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Abstract—Mobile Crowd Sensing is an emerging sensing 

paradigm that employs massive number of workers’ mobile 

devices to realize data collection. Unlike most task allocation 

mechanisms that aim at optimizing the global system performance, 

stable matching considers workers are selfish and rational 

individuals, which has become a hotspot in MCS. However, 

existing stable matching mechanisms lack deep consideration 

regarding the effects of workers’ competition phenomena and 

complex behaviors. To address the above issues, this paper 

investigates the competition-congestion-aware stable matching 

problem as a multi-objective optimization task allocation problem 

considering the competition of workers for tasks. First, a worker 

decision game based on congestion game theory is designed to 

assist workers in making decisions, which avoids fierce 

competition and improves worker satisfaction. On this basis, a 

stable matching algorithm based on extended deferred acceptance 

algorithm is designed to make workers and tasks mapping stable, 

and to construct a shortest task execution route for each worker. 

Simulation results show that the designed model and algorithm are 

effective in terms of worker satisfaction and platform benefit. 

 
Index Terms—Mobile crowd sensing, stable matching, task 

allocation, congestion game, deferred acceptance. 

 

I. INTRODUCTION 

HE Internet of Things (IoT) utilizes sensor-based 

embedded systems to interact with others, providing a wide 

range of applications and services to upper-level users [1]. 

Mobile Crowd Sensing (MCS) is an emerging pervasive 

sensing paradigm in IoT uses massive number of workers’ 

smart mobile terminals (smart phones, tablet computers, 

sensors, etc.), due to their availability at large scale, wide 

distribution, and high sensing capabilities to collect sensing 

data with high correlation and strong analyzability [2]. 

Therefore, MCS is considered as an economic, effective, and 

reliable sensing scheme [3] providing great support in pervasive 

computing domain such as intelligent transportation [4], 

environmental monitoring [5], healthcare application [6], urban 

public management [7], and so forth. 
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In MCS, task allocation is a fundamental and important 

research issue, which has become a hot topic in the fields of 

social computing, cooperative computing, and intelligent 

computing in recent years [8]. Existing works on task allocation 

mechanism mostly aim at optimizing the global system 

performance, while ignoring the mutual preferences between 

workers and crowdsensing tasks. Since workers and platform 

are owned by different entities with the possibility of having 

diverse needs resulting in conflict among the maximization of 

worker satisfaction or platform benefit. For example, workers 

prefer tasks according to their own satisfaction, while the 

platform wants to allocate tasks to workers with better service 

qualities and lower sensing costs to maximize platform benefit. 

In addition, the platform generally does not change the 

formulated allocation strategy in practical applications. 

However, since workers are selfish and rational individuals, 

they are not necessarily aligned with platform optimization [9]. 

Workers may violate the current task allocation scheme when 

they are not satisfied with the allocated tasks, which results in 

system instability. Here, the system instability means that the 

established allocation strategy cannot be completed due to the 

dissatisfaction of workers. 

In order to solve the conflict of interest between platform and 

workers and avoid system instability, some previous works 

[10]–[14] from the recent literatures utilize stable matching 

theory to transform task allocation problem into two-sided 

matching problem. However, there are still some deficiencies 

in these studies. They assume that workers are only concerned 

about their personal benefit and select tasks based on their 

preferences in contrast to the case where workers need to 

compete for the tasks in the resource pool. As the workers are 

not fully aware of the status of other workers’ applications for 

tasks, they often apply for tasks based on their own preferences 

and historical experience, resulting in fierce competition for 

some tasks among the workers. Since the number of workers 

required for a specific task is constrained, massive workers 

picking the same task will result in partly workers matching the 

task while remaining workers not. Although stable matching 
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can map the suboptimal task options for the remaining workers 

which may reduce their interest for participation in sensing 

activities. 

In order to address the aforementioned issues, this paper 

investigates the competition-congestion-aware stable matching 

problem as a multi-objective optimization task allocation 

problem considering the competition of workers for tasks 

obtaining a unique and optimal solution. To accomplish this 

problem, there are at least two challenges. Firstly, the 

competition and complex behaviors of workers pose a 

challenge in designing an appropriate model to assist workers 

in making decisions. Secondly, different from the traditional 

unilateral optimization problem, the conflict between the 

maximization of platform benefit and the worker’s desire to 

receive satisfactory tasks results in another critical challenge. 

In this work, in order to study the competition on workers’ 

decision-making, competition congestion metric is proposed to 

measure the competition of workers for tasks. On this basis, a 

worker decision model based on congestion game theory is 

designed by jointly considering worker benefit, worker 

preference, and competition congestion metric. The model 

assists workers in making decisions by publishing their 

application status for tasks, which avoids fierce competition and 

improves worker satisfaction. Here, avoiding fierce 

competition does not mean ignoring the fact that workers 

compete for tasks in practical applications. When the number 

of workers applying for a task exceeds the number of workers 

required for the task, a stable matching algorithm based on 

extended deferred acceptance algorithm is designed to allocate 

a set of tasks to each worker, and to construct shortest task 

execution routes for them. The algorithm can not only satisfy 

the workers as much as possible, but also improve platform 

benefit by allocating tasks to the most beneficial workers when 

the workers compete for task resources. 

The main contributions are summarized as follows: 

(1) We investigate the drawback of existing solutions for 

stable matching in MCS, and study a novel problem by 

introducing competition congestion metric for each task. 

Keeping the metric in mind, this paper aims to avoid the 

fierce competition among workers for tasks, and to 

allocate an appropriate set of tasks to each worker 

through many-to-many stable matching to maximize 

worker satisfaction, as well as maximize platform 

benefit. To the best of our knowledge, we are the first to 

consider the influence of competition on worker 

behavior for stable matching in MCS. 

(2) We design a worker decision game based on congestion 

game theory to generate utility list for each worker, 

which jointly considers the influence of worker benefit, 

worker preference, and competition congestion metric 

on worker behavior. Then, we design a stable matching 

algorithm based on extended deferred acceptance 

algorithm. The algorithm incorporates both workers’ 

utility lists and tasks’ benefit lists to make workers and 

tasks mapping stable according to three designed rules, 

and then constructs a shortest task execution route for 

each worker. 

(3) We evaluate the performance of the proposed mechanism 

by comparing it with traditional benchmark stable 

matching algorithm and five baseline task allocation 

algorithms from the recent state-of-the-art. The results 

verify that, under various settings, the proposed 

mechanism is effective in terms of worker satisfaction 

and platform benefit. 

The rest of the paper is organized as follows. In Section II, 

the related works are introduced. In Section III, the system 

models are introduced. Accordingly, the competition-

congestion-aware stable matching algorithm (CCASM) is 

designed to realize the system models in Section IV. The 

performance evaluation and discussion are given in Section V. 

Finally, Section VI discusses the future work directions and 

Section VII concludes this paper. 

