burkina Faso, Guinea Bissau, Mali, Niger, 

Senegal and Togo), there are still other markets that were not covered. This was mainly due to 

lack of data, as seen in Ghana and Mauritius, for example. Secondly, given that comparable 

risk-free rates in the African markets are often not risk-free and sometimes far higher than 

returns on equity, I have not used them in my asset-pricing estimates. I have however used the 

US 3-month Treasury bill (US3MT=RR), adjusted to obtain weekly short-term rates. This is 

suitable for the purpose of this analysis as it has been applied in other studies on the African 

market, as seen in Omran (2007). 

 

8.6 Potential future research areas 

Following the findings within this thesis, potential future research areas can include the 

following. 

8.6.1 Other sectors in the African market 

I identify that the natural resources sector in the African continent is the major sector as 

activities within this sector drive most other sectors and hence the economy. However, given 

the mix of sectors within the African market, a natural extension will be to investigate other 

sectors such as consumer goods, consumer services, financials, healthcare and technology. This 

may reveal different dynamics in play as, for example, I expect volatility to be higher within 
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these sectors when compared to the resources sector, as these sectors have firms with 

traditionally lower market capitalisation than the natural resources firms. However, there may 

be some serious data availability problems in doing this, as many of these sectors have very 

young companies. 

 

8.6.2 Liquidity measure 

Chapter 2, Section 2.4 evaluates the liquidity measures that can be potentially applied in the 

African market and Chapter 3, Section 3.8.2 justifies the use of the bid/ask measure of liquidity. 

This follows Lesmond (2005), who indicates that the most demonstrable indicator of overall 

liquidity still remains the bid-ask quote. Also, given data scarcity in the African market, I 

naturally used the bid-ask quotes as the values required were available. Other measures of 

liquidity can also be applied to account for other dimensions of liquidity; these include the 

standardised turnover-adjusted number of zero trading days in Liu (2006), the daily ratio of 

absolute stock returns to dollar volume measure in Amihud (2002) and the liquidity measure 

following Pástor and Stambaugh (2003). Other liquidity measures are highlighted in Lam and 

Kim (2011) and these include simple turnover ratio, simple trading volume, standard deviation 

of turnover ratio, standard deviation of trading volume, the coefficient of variation of turnover 

and the coefficient of variation of trading volume. Data on turnover and trading volume data 

are, however, inconsistent across African markets. 

 

8.6.3 Bull and bear CAPM 

Another direction in examining asset pricing in the African market is through the use of 

asymmetric betas, i.e., estimating beta for the bull and bear market phases respectively as seen 

in Chong, Pfeiffer and Phillips (2011). This may be useful in the African market as there may 

be some distortionary effect in single unconditional betas arising from up- and downturns in 

the market. This is because, the prevalent use of one estimate of beta for both up- and 

downturns in the market can lead investors to oversimplify the risk characteristics of the 

investment in the African market. Some previous research, like those of Chong, Pfeiffer and 

Phillips (2011) have explored the dual-beta model’s efficacy in containing risk during stock 

market downturns and found it superior to the standard CAPM beta. 
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8.6.4 Potential alternative methods for modelling time variation 

As identified in Chapter 3, Section 3.8.6, there are a wide range of alternatives in modelling 

time variation in beta that can be applied depending on market characteristics assumptions. 

These alternatives include the threshold CAPM where asset betas change with respect to 

investors’ assessment of aggregate risk conditions, hence a slower variation in beta than the 

conditional CAPM suggests. Another alternative is the Kalman filter-based approach where 

the time-varying structure of the beta can be modelled directly through a state space approach. 

Another alternative is the stochastic volatility approach, which adds contemporaneous shock 

to the return variance. Another potential alternative is the Markov switching approach, which 

is also known as the regime-switching model within a broader class of state space models. It 

normally involves the characterisation of the time-series behaviours of different regimes using 

multiple structures (equations). By allowing the switching between these structures, the model 

is able to capture more complex dynamic patterns. 

 

8.6.5 Behavioural finance in the African market 

As identified in Section 2.2.7, there seems to be a paradigm shift occurring in recent years in 

the study of stock market behaviour and this shift is changing the direction of research from 

the study of the financial environment to the agents of this environment. This has become 

apparent due, in part, to the poor performance of the weak-form efficient market hypothesis, 

especially in the African market as reported in Ntim, Opong and Danbolt (2007).  This 

questions the central tenet of the modern financial paradigm which assume that security prices 

adjust rapidly to the arrival of new information, hence current prices of securities reflect all 

information about the security. This follows that investors act rationally and expectedly 

consider all available information in portfolio investment decision process. Recent evidence, 

however, suggests that this is not always the case hence; the efficiency of markets has become 

one of the most controversial arguments in finance literature, along with the behaviour of 

agents. 

As also highlighted in Section 2.2.7, other variants of the CAPM include those from the 

standpoint of behavioural finance and psychology, where proponents argue that the psychology 

of the investors affects their perception of risk specifically, but also investment behaviour in 

general, hence affecting expected returns. Andrikopoulos (2007), for example, investigated the 

overreaction and underreaction hypothesis and conclude that they are the two most important 
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hypotheses that can partially explain the price equilibrium anomalies. Specifically, Bernard 

(1992) highlight that stock prices underreact to earnings announcement with a “post-earnings 

announcement drift” resulting from a subsequent completion of the reaction in stock prices.  

The tendency to overreact and deviate from Bayesian, optimum, rational decision-making 

arises from psychological biases such as representativeness, anchoring and adjustment, 

leniency and conservatism heuristics, as seen in Kahneman and Tversky (1973). The 

expectation is that relative underreaction/overreaction will be more in the African market due 

to delay in information dissemination given unsophisticated information channels. This will 

result to holding period returns which arises because of a delayed overreaction to information 

that pushes prices of winners above their long-term values and losers below their long-term 

values as Daniel et al. (1998) and Hong and Stein (1998) point out. I also expect this to be 

compounded by the problems of liquidity and thin trading within the African market.  

Given the peculiarity of the African market, I expect the following behavioural biases and 

heuristics to have some effect of asset pricing: ambiguity aversion, mood and feelings and self-

deception which imply overconfidence. There are also increasing interest in the effect of noise 

traders as seen in Blume and Easley (1992); while others highlight the impact of heuristic 

simplification (Dehnad, 2011). For an overview of the many other biases which could 

potentially have an impact on asset pricing in the African market, see Redhead (2011). 

Although I expect behavioural finance research in the African market to yield interesting 

results, the paucity of data will mean that this may take a while.  
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