II. RELATED WORKS 

In this section, the relevant works from the recent state of the 

art on unstable task allocation, stable matching, and game 

theory in MCS are presented. Due to the few researches on 

using game theory to solve task allocation, the main 

presentation of relevant works on game theory is the research 

of improving MCS incentive mechanism utilizing game theory. 

A. Unstable Task Allocation in Mobile Crowd Sensing 

 The earlier research works on MCS focused on single task 

allocation wherein a task is allocated to only one worker for 

execution. Zhang et al. proposed a novel worker selection 

framework named CrowdRecruiter [15], which can find a near-

minimal set of workers for a task that meets its coverage ratio 

requirement. On similar trend, Xiong et al. defined a novel 

spatial-temporal coverage metric named k-depth coverage [16] 

by selecting a group of workers for the task according to 

different optimization goals to participate in the sensing 

activities. In [17], Liu et al. proposed an energy-efficient 

participant selection scheme that could meet the high quality-

of-information requirements for the services incorporating the 

energy efficiency requirements of the workers. 

With the increasing number of tasks in MCS given the 

limited sensing resources (e.g., the number of workers, the 

power of mobile devices, the type of sensors mounted on 

mobile devices), the multi-task allocation has become a hot 

research topic, wherein multiple tasks are allocated to multiple 

workers for execution. In [18], Wang et al. proposed a novel 

multi-task allocation framework named Mtasker to allocate 

appropriate tasks to each worker to maximize the overall system 

utility by introducing task-specific minimal sensing quality 

thresholds. In [19], Hu et al. studied the Quality of Service (QoS) 

based sensitive task allocation problem for MCS involving 

variable tasks and flexible rewards with the aid of a greedy 

algorithm to solve the aforementioned problem. Due to the 

diverse time-sensitivity and delay tolerant requirements of the 

tasks, a worker selection framework named ActiveCrowd was 

proposed to select suitable workers to minimize the cost [20]. 

Another work considered two situations depending on the 

number of tasks and workers, such as the case of more tasks 

with less workers and less tasks with more workers [21]. 
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Most of the above-mentioned research works focused on 

optimizing the global system performance assuming that 

workers are selfless, i.e., completing each task allocated by the 

platform unconditionally. In reality, workers are selfish and 

rational individuals, which is not necessarily aligned with 

platform optimization causing unstable consequences. In order 

to tackle this issue, this paper formulates the multi-task 

allocation problem into a stable matching problem. 

B. Stable Matching in Mobile Crowd Sensing 

Stable matching algorithms have been used in many two-

sided matching problems in various fields. For example, the 

authors in [22] proposed a modified swap matching algorithm 

based on stable matching theory to allocate the spectrum 

resource rationally when both macro-cellular and femto-

cellular users coexist in the same network. Baïou and Balinski 

proposed a stable allocation (or ordinal transportation) problem 

[23], which is a many-to-many generalization of the classical 

stable matching problem.  

In contrast to the existing task allocation mechanisms that 

may cause instability resulting in the application of stable 

matching in MCS. Initially the stable matching was mainly used 

to study the one-to-one matching problems. For example, Zhou 

et al. [10] solved the route planning and task allocation problem 

of UAV-aided MCS by studying the influence of benefit on 

matching, with the goal of minimizing energy consumption. 

Chen [11] analyzed the existing task allocation types, and 

proposed a stable task allocation algorithm to match workers 

and tasks by considering worker preference. Later on, some 

researches have investigated the stable matching for the many-

to-one and many-to-many matching problems which is more 

suitable for MCS scenarios. Zhang et al. [9] studied a matching 

problem between workers and task requesters by considering 

workers’ preferences and different types of tasks. The authors 

in [12] and [13] studied the stable matching between workers 

and task requesters under the constraint of budget in many-to-

one and many-to-many scenarios, respectively. Abououf et al. 

[14] studied a framework based on many-to-many stable 

matching, which can maximize the level of worker satisfaction, 

QoS and the completion confidence of the tasks. 

In this paper, we investigate a competition-congestion-aware 

stable matching problem and extend the deferred acceptance 

algorithm to many-to-many by considering the multi-task 

allocation scenario. Different from existing studies on workers 

matching task requesters [9], [12], [13] and one-to-one worker-

task matching [11], a pervasive model of multiple workers 

matching multiple tasks is formulated. In contrast to the study 

using stable matching to achieve multi-task allocation [14], our 

designed model aims to avoid the fierce competition among 

workers for tasks and solve the conflict of interest between 

platform and workers. Our proposed work investigates the 

influence of worker benefit, worker preference, and 

competition congestion metric on worker’s behavior in 

matching process, which is more align with the real situation in 

MCS. In addition, the concept of stable matching in many-to-

many scenarios is redefined in our proposed work, and the 

corresponding analysis of stability, optimization and 

complexity is presented. 

C. Game Theory 

Game theory is a theoretical framework that studies strategic 

interactions, which is applied to formulate and tackle the 

phenomena of struggle and competition. Till now, some MCS 

studies have utilized game theory to develop optimization 

strategies for incentive mechanism. For example, the most 

common approaches mentioned in [24]–[26] to establish 

models based on game theory are used to motivate the 

participations of mobile sensing workers. In addition, reverse 

auction approach [27] in game theory is also a common model 

in the study of incentive mechanism. 

Due to the difference between the behavior pattern of nodes 

in game theory and that of workers in MCS, the existing game 

theory concepts cannot be directly applied to task allocation. 

Therefore, we study the factors that influence the decision-

making of mobile workers, and combine them with game theory. 

TABLE I 

SYMBOLS USED 

Symbols Descriptions 

Ti, ti, TN A task Ti, number of samples required for task Ti, and task set containing all tasks. 

Wj, wj, WK A worker Wj, maximum workload of worker Wj, and worker set containing all workers. 

ci, j, xi, j The status of whether worker Wj applies for task Ti, the status of whether task Ti is allocated to worker Wj. 

Hi, j, Bi, j The utility/benefit that is achieved by allocating task Ti to worker Wj to be accomplished. 

Pi, j, Ci, j, Fi, j The reward/cost/benefit for worker Wj to accomplish task Ti. 

sj, S, S-j Worker Wj’s strategy profile, set of strategy profiles for all workers, and set of strategy profiles for all workers except worker Wj. 

Ii(S) Competition congestion metric of task Ti under the strategy profile S. 

δi, j Worker Wj’s preference for task Ti. 

Ui, j The utility for worker Wj to accomplish task Ti. 

Ei, j Worker Wj’s goal for the utility of completing task Ti. 

Gi, j(S), Gj(S), Φ(S) Worker Wj’s score for completing task Ti under S, worker Wj’s score under S, and the score of all workers under S. 

Li, Lj Task Ti’s benefit list, worker Wj’s utility list. 

Vj Worker Wj’s satisfaction. 

Hj, Bj, Pj The utility/benefit that worker Wj brings to the platform, the total reward to worker Wj. 

BRSj(S) Better response set of worker Wj under the strategy profile S. 

Ti·pair, Ti·re Number of pairs that task Ti has matched, remaining number of pairs that task Ti can be matched. 

Wj·pair, Wj·re Number of pairs that worker Wj has matched, remaining number of pairs that worker Wj can be matched. 
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III. SYSTEM MODELS 

In this work, a multi-task allocation scenario is considered 

where the platform wants to allocate multiple tasks to multiple 

workers. In this scenario, each task can be allocated to multiple 

workers while each worker can receive multiple tasks. The 

system model, as shown in Fig. 1, is divided into two stages. To 

ease the presentation, the main symbols used in this paper are 

summarized in Table I.  

Stage 1: Task requesters delegate various sensing tasks to the 

platform and provide detailed task information (e.g. task 

location, sensing content, number of samples required for the 

task, etc.). Then, the platform publishes accepted tasks to 

workers at an appropriate time (newly arrived tasks will be 

postponed to the next task allocation), and provides workers a 

certain time session to submit and modify their applications for 

tasks that they are satisfied with through worker decision game. 

After that, the platform generates a utility list for each worker 

by ranking the relevant tasks from high to low according to the 

utilities to the worker. In addition, the platform generates a 

benefit list for each task by ranking workers in descending order 

according to the benefit to the task. 

Stage 2: By incorporating both workers’ utility lists and tasks’ 

benefit lists, the platform realizes a many-to-many stable 

matching for worker-task pairs, based on which, a shortest task 

execution route is designed for each worker. When the tasks are 

sensed completely, the worker uploads the sensing data to the 

platform, and the platform sends the sensing results to task 

requesters. 

In this scenario, we make the following assumptions. Firstly, 

similar to existing recent research works (e.g. [18][28]), to 

avoid workers accepting more tasks than they can handle, each 

worker is allowed to set a maximum workload, that is, the 

maximum number of tasks that the worker can accept. Secondly, 

the physical parameters of each mobile device can be obtained 

when the worker registers onto the platform. Finally, we assume 

that the worker’s location is available during task allocation 

through GPS, Wi-Fi, and cellular networks [29]. 

With the aforementioned system model and assumptions, 

first of all, it is necessary to generate the worker’s utility list 

and the task’s benefit list for each worker and task. Then, based 

on the generated lists, workers and tasks can be stably matched 

under the constraints of the maximum workload of workers and 

the number of samples required for tasks. 

A. List Generation 

Denote the set of k workers as WK = {W1, …, Wj, …, Wk}, 

and the set of n tasks as TN = {T1, …, Ti, …, Tn}. In MCS, the 

number of tasks that workers can execute over a period of time 

is constrained, and the maximum workload of worker Wj is 

denoted as wj. In addition, the number of samples required for 

task Ti is denoted as ti. We assume that the worker can only 

provide one sample for a task in task allocation to ensure the 

quality of the sample. 

When the platform publishes task information, workers can 

apply for the tasks they want to perform. The status of whether 

worker Wj applies for task Ti is denoted as ci, j, which is a binary 

value, where ci, j = 1 represents worker Wj applying for task Ti, 

and otherwise ci, j = 0. Workers can add tasks they apply for to 

their strategy profiles, and each worker’s strategy profile is 

denoted as sj = {Ti  TN  ci, j = 1}. The set of strategy profiles 

for all k workers can be denoted as S = {s1, …, sj, …, sk}. After 

that, the platform will try to allocate tasks to the worker 

according to worker’s strategy profile, and the allocation state 

between task Ti and worker Wj is denoted as xi, j, where xi, j = 1 

represents that Ti is allocated to Wj, and otherwise xi, j = 0. 

Stage 1
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1 2 n

...

...
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Fig. 1.  The system model. 
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1) Generate the task’s benefit list 

For a task, the main factors affecting its sensing utility 

include the sensing quality and the sensing time. Hence, the 

sensing utility that is achieved by allocating task Ti to worker 

Wj to be accomplished is calculated as 

 Hi, j = α ⋅ Q
j

⋅ STi, j,  (1) 

where α is the price coefficient, which is used to transform time 

units into monetary units, e.g., dollars. Q
j
 represents the sensing 

quality of worker Wj, with a value between 0 and 1, which is 

determined by the platform according to the physical 

parameters of the worker’s mobile device. STi, j represents the 

sensing time that worker Wj takes to execute task Ti. 

After a task is completed by a worker, the platform needs to 

pay the worker a certain reward, which is positively correlated 

to sensing quality, sensing time, and movement time. Hence, 

the reward for worker Wj to accomplish task Ti is calculated as 

 Pi, j = β ⋅ Q
j

⋅ (MTi, j + STi, j), (2) 

where β is the price coefficient, which plays a similar role to α. 

MTi, j represents the movement time, the time worker Wj takes 

to move to the destination of task Ti, which is calculated as 

 MTi, j = di, j  v, (3) 

where di, j represents the Euclidean distance between task Ti and 

worker Wj. v represents the average movement speed of 

workers, which is a fixed value for all workers and is introduced 

to transform distance into time. 

Therefore, for task Ti, the benefit that is achieved by 

allocating task Ti to worker Wj to be accomplished is calculated 

as 

 Bi, j = Hi, j − Pi, j. (4) 

Considering that the platform wants to allocate tasks to 

workers with better service qualities and lower sensing costs to 

maximize task benefit, for each task Ti  TN, its benefit list Li 

containing all workers is generated, in which workers are sorted 

from high to low according to the benefit Bi, j they bring to task 

Ti.  

2) Generate the worker’s utility list based on worker decision 

game 

Different from tasks, worker behavior is influenced by many 

factors, so a worker decision game based on congestion game 

is designed to assist workers in decision-making.  

Firstly, the worker usually attaches importance to its benefit, 

which can be calculated by reward minus cost. The cost for a 

worker to accomplish a task mainly comes from the movement 

cost and sensing cost, hence the cost for worker Wj to 

accomplish task Ti is calculated as 

 Ci, j = γ ⋅ (MTi, j + STi, j ), (5) 

where γ is the price coefficient, which plays a similar role to α. 

Therefore, by calculating the reward Pi, j minus the cost Ci, j, 

the benefit for worker Wj to accomplish task Ti is calculated as 

 Fi, j = Pi, j − Ci, j. (6) 

Secondly, workers not only care about their benefit, but also 

have preferences for different tasks. The preference of worker 

Wj for task Ti is denoted as δi, j, with a value between 0 and 1. 

Specifically, 1 indicates that the worker likes the task most, and 

0 indicates that the worker least likes the task. 

Thirdly, workers’ competition for task resources will also 

affect workers’ decisions. The fiercer the competition among 

workers for a task, the more difficult it is for workers to match 

the task successfully. To measure the competition of workers 

for a task, a competition congestion metric is proposed. And the 

competition congestion metric of task Ti under the strategy 

profile S is calculated as 

 Ii(S) = 
sig( ∑ ci, j

j = k
j = 1  − ti)

∑ ci, j
j = k
j = 1

, (7) 

where ci,j represents the status of whether worker Wj applies for 

task Ti and ti represents the number of samples required for task 

Ti. 

 sig(x) = {
x, x  0

0, x ≤ 0
. (8) 

Based on the above three indicators of worker benefit, 

worker preference and competition congestion metric, a set of 

non-negative and non-increasing functions is used to represent 

the worker utility. The worker utility is proportional to worker 

benefit and worker preference, and is inversely proportional to 

competition congestion metric, which is calculated as 

 Ui, j = (
Fi, j − min((Fi, j)i∈(1, n))

max((Fi, j)i∈(1, n)) − min((Fi, j)i∈(1, n))
⋅ δi, j ⋅ (1 − Ii(S)))

1

3

. (9) 

where min((Fi, j)i∈(1, n))  and max((Fi, j)i∈(1, n))  represent the 

minimum and maximum benefit for worker Wj to accomplish 

tasks in task set TN, respectively. 

Although the worker utility is a good measure of the value a 

task brings to the worker, different workers may have different 

expectations of utility which are entirely determined by 

themselves. Therefore, we simplify the model by defining 

worker goal and worker score. In detail, worker Wj’s goal for 

the utility of completing task Ti is expressed as Ei, j, and worker 

Wj’s score for completing task Ti is expressed as Gi, j. In the 

worker decision game model, the state of worker score can be 

divided into the following categories: 

• A worker who applies for task Ti and the utility Ui, j is 

not smaller than the worker’s goal Ei, j is satisfied. In 

this case, the worker will not change its strategy profile, 

and the score Gi, j = 1. 

• A worker who applies for task Ti and the utility Ui, j is 

smaller than the worker goal Ei, j is unsatisfied, and the 

score Gi, j = −1. In this case, the worker will change its 

strategy profile to not apply for task Ti. 

• A worker who does not apply for task Ti is neutral, and 

the score Gi, j = 0. 
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Based on the above analysis, the worker Wj’s score for 

completing task Ti under the strategy profile S can be formally 

represented as: 

 Gi, j(S) = {

    1, if Ti ∈ sj and Ui, j ≥ Ei, j,

   0, if Ti ∉ sj,                          

−1, if Ti ∈ sj and Ui, j  Ei, j.

 (10) 

Hence, the worker Wj’s score under the strategy profile S is 

expressed as: 

 Gj(S) = ∑ Gi, j(S)i = n
i = 1 . (11) 

To sum up, the mathematical formulation of worker benefit, 

worker preference, competition congestion, worker utility and 

worker score are given in the worker decision game. The goal 

of the game is to make workers as satisfied as possible by 

maximizing their scores. The problem is formalized as follows: 

 
max Φ(S) = ∑ Gj(S)

j = k

j = 1

s.t.  sj ⊆ TN,   ∀j ∈ (1, k).
 (12) 

On this basis, for each worker Wj  WK, the worker’s utility 

list Lj containing all tasks is generated, in which tasks are sorted 

from high to low according to the worker’s utility Ui, j for each 

task. 

B. Stable Matching 

On the basis of generated lists, the platform can achieve a 

stable matching between tasks and workers under the 

constraints of the number of samples required for tasks and the 

maximum workload of workers. 

In order to measure the degree of worker’s satisfaction with 

the matching result, the worker satisfaction with a value 

between 0 and 1 is proposed. To calculate it, a sequence of 

natural numbers starting at 1 is used to evaluate the rating of 

each task from high to low according to the utility to the worker. 

For example, suppose there is a worker W1 and three tasks T1, 

T2, and T3, whose utility to worker W1 is 0.5, 0.8, and 0.2, 

respectively. By sorting the utility values, the ratings of these 

tasks are marked as 2, 1, and 3. Obviously, the best result for 

worker W1 is matched to T2, while the worst result is matched 

to T3. The worker satisfaction is calculated as 

 Vj = (Sworst
 j

 − Smatch

 j
)  (Sworst

 j
 − Sbest

 j
), (13) 

where Sbest

 j
 represents the rating the worker gets when selecting 

the best result, Sworst
 j

 represents the rating the worker gets when 

selecting the worst result, and Smatch

 j
 represents the rating the 

worker gets in a final matching. 

Therefore, the original problem is divided into two sub-

problems namely as P1 and P2. In the first formulated 

subproblem P1, the aim of the worker is to match the task at the 

top of its utility list to maximize its satisfaction, which is 

formalized as follows: 

 

(P1) max ∑ Vj
j = k

j = 1

s.t.  ∑ xi, j ≤ ti
j = k

j = 1 ,  ∀Ti ∈ TN,        

 ∑ xi, j ≤ wj
i = n
i = 1 ,  ∀Wj ∈ WK,

                    xi, j = {0, 1},  ∀Ti ∈ TN,  ∀Wj ∈ WK. 

 (14) 

In the second formulated subproblem P2, the aim of the 

platform is to maximize task benefit, and the problem can be 

formalized as follows: 

 

(P2) max ∑ ∑ xi, j
j = k

j = 1 Bi, j
i = n
i = 1

s.t.  ∑ xi, j ≤ ti
j = k

j = 1 ,  ∀Ti ∈ TN,        

 ∑ xi, j ≤ wj
i = n
i = 1 ,  ∀Wj ∈ WK,

                    xi, j = {0, 1},  ∀Ti ∈ TN,  ∀Wj ∈ WK. 

 (15) 

By solving these two sub-problems, we can obtain worker-

task pairs with maximum worker satisfaction and maximum 

task benefit. In addition, different task execution order leads to 

different movement costs in practical applications. The total 

reward to each worker should be relevant to their task execution 

routes, which is calculated as 

 Pj(Rj) = β ⋅ Q
j
 ⋅ (MTj + ST j), (16) 

where Rj is the task execution route of worker Wj. MTj and STj 

are the total movement time and total sensing time the worker 

Wj takes to execute tasks according to route Rj, respectively. 

The benefit that worker Wj brings to the platform is 

calculated as 

 Bj = Hj − Pj(Rj) = ∑ xi, jHi, j
i = n
i = 1 − β ⋅ Q

j
 ⋅ (MTj + ST j). (17) 

The platform benefit is the sum of the benefit each worker 

brings to it, which is calculated as 

  Platform Benefit = ∑ Bj
j = k

j = 1 . (18) 

In order to maximize the platform benefit, the movement cost 

each worker spends on task execution should be minimized. 

Therefore, how to compute the shortest route between the 

worker and the tasks it matches becomes important. 

IV. COMPETITION-CONGESTION-AWARE STABLE MATCHING 

In this section, a competition-congestion-aware stable 

matching algorithm (CCASM) is designed to implement the 

aforementioned system models. The designed algorithm 

includes a list generation algorithm and a stable matching 

algorithm. 

A. The List Generation Algorithm 

The concept of the congestion game was first proposed by 

Rosenthal [30], which is usually used to solve the problem of 

multiple players competing for resources. Different players can 

complete for different resources, but the number of 

simultaneous players choosing the same resource affect each 

player’s revenue. In general, the more players choose the same 

resource, the less revenue each player gets. 
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In order to better show the process of the list generation 

algorithm, we introduce the preliminary concepts of game as 

follows: 

Definition 1. (Better Response Action) The set of strategy 

profiles for all workers can be written as S = (sj, S−j), with S−j = 

(s1, s2, s3, …, sj−1, sj+ …, sk) represents the set of strategy 

profiles for all workers except worker Wj. The event where a 

worker changes its strategy profile from sj to sj’ is a better 

response action if and only if Gj(sj’, S−j)  Gj(sj, S−j). 

Definition 2. (Better Response Set) The set of tasks that 

enable the worker to make better response action is called the 

better response set, which is defined as 

 BRSj(S) = {Ti Ti ∈ s
j’
 and Gj(sj’

, S−j)  Gj(S)}. (19) 

Definition 3. (Pure Nash Equilibrium) When any worker 

under strategy profile S is unable to make a better response 

action, S is called pure Nash equilibrium strategy. 

Since the function Φ(S) defined as Eq. (12) is a non-negative 

and non-increasing potential function, the list generation 

algorithm can achieve Nash equilibrium in finite steps [31]. In 

this case, all workers are satisfied with their strategy profiles 

and will not change them. The specific process of algorithm is 

shown in Algorithm 1.  

B. The Stable Matching Algorithm 

David Gale and Lloyd Shapley first formally came up with 

the stable marriage problem [32], and proposed the deferred 

acceptance algorithm to find a stable matching for each man 

and each woman through the rules of proposal and rejection. 

Due to the deferred acceptance algorithm is designed to solve 

one-to-one matching problem, it is not suitable to many-to-

many task allocation problem in MCS. In this section, the 

deferred acceptance algorithm is extended to many-to-many by 

considering the maximum workload of workers and number of 

samples required for tasks. And the rules and concepts of stable 

matching are redefined.  

In this work, a matching pair is denoted as (Wj, Ti), which 

means worker Wj matches task Ti. For task Ti, the number of 

samples it requires is denoted as ti, and the number of pairs that 

have been matched is denoted as Ti•pair,  so the remaining 

number of pairs that can be matched is denoted as Ti•re = 

ti − Ti•pair. Similarly, for worker Wj, its maximum workload is 

denoted as wj, and the number of pairs that have been matched 

Algorithm 1 List Generation Algorithm Based on 

Congestion Game  

Input: the set of tasks TN, the set of workers WK, and the 

initial strategy profile S = 0. 

Output: The strategy profile S, the workers’ utility lists, and 

the tasks’ benefit lists. 

1: while for any worker Wj and the strategy profile S, 

BRSj(S)   do 

2:    The platform publicizes the task congestion (Ii(S))i  (1, 

n) to all the workers. 

3:    for Wj ∈ WK do 

4:       if BRSj(S)   then 

5:           The worker updates his/her strategy profile sj to 

all tasks in BRSj(S) and reports the updated 

strategy profile to the platform. 

6:           The platform updates the strategy profile S and 

the task congestion (Ii(S))i  (1, n). 

7:       end if 

8:    end for 

9: end while 

10: Construct the strategy profile S. 

11: for Wj  WK do 

12:  Sort the tasks in the worker’s strategy profile in 

descending order of utility. 

13: end for 

15: for Ti  TN do 

16:     Calculate the benefit that is achieved by allocating the 

task to each worker as Eq. (4). 

17:     Sort the workers in descending order of benefit. 

18: end for 

19: Generate workers’ utility lists and tasks’ benefit lists. 
 

Algorithm 2 Stable Matching Algorithm Based on 

Extended Deferred Acceptance 

Input: the set of tasks TN,  the set of workers WK,  the 

number ti  of samples required for task Ti, the 

maximum workload wj  of worker Wj, the set of 

workers that have not been fully matched Ω,  the 

task’s benefit list Li, and the worker’s utility list Lj. 

Output: The constructed routes for all workers. 

1: while Ω   do 

2:    for Wj ∈ WK do 

3:       Wj sends matching invitations to tasks in Lj in 

order. /* Invitation Rule */ 

4:       Calculate Ti•re = ti − Ti•pair. 

5:       if Ti•re  0 then 

6:          Form a candidate pair (Wj, Ti) and put it into Ψ. 

/* Acceptance Rule */ 

7:       else 

8:           Compare the rankings of inviters and workers that 

have been matched to Ti in its benefit list Li. 

9:           Match the top ti ranked workers with Ti to form  

candidate pairs, put them into Ψ;  meanwhile, 

delete other pairs of Ti from Ψ. /* Rejection Rule 

*/ 

10:       end if 

11:       Calculate Wj•re = wj − Wj•pair. 

12:       Put the Wj which Wj•re ≠ 0 and have not been  

rejected by all the tasks he applied for into Ω, 

otherwise delete the Wj from Ω. 

13:    end for 

14: end while 

15: Construct the candidate pairs set Ψ. 

16: for Wj ∈ WK do 

17:      Construct a shortest task execution route by greedy-

edge method. 

18: end for 
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is denoted as Wj•pair, so the remaining number of pairs that can 

be matched is denoted as Wj•re = wj − Wj•pair . The sets of 

workers that have not been fully matched are denoted as Ω, i.e., 

Ω = WK  at the beginning of the Algorithm 2. The set of 

candidate pairs is denoted as Ψ, i.e., Ψ = ∅ at the beginning of 

the Algorithm 2.  

Considering the number of samples required for tasks and the 

maximum workload of workers, three rules are designed for the 

stable worker-task matching algorithm which are different from 

the deferred acceptance algorithm and shown below: 

Definition 4. (Invitation Rule) Each worker Wj ∈ WK  first 

sends matching invitations to tasks in its utility list Lj in order 

until Wj•re = 0. 

Definition 5. (Acceptance Rule) For each task Ti ∈ TN, if 

Ti•re  0, the matching invitation is accepted to form a candidate 

pair (Wj, Ti). Accordingly, the values of Wj•re and Ti•re decrease 

by 1. 

Definition 6. (Rejection Rule) For each task Ti ∈ TN , if 

Ti•re = 0 and there is an underlying pair such as (W
j’
, Ti) that 

makes F
i, j’  min(Fi, j) , the new candidate pair (W

j’
, Ti)  is 

formed and the previous candidate pair (Wj, Ti)  is broken. 

Otherwise, the underlying pair (W
j’
, Ti) is rejected. 

According to the above three rules, tasks and workers can be 

matched stably. Then, the set Ψ that contains all candidate pairs 

is constructed, based on which, a greedy-edge method is used 

to construct a shortest task execution route for each worker. 

Specifically, a worker and its matched tasks are regarded as the 

nodes of an undirected graph, and the distance between nodes 

is regarded as the edge of the undirected graph. The method 

adds a shortest edge to the task execution route each time, until 

the constructed task execution route passes through all nodes 

once and only once, that is, a complete Hamilton loop is 

obtained. The demonstration of these steps is described in detail 

in Algorithm 2.  

C. The Instance 

An instance of competition-congestion-aware stable worker-

task matching is depicted in Fig. 2. During the task allocation 

process, since worker’s benefit and preference for a task are 

fixed, the worker’s score for a task is only related to competition 

congestion metric. Therefore, to clearly reflect the impact of 

competition congestion on workers’ decision-making, we use 

Ei, j
I  representing the goal of worker Wj for the competition 

congestion of task Ti. Accordingly, Eq. (10) can be rewritten as:  

 Gi, j(S) = {

   1, if Ti ∈ sj and Ii(S) ≤ Ei, j
I ,

0, if Ti ∉ sj,                            

−1, if Ti ∈ sj and Ii(S) > Ei, j
I .

 (20) 

For the instance given in Fig. 2, the platform publicizes task 

information to workers. Then, the worker W1 determines its 

strategy profile S1 = (T1, T2, T3) by comparing the competition 

congestion Ii(S) and the worker’s goal Ei, j
I  for each task, and 

returns the strategy profile to platform. After that, the platform 

updates the competition congestion to all workers. After some 

steps, since the competition congestion of task T2 does not meet 

worker W3’s goal, worker W3 returns its updated strategy profile 

S3 = (T1, T3).  After some steps, as workers’ applications for 

task T3 increases, the competition congestion of task T3 is higher 

than worker W1’s goal, so worker W1 updates its strategy profile 

S1 = (T1, T2).  Repeating the above process, workers finally 

form stable strategy profiles, on which the platform generates 

workers’ utility lists and tasks’ benefit lists for stable matching 

process. At the beginning, worker W1 sends an invitation to task 

T2, which is the first task in its utility list, and forms the 

candidate pair (W1, T2) and now W1•re = 0. Then, worker W2 

sends an invitation to task T3, and forms the candidate pairs (W2, 

T3). Worker W2 sends an invitation to task T2, since now 

T2•re = 0 and worker W2 has a higher ranking than worker W1 in 

task T2’s benefit list, the candidate pair (W1, T2) is broken and a 

new candidate pair (W2, T2) is formed. Next, worker W3 sends 

an invitation to task T3. Since now T3•re = 0 and worker W3 has 

a lower ranking than worker W2 in task T3’s benefit list, worker 

W3’s invitation is rejected. Therefore, worker W3 sends a new 

invitation to task T1 and forms (W3, T1). Since the candidate pair 

(W1, T2) is broken, the worker W1 has not been matched fully 

and now W1•re = 1. Therefore, worker W1 sends an invitation to 

task T1 to form the candidate pair (W1, T1). At this point, all 

three workers are matched completely and fully. The final 

matching result is Ψ = {(W1, T1), (W2, T2), (W2, T3), (W3, T1)}. 

T1                2              0             0

T2                1              0             0

T3                1              0             0

            

                    0.7             

   W1           0.8          ( T1, T2, T3 )

                    0.7

Task ti  ci,  j I
i
(S) Worker Strategy Profile

...

T1                2              4            0.5

 T2                1              3           0.67

 T3                1              3           0.67

Task ti  ci,  j I
i
(S)

T1                2              5          0.6

 T2                1              3         0.67

T3                1              5          0.8

Task ti  ci,  j I
i
(S)

 Publicize task information

Return the strategy profile

...

     Workers  Utility Lists                          Tasks  Benefit Lists

     W1           ( T2, T1 )                                  T1          ( W2, W3, W1 )

     W2           ( T3, T2, T1 )                           T2          ( W2, W1, W3 ) 

     W3           ( T3, T1 )                                  T3          ( W1, W2, W3 )  

 Sort the tasks in the worker s strategy 

profile in descending order of utility

wj Utility List Lj

W1               1           T2, T1

    W2                2        T3, T2, T1

W3                1          T3, T1

Tasks ti Benefit List Li

T1           2       W2, W3, W1 

T2           1       W2, W1, W3

T3           1       W1, W2, W3

Matching result          Ψ = {(W1, T1), (W2, T2), (W2, T3), (W3, T1)}

Send an invitation

Reject an invitation

Form a candidate pair

Break a candidate pair

Update task information
            

                    0.6             

    W3          0.3               ( T1, T3 )

                    0.8
Return the strategy profile 

Stage 1  List Generation

Stage 2   Stable Matching

Worker Strategy Profile

            

                    0.7             

    W1          0.8               ( T1, T2 )

                    0.7

Strategy ProfileWorker

Ei, j
 I

Ei, j
 I

Ei, j
 IUpdate task information 

Return the strategy profile 

Sort the workers in 

descending order of benefit

Workers

Task execution route          W1: T1          W2: T2   T3          W3: T1

Greedy-edge method

Fig. 2.  An instance of competition-congestion-aware stable worker-task 

matching. 
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Finally, through the greedy-edge method, the shortest task 

execution route of each worker can be obtained.  

D. Stability, Optimality, and Complexity Analysis 

The stability, optimality, and complexity of the designed 

CCASM algorithm are analyzed as follows: 

1) Stability Analysis 

Before stability analysis, we introduce the concept of 

blocking pair. 

Definition 7. (Blocking Pair) A pair (Wj, Ti) is a blocking pair 

which can block a match if Wj prefers Ti to at least one of the 

tasks it has matched and Ti prefers Wj to at least one of the 

workers it has matched. 

When Algorithm 1 finishes, all workers are satisfied and 

unable to make a better response action under strategy profile S, 

so the game result is stable.  

Then, due to the number of workers and tasks is not 

necessarily equal, the stable matching for many-to-many 

matching problem should be ensured to be both complete and 

stable. Hence, the concept of stable matching is redefined in 

definition 8.  

Definition 8. (Stable Matching) (i) The match is complete, 

which means that all workers or all tasks have matched fully 

and completely. (ii) The match is stable, which means that for 

each candidate pair, there is no blocking pair that can be used 

as a better underlying choice to break it. 

When Algorithm 2 finishes, the matching result is stable. 

Proof: Since each worker sends invitations to tasks in its 

utility list in order, as the algorithm runs, there is always a 

moment that all workers or all tasks are matched fully and 

completely. Next, in order to prove that there is no blocking pair 

for the matching result, we adopt the reduction to absurdity. We 

assume that there is at least one blocking pair (Wp, Tq) after 

matching. We define a function f
j
(x) which maps the ranking of 

each task in the worker Wj’s utility list to a real integer. For 

example, suppose the utility list of worker W1 is {T2, T3, T1}, 

then f
1
(T2) = 1 , f

1
(T3) = 2 , and f

1
(T1) = 3 . Similarly, we 

define a function g
i
(x) which maps the ranking of each worker 

in the task Ti’s benefit list to a real integer. The set of tasks that 

worker Wj has matched is represented as 𝒲𝑗 , the set of workers 

that task Ti has matched is represented as 𝒯𝑖 . According to 

definition 7, it can be deduced that: 

Inference 1. ∃ Tm  ∈  𝒲p, f
p
(Tm) > f

p
(Tq) (i.e., in the set 𝒲p, 

there is at least one task Tm which is ranked lower than task Tq 

in worker Wp’s utility list). 

Inference 2. ∃ Wn  ∈  𝒯q, g
q
(Wn) > g

q
(Wp) (i.e., in the set 𝒯q, 

there is at least one worker Wn which is ranked lower than 

worker Wp in task Tq’s benefit list). 

The inference 1 shows that task Tm is ranked lower than task 

Tq. Since worker Wp sends invitations to tasks in its utility list 

in order, it can be inferred that the worker Wp has invited the 

task Tq. However, Wp is not matched with Tq in the end, which 

means the invitation was rejected or the candidate pair was 

broken by other workers in 𝒯q. So, it can be deduced that: 

Inference 3. ∀ Wj  ∈  𝒯q, g
q
(Wj) < g

q
(Wp) (i.e., in the set 𝒯q, 

all workers are ranked higher than worker Wp in task Tq’s 

benefit list). 

 Obviously, inference 3 is contrary to inference 2. Therefore, 

the assumption is invalid, that is, there is no blocking pair for 

the matching result. Based on the above analysis, the matching 

result is stable. 
2) Optimality Analysis 

For the algorithm 1, since each worker can add all satisfied 

tasks to its strategy profile, the game result is optimal. 

For the algorithm 2, when the matching is finished, both 

workers and tasks cannot find a better solution to enhance 

worker satisfaction or task benefit besides the matching result. 

Therefore, each worker and task under the matching result are 

at least as well as it would be under other stable matching results, 

so the matching result is not only stable but also Pareto optimal.  

3) Complexity Analysis 

For list generation, the computation complexity of 

congestion game is O(k2), the computation complexity of 

sorting n tasks and k workers in descending order are Ο(nlogn) 

and Ο(klogk) respectively. For stable matching, the 

computation complexity of the iterative matching process is 

Ο(nk), the computation complexity of constructing the shortest 

task execution routes of k workers is Ο(nklogn). Therefore, the 

maximum computation complexity of the designed algorithm is 

max{O(k2), Ο(nklogn)}. 

V. PERFORMANCE EVALUATION 

A. Experimental Setting 

1) Data Sets and Model Settings 

The following three data sets are employed in the simulation 

to validate the designed model and algorithm. 

• Berlin52 [33]. The data set contains the coordinate 

information of 52 locations in Berlin. The locations of 

tasks and workers are randomly generated from these 

coordinates. 

• NRW1379 [33]. Similarly, the data set contains the 

coordinate information of 1,379 locations in Nordrhein-

Westfalen. The locations of tasks and workers are 

randomly generated from these coordinates. 

• GeoLife [34]. The data set was gathered in the Geolife 

project (Microsoft Research Asia) by 182 participants in 

a period of over three years (from April 2007 to August 

2012). The GPS trajectories of this dataset are 

represented by time-stamped points, each of which 

contains the latitude and longitude. This data set 

contains 17,621 trajectories with a total distance of 

about 1.2 million kilometers and a total duration of 

48,203+ hours. In the simulation, we select workers in 

the area which is in the northern latitude from 39.975 to 

40.025, and eastern longitude from 116.31 to 116.35. In 

addition, the locations of tasks are randomly generated 

in the area. 

For each data set, the simulation parameters are summarized 

in Table II. 
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2) Benchmark Algorithms 

In order to emphasize the advantages of worker decision 

game, we compare CCASM with the algorithm without 

considering competition congestion: 

• Traditional Stable Matching (TSM): This algorithm 

does not consider the impact of competition congestion 

on workers’ decision-making in the MCS system. In the 

algorithm, the worker’s utility list is generated based on 

worker benefit and worker preference, and then the 

algorithm 2 is adopted for many-to-many stable worker-

task matching. On this basis, tasks are allocated to 

workers according to the results of stable matching. 

Moreover, in order to emphasize the advantages of the 

designed model and algorithm, we utilize the following baseline 

task allocation algorithms for comparative studies:  

• Random Allocation (RA): This algorithm randomly 

allocates tasks to workers based on the number of 

samples required for tasks and the maximum workload 

of workers constraints.  

• Asynchronous Task Selection (ATS): This algorithm 

simulates the process of workers’ asynchronous and 

distributed task selection, which is a common way [35] 

for workers to participate in MCS activities through 

mobile phones. Workers apply for tasks they are 

satisfied with in the order they arrive at the mobile app, 

and the platform allocates tasks to them based on their 

requests. In order to avoid the influence of workers’ 

arrival order, we conducted multiple experiments to get 

the average value. 

• Greedy for Worker Satisfaction (GWS): This algorithm 

adopts greedy algorithm to maximize worker 

satisfaction in MCS system, and the optimization target 

is shown in Eq. (14). The algorithm selects worker-task 

pairs from high to low according to the utilities in Eq. 

(9). 

• Greedy-enhanced Genetic Algorithm (GGA): This 

algorithm [20] combines greedy algorithm and genetic 

algorithm, and uses the result of GWS as the input of 

population initiation to obtain a better solution. In detail, 

the three parameters of generation number, population 

size and mutation rate are 100, 200 and 0.05 respectively. 

• Greedy for Platform Benefit (GPB): This algorithm 

adopts greedy algorithm to maximize platform benefit 

in MCS system, and the optimization target is shown in 

Eq. (15). It selects worker-task pairs from high to low 

according to the benefit in Eq. (4), thus enabling the 

platform to obtain as much benefit as possible. 

TABLE II 

SIMULATION PARAMETERS 

Symbol Description Value 

Q
j
 The sensing quality of worker Wj. 0 ~ 1 

STi, j The sensing time that worker Wj takes to 

execute task Ti. 

10 ~ 20 min 

α Price coefficient. 12 

β Price coefficient. 3 

γ Price coefficient. 1 

v Average movement speed of workers. 60 m/min 

δi, j Worker Wj’s preference for task Ti. 0 ~ 1 

ti Number of samples required for task Ti. 1 ~ 4 

wj Maximum workload of worker Wj. 1 ~ 4 

Ei, j Worker Wj’s goal for the utility of 

completing task Ti. 

0 ~ 1 

 

     
(a)                                                                            (b)                                                                           (c) 

Fig. 3.  Comparison of the influence of CCASM and TSM in (a) Berlin52, (b) NRW1379, and (c) GeoLife on average worker satisfaction when the number of 

tasks changes. 

 

     
(a)                                                                            (b)                                                                           (c) 

Fig. 4.  Comparison of the influence of CCASM and TSM in (a) Berlin52, (b) NRW1379, and (c) GeoLife on average worker satisfaction when the number of 

workers changes. 
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By the way, the greedy-edge method is adopted to construct 

shortest task execution routes for workers after getting the task 

allocation results from the above five algorithms. 

3) Evaluation Metrics 

• Average Worker Satisfaction 

Average worker satisfaction is characterized by the average 

satisfaction of all workers who have received tasks, which is 

used to evaluate the worker’s satisfaction with task allocation. 

• Platform Benefit 

The platform benefit is the sum of the benefit each worker 

brings to it, which is calculated as Eq. (18). 

B. Performance Evaluation and Discussion 

To illustrate the effectiveness and superiority of the designed 

model and algorithm, we will show their results in task 

allocation and compare them with aforementioned benchmark 

algorithms.  

1) Superiority of Model with Congestion 

Fig. 3 and Fig. 4 show CCASM’s superiority over TSM in 

terms of average worker satisfaction when the number of tasks 

and workers changes respectively. In detail, as shown in Fig. 3, 

(i) when the number of tasks is small, CCASM is significantly 

better than TSM. (ii) When the number of tasks increases, the 

average worker satisfaction in CCASM and TSM increases. (iii) 

When the number of tasks is large, the performance of CCASM 

and TSM are similar. The reasons are that (i) when the number 

of workers is fixed and the number of tasks is small, the 

competition congestion is high, so many workers may not be 

able to match the tasks they are satisfied with. However, 

CCASM can make the overall decision of workers more stable 

and assist them in making favorable decisions. (ii) The increase 

in the number of tasks means less competition congestion. In 

this case, workers are more likely to match the tasks they are 

satisfied with, so the average worker satisfaction increases. (iii) 

When the number of tasks is significantly larger than the 

number of workers, there is almost no competition congestion, 

so the performance of CCASM and TSM is similar. The results 

in Fig. 4 can also be interpreted in the same way. It is worth 

mentioning that CCASM still performs well when the number 

of tasks is fixed and the number of workers increases. This is 

because when the competition for a task is too fierce, some 

workers may abandon the application for the task and apply for 

other tasks they are satisfied with. In summary, the worker 

decision game can significantly improve workers' satisfaction.    

2) Average Worker Satisfaction 

Fig. 5 shows CCASM versus five baselines in terms of 

average worker satisfaction when the number of tasks changes. 

Obviously, CCASM performs best in terms of average worker 

satisfaction and GPB performs the worst. This is because 

CCASM tries to match workers with tasks they are satisfied 

with, while GPB is an optimization algorithm aimed at 

maximizing platform benefit which ignores worker satisfaction 

in task allocation. Moreover, as the number of tasks increases, 

the CCASM, GGA, GWS, and ATS perform better. The reason 

is that when the number of workers is fixed, as the number of 

tasks increases, workers are more likely to receive satisfactory 

tasks. Fig. 6 shows the performance of CCASM is better than 

ATS, RA, and GPB when the number of workers changes. In 

addition, CCASM performs similarly to GGA and GWS in Fig. 

6(a), and worse than GGA and GWS in Fig. 6(b) and Fig. 6(c). 

This is because as the number of workers increases, the 

competition among workers becomes more fierce, resulting in 

a decrease of average worker satisfaction. 

     
(a)                                                                            (b)                                                                           (c) 

Fig. 5.  Comparison of the influence of CCASM and baselines in (a) Berlin52, (b) NRW1379, and (c) GeoLife on average worker satisfaction when the number of 

tasks changes. 

 

     
(a)                                                                            (b)                                                                           (c) 

Fig. 6.  Comparison of the influence of CCASM and baselines in (a) Berlin52, (b) NRW1379, and (c) GeoLife on average worker satisfaction when the number of 
workers changes. 
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3) Platform Benefit 

Fig. 7 and Fig. 8 show the difference between CCASM and 

above-mentioned baselines in terms of platform benefit when 

the number of tasks and workers changes respectively. 

Obviously, since the optimization goal of GPB is to maximize 

platform benefit, it has the best performance. In addition, when 

the number of workers is small and the number of tasks is large, 

CCASM performs similar to ATS, GWS, and GGA. Conversely, 

when the number of workers is large and the number of tasks is 

small, CCASM performs significantly better than RA, ATS, 

GWS, and GGA. In this case, the competition among workers 

is relatively fierce, and CCASM matches tasks with workers 

who can bring the most benefit to the task, thereby improving 

platform benefit.  

In summary, when the competition for tasks is relatively mild, 

CCASM performs better than baselines in terms of average 

worker satisfaction. While in the case of fierce competition for 

tasks, CCASM not only performs well in average worker 

satisfaction, but also improves platform benefit significantly. 

According to the above discussions, it can be concluded that the 

designed model and algorithm are effective and meaningful.   

VI. DISCUSSION 

In this section, we discuss issues that are not reported or 
addressed in this work due to space constraints, which are the 
directions of our future work. We are mainly concerned with 
task benefit, worker benefit, worker preference, and 
competition congestion metric when formulating our stable 
matching problem. Other types of factors may need to be 
considered in stable matching, such as worker reputation, task 
urgency, etc. Besides, this paper only considers two constraints 
when solving the stable matching problem, one is the number 
of samples required for the task, and the other is the maximum 

workload of workers. We plan to explore more fine-grained 
constraints in the future work, such as the maximum working 
hours of workers. 

VII. CONCLUSION 

The existing stable matching studies lack deep 
consideration regarding the effects of workers’ competition 
phenomena and complex behaviors, which may reduce 
workers’ satisfaction and enthusiasm for participation in 
sensing activities. In this paper, we investigated a competition-
congestion-aware stable matching problem by considering the 
competition of workers for tasks. Due to the competition and 
complex behaviors of workers, a worker decision game based 
on congestion game theory is designed to improve worker 
satisfaction by jointly considering worker benefit, worker 
preference, and competition congestion metric. On this basis, a 
stable matching algorithm based on extended deferred 
acceptance algorithm is designed to make workers and tasks 
mapping stable, and to construct the shortest task execution 
route for each worker. Finally, the effectiveness of the proposed 
mechanism is verified by comparing it with traditional 
benchmark stable matching algorithm and five baseline task 
allocation algorithms. Simulation results show that the designed 
algorithm performs well in worker satisfaction and platform 
benefit.  
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